WO2010122783A1 - 端末装置及び再送制御方法 - Google Patents

端末装置及び再送制御方法 Download PDF

Info

Publication number
WO2010122783A1
WO2010122783A1 PCT/JP2010/002852 JP2010002852W WO2010122783A1 WO 2010122783 A1 WO2010122783 A1 WO 2010122783A1 JP 2010002852 W JP2010002852 W JP 2010002852W WO 2010122783 A1 WO2010122783 A1 WO 2010122783A1
Authority
WO
WIPO (PCT)
Prior art keywords
downlink
unit band
unit
control information
uplink
Prior art date
Application number
PCT/JP2010/002852
Other languages
English (en)
French (fr)
Inventor
中尾正悟
西尾昭彦
今村大地
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to EP10766844.4A priority Critical patent/EP2424295B1/en
Priority to US13/258,095 priority patent/US9143280B2/en
Priority to EP21181155.9A priority patent/EP3905771A1/en
Priority to CN201080017652.6A priority patent/CN102415132B/zh
Priority to JP2011510216A priority patent/JPWO2010122783A1/ja
Publication of WO2010122783A1 publication Critical patent/WO2010122783A1/ja
Priority to US14/824,808 priority patent/US9369967B2/en
Priority to US15/157,065 priority patent/US9854534B2/en
Priority to US15/814,169 priority patent/US10455516B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/22TPC being performed according to specific parameters taking into account previous information or commands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H20/00Arrangements for broadcast or for distribution combined with broadcast
    • H04H20/65Arrangements characterised by transmission systems for broadcast
    • H04H20/71Wireless systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1621Group acknowledgement, i.e. the acknowledgement message defining a range of identifiers, e.g. of sequence numbers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1657Implicit acknowledgement of correct or incorrect reception, e.g. with a moving window
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/26TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service]
    • H04W52/262TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service] taking into account adaptive modulation and coding [AMC] scheme
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
    • H04W8/08Mobility data transfer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0016Time-frequency-code
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems

Definitions

  • the present invention relates to a terminal device and a retransmission control method.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SCH Synchronization Channel
  • BCH Broadcast Channel
  • the terminal first secures synchronization with the base station by capturing the SCH. Thereafter, the terminal acquires parameters (eg, frequency bandwidth) unique to the base station by reading the BCH information (see Non-Patent Documents 1, 2, and 3).
  • the terminal establishes communication with the base station by making a connection request to the base station after the acquisition of the parameters unique to the base station is completed.
  • the base station transmits control information via a PDCCH (Physical ⁇ Downlink Control CHannel) as necessary to a terminal with which communication has been established.
  • PDCCH Physical ⁇ Downlink Control CHannel
  • the terminal performs “blind determination” for each of the plurality of control information included in the received PDCCH signal. That is, the control information includes a CRC (Cyclic Redundancy Check) part, and this CRC part is masked by the terminal ID of the transmission target terminal in the base station. Therefore, the terminal cannot determine whether or not the received control information is control information destined for the own device until the CRC part of the received control information is demasked with the terminal ID of the own device. In this blind determination, if the CRC calculation is OK as a result of demasking, it is determined that the control information is addressed to the own device.
  • CRC Cyclic Redundancy Check
  • ARQ Automatic Repeat Request
  • the terminal feeds back a response signal indicating an error detection result of downlink data to the base station.
  • An uplink control channel such as PUCCH (Physical Uplink Control Channel) is used for feedback of this response signal (that is, ACK / NACK signal).
  • PUCCH Physical Uplink Control Channel
  • the control information transmitted from the base station includes resource allocation information including resource information allocated to the terminal by the base station.
  • the PDCCH is used for transmitting the control information.
  • This PDCCH is composed of one or a plurality of L1 / L2 CCHs (L1 / L2 Control Channel).
  • Each L1 / L2CCH is composed of one or a plurality of CCEs (Control Channel Element). That is, CCE is a basic unit for mapping control information to PDCCH.
  • one L1 / L2CCH is composed of a plurality of CCEs, a plurality of continuous CCEs are allocated to the L1 / L2CCH.
  • the base station allocates L1 / L2 CCH to the resource allocation target terminal according to the number of CCEs required for reporting control information to the resource allocation target terminal. Then, the base station maps the physical resource corresponding to the CCE of this L1 / L2CCH and transmits control information.
  • each CCE is associated with the PUCCH configuration resource on a one-to-one basis. Therefore, the terminal that has received the L1 / L2CCH specifies a PUCCH configuration resource corresponding to the CCE that configures the L1 / L2CCH, and transmits a response signal to the base station using this resource. Thus, downlink communication resources are efficiently used.
  • a plurality of response signals transmitted from a plurality of terminals include a ZAC (Zero Auto-correlation) sequence having a Zero Auto-correlation characteristic on the time axis, a Walsh sequence, and a DFT ( Discrete Fourier Transform) sequence and code multiplexed in PUCCH.
  • ZAC Zero Auto-correlation
  • W 1 , W 2 , W 3 represents a Walsh sequence with a sequence length of 4
  • (F 0 , F 1 , F 2 ) represents a DFT sequence with a sequence length of 3.
  • an ACK or NACK response signal is first spread in a 1SC-FDMA symbol by a ZAC sequence (sequence length 12) on the frequency axis.
  • the response signal after the first spreading is subjected to IFFT (Inverse Fast Fourier Transform) corresponding to W 0 to W 3 and F 0 to F 3, respectively.
  • IFFT Inverse Fast Fourier Transform
  • a response signal spread by a ZAC sequence having a sequence length of 12 on the frequency axis is converted into a ZAC sequence having a sequence length of 12 on the time axis by the IFFT.
  • the signal after IFFT is further subjected to second order spreading using a Walsh sequence (sequence length 4) and a DFT sequence (sequence length 3).
  • LTE-A system 3GPP LTE-advanced system
  • LTE system 3GPP LTE system
  • the bandwidth for the LTE-A system is changed to LTE. It is divided into “unit bands” of 20 MHz or less, which is the support bandwidth of the system. That is, the “unit band” is a band having a maximum width of 20 MHz, and is defined as a basic unit of the communication band. Furthermore, the “unit band” (hereinafter referred to as “downlink unit band”) in the downlink is a band delimited by downlink frequency band information in the BCH broadcast from the base station, or the downlink control channel (PDCCH) is a frequency.
  • the “unit band” (hereinafter referred to as “downlink unit band”) in the downlink is a band delimited by downlink frequency band information in the BCH broadcast from the base station, or the downlink control channel (PDCCH) is a frequency.
  • the “unit band” in the uplink is a band delimited by uplink frequency band information in the BCH broadcast from the base station, or a PUSCH (Physical-Uplink) near the center. It may be defined as a basic unit of a communication band of 20 MHz or less including a Shared (CHAnel) region and including PUCCH for LTE at both ends.
  • the “unit band” may be expressed as “Component Carrier (s)” in English in 3GPP LTE-Advanced.
  • the LTE-A system supports communication using a band obtained by bundling several unit bands, so-called Carrier Aggregation.
  • Carrier Aggregation In general, an uplink throughput request and a downlink throughput request are different from each other. Therefore, in the LTE-A system, an arbitrary LTE-A system compatible terminal (hereinafter referred to as “LTE-A terminal”) is set.
  • LTE-A terminal an arbitrary LTE-A system compatible terminal
  • Carrier-aggregation the so-called Asymmetric carrier-aggregation, in which the number of unit bands to be transmitted differs between upstream and downstream, is also being studied. Furthermore, the case where the number of unit bands is asymmetric between upstream and downstream and the frequency bandwidth of each unit band is different is also supported.
  • FIG. 2 is a diagram for explaining an asymmetric carrier aggregation applied to individual terminals and its control sequence.
  • FIG. 2 shows an example in which the uplink and downlink bandwidths and the number of unit bands of the base station are symmetric.
  • terminal 1 is configured to perform carrier aggregation using two downlink unit bands and one uplink unit band on the left side. In spite of the setting that uses the same two downlink unit bands as those of the terminal 1, the setting that uses the right uplink unit band is performed in the uplink communication.
  • Terminal 1 When attention is paid to the terminal 1, signals are transmitted and received between the LTE-A base station and the LTE-A terminal constituting the LTE-A system according to the sequence diagram shown in FIG. 2A.
  • Terminal 1 synchronizes with the left downlink unit band at the start of communication with the base station, and sends information on the uplink unit band paired with the left downlink unit band to SIB2 Read from a notification signal called (System Information Block Type 2).
  • SIB2 System Information Block Type 2
  • the terminal 1 starts communication with the base station, for example, by transmitting a connection request to the base station.
  • the base station instructs the terminal to add a downlink unit band.
  • the number of uplink unit bands does not increase, and asymmetric carrier aggregation is started in terminal 1, which is an individual terminal.
  • ACK / NACK Bundling a response signal transmission method in which a plurality of response signals for a plurality of data transmitted in a plurality of downlink unit bands are bundled together (bundling), a so-called ACK / NACK Bundling (hereinafter referred to as ACK / NACK Bundling) , Simply referred to as “Bundling”).
  • Bundling a logical product (that is, Logical AND) of a plurality of ACK / NACK signals to be transmitted by the terminal is calculated, and the calculation result is fed back to the base station as a “bundle ACK / NACK signal (Bundled ACK / NACK signal)”. To do.
  • ARQ is controlled as follows. For example, as shown in FIG. 3, when a unit band group consisting of downlink unit bands 1 and 2 and uplink unit band 1 is set for terminal 1, each PDCCH of downlink unit bands 1 and 2 is assigned. After the downlink resource allocation information is transmitted from the base station to the terminal 1, the downlink data is transmitted using the resource corresponding to the downlink resource allocation information. Then, the ACK / NACK signal for the downlink data transmitted in the downlink unit band 1 may be transmitted on the PUCCH of the uplink unit band 1 corresponding to the downlink unit band 1 as in the conventional (LTE system). However, when the unit band group as shown in FIG.
  • the uplink unit band included in the unit band group is only the uplink unit band 1, and thus transmitted in the downlink unit band 2 unlike the conventional case.
  • An ACK / NACK signal for downlink data also needs to be transmitted on the uplink unit band 1 PUCCH.
  • the terminal transmits only one ACK to the base station as a bundled ACK / NACK signal only when all of the plurality of downlink data transmitted to the terminal is successfully received.
  • overhead in the uplink control channel can be reduced by transmitting only one NACK as a bundle ACK / NACK signal to the base station.
  • the bundle is used among the PUCCH resources corresponding to the plurality of CCEs occupied by the plurality of received downlink control signals, for example, using the PUCCH resource having the smallest frequency and identification number (Index), the bundle is used.
  • An ACK / NACK signal is transmitted.
  • each terminal blindly determines the downlink allocation control signal addressed to itself in each subframe, the terminal side does not always succeed in receiving the downlink allocation control signal.
  • the terminal fails to receive a downlink assignment control signal in a certain downlink unit band, the terminal cannot even know whether downlink data exists in the downlink unit band. Therefore, if reception of a downlink assignment control signal in a certain downlink unit band fails, the terminal does not generate a response signal for downlink data in the downlink unit band.
  • This error case is defined as DTX (DTX (Discontinuous transmission) of ACK / NACK signals) of the response signal in the sense that the response signal is not transmitted on the terminal side.
  • the DTX generated on the terminal side needs to be considered on the base station side. That is, the base station cannot predict in advance which downlink unit band will successfully receive the downlink allocation control signal in the downlink unit band, and as a result, which CCE is mapped to the CCE to which the downlink allocation control signal is mapped. I do not know whether the response signal is transmitted using the PUCCH resource. Therefore, on the base station side, all PUCCH resources corresponding to the CCE to which a plurality of downlink allocation control signals are mapped must be reserved for the response signal of the control target terminal.
  • the downlink unit band 1 and the uplink unit band 1 are associated with each other to form a band pair, and the downlink unit band 2 and the uplink unit band 2 are associated with each other to form a band pair.
  • a PUCCH corresponding to the downlink unit band 2 may be prepared only for the uplink unit band 2.
  • the downlink unit band 2 and the uplink unit band 1 are associated with LTE-A-specific unit bands. As a result, it is necessary to secure a PUCCH resource for a response signal for the downlink unit band 2 even in the uplink unit band 1.
  • the LTE-A system has a PUCCH overhead larger than that of the LTE system, and furthermore, the PUCCH overhead cannot be reduced even when Bundling is applied.
  • An object of the present invention is to provide a terminal apparatus and a retransmission control method capable of reducing the overhead of an uplink control channel when ARQ is applied in communication using an uplink unit band and a plurality of downlink unit bands associated with the uplink unit band. Is to provide.
  • the terminal apparatus of the present invention communicates with a base station using a unit band group including a plurality of downlink unit bands and uplink unit bands, and a response signal based on an error detection result of downlink data arranged in the downlink unit band
  • a control information receiving means for receiving downlink allocation control information transmitted on the downlink control channels of the plurality of downlink unit bands, the terminal device transmitting the uplink on the uplink control channel of the uplink unit band corresponding to the downlink unit band, Obtained by a downlink data receiving means for receiving downlink data transmitted on a downlink data channel indicated by the downlink allocation control information, an error detecting means for detecting a reception error of the received downlink data, and the error detecting means.
  • the response used for downlink data retransmission control in the base station is used.
  • Response control means for controlling signal transmission wherein the response control means is a downlink unit band in which a broadcast channel signal including information on uplink unit bands in the unit band group is transmitted by the control information receiving unit.
  • the uplink unit is associated with the downlink control channel in the basic unit band.
  • the response signal is transmitted to the base station using an uplink control channel resource provided in a band, and the control information receiving unit only receives the downlink allocation control information transmitted in the second downlink unit band. If successful, the response signal is not transmitted to the base station.
  • the retransmission control method of the present invention includes a control information receiving step for receiving downlink allocation control information transmitted on downlink control channels of a plurality of downlink unit bands included in a unit band group, and a downlink data channel indicated by the downlink allocation control information
  • a downlink data reception step for receiving downlink data transmitted in step (b), an error detection step for detecting a reception error in the received downlink data, an error detection result obtained by the error detection means, and the downlink allocation control information
  • a response control step for controlling transmission of a response signal used for retransmission control of downlink data in the base station based on success or failure of reception, and in the response control step, in the control information reception step, A downlink unit band in which a broadcast channel signal including information on the uplink unit band is transmitted.
  • the uplink unit band is associated with the downlink control channel in the basic unit band.
  • the response signal is transmitted to the base station using the uplink control channel resource provided in, and only the downlink allocation control information transmitted in the second downlink unit band is successfully received in the control information reception step. If it does, the response signal is not transmitted.
  • a terminal apparatus and a retransmission control method that can reduce the overhead of an uplink control channel when ARQ is applied in communication using an uplink unit band and a plurality of downlink unit bands associated with the uplink unit band. Can be provided.
  • diffusion method of a response signal and a reference signal Diagram for explaining asymmetric Carrier Car aggregation and its control sequence applied to individual terminals The figure which serves for explanation of ARQ control when Carrier aggregation is applied to the terminal.
  • the figure which serves for explanation of ARQ control when Carrier aggregation is applied to the terminal The block diagram which shows the structure of the base station which concerns on Embodiment 1 of this invention.
  • Diagram for explaining operation of base station and terminal FIG. 10 is a diagram for explaining operations of a base station and a terminal in the second embodiment.
  • the base station 100 is configured to be able to support both communication using asymmetric carrier aggregation and communication not using carrier aggregation.
  • communication that does not depend on Carrier aggregation can be performed between the base station 100 and the terminal 200 depending on resource allocation to the terminal 200 by the base station 100.
  • this communication system when communication not based on carrier aggregation is performed, conventional ARQ is performed, whereas when communication based on carrier aggregation is performed, bundling is adopted in ARQ. That is, this communication system is, for example, an LTE-A system, the base station 100 is, for example, an LTE-A base station, and the terminal 200 is, for example, an LTE-A terminal. Moreover, the terminal which does not have the capability to perform communication by Carrier aggregation is, for example, an LTE terminal.
  • an asymmetric carrier aggregation unique to the terminal 200 is configured in advance between the base station 100 and the terminal 200, and information on the downlink unit band and the uplink unit band to be used by the terminal 200 is obtained between the base station 100 and the terminal 200. Shared between. Further, a downlink unit in which a BCH for transmitting information on uplink unit bands constituting a unit band group configured (configured) by the base station 100 for an arbitrary terminal 200 and notified to the terminal 200 in advance is transmitted.
  • the band is a “basic unit band” for the terminal 200.
  • Information on the basic unit band is “basic unit band information”. Therefore, any terminal 200 can recognize the basic unit band information by reading the BCH information in each downlink unit band.
  • FIG. 5 is a block diagram showing a configuration of base station 100 according to Embodiment 1 of the present invention.
  • the base station 100 includes a control unit 101, a control information generation unit 102, an encoding unit 103, a modulation unit 104, a broadcast signal generation unit 105, an encoding unit 106, and a data transmission control unit 107.
  • 116 a correlation processing unit 117, and a determination unit 118.
  • the control unit 101 transmits, to the resource allocation target terminal 200, downlink resources for transmitting control information (that is, downlink control information allocation resources) and downlink data included in the control information.
  • Assign (assign) downlink resources (that is, downlink data allocation resources).
  • This resource allocation is performed in the downlink unit band included in the unit band group set in the resource allocation target terminal 200.
  • the downlink control information allocation resource is selected in a resource corresponding to a downlink control channel (PDCCH) in each downlink unit band.
  • the downlink data allocation resource is selected in a resource corresponding to a downlink data channel (PDSCH) in each downlink unit band.
  • the control unit 101 allocates different resources to each of the resource allocation target terminals 200.
  • the downlink control information allocation resource is equivalent to the above-mentioned L1 / L2CCH. That is, the downlink control information allocation resource is composed of one or a plurality of CCEs. Each CCE is associated with the configuration resource of the uplink control channel (PUCCH) on a one-to-one basis. However, the association between the CCE and the PUCCH configuration resource is made by associating the downlink unit band and the uplink unit band broadcasted for the LTE system. That is, when all PUCCH configuration resources associated with CCEs constituting a plurality of downlink control information allocation resources transmitted to terminal 200 are included in the uplink unit band set for terminal 200 Is not limited.
  • control unit 101 determines a coding rate used when transmitting control information to the resource allocation target terminal 200. Since the data amount of control information differs according to the coding rate, downlink control information allocation resources having a number of CCEs to which control information of this data amount can be mapped are allocated by the control unit 101.
  • control unit 101 generates a DAI (Downlink Assignment Indicator) that is information indicating the number of downlink unit bands to which resources are allocated in addition to the basic unit band, for the resource allocation target terminal 200.
  • DAI Downlink Assignment Indicator
  • control part 101 outputs the information regarding a downlink data allocation resource, and DAI with respect to the control information generation part 102 with respect to the control information generation part 102.
  • FIG. the control unit 101 outputs information on the coding rate to the coding unit 103.
  • Control unit 101 also determines the coding rate of transmission data (that is, downlink data) and outputs the coding rate to coding unit 106.
  • the control unit 101 outputs information on downlink data allocation resources and downlink control information allocation resources to the mapping unit 109. However, the control unit 101 performs control so that downlink data and downlink control information for the downlink data are mapped to the same downlink unit band.
  • control unit 101 outputs a control signal that causes the broadcast signal generation unit 105 to generate a broadcast channel signal (BCH) transmitted in each downlink unit band, to the broadcast signal generation unit 105.
  • BCH broadcast channel signal
  • the control information generation unit 102 generates information related to downlink data allocation resources and control information including DAI, and outputs the control information to the encoding unit 103.
  • This control information is generated for each downlink unit band.
  • the control information includes the terminal ID of the destination terminal in order to distinguish the resource allocation target terminals 200 from each other. For example, CRC bits masked with the terminal ID of the destination terminal are included in the control information.
  • This control information may be referred to as “downlink allocation control information”.
  • the DAI is included only in the control information transmitted in the basic unit band among the downlink unit bands included in the unit band group set in the resource allocation target terminal 200.
  • the encoding unit 103 encodes the control information according to the encoding rate received from the control unit 101, and outputs the encoded control information to the modulation unit 104.
  • Modulation section 104 modulates the encoded control information and outputs the obtained modulated signal to mapping section 109.
  • the notification signal generation unit 105 generates a notification signal (BCH) for each downlink unit band according to the control signal received from the control unit 101, and outputs the notification signal (BCH) to the mapping unit 109.
  • Encoding section 106 receives transmission data (that is, downlink data) for each destination terminal 200 and encoding rate information from control section 101 as input, encodes the transmission data, and outputs the encoded transmission data to data transmission control section 107. However, when a plurality of downlink unit bands are allocated to destination terminal 200, the transmission data transmitted in each downlink unit band is encoded, and the encoded transmission data is output to data transmission control section 107. .
  • the data transmission control unit 107 holds the encoded transmission data and outputs it to the modulation unit 108 at the time of initial transmission.
  • the encoded transmission data is held for each destination terminal 200. Transmission data to one destination terminal 200 is held for each downlink unit band to be transmitted. As a result, not only retransmission control of the entire data transmitted to the destination terminal 200 but also retransmission control for each downlink unit band is possible.
  • the data transmission control unit 107 when receiving the NACK or DTX from the determination unit 118, the data transmission control unit 107 outputs retained data corresponding to the terminal 200 that has transmitted the NACK or DTX to the modulation unit 108.
  • data transmission control section 107 receives ACK from determination section 118, data transmission control section 107 deletes retained data corresponding to terminal 200 that has transmitted this ACK.
  • Modulation section 108 modulates the encoded transmission data received from data transmission control section 107, and outputs the modulated signal to mapping section 109.
  • the mapping unit 109 maps the modulation signal of the control information received from the modulation unit 104 to the resource indicated by the downlink control information allocation resource received from the control unit 101, and outputs it to the IFFT unit 110.
  • mapping section 109 maps the modulation signal of the transmission data received from modulation section 108 to the resource indicated by the downlink data allocation resource received from control section 101 and outputs it to IFFT section 110.
  • mapping unit 109 maps broadcast information to predetermined time / frequency resources and outputs the information to the IFFT unit 110.
  • the broadcast signal is mapped to each downlink unit band. Also, when downlink data is assigned to a terminal 200 in a certain subframe, and Carrier aggregation is not applied to the resource assignment target terminal 200, the control information and the transmission data are the resource assignment target terminal 200. When the carrier aggregation is applied to the resource allocation target terminal 200, control information and transmission data are transmitted to the downlink unit bands other than the basic unit band in the unit band group in addition to the basic unit band. Are also mapped.
  • Control information, transmission data, and broadcast signals mapped to a plurality of subcarriers in a plurality of downlink unit bands by mapping section 109 are converted from frequency domain signals to time domain signals by IFFT section 110, and are then sent to CP adding section 111.
  • the wireless transmission unit 112 After the CP is added to the OFDM signal, the wireless transmission unit 112 performs transmission processing such as D / A conversion, amplification and up-conversion, and transmits the signal to the terminal 200 via the antenna.
  • the wireless reception unit 113 receives the response signal or the reference signal transmitted from the terminal 200 via the antenna, and performs reception processing such as down-conversion and A / D conversion on the response signal or the reference signal.
  • the CP removal unit 114 removes the CP added to the response signal or the reference signal after reception processing.
  • despreading section 115 despreads the response signal with the blockwise spreading code sequence used for secondary spreading in terminal 200, and outputs the despread response signal to correlation processing section 117. Also, despreading section 115 despreads the reference signal with the orthogonal sequence used for spreading the reference signal in terminal 200, and outputs the despread reference signal to correlation processing section 117.
  • Sequence control unit 116 generates a ZAC sequence that is used for spreading a response signal transmitted from terminal 200.
  • sequence control section 116 identifies a correlation window in which the signal component from terminal 200 is included based on the resource used by terminal 200 (for example, the cyclic shift amount). Then, sequence control unit 116 outputs information indicating the identified correlation window and the generated ZAC sequence to correlation processing unit 117.
  • Correlation processing section 117 is used for primary spreading in terminal 200 and the response signal after despreading and the reference signal after despreading using the information indicating the correlation window and the ZAC sequence input from sequence control section 116.
  • the correlation value with the obtained ZAC sequence is obtained and output to the determination unit 118.
  • the determination unit 118 determines whether the response signal transmitted from the terminal indicates ACK or NACK or DTX based on the correlation value input from the correlation processing unit 117. That is, if the magnitude of the correlation value input from correlation processing section 117 is equal to or smaller than a certain threshold, determination section 118 determines that terminal 200 has not transmitted ACK or NACK using the resource (DTX). If the magnitude of the correlation value is greater than or equal to the threshold value, it is further determined by synchronous detection whether the response signal indicates ACK or NACK. Then, determination section 118 outputs ACK, NACK or DTX information for each terminal to data transmission control section 107.
  • FIG. 6 is a block diagram showing a configuration of terminal 200 according to Embodiment 1 of the present invention.
  • terminal 200 includes radio reception section 201, CP removal section 202, FFT section 203, extraction section 204, broadcast signal reception section 205, demodulation section 206, decoding section 207, and determination section 208.
  • the radio reception unit 201 receives an OFDM signal transmitted from the base station 100 via an antenna, and performs reception processing such as down-conversion and A / D conversion on the received OFDM signal.
  • CP removing section 202 removes the CP added to the OFDM signal after reception processing.
  • the FFT unit 203 performs FFT on the received OFDM signal and converts it into a frequency domain signal, and outputs the obtained received signal to the extracting unit 204.
  • the extraction unit 204 extracts a notification signal from the reception signal received from the FFT unit 203 and outputs the notification signal to the notification signal reception unit 205. Since the resource to which the broadcast signal is mapped is determined in advance, the extraction unit 204 extracts information mapped to the resource. Further, the extracted broadcast signal includes information related to the association between each downlink unit band and the uplink unit band.
  • the extraction unit 204 extracts a downlink control channel signal (PDCCH signal) from the received signal received from the FFT unit 203 according to the input coding rate information. That is, since the number of CCEs constituting the downlink control information allocation resource changes according to the coding rate, the extraction unit 204 extracts the downlink control channel signal using the number of CCEs corresponding to the coding rate as an extraction unit. . Further, the downlink control channel signal is extracted for each downlink unit band. The extracted downlink control channel signal is output to demodulation section 206.
  • PDCCH signal downlink control channel signal
  • the extraction unit 204 extracts downlink data from the received signal based on the information regarding the downlink data allocation resource addressed to the own device received from the determination unit 208 and outputs the downlink data to the demodulation unit 210.
  • the broadcast signal receiving unit 205 decodes each broadcast signal included in each downlink unit band, and is notified by information on uplink unit bands that form a pair with each downlink unit band (ie, SIB2 mapped to each downlink unit band). Information on the upstream unit band). Also, the broadcast signal receiving unit 205 recognizes the downlink unit band paired with the uplink unit band included in the unit band group for the own device as the “basic unit band”, and determines the basic unit band information by the determination unit 208 and the control unit. Output to the unit 209.
  • the demodulating unit 206 demodulates the downlink control channel signal received from the extracting unit 204 and outputs the obtained demodulation result to the decoding unit 207.
  • the decoding unit 207 decodes the demodulation result received from the demodulation unit 206 according to the input coding rate information, and outputs the obtained decoding result to the determination unit 208.
  • the determination unit 208 identifies the CCE to which the control information addressed to the above-described device is mapped in the downlink control channel of the basic unit band, and outputs the identified CCE identification information to the control unit 209.
  • the control unit 209 specifies the PUCCH resource (frequency / code) corresponding to the CCE indicated by the CCE identification information received from the determination unit 208. Then, control section 209 outputs the ZAC sequence and cyclic shift amount corresponding to the identified PUCCH resource to spreading section 215 and outputs frequency resource information to IFFT section 216. Also, the control unit 209 outputs the ZAC sequence and frequency resource information as a reference signal to the IFFT unit 219, and outputs a block-wise spreading code sequence to be used for the second spreading of the response signal to the spreading unit 218. An orthogonal sequence to be used for secondary spreading is output to spreading section 221.
  • Demodulation section 210 demodulates the downlink data received from extraction section 204 and outputs the demodulated downlink data to decoding section 211.
  • Decoding section 211 decodes the downlink data received from demodulation section 210, and outputs the decoded downlink data to CRC section 212.
  • the bundling unit 213 determines that the device itself is the base station 100. A response signal to be transmitted to is generated. Response signal transmission control will be described in detail later.
  • the modulation unit 214 modulates the response signal input from the bundling unit 213 and outputs the response signal to the spreading unit 215.
  • Spreading section 215 first spreads the response signal based on the ZAC sequence and the cyclic shift amount set by control section 209, and outputs the response signal after the first spreading to IFFT section 216. That is, the spreading unit 215 performs first spreading of the response signal in accordance with an instruction from the control unit 209.
  • the IFFT unit 216 arranges the response signal after the first spreading on the frequency axis based on the frequency resource information input from the control unit 209, and performs IFFT. Then, IFFT section 216 outputs the response signal after IFFT to CP adding section 217.
  • the CP adding unit 217 adds the same signal as the tail part of the response signal after IFFT to the head of the response signal as a CP.
  • Spreading section 218 uses the block-wise spreading code sequence set by control section 209 to second-spread the response signal after CP addition, and outputs the second-spread response signal to multiplexing section 222. That is, spreading section 218 performs second spreading using the block-wise spreading code sequence corresponding to the resource selected by control section 209, after the first spreading response signal.
  • the IFFT unit 219 arranges the reference signal on the frequency axis based on the frequency resource information input from the control unit 209, and performs IFFT. Then, IFFT section 219 outputs the reference signal after IFFT to CP adding section 220.
  • CP adding section 220 adds the same signal as the tail part of the reference signal after IFFT to the head of the reference signal as a CP.
  • the spreading unit 221 spreads the reference signal after CP addition with the orthogonal sequence specified by the control unit 209 and outputs the spread reference signal to the multiplexing unit 222.
  • the multiplexing unit 222 time-multiplexes the response signal after second spreading and the reference signal after spreading into one slot and outputs the result to the wireless transmission unit 223.
  • the wireless transmission unit 223 performs transmission processing such as D / A conversion, amplification, and up-conversion on the response signal after second spreading or the reference signal after spreading. Then, the wireless transmission unit 223 transmits from the antenna to the base station 100.
  • FIG. 7 is a diagram for explaining operations of the base station 100 and the terminal 200.
  • the control unit 101 holds information related to the basic unit band in the unit band group set for each terminal 200.
  • the control unit 101 preferentially uses the basic unit band for the terminal 200. That is, when one piece of data (also referred to as a transport block: TB) is transmitted to the terminal 200 on the base station 100 side, the control unit 101 performs control to map the data to the basic unit band for the terminal 200, and DAI bit information for notifying the terminal 200 that there is no data arrangement in the downlink unit band other than the basic unit band is generated.
  • TB transport block
  • the DAI bit is output from the control unit 101 to the control information generation unit 102 together with other control information, and transmitted in the same downlink unit band as the downlink data. Further, when two or more data are simultaneously transmitted to the terminal 200 on the base station 100 side, the control unit 101 always maps one data to the basic unit band of the terminal 200, and the remaining data is included in the unit band group. Control to map to any downstream unit band except the basic unit band is performed.
  • the control unit 101 generates DAI bit information that notifies the terminal 200 of the number of unit bands in which data is arranged in downlink unit bands other than the basic unit band, and outputs the DAI bit information to the control information generation unit 102. This DAI bit is included in the downlink allocation control information transmitted in the basic unit band and notified to terminal 200.
  • the base station 100 transmits, to the downlink data transmission destination terminal 200, downlink allocation control information in the downlink unit band used for downlink data transmission in the unit band group set in the transmission destination terminal 200, respectively. Send. Also, the base station 100 sets the number of downlink unit bands other than the basic unit band used for transmission of downlink data to the transmission destination terminal 200 by using the DAI included in the downlink allocation control information transmitted in the basic unit band. Notice.
  • a unit band group including downlink unit bands 1 and 2 and uplink unit band 1 is set for transmission destination terminal 200 (terminal 1 in FIG. 7A).
  • the base station 100 transmits downlink allocation control information to the terminal 1 using both of the downlink unit bands 1 and 2.
  • the base station 100 assigns a subchannel (that is, L1 / L2 CCH) included in the downlink control channel (PDCCH) of the downlink unit band to the terminal 1, and assigns the assigned subchannel. And transmits downlink allocation control information to the terminal 1.
  • Each subchannel is composed of one or more CCEs.
  • broadcast signal receiving section 205 identifies a downlink unit band in which BCH for broadcasting information related to an uplink unit band constituting a unit band group notified to terminal 200 is transmitted as a basic unit band.
  • the determination unit 208 determines whether or not downlink allocation control information addressed to itself is included in the downlink control channel of each downlink unit band, and outputs the downlink allocation control information addressed to itself to the extraction unit 204.
  • the extraction unit 204 extracts downlink data from the received signal based on the downlink allocation control information received from the determination unit 208.
  • terminal 200 can receive downlink data transmitted from base station 100.
  • the downlink unit band 1 becomes the basic unit band of the terminal 1.
  • the downlink allocation control information transmitted in the downlink unit band 1 includes information on resources used for transmission of downlink data (DL data) transmitted in the downlink unit band 1, and is transmitted in the downlink unit band 2.
  • the downlink allocation control information to be included includes information on resources used for transmission of downlink data transmitted in the downlink unit band 2.
  • the terminal 1 receives the downlink allocation control information transmitted in the downlink unit band 1 and the downlink allocation control information transmitted in the downlink unit band 2, so that the terminal 1 downloads in both the downlink unit band 1 and the downlink unit band 2.
  • Line data can be received.
  • the terminal 1 cannot receive downlink data.
  • terminal 200 recognizes that downlink allocation control information is transmitted not only in downlink unit band 1 that is a basic unit band but also in downlink unit band 2 by DAI transmitted in downlink unit band 1. Can do.
  • CRC section 212 performs error detection on downlink data corresponding to downlink allocation control information that has been successfully received, and outputs an error detection result to Bundling section 213.
  • the bundling unit 213 performs response signal transmission control as follows based on the error detection result received from the CRC unit 212 and the DAI received from the control unit 209.
  • the Bundling unit 213 receives the number of error detection results equal to the number of downlink data obtained from the DAI from the CRC unit 212 (that is, when the downlink allocation control information is successfully received in all downlink unit bands). In this case, a bundle ACK / NACK signal in which these error detection results are combined into one is transmitted to the base station 100.
  • the Bundling unit 213 successfully receives downlink allocation control information in the basic unit band and receives an error detection result for the downlink data transmitted in the basic unit band from the CRC unit 212, but receives an error received from the CRC unit 212.
