WO2010122655A1 - システムブランク機能を備えた全有機体炭素計 - Google Patents

システムブランク機能を備えた全有機体炭素計 Download PDF

Info

Publication number
WO2010122655A1
WO2010122655A1 PCT/JP2009/058122 JP2009058122W WO2010122655A1 WO 2010122655 A1 WO2010122655 A1 WO 2010122655A1 JP 2009058122 W JP2009058122 W JP 2009058122W WO 2010122655 A1 WO2010122655 A1 WO 2010122655A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
unit
sample
sample water
oxidative decomposition
Prior art date
Application number
PCT/JP2009/058122
Other languages
English (en)
French (fr)
Inventor
雅人 矢幡
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to JP2011510128A priority Critical patent/JP5263389B2/ja
Priority to EP09843655.3A priority patent/EP2423677B1/en
Priority to US13/266,005 priority patent/US20120039750A1/en
Priority to PCT/JP2009/058122 priority patent/WO2010122655A1/ja
Priority to CN200980158887.4A priority patent/CN102428362B/zh
Publication of WO2010122655A1 publication Critical patent/WO2010122655A1/ja
Priority to US14/041,488 priority patent/US9176106B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • G01N33/1826Organic contamination in water
    • G01N33/1846Total carbon analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/06Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a liquid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/23Carbon containing
    • Y10T436/235In an aqueous solution [e.g., TOC, etc.]