  • NACK is transmitted as a bundled ACK / NACK signal.
  • the response signal itself may not be transmitted. This is because even if terminal 200 does not transmit a response signal, base station 100 regards it as DTX and performs retransmission control, so that the same retransmission control is performed as a result when NACK is transmitted.
  • the Bundling unit 213 not only receives the error detection result itself from the CRC unit 212 (that is, if the terminal 200 has not successfully received any downlink allocation control information) but also other than the basic unit band. Even when only the error detection result for downlink data transmitted in the downlink unit band is received (that is, when the downlink allocation control information of the basic unit band is not successfully received), the response signal is transmitted to the base station 100. do not do.
  • the response signal transmission control will be specifically described with reference to FIG. 7B, it is assumed that Carrier aggregation is applied to communication between the base station 100 and the terminal 1.
  • the Bundling unit 213 uses the resources indicated by the downlink allocation control information.
  • a response signal (that is, a bundled ACK / NACK signal) based on the error detection result of the received downlink data is transmitted on PUCCH 1 that has been conventionally prepared as an uplink control channel resource corresponding to downlink unit band 1.
  • the Bundling unit 213 transmits NACK on the PUCCH1.
  • the Bundling unit 213 transmits in the downlink unit band 2 as well as when receiving both the downlink allocation control information transmitted in the downlink unit band 1 and the downlink allocation control information transmitted in the downlink unit band 2 fails. Even if the received downlink allocation control information is only successfully received, no response signal is transmitted. By doing so, it is not necessary to reserve a new resource for the uplink control channel corresponding to the correspondence relationship between the downlink unit band 2 and the uplink unit band 1 in the unit band group. As a result, the overhead of the uplink control channel can be reduced.
  • the Bundling unit 213 receives only the error detection result for the downlink data transmitted in the basic unit band from the CRC unit 212, and the DAI indicates that the downlink data is transmitted only in the basic unit band.
  • the error detection result received from the CRC unit 212 is transmitted to the base station 100. In this case, the carrier aggregation is not applied in the first place.
  • the terminal receives a NACK. Since it is assumed that all downlink data is retransmitted on the base station side in response to this, the retransmission efficiency in ACK / NACK Bundling does not deteriorate.
  • the basic unit band is defined as a downlink unit band in which a BCH that broadcasts information on the uplink unit band is arranged in the unit band group in the asymmetric carrier aggregation that the base station individually configured for the terminal.
  • terminal 200 communicates with base station 100 using a unit band group composed of a plurality of downlink unit bands and uplink unit bands, and the downlink control channel of the downlink unit band.
  • a response signal based on the error detection result of the downlink data transmitted in is transmitted on the uplink control channel of the uplink unit band corresponding to the resource used for transmission of the downlink allocation control information.
  • an extraction section 204, a demodulation section 206, a decoding section 207, and a determination section 208 as control information receiving means are transmitted by downlink control channels of a plurality of downlink unit bands included in the unit band group.
  • Receiving the allocation control information, the extracting unit 204, the demodulating unit 210, and the decoding unit 211 as downlink data receiving means receive the downlink data transmitted on the downlink data channel indicated by the downlink allocation control information, and the CRC unit 212 Detects a reception error of the received downlink data.
  • the Bundling unit 213 controls transmission of a response signal used for downlink data retransmission control in the base station 100 based on the error detection result obtained by the CRC unit 212 and the reception success / failure of the downlink allocation control information.
  • the Bundling unit 213 includes a basic unit band that is a downlink unit band to which a broadcast channel signal including information on an uplink unit band is transmitted in the unit band group, and a second downlink unit band other than the basic unit band.
  • the first condition is that the downlink allocation control information is transmitted from the base station, and the first condition is satisfied, and the downlink transmitted in the basic unit band and the second downlink unit band by the control information receiving unit
  • the response signal is based on the resource of the uplink control channel provided for the band pair of the basic unit band and the uplink unit band.
  • the Bundling unit 213 transmits a response signal to the base station when the first condition is satisfied and the control information receiving unit succeeds only in receiving the downlink allocation control information transmitted in the second downlink unit band. Not transmitted to station 100. If no terminal 200 has successfully received downlink allocation control information in a certain subframe, whether the base station 100 actually transmits downlink allocation control information to the terminal 200 on the terminal 200 side or the subframe. In this case, it is impossible to determine whether reception of downlink allocation control information has failed, but in any case, a response signal is not transmitted from terminal 200 to base station 100.
  • a ZAC sequence is used for primary spreading and a block-wise spreading code sequence is used for secondary spreading
  • sequences that can be separated from each other by different cyclic shift amounts other than the ZAC sequence may be used for the first spreading.
  • GCL Generalized Chirp like
  • CAZAC Constant Amplitude Zero Auto Correlation
  • ZC Zero Auto Correlation
  • PN sequence such as M sequence and orthogonal gold code sequence
  • time randomly generated by a computer A sequence having a sharp autocorrelation characteristic on the axis may be used for the first spreading.
  • any sequence may be used as a block-wise spreading code sequence as long as the sequences are orthogonal to each other or sequences that can be regarded as being substantially orthogonal to each other.
  • a Walsh sequence or a Fourier sequence can be used for secondary spreading as a block-wise spreading code sequence.
  • the response signal resource (for example, PUCCH resource) is defined by the cyclic shift amount of the ZAC sequence and the sequence number of the block-wise spreading code sequence.
  • the base station 100 allows the downlink data to be arranged only in the base unit band other than the base unit band for the transmission destination terminal 200, and the downlink in the base unit band other than the base unit band.
  • a bit (Anchor Assignment Indicator) indicating whether or not downlink data is also included in the basic unit band in the allocation control information (that is, whether or not downlink allocation control information for the terminal 200 is transmitted in the basic unit band). : AAI) is different from the first embodiment.
  • the mode can be switched between the second mode.
  • control section 101 of base station 100 uses a basic unit band for transmission destination terminal 200 or other downlink unit bands. Decide what to use. That is, the control unit 101 selects the first mode or the second mode described above.
  • control unit 101 AAI bits are transmitted on the downlink control channel.
  • the AAI bit is output from the control unit 101 to the control information generation unit 102, is included in the control information by the control information generation unit 102, and is transmitted via a downlink unit band other than the basic unit band.
  • This AAI bit indicates whether or not downlink data is transmitted in the basic unit band, that is, whether or not the basic unit band is used for transmitting downlink data to the transmission destination terminal 200.
  • the control unit 101 when selecting the first mode, notifies the number of allocated unit bands other than the basic unit band by the DAI bit in the basic unit band, and by the AAI bit in the downlink unit band other than the basic unit band, The transmission destination terminal 200 is notified that “there is downlink data allocation in the basic unit band”.
  • the control unit 101 when selecting the second mode, notifies the terminal 200 that “there is no downlink data allocation in the basic unit band” by the AAI bit in the downlink unit band other than the basic unit band. However, even in this case, terminal 200 transmits a response signal using the uplink control channel of the uplink unit band that constitutes the band pair with the basic unit band. Therefore, when the base station 100 selects the second mode, the uplink control channel resource associated with the CCE used for transmitting the downlink allocation control information for the terminal 200 in the downlink unit band other than the basic unit band is selected. It is reserved for receiving a response signal from the terminal 200.
  • FIG. 8A shows a situation in which downlink allocation control information is not transmitted in the downlink unit band 1, which is the basic unit band, and downlink allocation control information is transmitted only from the downlink unit band 2. That is, in FIG. 8A, the second mode is selected. Therefore, the control unit 101 transmits AAI indicating that “there is no downlink data allocation in the basic unit band” to the terminal 1 in the downlink unit band 2. Then, base station 100 reserves resources in the uplink control channel of uplink unit band 1 associated with the CCE used for transmission of downlink allocation control information for terminal 200 in downlink unit band 2 in the unit band group. .
  • the base station 100 and the terminal 200 share in advance the association of the CCE of the downlink control channel in the downlink unit band 2 and the resource in the uplink control channel (PUCCH1) of the uplink unit band 1 (in FIG. 8).
  • the station controls the CCE to be used by the downlink allocation control information for the other terminal 200 so that the other terminal 200 that receives the downlink allocation control information in the downlink unit band 1 does not use the same resource in PUCCH1.
  • the PUCCH 1 is a resource that is also used in the band pair of the downlink unit band 1 and the uplink unit band 1.
  • Bundling unit 213 of terminal 200 acquires DAI or AAI from determination unit 208.
  • the Bundling unit 213 receives downlink data in how many downlink unit bands in the unit band group set in the terminal 200 by the DAI extracted from the control information. Recognize whether it is placed.
  • the Bundling unit 213 fails to receive the downlink allocation control information in the basic unit band and receives downlink allocation control information in the downlink unit band other than the basic unit band, the AAI extracted from the control information To recognize whether downlink data is arranged in the basic unit band.
  • the process for receiving AAI is common to the process for receiving DAI.
  • the Bundling unit 213 performs the same operation as in the first embodiment when acquiring the DAI.
  • the Bundling unit 213 cannot transmit DAI, and when only AAI is acquired, performs transmission control of the response signal as follows. If the AAI indicates that there is an allocation in the basic unit band, the Bundling unit 213 determines that reception of downlink allocation control information in the basic unit band has failed as in the first embodiment, and transmits a response signal. do not do.
  • the Bundling unit 213 determines that the downlink data is transmitted only by the downlink unit band other than the basic unit band, and the downlink unit A response signal is transmitted using the uplink control channel resource corresponding to the CCE to which the downlink allocation control information received in the band is mapped.
  • this response signal is notified by broadcast information in an uplink unit band that forms a band pair with a downlink unit band other than the basic unit band used for transmission of downlink data (that is, in a downlink unit band other than the basic unit band).
  • the downlink allocation control information is transmitted only in the downlink unit band 2 that is not the basic unit band, so the bundling unit 213 receives the downlink allocation control information received in the downlink unit band 2.
  • the response signal is transmitted using the PUCCH1 resource corresponding to the CCE to which is mapped.
  • FIG. 8B when the terminal 200 fails to receive the downlink allocation control information transmitted in the downlink unit band 2, no response signal is transmitted.
  • the control of the resource to which this response signal is transmitted is performed by the control unit 209. Specifically, if the basic unit band cannot receive the downlink allocation control information addressed to itself and the AAI in the other downlink unit band indicates “no allocation in the basic unit band”, the control is performed.
  • the unit 209 acquires the CCE identification number (Index) to which the downlink allocation control information in the downlink unit band is mapped. Then, the control unit 209 uses the same correspondence relationship as the association between the CCE of the downlink control channel of the basic unit band and the uplink control channel resource of the uplink unit band that forms a band pair with the basic unit band.
  • the uplink control channel resource (frequency resource, code resource) corresponding to the identification number of the CCE that has been assigned is specified. Then, control section 209 controls spreading section 215, IFFT section 216, spreading section 218, IFFT section 219, and spreading section 221 in accordance with the identified uplink control channel resource.
  • the base station 100 since the CCE having the same identification number is associated with the same uplink control channel resource in the basic unit band and the downlink unit band other than the basic unit band, the base station 100 does not collide with the uplink control channel resource. Thus, it is necessary to control the use of CCE in the basic unit band. For example, the collision of uplink control channel resources can be easily solved by allocating CCEs having the same identification number in the basic unit band to uplink assignment control information for other terminals 200.
  • the degree of freedom of arrangement of downlink data in the basic unit band and other downlink unit bands can be improved.
  • base station 100 when transmitting downlink data, maps downlink allocation control information to the basic unit band in preference to downlink unit bands other than the basic unit band. 1 transmission mode, and the 2nd transmission mode which maps downlink allocation control information only to downlink unit bands other than a basic unit band.
  • Bundling section 213 uses the second transmission mode as a second condition, the second condition is satisfied, and the control information receiving means other than the basic unit band is used.
  • the response signal is transmitted using the uplink control channel resource provided for the band unit of the downlink unit band and the uplink unit band other than the basic unit band. Send.
  • Embodiments 1 and 2 have described the case where the terminal transmits only a response signal for downlink data to the base station. However, in the same subframe in which the terminal transmits a response signal, the base station may instruct the terminal to transmit uplink data.
  • Embodiment 3 differs from Embodiments 1 and 2 in that the terminal receives an instruction to transmit uplink data from the base station in a subframe in which the terminal should transmit a response signal.
  • FIG. 9 is a block diagram showing a configuration of base station 300 according to Embodiment 3 of the present invention.
  • the base station 300 includes a control unit 301, a control information generation unit 302, a mapping unit 309, a PUCCH / PUSCH separation unit 320, an IDFT unit 321 and a demodulation / decoding unit 322.
  • the control unit 301 transmits a downlink resource (that is, a downlink control information allocation resource and an uplink control information allocation resource) for transmitting control information to the resource allocation target terminal 400, and a downlink included in the control information
  • a downlink resource for transmitting data that is, downlink data allocation resource
  • an uplink resource for transmitting uplink data that is, uplink data allocation resource
  • This resource allocation is performed in the downlink unit band included in the unit band group set in the resource allocation target terminal 400.
  • the downlink control information allocation resource and the uplink control information allocation resource are selected in resources corresponding to the downlink control channel (PDCCH) in each downlink unit band.
  • PDCH downlink control channel
  • the downlink data allocation resource is selected in a resource corresponding to a downlink data channel (PDSCH) in each downlink unit band. Further, when there are a plurality of resource allocation target terminals 400, the control unit 301 allocates different resources to each of the resource allocation target terminals 400.
  • PDSCH downlink data channel
  • the downlink control information allocation resource and the uplink control information allocation resource are equivalent to the above L1 / L2CCH. That is, the downlink control information allocation resource and the uplink control information allocation resource are composed of one or a plurality of CCEs. Further, each CCE occupied by the downlink allocation control information allocation resource is associated with the configuration resource of the uplink control channel (PUCCH) on a one-to-one basis. However, the association between the CCE and the PUCCH configuration resource is made by associating the downlink unit band and the uplink unit band broadcasted for the LTE system. That is, when all PUCCH configuration resources associated with CCEs constituting a plurality of downlink control information allocation resources transmitted to terminal 400 are included in the uplink unit band set for terminal 400 Is not limited.
  • control unit 301 determines a coding rate used when transmitting control information to the resource allocation target terminal 400. Since the data amount of the control information varies depending on the coding rate, the control unit 301 allocates downlink control information allocation resources and uplink control information allocation resources having a number of CCEs to which control information of this data amount can be mapped. .
  • control unit 301 generates DAI (Downlink Assignment Indicator) that is information indicating the number of downlink unit bands to which resources are allocated in addition to the basic unit band, for the resource allocation target terminal 400.
  • DAI Downlink Assignment Indicator
  • control part 301 outputs the information regarding a downlink data allocation resource and an uplink data allocation resource, and DAI to the control information generation part 302.
  • control unit 301 outputs information on the coding rate to the coding unit 103.
  • control section 301 determines the coding rate of transmission data (that is, downlink data), outputs it to coding section 106, determines the coding rate of reception data (that is, uplink data), and demodulates it. / Output to the decoding unit 322.
  • the control unit 301 outputs information on downlink data allocation resources, downlink control information allocation resources, and uplink control information allocation resources to the mapping unit 309.
  • the control unit 301 performs control so that downlink data and downlink control information for the downlink data are mapped to the same downlink unit band.
  • the control information generation unit 302 generates downlink allocation control information including information on downlink data allocation resources and DAI and outputs the downlink allocation control information to the encoding unit 103, and generates uplink allocation control information including information on uplink data allocation resources.
  • the DAI is included only in the downlink allocation control information transmitted in the basic unit band among the downlink unit bands included in the unit band group set in the resource allocation target terminal 400.
  • the mapping unit 309 maps the modulation signal of the control information received from the modulation unit 104 to the resource indicated by the downlink control information allocation resource and the uplink control information allocation resource received from the control unit 301, and outputs them to the IFFT unit 110.
  • PUCCH / PUSCH demultiplexing section 320 performs FFT on the received signal and separates a resource including uplink data (that is, PUSCH) and a resource that may include a response signal (that is, PUCCH) on the frequency axis. . Then, PUCCH / PUSCH separation section 320 outputs the extracted PUCCH signal (including only the response signal) to despreading section 115 and outputs the frequency component of the PUSCH signal (including only uplink data) to IDFT section 321. .
  • the IDFT unit 321 converts the frequency component of the PUSCH signal received from the PUCCH / PUSCH separation unit 320 into a signal on the time axis (Time domain signal) by performing IDFT processing, and outputs the signal to the demodulation / decoding unit 322.
  • Demodulation / decoding section 322 demodulates and decodes the signal component including the uplink data using the coding rate corresponding to the uplink data instructed from control section 301, and outputs it as received data.
  • FIG. 10 is a block diagram showing a configuration of terminal 400 according to Embodiment 3 of the present invention.
  • terminal 400 includes a determination unit 408, a control unit 409, an uplink control channel generation unit 424, an encoding / modulation unit 425, a DFT unit 426, a PUCCH / PUSCH multiplexing unit 427, and a CP addition unit. 428.
  • the determination unit 408 identifies the CCE to which the above-described downlink allocation control information addressed to the own device is mapped in the downlink control channel of the basic unit band, and outputs the identified CCE identification information to the control unit 409.
  • the control unit 409 specifies the PUCCH resource (frequency / code) corresponding to the CCE indicated by the CCE identification information received from the determination unit 408 in the uplink unit band included in the unit band group.
  • control section 409 specifies PUSCH resources (frequency positions in uplink unit bands) to be used for uplink data transmission from uplink allocation control information received from determination section 408, and outputs the PUSCH resource to PUCCH / PUSCH multiplexing section 427. Then, the coding rate and modulation scheme for uplink data are specified from the uplink allocation control information, and output to coding / modulation section 425.
  • the control unit 409 when receiving the downlink allocation control information in the basic unit band, the control unit 409 multiplexes the PUSCH resource and the PUCCH resource on the frequency axis (that is, applies FDM), so that the PUCCH / PUSCH multiplexing unit An instruction is issued to 427. Further, when the downlink allocation control information is not received in the basic unit band, the control unit 409 transmits only the uplink data regardless of the reception status of the downlink allocation control information in other downlink unit bands. The PUCCH / PUSCH multiplexing unit 427 is instructed.
  • control section 409 outputs the ZAC sequence and cyclic shift amount corresponding to the PUCCH resource to primary spreading section 432 of uplink control channel signal generation section 424, and outputs the frequency resource information to PUCCH / PUSCH multiplexing section 427.
  • control unit 409 outputs an orthogonal code sequence (that is, a Walsh sequence and a DFT sequence) to be used for secondary spreading corresponding to the PUCCH resource to the secondary spreading unit 433.
  • the uplink control channel signal generation unit 424 generates an uplink control channel signal (that is, a PUCCH signal) transmitted in the uplink unit band based on the response signal received from the bundling unit 213.
  • the uplink control channel signal generation unit 424 includes a modulation unit 431, a primary spreading unit 432, and a secondary spreading unit 433.
  • Modulation section 431 modulates the response signal (that is, bundled ACK / NACK signal) input from Bundling section 213 and outputs the modulated response signal to primary spreading section 432.
  • the primary spreading section 432 performs first spreading of the response signal based on the ZAC sequence and the cyclic shift amount set by the control section 409, and outputs the response signal after the first spreading to the secondary spreading section 433. That is, primary spreading section 432 performs primary spreading of the response signal in accordance with instructions from control section 409.
  • Secondary spreading section 433 performs secondary spreading of the response signal using the orthogonal code sequence set by control section 409, and uses the response signal after the secondary spreading as a signal (Frequency domain signal) on the frequency axis.
  • the data is output to the PUSCH multiplexing unit 427. That is, second spreading section 433 performs second spreading on the response signal after the first spreading using the orthogonal code sequence corresponding to the resource selected by control section 409, and PUCCH components on the frequency axis are PUCCH / PUSCH multiplexed. Output to the unit 427.
  • Encoding / modulating section 425 encodes and modulates transmission data using the coding rate and modulation method instructed by control section 409, and outputs the modulated signal as a waveform on the time axis to DFT section 426. Output.
  • the DFT unit 426 converts a signal on the time axis (Time domain signal) input from the encoding / modulation unit 425 into a signal on the frequency axis by DFT processing, and PUCCH / PUSCH multiplexing is performed as a PUSCH signal on the frequency axis. Output to the unit 427.
  • the PUCCH / PUSCH multiplexing unit 427 determines whether to multiplex the PUCCH signal and the PUSCH signal on the frequency axis according to an instruction from the control unit 409. Then, when multiplexing on the frequency axis, the PUCCH / PUSCH multiplexing unit 427 performs IFFT processing on the PUCCH signal and the PUSCH signal together, and outputs the processed signal to the CP adding unit 428. If not multiplexed above, IFFT processing is performed only on the PUSCH signal, and the processed signal is output to the CP adding section 428.
  • CP addition section 428 adds the same signal as the tail part to the head of the signal on the time axis after IFFT, and outputs the signal after CP addition to radio transmission section 223.
  • FIG. 11 is a diagram for explaining operations of the base station 300 and the terminal 400.
  • the control unit 301 holds information related to the basic unit band in the unit band group set for each terminal 400.
  • the control unit 301 preferentially uses the basic unit band for the terminal 400. That is, when transmitting one piece of data (Transport block: TB) to the terminal 400 on the base station 300 side, the control unit 301 performs control to map the data to the basic unit band for the terminal 400, and DAI bit information for notifying the terminal 400 that there is no data arrangement in the downlink unit band other than the basic unit band is generated.
  • the DAI bit is output from the control unit 301 to the control information generation unit 302 together with other control information, and transmitted in the same downlink unit band as the downlink data.
  • the control unit 301 always maps one data to the basic unit band of the terminal 400, and the remaining data is included in the unit band group. Control to map to any downstream unit band except the basic unit band is performed.
  • the control unit 301 generates DAI bit information that notifies the terminal 400 of the number of unit bands in which data is arranged in downlink unit bands other than the basic unit band, and outputs the DAI bit information to the control information generation unit 302. This DAI bit is included in the downlink allocation control information transmitted in the basic unit band and notified to terminal 400.
  • the base station 300 transmits, to the downlink data transmission destination terminal 400, downlink assignment control information in the downlink unit band used for downlink data transmission in the unit band group set in the transmission destination terminal 400, respectively. Send. Also, the base station 300 transmits the number of downlink unit bands other than the basic unit band used for transmission of downlink data to the transmission destination terminal 400 by using the DAI included in the downlink allocation control information transmitted in the basic unit band. Notice.
  • the base station 300 allocates uplink resources for uplink data to the terminal 400.
  • the control unit 301 of the base station 300 transmits uplink allocation control information indicating uplink resources for the terminal 400 using any downlink unit band in the unit band group set for each terminal 400. .
  • a unit band group including downlink unit bands 1 and 2 and uplink unit band 1 is set for the transmission destination terminal 400 (see FIG. 11A).
  • the base station 300 transmits downlink allocation control information to the terminal 400 using both of the downlink unit bands 1 and 2.
  • the base station 300 assigns a subchannel (that is, L1 / L2 CCH) included in the downlink control channel (PDCCH) of the downlink unit band to the terminal 400, and assigns the assigned subchannel.
  • a subchannel that is, L1 / L2 CCH
  • PDCH downlink control channel
  • Each subchannel is composed of one or more CCEs.
  • the base station 300 transmits uplink allocation control information for notifying resources for uplink data using any downlink unit band (downlink unit band 1 in FIG. 11A).
  • This uplink allocation control information occupies the subchannel (that is, L1 / L2 CCH) included in the downlink control channel (PDCCH) of the downlink unit band, similarly to the downlink allocation control information.
  • broadcast signal receiving section 205 identifies a downlink unit band in which BCH for broadcasting information related to uplink unit bands constituting the unit band group notified to terminal 400 is transmitted as a basic unit band.
  • the determination unit 408 determines whether or not downlink allocation control information addressed to itself is included in the downlink control channel of each downlink unit band, and outputs the downlink allocation control information addressed to itself to the extraction unit 204.
  • the extraction unit 204 extracts downlink data from the received signal based on the downlink allocation control information received from the determination unit 408.
  • terminal 400 can receive downlink data transmitted from base station 300.
  • downlink unit band 1 becomes the basic unit band of terminal 1.
  • the downlink allocation control information transmitted in the downlink unit band 1 includes information on resources used for transmission of downlink data (DL data) transmitted in the downlink unit band 1, and is transmitted in the downlink unit band 2.
  • the downlink allocation control information to be included includes information on resources used for transmission of downlink data transmitted in the downlink unit band 2.
  • the terminal 400 receives the downlink allocation control information transmitted in the downlink unit band 1 and the downlink allocation control information transmitted in the downlink unit band 2, so that the terminal 400 downloads in both the downlink unit band 1 and the downlink unit band 2.
  • Line data can be received.
  • terminal 400 cannot receive downlink data.
  • the terminal 400 recognizes that the downlink allocation control information is transmitted not only in the downlink unit band 1 which is the basic unit band but also in the downlink unit band 2 by the DAI transmitted in the downlink unit band 1. Can do.
  • CRC section 212 performs error detection on downlink data corresponding to downlink allocation control information that has been successfully received, and outputs an error detection result to Bundling section 213.
  • control unit 409 receives the PUCCH signal (response) to the PUCCH / PUSCH multiplexing unit 427 when the uplink allocation control information is input from the determination unit 408 and the downlink allocation control information is received in the basic unit band.
  • a signal is included) and a PUSCH signal (including uplink data) is frequency-multiplexed.
  • the control unit 409 transmits a PUSCH signal to the PUCCH / PUSCH multiplexing unit 427. Instruct to output only.
  • control unit 409 not only does not successfully receive any downlink allocation control information at the terminal 400, but also successfully receives downlink allocation control information only in downlink unit bands other than the basic unit band ( That is, control is performed so that the response signal is not transmitted to the base station 300 even when the downlink allocation control information of the basic unit band is not successfully received.
  • the bundling unit 213 performs response signal transmission control as follows based on the error detection result received from the CRC unit 212 and the DAI received from the control unit 409.
  • the Bundling unit 213 receives the number of error detection results equal to the number of downlink data obtained from the DAI from the CRC unit 212 (that is, when the downlink allocation control information is successfully received in all downlink unit bands). Then, a bundle ACK / NACK signal in which these error detection results are combined into one is output to the uplink control channel generation section 424.
  • the Bundling unit 213 successfully receives the downlink allocation control information in the basic unit band and receives an error detection result for the downlink data transmitted in the basic unit band from the CRC unit 212, but receives an error received from the CRC unit 212.
  • NACK is output to uplink control channel generation section 424 as a bundled ACK / NACK signal.
  • the response signal transmission control will be specifically described with reference to FIG. In FIG. 11, it is assumed that Carrier aggregation is applied to communication between the base station 300 and the terminal 400.
  • the control unit 409 has successfully received both the downlink allocation control information transmitted in the downlink unit band 1 and the downlink allocation control information transmitted in the downlink unit band 2 and has received the uplink allocation control information (that is, In the case of the normal system in FIG. 11B, a response signal (that is, bundled ACK / NACK signal) based on the error detection result of the downlink data received by the resource indicated by both downlink allocation control information is conventionally transmitted as a downlink unit band. 1 is transmitted using resources in PUCCH 1 prepared as an uplink control channel resource corresponding to 1, and at the same time, uplink data is transmitted using uplink resources indicated by uplink allocation control information. That is, the response signal and the uplink data are multiplexed on the frequency axis.
  • control unit 409 succeeds only in receiving the downlink allocation control information transmitted in the downlink unit band 1 and receives the uplink allocation control information (that is, in the case of error case 1 in FIG. 11B).
  • NACK is transmitted using resources in PUCCH1, and at the same time, uplink data is controlled using uplink resources indicated by uplink allocation control information.
  • control unit 409 fails to receive both the downlink allocation control information transmitted in the downlink unit band 1 and the downlink allocation control information transmitted in the downlink unit band 2 and has received the uplink allocation control information. (In other words, in the case of error case 3 in FIG. 11B), it succeeds only in receiving the downlink allocation control information transmitted in the downlink unit band 2 and receives the uplink allocation control information (that is, in FIG. 11B). In the case of error case 2), the response signal is not transmitted, and only the uplink data is transmitted. By doing so, it is not necessary to reserve a new resource for the uplink control channel corresponding to the correspondence relationship between the downlink unit band 2 and the uplink unit band 1 in the unit band group. As a result, the overhead of the uplink control channel can be reduced.
  • the terminal receives a NACK. Since it is assumed that all downlink data is retransmitted on the base station side in response to this, the retransmission efficiency in ACK / NACK Bundling does not deteriorate.
  • the basic unit band is defined as a downlink unit band in which a BCH that broadcasts information on the uplink unit band is arranged in the unit band group in the asymmetric carrier aggregation that the base station individually configured for the terminal.
  • extraction section 204, demodulation section 206, decoding section 207, and determination section 408 as control information receiving means include a plurality of downlink units included in a unit band group. Downlink allocation control information transmitted on any downlink control channel of the band is received.
  • the PUCCH / PUSCH multiplexing unit 427 serving as the transmission signal forming unit performs the control unit receiving unit (that is, the extraction unit 204, the demodulation unit 210, and the decoding unit 211) in the basic unit band and the second unit other than the basic unit band
  • the control unit receiving unit that is, the extraction unit 204, the demodulation unit 210, and the decoding unit 2111
  • the uplink data and the response signal are frequency-multiplexed by mapping the uplink data to the uplink data channel resource indicated by the uplink allocation control information.
  • a transmission signal including uplink data is formed without including a response signal.
  • the downlink unit band for transmitting the BCH is a basic unit band for a certain terminal, the same effect as in the first and second embodiments can be obtained.
  • the present invention is not limited to this, and can be applied even when symmetric carrier aggregation is set for data transmission.
  • the present invention is applicable if the terminal receives downlink data from a plurality of downlink unit bands and transmits an uplink response signal only from one uplink unit band by Bundling.
  • the base station 100 switches between the first mode and the third mode that has no restrictions on downlink data allocation as shown in FIG. 4 according to the availability of uplink resources. May be. At this time, base station 100 notifies terminal 200 of identification information of the selected mode.
  • the first mode is advantageous when uplink resources are tight
  • the third mode is advantageous when downlink resources are tight.
  • the ratio of the number of downlink unit bands and the number of uplink unit bands in UE specific carrier aggregation may be limited.
  • the number of downlink unit bands / number of uplink unit bands may be limited to 2 or less. This is because in the first mode, there is a restriction that the basic unit band is always used, so that it becomes difficult to operate if the ratio of the downlink and uplink unit bands becomes too large.
  • the ratio between the number of downlink unit bands and the number of uplink unit bands in the system band of the base station need not be particularly limited.
  • the presence / absence of allocation in the basic unit band is notified using the AAI in the PDCCH of the downlink unit band other than the basic unit band, but the present invention is not limited to this.
  • an NDI bit added to transmission data that is, a bit indicating whether the transmission data is initial data or retransmission data
  • terminal 200 operates assuming that there is no signal allocation in the basic unit band.
  • the ZAC sequence in each of the above embodiments may be referred to as a Base sequence in the sense that it is a sequence that is a base on which a cyclic shift process is performed.
  • the Walsh sequence is sometimes referred to as a Walsh code sequence.
  • each functional block used in the description of each of the above embodiments is typically realized as an LSI which is an integrated circuit. These may be individually made into one chip, or may be made into one chip so as to include a part or all of them.
  • the name used here is LSI, but it may also be called IC, system LSI, super LSI, or ultra LSI depending on the degree of integration.
  • the method of circuit integration is not limited to LSI, and implementation with a dedicated circuit or a general-purpose processor is also possible.
  • An FPGA Field Programmable Gate Array
  • a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
  • the terminal apparatus and retransmission control method of the present invention can reduce the overhead of the uplink control channel when ARQ is applied in communication using the uplink unit band and a plurality of downlink unit bands associated with the uplink unit band. Useful as.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 上り単位バンド及び上り単位バンドと対応づけられた複数の下り単位バンドを使用した通信にてARQが適用される場合に、上り制御チャネルのオーバーヘッドを削減できる端末装置及び再送制御方法。Bundling部(213)は、単位バンドグループにて上り単位バンドに関する情報が含まれる報知チャネル信号が送信される下り単位バンドである基本単位バンド及び当該基本単位バンド以外の第2の下り単位バンドのそれぞれにおいて下り割当制御情報が基地局から送信されることを第1の条件とし、第1の条件が満たされ且つ制御情報受信手段にて基本単位バンド及び第2の下り単位バンドで送信された下り割当制御情報の全ての受信に失敗した場合、及び、第1の条件が満たされ且つ制御情報受信手段にて第2の下り単位バンドで送信された下り割当制御情報の受信のみに成功した場合には、応答信号を基地局(100)へ送信しない。