Definitions

  • the present invention relates to a total organic carbon measuring device (also referred to as a TOC meter) that measures the total organic carbon content (TOC), total carbon (TC), or inorganic carbon (IC) in sample water.
  • the present invention relates to a total organic carbon measuring apparatus that separates an organic substance contained in water with less impurities called ultrapure water by a carbon dioxide separator and evaluates the TOC concentration by conductivity.
  • TOC measurement of organic substances contained in water such as pharmaceutical water, semiconductor manufacturing process water, cooling water, boiler water or tap water is performed for the purpose of managing sample water with less impurities.
  • a TOC measuring device As a TOC measuring device, a TOC meter that includes an all-carbon combustion section using an oxidation catalyst, converts TOC in sample water to CO 2 gas, and measures the CO 2 concentration in the gas phase with a non-dispersive infrared spectrophotometer. Is popular.
  • an apparatus for measuring the TOC concentration while the sample water remains in the liquid phase has also been developed.
  • organic substances in the sample water are converted into carbon dioxide in an oxidation reactor.
  • the sample water remains in the liquid phase.
  • the sample water is caused to flow through the sample water channel, the sample water channel and the measurement water channel through which the measurement water flows are brought into contact with each other through the gas permeable membrane, and carbon dioxide in the sample water is moved to the measurement water.
  • Conductivity is measured by sending measurement water from which carbon dioxide has moved to a conductivity meter.
  • the carbon dioxide concentration of the sample water can be obtained from the measured conductivity of the measurement water (see Patent Document 1). .)
  • the present invention is directed to an apparatus for measuring the TOC concentration while such sample water remains in a liquid phase.
  • the system blank value is a signal obtained by measuring pure water without any organic carbon as a sample.
  • the system blank value serves as a reference for the measurement value of the TOC meter, and is essential when quantitatively measuring a small amount of TOC concentration such as pure water.
  • the TOC measuring apparatus targeted by the present invention does not include a flow channel for oxidatively decomposing sample water at the same time as vaporization and condensing the remaining water vapor as a measurement flow channel. If it is going to provide the flow path which prepares the blank water for obtaining a system blank value, such a flow path becomes a flow path different from a measurement system. In addition, a special container called a pure water trap is also required. Even if such a flow path for preparing blank water is provided, it takes a long time to obtain pure water free from organic carbon by repeating vaporization and oxidative decomposition of sample water and condensation of water vapor.
  • An object of the present invention is to make it possible to obtain a system blank value by a simple method in an apparatus for measuring a TOC concentration while a sample water remains in a liquid phase.
  • the TOC meter of the present invention includes a sample supply unit that collects and supplies sample water, and an oxidative decomposition unit that is connected to the sample supply unit and oxidizes organic matter in the sample water supplied from the sample supply unit to convert it into carbon dioxide.
  • a carbon dioxide separation unit that moves carbon dioxide in the sample water that has passed through the oxidative decomposition unit to measurement water made of deionized water, a conductivity measurement unit that measures the conductivity of the measurement water from the carbon dioxide separation unit,
  • An arithmetic processing unit for calculating the TOC concentration of the sample water from the measurement value by the rate measuring unit is provided.
  • the sample supply unit is equipped with a mechanism for venting a gas that does not contain carbon dioxide into the collected sample water.
  • the oxidative decomposition unit can be switched between an on state that performs an oxidative decomposition function that oxidizes organic substances in the supplied sample water and converts them into carbon dioxide, and an off state that does not perform the oxidative decomposition function.
  • the carbon dioxide separation unit includes a sample water channel through which the sample water that has passed through the oxidative decomposition unit flows and a measurement water channel through which measurement water including deionized water flows, and a gas permeable membrane is provided between the sample water channel and the measurement water channel.
  • the movement of carbon dioxide is possible by intervening.
  • the arithmetic processing unit holds the measured value by the conductivity measurement unit as the system blank value when pure water collected in the sample supply unit and passed through the sample water flow path through the oxidative decomposition unit with the oxidative decomposition function turned off System blank holding part, and the measured value by the conductivity measuring part when the oxidative decomposition function is turned on and the sample water flows through the sample water flow path through the oxidative decomposition part and the system blank held in the system blank holding part
  • An arithmetic unit for calculating the total organic carbon concentration of the sample water from the value is provided.
  • the CO 2 concentration in the carrier gas is zero, the CO 2 in the recovered pure water will eventually become zero due to vaporization, oxidative decomposition, and recovery.
  • high-purity air contains CO 2 , hydrocarbons and the like that are less than 1 ppm, and therefore the system blank strength has a certain value.
  • the TOC meter targeted by the present invention only the CO 2 that has passed through the gas permeable membrane from the sample water and moved to the measurement water in the carbon dioxide separation unit is detected by the conductivity measurement unit. Therefore, when pure water is collected in the sample supply unit and a gas not containing CO 2 is vented, CO 2 (inorganic carbon) in the sample water is removed, and the TOC remaining in the sample water is only ionized. Even if ionized TOC remains in the sample water, since the TOC in the sample water remains ionized when the oxidative decomposition function of the oxidative decomposition unit is off, it does not pass through the gas permeable membrane in the carbon dioxide separation unit, There is no movement to the measurement water. Therefore, the pure water flowing through the sample water channel is equivalent to that containing no CO 2 gas component.
  • the oxidative decomposition part includes an organic substance oxidizing part made of a material that transmits ultraviolet light, and a flow path through which the sample water flows, and an ultraviolet light source that irradiates the sample water with ultraviolet light from the outside of the organic substance oxidizing part.
  • the operation of the oxidative decomposition function is switched by turning on / off the power source of the ultraviolet light source.
  • the oxidative decomposition unit include an organic material oxidation unit made of a material that transmits ultraviolet light, a flow path through which sample water flows, an ultraviolet light source that irradiates sample water with ultraviolet light from the outside of the organic material oxidation unit, and an organic material oxidation unit And an ultraviolet light source.
  • the operation of the oxidative decomposition function is switched by opening and closing the shutter.
  • the arithmetic unit holds calibration curve data indicating the relationship between the measured value by the conductivity measuring unit and the total organic carbon concentration of the sample water supplied from the sample supply unit.
  • the arithmetic processing unit corrects the calibration curve data with the system blank value held in the system blank holding unit with respect to the measurement value obtained by the conductivity measuring unit when the sample water is measured. The data is applied to calculate the total organic carbon concentration of the sample water.
  • An example of the corrected calibration curve data is obtained by shifting the calibration curve data obtained from the measured values so that the intercept becomes the system blank value held in the system blank holding section.
  • One form of the sample supply unit includes a port connected to a flow path for supplying sample water, a port connected to a flow path for supplying pure water, a port connected to the oxidation decomposition unit, and a port opened to the atmosphere And a multi-port valve having at least a common port connected to these ports, and a sample port connected to the common port of the multi-port valve, and the piston sliding up and down in the cylinder
  • the other one port of the multi-port valve is connected to an acid supply channel that supplies an acid for acidifying the sample water collected in the syringe.
  • FIG. 1 schematically shows a TOC meter of one embodiment.
  • the portion surrounded by the broken line frame means that it is housed in the casing of the TOC meter 100, and the outside of the broken line frame indicates that it is outside the casing.
  • a sample supply unit 102 is provided in the TOC meter 100.
  • the sample supply unit 102 includes a flow path switching valve 104 formed of a multi-port valve such as a 6-port valve or an 8-port valve, a syringe 106 for collecting water connected to a common port of the valve 104, and carbon dioxide in the cylinder 106. It includes a gas supply channel 120 that supplies no gas.
  • One of the ports of the valve 104 is connected to a flow path 110 for taking sample water from the outside of the casing of the TOC meter, and the other port has a flow path 112 for taking pure water from the outside of the casing.
  • a flow path 114 for taking in the acid for making the sample water or pure water collected in the syringe 106 acidic from the outside of the housing.
  • a flow path 116 connected to the oxidative decomposition unit 118 is connected to another port of the valve 104. Still another port of the valve 104 can be opened to the atmosphere.
  • an inorganic acid such as hydrochloric acid, sulfuric acid or phosphoric acid is used. It is preferable to adjust the pH of the sample water or pure water in the syringe 106 to 4 or less by adding an acid.
  • the valve 104 is provided with a plurality of ports in the stator, and can be switched so that the syringe 106 connected to the common port can be connected to any port by rotating the rotor.
  • the syringe 106 is capable of taking sample water or pure water into the syringe 106 and further taking the acid into the syringe 106 by sliding the piston 108 in the vertical direction while keeping the liquid tight inside the cylinder. Further, by pushing the piston upward, the collected sample water or pure water can be supplied from the flow path 116 to the oxidative decomposition unit 118 via the valve 104.
  • the piston 108 is attached to the tip of the flanger 107. When the flanger 107 is driven by a syringe drive unit 109 driven by a motor, the piston 108 slides in the vertical direction within the cylinder.
  • a gas supply flow path 120 for supplying a gas not containing carbon dioxide for aeration treatment in the syringe 106 is connected to the lower end of the cylinder of the syringe 106.
  • the position to which the gas supply channel 120 is connected is a position that is located above the piston 108 in a state where the piston 108 has moved to the lower end.
  • the gas not containing carbon dioxide is, for example, high-purity air stored in a cylinder 119 or high-purity air supplied through a column filled with a filler that adsorbs carbon dioxide gas, but is not limited thereto. It is not something.
  • the oxidative decomposition unit 118 is irradiated with ultraviolet rays while sample water or pure water (hereinafter simply referred to as pure water also includes pure water) flows through the flow path of the organic oxidation unit, and the organic matter in the sample water is oxidized and decomposed. It becomes carbon dioxide gas.
  • the sample water that has passed through the oxidative decomposition unit 118 is guided to the carbon dioxide separation unit 124.
  • the carbon dioxide separator 124 the carbon dioxide component in the sample water moves into the measurement water through the gas permeable membrane.
  • the sample water that has passed through the carbon dioxide separator 124 is discarded.
  • Measured water that has passed through the carbon dioxide separator 124 is guided to the conductivity measuring unit 126.
  • the conductivity measuring unit 126 includes an electrode that contacts the measurement water, and the conductivity of the measurement water is detected by the electrode.
  • the conductivity of the measurement water changes depending on the concentration of the carbon dioxide component moved from the sample water to the measurement water in the carbon dioxide separator 124. Therefore, the carbon dioxide component of the sample water is based on the detected conductivity value of the measurement water. Can be determined. Since the carbon dioxide component is generated by oxidative decomposition of the TOC component in the sample water by the oxidative decomposition unit 118, the TOC concentration in the sample water can be obtained.
  • the arithmetic processing unit 128 is connected to an electrode for measuring the conductivity of the conductivity measuring unit 126, and calculates the TOC concentration of the sample water based on the conductivity detected by the conductivity measuring unit 126.
  • the calculation processing unit 128 includes a system blank holding unit 130 and a calculation unit 132.
  • the system blank holding unit 130 is a conductivity measuring unit when pure water collected in the syringe 106 and subjected to aeration treatment is passed through the sample water channel of the carbon dioxide separation unit 118 through the oxidative decomposition unit 118 with the oxidative decomposition function turned off.
  • the measured value according to 126 is held as a system blank value.
  • the calculation unit 132 turns on the oxidative decomposition function to turn on the measured value by the conductivity measuring unit 126 and the system blank holding unit 130 when the sample water flows through the sample water channel of the carbon dioxide separation unit 118 through the oxidative decomposition unit 118.
  • the TOC concentration of the sample water is calculated from the retained system blank value.
  • the valve 104 when measuring a system blank value, the valve 104 is set so that a flow path 112 for taking in pure water is connected to the syringe 106, and an appropriate amount of pure water, for example, 3 ml of pure water is contained in the syringe 106. Pure water is collected. Further, the valve 104 is switched to connect the syringe 106 to the connected port of the flow path 114 for supplying the acid, and the piston 108 of the syringe is further retracted to suck a predetermined amount of acid, thereby adjusting the pH of the pure water. Adjust to 4 or less.
  • the valve 104 is switched to connect the syringe 106 to the flow path 116, and the pure water in the syringe 106 is supplied to the oxidative decomposition unit 118.
  • the oxidative decomposition unit 118 is in a state where the ultraviolet lamp is off, or a shutter is interposed between the ultraviolet lamp and the oxidative decomposition unit 118, and even if the sample water passes through the oxidative decomposition unit 118, ultraviolet rays are not emitted. Not irradiated.
  • the ionized TOC component remains in the pure water, it is not oxidatively decomposed and is sent to the carbon dioxide separator 124 in an ionic state. Pure water comes into contact with the measurement water through the gas permeable membrane in the carbon dioxide separation unit 124, and the conductivity of the measurement water is detected by the conductivity measurement unit 126.
  • Sample water (including pure water) supplied from the syringe 106 of FIG. 1 through the flow path 116 is supplied to the oxidative decomposition unit 118.
  • the oxidative decomposition unit 118 some specific examples of the oxidative decomposition unit 118, the carbon dioxide separation unit 124, and the conductivity measurement unit 126 are shown.
  • the oxidative decomposition unit 118 includes an organic oxidation unit 24 and an ultraviolet lamp 26.
  • the organic oxidation part 24 is made of a material that transmits ultraviolet rays, and has a flow path through which sample water flows.
  • the ultraviolet lamp 26 irradiates the sample water with ultraviolet light from the outside of the organic oxidation unit 24.
  • the organic oxidation unit 24 includes an ultraviolet irradiation unit that irradiates the sample water with ultraviolet rays from the ultraviolet lamp 26, and the organic matter is oxidized to carbon dioxide by the ultraviolet irradiation while the sample water flows through the ultraviolet irradiation unit.
  • the operation of the oxidative decomposition function is switched by switching the power supply of the ultraviolet lamp 26 on and off.
  • the oxidative decomposition unit 118 may include a shutter 27 disposed between the organic oxidation unit 24 and the ultraviolet lamp 26 as indicated by a chain line in the figure. In that case, the operation switching of the oxidative decomposition function can be performed by opening and closing the shutter 27.
  • the oxidative decomposition unit 118 may have the same configuration as the embodiment of FIG.
  • the sample water that has passed through the oxidative decomposition unit 118 is supplied to the carbon dioxide separation unit 20, which is an example of the carbon dioxide separation unit 124.
  • the carbon dioxide separator 20 the sample water channel 2, the intermediate water unit 4, and the measurement water channel 6 are stacked vertically and integrated with the intermediate water unit 4 interposed therebetween.
  • the sample water that has passed through the organic oxidation unit 24 is caused to flow into the sample water channel 2.
  • neutral water in a neutral region having a pH value higher than that of the sample water is poured or enclosed.
  • the intermediate water section 4 is preferably a flow path through which intermediate water flows. Measurement water made of deionized water flows through the measurement water flow path 6.
  • the sample water channel 2 and the intermediate water part 4 are in contact via a gas permeable membrane 8, and the intermediate water part 4 and the measurement water channel 6 are also in contact via a gas permeable membrane 10.
  • a membrane having no selectivity for carbon dioxide such as a porous membrane usually used for maintaining high-speed measurement, is used.
  • the ion exchange water is supplied to the measurement water channel 6 of the carbon dioxide separator 20 as deionized water.
  • pure water stored in the liquid reservoir 28 is sucked by the pump 32 and supplied to the measurement water flow path 6 of the carbon dioxide separation unit 20 through the ion exchange resin 30.
  • the conductivity of the measured water that has passed through the measured water channel 6 is measured by the conductivity meter 34 that is the conductivity measuring unit 126.
  • the conductivity is the conductivity by carbon dioxide that has moved from the intermediate water to the measurement water in the carbon dioxide separator 20.
  • the measured water that has passed through the conductivity meter 34 is returned to the liquid reservoir 28 and reused.
  • the conductivity meter 34 may be provided integrally with the carbon dioxide separator 20 or may be configured separately and connected by a flow path.
  • the sample water that has passed through the sample water flow path 2 of the carbon dioxide separator 20 is discharged.
  • Pure water or deionized water is supplied to the intermediate water flow path 4 as intermediate water.
  • the deionized water that has passed through the ion exchange resin 30 can also be supplied as intermediate water.
  • the intermediate water is brought into contact with the sample water through the gas permeable membrane 8 on the sample water flow path side, and is also brought into contact with the measurement water through the gas permeable film 10 on the measurement water flow path side.
  • the intermediate water that has passed through the intermediate water flow path 4 is discharged.
  • FIG. 3 shows another embodiment.
  • the carbon dioxide separation unit 40 which is another example of the carbon dioxide separation unit 124, is separated into a gas exchange unit 40a on the sample water side and a gas exchange unit 40b on the measurement water side.
  • the intermediate water flow path is separated into an intermediate water flow path 4a on the sample water side and a flow path 4b on the measurement water side, and a connection between them is connected.
  • Other configurations are the same as those shown in FIG.
  • FIG. 4 is an example of a form in which a common syringe pump is used to keep the flow rate ratio between the intermediate water flow rate and the measured water flow rate constant.
  • the carbon dioxide separator 20 is shown here in the embodiment of FIG. 2, but is separated into a gas exchange part on the sample water side and a gas exchange part on the measurement water side as shown in FIG. Also good. What was supplied with the pump 32 via the same ion exchange resin 30 as intermediate water and measurement water is used. Measurement water flows from the measurement water flow path 6 through the conductivity meter 34. The intermediate water is passed through the intermediate water flow path 4.
  • Valves 48 and 50 are respectively provided in the flow paths in which the intermediate water and the measurement water are returned to the liquid reservoir 28, and two syringes 42 and 44 of one syringe pump 46 are respectively provided to adjust the respective flow rates. It is connected to the flow path.
  • the intermediate water and the measurement water When flowing the intermediate water and the measurement water, the intermediate water and the measurement water are simultaneously sucked into the syringes 42 and 44 in a state where the valves 48 and 50 are closed, and flow rates determined by the inner diameters of the syringes 42 and 44, respectively.
  • Intermediate water and measurement water are run. After the measurement is completed, the valves 48 and 50 are opened, and the syringe 42 and 44 are switched in the discharge direction, whereby the intermediate water and the measurement water sucked into the syringes 42 and 44 are returned to the liquid reservoir 28.
  • the flow rate ratio between the intermediate water and the measured water can be maintained at a predetermined constant value.
  • the distribution ratio of the gas component from the intermediate water to the measurement water is maintained constant, and the reproducibility of the measurement is enhanced.
  • the organic matter oxidation unit 24 is composed of a substrate 60 on the side on which ultraviolet rays are incident and a substrate 62 bonded thereto.
  • a quartz substrate that transmits ultraviolet light is used in order to decompose organic substances with ultraviolet light.
  • the portion where the ultraviolet rays are incident becomes an ultraviolet incident portion.
  • the substrate 60 is provided with a through hole 64 serving as a sample water introduction port and a through hole 66 serving as a sample water discharge port.
  • a quartz substrate is also used as the other substrate 62.
  • An oxidation portion flow path 68 having one end at the position of the sample water inlet 64 is formed on the surface of the substrate 62.
  • a sample water channel 2 having one end at a position corresponding to the sample water discharge port 66 is formed on the back surface of the substrate 62.
  • the substrate 62 is provided with a through hole 70 that connects the other end of the oxidation unit flow path 68 and the other end of the sample water flow path 2, and a through hole 72 that connects one end of the sample water flow path 2 and the sample water discharge port 66. It has been.
  • a light shielding metal film 33 that defines an ultraviolet irradiation region is formed on the back surface of the substrate 62, that is, the surface opposite to the bonding surface with the substrate 60.
  • the light shielding metal film 33 is, for example, a Pt / Ti film having a thickness of 0.05 ⁇ m or more (a titanium film formed as an adhesion layer and a platinum film formed thereon).
  • the oxidation portion flow path 68 and the sample water flow path 2 are not particularly limited in size, but have a width of about 1 mm, a depth of 0.2 mm, and a length of about 200 mm, for example, wet etching or dry etching.
  • the through holes 64, 66, and 70 can be formed by sandblasting or the like. Bonding between the substrates 60 and 62 can be realized by hydrofluoric acid bonding.
  • the conductivity meter 34 is formed by bonding the back surface of the quartz substrate 80 to the electrode pattern 76 made of a Pt / Ti film formed on the quartz substrate 74 via a film 78 having a flow path portion cut off. .
  • Examples of the film 78 include an adhesive fluororesin (for example, 100 ⁇ m-thick NEOFLON EFEP (registered trademark of Daikin Industries)) film and PDMS (polydimethylsiloxane) (for example, 100 ⁇ m-thick Dow Corning Sylgard). 184® film is used. On the electrode pattern 76, a flow path through which measurement water flows is formed by a film 78.
  • adhesive fluororesin for example, 100 ⁇ m-thick NEOFLON EFEP (registered trademark of Daikin Industries)
  • PDMS polydimethylsiloxane
  • the electrode pattern 76 can be formed by sputtering a Pt / Ti film and patterning it by photolithography and etching used in the fields of semiconductor manufacturing processes and microfabrication technology. Is not particularly limited. Further, the film for forming the flow path on the electrode pattern 76 is not limited to a neoflon film or a PDMS film, but can be realized by an adhesive organic film or a thin film coated with an adhesive.
  • a measuring water channel 6 is formed on the surface of the quartz substrate 80, and the measuring water branch channel 82 connected to one end of the measuring water channel 6 and the other end of the measuring water channel 6 are connected to the electrodes of the conductivity meter 34 on the quartz substrate 80.
  • a through hole 84 connected to the flow path of the pattern 76 is formed.
  • the quartz substrate 80 is also provided with a through hole 86 serving as an intermediate water branch channel for guiding intermediate water and a through hole 88 serving as an intermediate water discharge port for discharging the intermediate water.
  • the thickness of the quartz substrate 80 is not particularly limited, but a quartz substrate having a thickness of 1 mm, for example, is used.
  • the quartz substrate 74 is also provided with a through hole 90 serving as an ion exchange water introduction port for supplying ion exchange water as deionized water and a through hole 92 serving as an ion exchange water discharge port for discharging excess ion exchange water.
  • the ion exchange water introduction port 90 is connected to the measurement water branch channel 82, the intermediate water branch channel 86, and the ion exchange water discharge port 92 by a channel formed by the PDMS film 78 sandwiched between the substrates 74 and 80. .
  • the quartz substrate 74 is connected to a through hole 94 serving as a measurement water discharge port for discharging measured water after detection from the flow path of the electrode pattern 76 of the conductivity meter 34, and an intermediate water discharge through hole 88 of the quartz substrate 80.
  • a through hole 96 serving as an intermediate water discharge port for discharging intermediate water is also opened.
  • the two gas permeable membranes 8 constituting the carbon dioxide separation part between the back surface of the substrate 62 constituting the organic matter oxidation part 24 and the surface of the substrate 80 constituting the unit of the conductivity meter 34, 10 are joined.
  • a PDMS film 98 is sandwiched between the gas permeable membranes 8 and 10, a gap is formed by the thickness of the PDMS film 98, and the intermediate water flow path 4 is formed by the pattern of the PDMS film 98.
  • the intermediate water channel 4 is formed in such a shape that one end is connected to the intermediate water branching channel 86 for introducing intermediate water of the quartz substrate 80 and the other end is connected to the through hole 88 for discharging the intermediate water.
  • the sample water flow path 2 is formed between the gas permeable film 8 and the substrate 62, and the gas permeable films 8, 10 and the substrate 62 are formed so that the measurement water flow path 6 is formed between the gas permeable film 10 and the substrate 80. , 80 are sealed with a film such as a PDMS film.
  • the gas permeable membranes 8 and 10 are not particularly limited, and those having no selectivity for carbon dioxide are used.
  • a porous fluororesin membrane for example, a pore fluorocarbon having a thickness of 30 ⁇ m; manufactured by Sumitomo Electric Co., Ltd.
  • a porous fluororesin membrane for example, a pore fluorocarbon having a thickness of 30 ⁇ m; manufactured by Sumitomo Electric Co., Ltd.
  • the sample water is introduced from the sample water introduction port 64 of the substrate 60, and is discharged from the oxidation unit channel 68 through the sample water channel 2 and from the sample water discharge port 66.
  • the sample water is oxidized by being irradiated with ultraviolet light at the oxidation unit 24 and comes into contact with the intermediate water through the gas permeable membrane 8 of the carbon dioxide separation unit 20, and gas components such as carbon dioxide are distributed to the intermediate water. .
  • Ion exchange water is generated outside the apparatus and introduced from the ion water exchange water inlet 90. Most of the introduced ion exchange water is discharged as it is from the ion exchange water discharge port 92, but only a necessary flow rate is supplied from the measurement water branch channel 82 to the measurement water channel 6, and from the intermediate water branch channel 86. It is supplied to the intermediate water channel 4.
  • the gas component entering from the sample water reaches equilibrium with ions in the intermediate water.
  • a gas component is distributed to the measurement water and discharged to the outside through the intermediate water discharge ports 88 and 96.
  • the measurement water is discharged from the measurement water discharge port 94 through the conductivity meter 34 after receiving the gas component in the measurement water channel 6.
  • the pure water sample that passed through the oxidative decomposition unit 118 in the off state was supplied to the carbon dioxide separation unit 118, and the conductivity was measured by the conductivity measurement unit 126 using the measurement water from the carbon dioxide separation unit 118. In this way, a system blank value was obtained by detecting and calculating a signal derived from residual CO 2 of pure water that was aerated.
  • TOC measurement was performed using pure water and potassium hydrogen phthalate standard solution (500 ⁇ g C / L and 1000 ⁇ g C / L) with the oxidative decomposition function of the oxidative decomposition unit 118 turned on. Each measurement was performed 5 times.
  • the calibration curve obtained from the measurement results is shown in FIG. 6 and was prepared using the average value of the five TOC measurements shown in Table 1.
  • the calibration curve data is held in the calculation unit 132 of the calculation processing unit 128.
  • the TOC concentration of the sample water can be obtained by performing measurement with the oxidative decomposition function of the oxidative decomposition unit 118 turned on, and applying a corrected calibration curve to the measured value.
  • a TOC meter that includes an all-carbon combustion section that uses an oxidation catalyst and changes the TOC in the sample water to CO 2 gas and measures the CO 2 concentration in the gas phase is used.
  • the TOC value of the pure water sample by a TOC meter that obtains a system blank value by repeated operations of oxidative decomposition and recovery of water was 6.6 ⁇ g C / L.
  • the measured value of 7.84 ⁇ g C / L of the TOC value of pure water obtained by the example of the present invention is close to the TOC value of pure water measured using a conventional apparatus. This shows that the system blank measurement according to the method of the present invention is highly valid.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