Description

端末装置及び再送制御方法
 本発明は、端末装置及び再送制御方法に関する。
 3GPP LTEでは、下り回線の通信方式としてOFDMA(Orthogonal Frequency Division Multiple Access)が採用されている。3GPP LTEが適用された無線通信システムでは、基地局が予め定められた通信リソースを用いて同期信号(Synchronization Channel:SCH)及び報知信号(Broadcast Channel:BCH)を送信する。そして、端末は、まず、SCHを捕まえることによって基地局との同期を確保する。その後、端末は、BCH情報を読むことにより基地局独自のパラメータ(例えば、周波数帯域幅など)を取得する(非特許文献1、2、3参照)。
 また、端末は、基地局独自のパラメータの取得が完了した後、基地局に対して接続要求を行うことにより、基地局との通信を確立する。基地局は、通信が確立された端末に対して、必要に応じてPDCCH(Physical Downlink Control CHannel)を介して制御情報を送信する。
 そして、端末は、受信したPDCCH信号に含まれる複数の制御情報をそれぞれ「ブラインド判定」する。すなわち、制御情報は、CRC(Cyclic Redundancy Check)部分を含み、このCRC部分は、基地局において、送信対象端末の端末IDによってマスクされる。従って、端末は、受信した制御情報のCRC部分を自機の端末IDでデマスクしてみるまでは、自機宛の制御情報であるか否かを判定できない。このブラインド判定では、デマスクした結果、CRC演算がOKとなれば、その制御情報が自機宛であると判定される。
 また、3GPP LTEでは、基地局から端末への下り回線データに対してARQ(Automatic Repeat Request)が適用される。つまり、端末は下り回線データの誤り検出結果を示す応答信号を基地局へフィードバックする。端末は下り回線データに対しCRCを行って、CRC=OK(誤り無し)であればACK(Acknowledgment)を、CRC=NG(誤り有り)であればNACK(Negative Acknowledgment)を応答信号として基地局へフィードバックする。この応答信号(つまり、ACK/NACK信号)のフィードバックには、PUCCH(Physical Uplink Control Channel)等の上り回線制御チャネルが用いられる。
 ここで、基地局から送信される上記制御情報には、基地局が端末に対して割り当てたリソース情報等を含むリソース割当情報が含まれる。この制御情報の送信には、前述の通りPDCCHが用いられる。このPDCCHは、1つ又は複数のL1/L2CCH(L1/L2 Control Channel)から構成される。各L1/L2CCHは、1つ又は複数のCCE(Control Channel Element)から構成される。すなわち、CCEは、制御情報をPDCCHにマッピングするときの基本単位である。また、1つのL1/L2CCHが複数のCCEから構成される場合には、そのL1/L2CCHには連続する複数のCCEが割り当てられる。基地局は、リソース割当対象端末に対する制御情報の通知に必要なCCE数に従って、そのリソース割当対象端末に対してL1/L2CCHを割り当てる。そして、基地局は、このL1/L2CCHのCCEに対応する物理リソースにマッピングして制御情報を送信する。
 またここで、各CCEは、PUCCHの構成リソースと1対1に対応付けられている。従って、L1/L2CCHを受信した端末は、このL1/L2CCHを構成するCCEに対応するPUCCHの構成リソースを特定し、このリソースを用いて応答信号を基地局へ送信する。こうして下り回線の通信リソースが効率良く使用される。
 複数の端末から送信される複数の応答信号は、図1に示すように、時間軸上でZero Auto-correlation特性を持つZAC(Zero Auto-correlation)系列、ウォルシュ(Walsh)系列、及び、DFT(Discrete Fourier Transform)系列によって拡散され、PUCCH内でコード多重されている。図1において(W,W,W,W)は系列長4のウォルシュ系列を表わし、(F,F,F)は系列長3のDFT系列を表す。図1に示すように、端末では、ACK又はNACKの応答信号が、まず周波数軸上でZAC系列(系列長12)によって1SC-FDMAシンボル内に1次拡散される。次いで1次拡散後の応答信号がW~W、F~Fそれぞれに対応させられてIFFT(Inverse Fast Fourier Transform)される。周波数軸上で系列長12のZAC系列によって拡散された応答信号は、このIFFTにより時間軸上の系列長12のZAC系列に変換される。そして、IFFT後の信号がさらにウォルシュ系列(系列長4)、DFT系列(系列長3)を用いて2次拡散される。
 また、3GPP LTEよりも更なる通信の高速化を実現する3GPP LTE-advancedの標準化が開始された。3GPP LTE-advancedシステム(以下、「LTE-Aシステム」と呼ばれることがある)は、3GPP LTEシステム(以下、「LTEシステム」と呼ばれることがある)を踏襲する。3GPP LTE-advancedでは、最大1Gbps以上の下り伝送速度を実現するために、40MHz以上の広帯域周波数で通信可能な基地局及び端末が導入される見込みである。
 LTE-Aシステムにおいては、LTEシステムにおける伝送速度の数倍もの超高速伝送速度による通信、及び、LTEシステムに対するバックワードコンパチビリティーを同時に実現するために、LTE-Aシステム向けの帯域が、LTEシステムのサポート帯域幅である20MHz以下の「単位バンド」に区切られる。すなわち、「単位バンド」は、ここでは、最大20MHzの幅を持つ帯域であって、通信帯域の基本単位として定義される。さらに、下り回線における「単位バンド」(以下、「下り単位バンド」という)は基地局から報知されるBCHの中の下り周波数帯域情報によって区切られた帯域、または、下り制御チャネル(PDCCH)が周波数領域に分散配置される場合の分散幅によって定義される帯域として定義されることもある。また、上り回線における「単位バンド」(以下、「上り単位バンド」という)は、基地局から報知されるBCHの中の上り周波数帯域情報によって区切られた帯域、または、中心付近にPUSCH(Physical Uplink Shared CHannel)領域を含み、両端部にLTE向けのPUCCHを含む20MHz以下の通信帯域の基本単位として定義されることもある。また、「単位バンド」は、3GPP LTE-Advancedにおいて、英語でComponent Carrier(s)と表記されることがある。
 そして、LTE-Aシステムでは、その単位バンドを幾つか束ねた帯域を用いた通信、所謂Carrier aggregationがサポートされる。そして、一般的に上りに対するスループット要求と下りに対するスループット要求とは異なるので、LTE-Aシステムでは、任意のLTE-Aシステム対応の端末(以下、「LTE-A端末」という)に対して設定される単位バンドの数が上りと下りで異なるCarrier aggregation、所謂Asymmetric carrier aggregationも検討されている。さらに、上りと下りで単位バンド数が非対称であり、且つ、各単位バンドの周波数帯域幅がそれぞれ異なる場合も、サポートされる。
 図2は、個別の端末に適用される非対称のCarrier aggregation及びその制御シーケンスの説明に供する図である。図2には、基地局の上りと下りの帯域幅及び単位バンド数が対称である例が示されている。
 図2において、端末1に対しては、2つの下り単位バンドと左側の1つの上り単位バンドを用いてCarrier aggregationを行うような設定(Configuration)が為される一方、端末2に対しては、端末1と同一の2つの下り単位バンドを用いるような設定が為されるにも拘らず、上り通信では右側の上り単位バンドを利用するような設定が為される。
 そして、端末1に着目すると、LTE-Aシステムを構成するLTE-A基地局とLTE-A端末との間では、図2Aに示すシーケンス図に従って、信号の送受信が行われる。図2Aに示すように、(1)端末1は、基地局との通信開始時に、左側の下り単位バンドと同期を取り、左側の下り単位バンドとペアになっている上り単位バンドの情報をSIB2(System Information Block Type 2)と呼ばれる報知信号から読み取る。(2)端末1は、この上り単位バンドを用いて、例えば、接続要求を基地局に送信することによって基地局との通信を開始する。(3)端末に対し複数の下り単位バンドを割り当てる必要があると判断した場合には、基地局は、端末に下り単位バンドの追加を指示する。ただし、この場合、上り単位バンド数は増えず、個別の端末である端末1において非対称Carrier aggregationが開始される。 
3GPP TS 36.211 V8.6.0, "Physical Channels and Modulation (Release 8)," March 2009 3GPP TS 36.212 V8.6.0, "Multiplexing and channel coding (Release 8)," March 2009 3GPP TS 36.213 V8.6.0, "Physical layer procedures (Release 8),"March 2009
 ところで、LTE-Aでは、複数の下り単位バンドにおいて送信された複数のデータに対する複数の応答信号を一つにまとめて(Bundlingして)送信する応答信号の送信方法、所謂ACK/NACK Bundling(以下、単に「Bundling」と記す)が検討されている。Bundlingでは、端末が送信すべき複数のACK/NACK信号の論理積(つまり、Logical AND)を計算し、その計算結果を「束ACK/NACK信号(Bundled ACK/NACK信号)」として基地局にフィードバックする。
 上記した非対称のCarrier aggregationが端末に適用される場合には、ARQは以下のように制御される。例えば、図3に示すように、端末1に対して、下り単位バンド1,2及び上り単位バンド1から成る単位バンドグループが設定される場合には、下り単位バンド1,2のそれぞれのPDCCHを介して下りリソース割当情報が基地局から端末1へ送信された後に、その下りリソース割当情報に対応するリソースで下り回線データが送信される。そして、下り単位バンド1で送信された下り回線データに対するACK/NACK信号は、従来(LTEシステム)通り、下り単位バンド1に対応する上り単位バンド1のPUCCHで送信すれば良い。しかし、図3のような単位バンドグループが端末1に設定される場合にはその単位バンドグループに含まれる上り単位バンドが上り単位バンド1だけなので、従来と異なり、下り単位バンド2で送信された下り回線データに対するACK/NACK信号も、上り単位バンド1のPUCCHで送信される必要がある。
 そして、端末1が2つの下り回線データの両方の受信に成功した場合(CRC=OK)の場合、端末1は下り単位バンド1に対するACK(=1)と、下り単位バンド2に対するACK(=1)との論理積を計算し、その結果として「1」(つまりACK)を束ACK/NACK信号として基地局に送信する。また、端末1が下り単位バンド1における下り回線データの受信に成功し、且つ、下り単位バンド2における下り回線データの受信に失敗した場合には、端末1は、下り単位バンドに対するACK(=1)と、下り単位バンド2に対するNACK(=0)との論理積を計算し、「0」(つまり、NACK)を束ACK/NACK信号として基地局に送信する。同様に、端末1が下り回線データを2つとも受信に失敗した場合には、端末1は、NACK(=0)とNACK(=0)との論理積を計算し、「0」(つまり、NACK)を束ACK/NACK信号として基地局にフィードバックする。
 このように、Bundlingでは、端末に対して送信された複数の下り回線データの全ての受信に成功した場合のみ、端末はACKを一つだけ束ACK/NACK信号として基地局に送信し、一つでも受信に失敗した場合には基地局に対してNACKを一つだけ束ACK/NACK信号として送信することで、上り制御チャネルにおけるオーバーヘッドを削減できる。なお、端末側では、受信した複数の下り制御信号が占有していた複数のCCEに対応するそれぞれのPUCCHリソースのうち、例えば、最も周波数や識別番号(Index)が小さいPUCCHリソースを用いて、束ACK/NACK信号を送信する。
 しかしながら、各端末が各サブフレームにおいて自分宛の下り割当制御信号をブラインド判定するので、端末側では、必ずしも下り割当制御信号の受信が成功するとは限らない。端末が或る下り単位バンドにおける下り割当制御信号の受信に失敗した場合、端末は、当該下り単位バンドにおいて下り回線データが存在するか否かさえも知り得ない。従って、或る下り単位バンドにおける下り割当制御信号の受信に失敗した場合、端末は、当該下り単位バンドにおける下り回線データに対する応答信号も生成しない。このエラーケースは、端末側で応答信号の送信が行われないという意味での、応答信号のDTX(DTX (Discontinuous transmission) of ACK/NACK signals)として定義されている。
 このように端末側で発生するDTXは、基地局側で考慮される必要がある。すなわち、基地局は、端末がどの下り単位バンドにおける下り割当制御信号の受信に成功するかを予め予測できず、この結果として、下り割当制御信号をマッピングしたCCEの内、どのCCEに対応づけられたPUCCHリソースを用いて応答信号を送信してくるのか分からない。従って、基地局側では、複数の下り割当制御信号をマッピングしたCCEに対応する全てのPUCCHリソースを、制御対象端末の応答信号向けに確保しておかなければならない。
 また、LTEでは、下り単位バンド1と上り単位バンド1とが対応づけられてバンドペアを構成し、下り単位バンド2と上り単位バンド2とが対応づけられてバンドペアを構成していたので、下り単位バンド2に対応するPUCCHを上り単位バンド2にのみ用意すれば良い。一方、LTE-Aでは、端末個別に非対称のCarrier aggregationが設定(Configuration)される場合、図4に示すように、下り単位バンド2と上り単位バンド1というLTE-A独自の単位バンドの関連づけに起因して、上り単位バンド1でも下り単位バンド2に対する応答信号向けのPUCCHリソースを確保する必要が生じる。
 以上のことは、LTE-Aシステムは、PUCCHオーバーヘッドがLTEシステムよりも大きく、更に、Bundlingが適用される場合であってもPUCCHオーバーヘッドを削減できないことを示している。
 本発明の目的は、上り単位バンド及び上り単位バンドと対応づけられた複数の下り単位バンドを使用した通信においてARQが適用される場合に、上り制御チャネルのオーバーヘッドを削減できる端末装置及び再送制御方法を提供することである。
 本発明の端末装置は、複数の下り単位バンドと上り単位バンドとからなる単位バンドグループを用いて基地局と通信し、且つ、下り単位バンドに配置される下りデータの誤り検出結果に基づく応答信号を前記下り単位バンドに対応する上り単位バンドの上り制御チャネルで送信する端末装置であって、前記複数の下り単位バンドの下り制御チャネルで送信された下り割当制御情報を受信する制御情報受信手段と、前記下り割当制御情報が示す下りデータチャネルで送信された下りデータを受信する下りデータ受信手段と、前記受信された下りデータの受信誤りを検出する誤り検出手段と、前記誤り検出手段で得られた誤り検出結果及び前記下り割当制御情報の受信成否に基づいて、前記基地局における下りデータの再送制御に用いられる応答信号の送信を制御する応答制御手段と、を具備し、前記応答制御手段は、前記制御情報受信手段において前記単位バンドグループにおける上り単位バンドに関する情報が含まれる報知チャネル信号が送信される下り単位バンドである基本単位バンド及び前記基本単位バンド以外の第2の下り単位バンドで送信された下り割当制御情報の受信に成功した場合には、前記基本単位バンドにおける下り制御チャネルと関連付けられて前記上り単位バンドに設けられた上り制御チャネルのリソースを用いて、前記応答信号を前記基地局へ送信し、前記制御情報受信手段において前記第2の下り単位バンドで送信された下り割当制御情報の受信のみに成功した場合には、前記応答信号を前記基地局へ送信しない、構成を採る。
 本発明の再送制御方法は、単位バンドグループに含まれる複数の下り単位バンドの下り制御チャネルで送信された下り割当制御情報を受信する制御情報受信ステップと、前記下り割当制御情報が示す下りデータチャネルで送信された下りデータを受信する下りデータ受信ステップと、前記受信された下りデータの受信誤りを検出する誤り検出ステップと、前記誤り検出手段で得られた誤り検出結果及び前記下り割当制御情報の受信成否に基づいて、基地局における下りデータの再送制御に用いられる応答信号の送信を制御する応答制御ステップと、を具備し、前記応答制御ステップでは、前記制御情報受信ステップにおいて前記単位バンドグループの上り単位バンドに関する情報が含まれる報知チャネル信号が送信される下り単位バンドである基本単位バンド及び前記基本単位バンド以外の第2の下り単位バンドで送信された下り割当制御情報の受信に成功した場合には、前記基本単位バンドにおける下り制御チャネルと関連付けられて前記上り単位バンドに設けられた上り制御チャネルのリソースを用いて、前記応答信号が前記基地局へ送信され、前記制御情報受信ステップにおいて前記第2の下り単位バンドで送信された下り割当制御情報の受信のみに成功した場合には、前記応答信号が送信されない。
 本発明によれば、上り単位バンド及び上り単位バンドと対応づけられた複数の下り単位バンドを使用した通信においてARQが適用される場合に、上り制御チャネルのオーバーヘッドを削減できる端末装置及び再送制御方法を提供することができる。
応答信号及び参照信号の拡散方法を示す図 個別の端末に適用される非対称のCarrier aggregation及びその制御シーケンスの説明に供する図 Carrier aggregationが端末に適用される場合のARQ制御の説明に供する図 Carrier aggregationが端末に適用される場合のARQ制御の説明に供する図 本発明の実施の形態1に係る基地局の構成を示すブロック図 本発明に実施の形態1に係る端末の構成を示すブロック図 基地局及び端末の動作説明に供する図 実施の形態2における基地局及び端末の動作説明に供する図 本発明の実施の形態3に係る基地局の構成を示すブロック図 本発明に実施の形態3に係る端末の構成を示すブロック図 基地局及び端末の動作説明に供する図
 以下、本発明の実施の形態について図面を参照して詳細に説明する。なお、実施の形態において、同一の構成要素には同一の符号を付し、その説明は重複するので省略する。
 (実施の形態1)
 [通信システムの概要]
 後述する基地局100及び端末200を含む通信システムでは、上り単位バンド及び上り単位バンドと対応づけられた複数の下り単位バンドを使用した通信、つまり、端末200独自の非対称Carrier aggregationによる通信が行われる。また、この通信システムには、端末200と異なり、Carrier aggregationによる通信を行う能力が無く、1つの下り単位バンドとこれに対応づけられた1つの上り単位バンドによる通信(つまり、Carrier aggregationによらない通信)を行う端末も含まれている。
 従って、基地局100は、非対称Carrier aggregationによる通信及びCarrier aggregationによらない通信の両方をサポートできるように構成されている。
 また、基地局100と端末200との間でも、基地局100による端末200に対するリソース割当によっては、Carrier aggregationによらない通信が行われることも可能である。
 また、この通信システムでは、Carrier aggregationによらない通信が行われる場合には、従来通りのARQが行われる一方、Carrier aggregationによる通信が行われる場合には、ARQにおいてBundlingが採用される。すなわち、この通信システムは、例えば、LTE-Aシステムであり、基地局100は、例えば、LTE-A基地局であり、端末200は、例えば、LTE-A端末である。また、Carrier aggregationによる通信を行う能力の無い端末は、例えば、LTE端末である。
 以下では、次の事項を前提として説明する。すなわち、予め基地局100と端末200の間で、端末200独自の非対称Carrier aggregationが構成されており、端末200が用いるべき下り単位バンド及び上り単位バンドの情報が、基地局100と端末200との間で共有されている。また、基地局100によって任意の端末200に対して設定(Configure)され、予め端末200に通知(Signaling)された単位バンドグループを構成する上り単位バンドに関する情報を報知するBCHが送信される下り単位バンドが、当該端末200に対する「基本単位バンド」である。そして、この基本単位バンドに関する情報が、「基本単位バンド情報」である。従って、任意の端末200は、各下り単位バンドにおけるBCH情報を読むことによって、この基本単位バンド情報を認識できる。
 [基地局の構成]
 図5は、本発明の実施の形態1に係る基地局100の構成を示すブロック図である。図5において、基地局100は、制御部101と、制御情報生成部102と、符号化部103と、変調部104と、報知信号生成部105と、符号化部106と、データ送信制御部107と、変調部108と、マッピング部109と、IFFT部110と、CP付加部111と、無線送信部112と、無線受信部113と、CP除去部114と、逆拡散部115と、系列制御部116と、相関処理部117と、判定部118とを有する。
 制御部101は、リソース割当対象端末200に対して、制御情報を送信するための下りリソース(つまり、下り制御情報割当リソース)、及び、当該制御情報に含まれる、下り回線データを送信するための下りリソース(つまり、下りデータ割当リソース)を割り当てる(Assignする)。このリソース割当は、リソース割当対象端末200に設定される単位バンドグループに含まれる下り単位バンドにおいて行われる。また、下り制御情報割当リソースは、各下り単位バンドにおける下り制御チャネル(PDCCH)に対応するリソース内で選択される。また、下りデータ割当リソースは、各下り単位バンドにおける下りデータチャネル(PDSCH)に対応するリソース内で選択される。また、リソース割当対象端末200が複数有る場合には、制御部101は、リソース割当対象端末200のそれぞれに異なるリソースを割り当てる。
 下り制御情報割当リソースは、上記したL1/L2CCHと同等である。すなわち、下り制御情報割当リソースは、1つ又は複数のCCEから構成される。また、各CCEは、上り制御チャネル(PUCCH)の構成リソースと1対1に対応づけられている。ただし、CCEとPUCCH構成リソースとの関連付けは、LTEシステム向けに報知された下り単位バンドと上り単位バンドの関連付けにおいてなされる。すなわち、端末200に対して送信された複数の下り制御情報割当リソースを構成するCCEに対応付けられたPUCCHの構成リソースが、全て、当該端末200向けに設定された上り単位バンド内に含まれるとは限らない。
 また、制御部101は、リソース割当対象端末200に対して制御情報を送信する際に用いる符号化率を決定する。この符号化率に応じて制御情報のデータ量が異なるので、このデータ量の制御情報をマッピング可能な数のCCEを持つ下り制御情報割当リソースが、制御部101によって割り当てられる。
 また、制御部101は、リソース割当対象端末200に対して、基本単位バンド以外にリソースを割り当てた下り単位バンドの数を示す情報であるDAI(Downlink Assignment Indicator)を生成する。
 そして、制御部101は、制御情報生成部102に対して、下りデータ割当リソースに関する情報、並びに、DAIを制御情報生成部102へ出力する。また、制御部101は、符号化部103に対して、符号化率に関する情報を出力する。また、制御部101は送信データ(つまり、下り回線データ)の符号化率を決定し、符号化部106に出力する。また、制御部101は、下りデータ割当リソース及び下り制御情報割当リソースに関する情報をマッピング部109に対して出力する。ただし、制御部101は下りデータと当該下りデータに対する下り制御情報を同一の下り単位バンドにマッピングするよう制御する。
 また、制御部101は、報知信号生成部105に各下り単位バンドで送信される報知チャネル信号(BCH)を生成させる制御信号を報知信号生成部105へ出力する。
 制御情報生成部102は、下りデータ割当リソースに関する情報、並びに、DAIを含む制御情報を生成して符号化部103へ出力する。この制御情報は下り単位バンドごとに生成される。また、リソース割当対象端末200が複数有る場合に、リソース割当対象端末200同士を区別するために、制御情報には、宛先端末の端末IDが含まれる。例えば、宛先端末の端末IDでマスキングされたCRCビットが制御情報に含まれる。この制御情報は、「下り割当制御情報」と呼ばれることがある。ただし、DAIは、リソース割当対象端末200に設定された単位バンドグループに含まれる下り単位バンドの内、基本単位バンドで送信される制御情報にのみ含められる。
 符号化部103は、制御部101から受け取る符号化率に従って、制御情報を符号化し、符号化された制御情報を変調部104へ出力する。
 変調部104は、符号化後の制御情報を変調し、得られた変調信号をマッピング部109へ出力する。
 報知信号生成部105は、制御部101から受け取る制御信号に従って、下り単位バンドごとに報知信号(BCH)を生成し、マッピング部109へ出力する。
 符号化部106は、宛先端末200ごとの送信データ(つまり、下り回線データ)及び制御部101からの符号化率情報を入力として送信データを符号化し、データ送信制御部107に出力する。ただし、宛先端末200に対して複数の下り単位バンドが割り当てられる場合には、各下り単位バンドで送信される送信データをそれぞれ符号化し、符号化後の送信データをデータ送信制御部107へ出力する。
 データ送信制御部107は、初回送信時には、符号化後の送信データを保持するとともに変調部108へ出力する。符号化後の送信データは、宛先端末200ごとに保持される。また、1つの宛先端末200への送信データは、送信される下り単位バンドごとに保持される。これにより、宛先端末200に送信されるデータ全体の再送制御だけでなく、下り単位バンドごとの再送制御も可能になる。
 また、データ送信制御部107は、判定部118からNACKまたはDTXを受け取ると、このNACKまたはDTXを送信してきた端末200に対応する保持データを変調部108へ出力する。データ送信制御部107は、判定部118からACKを受け取ると、このACKを送信してきた端末200に対応する保持データを削除する。
 変調部108は、データ送信制御部107から受け取る符号化後の送信データを変調し、変調信号をマッピング部109へ出力する。
 マッピング部109は、制御部101から受け取る下り制御情報割当リソースの示すリソースに、変調部104から受け取る制御情報の変調信号をマッピングし、IFFT部110へ出力する。
 また、マッピング部109は、制御部101から受け取る下りデータ割当リソースの示すリソースに、変調部108から受け取る送信データの変調信号をマッピングし、IFFT部110へ出力する。
 また、マッピング部109は、予め決められた時間・周波数リソースに、報知情報をマッピングし、IFFT部110へ出力する。
 以上の構成によれば、報知信号は、各下り単位バンドにマッピングされる。また、端末200に対してあるサブフレームで下り回線データが割り当てられる場合であって、リソース割当対象端末200にCarrier aggregationが適用されない場合には、制御情報及び送信データは、そのリソース割当対象端末200の基本単位バンドにマッピングされ、リソース割当対象端末200にCarrier aggregationが適用される場合には、制御情報及び送信データは、基本単位バンドに加え、単位バンドグループにおける基本単位バンド以外の下り単位バンドにもマッピングされる。
 マッピング部109にて複数の下り単位バンドにおける複数のサブキャリアにマッピングされた制御情報、送信データ、及び報知信号は、IFFT部110で周波数領域信号から時間領域信号に変換され、CP付加部111にてCPが付加されてOFDM信号とされた後に、無線送信部112にてD/A変換、増幅およびアップコンバート等の送信処理が施され、アンテナを介して端末200へ送信される。
 無線受信部113は、端末200から送信された応答信号または参照信号をアンテナを介して受信し、応答信号または参照信号に対しダウンコンバート、A/D変換等の受信処理を行う。
 CP除去部114は、受信処理後の応答信号または参照信号に付加されているCPを除去する。
 逆拡散部115は、端末200において2次拡散に用いられたブロックワイズ拡散コード系列で応答信号を逆拡散し、逆拡散後の応答信号を相関処理部117に出力する。また、逆拡散部115は、端末200において参照信号の拡散に用いられた直交系列で参照信号を逆拡散し、逆拡散後の参照信号を相関処理部117に出力する。
 系列制御部116は、端末200から送信される応答信号の拡散に用いられているZAC系列を生成する。また、系列制御部116は、端末200が用いているリソース(例えば、循環シフト量)に基づいて、端末200からの信号成分が含まれる相関窓を特定する。そして、系列制御部116は、特定した相関窓を示す情報および生成したZAC系列を相関処理部117に出力する。
 相関処理部117は、系列制御部116から入力される相関窓を示す情報およびZAC系列を用いて、逆拡散後の応答信号および逆拡散後の参照信号と、端末200において1次拡散に用いられたZAC系列との相関値を求めて判定部118に出力する。