 試料水を採取して供給する試料供給部と、試料供給部に接続され、試料供給部から供給された試料水中の有機物を酸化して二酸化炭素に変換する酸化分解部と、酸化分解部を経た試料水中の二酸化炭素を脱イオン水からなる測定水に移動させる二酸化炭素分離部と、二酸化炭素分離部からの測定水の導電率を測定する導電率測定部と、導電率測定部による測定値から試料水のTOC濃度を算出する演算処理部を備えている。通気処理された純水を酸化分解機能がオフ状態の酸化分解部を経て試料水流路に流したときの導電率測定部による測定値をシステムブランク値とする。

Description

システムブランク機能を備えた全有機体炭素計
 本発明は、試料水中の全有機体炭素量(TOC)、全炭素(TC)又は無機体炭素(IC)を測定する全有機体炭素測定装置(TOC計ともいう。)に関し、例えば、純水や超純水と呼ばれる不純物の少ない水に含まれる有機性物質を二酸化炭素分離部により分離し、導電率によりTOC濃度を評価する全有機体炭素測定装置に関するものである。
 製薬用水、半導体製造工程水、冷却水、ボイラー水又は水道水など、不純物の少ない試料水の管理を目的として、それらの水に含まれる有機物のTOC測定が行われている。
 TOC測定装置としては、酸化触媒を使用した全炭素燃焼部を備えて試料水中のTOCをCO2ガスに変え、非分散型赤外分光光度計により気相中のCO2濃度を測定するTOC計が普及している。
 それに対し、試料水が液相のままでTOC濃度を測定する装置も開発されている。そのような液相の測定装置では、試料水中の有機物を酸化反応器で二酸化炭素へ転化させる。試料水は液相のままである。その試料水を試料水流路に流し、その試料水流路と測定水が流れる測定水流路とをガス透過膜を介して接触させ、試料水中の二酸化炭素を測定水へ移動させる。二酸化炭素が移動した測定水を導電率計へ送って導電率を測定する。測定水の導電率と試料水の二酸化炭素濃度の関係を予め検量線として求めておくことにより、測定された測定水の導電率から試料水の二酸化炭素濃度を求めることができる(特許文献1参照。)。
 本発明は、このような試料水が液相のままでTOC濃度を測定する装置を対象とする。
 TOC測定方法では、測定装置自身がもつブランク値、すなわちシステムブランク値をもつ必要がある。TOC計において、システムブランク値は限りなく有機炭素がない純水を試料として測定して得られる信号である。システムブランク値はTOC計の測定値の基準となるものであり、純水などの微量なTOC濃度を定量測定する際には必須である。
 空気と接触している純水には空気中のCO2が溶け込むため、大気に開放された状態で炭素が限りなくゼロに近い純水を得ることは困難である。酸化触媒を使用した全炭素燃焼部を備えて試料水中のTOCをCO2ガスに変えて気相でCO2濃度を測定する従来のTOC計においては、装置内部で純水を気化させるとともにTOCを酸化分解してCO2ガスとして除去し、残った水蒸気を凝縮して回収する操作を繰り返すことにより限りなく有機体炭素のない純水を得て、その純水を用いて測定して得た測定値をシステムブランク値としている。
WO2008/047405
 本発明が対象とするTOC測定装置は、測定用の流路としては、試料水を気化と同時に酸化分解し、残った水蒸気を凝縮させる流路を備えていない。システムブランク値を得るためのブランク水を調製する流路を設けようとすると、そのような流路は測定系とは別の流路となる。そのうえ、純水トラップという専用容器も必要になる。仮に、そのようなブランク水を調製する流路を設けたとしても、試料水の気化及び酸化分解と水蒸気の凝縮を繰り返して限りなく有機体炭素のない純水を得る操作は長時間を要する。
 本発明は試料水が液相のままでTOC濃度を測定する装置において、簡便な方法によりシステムブランク値を得ることができるようにすることを目的とするものである。
 本発明のTOC計は、試料水を採取して供給する試料供給部と、試料供給部に接続され、試料供給部から供給された試料水中の有機物を酸化して二酸化炭素に変換する酸化分解部と、酸化分解部を経た試料水中の二酸化炭素を脱イオン水からなる測定水に移動させる二酸化炭素分離部と、二酸化炭素分離部からの測定水の導電率を測定する導電率測定部と、導電率測定部による測定値から試料水のTOC濃度を算出する演算処理部を備えている。
 試料供給部は、採取した試料水に二酸化炭素を含まないガスを通気処理する機構を備えている。
 酸化分解部は、供給された試料水中の有機物を酸化して二酸化炭素に変換する酸化分解機能を行うオン状態と、その酸化分解機能を行わないオフ状態の動作切換えが可能になっている。
 二酸化炭素分離部は、酸化分解部を経た試料水が流される試料水流路及び脱イオン水からなる測定水が流される測定水流路を備え、試料水流路と測定水流路の間にはガス透過膜が介在して二酸化炭素の移動が可能になっている。
 演算処理部は試料供給部に採取され通気処理された純水を酸化分解機能がオフ状態の酸化分解部を経て試料水流路に流したときの導電率測定部による測定値をシステムブランク値として保持するシステムブランク保持部と、酸化分解機能をオン状態にして酸化分解部を経て試料水を試料水流路に流したときの導電率測定部による測定値とシステムブランク保持部に保持されているシステムブランク値とから試料水の全有機体炭素濃度を算出する演算部を備えている。
 TOCを酸化分解によって気相CO2ガスに変えて測定する従来のTOC計において、限りなく有機体炭素がない純水を得ようとすれば、気化及び酸化分解と冷却による純水トラップへの水蒸気の回収を何度も繰り返さなければならない。その操作では、純水中の酸化分解されたTOCはCO2(無機体炭素)に変化し、ガスとして気化してキャリアガスとともに系外に出されるが、CO2の一部は回収された純水との間で気-液平衡状態となり、ガス化したCO2の一部は純水に溶解する。それでも、回収された純水トラップの気体容積部分は、高純度空気などの殆どCO2を含まないキャリアガスで通気されるため、溶解したCO2の一部はキャリアガスへ分配される。このように、純水の気化及び酸化分解と回収が繰り返され、純水中のTOCはCO2へ変換されて除去され、最後にはキャリアガス中のCO2分圧に応じたCO2(無機体炭素)が回収純水に溶解した純水となる。従来は、この純水の測定強度をシステムブランク値としている。すなわち、そのようにして得られるシステムブランク値は、純水をキャリアガスでCO2除去できるまで通気処理し、その処理した純水中の残存CO2(無機体炭素)を測定した強度と等価である。
 キャリアガス中のCO2濃度がゼロであれば、回収純水中のCO2は気化及び酸化分解と回収の繰返しにより、いずれゼロになる。しかし、高純度空気といえども、CO2や炭化水素などが1ppm未満ではあるが含まれており、そのためシステムブランク強度はある値をもつ。
 本発明が対象とするTOC計では、二酸化炭素分離部で試料水からガス透過膜を透過して測定水へ移動したCO2のみが導電率測定部で検出される。そのため、試料供給部に純水を採取し、CO2を含まないガスを通気処理すると試料水中のCO2(無機体炭素)は除去され、試料水中に残存するTOCはイオン化したもののみとなる。試料水中にイオン化したTOCが残存していても、酸化分解部の酸化分解機能がオフ状態では試料水中のTOCはイオン化したままであるので、二酸化炭素分離部でのガス透過膜を透過せず、測定水へ移動することがない。そのため、試料水流路を流れている純水はCO2ガス成分を全く含まないものと等価になる。
 酸化分解部の一形態は、紫外線を透過させる材質からなり内部を試料水が流れる流路からなる有機物酸化部、及び有機物酸化部の外部から試料水に紫外線を照射する紫外線光源を備えている。そして、酸化分解機能の動作切換えを紫外線光源の電源のオン・オフの切換えにより行うものである。
 酸化分解部の他の形態は、紫外線を透過させる材質からなり内部を試料水が流れる流路からなる有機物酸化部、有機物酸化部の外部から試料水に紫外線を照射する紫外線光源、及び有機物酸化部と紫外線光源の間に配置されたシャッタを備えている。そして、酸化分解機能の動作切換えを前記シャッタの開閉により行うものである。
 演算処理部の一形態では、演算部は導電率測定部による測定値と試料供給部から供給される試料水の全有機体炭素濃度との関係を示す検量線データを保持している。そして、演算処理部は、試料水を測定したときの前記導電率測定部による測定値に対して、検量線データをシステムブランク保持部に保持されているシステムブランク値により修正した修正後の検量線データを適用してその試料水の全有機体炭素濃度を算出するものである。
 修正後の検量線データの一例は、測定値から得られた検量線データをその切片がシステムブランク保持部に保持されているシステムブランク値となるようにシフトさせたものである。
 試料供給部の一形態は、試料水を供給する流路に接続されたポート、純水を供給する流路に接続されたポート、前記酸化分解部に接続されたポート及び大気に開放されたポートと、それらのポートに切り換えて接続される共通ポートを少なくとも備えたマルチポートバルブと、マルチポートバルブの共通ポートに接続され、シリンダ内をピストンが上下方向に摺動することにより試料水の採取と送り出しを行うシリンジと、シリンジのシリンダの下端部でピストンが下端まで移動した状態においてピストンよりも上部にくる位置でシリンダに取りつけられ、シリンダ内に二酸化炭素を含まないガスを供給するガス供給流路を備えているものである。
 試料水の通気処理により試料水中のCO2ガス成分を除去するためには試料水を酸性にすることが好ましい。そのために、マルチポートバルブの他の1つのポートには、シリンジ内に採取した試料水を酸性にするための酸を供給する酸供給流路が接続されていることが好ましい。
 有機体炭素を含まない純水を気化及び酸化分解と回収の繰り返し操作で得なくとも、一般に入手できる純水を高純度空気のように二酸化炭素を含まないガスによる通気処理を行った後、酸化分解部の酸化分解機能をオフ状態として測定することでシステムブランク値を得ることが可能である。従来のような頻雑な操作で、しかも少量しか得られない有機体炭素を含まない純水の測定と比べ、本発明の方法はいつでも、また何回でも測定可能であり、操作も簡単である。