 判定部118は、相関処理部117から入力される相関値に基づいて、端末から送信された応答信号がACKまたはNACKのいずれかを示しているか、もしくはDTXであるかを判定する。すなわち、判定部118は、相関処理部117から入力される相関値の大きさがある閾値以下であれば、端末200が当該リソースを用いてACKもNACKも送信していない(DTX)と判断し、相関値の大きさが閾値以上であれば、更に当該応答信号がACKまたはNACKのいずれを示しているかを同期検波によって判定する。そして、判定部118は、端末毎のACK、NACKまたはDTX情報をデータ送信制御部107へ出力する。
 [端末の構成]
 図6は、本発明の実施の形態1に係る端末200の構成を示すブロック図である。図6において、端末200は、無線受信部201と、CP除去部202と、FFT部203と、抽出部204と、報知信号受信部205と、復調部206と、復号部207と、判定部208と、制御部209と、復調部210と、復号部211と、CRC部212と、Bundling部213と、変調部214と、拡散部215と、IFFT部216と、CP付加部217と、拡散部218と、IFFT部219と、CP付加部220と、拡散部221と、多重部222と、無線送信部223とを有する。
 無線受信部201は、基地局100から送信されたOFDM信号をアンテナを介して受信し、受信OFDM信号に対しダウンコンバート、A/D変換等の受信処理を行う。
 CP除去部202は、受信処理後のOFDM信号に付加されているCPを除去する。
 FFT部203は、受信OFDM信号をFFTして周波数領域信号に変換し、得られた受信信号を抽出部204へ出力する。
 抽出部204は、FFT部203から受け取る受信信号から報知信号を抽出して報知信号受信部205へ出力する。報知信号がマッピングされるリソースは予め決まっているので、抽出部204は、そのリソースにマッピングされている情報を抽出する。また、抽出された報知信号には、各下り単位バンドと上り単位バンドとの関連付けに関する情報が含まれている。
 また、抽出部204は、入力される符号化率情報に従って、FFT部203から受け取る受信信号から下り制御チャネル信号(PDCCH信号)を抽出する。すなわち、符号化率に応じて下り制御情報割当リソースを構成するCCEの数が変わるので、抽出部204は、その符号化率に対応する個数のCCEを抽出単位として、下り制御チャネル信号を抽出する。また、下り制御チャネル信号は、下り単位バンドごとに抽出される。抽出された下り制御チャネル信号は、復調部206へ出力される。
 また、抽出部204は、判定部208から受け取る自装置宛の下りデータ割当リソースに関する情報に基づいて、受信信号から下り回線データを抽出し、復調部210へ出力する。
 報知信号受信部205は、下り単位バンド毎に含まれる報知信号をそれぞれ復号し、各下り単位バンドとペアを構成する上り単位バンドの情報(すなわち、各下り単位バンドにマッピングされたSIB2によって通知される上り単位バンドの情報)を抽出する。また、報知信号受信部205は、自装置に対する単位バンドグループに含まれる上り単位バンドとペアになっている下り単位バンドを「基本単位バンド」と認識し、基本単位バンド情報を判定部208及び制御部209へ出力する。
 復調部206は、抽出部204から受け取る下り制御チャネル信号を復調し、得られた復調結果を復号部207に出力する。
 復号部207は、入力される符号化率情報に従って、復調部206から受け取る復調結果を復号して、得られた復号結果を判定部208に出力する。
 判定部208は、復号部207から受け取る復号結果に含まれる制御情報が自装置宛の制御情報であるか否かをブラインド判定する。この判定は、上記した抽出単位に対応する復号結果を単位として行われる。例えば、判定部208は、自装置の端末IDでCRCビットをデマスキングし、CRC=OK(誤り無し)となった制御情報を自装置宛の制御情報であると判定する。そして、判定部208は、自装置宛の制御情報に含まれる、自装置に対する下りデータ割当リソースに関する情報を抽出部204へ出力する。また、判定部208は、基本単位バンドで得られた、自装置宛の制御情報に含まれるDAIをBundling部213へ出力する。
 また、判定部208は、基本単位バンドの下り制御チャネルにおいて、上記した自装置宛の制御情報がマッピングされていたCCEを特定し、特定したCCEの識別情報を制御部209へ出力する。
 制御部209は、判定部208から受け取るCCE識別情報の示すCCEに対応するPUCCHリソース(周波数・符号)を特定する。そして、制御部209は、特定したPUCCHリソースに対応するZAC系列及び循環シフト量を拡散部215へ出力し、周波数リソース情報をIFFT部216に出力する。また、制御部209は、参照信号としてのZAC系列及び周波数リソース情報をIFFT部219へ出力し、応答信号の2次拡散に用いるべきブロックワイズ拡散コード系列を拡散部218へ出力し、参照信号の2次拡散に用いるべき直交系列を拡散部221へ出力する。
 復調部210は、抽出部204から受け取る下り回線データを復調し、復調後の下り回線データを復号部211へ出力する。
 復号部211は、復調部210から受け取る下り回線データを復号し、復号後の下り回線データをCRC部212へ出力する。
 CRC部212は、復号部211から受け取る復号後の下り回線データを生成し、CRCを用いて下り単位バンドごとに誤り検出し、CRC=OK(誤り無し)の場合にはACKを、CRC=NG(誤り有り)の場合にはNACKを、Bundling部213へ出力する。また、CRC部212は、CRC=OK(誤り無し)の場合には、復号後の下り回線データを受信データとして出力する。
 Bundling部213は、自装置に設定された単位バンドグループに含まれる各下り単位バンドで送信された下り回線データの受信状況、及び、判定部208から受け取るDAIに基づいて、自装置が基地局100へ送信すべき応答信号を生成する。応答信号の送信制御については、後に詳しく説明する。
 変調部214は、Bundling部213から入力される応答信号を変調して拡散部215へ出力する。
 拡散部215は、制御部209によって設定されたZAC系列及び循環シフト量に基づいて応答信号を1次拡散し、1次拡散後の応答信号をIFFT部216へ出力する。すなわち、拡散部215は、制御部209からの指示に従って、応答信号を1次拡散する。
 IFFT部216は、1次拡散後の応答信号を制御部209から入力される周波数リソース情報に基づいて周波数軸上に配置し、IFFTを行う。そして、IFFT部216は、IFFT後の応答信号をCP付加部217へ出力する。
 CP付加部217は、IFFT後の応答信号の後尾部分と同じ信号をCPとしてその応答信号の先頭に付加する。
 拡散部218は、制御部209によって設定されたブロックワイズ拡散コード系列を用いてCP付加後の応答信号を2次拡散し、2次拡散後の応答信号を多重部222へ出力する。つまり、拡散部218は、1次拡散後の応答信号を制御部209で選択されたリソースに対応するブロックワイズ拡散コード系列を用いて2次拡散する。
 IFFT部219は、参照信号を制御部209から入力される周波数リソース情報に基づいて周波数軸上に配置し、IFFTを行う。そして、IFFT部219は、IFFT後の参照信号をCP付加部220へ出力する。
 CP付加部220は、IFFT後の参照信号の後尾部分と同じ信号をCPとしてその参照信号の先頭に付加する。
 拡散部221は、制御部209から指示された直交系列でCP付加後の参照信号を拡散し、拡散後の参照信号を多重部222へ出力する。
 多重部222は、2次拡散後の応答信号と拡散後の参照信号とを1スロットに時間多重して無線送信部223へ出力する。
 無線送信部223は、2次拡散後の応答信号または拡散後の参照信号に対しD/A変換、増幅およびアップコンバート等の送信処理を行う。そして、無線送信部223は、アンテナから基地局100へ送信する。
 [基地局100及び端末200の動作]
 以上の構成を有する基地局100及び端末200の動作について説明する。図7は、基地局100及び端末200の動作説明に供する図である。
 〈基地局100によるリソース割当制御〉
 基地局100において、制御部101は、端末200毎に設定されている単位バンドグループにおける基本単位バンドに関する情報を保持している。制御部101は、端末200に対して下り回線データを送信する場合、当該端末200にとっての基本単位バンドを優先して使用する。すなわち、基地局100側で1つのデータ(Transpot block:TBとも呼ぶ)を端末200に送信する場合、制御部101は、当該端末200にとっての基本単位バンドにデータをマッピングする制御を行い、また、端末200に対して、基本単位バンド以外の下り単位バンドでデータの配置が無いことを通知するDAIビット情報を生成する。このDAIビットは、制御部101から、その他の制御情報と一緒に制御情報生成部102へ出力され、下り回線データと同一の下り単位バンドで送信される。また、基地局100側で2つ以上のデータを端末200に同時に送信する場合、制御部101は、一つのデータを必ず端末200の基本単位バンドにマッピングし、残りのデータは単位バンドグループ内の基本単位バンドを除く任意の下り単位バンドにマッピングする制御を行う。制御部101は、端末200に対して、基本単位バンド以外の下り単位バンドでデータの配置がある単位バンド数を通知するDAIビット情報を生成し、制御情報生成部102に出力する。このDAIビットは、基本単位バンドで送信される下り割当制御情報に含まれて端末200に通知される。
 基地局100は、下り回線データの送信宛先端末200に対して、当該送信宛先端末200に設定された単位バンドグループ内の、下り回線データの送信に利用する下り単位バンドにおいて下り割当制御情報をそれぞれ送信する。また、基地局100は、下り回線データの送信に利用される基本単位バンド以外の下り単位バンドの数を、基本単位バンドで送信される下り割当制御情報に含まれるDAIによって、送信宛先端末200に通知する。
 図7を参照して具体的に説明すると、送信宛先端末200(図7Aでは、端末1)に対しては、下り単位バンド1,2及び上り単位バンド1から成る単位バンドグループが設定されている。ここで、送信宛先端末200に対してCarrier aggregationによる通信が適用される場合、基地局100は、下り単位バンド1,2の双方を用いて、下り割当制御情報を端末1へ送信する。この下り割当制御情報を送信するために、基地局100は、下り単位バンドの下り制御チャネル(PDCCH)に含まれるサブチャネル(すなわち、L1/L2 CCH)を端末1に割り当て、割り当てたサブチャネルを用いて端末1へ下り割当制御情報を送信する。各サブチャネルは、1つ又は複数のCCEによって構成されている。
 〈端末200による下り回線データの受信〉
 端末200では、報知信号受信部205が、端末200に通知された単位バンドグループを構成する上り単位バンドに関する情報を報知するBCHが送信される下り単位バンドを基本単位バンドとして特定する。
 また、判定部208が、各下り単位バンドの下り制御チャネルに自装置宛の下り割当制御情報が含まれているか否かを判定し、自身宛の下り割当制御情報を抽出部204へ出力する。
 抽出部204は、判定部208から受け取る下り割当制御情報に基づいて、受信信号から下り回線データを抽出する。
 こうして端末200は、基地局100から送信された下り回線データを受信することができる。
 図7を参照して具体的に説明すると、まず、上り単位バンド1に関する情報を報知するBCHが下り単位バンド1で送信されるので、下り単位バンド1が端末1の基本単位バンドとなる。
 また、下り単位バンド1で送信される下り割当制御情報には、下り単位バンド1で送信される下り回線データ(DL data)の送信に用いられるリソースに関する情報が含まれ、下り単位バンド2で送信される下り割当制御情報には、下り単位バンド2で送信される下り回線データの送信に用いられるリソースに関する情報が含まれる。
 従って、端末1は、下り単位バンド1で送信される下り割当制御情報及び下り単位バンド2で送信される下り割当制御情報を受信することにより、下り単位バンド1及び下り単位バンド2の両方で下り回線データを受信することができる。逆に、下り割当制御情報を受信することができなければ、端末1は、下り回線データを受信することができない。
 また、端末200は、下り単位バンド1で送信されるDAIにより、下り割当制御情報が、基本単位バンドである下り単位バンド1だけでなく、下り単位バンド2でも送信されていることを認識することができる。
 〈端末200による応答〉
 CRC部212は、受信に成功した下り割当制御情報に対応する下り回線データについて誤り検出を行い、誤り検出結果をBundling部213へ出力する。
 そして、Bundling部213は、CRC部212から受け取る誤り検出結果及び制御部209から受け取るDAIに基づいて、次のように応答信号の送信制御を行う。
 すなわち、Bundling部213は、DAIから求められる下り回線データの数と等しい数の誤り検出結果をCRC部212から受け取る場合(つまり、全ての下り単位バンドにおいて下り割当制御情報の受信に成功した場合)には、これらの誤り検出結果を1つにまとめた束ACK/NACK信号を基地局100へ送信する。
 また、Bundling部213は、基本単位バンドで下り割当制御情報の受信に成功し、基本単位バンドで送信された下り回線データについての誤り検出結果をCRC部212から受け取るが、CRC部212から受け取る誤り検出結果の総数がDAIから求められる下り回線データの数よりも少ない場合、束ACK/NACK信号としてNACKを送信する。なお、ここではNACKを送信するとしたが、応答信号自体を送信しないこととしても良い。端末200が応答信号を送信しなくても、基地局100はDTXと見なして再送制御を行うので、NACKを送信した場合と結果として同じ再送制御が為されるためである。
 また、Bundling部213は、CRC部212から誤り検出結果自体を受け取らない場合(つまり、端末200でいずれの下り割当制御情報の受信にも成功しなかった場合)だけでなく、基本単位バンド以外の下り単位バンドで送信された下り回線データについての誤り検出結果のみを受け取る場合(つまり、基本単位バンドの下り割当制御情報の受信に成功しなかった場合)にも、応答信号を基地局100へ送信しない。
 図7を参照して応答信号の送信制御を具体的に説明する。図7Bでは、Carrier aggregationが基地局100と端末1との間の通信に適用されることが前提とされている。
 Bundling部213は、下り単位バンド1で送信された下り割当制御情報及び下り単位バンド2で送信された下り割当制御情報の両方の受信に成功した場合には、両下り割当制御情報の示すリソースで受信した下り回線データの誤り検出結果に基づく応答信号(すなわち、束ACK/NACK信号)を、従来から下り単位バンド1に対応する上り制御チャネル用のリソースとして用意されているPUCCH1で送信する。
 また、Bundling部213は、下り単位バンド1で送信された下り割当制御情報の受信のみに成功した場合には、NACKを、PUCCH1で送信する。
 また、Bundling部213は、下り単位バンド1で送信された下り割当制御情報及び下り単位バンド2で送信された下り割当制御情報の両方の受信に失敗した場合だけでなく、下り単位バンド2で送信された下り割当制御情報の受信にのみ成功した場合も、応答信号を送信しない。こうすることで、単位バンドグループにおける下り単位バンド2と上り単位バンド1との対応関係に対応する上り制御チャネル用に新たにリソースを確保する必要がない。この結果、上り制御チャネルのオーバーヘッドを削減できる。
 なお、Bundling部213は、基本単位バンドで送信された下り回線データについての誤り検出結果のみをCRC部212から受け取り、且つ、基本単位バンドのみで下り回線データが送信されることをDAIが示す場合には、そのCRC部212から受け取った誤り検出結果を基地局100へ送信する。この場合には、そもそもCarrier aggregationが適用されていないからである。
 以上で説明した応答信号の送信制御を行ったとしても、ACK/NACK bundling動作では、そもそも、下り単位バンドに配置された下り回線データのうちいずれか一つでも受信に失敗すれば端末からNACKが送信され、これに応じて基地局側では全ての下り回線データの再送を行うことが前提となっているので、ACK/NACK Bundlingにおける再送効率が劣化することは無い。
 また、以上で説明した応答信号の送信制御を行うことにより、Carrier aggregationによる通信を行う能力の無い端末に設定される、1つの下り単位バンドと1つの上り単位バンドとから成るバンドペアにおいて用いられる上り制御チャネル用のリソースを、このバンドペアを含む単位バンドグループにおいても利用することができる。このことは、基本単位バンドを、基地局が個別に端末に対して構成した非対称Carrier aggregationにおける単位バンドグループのうち、上り単位バンドの情報を報知するBCHが配置された下り単位バンドとして定義することにより、保証されている。従って、非対称Carrier aggregationを行うことによって下り単位バンドと上り単位バンドとの対応関係が新たに生じるにも関わらず、この対応関係に対応する上り制御チャネル用のリソースを新たに確保する必要が無いので、上り制御チャネルのオーバーヘッドを削減できる。また、Carrier aggregationによる通信を行う能力の無い端末に設定されるバンドペアにおける下り単位バンドとこれに対応する上り制御チャネル用のリソースとの対応関係も維持されるので、Carrier aggregationによる通信を行う能力の有る端末とCarrier aggregationによる通信を行う能力の無い端末とが共存できるシステムを実現できる。
 以上のように本実施の形態によれば、端末200は、複数の下り単位バンドと上り単位バンドとからなる単位バンドグループを用いて基地局100と通信し、且つ、下り単位バンドの下り制御チャネルで送信された下りデータの誤り検出結果に基づく応答信号を下り割当制御情報の送信に利用されたリソースに対応する上り単位バンドの上り制御チャネルで送信する。
 この端末200において、制御情報受信手段としての抽出部204、復調部206、復号部207、及び判定部208が、上記単位バンドグループに含まれる複数の下り単位バンドの下り制御チャネルで送信された下り割当制御情報を受信し、下りデータ受信手段としての抽出部204、復調部210、及び復号部211が、上記下り割当制御情報が示す下りデータチャネルで送信された下りデータを受信し、CRC部212が、受信された下りデータの受信誤りを検出する。そして、Bundling部213が、CRC部212で得られた誤り検出結果及び上記下り割当制御情報の受信成否に基づいて、基地局100における下りデータの再送制御に用いられる応答信号の送信を制御する。
 そして、Bundling部213は、単位バンドグループにおいて上り単位バンドに関する情報が含まれる報知チャネル信号が送信される下り単位バンドである基本単位バンド及び当該基本単位バンド以外の第2の下り単位バンドのそれぞれにおいて下り割当制御情報が基地局から送信されることを第1の条件とし、第1の条件が満たされ、且つ、上記制御情報受信手段において基本単位バンド及び第2の下り単位バンドで送信された下り割当制御情報の全ての受信に成功した場合、並びに、第1の条件が満たされ、且つ、制御情報受信手段において基本単位バンドで送信された下り割当制御情報の受信のみに成功した場合には、基本単位バンドと上り単位バンドとのバンドペアに対して設けられた上り制御チャネルのリソースで、応答信号を基地局100へ送信する。また、Bundling部213は、第1の条件が満たされ、且つ、制御情報受信手段において第2の下り単位バンドで送信された下り割当制御情報の受信のみに成功した場合には、応答信号を基地局100へ送信しない。なお、あるサブフレームにおいて端末200が1つも下り割当制御情報の受信に成功しなかった場合、端末200側では実際に基地局100が端末200に下り割当制御情報を送信したのか、それとも当該サブフレームにおいて下り割当制御情報の受信に失敗したのか判断することが出来ないが、いずれにしろ端末200から基地局100へ応答信号は送信されない。
 こうすることで、単位バンドグループにおける基本単位バンド以外の下り単位バンドと基本単位バンドとバンドペアを形成する上り単位バンドとの対応関係に対応する上り制御チャネル用に新たにリソースを確保する必要がないので、上り制御チャネルのオーバーヘッドを削減できる。
 なお、以上の説明では、1次拡散にZAC系列を用い、2次拡散にブロックワイズ拡散コード系列を用いる場合について説明する。しかし、1次拡散には、ZAC系列以外の、互いに異なる循環シフト量により互いに分離可能な系列を用いても良い。例えば、GCL(Generalized Chirp like)系列、CAZAC(Constant Amplitude Zero Auto Correlation)系列、ZC(Zadoff-Chu)系列、M系列や直交ゴールド符号系列等のPN系列、または、コンピュータによってランダムに生成された時間軸上での自己相関特性が急峻な系列等を1次拡散に用いても良い。また、2次拡散には、互いに直交する系列、または、互いにほぼ直交すると見なせる系列であればいかなる系列をブロックワイズ拡散コード系列として用いてもよい。例えば、ウォルシュ系列またはフーリエ系列等をブロックワイズ拡散コード系列として2次拡散に用いることができる。以上の説明では、ZAC系列の循環シフト量とブロックワイズ拡散コード系列の系列番号とによって応答信号のリソース(例えば、PUCCHリソース)が定義されている。
 (実施の形態2)
 実施の形態1では、基地局100から送信宛先端末200に対して一つの下り回線データ(TB)が送信される場合には、必ず当該送信宛先端末200にとっての基本単位バンドに下り回線データをマッピングするとしたが、実施の形態2では、基地局100が送信宛先端末200にとっての基本単位バンド以外にのみ下り回線データを配置することを許容した点、及び、基本単位バンド以外の下り単位バンドにおける下り割当制御情報の中に、基本単位バンドにも下り回線データが含まれているか否か(すなわち、基本単位バンドで端末200に対する下り割当制御情報が送信されたか否か)を示すビット(Anchor Assignment Indicator : AAI)が含まれる点において実施の形態1と相違する。すなわち、実施の形態2では、実施の形態1で説明した応答信号の送信制御方法が用いられる第1のモードと、任意の宛先端末に対する下り回線データが基本単位バンド以外の下り単位バンドにのみマッピングされる第2のモードとの間で、モードを切り替えることができる。これにより、実施の形態2では、実施の形態1と比べて、基地局の下り回線データのマッピングに関する自由度が向上する。
 以下、具体的に説明する。実施の形態2における基地局および端末の構成は実施の形態1と同様であるので、図5と図6を援用して説明する。
 〈基地局100によるリソース割当制御〉
 実施の形態2に係る基地局100の制御部101は、送信宛先端末200に対して下り回線データを送信する場合、当該送信宛先端末200にとっての基本単位バンドを使用するかそれ以外の下り単位バンドを使用するかを決定する。すなわち、制御部101は、上記した第1のモード又は第2のモードを選択する。
 また、制御部101は、第1のモードであるか第2のモードであるかに関わらず、基本単位バンド以外の下り単位バンドで下り回線データの割当がある場合には、当該下り単位バンドにおける下り制御チャネルでAAIビットを送信する。AAIビットは、制御部101から制御情報生成部102に出力され、制御情報生成部102にて制御情報に含められて基本単位バンド以外の下り単位バンドを介して送信される。このAAIビットは、基本単位バンドで下り回線データが送信されているか否か、つまり、送信宛先端末200へ下り回線データを送信することに基本単位バンドが用いられているか否かを示す。
 すなわち、制御部101は、第1のモードを選択するときには、基本単位バンドにおけるDAIビットによって基本単位バンド以外の割当単位バンド数を通知すると共に、基本単位バンド以外の下り単位バンドにおけるAAIビットによって、「基本単位バンドにおける下り回線データ割当が有る」ことを送信宛先端末200に通知する。
 また、制御部101は、第2のモードを選択するときには、基本単位バンド以外の下り単位バンドにおけるAAIビットによって、「基本単位バンドにおける下り回線データ割当が無い」ことを端末200に通知する。ただし、この場合でも、端末200は、基本単位バンドと上記バンドペアを構成する上り単位バンドの上り制御チャネルを用いて、応答信号を送信する。従って、基地局100は、第2のモードを選択するときには、基本単位バンド以外の下り単位バンドにおいて端末200向けの下り割当制御情報の送信に用いられたCCEと関連付けられた上り制御チャネルのリソースを、端末200からの応答信号を受けるために確保しておく。
 図8を参照して具体的に説明する。図8では、端末1に対して、下り単位バンド1,2及び上り単位バンド1から成る単位バンドグループが設定されている。そして、図8Aには、基本単位バンドである下り単位バンド1では下り割当制御情報が送信されず、下り単位バンド2からのみ下り割当制御情報が送信されている状況が示されている。すなわち、図8Aでは、第2のモードが選択されている。従って、制御部101は、下り単位バンド2で、「基本単位バンドにおける下り回線データ割当が無い」ことを示すAAIを端末1へ送信する。そして、基地局100では、単位バンドグループにおける下り単位バンド2において端末200向けの下り割当制御情報の送信に用いられたCCEと関連付けられた上り単位バンド1の上り制御チャネルにおけるリソースを確保しておく。すなわち、基地局100と端末200との間で、予め下り単位バンド2における下り制御チャネルのCCEと、上り単位バンド1の上り制御チャネル(PUCCH1)におけるリソースの関連付けが共有されており(図8の例では、下り単位バンド1,2の下り制御チャネルにおいて、同一の識別番号を持つCCEをPUCCH1における同一のリソースと対応付けるという情報が基地局100と端末200との間で共有されている)、基地局は、下り単位バンド1で下り割当制御情報を受信するその他の端末200がPUCCH1における同一のリソースを用いることが無いように、その他の端末200に対する下り割当制御情報が用いるべきCCEを制御する。換言すれば、このPUCCH1は、下り単位バンド1と上り単位バンド1とのバンドペアにおいても利用されるリソースである。
 〈端末200による応答〉
 実施の形態2に係る端末200のBundling部213は、判定部208からDAI又はAAIを取得する。Bundling部213は、基本単位バンドにおける下り割当制御情報を受信した場合には、当該制御情報から抽出したDAIによって、端末200に設定された単位バンドグループにおいて、いくつの下り単位バンドに下り回線データが配置されているかを認識する。一方、Bundling部213は、基本単位バンドにおける下り割当制御情報を受信に失敗し、且つ、基本単位バンド以外の下り単位バンドにおいて下り割当制御情報を受信した場合には、当該制御情報から抽出したAAIによって、基本単位バンドに下り回線データが配置されているか否かを認識する。なお、AAIを受信する処理は、DAIを受信する処理と共通する。
 Bundling部213は、DAIを取得した場合には、実施の形態1と同様の動作をする。
 また、Bundling部213は、DAIを取得できず、AAIのみ取得した場合には、次のような応答信号の送信制御を行う。AAIが基本単位バンドでの割当有りを示していた場合には、Bundling部213は、実施の形態1と同様に基本単位バンドにおける下り割当制御情報の受信に失敗したと判断し、応答信号を送信しない。
 逆に、AAIが「基本単位バンドでの割当無し」を示していれば、Bundling部213は、基本単位バンド以外の下り単位バンドによってのみ下り回線データが送信されていると判断し、当該下り単位バンドにおいて受信した下り割当制御情報がマッピングされていたCCEに対応する上り制御チャネルのリソースを用いて、応答信号を送信する。ただし、この応答信号は、下り回線データの送信に利用された、基本単位バンド以外の下り単位バンドとバンドペアを形成する上り単位バンド(すなわち、基本単位バンド以外の下り単位バンドにおける報知情報によって通知される上り単位バンド)の上り制御チャネルで送信されるのではなく、単位バンドグループ内の関連づけに従って基本単位バンドとバンドペアを形成する上り単位バンドの上り制御チャネルで送信される。
 具体的には、図8に示される状況では、基本単位バンドでない下り単位バンド2のみで下り割当制御情報が送信されているので、Bundling部213は、下り単位バンド2において受信した下り割当制御情報がマッピングされていたCCEに対応するPUCCH1のリソースを用いて、応答信号を送信する。ただし、当然のことながら、図8Bに示すように、端末200が下り単位バンド2で送信された下り割当制御情報の受信に失敗した場合には、応答信号は送信されない。
 この応答信号が送信されるリソースの制御は、制御部209によって行われる。具体的には、基本単位バンドで自装置宛ての下り割当制御情報を受信できず、かつ、その他の下り単位バンドにおけるAAIが「基本単位バンドでの割当無し」を示している場合には、制御部209は、当該下り単位バンドにおける下り割当制御情報がマッピングされていたCCEの識別番号(Index)を取得する。そして、制御部209は、基本単位バンドの下り制御チャネルのCCEと、基本単位バンドとバンドペアを形成する上り単位バンドの上り制御チャネルのリソースとの関連付けと同一の対応関係を用いて、上記取得したCCEの識別番号と対応する上り制御チャネルのリソース(周波数リソース、符号リソース)を特定する。そして、制御部209は、特定された上り制御チャネルのリソースに応じて、拡散部215、IFFT部216、拡散部218、IFFT部219及び拡散部221を制御する。