一実施例を概略的に示すブロック図である。 酸化分解部、二酸化炭素分離部及び導電率測定部の第1の形態を示すブロック図である。 酸化分解部、二酸化炭素分離部及び導電率測定部の第2の形態を示すブロック図である。 酸化分解部、二酸化炭素分離部及び導電率測定部の第3の形態を示すブロック図である。 酸化分解部、二酸化炭素分離部及び導電率測定部の第4の形態を示すブロック図である。 検量線を示すグラフである。
2   試料水流路
4   中間水部
6   測定水流路
8,10   ガス透過膜
20,40   二酸化炭素分離部
24   有機物酸化部
26   紫外線ランプ
27   シャッタ
34   導電率計
102   試料供給部
104   流路切換えバルブ
106   シリンジ
118   酸化分解部
120   ガス供給流路
124   二酸化炭素分離部
128   演算処理部
130   システムブランク保持部
132   演算部
 図1は一実施例のTOC計を概略的に表したものである。破線の枠で囲まれた部分はTOC計100の筐体内に収納されていることを意味し、破線の枠の外側は筐体の外部であることを示している。
 TOC計100内には試料供給部102が設けられている。試料供給部102は6ポートバルブ又は8ポートバルブなどのマルチポートバルブからなる流路切換えバルブ104、バルブ104の共通ポートに接続された採水用のシリンジ106、及びシリンダ106内に二酸化炭素を含まないガスを供給するガス供給流路120を含んでいる。
 バルブ104のポートの1つにはTOC計の筐体の外部から試料水を取り込むための流路110が接続され、他のポートには筐体の外部から純水を取り込むための流路112が接続され、さらに他のポートにはシリンジ106に採取した試料水又は純水を酸性にするための酸を筐体の外部から取り込むための流路114が接続されている。バルブ104の更に他のポートには酸化分解部118につながる流路116が接続されている。バルブ104の更に他のポートは大気に開放できるようになっている。
 酸としては塩酸、硫酸、リン酸などの無機酸を使用する。酸を添加することにより、シリンジ106内の試料水又は純水のpHを4以下にするのが好ましい。
 バルブ104はステータに複数のポートが設けられたものであり、ロータを回転させることにより、共通ポートに接続されたシリンジ106をいずれかのポートに接続できるように切り換えられる。
 シリンジ106はシリンダの内部を、液密を保ってピストン108が上下方向に摺動することによってシリンジ106内に試料水又は純水を取り込み、更に酸を取り込むことができる。またピストンを上方向に押し込むことによって、採取した試料水又は純水を、バルブ104を介して流路116から酸化分解部118へ供給することができる。ピストン108はフランジャ107の先端に取りつけられている。フランジャ107がモータにより駆動されるシリンジ駆動部109により駆動されることにより、ピストン108がシリンダ内で上下方向に摺動する。
 シリンジ106のシリンダの下端部にはシリンジ106内に通気処理のために二酸化炭素を含まないガスを供給するガス供給流路120が接続されている。ガス供給流路120が接続されている位置は、ピストン108が下端まで移動した状態においてピストン108よりも上部にくる位置である。二酸化炭素を含まないガスは、例えばボンベ119に収容された高純度空気、又は炭酸ガスを吸着する充填材が充填されたカラムを通過して供給される高純度空気であるが、それらに限定されるものではない。
 酸化分解部118は試料水又は純水(以下単に試料水という場合は純水も含むものとする。)が有機物酸化部の流路を流れている間に紫外線が照射され、試料水中の有機物が酸化分解されて炭酸ガスとなるものである。
 酸化分解部118を経た試料水が二酸化炭素分離部124に導かれる。二酸化炭素分離部124では試料水中の炭酸ガス成分がガス透過膜を介して測定水中に移動する。二酸化炭素分離部124を経た試料水は廃棄される。
 二酸化炭素分離部124を経た測定水は導電率測定部126に導かれる。導電率測定部126は測定水と接触する電極を備えており、その電極により測定水の導電率が検出される。測定水の導電率は、二酸化炭素分離部124において試料水から測定水に移動した炭酸ガス成分の濃度に依存して変化するので、測定水の導電率検出値に基づいて試料水の炭酸ガス成分の濃度を求めることができる。この炭酸ガス成分は試料水中のTOC成分が酸化分解部118で酸化分解されることにより生じたものであることから、試料水中のTOC濃度を求めることができる。
 演算処理部128は導電率測定部126の導電率を測定するための電極に接続され、導電率測定部126が検出した導電率に基づいて試料水のTOC濃度を算出する。演算処理部128はシステムブランク保持部130と演算部132を備えている。
 システムブランク保持部130は、シリンジ106に採取され通気処理された純水を酸化分解機能がオフ状態の酸化分解部118を経て二酸化炭素分離部118の試料水流路に流したときの導電率測定部126による測定値をシステムブランク値として保持する。
 演算部132は酸化分解機能をオン状態にして酸化分解部118を経て試料水を二酸化炭素分離部118の試料水流路に流したときの導電率測定部126による測定値とシステムブランク保持部130に保持されているシステムブランク値とから試料水のTOC濃度を算出する。
 このTOC計において、システムブランク値を測定するときは、バルブ104は純水を取り込む流路112がシリンジ106と接続されるように設定され、シリンジ106中に適当な量の純水、例えば3mlの純水が採取される。さらにバルブ104がシリンジ106を酸を供給する流路114の接続されたポートに接続するように切り換えられ、シリンジのピストン108をさらに後退させることによって酸を所定量吸入して、純水のpHを4以下になるように調整する。その後、バルブ104がシリンジ106を大気開放されたポートに接続されるように切り換えられた状態で、ピストン108が下端まで後退させられる。その状態で流路120から高純度空気がシリンジ106中に、例えば100ml/分の流速で90秒間供給され、シリンジ106内に採水されている純水が通気処理され、純水中に含まれていた無機炭素が大気中に放出されて除去される。
 通気処理の終了後、バルブ104がシリンジ106を流路116に接続するように切り換えられ、シリンジ106中の純水が酸化分解部118に供給される。このとき、酸化分解部118は紫外線ランプがオフの状態、又は紫外線ランプと酸化分解部118の間にシャッタが介在した状態になっており、試料水が酸化分解部118を通過しても紫外線が照射されない。そのため、純水中にイオン化したTOC成分が残存していても酸化分解されることはなく、イオン状態のままで二酸化炭素分離部124へ送られる。二酸化炭素分離部124で純水がガス透過膜を介して測定水と接触し、その測定水の導電率が導電率測定部126で検出される。
 図1のシリンジ106から流路116を経て供給される試料水(純水である場合を含む。)は酸化分解部118に供給される。次に、酸化分解部118、二酸化炭素分離部124及び導電率測定部126の具体的な例をいくつか示す。
 図2の実施例では、酸化分解部118は有機物酸化部24と紫外線ランプ26を備えている。有機物酸化部24は紫外線を透過させる材質からなり内部を試料水が流れる流路からなる。紫外線ランプ26は有機物酸化部24の外部から試料水に紫外線を照射する。有機物酸化部24は紫外線ランプ26からの紫外線が試料水に照射される紫外線照射部を備え、紫外線照射部を試料水が流れる間に紫外線照射により有機物が酸化されて二酸化炭素となる。酸化分解機能の動作切換えは紫外線ランプ26の電源のオン・オフの切換えにより行う。
 酸化分解部118としては、図に鎖線で示されているように、有機物酸化部24と紫外線ランプ26の間に配置されたシャッタ27を備えるようにしてもよい。その場合は、酸化分解機能の動作切換えをシャッタ27の開閉により行うことができる。
 他の実施例においても、酸化分解部118は図2の実施例と同様の構成とすることができる。
 酸化分解部118を通過した試料水は二酸化炭素分離部124の一例である二酸化炭素分離部20に供給される。二酸化炭素分離部20は、中間水部4を間に挟んで、試料水流路2、中間水部4及び測定水流路6が上下方向に積層されて一体化されている。有機物酸化部24を経た試料水が試料水流路2に流される。中間水部4には試料水よりも高いpH値をもつ中性領域の中間水が流されるか封入されている。中間水部4は好ましくは流路となって中間水が流されるようになっている。測定水流路6には脱イオン水からなる測定水が流される。試料水流路2と中間水部4はガス透過膜8を介して接しており、中間水部4と測定水流路6もガス透過膜10を介して接している。ガス透過膜8,10としては高速測定を維持するために通常用いられている多孔質膜のように二酸化炭素に対する選択性をもたない膜を使用する。
 二酸化炭素分離部20の測定水流路6には、脱イオン水としてイオン交換水が供給される。イオン交換水は、液溜28に溜められている純水がポンプ32により吸引され、イオン交換樹脂30を経て二酸化炭素分離部20の測定水流路6に供給される。測定水流路6を通過した測定水は、導電率測定部126である導電率計34で導電率が測定される。その導電率は二酸化炭素分離部20で中間水から測定水に移動してきた二酸化炭素による導電率である。導電率計34を通過した測定水は液溜28に戻されて再利用される。導電率計34は二酸化炭素分離部20に一体として設けられていてもよく、又は離れて構成されて流路で接続されていてもよい。二酸化炭素分離部20の試料水流路2を通った試料水は排出される。
 中間水流路4には中間水として純水や脱イオン水が供給される。イオン交換樹脂30を経た脱イオン水を中間水としても供給することができる。中間水は試料水流路側のガス透過膜8によって試料水と接触し、測定水流路側のガス透過膜10によって測定水とも接触する。中間水流路4を経た中間水は排出される。
 図3は他の実施例である。二酸化炭素分離部124の他の例である二酸化炭素分離部40は試料水側のガス交換部40aと測定水側のガス交換部40bに分離されている。中間水流路は試料水側の中間水流路4aと測定水側の流路4bに分離され、その間が連結用流路で接続されている。他の構成は図2に示されたものと同じである。
 図4は中間水流量と測定水流量の流量比を一定に保つために共通のシリンジポンプを使用した形態の例である。二酸化炭素分離部20は、ここでは図2の実施例のものを示しているが、図3のように試料水側のガス交換部と測定水側のガス交換部に分離されたものであってもよい。中間水と測定水として同じイオン交換樹脂30を介してポンプ32で供給されたものを使用している。測定水は測定水流路6から導電率計34を経て流される。中間水は中間水流路4を流される。中間水と測定水が液溜28に戻される流路にはそれぞれバルブ48と50が設けられており、それぞれの流量を調整するために一台のシリンジポンプ46の2つのシリンジ42,44がそれぞれの流路に接続されている。中間水と測定水を流すときは、バルブ48,50が閉じられた状態で、中間水と測定水がそれぞれシリンジ42,44中に同時に吸引され、それぞれのシリンジ42,44の内径で決まる流量で中間水と測定水が流される。測定終了後は、バルブ48と50が開けられ、シリンジ42,44が吐出方向に切り替えられることによってシリンジ42,44中に吸引されていた中間水と測定水が液溜28に戻される。
 このように、一台のシリンジポンプ46に2個のシリンジ42,44を装着し、中間水流路4から排出される中間水と測定水流路6から排出される測定水を同時に吸引する場合には、シリンジ42,44の径を選択することにより、中間水と測定水との流速比を所定の一定値に保つことができる。中間水と測定水の流速比が一定に保たれることによって中間水から測定水へのガス成分の分配比が一定に保たれ、測定の再現性が高まる。
 次に、有機物酸化部24、二酸化炭素分離部20、及び導電率計34を一体化した実施例を図5を参照して説明する。なお、各基板の表面と裏面を区別して呼ぶときは、図5の状態で上側の面を「表面」、下側の面を「裏面」と呼ぶ。
 有機物酸化部24は紫外線が入射する側の基板60とそれに接合された基板62とから構成されている。一方の基板60としては、紫外光により有機物の分解を行うために紫外光を透過する石英基板が使用されている。基板60のうち、紫外線が入射する部分は紫外線入射部となる。基板60には試料水導入口となる貫通穴64と試料水排出口となる貫通穴66が開けられている。他方の基板62としても石英基板が使用されている。基板62の表面には試料水導入口64の位置に一端をもつ酸化部流路68が形成されている。基板62の裏面には試料水排出口66に対応する位置に一端をもつ試料水流路2が形成されている。基板62には、酸化部流路68の他端と試料水流路2の他端を連結する貫通穴70と、試料水流路2の一端と試料水排出口66とを連結する貫通穴72が開けられている。基板62の裏面、すなわち基板60との接合面とは反対側の面には紫外線照射領域を画定する遮光用金属膜33が形成されている。遮光用金属膜33は、例えば厚さが0.05μm以上のPt/Ti膜(密着層としてチタン膜を成膜し、その上に白金膜を成膜したもの。)である。
 酸化部流路68及び試料水流路2は、特に寸法が限定されるものではないが、例えば幅1mm、深さ0.2mm、長さ200mm程度のものであり、ウエットエッチングやドライエッチングなどの加工により形成することができ、貫通穴64,66,70はサンドブラスト加工等により形成することができる。基板60,62間の接合はふっ酸接合により実現できる。
 導電率計34は、石英基板74上に形成されたPt/Ti膜による電極パターン76の上に、流路部分を切り取ったフィルム78を介して石英基板80の裏面が接合されて形成されている。
 フィルム78としては、例えば、接着性フッ素樹脂(例えば、厚さ100μmのネオフロンEFEP(ダイキン工業株式会社の登録商標))フィルムやPDMS(ポリジメチルシロキサン)(例えば厚さ100μmのダウ・コーニング社のシルガード184(登録商標))フィルムを使用する。電極パターン76上にはフィルム78により測定水が流れる流路が形成されている。
 電極パターン76は、Pt/Ti膜をスバッタ成膜し、半導体製造工程や微細加工技術の分野で使用されているフォトリソグラフィとエッチングによりパターン化して形成することができるが、電極パターン76の形成方法は特に限定されるものではない。また、電極パターン76上に流路を形成するためのフィルムは、ネオフロン膜やPDMS膜に限らず、接着性有機膜又は接着剤を塗布した薄膜などで実現することもできる。
 石英基板80の表面には測定水流路6が形成され、石英基板80には測定水流路6の一端につながる測定水分岐流路82と、測定水流路6の他端を導電率計34の電極パターン76の流路に連結する貫通穴84が形成されている。また、石英基板80には中間水を導く中間水分岐流路となる貫通穴86と、中間水を排出する中間水排出口となる貫通穴88も開けられている。石英基板80の厚さは特に限定されるものではないが、例えば1mm厚みのものを用いる。
 石英基板74には脱イオン水としてイオン交換水を供給するためのイオン交換水導入口となる貫通穴90と余分なイオン交換水を排出するイオン交換水排出口となる貫通穴92も開けられている。基板74と80に挟まれたPDMSフィルム78により形成された流路によって、イオン交換水導入口90が測定水分岐流路82、中間水分岐流路86及びイオン交換水排出口92とつながっている。
 石英基板74には、導電率計34の電極パターン76の流路から検出後の測定水を排出する測定水排出口となる貫通穴94と、石英基板80の中間水排出用貫通穴88と連結されて中間水を排出する中間水排出口となる貫通穴96も開けられている。
 有機物酸化部24を構成している基板62の裏面と、導電率計34のユニットを構成している基板の80の表面とが、間に二酸化炭素分離部を構成する2つのガス透過膜8,10を挟んで接合されている。ガス透過膜8,10の間にはPDMSフィルム98が挟みこまれ、そのPDMSフィルム98の厚みによって隙間が形成され、そのPDMSフィルム98のパターンによって中間水流路4が形成されている。中間水流路4は一端が石英基板80の中間水導入用の中間水分岐流路86につながり、他端が中間水排出用の貫通穴88につながる形状に形成されている。
 ガス透過膜8と基板62の間には試料水流路2が形成され、ガス透過膜10と基板80の間には測定水流路6が形成されるように、ガス透過膜8,10と基板62,80の間がPDMSフィルムなどのフィルムでシールされている。
 ガス透過膜8,10は特に限定されるものではなく、二酸化炭素に対する選択性をもっていないものを使用する。そのようなガス透過膜8,10としては、例えば多孔質フッ素樹脂膜(例えば厚さが30μmのポアフロン;住友電工社製)などを用いることができる。
 この実施例で、試料水は基板60の試料水導入口64から導入され、酸化部流路68から試料水流路2を通って試料水排出口66から排出される。試料水はその間に酸化部24で紫外光照射を受けて酸化され、二酸化炭素分離部20のガス透過膜8を介して中間水と接触し、二酸化炭酸などのガス成分は中間水に分配される。
 イオン交換水はこの装置の外部で生成され、イオン水交換水導入口90から導入される。導入されたイオン交換水の大部分はイオン交換水排出口92からそのまま排出されるが、必要な流量のみ、測定水分岐流路82から測定水流路6へ供給され、中間水分岐流路86から中間水流路4に供給される。
 中間水流路4は、試料水に接するガス透過膜8と測定水に接するガス透過膜10の両方に接しているため、試料水から入ってきたガス成分は中間水でイオンとの平衡に達しながら測定水にガス成分を分配し、中間水排出口88,96を経て外部に排出される。また、測定水は測定水流路6でガス成分を受け取った後、導電率計34を通り測定水排出口94から排出される。
 次に、図1と図2に示された実施例を用いて測定を行った結果を説明する。
 試料水として約3mLの純水をシリンジ106に採水し、純水のpHが4程度になるようにリン酸を添加した。その後、シリンジ106中に高純度空気を約100mL/分の流速で90秒間通気した後、同純水を酸化分解部118の有機物酸化部24へ送液した。その際、酸化分解部118では紫外線ランプ26をオフにするか、又はシャッタ27を設けて遮光することにより、酸化分解部118の酸化分解機能はオフ状態にし、純水試料中の残存CO2(無機体炭素)のみが測定できるように設定しておく。オフ状態の酸化分解部118を通過した純水試料を二酸化炭素分離部118へ供給し、二酸化炭素分離部118からの測定水により導電率測定部126で導電率を測定した。このように、通気処理された純水の残存CO2由来の信号を検出、演算することでシステムブランク値を得た。
 TOC測定は、純水とフタル酸水素カリウム標準液(500μgC/Lと1000μgC/Lの2種類)を酸化分解部118の酸化分解機能をオン状態にして行った。夫々の測定を5回ずつ行った。
 それらの測定結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 この測定結果から得られる検量線は図6に示されるものであり、表1に示した5回のTOC測定の平均値を用いて作成した。検量線データは演算処理部128の演算部132に保持される。表1の測定結果から得られたままの検量線データは、
   y=0.0485x+5.04
である。yは信号値、xは試料濃度(TOC値)である。
 測定結果から得られたままの検量線データを、その切片が上のシステムブランク値となるようにシフトさせて得られる修正後の検量線データは、
      y=0.0485x+4.66
となる。
 試料水のTOC濃度は、酸化分解部118の酸化分解機能をオン状態にして測定を行い、その測定値に、修正後の検量線を適用することにより求めることができる。
 この実施例のシステムブランク値と検量線を用いると、純水のTOC値は次のように見積もることができる。
  TOC値=(純水信号値-システムブランク値)/0.0485
      =(5.04-4.66)/0.0485
      =7.84μgC/L
 本発明が対象とするTOC計とは異なり、酸化触媒を使用した全炭素燃焼部を備えて試料水中のTOCをCO2ガスに変えて気相でCO2濃度を測定するTOC計を用い、純水を酸化分解、回収の繰り返し操作でシステムブランク値を得るTOC計による同純水試料のTOC値は6.6μgC/Lであった。
 本発明の実施例により求められた純水のTOC値の7.84μgC/Lという測定値は従来の装置を用いて測定された純水のTOC値に近いものである。このことから、本発明の方式によるシステムブランク測定は妥当性が高いことがわかる。

Claims (7)

  1.  試料水を採取して供給するとともに、採取した試料水に二酸化炭素を含まないガスを通気処理する機構を備えた試料供給部と、
     前記試料供給部に接続され、前記試料供給部から供給された試料水中の有機物を酸化して二酸化炭素に変換する酸化分解機能を有し、その酸化分解機能を行うオン状態と行わないオフ状態の間の動作切換えが可能になっている酸化分解部と、
     前記酸化分解部を経た試料水が流される試料水流路及び脱イオン水からなる測定水が流される測定水流路を備え、試料水流路と測定水流路の間にはガス透過膜が介在して二酸化炭素の移動が可能になっている二酸化炭素分離部と、
     前記二酸化炭素分離部からの測定水の導電率を測定する導電率測定部と、
     前記試料供給部に採取され通気処理された純水を酸化分解機能がオフ状態の前記酸化分解部を経て前記試料水流路に流したときの前記導電率測定部による測定値をシステムブランク値として保持するシステムブランク保持部、及び酸化分解機能をオン状態にして前記酸化分解部を経て試料水を前記試料水流路に流したときの前記導電率測定部による測定値と前記システムブランク保持部に保持されているシステムブランク値とから試料水の全有機体炭素濃度を算出する演算部を備えた演算処理部と、
    を備えた全有機体炭素測定装置。
  2.  前記酸化分解部は、紫外線を透過させる材質からなり内部を試料水が流れる酸化用流路、及び前記酸化用流路の外部から試料水に紫外線を照射する紫外線光源を備えており、
     前記酸化分解機能の動作切換えを前記紫外線光源の電源のオン・オフの切換えにより行うものである請求項1に記載の全有機体炭素測定装置。
  3.  前記酸化分解部は、紫外線を透過させる材質からなり内部を試料水が流れる酸化用流路、前記酸化用流路の外部から試料水に紫外線を照射する紫外線光源、及び前記酸化用流路と紫外線光源の間に配置されたシャッタを備えており、
     前記酸化分解機能の動作切換えを前記シャッタの開閉により行うものである請求項1に記載の全有機体炭素測定装置。
  4.  前記演算部は前記導電率測定部による測定値と前記試料供給部から供給される試料水の全有機体炭素濃度との関係を示す検量線データを保持しており、
     試料水を測定したときの前記導電率測定部による測定値に対して、前記検量線データを前記システムブランク保持部に保持されているシステムブランク値により修正した修正後の検量線データを適用してその試料水の全有機体炭素濃度を算出するものである請求項1から3のいずれか一項に記載の全有機体炭素測定装置。
  5.  前記修正後の検量線データは、測定値から得られた検量線データの切片を前記システムブランク保持部に保持されているシステムブランク値へ移動したものである請求項4に記載の全有機体炭素測定装置。
  6.  前記試料供給部は試料水を供給する流路に接続されたポート、純水を供給する流路に接続されたポート、前記酸化分解部に接続されたポート及び大気に開放されたポートと、それらのポートに切り換えて接続される共通ポートを少なくとも備えたマルチポートバルブと、
     前記マルチポートバルブの共通ポートに接続され、シリンダ内をピストンが上下方向に摺動することにより試料水の採取と送り出しを行うシリンジと、
     前記シリンダの下端部でピストンが下端まで移動した状態においてピストンよりも上部にくる位置でシリンダに取りつけられ、シリンダ内に二酸化炭素を含まないガスを供給するガス供給流路と
    を備えている請求項1から5のいずれか一項に記載の全有機体炭素測定装置。
  7.  前記マルチポートバルブの他の1つのポートには、前記シリンジ内に採取した試料水を酸性にするための酸を供給する酸供給流路が接続されている請求項6に記載の全有機体炭素測定装置。
PCT/JP2009/058122 2009-04-24 2009-04-24 システムブランク機能を備えた全有機体炭素計 WO2010122655A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2011510128A JP5263389B2 (ja) 2009-04-24 2009-04-24 システムブランク機能を備えた全有機体炭素計
EP09843655.3A EP2423677B1 (en) 2009-04-24 2009-04-24 Total organic carbon meter provided with system blank function
US13/266,005 US20120039750A1 (en) 2009-04-24 2009-04-24 Total organic carbon meter provided with system blank function
PCT/JP2009/058122 WO2010122655A1 (ja) 2009-04-24 2009-04-24 システムブランク機能を備えた全有機体炭素計
CN200980158887.4A CN102428362B (zh) 2009-04-24 2009-04-24 具有系统空白功能的总有机碳测量仪
US14/041,488 US9176106B2 (en) 2009-04-24 2013-09-30 Total organic carbon meter provided with system blank function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/058122 WO2010122655A1 (ja) 2009-04-24 2009-04-24 システムブランク機能を備えた全有機体炭素計

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/266,005 A-371-Of-International US20120039750A1 (en) 2009-04-24 2009-04-24 Total organic carbon meter provided with system blank function
US14/041,488 Division US9176106B2 (en) 2009-04-24 2013-09-30 Total organic carbon meter provided with system blank function

Publications (1)

Publication Number Publication Date
WO2010122655A1 true WO2010122655A1 (ja) 2010-10-28

Family

ID=43010791

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/058122 WO2010122655A1 (ja) 2009-04-24 2009-04-24 システムブランク機能を備えた全有機体炭素計

Country Status (5)

Country Link
US (2) US20120039750A1 (ja)
EP (1) EP2423677B1 (ja)
JP (1) JP5263389B2 (ja)
CN (1) CN102428362B (ja)
WO (1) WO2010122655A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013015388A (ja) * 2011-07-04 2013-01-24 Shimadzu Corp 分析計
US20130239705A1 (en) * 2012-03-19 2013-09-19 Shimadzu Corporation Liquid feeding device using ball screw, and analyzer
JP2019100957A (ja) * 2017-12-07 2019-06-24 株式会社島津製作所 水質分析計
JP2022553610A (ja) * 2019-08-30 2022-12-26 ビーエル テクノロジーズ、インコーポレイテッド 単一のサンプルを用いた全有機炭素および導電率の検証および較正
WO2023042414A1 (ja) * 2021-09-17 2023-03-23 株式会社島津製作所 全有機体炭素計

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2951272B1 (fr) * 2009-10-09 2011-12-09 Millipore Corp Methode de calibration d'un dispositif de mesure de la teneur en carbone organique total
JP6160529B2 (ja) * 2014-03-24 2017-07-12 株式会社島津製作所 水質分析計及び水質分析方法
CN106153842B (zh) * 2015-03-31 2020-04-28 株式会社岛津制作所 流路气体去除方法
CN105510394A (zh) * 2015-12-04 2016-04-20 中国电子科技集团公司第四十八研究所 在微重力环境下检测水中总有机物含量的方法
EP3644050B1 (en) * 2017-06-21 2023-03-29 Shimadzu Corporation Water quality measurement device and water quality measurement method
DK179520B1 (en) 2017-08-04 2019-02-05 Blue Unit A/S CARBON DIOXIDE DETECTION SYSTEM AND METHOD AND USE THEREOF
CN111033250A (zh) * 2017-09-04 2020-04-17 株式会社岛津制作所 高频电源uv灯监视器以及使用它的总有机碳分析仪
CN108872512B (zh) * 2018-06-20 2019-07-09 三峡大学 快速监测水体溶解痕量气体浓度的装置及方法
CN108828172A (zh) * 2018-06-21 2018-11-16 中国计量科学研究院 总有机碳分析仪的校准方法和装置
CN108956256A (zh) * 2018-09-04 2018-12-07 南通市计量检定测试所(江苏省南通质量技术监督眼镜产品质量检验站、江苏省南通质量技术监督金银珠宝饰品产品质量检验站、江苏省大容量南通计量站、南通市大流量计量中心) 基于真空超洁净环境下的在线水质监测仪自动校准装置
CN110487850B (zh) * 2019-09-10 2023-10-10 华能国际电力股份有限公司 一种脱气电导率测量系统及方法
EP4184162A4 (en) * 2020-07-17 2024-08-14 Shimadzu Corp INSPECTION DEVICE
DE102020134417A1 (de) * 2020-12-21 2022-06-23 Endress+Hauser Conducta Gmbh+Co. Kg TOC-Analysator und Verfahren zur Anfeuchtung eines Bindemittels in einem TOC-Analysator
KR102614702B1 (ko) * 2021-10-07 2023-12-18 주식회사 이엔솔 (Ensol) Toc 측정시스템의 분석 오차 보정방법
CN115343536A (zh) * 2022-08-23 2022-11-15 浙江西热利华智能传感技术有限公司 一种电站水汽多参数协同测量系统及方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05188051A (ja) * 1992-01-13 1993-07-27 Toshiba Corp 有機物監視システム
JP2001149930A (ja) * 1999-11-26 2001-06-05 Dkk Toa Corp 紫外線酸化装置
JP2001318089A (ja) * 2000-05-10 2001-11-16 Shimadzu Corp 全有機体炭素計
JP2006300633A (ja) * 2005-04-19 2006-11-02 Shimadzu Corp 全有機体炭素測定装置
JP2007040729A (ja) * 2005-08-01 2007-02-15 Shimadzu Corp 全有機炭素計
JP2007093209A (ja) * 2005-09-26 2007-04-12 Shimadzu Corp 水質分析計
WO2008047405A1 (fr) 2006-10-17 2008-04-24 Shimadzu Corporation Appareil de détermination du carbone organique total
JP2008180662A (ja) * 2007-01-26 2008-08-07 Techno Morioka Kk 全有機体炭素値を測定する為の酸化反応装置、有機体炭素値測定ユニット及び有機化合物の紫外線酸化方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56163452A (en) * 1980-05-21 1981-12-16 Toshiba Corp Inorganic carbon remover for total organic carbon analyzer
US4666860A (en) * 1984-01-10 1987-05-19 Anatel Instrument Corporation Instrument for measurement of the organic carbon content of water
US5132094A (en) * 1990-03-02 1992-07-21 Sievers Instruments, Inc. Method and apparatus for the determination of dissolved carbon in water
US6228325B1 (en) * 1990-03-02 2001-05-08 Sievers Instruments, Inc. Methods and apparatus for measurement of the carbon and heteroorganic content of water including single-cell instrumentation mode for same
JP3265830B2 (ja) * 1994-05-27 2002-03-18 株式会社島津製作所 全有機体炭素計
WO2006069008A1 (en) * 2004-12-22 2006-06-29 Vesta Medical, Llc Compositions and devices for inactivation of pharmaceuticals to facilitate waste disposal, and methods thereof
EP1890141A4 (en) * 2005-05-26 2009-01-21 Shimadzu Corp METHOD FOR MEASURING TOTAL ORGANIC CARBON, METHOD FOR MEASURING TOTAL NITROGEN AND MEASURING APPARATUS FOR THESE TWO METHODS
JPWO2007129383A1 (ja) * 2006-05-01 2009-09-17 株式会社島津製作所 全有機体炭素測定装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05188051A (ja) * 1992-01-13 1993-07-27 Toshiba Corp 有機物監視システム
JP2001149930A (ja) * 1999-11-26 2001-06-05 Dkk Toa Corp 紫外線酸化装置
JP2001318089A (ja) * 2000-05-10 2001-11-16 Shimadzu Corp 全有機体炭素計
JP2006300633A (ja) * 2005-04-19 2006-11-02 Shimadzu Corp 全有機体炭素測定装置
JP2007040729A (ja) * 2005-08-01 2007-02-15 Shimadzu Corp 全有機炭素計
JP2007093209A (ja) * 2005-09-26 2007-04-12 Shimadzu Corp 水質分析計
WO2008047405A1 (fr) 2006-10-17 2008-04-24 Shimadzu Corporation Appareil de détermination du carbone organique total
JP2008180662A (ja) * 2007-01-26 2008-08-07 Techno Morioka Kk 全有機体炭素値を測定する為の酸化反応装置、有機体炭素値測定ユニット及び有機化合物の紫外線酸化方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013015388A (ja) * 2011-07-04 2013-01-24 Shimadzu Corp 分析計
US20130239705A1 (en) * 2012-03-19 2013-09-19 Shimadzu Corporation Liquid feeding device using ball screw, and analyzer
US9021899B2 (en) * 2012-03-19 2015-05-05 Shimadzu Corporation Liquid feeding device using ball screw, and analyzer
JP2019100957A (ja) * 2017-12-07 2019-06-24 株式会社島津製作所 水質分析計
JP2022553610A (ja) * 2019-08-30 2022-12-26 ビーエル テクノロジーズ、インコーポレイテッド 単一のサンプルを用いた全有機炭素および導電率の検証および較正
JP7440618B2 (ja) 2019-08-30 2024-02-28 ビーエル テクノロジーズ、インコーポレイテッド 単一のサンプルを用いた全有機炭素および導電率の検証および較正
WO2023042414A1 (ja) * 2021-09-17 2023-03-23 株式会社島津製作所 全有機体炭素計

Also Published As

Publication number Publication date
JP5263389B2 (ja) 2013-08-14
US9176106B2 (en) 2015-11-03
EP2423677B1 (en) 2018-09-26
US20120039750A1 (en) 2012-02-16
CN102428362A (zh) 2012-04-25
US20140030814A1 (en) 2014-01-30
EP2423677A1 (en) 2012-02-29
EP2423677A4 (en) 2015-03-25
JPWO2010122655A1 (ja) 2012-10-22
CN102428362B (zh) 2015-02-25

Similar Documents

Publication Publication Date Title
JP5263389B2 (ja) システムブランク機能を備えた全有機体炭素計
JP4844630B2 (ja) 全有機体炭素測定装置
JP4983914B2 (ja) 全有機体炭素測定装置
JP4462099B2 (ja) 全有機体炭素測定装置
US7993586B2 (en) Apparatus for measurement of total organic carbon content
TWI307409B (en) Measuring method of total organic carbon, measuring method of total nitrogen, measuring apparatus for the measuring methods
JP2007093209A (ja) 水質分析計
JP2010216977A (ja) 全有機体炭素測定装置
JP2011052975A (ja) 全有機体炭素測定装置
JP4538604B2 (ja) 光反応管内蔵型光反応装置及びこれを用いる水質モニタリング装置
WO2007129383A1 (ja) 全有機体炭素測定装置
WO2007091654A1 (ja) 液体クロマトグラフィ装置
WO2009125493A1 (ja) 全有機体炭素測定装置
JP4337624B2 (ja) ガス交換装置および水中炭素成分測定装置
JP2010122160A (ja) 水銀分析装置およびその方法
JP2005227161A (ja) 水中炭素成分の測定装置
JP5177095B2 (ja) Ptfe製ピストンを有するマイクロシリンジを備えた試料採取装置及び全有機体炭素測定装置
JP5282703B2 (ja) 送液装置及びそれを用いた全有機体炭素測定装置
JP2005214649A (ja) Toc測定装置
JPH10307114A (ja) 水中tocモニター
JPH08254484A (ja) 水溶液試料の濃縮法および装置
JPH10307113A (ja) 水中tocモニター

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980158887.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09843655

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011510128

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13266005

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009843655

Country of ref document: EP