 なお、基本単位バンドと基本単位バンド以外の下り単位バンドとで、同一の識別番号を持つCCEが同一の上り制御チャネルのリソースと関連付けられるため、基地局100は、上り制御チャネルのリソースが衝突しないように、基本単位バンドにおけるCCEの利用を制御する必要がある。例えば、基本単位バンドにおける同一の識別番号を持つCCEを、その他の端末200に対する上り割当制御情報に割り当てるなどの工夫により、上り制御チャネルのリソースの衝突は簡単に解決できる。
 以上のように、第1のモードの他に、第2のモードを用意することにより、基本単位バンドとそれ以外の下り単位バンドにおける下り回線データの配置の自由度を向上させることができる。
 以上のように本実施の形態によれば、基地局100は、下り回線データを送信する場合、基本単位バンド以外の下り単位バンドに優先して、基本単位バンドに下り割当制御情報をマッピングする第1の送信モードと、基本単位バンド以外の下り単位バンドのみに下り割当制御情報をマッピングする第2の送信モードとを有する。
 そして、端末200において、Bundling部213が、第2の送信モードが採用されていることを第2の条件とし、第2の条件が満たされ、且つ、上記制御情報受信手段において基本単位バンド以外の下り単位バンドで送信された下り割当制御情報の受信に成功した場合には、基本単位バンド以外の下り単位バンドと上り単位バンドのバンドペアに対して設けられた上り制御チャネルのリソースで、応答信号を送信する。
 こうすることで、基本単位バンドとそれ以外の下り単位バンドにおける下り回線データの配置の自由度を向上させることができる。
 (実施の形態3)
 実施の形態1、2では、端末が基地局に対して下り回線データに対する応答信号のみを送信する場合について説明した。しかしながら、端末が応答信号を送信する同一サブフレームにおいて、基地局が端末に対して上り回線データの送信を指示することもありうる。実施の形態3は、端末が応答信号を送信すべきサブフレームで、端末が基地局から上り回線データも送信するように指示を受ける点において、実施の形態1、2と相違する。
 [基地局の構成]
 図9は、本発明の実施の形態3に係る基地局300の構成を示すブロック図である。図9において、基地局300は、制御部301と、制御情報生成部302と、マッピング部309と、PUCCH/PUSCH分離部320と、IDFT部321と、復調/復号部322とを有する。
 制御部301は、リソース割当対象端末400に対して、制御情報を送信するための下りリソース(つまり、下り制御情報割当リソース及び上り制御情報割当リソース)、並びに、当該制御情報に含まれる、下り回線データを送信するための下りリソース(つまり、下りデータ割当リソース)及び上り回線データを送信するための上りリソース(つまり、上りデータ割当リソース)を割り当てる。このリソース割当は、リソース割当対象端末400に設定される単位バンドグループに含まれる下り単位バンドにおいて行われる。また、下り制御情報割当リソース及び上り制御情報割当リソースは、各下り単位バンドにおける下り制御チャネル(PDCCH)に対応するリソース内で選択される。また、下りデータ割当リソースは、各下り単位バンドにおける下りデータチャネル(PDSCH)に対応するリソース内で選択される。また、リソース割当対象端末400が複数有る場合には、制御部301は、リソース割当対象端末400のそれぞれに異なるリソースを割り当てる。
 下り制御情報割当リソース及び上り制御情報割当リソースは、上記したL1/L2CCHと同等である。すなわち、下り制御情報割当リソース及び上り制御情報割当リソースは、1つ又は複数のCCEから構成される。また、下り割当て制御情報割当リソースが占有する各CCEは、上り制御チャネル(PUCCH)の構成リソースと1対1に対応づけられている。ただし、CCEとPUCCH構成リソースとの関連付けは、LTEシステム向けに報知された下り単位バンドと上り単位バンドの関連付けにおいてなされる。すなわち、端末400に対して送信された複数の下り制御情報割当リソースを構成するCCEに対応付けられたPUCCHの構成リソースが、全て、当該端末400向けに設定された上り単位バンド内に含まれるとは限らない。
 また、制御部301は、リソース割当対象端末400に対して制御情報を送信する際に用いる符号化率を決定する。この符号化率に応じて制御情報のデータ量が異なるので、このデータ量の制御情報をマッピング可能な数のCCEを持つ下り制御情報割当リソース及上り制御情報割当リソースが、制御部301によって割り当てられる。
 また、制御部301は、リソース割当対象端末400に対して、基本単位バンド以外にリソースを割り当てた下り単位バンドの数を示す情報であるDAI(Downlink Assignment Indicator)を生成する。
 そして、制御部301は、下りデータ割当リソース及び上りデータ割当リソースに関する情報、並びに、DAIを制御情報生成部302へ出力する。また、制御部301は、符号化部103に対して、符号化率に関する情報を出力する。また、制御部301は、送信データ(つまり、下り回線データ)の符号化率を決定し、符号化部106に出力し、受信データ(つまり、上り回線データ)の符号化率を決定し、復調/復号部322に出力する。また、制御部301は、下りデータ割当リソース、下り制御情報割当リソース及び上り制御情報割当リソースに関する情報をマッピング部309に対して出力する。ただし、制御部301は、実施の形態1と同様に、下りデータと当該下りデータに対する下り制御情報を同一の下り単位バンドにマッピングするよう制御する。
 制御情報生成部302は、下りデータ割当リソースに関する情報及びDAIを含む、下り割当制御情報を生成して符号化部103へ出力すると共に、上りデータ割当リソースに関する情報を含む上り割当制御情報を生成して符号化部103へ出力する。ただし、DAIは、リソース割当対象端末400に設定された単位バンドグループに含まれる下り単位バンドの内、基本単位バンドで送信される下り割当制御情報にのみ含められる。
 マッピング部309は、制御部301から受け取る下り制御情報割当リソース及び上り制御情報割当リソースの示すリソースに、変調部104から受け取る制御情報の変調信号をマッピングし、IFFT部110へ出力する。
 PUCCH/PUSCH分離部320は、受信信号をFFTし、上り回線データが含まれるリソース(すなわち、PUSCH)と応答信号が含まれる可能性のあるリソース(すなわち、PUCCH)とを周波数軸上で分離する。そして、PUCCH/PUSCH分離部320は、抽出したPUCCH信号(応答信号のみを含む)を逆拡散部115に出力し、PUSCH信号(上り回線データのみを含む)の周波数成分をIDFT部321に出力する。
 IDFT部321は、PUCCH/PUSCH分離部320から受け取るPUSCH信号の周波数成分に対し、IDFT処理をすることによって時間軸上の信号(Time domain signal)へ変換し、復調/復号部322に出力する。
 復調/復号部322は、制御部301から指示された上り回線データに対応する符号化率を用いて上り回線データが含まれる信号成分を復調・復号し、受信データとして出力する。
 [端末の構成]
 図10は、本発明の実施の形態3に係る端末400の構成を示すブロック図である。図10において、端末400は、判定部408と、制御部409と、上り制御チャンネル生成部424と、符号化/変調部425と、DFT部426と、PUCCH/PUSCH多重部427と、CP付加部428とを有する。
 判定部408は、実施の形態1と同様に、復号部207から受け取る復号結果に含まれる制御情報が自装置宛の制御情報であるか否かをブラインド判定する。この判定は、上記した抽出単位に対応する復号結果を単位として行われる。例えば、判定部408は、自装置の端末IDでCRCビットをデマスキングし、CRC=OK(誤り無し)となった制御情報を自装置宛の制御情報であると判定する。そして、判定部408は、自装置宛の制御情報に含まれる、自装置に対する下りデータ割当リソースに関する情報を抽出部204へ出力すると共に、上りデータ割当リソースに関する情報を制御部409へ出力する。また、判定部408は、基本単位バンドで得られた、自装置宛の下り割当制御情報に含まれるDAI情報をBundling部213へ出力する。
 また、判定部408は、基本単位バンドの下り制御チャネルにおいて、上記した自装置宛の下り割当制御情報がマッピングされていたCCEを特定し、特定したCCEの識別情報を制御部409へ出力する。
 制御部409は、判定部408から受け取るCCE識別情報の示すCCEに対応するPUCCHリソース(周波数・符号)を、単位バンドグループに含まれる上り単位バンド内で特定する。また、制御部409は、判定部408から受けとる上り割当制御情報から、上り回線データの送信に用いるべきPUSCHリソース(上り単位バンドにおける周波数位置)を特定し、PUCCH/PUSCH多重部427に出力すると共に、その上り割当制御情報から上り回線データ向けの符号化率及び変調方式を特定し、符号化/変調部425に出力する。
 更に、制御部409は、基本単位バンドにおいて下り割当制御情報を受信した場合には、PUSCHリソースとPUCCHリソースを周波数軸上で多重する(すなわち、FDMを適用する)ように、PUCCH/PUSCH多重部427に対して指示を出す。また、制御部409は、基本単位バンドにおいて下り割当制御情報を受信しなかった場合には、その他の下り単位バンドにおける下り割当制御情報の受信状況に関わらず、上り回線データのみを送信するように、PUCCH/PUSCH多重部427に対して指示を出す。
 そして、制御部409は、PUCCHリソースに対応するZAC系列及び循環シフト量を、上り制御チャネル信号生成部424の1次拡散部432へ出力し、周波数リソース情報をPUCCH/PUSCH多重部427に出力する。また、制御部409は、PUCCHリソースに対応する2次拡散に用いるべき直交符号系列(すなわち、ウォルシュ系列及びDFT系列)を2次拡散部433へ出力する。
 上り制御チャネル信号生成部424は、Bundling部213から受け取る応答信号に基づいて、上り単位バンドで送信される上り制御チャネル信号(すなわち、PUCCH信号)を生成する。具体的には、上り制御チャネル信号生成部424は、変調部431と、1次拡散部432と、2次拡散部433とを有する。
 変調部431は、Bundling部213から入力される応答信号(すなわち、束ACK/NACK信号)を変調して1次拡散部432へ出力する。
 1次拡散部432は、制御部409によって設定されたZAC系列及び循環シフト量に基づいて応答信号を1次拡散し、1次拡散後の応答信号を2次拡散部433へ出力する。すなわち、1次拡散部432は、制御部409からの指示に従って、応答信号を1次拡散する。
 2次拡散部433は、制御部409によって設定された直交符号系列を用いて応答信号を2次拡散し、2次拡散後の応答信号を周波数軸上の信号(Frequency domain signal)として、PUCCH/PUSCH多重部427へ出力する。つまり、2次拡散部433は、1次拡散後の応答信号を制御部409で選択されたリソースに対応する直交符号系列を用いて2次拡散し、周波数軸上のPUCCH成分をPUCCH/PUSCH多重部427へ出力する。
 符号化/変調部425は、制御部409から指示される符号化率、変調方式を用いて、送信データの符号化及び変調を行い、変調後の信号を時間軸上の波形としてDFT部426へ出力する。
 DFT部426は、符号化/変調部425から入力される時間軸上の信号(Time domain signal)を、DFT処理によって周波数軸上の信号に変換し、周波数軸上のPUSCH信号としてPUCCH/PUSCH多重部427に出力する。
 PUCCH/PUSCH多重部427は、制御部409の指示によってPUCCH信号とPUSCH信号とを周波数軸上で多重するか否かを決定する。そして、PUCCH/PUSCH多重部427は、周波数軸上で多重する場合にはPUCCH信号とPUSCH信号とをまとめてIFFT処理を行い、処理後の信号をCP付加部428に出力し、また、周波数軸上で多重しない場合には、PUSCH信号のみにIFFT処理を行い、処理後の信号をCP付加部428へ出力する。
 CP付加部428は、IFFT後の時間軸上の信号に対し、後尾部分と同じ信号をCPとしてその信号の先頭に付加し、CP付加後の信号を無線送信部223に出力する。
 [基地局300及び端末400の動作]
 以上の構成を有する基地局300及び端末400の動作について説明する。図11は、基地局300及び端末400の動作説明に供する図である。
 〈基地局300によるリソース割当制御〉
 基地局300において、制御部301は、端末400毎に設定されている単位バンドグループにおける基本単位バンドに関する情報を保持している。制御部301は、端末400に対して下り回線データを送信する場合、当該端末400にとっての基本単位バンドを優先して使用する。すなわち、基地局300側で1つのデータ(Transpot block:TBとも呼ぶ)を端末400に送信する場合、制御部301は、当該端末400にとっての基本単位バンドにデータをマッピングする制御を行い、また、端末400に対して、基本単位バンド以外の下り単位バンドでデータの配置が無いことを通知するDAIビット情報を生成する。このDAIビットは、制御部301から、その他の制御情報と一緒に制御情報生成部302へ出力され、下り回線データと同一の下り単位バンドで送信される。また、基地局300側で2つ以上のデータを端末400に同時に送信する場合、制御部301は、一つのデータを必ず端末400の基本単位バンドにマッピングし、残りのデータは単位バンドグループ内の基本単位バンドを除く任意の下り単位バンドにマッピングする制御を行う。制御部301は、端末400に対して、基本単位バンド以外の下り単位バンドでデータの配置がある単位バンド数を通知するDAIビット情報を生成し、制御情報生成部302に出力する。このDAIビットは、基本単位バンドで送信される下り割当制御情報に含まれて端末400に通知される。
 基地局300は、下り回線データの送信宛先端末400に対して、当該送信宛先端末400に設定された単位バンドグループ内の、下り回線データの送信に利用する下り単位バンドにおいて下り割当制御情報をそれぞれ送信する。また、基地局300は、下り回線データの送信に利用される基本単位バンド以外の下り単位バンドの数を、基本単位バンドで送信される下り割当制御情報に含まれるDAIによって、送信宛先端末400に通知する。
 さらに、基地局300は、上り回線データ向けの上り回線リソースを端末400に割当てる。具体的には基地局300の制御部301は、端末400毎に設定されている単位バンドグループにおけるいずれかの下り単位バンドを用いて、端末400に対する上り回線リソースを示す上り割当制御情報を送信する。
 図11を参照して具体的に説明すると、送信宛先端末400に対しては、下り単位バンド1,2及び上り単位バンド1から成る単位バンドグループが設定されている(図11A参照)。ここで、送信宛先端末400に対してCarrier aggregationによる通信が適用される場合、基地局300は、下り単位バンド1,2の双方を用いて、下り割当制御情報を端末400へ送信する。この下り割当制御情報を送信するために、基地局300は、下り単位バンドの下り制御チャネル(PDCCH)に含まれるサブチャネル(すなわち、L1/L2 CCH)を端末400に割り当て、割り当てたサブチャネルを用いて端末400へ下り割当制御情報を送信する。各サブチャネルは、1つ又は複数のCCEによって構成されている。
 また、基地局300は、いずれかの下り単位バンド(図11Aでは下り単位バンド1)を用いて、上り回線データ向けのリソースを通知するための上り割当制御情報を送信する。この上り割当制御情報は、下り割当制御情報と同じく、下り単位バンドの下り制御チャネル(PDCCH)に含まれるサブチャネル(すなわち、L1/L2 CCH)を占有する。
 〈端末400による下り回線データの受信〉
 端末400では、報知信号受信部205が、端末400に通知された単位バンドグループを構成する上り単位バンドに関する情報を報知するBCHが送信される下り単位バンドを基本単位バンドとして特定する。
 また、判定部408が、各下り単位バンドの下り制御チャネルに自装置宛の下り割当制御情報が含まれているか否かを判定し、自身宛の下り割当制御情報を抽出部204へ出力する。
 抽出部204は、判定部408から受け取る下り割当制御情報に基づいて、受信信号から下り回線データを抽出する。
 こうして端末400は、基地局300から送信された下り回線データを受信することができる。
 図11を参照して具体的に説明すると、まず、上り単位バンド1に関する情報を報知するBCHが下り単位バンド1で送信されるので、下り単位バンド1が端末1の基本単位バンドとなる。
 また、下り単位バンド1で送信される下り割当制御情報には、下り単位バンド1で送信される下り回線データ(DL data)の送信に用いられるリソースに関する情報が含まれ、下り単位バンド2で送信される下り割当制御情報には、下り単位バンド2で送信される下り回線データの送信に用いられるリソースに関する情報が含まれる。
 従って、端末400は、下り単位バンド1で送信される下り割当制御情報及び下り単位バンド2で送信される下り割当制御情報を受信することにより、下り単位バンド1及び下り単位バンド2の両方で下り回線データを受信することができる。逆に、下り割当制御情報を受信することができなければ、端末400は、下り回線データを受信することができない。
 また、端末400は、下り単位バンド1で送信されるDAIにより、下り割当制御情報が、基本単位バンドである下り単位バンド1だけでなく、下り単位バンド2でも送信されていることを認識することができる。
 〈端末400による応答信号及び上り回線データの送信〉
 CRC部212は、受信に成功した下り割当制御情報に対応する下り回線データについて誤り検出を行い、誤り検出結果をBundling部213へ出力する。
 また、制御部409は、判定部408から上り割当制御情報が入力され、かつ、基本単位バンドで下り割当制御情報を受信した場合には、PUCCH/PUSCH多重部427に対して、PUCCH信号(応答信号を含む)とPUSCH信号(上り回線データを含む)とを周波数多重するように指示をする。ただし、制御部409は、判定部408から上り割当制御情報が入力され、かつ、基本単位バンドで下り割当制御情報を受信しなかった場合には、PUCCH/PUSCH多重部427に対して、PUSCH信号のみを出力するように指示する。
 すなわち、制御部409は、端末400でいずれの下り割当制御情報の受信にも成功しなかった場合だけでなく、基本単位バンド以外の下り単位バンドのみで下り割当制御情報の受信に成功した場合(つまり、基本単位バンドの下り割当制御情報の受信に成功しなかった場合)にも、応答信号を基地局300へ送信しないよう制御する。
 そして、Bundling部213は、CRC部212から受け取る誤り検出結果及び制御部409から受け取るDAIに基づいて、次のように応答信号の送信制御を行う。
 すなわち、Bundling部213は、DAIから求められる下り回線データの数と等しい数の誤り検出結果をCRC部212から受け取る場合(つまり、全ての下り単位バンドにおいて下り割当制御情報の受信に成功した場合)には、これらの誤り検出結果を1つにまとめた束ACK/NACK信号を上り制御チャネル生成部424へ出力する。
 また、Bundling部213は、基本単位バンドで下り割当制御情報の受信に成功し、基本単位バンドで送信された下り回線データについての誤り検出結果をCRC部212から受け取るが、CRC部212から受け取る誤り検出結果の総数がDAIから求められる下り回線データの数よりも少ない場合、束ACK/NACK信号としてNACKを上り制御チャネル生成部424へ出力する。
 図11を参照して応答信号の送信制御を具体的に説明する。図11では、Carrier aggregationが基地局300と端末400との間の通信に適用されることが前提とされている。
 制御部409は、下り単位バンド1で送信された下り割当制御情報及び下り単位バンド2で送信された下り割当制御情報の両方の受信に成功し、かつ、上り割当制御情報を受信した場合(つまり、図11Bの正常系の場合)には、両下り割当制御情報の示すリソースで受信した下り回線データの誤り検出結果に基づく応答信号(つまり、束ACK/NACK信号)を、従来から下り単位バンド1に対応する上り制御チャネル用のリソースとして用意されているPUCCH1内のリソースで送信し、同時に上り割り当て制御情報が示す上り回線リソースを用いて上り回線データを送信するように制御する。すなわち、応答信号と上り回線データとが周波数軸上で多重される。
 また、制御部409は、下り単位バンド1で送信された下り割当制御情報の受信のみに成功し、かつ、上り割当制御情報を受信した場合(つまり、図11Bのエラーケース1の場合)には、NACKを、PUCCH1内のリソースで送信し、同時に上り割り当て制御情報が示す上り回線リソースを用いて上り回線データを送信するように制御する。
 また、制御部409は、下り単位バンド1で送信された下り割当制御情報及び下り単位バンド2で送信された下り割当制御情報の両方の受信に失敗し、かつ、上り割当制御情報を受信した場合(つまり、図11Bにおけるエラーケース3の場合)だけでなく、下り単位バンド2で送信された下り割当制御情報の受信にのみ成功し、かつ、上り割当制御情報を受信した場合(つまり、図11Bにおけるエラーケース2の場合)も、応答信号を送信せず、上り回線データのみを送信する。こうすることで、単位バンドグループにおける下り単位バンド2と上り単位バンド1との対応関係に対応する上り制御チャネル用に新たにリソースを確保する必要がない。この結果、上り制御チャネルのオーバーヘッドを削減できる。
 以上で説明した応答信号の送信制御を行ったとしても、ACK/NACK bundling動作では、そもそも、下り単位バンドに配置された下り回線データのうちいずれか一つでも受信に失敗すれば端末からNACKが送信され、これに応じて基地局側では全ての下り回線データの再送を行うことが前提となっているので、ACK/NACK Bundlingにおける再送効率が劣化することは無い。
 また、以上で説明した応答信号の送信制御を行うことにより、Carrier aggregationによる通信を行う能力の無い端末に設定される、1つの下り単位バンドと1つの上り単位バンドとから成るバンドペアにおいて用いられる上り制御チャネル用のリソースを、このバンドペアを含む単位バンドグループにおいても利用することができる。このことは、基本単位バンドを、基地局が個別に端末に対して構成した非対称Carrier aggregationにおける単位バンドグループのうち、上り単位バンドの情報を報知するBCHが配置された下り単位バンドとして定義することにより、保証されている。従って、非対称Carrier aggregationを行うことによって下り単位バンドと上り単位バンドとの対応関係が新たに生じるにも関わらず、この対応関係に対応する上り制御チャネル用のリソースを新たに確保する必要が無いので、上り制御チャネルのオーバーヘッドを削減できる。また、Carrier aggregationによる通信を行う能力の無い端末に設定されるバンドペアにおける下り単位バンドとこれに対応する上り制御チャネル用のリソースとの対応関係も維持されるので、Carrier aggregationによる通信を行う能力の有る端末とCarrier aggregationによる通信を行う能力の無い端末とが共存できるシステムを実現できる。
 以上のように本実施の形態によれば、端末400において、制御情報受信手段としての抽出部204、復調部206、復号部207、及び判定部408が、単位バンドグループに含まれる複数の下り単位バンドのいずれかの下り制御チャネルで送信された下り割当制御情報を受信する。そして、送信信号形成手段としてのPUCCH/PUSCH多重部427が、制御情報受信手段(つまり、抽出部204、復調部210、及び復号部211)において基本単位バンド及び当該基本単位バンド以外の第2の下り単位バンドで送信された下り割当制御情報の受信に成功した場合には、上り割当制御情報が示す上りデータチャネルのリソースに上りデータをマッピングすることにより上りデータと応答信号とを周波数多重して送信信号を形成し、第2の下り単位バンドで送信された下り割当制御情報の受信のみに成功した場合には、応答信号を含まず上りデータを含む送信信号を形成する。
 (他の実施の形態)
 (1)上記各実施の形態では、端末に対して構成された非対称Carrier aggregationにおける単位バンドグループの中に、上り単位バンドが一つだけ含まれる場合について説明した。しかしながら、本発明はこれに限定されるものではなく、単位バンドグループの中に複数の上り単位バンドが含まれていても良い。この場合、基地局から端末に対していずれの上り単位バンドを用いて上り応答信号を送信すべきが指示される。そして、或る端末にとっての単位バンドグループの中に、複数の上り単位バンドが含まれる場合であっても、基地局から上り応答信号送信に用いるように指示された上り単位バンドの情報を報知するBCHを送信する下り単位バンドを、当該或る端末にとっての基本単位バンドとすれば、実施の形態1及び2と同様の効果を得ることができる。
 (2)上記各実施の形態では、非対称Carrier aggregationについてのみ説明した。しかしながら、本発明はこれに限定されるものではなく、データ送信に関して対称Carrier aggregationが設定されている場合であっても適用できる。要は、端末が下り回線データを複数の下り単位バンドから受信し、上り応答信号をBundlingによって、一つの上り単位バンドからのみ送信する場合であれば、本発明は適用可能である。
 (3)また、基地局100は、上りリソースの空き状況に応じて、上記第1のモードと、図4に示したような下り回線データの割り当てに関して全く制限のない第3のモードとを切り替えても良い。このとき、基地局100は、選択されたモードの識別情報を端末200へ通知する。上りリソースが逼迫している場合には、第1のモードが有利であり、下りリソースが逼迫している場合には第3のモードが有利である。
 (4)また、上記各実施の形態において、再送効率をより良くするために、UE specific Carrier aggregationにおける下り単位バンドの数と上り単位バンドの数との比を制限しても良い。例えば、下り単位バンドの数/上り単位バンドの数を2以下に制限しても良い。これは、上記第1のモードでは、必ず基本単位バンドを使うという制約が有るので、下りと上りの単位バンドの比率が大きくなりすぎると運用しづらくなるためである。ただし、基地局が持つシステム帯域内の下り単位バンドの数と上り単位バンドの数との比は、特に制限する必要は無い。
 (5)実施の形態2では、基本単位バンド以外の下り単位バンドのPDCCHの中のAAIを用いて、基本単位バンドでの割当の有無を通知するが、これに限定されるものではなく、AAIの代わりに、送信データに付加されるNDIビット(つまり、当該送信データが初回データか再送データかを示すビット)を代用しても良い。この場合には、端末200は、NDIが再送を示していれば、基本単位バンドでの信号割当が無いものとして動作する。
 (6)また、上記各実施の形態におけるZAC系列は、循環シフト処理を施すベースとなる系列という意味で、Base sequenceと称されることもある。
 また、ウォルシュ系列は、ウォルシュ符号系列(Walsh code sequence)と称されることもある。
 (7)また、上記各実施の形態では、端末側の処理の順番として、1次拡散、IFFT変換の後に、2次拡散を行う場合について説明した。しかし、これらの処理の順番はこれに限定されない。すなわち、1次拡散、2次拡散は共に乗算の処理であるため、1次拡散処理の後段にIFFT処理がある限り、2次拡散処理の場所はどこにあっても等価な結果が得られる。
 (8)また、上記各実施の形態では、本発明をハードウェアで構成する場合を例にとって説明したが、本発明はソフトウェアで実現することも可能である。
 また、上記各実施の形態の説明に用いた各機能ブロックは、典型的には集積回路であるLSIとして実現される。これらは個別に1チップ化されてもよいし、一部または全てを含むように1チップ化されてもよい。ここでは、LSIとしたが、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。
 また、集積回路化の手法はLSIに限るものではなく、専用回路または汎用プロセッサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサーを利用してもよい。
 さらには、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適用等が可能性としてありえる。
 2009年4月21日出願の特願2009-103261の日本出願及び2009年6月9日出願の特願2009-138611の日本出願に含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。
 本発明の端末装置及び再送制御方法は、上り単位バンド及び上り単位バンドと対応づけられた複数の下り単位バンドを使用した通信においてARQが適用される場合に、上り制御チャネルのオーバーヘッドを削減できるものとして有用である。
 100,300 基地局
 101,301 制御部
 102,302 制御情報生成部
 103,106 符号化部
 104,108,214 変調部
 105 報知信号生成部
 107 データ送信制御部
 109,309 マッピング部
 110,216,219 IFFT部
 111,217,220,428 CP付加部
 112,223 無線送信部
 113,201 無線受信部
 114,202 CP除去部
 115 逆拡散部
 116 系列制御部
 117 相関処理部
 118 判定部
 200,400 端末
 203 FFT部
 204 抽出部
 205 報知信号受信部
 206,210 復調部
 207,211 復号部
 208,408 判定部
 209,409 制御部
 212 CRC部
 213 Bundling部
 215,218,221 拡散部
 222 多重部
 320 PUCCH/PUSCH分離部
 321 IDFT部
 322 復調/復号部
 424 上り制御チャンネル生成部
 425 符号化/変調部
 426 DFT部
 427 PUCCH/PUSCH多重部

Claims (8)

  1.  複数の下り単位バンドと上り単位バンドとからなる単位バンドグループを用いて基地局と通信し、且つ、下り単位バンドに配置される下りデータの誤り検出結果に基づく応答信号を前記下り単位バンドに対応する上り単位バンドの上り制御チャネルで送信する端末装置であって、
     前記複数の下り単位バンドの下り制御チャネルで送信された下り割当制御情報を受信する制御情報受信手段と、
     前記下り割当制御情報が示す下りデータチャネルで送信された下りデータを受信する下りデータ受信手段と、
     前記受信された下りデータの受信誤りを検出する誤り検出手段と、
     前記誤り検出手段で得られた誤り検出結果及び前記下り割当制御情報の受信成否に基づいて、前記基地局における下りデータの再送制御に用いられる応答信号の送信を制御する応答制御手段と、
     を具備し、
     前記応答制御手段は、
     前記制御情報受信手段において前記単位バンドグループにおける上り単位バンドに関する情報が含まれる報知チャネル信号が送信される下り単位バンドである基本単位バンド及び前記基本単位バンド以外の第2の下り単位バンドで送信された下り割当制御情報の受信に成功した場合には、前記基本単位バンドにおける下り制御チャネルと関連付けられて前記上り単位バンドに設けられた上り制御チャネルのリソースを用いて、前記応答信号を前記基地局へ送信し、
     前記制御情報受信手段において前記第2の下り単位バンドで送信された下り割当制御情報の受信のみに成功した場合には、前記応答信号を前記基地局へ送信しない、
     端末装置。
  2.  前記制御情報受信手段は、
     自端末に対する下りデータが配置された、前記基本単位バンド以外の下り単位バンドの数を示す配置情報を、前記基本単位バンドにおける下り割当制御情報から抽出する手段を有し、
     前記応答制御手段は、
     前記制御情報受信手段において前記基本単位バンドで送信された下り割当制御情報の受信に成功し、且つ、前記制御情報受信手段において受信に成功した前記基本単位バンド以外の下り単位バンドの数が前記配置情報の示す下り単位バンドの数よりも少ない場合には、前記上り制御チャネルのリソースで、前記応答信号としてNACKを送信する、
     請求項1に記載の端末装置。
  3.  前記制御情報受信手段は、
     前記基本単位バンドにおける自端末に対する下りデータの配置の有無を示す配置情報を、前記基本単位バンド以外の下り単位バンドにおける下り割当制御情報から抽出する手段を有し、
     前記応答制御手段は、
     前記制御情報受信手段において前記基本単位バンド以外の下り単位バンドで送信された下り割当制御情報の受信に成功し、且つ、前記配置情報が前記基本単位バンドにおける自端末に対する下りデータの配置が無いことを示す場合には、前記基本単位バンド以外の下り単位バンドにおける下り制御チャネルと関連付けられて前記上り単位バンドに設けられた上り制御チャネルのリソースを用いて、前記応答信号を送信する、
     請求項1に記載の端末装置。
  4.  前記制御情報受信手段は、前記複数の下り単位バンドのいずれかの下り制御チャネルで送信された上り割当制御情報をさらに受信し、
     上りデータと応答信号とに基づいて送信信号を形成する手段であって、前記制御情報受信手段において前記単位バンドグループにおける上り単位バンドに関する情報が含まれる報知チャネル信号が送信される下り単位バンドである基本単位バンド及び前記基本単位バンド以外の第2の下り単位バンドで送信された下り割当制御情報の受信に成功した場合には、前記上り割当制御情報が示す上りデータチャネルのリソースに上りデータをマッピングすることにより上りデータと応答信号とを周波数多重して送信信号を形成し、前記第2の下り単位バンドで送信された下り割当制御情報の受信のみに成功した場合には、応答信号を含まず上りデータを含む送信信号を形成する形成手段を、
     さらに具備する請求項1に記載の端末装置。
  5.  単位バンドグループに含まれる複数の下り単位バンドの下り制御チャネルで送信された下り割当制御情報を受信する制御情報受信ステップと、
     前記下り割当制御情報が示す下りデータチャネルで送信された下りデータを受信する下りデータ受信ステップと、
     前記受信された下りデータの受信誤りを検出する誤り検出ステップと、
     前記誤り検出手段で得られた誤り検出結果及び前記下り割当制御情報の受信成否に基づいて、基地局における下りデータの再送制御に用いられる応答信号の送信を制御する応答制御ステップと、
     を具備し、
     前記応答制御ステップでは、
     前記制御情報受信ステップにおいて前記単位バンドグループの上り単位バンドに関する情報が含まれる報知チャネル信号が送信される下り単位バンドである基本単位バンド及び前記基本単位バンド以外の第2の下り単位バンドで送信された下り割当制御情報の受信に成功した場合には、前記基本単位バンドにおける下り制御チャネルと関連付けられて前記上り単位バンドに設けられた上り制御チャネルのリソースを用いて、前記応答信号が前記基地局へ送信され、
     前記制御情報受信ステップにおいて前記第2の下り単位バンドで送信された下り割当制御情報の受信のみに成功した場合には、前記応答信号が送信されない、
     再送制御方法。
  6.  前記制御情報受信ステップは、
     自端末に対する下りデータが配置された、前記基本単位バンド以外の下り単位バンドの数を示す配置情報を、前記基本単位バンドにおける下り割当制御情報から抽出するステップを含み、
     前記応答制御ステップでは、
     前記制御情報受信ステップにおいて前記基本単位バンドで送信された下り割当制御情報の受信に成功し、且つ、前記制御情報受信ステップにおいて受信に成功した前記基本単位バンド以外の下り単位バンドの数が前記配置情報の示す下り単位バンドの数よりも少ない場合には、前記上り制御チャネルのリソースで、前記応答信号としてNACKが送信される、
     請求項5に記載の再送制御方法。
  7.  前記制御情報受信ステップは、
     前記基本単位バンドにおける自端末に対する下りデータの配置の有無を示す配置情報を、前記基本単位バンド以外の下り単位バンドにおける下り割当制御情報から抽出するステップを含み、
     前記応答制御ステップでは、
     前記制御情報受信ステップにおいて前記基本単位バンド以外の下り単位バンドで送信された下り割当制御情報の受信に成功し、且つ、前記配置情報が前記基本単位バンドにおける自端末に対する下りデータの配置が無いことを示す場合には、前記基本単位バンド以外の下り単位バンドにおける下り制御チャネルと関連付けられて前記上り単位バンドに設けられた上り制御チャネルのリソースを用いて、前記応答信号が送信される、
     請求項5に記載の再送制御方法。
  8.  前記制御情報受信ステップでは、前記複数の下り単位バンドのいずれかの下り制御チャネルで送信された上り割当制御情報がさらに受信され、
     上りデータと応答信号とに基づいて送信信号を形成するステップであって、前記制御情報受信手段において前記単位バンドグループにおける上り単位バンドに関する情報が含まれる報知チャネル信号が送信される下り単位バンドである基本単位バンド及び前記基本単位バンド以外の第2の下り単位バンドで送信された下り割当制御情報の受信に成功した場合には、前記上り割当制御情報が示す上りデータチャネルのリソースに上りデータをマッピングすることにより上りデータと応答信号とを周波数多重して送信信号を形成し、前記第2の下り単位バンドで送信された下り割当制御情報の受信のみに成功した場合には、応答信号を含まず上りデータを含む送信信号を形成するステップを、
     さらに具備する請求項5に記載の再送制御方法。
PCT/JP2010/002852 2009-04-21 2010-04-20 端末装置及び再送制御方法 WO2010122783A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP10766844.4A EP2424295B1 (en) 2009-04-21 2010-04-20 Terminal apparatus and retransmission control method
US13/258,095 US9143280B2 (en) 2009-04-21 2010-04-20 Terminal apparatus and retransmission control method
EP21181155.9A EP3905771A1 (en) 2009-04-21 2010-04-20 Terminal apparatus and retransmission control method
CN201080017652.6A CN102415132B (zh) 2009-04-21 2010-04-20 终端装置和重发控制方法
JP2011510216A JPWO2010122783A1 (ja) 2009-04-21 2010-04-20 端末装置及び再送制御方法
US14/824,808 US9369967B2 (en) 2009-04-21 2015-08-12 Terminal apparatus and retransmission control method
US15/157,065 US9854534B2 (en) 2009-04-21 2016-05-17 Terminal apparatus and retransmission control method
US15/814,169 US10455516B2 (en) 2009-04-21 2017-11-15 Terminal apparatus and retransmission control method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-103261 2009-04-21
JP2009103261 2009-04-21
JP2009-138611 2009-06-09
JP2009138611 2009-06-09

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/258,095 A-371-Of-International US9143280B2 (en) 2009-04-21 2010-04-20 Terminal apparatus and retransmission control method
US14/824,808 Continuation US9369967B2 (en) 2009-04-21 2015-08-12 Terminal apparatus and retransmission control method

Publications (1)

Publication Number Publication Date
WO2010122783A1 true WO2010122783A1 (ja) 2010-10-28

Family

ID=43010909

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/002852 WO2010122783A1 (ja) 2009-04-21 2010-04-20 端末装置及び再送制御方法

Country Status (5)

Country Link
US (4) US9143280B2 (ja)
EP (2) EP2424295B1 (ja)
JP (1) JPWO2010122783A1 (ja)
CN (2) CN104038323B (ja)
WO (1) WO2010122783A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012070312A1 (ja) * 2010-11-26 2012-05-31 株式会社エヌ・ティ・ティ・ドコモ 無線基地局装置及び制御情報検出方法
JP2016067020A (ja) * 2011-02-07 2016-04-28 インターデイジタル パテント ホールディングス インコーポレイテッド ライセンス免除スペクトルにおいて補助的セルを機能させるための方法および装置
US9369967B2 (en) 2009-04-21 2016-06-14 Optis Wireless Technology, Llc Terminal apparatus and retransmission control method

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013024570A1 (ja) 2011-08-12 2013-02-21 パナソニック株式会社 通信装置及び再送制御方法
US9544884B2 (en) 2012-04-24 2017-01-10 Lg Electronics Inc. Method for configuring resource block for search region of downlink control channel in wireless communication system, and apparatus therefor
US9661612B2 (en) * 2012-06-29 2017-05-23 Samsung Electronics Co., Ltd. Methods and apparatus for uplink control channel multiplexing in beamformed cellular systems
CN107979450B (zh) 2012-09-26 2020-12-04 Lg电子株式会社 无线通信系统中的ue及其通信方法
JP6346958B2 (ja) * 2014-02-16 2018-06-20 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおけるアップリンクデータ転送方法及びそのための装置
CN108028739B (zh) * 2015-08-23 2021-02-09 Lg电子株式会社 在无线通信系统中使用灵活fdd帧执行通信的方法及其装置
NZ744641A (en) * 2016-01-29 2023-11-24 Ntt Docomo Inc User terminal, radio base station and radio communication method
JP7209332B2 (ja) * 2018-08-30 2023-01-20 パナソニックIpマネジメント株式会社 無線通信システム、基地局および無線通信方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009103261A (ja) 2007-10-25 2009-05-14 Dai Ichi Kasei Kk クラッチ機構
JP2009138611A (ja) 2007-12-05 2009-06-25 Denso Corp バルブタイミング調整装置

Family Cites Families (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6044272A (en) 1997-02-25 2000-03-28 Sbc Technology Resources, Inc. Mobile assisted handoff system and method
GB2327014B (en) 1997-06-30 2002-04-24 Ericsson Telefon Ab L M Mobile communications system
SE516296C2 (sv) 1997-11-21 2001-12-17 Ericsson Telefon Ab L M Förfarande för cellidentifiering i ett cellulärt mobilkommunikationssystem
US6507628B1 (en) 1999-09-07 2003-01-14 Sicom, Inc. Distortion-compensated digital communications receiver and method therefor
US20050009528A1 (en) 1999-10-21 2005-01-13 Mikio Iwamura Channel identifier assigning method and mobile communications system
SE0004326D0 (sv) 2000-11-24 2000-11-24 Ericsson Telefon Ab L M Base station identification
JP4038728B2 (ja) * 2001-08-28 2008-01-30 ソニー株式会社 送信装置および送信制御方法、並びに受信装置および受信制御方法
US6917602B2 (en) * 2002-05-29 2005-07-12 Nokia Corporation System and method for random access channel capture with automatic retransmission request
JP4286791B2 (ja) * 2002-11-18 2009-07-01 シャープ株式会社 ネットワーク中継装置、ネットワーク中継方法、ネットワーク中継プログラム、および、ネットワーク中継プログラムを記録した記録媒体
CN1748373A (zh) 2003-10-15 2006-03-15 三星电子株式会社 用于在移动通信系统中控制分组速率的方法
KR100713442B1 (ko) * 2004-02-14 2007-05-02 삼성전자주식회사 이동통신 시스템에서 향상된 역방향 전용채널을 통한 스케쥴링 정보의 전송방법
EP1724949A4 (en) * 2004-03-30 2011-06-22 Panasonic Corp BASSISTATION DEVICE, MOBILE STATION DEVICE AND METHOD FOR DATA CHANNEL ALLOCATION
US7463887B2 (en) 2004-08-18 2008-12-09 M-Stack Limited Apparatus and method for making measurements in mobile telecommunications system user equipment
US8396431B2 (en) 2005-02-17 2013-03-12 Kyocera Corporation Mobile station traffic state antenna tuning systems and methods
US7574209B2 (en) 2005-04-13 2009-08-11 Cisco Technology, Inc. Dynamically obtaining neighborhood information
BRPI0614259A2 (pt) 2005-08-03 2012-01-24 Matsushita Electric Ind Co Ltd aparelho de estação de base, aparelho de terminal de comunicação, e, método de comunicação de múltiplas portadoras
CN101243715B (zh) 2005-08-19 2013-01-02 松下电器产业株式会社 无线通信终端装置、无线通信基站装置、无线通信系统和呼叫连接方法
ES2421921T3 (es) 2005-10-04 2013-09-06 Ericsson Telefon Ab L M Control de acceso en una red de acceso por radio que tiene estaciones base de pico
TW200729786A (en) 2005-11-11 2007-08-01 Ntt Docomo Inc Mobile communication system, mobile station, base stations and control channel allocation method
US7603124B2 (en) 2006-03-09 2009-10-13 Alcatel-Lucent Usa Inc. Automatically configuring a neighbor set for a base station
JP4950185B2 (ja) 2006-05-01 2012-06-13 株式会社エヌ・ティ・ティ・ドコモ 基地局、移動局及び通信方法
CN101502158B (zh) 2006-06-19 2013-02-13 株式会社Ntt都科摩 移动通信系统中使用的基站、用户装置及方法
US20080068979A1 (en) * 2006-09-14 2008-03-20 Motorola, Inc. Adaptive and preemptive scheduling of transmissions
CN104780027B (zh) 2006-10-27 2018-09-04 三菱电机株式会社 数据通信方法、通信系统及移动终端
US8312338B2 (en) 2007-02-02 2012-11-13 Lg Electronics Inc. Methods of transmitting and receiving data in communication system
US8059611B2 (en) * 2007-02-28 2011-11-15 Ntt Docomo, Inc. Maintaining a constant transmission power density of a data signal utilizing prohibited subcarriers
JP4531784B2 (ja) * 2007-03-20 2010-08-25 株式会社エヌ・ティ・ティ・ドコモ ユーザ装置および送信方法
JP4913641B2 (ja) 2007-03-20 2012-04-11 株式会社エヌ・ティ・ティ・ドコモ 基地局、通信端末、送信方法、受信方法、通信システム
JP4824612B2 (ja) * 2007-03-20 2011-11-30 株式会社エヌ・ティ・ティ・ドコモ 通信システム、ユーザ装置及び送信方法
US20080232307A1 (en) 2007-03-23 2008-09-25 Zhouyue Pi Method and apparatus to allocate resources for acknowledgments in communication systems
US8031656B2 (en) * 2007-06-14 2011-10-04 Telefonaktiebolaget Lm Ericsson (Publ) Semi-persistent resource allocation method for uplink transmission in wireless packet data systems
BRPI0814717B1 (pt) * 2007-06-19 2020-10-06 Sharp Kabushiki Kaisha Dispositivo de estação movél, método de processamento e dispositivo de processamento
CN102938665B (zh) * 2007-06-19 2015-09-30 株式会社Ntt都科摩 发送装置以及发送方法
JP5024533B2 (ja) 2007-06-19 2012-09-12 日本電気株式会社 移動通信システムにおけるリファレンス信号系列の割当方法および装置
US7899073B2 (en) * 2007-07-10 2011-03-01 Qualcomm Incorporated Methods and apparatus for monitoring for signals and selecting and/or using a communications band based on the monitoring results
US20090017838A1 (en) * 2007-07-10 2009-01-15 Qualcomm Incorporated Methods and apparatus for selecting a communications band based on location information
US20090016363A1 (en) * 2007-07-10 2009-01-15 Qualcomm Incorporated Methods and apparatus for selecting and/or using a communications band for peer to peer signaling
US8705438B2 (en) * 2007-07-10 2014-04-22 Qualcomm Incorporated Methods and apparatus for selecting and/or using a communications band for peer to peer signaling
US8149938B2 (en) 2007-08-07 2012-04-03 Texas Instruments Incorporated Transmission of ACK/NACK bits and their embedding in the CQI reference signal
EP2023523B1 (en) * 2007-08-07 2017-02-15 Samsung Electronics Co., Ltd. Apparatus and method for transmitting and receiving packets in a mobile communication system supporting hybrid automatic repeat request
US8520611B2 (en) 2007-08-10 2013-08-27 Nec Corporation Communication system, and device, method, and program used for same
WO2009022790A1 (en) 2007-08-14 2009-02-19 Lg Electronics Inc. Method of transmitting data in a wireless communication system
EP2188940A4 (en) 2007-09-10 2014-06-11 Korea Electronics Telecomm METHOD FOR ASSIGNING RESOURCES AND RECEIVING DATA
US8351385B2 (en) 2007-09-21 2013-01-08 Panasonic Corporation Radio communication base station device, radio communication terminal device, and response signal allocation method
RU2511540C2 (ru) 2007-10-02 2014-04-10 Нокиа Сименс Нетворкс Ой Усовершенствованное обнаружение dtx ack/nack
WO2009076297A2 (en) 2007-12-10 2009-06-18 Mako Surgical Corp. A prosthetic device and system for preparing a bone to receive a prosthetic device
EP2383920B1 (en) 2007-12-20 2014-07-30 Optis Wireless Technology, LLC Control channel signaling using a common signaling field for transport format and redundancy version
CN104135343B (zh) * 2008-01-25 2018-02-06 华为技术有限公司 基站设备和方法
US8121082B2 (en) 2008-02-05 2012-02-21 Nokia Siemens Networks Oy DTX detection when ACK/NACK is transmitted with scheduling request
JP5153395B2 (ja) * 2008-03-17 2013-02-27 株式会社日立製作所 セルラ無線通信システムの基地局および移動局
US8289866B2 (en) 2008-03-31 2012-10-16 Qualcomm Incorporated Flexible power offset assignments for acquisition indicator channels
WO2009132203A1 (en) 2008-04-25 2009-10-29 Interdigital Patent Holdings, Inc. Harq process utilization in multiple carrier wireless communications
EP2112845A1 (en) 2008-04-25 2009-10-28 Panasonic Corporation Activation of semi-persistent resource allocations in a mobile communication network
JP5157645B2 (ja) * 2008-05-28 2013-03-06 日本電気株式会社 無線通信システム、制御用チャネル送信方法、及び、受信方法
EP2308183A4 (en) * 2008-07-30 2014-07-23 Lg Electronics Inc METHOD AND DEVICE FOR RECEIVING DATA IN A WIRELESS COMMUNICATION SYSTEM
US8923221B2 (en) * 2008-08-04 2014-12-30 Panasonic Intellectual Property Corporation Of America Base station, terminal, band allocation method, and downlink data communication method
EP4344327A3 (en) 2008-08-08 2024-06-12 Sun Patent Trust Wireless communication base station device, wireless communication terminal device, and channel allocation method
WO2010016272A1 (ja) * 2008-08-08 2010-02-11 パナソニック株式会社 基地局、及び、端末
KR101520708B1 (ko) * 2008-08-12 2015-05-15 엘지전자 주식회사 다중반송파 무선통신시스템에서 하향링크 제어정보를 송수신하는 방법 및 장치
US7924754B2 (en) 2008-09-23 2011-04-12 Telefonaktiebolaget L M Ericsson Multiple carrier acknowledgment signaling
US8565066B2 (en) 2009-01-08 2013-10-22 Samsung Electronics Co., Ltd. System and method for an uplink acknowledgement transmission in carrier-aggregated wireless communication systems
CN101478379A (zh) 2009-01-20 2009-07-08 中兴通讯股份有限公司 物理上行控制信道的发送方法及用户设备
JP5448211B2 (ja) 2009-03-23 2014-03-19 日本電気通信システム株式会社 無線通信装置、無線ネットワークシステム、データ転送方法、及び、プログラム
US9143280B2 (en) 2009-04-21 2015-09-22 Optis Wireless Technology, Llc Terminal apparatus and retransmission control method
JPWO2010122808A1 (ja) * 2009-04-24 2012-10-25 パナソニック株式会社 基地局装置及び端末装置
US20120069826A1 (en) 2009-06-09 2012-03-22 Panasonic Corporation Terminal device and signal multiplexing control method
JP5377639B2 (ja) * 2009-06-17 2013-12-25 シャープ株式会社 移動局装置、基地局装置、通信システム、通信方法および制御プログラム
JPWO2010146880A1 (ja) * 2009-06-19 2012-12-06 パナソニック株式会社 端末装置および再送制御方法
ES2739506T3 (es) 2009-06-19 2020-01-31 Godo Kaisha Ip Bridge 1 Dispositivo terminal y método de control de retransmisión
MX2012000965A (es) * 2009-08-07 2012-02-28 Panasonic Corp Dispositivo terminal y metodo de control de retransmision.
US8837402B2 (en) 2009-08-17 2014-09-16 Panasonic Intellectual Property Corporation Of America Terminal device and signal transmission control method
HUE042756T2 (hu) * 2009-10-02 2019-07-29 Sun Patent Trust Bázisállomás és újraküldést vezérlõ eljárás
JP4913221B2 (ja) * 2010-02-12 2012-04-11 シャープ株式会社 移動局装置、通信方法、集積回路、無線通信システムおよび制御プログラム
WO2011125320A1 (ja) 2010-04-05 2011-10-13 パナソニック株式会社 端末装置及び応答信号送信方法
US8942199B2 (en) 2010-05-06 2015-01-27 Panasonic Intellectual Property Corporation Of America Terminal apparatus and response signal mappiing method
JP5552161B2 (ja) 2010-05-19 2014-07-16 パナソニック株式会社 端末装置及び応答信号送信方法
KR101731356B1 (ko) * 2011-06-23 2017-04-28 엘지전자 주식회사 다중 안테나 무선 통신 시스템에서 듀얼 모드 이동 단말기 및 이를 위한 제어 방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009103261A (ja) 2007-10-25 2009-05-14 Dai Ichi Kasei Kk クラッチ機構
JP2009138611A (ja) 2007-12-05 2009-06-25 Denso Corp バルブタイミング調整装置

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
"Multiplexing and channel coding (Release 8", 3GPP TS 36.212 V8.6.0, March 2009 (2009-03-01)
"Physical Channels and Modulation (Release 8", 3GPP TS 36.211 V8.6.0, March 2009 (2009-03-01)
"Physical layer procedures (Release 8", 3GPP TS 36.213 V8.6.0, March 2009 (2009-03-01)
PANASONIC: "UL ACK/NACK transmission on PUCCH for carrier aggregation", 3GPP TSG-RAN WG1 MEETING #56BIS, R1-091170, 27 March 2009 (2009-03-27), XP050338790 *
PANASONIC: "UL ACK/NACK transmission on PUCCH for carrier aggregation", 3GPP TSG-RAN WG1 MEETING #57BIS, R1-092535, 3 July 2009 (2009-07-03), XP050351040 *
See also references of EP2424295A4

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9369967B2 (en) 2009-04-21 2016-06-14 Optis Wireless Technology, Llc Terminal apparatus and retransmission control method
US9854534B2 (en) 2009-04-21 2017-12-26 Optis Wireless Technology, Llc Terminal apparatus and retransmission control method
US10455516B2 (en) 2009-04-21 2019-10-22 Optis Wireless Technology, Llc Terminal apparatus and retransmission control method
WO2012070312A1 (ja) * 2010-11-26 2012-05-31 株式会社エヌ・ティ・ティ・ドコモ 無線基地局装置及び制御情報検出方法
JP2012114835A (ja) * 2010-11-26 2012-06-14 Ntt Docomo Inc 無線基地局装置及び制御情報検出方法
US9232507B2 (en) 2010-11-26 2016-01-05 Ntt Docomo, Inc. Radio base station apparatus and control information detection method
JP2016067020A (ja) * 2011-02-07 2016-04-28 インターデイジタル パテント ホールディングス インコーポレイテッド ライセンス免除スペクトルにおいて補助的セルを機能させるための方法および装置
US9882684B2 (en) 2011-02-07 2018-01-30 Interdigital Patent Holdings, Inc. Method and apparatus for operating supplementary cells in licensed exempt spectrum
US10153870B2 (en) 2011-02-07 2018-12-11 InterDigital Patent Holdongs, Inc. Method and apparatus for operating supplementary cells in licensed exempt spectrum

Also Published As

Publication number Publication date
US20180084533A1 (en) 2018-03-22
EP3905771A1 (en) 2021-11-03
US20160262136A1 (en) 2016-09-08
US20150365197A1 (en) 2015-12-17
US9143280B2 (en) 2015-09-22
EP2424295A1 (en) 2012-02-29
JPWO2010122783A1 (ja) 2012-10-25
CN104038323A (zh) 2014-09-10
CN102415132A (zh) 2012-04-11
EP2424295A4 (en) 2017-03-15
CN102415132B (zh) 2014-08-06
US10455516B2 (en) 2019-10-22
EP2424295B1 (en) 2021-08-11
US20120089880A1 (en) 2012-04-12
US9854534B2 (en) 2017-12-26
CN104038323B (zh) 2018-01-05
US9369967B2 (en) 2016-06-14

Similar Documents

Publication Publication Date Title
JP6569119B2 (ja) 端末装置、送信方法及び集積回路
WO2010122808A1 (ja) 基地局装置及び端末装置
WO2010122783A1 (ja) 端末装置及び再送制御方法
JP5647745B2 (ja) 基地局、受信方法、および集積回路
JP5759049B2 (ja) 基地局、受信方法及び集積回路
WO2010143419A1 (ja) 端末装置及び信号多重制御方法
WO2011145284A1 (ja) 端末装置及び応答信号送信方法
WO2011125320A1 (ja) 端末装置及び応答信号送信方法
WO2011077743A1 (ja) 端末装置及び送信方法
WO2010050233A1 (ja) 無線通信端末装置、無線通信基地局装置および変調方法
WO2010146880A1 (ja) 端末装置および再送制御方法
WO2010146855A1 (ja) 端末装置及び信号送信制御方法
WO2011052235A1 (ja) 端末装置及び再送制御方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080017652.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10766844

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011510216

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13258095

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010766844

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE