WO2010121888A1 - Verfahren und vorrichtung zum betreiben einer brennkraftmaschine - Google Patents

Verfahren und vorrichtung zum betreiben einer brennkraftmaschine Download PDF

Info

Publication number
WO2010121888A1
WO2010121888A1 PCT/EP2010/054181 EP2010054181W WO2010121888A1 WO 2010121888 A1 WO2010121888 A1 WO 2010121888A1 EP 2010054181 W EP2010054181 W EP 2010054181W WO 2010121888 A1 WO2010121888 A1 WO 2010121888A1
Authority
WO
WIPO (PCT)
Prior art keywords
fast
combustion engine
internal combustion
dif
max
Prior art date
Application number
PCT/EP2010/054181
Other languages
English (en)
French (fr)
Inventor
Franz Dietl
Original Assignee
Continental Automotive Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive Gmbh filed Critical Continental Automotive Gmbh
Priority to CN201080017528.XA priority Critical patent/CN102405343B/zh
Priority to KR1020117027561A priority patent/KR101698355B1/ko
Priority to US13/265,226 priority patent/US9284901B2/en
Publication of WO2010121888A1 publication Critical patent/WO2010121888A1/de
Priority to US14/966,663 priority patent/US9797324B2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0097Electrical control of supply of combustible mixture or its constituents using means for generating speed signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D31/00Use of speed-sensing governors to control combustion engines, not otherwise provided for
    • F02D31/001Electric control of rotation speed
    • F02D31/007Electric control of rotation speed controlling fuel supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/12Introducing corrections for particular operating conditions for deceleration
    • F02D41/123Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • F02D41/1498With detection of the mechanical response of the engine measuring engine roughness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2438Active learning methods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/32Controlling fuel injection of the low pressure type
    • F02D41/34Controlling fuel injection of the low pressure type with means for controlling injection timing or duration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/10Safety devices
    • F02N11/106Safety devices for stopping or interrupting starter actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/12Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
    • F16F15/131Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon the rotating system comprising two or more gyratory masses

Definitions

  • the invention relates to a method and a device for operating an internal combustion engine.
  • a dual-mass flywheel which has a first flywheel, which is rigidly coupled to the crankshaft of the internal combustion engine, and a second flywheel, which is coupled via a clutch to the transmission.
  • the first flywheel and the second flywheel are torsionally coupled by springs.
  • the dual mass flywheel can be described as a spring-mass system. It has one of the spring constants, the masses of the first and second flywheel and the friction coefficients dependent natural frequency.
  • the resonance frequency is usually below the idle speed. When starting and stopping the internal combustion engine, this area is normally passed through so quickly. fen, that these resonances do not occur.
  • an operation within this speed range with a resonance of the dual-mass flywheel may occur, for example, when the starter is started too early, or when the internal combustion engine is pressed in operation, for example with the clutch below its idle speed.
  • the object of the invention is to provide a method and a device for operating an internal combustion engine, with which it can be clearly recognized whether a resonance occurs, and only in the case of resonance a suitable intervention in the control takes place.
  • the object is solved by the features of the independent claims.
  • Advantageous embodiments of the invention are characterized in the subclaims.
  • the invention is characterized by a method and a corresponding device for operating an internal combustion engine, which has at least one cylinder with a combustion chamber, wherein fuel is injected into the cylinder, wherein a logic value in particular for stopping the injection of fuel in the cylinder is set, with the steps: depending on a course of a temporally high-resolution measurement signal of a speed of the internal combustion engine, a local maximum value of the speed is determined, a speed difference between the local maximum value and a current measured value of the speed is determined, and depending on the determined Speed difference, the logic value is set.
  • the logic value in particular for stopping the injection of fuel into the cylinder, is generally used to control the internal combustion engine such that by setting the logic value a measure is initiated by means of which the state of the internal combustion engine is left, in which the speed difference between the local combustion engine Maximum value and the current measured value of the speed assumes a value that leads to the setting of the logic value.
  • the logic value is preferably also designed as a logic value for reducing the torque of the internal combustion engine, wherein reducing the torque of the internal combustion engine is, in particular, stopping the injection of fuel into the cylinder.
  • a counter value is incremented as soon as the speed difference is greater than or equal to a predetermined threshold value of the speed difference.
  • the logic value is set as soon as the counter value is greater than or equal to a predetermined threshold value of the counter.
  • the measurement signal of the rotational speed of the internal combustion engine is detected with a time resolution of approximately 10 milliseconds.
  • FIG. 2 shows a block diagram of a drive train
  • FIG. 3 is a flowchart of a program executed in the control device
  • FIG. 4 shows temporal courses of signals of the internal combustion engine.
  • the intake tract 10 preferably includes a throttle valve 15, a collector 16, and a suction pipe 17.
  • the intake manifold 17 is toward a Cylinder Zl at the inlet duct into a combustion chamber 26 of the engine block 12 out.
  • the engine block 12 includes a crankshaft 18, which is coupled via a connecting rod 20 with a piston 21 of the cylinder Zl.
  • the cylinder head 13 comprises a valve drive with a gas inlet valve 22 and a gas outlet valve 24.
  • the cylinder head 13 further comprises an injection valve 28.
  • the injection valve 28 may also be arranged in the intake manifold 17.
  • the internal combustion engine also has a control device 35, with sensors that detect different measured variables and can each determine the value of the measured variables.
  • the control device 35 determines in response to at least one of the measured variables manipulated variables, which then in one or more
  • Actuating signals for controlling actuators can be implemented by means of appropriate actuators.
  • the control device 35 may also be referred to as an apparatus for operating the internal combustion engine.
  • the actuators are For example, the throttle valve 15, the gas inlet and gas outlet valves 22, 24 or the injection valve 28th
  • the sensors comprise a crankshaft angle sensor 40 which detects a crankshaft angle to which a rotational speed of the internal combustion engine can be assigned.
  • cylinder Zl In addition to the cylinder Zl further cylinders Z2 to Z4 are preferably provided, which are also associated with corresponding actuators and optionally sensors.
  • the internal combustion engine may thus comprise any number of cylinders.
  • FIG. 2 shows a block diagram of a drive train 50 with the crankshaft 18, which is coupled to a dual-mass flywheel 52.
  • the dual-mass flywheel 52 has a first flywheel 54 and a second flywheel 56.
  • the first flywheel mass 54 and the second flywheel mass 56 are coupled to one another by elastic elements 58 and / or damping elements 60.
  • the powertrain 50 has a clutch 62 and a transmission 64 that is coupled to drive wheels of the motor vehicle.
  • the dual-mass flywheel 52 acts as a mechanical low-pass filter, by means of which, in particular, a transmission of non-uniformities of the rotation of the crankshaft 18 to the gear 64 can be avoided.
  • a program For operating the internal combustion engine, a program can be stored in a program memory of the control device 35 and be processed during operation of the internal combustion engine. By means of the program measures can be taken to reduce the torque of the internal combustion engine. In particular, the supply of fuel via the injection valve 28 into the cylinder, for example into the combustion chamber 26, can be prevented.
  • a program for the sequence of the method for operating the internal combustion engine is shown in FIG.
  • a step S10 preferably close to the start of the operation of the motor vehicle, the program is started and, if necessary, variables are initialized.
  • the start is preferably at the beginning of the operation of the internal combustion engine.
  • a rotational speed N_FAST of the internal combustion engine is detected via a high-resolution measurement, preferably with a sampling rate of 10 milliseconds.
  • a local maximum value N_FAST_MAX of the rotational speed of the internal combustion engine is determined from the determined course of the rotational speed N FAST of the internal combustion engine.
  • the local maximum value N_FAST_MAX is in particular the most recent local maximum of the curve of the rotational speed N_FAST of the internal combustion engine.
  • a rotational speed difference N_FAST_DIF between the local maximum value N_FAST_MAX and a current measured value N_FAST_MES of the rotational speed is determined.
  • step S18 it is checked whether the speed difference N_FAST_DIF is greater than or equal to a predetermined threshold value C_N_FAST_DIF_MAX of the speed difference. If it is determined in step S18 that the rotational speed difference N FAST DIF is smaller than the predetermined threshold value C_N_FAST_DIF_MAX of the rotational speed difference, the program proceeds to step S16. If the speed difference N FAST DIF is greater than or equal to the threshold C_N_FAST_DIFJMAX the speed difference, the program is continued in a further step S20.
  • step S20 a counter value CTR_N_DIF_MAX is incremented.
  • step S22 it is checked whether the counter value CTR_N_DIF_MAX is greater than or equal to a predetermined threshold value C_CTR_N_DIF_MAX of the counter. If this is not fulfilled, the program is continued in step S14. If the counter value CTR_N_DIF_MAX is greater than or equal to the predetermined threshold value C_CTR_N_DIF_MAX of the counter, the program proceeds to step S24.
  • a logic value LV_FCUT is set to a logical value TRUE.
  • the setting of the logic value LV_FCUT to TRUE is linked to the initiation of a measure by means of which the state of the internal combustion engine is exited, in which the speed difference N_FAST_DIF assumes a value which leads to the setting of the logic value LV_FCUT.
  • a measure is taken to reduce the torque of the internal combustion engine.
  • the supply of fuel via the injection valve 28 is prevented in the cylinder.
  • step S26 the program for operating the internal combustion engine ends.
  • FIG. 4 shows characteristics of a high-resolution measurement signal of the engine speed N_FAST, the local maximum value N_FAST_MAX of the engine speed, the counter value CTR_N_DIF_MAX and the logic value LV_FCUT.
  • the measuring signal of the rotational speed N_FAST of the internal combustion engine is preferably detected with a time resolution of approximately 10 milliseconds, as can be seen from the values plotted on the time axis T by way of example. At a resolution of 10 milliseconds, dynamics of the engine speed N FAST, as specific to the occurrence of natural vibrations of the dual mass flywheel 52, can be detected particularly well.
  • the signal of the local maximum value N_FAST_MAX of the rotational speed is designed in accordance with a slave pointer, wherein when a local maximum of the rotational speed N FAST of the internal combustion engine of the slave pointer is set to the value of the achieved local maximum value N FAST MAX of the rotational speed.
  • the slave pointer remains at the value of the achieved local maximum value N_FAST_MAX of the rotational speed until a local minimum N_FAST_MIN of the rotational speed of the internal combustion engine has been reached. Then the slave pointer is set to zero.
  • N FAST MIN the speed of the internal combustion engine is smaller than the predetermined threshold value C_N_FAST_DIF_MAX the speed difference, the counter value CTR_N_DIF_MAX remains unchanged (time T 2 in Figure 4). If the counter value CTR_N_DIF_MAX reaches a value which is greater than or equal to the predetermined threshold value C_CTR_N_DIF_MAX of the counter (in the example of FIG. 4 this threshold C_CTR_N_DIF_MAX is equal to three), then the logic value LV_FCUT for stopping the injection of fuel into the cylinder becomes the logical value TRUE set (time T_3 in Figure 4).
  • the state of the internal combustion engine can be left in which an excitation of natural oscillations of the dual-mass flywheel 52 coupled to the internal combustion engine via the crankshaft 18 can occur.
  • the injection of fuel into the cylinder of the internal combustion engine can be reduced or adjusted as soon as it is detected that the high-resolution measurement signal of the rotational speed N_FAST of the internal combustion engine has a dynamic which is known to lead to a self-resonance of the dual-mass flywheel 52.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)

Abstract

Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine, mit mindestens einem Zylinder (Z1-Z4) mit einem Brennraum (26). In den Zylinder wird Kraftstoff eingespritzt. Mittels des Verfahrens wird ein Logikwert (LV_FCUT) insbesondere zum Abstellen des Einspritzens von Kraftstoff in den Zylinder eingestellt, mit den Schritten: abhängig von einem Verlauf eines zeitlich hoch aufgelösten Messsignals einer Drehzahl (N_FAST) der Brennkraftmaschine wird ein lokaler Maximalwert (N_FAST_MAX) der Drehzahl ermittelt, eine Drehzahldifferenz (N_FAST_DIF) zwischen dem lokalen Maximalwert (N_FAST_MAX) und einem aktuellen Messwert (N_FAST_MES) der Drehzahl wird ermittelt, und abhängig von der ermittelten Drehzahldifferenz (N_FAST_DIF) wird der Logikwert (LV_FCUT) gesetzt.

Description

Beschreibung
Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
Die Erfindung betrifft ein Verfahren und eine Vorrichtung zum Betreiben einer Brennkraftmaschine.
Aus dem Fachbuch "Handbuch Verbrennungsmotor", Herausgeber Richard von Basshuysen, Fred Schäfer, 2. Auflage, Vieweg &
Sohn Verlagsgesellschaft mbH, Juni 2002, Seite 79 bis 80, ist ein Zweimassenschwungrad bekannt, das eine erste Schwungmasse hat, die starr mit der Kurbelwelle der Brennkraftmaschine gekoppelt ist, und eine zweite Schwungmasse, die über eine Kupplung mit dem Getriebe gekoppelt ist. Die erste Schwungmasse und die zweite Schwungmasse sind durch Federn drehelastisch miteinander gekoppelt. Über die Federn können dabei zum einen die aus Unwuchten der bewegten Massen im Antriebsstrang resultierenden Ungleichmäßigkeiten und zum anderen die aus den Bewegungen der Kolben der Brennkraftmaschine resultierenden Drehungleichförmigkeiten gedämpft werden. Damit kann ein gutes Schwingungsverhalten des Antriebsstrangs und damit ein hoher Fahrkomfort erreicht werden.
Das Zweimassenschwungrad kann als Feder-Masse-System beschrieben werden. Es weist eine von den Federkonstanten, den Massen der ersten und zweiten Schwungmasse und den Reibwerten abhängige Eigenfrequenz auf.
Bei bestimmten Drehzahlen der Brennkraftmaschine kann es zu Resonanzen kommen, die Auswirkungen auf die Laufruhe haben können. Die Resonanzfrequenz liegt in der Regel unterhalb der Leerlaufdrehzahl . Beim Starten und Stoppen der Brennkraftmaschine wird dieser Bereich normalerweise so schnell durchlau- fen, dass die genannten Resonanzen nicht auftreten. Ein Betrieb innerhalb dieses Drehzahlbereiches mit einer Resonanz des Zweimassenschwungrads kann aber vorkommen, wenn beispielsweise beim Start der Anlasser zu früh ausgespurt wird, oder wenn die Brennkraftmaschine im Betrieb beispielsweise mit der Kupplung unter ihre Leerlaufdrehzahl gedrückt wird. Andererseits kann es einen Betrieb innerhalb dieses Drehzahlbereiches geben, ohne dass Resonanz auftritt, beispielsweise beim Start der Brennkraftmaschine bei sehr tiefen Temperatu- ren.
Für den Fall, dass eine Resonanz auftritt, sollten geeignete Eingriffe in die Steuerung der Brennkraftmaschine erfolgen, um eine Beschädigung des Zweimassenschwungrads zu vermeiden. Diese Eingriffe sollen im Wesentlichen das Drehmoment der
Brennkraftmaschine verringern, zum Beispiel durch Abschalten der Einspritzung. Für den Fall, dass die Brennkraftmaschine in dem entsprechenden Drehzahlbereich läuft, ohne dass eine Resonanz auftritt, darf aber keine Reduzierung des Drehmo- ments oder gar Abschalten der Einspritzung erfolgen, da sonst beispielsweise ein Start der Brennkraftmaschine bei tiefen Temperaturen nicht möglich wäre.
Aufgabe der Erfindung ist es, ein Verfahren und eine Vorrich- tung zum Betreiben einer Brennkraftmaschine zu schaffen, mit dem eindeutig erkannt werden kann, ob eine Resonanz auftritt, und nur im Resonanzfall ein geeigneter Eingriff in die Steuerung erfolgt.
Die Aufgabe wird gelöst durch die Merkmale der unabhängigen Patentansprüche. Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen gekennzeichnet. Die Erfindung zeichnet sich aus durch ein Verfahren und eine entsprechende Vorrichtung zum Betreiben einer Brennkraftmaschine, das bzw. die mindestens einen Zylinder mit einem Brennraum aufweist, wobei in den Zylinder Kraftstoff einge- spritzt wird, wobei ein Logikwert insbesondere zum Abstellen des Einspritzens von Kraftstoff in den Zylinder eingestellt wird, mit den Schritten: abhängig von einem Verlauf eines zeitlich hoch aufgelösten Messsignals einer Drehzahl der Brennkraftmaschine wird ein lokaler Maximalwert der Drehzahl ermittelt, eine Drehzahldifferenz zwischen dem lokalen Maximalwert und einem aktuellen Messwert der Drehzahl wird ermittelt, und abhängig von der ermittelten Drehzahldifferenz wird der Logikwert gesetzt.
Der Logikwert insbesondere zum Abstellen des Einspritzens von Kraftstoff in den Zylinder dient im Allgemeinen der Steuerung der Brennkraftmaschine, derart, dass durch Setzen des Logikwerts eine Maßnahme eingeleitet wird, mittels der der Zustand der Brennkraftmaschine verlassen wird, in der die Drehzahl- differenz zwischen dem lokalen Maximalwert und dem aktuellen Messwert der Drehzahl einen Wert annimmt, der zum Setzen des Logikwerts führt. Der Logikwert ist vorzugsweise auch als Logikwert zu einem Reduzieren des Drehmoments der Brennkraftmaschine ausgebildet, wobei das Reduzieren des Drehmoments der Brennkraftmaschine insbesondere das Abstellen des Einspritzens von Kraftstoff in den Zylinder ist.
Dies hat den Vorteil, dass die Brennkraftmaschine abgestellt werden kann, sobald erkannt wird, dass Eigenschwingungen ei- nes mit der Brennkraftmaschine gekoppelten Zweimassenschwungrads auftreten. Zum Erkennen der möglichen Eigenschwingungen ist lediglich der Verlauf des Messsignals der Drehzahl der Brennkraftmaschine in einer zeitlich hoch aufgelösten Form erforderlich. Neben der Drehzahlmessung ist keine weitere Messung von Größen erforderlich, um die Eigenschwingungen zu erkennen. Damit ist ein sehr zuverlässiges Erkennen der Eigenschwingungen möglich.
Gemäß einer vorteilhaften Ausführungsform wird ein Zählerwert inkrementiert, sobald die Drehzahldifferenz größer oder gleich einem vorgegebenen Schwellenwert der Drehzahldifferenz ist. Der Logikwert wird gesetzt, sobald der Zählerwert größer oder gleich einem vorgegebenen Schwellenwert des Zählers ist.
Dies hat den Vorteil, dass die Zahl der Variationen der Drehzahl, die im Hinblick auf ihre Größe zu den Eigenschwingungen des Zweimassenschwungrads beitragen können, vorgegeben werden kann .
Gemäß einer weiteren vorteilhaften Ausführungsform wird das Messsignal der Drehzahl der Brennkraftmaschine mit einer zeitlichen Auflösung von ungefähr 10 Millisekunden erfasst.
Dies hat den Vorteil, dass bei einer derartigen Abtastrate
Variationen der Drehzahl der Brennkraftmaschine, wie sie für das Feststellen von Eigenschwingungen des Zweimassenschwungrads erforderlich sind, gut bestimmt werden können.
Ausführungsbeispiele sind im Folgenden anhand der schematischen Zeichnungen näher erläutert.
Es zeigen:
Figur 1 eine Brennkraftmaschine mit einer Steuervorrichtung,
Figur 2 ein Blockschaltbild eines Antriebsstrangs, Figur 3 ein Ablaufdiagramm eines Programms, das in der Steuervorrichtung abgearbeitet wird, und
Figur 4 zeitliche Verläufe von Signalen der Brennkraftma- schine.
Elemente gleicher Konstruktion oder Funktion sind figurenübergreifend mit den gleichen Bezugszeichen gekennzeichnet.
In Figur 1 ist eine Brennkraftmaschine gezeigt, mit einem Ansaugtrakt 10, einem Motorblock 12, einem Zylinderkopf 13 und einem Abgastrakt 14. Der Ansaugtrakt 10 umfasst vorzugsweise eine Drosselklappe 15, einen Sammler 16, und ein Saugrohr 17. Das Saugrohr 17 ist hin zu einem Zylinder Zl beim Einlasska- nal in einen Brennraum 26 des Motorblocks 12 geführt. Der Motorblock 12 umfasst eine Kurbelwelle 18, welche über eine Pleuelstange 20 mit einem Kolben 21 des Zylinders Zl gekoppelt ist.
Der Zylinderkopf 13 umfasst einen Ventiltrieb mit einem Gaseinlassventil 22 und einem Gasauslassventil 24. Der Zylinderkopf 13 umfasst ferner ein Einspritzventil 28. Alternativ kann das Einspritzventil 28 auch in dem Saugrohr 17 angeordnet sein.
Die Brennkraftmaschine weist ferner eine Steuervorrichtung 35 auf, mit Sensoren, die verschiedene Messgrößen erfassen und jeweils den Wert der Messgrößen ermitteln können. Die Steuervorrichtung 35 ermittelt in Abhängigkeit von mindestens einer der Messgrößen Stellgrößen, die dann in ein oder mehrere
Stellsignale zum Steuern von Stellgliedern mittels entsprechender Stellantriebe umgesetzt werden können. Die Steuervorrichtung 35 kann auch als Vorrichtung zum Betreiben der Brennkraftmaschine bezeichnet werden. Die Stellglieder sind beispielsweise die Drosselklappe 15, die Gaseinlass- und Gasauslassventile 22, 24 oder das Einspritzventil 28.
Die Sensoren umfassen einen Kurbelwellenwinkelsensor 40, der einen Kurbelwellenwinkel erfasst, dem eine Drehzahl der Brennkraftmaschine zugeordnet werden kann.
Neben dem Zylinder Zl sind bevorzugt noch weitere Zylinder Z2 bis Z4 vorgesehen, denen ebenfalls entsprechende Stellglieder und gegebenenfalls Sensoren zugeordnet sind. Die Brennkraftmaschine kann somit eine beliebige Anzahl an Zylindern umfassen .
Figur 2 zeigt ein Blockschaltbild eines Antriebsstrangs 50 mit der Kurbelwelle 18, die mit einem Zweimassenschwungrad 52 gekoppelt ist. Das Zweimassenschwungrad 52 weist eine erste Schwungmasse 54 und eine zweite Schwungmasse 56 auf. Die erste Schwungmasse 54 und die zweite Schwungmasse 56 sind durch elastische Elemente 58 und/oder dämpfende Elemente 60 mitein- ander gekoppelt. Der Antriebsstrang 50 hat eine Kupplung 62 und ein Getriebe 64, das mit Antriebsrädern des Kraftfahrzeugs gekoppelt ist. Das Zweimassenschwungrad 52 wirkt als mechanischer Tiefpassfilter, mittels dem insbesondere eine Übertragung von Ungleichförmigkeiten der Drehung der Kurbel- welle 18 auf das Getriebe 64 vermieden werden können.
Zum Betreiben der Brennkraftmaschine kann in einem Programmspeicher der Steuervorrichtung 35 ein Programm gespeichert sein und während des Betriebs der Brennkraftmaschine abgear- beitet werden. Mittels des Programms können Maßnahmen zum Reduzieren des Drehmoments der Brennkraftmaschine ergriffen werden. Insbesondere kann die Zufuhr von Kraftstoff über das Einspritzventil 28 in den Zylinder, beispielsweise in den Brennraum 26, unterbunden werden. Ein Programm für den Ablauf des Verfahrens zum Betreiben der Brennkraftmaschine ist in Figur 3 gezeigt.
In einem Schritt SlO, bevorzugt zeitnah zum Start des Betriebs des Kraftfahrzeugs, wird das Programm gestartet und es werden gegebenenfalls Variablen initialisiert. Der Start erfolgt bevorzugt zu Beginn des Betriebs der Brennkraftmaschine .
In einem Schritt S12 wird eine Drehzahl N_FAST der Brennkraftmaschine über eine zeitlich hoch aufgelöste Messung, vorzugsweise mit einer Abtastrate von 10 Millisekunden er- fasst .
In einem Schritt S14 wird ein lokaler Maximalwert N_FAST_MAX der Drehzahl der Brennkraftmaschine aus dem ermittelten Verlauf der Drehzahl N FAST der Brennkraftmaschine ermittelt. Der lokale Maximalwert N_FAST_MAX ist insbesondere das jüngs- te lokale Maximum des Verlaufs der Drehzahl N_FAST der Brennkraftmaschine .
In einem Schritt S16 wird eine Drehzahldifferenz N_FAST_DIF zwischen dem lokalen Maximalwert N_FAST_MAX und einem aktuel- len Messwert N_FAST_MES der Drehzahl ermittelt.
In einem Schritt S18 wird geprüft, ob die Drehzahldifferenz N_FAST_DIF größer oder gleich einem vorgegebenen Schwellenwert C_N_FAST_DIF_MAX der Drehzahldifferenz ist. Wird in dem Schritt S18 festgestellt, dass die Drehzahldifferenz N FAST DIF kleiner als der vorgegebene Schwellenwert C_N_FAST_DIF_MAX der Drehzahldifferenz ist, so wird das Programm in dem Schritt S16 fortgesetzt. Falls die Drehzahldifferenz N FAST DIF größer oder gleich dem Schwellenwert C_N_FAST_DIFJMAX der Drehzahldifferenz ist, wird das Programm in einem weiteren Schritt S20 fortgesetzt.
In dem Schritt S20 wird ein Zählerwert CTR_N_DIF_MAX inkre- mentiert.
In einem weiteren Schritt S22 wird geprüft, ob der Zählerwert CTR_N_DIF_MAX größer oder gleich einem vorgegebenen Schwellenwert C_CTR_N_DIF_MAX des Zählers ist. Falls dies nicht er- füllt ist, wird das Programm in dem Schritt S14 fortgesetzt. Falls der Zählerwert CTR_N_DIF_MAX größer oder gleich dem vorgegebenen Schwellenwert C_CTR_N_DIF_MAX des Zählers ist, wird das Programm in dem Schritt S24 fortgesetzt.
In dem Schritt S24 wird ein Logikwert LV_FCUT auf einen logischen Wert WAHR gesetzt. Das Setzen des Logikwerts LV_FCUT auf WAHR ist mit dem Einleiten einer Maßnahme verknüpft, mittels der der Zustand der Brennkraftmaschine verlassen wird, in der die Drehzahldifferenz N_FAST_DIF einen Wert annimmt, der zum Setzen des Logikwerts LV_FCUT führt. Vorzugsweise wird dazu eine Maßnahme ergriffen, um das Drehmoment der Brennkraftmaschine zu reduzieren. Insbesondere wird die Zufuhr von Kraftstoff über das Einspritzventil 28 in den Zylinder unterbunden.
In einem Schritt S26 endet das Programm zum Betreiben der Brennkraftmaschine .
In Figur 4 sind Verläufe eines zeitlich hoch aufgelösten Messsignals der Drehzahl N_FAST der Brennkraftmaschine, des lokalen Maximalwerts N_FAST_MAX der Drehzahl, des Zählerwerts CTR_N_DIF_MAX und des Logikwerts LV_FCUT dargestellt. Das Messsignal der Drehzahl N_FAST der Brennkraftmaschine wird vorzugsweise mit einer zeitlichen Auflösung von ungefähr 10 Millisekunden erfasst, wie den auf der Zeitachse T beispielhaft aufgetragenen Werten zu entnehmen ist. Bei einer Auflösung von 10 Millisekunden kann eine Dynamik der Drehzahl N FAST der Brennkraftmaschine, wie sie für das Auftreten von Eigenschwingungen des Zweimassenschwungrads 52 spezifisch ist, besonders gut erkannt werden.
Das Signal des lokalen Maximalwerts N_FAST_MAX der Drehzahl ist entsprechend einem Schleppzeiger ausgebildet, wobei bei Erreichen eines lokalen Maximums der Drehzahl N FAST der Brennkraftmaschine der Schleppzeiger auf den Wert des erreichten lokalen Maximalwerts N FAST MAX der Drehzahl gesetzt wird. Während eines Abfalls des zeitlich hoch aufgelösten
Messsignals der Drehzahl N FAST bleibt der Schleppzeiger solange auf dem Wert des erreichten lokalen Maximalwerts N_FAST_MAX der Drehzahl bis ein lokales Minimum N_FAST_MIN der Drehzahl der Brennkraftmaschine erreicht ist. Dann wird der Schleppzeiger auf Null gesetzt.
Ist die Drehzahldifferenz N_FAST_DIF zwischen dem lokalen Maximalwert N FAST MAX und dem erreichten lokalen Minimum N_FAST_MIN der Drehzahl der Brennkraftmaschine größer oder gleich dem vorgegebenen Schwellenwert C_N_FAST_DIF_MAX der Drehzahldifferenz, so wird der Zählerwert CTR_N_DIF_MAX in- krementiert (Zeitpunkte T 1 und T 3 in Figur 4) .
Ist die Drehzahldifferenz N FAST DIF zwischen dem lokalen Ma- ximalwert N_FAST_MAX und dem erreichten lokalen Minimum
N FAST MIN der Drehzahl der Brennkraftmaschine kleiner als der vorgegebene Schwellenwert C_N_FAST_DIF_MAX der Drehzahldifferenz, so bleibt der Zählerwert CTR_N_DIF_MAX unverändert (Zeitpunkt T 2 in Figur 4) . Erreicht der Zählerwert CTR_N_DIF_MAX einen Wert, der größer oder gleich dem vorgegebenen Schwellenwert C_CTR_N_DIF_MAX des Zählers ist (im Beispiel der Figur 4 ist dieser Schwellenwert C_CTR_N_DIF_MAX gleich Drei), so wird der Logikwert LV_FCUT zum Abstellen des Einspritzens von Kraftstoff in den Zylinder auf den logischen Wert WAHR gesetzt (Zeitpunkt T_3 in Figur 4 ) .
Mittels dieses Verfahrens kann der Zustand der Brennkraftma- schine verlassen werden, in dem eine Anregung von Eigenschwingungen des über die Kurbelwelle 18 mit der Brennkraftmaschine gekoppelten Zweimassenschwungrads 52 auftreten kann, Insbesondere kann die Einspritzung von Kraftstoff in den Zylinder der Brennkraftmaschine reduziert oder eingestellt wer- den, sobald erkannt wird, dass das zeitlich hoch aufgelöste Messsignal der Drehzahl N_FAST der Brennkraftmaschine eine Dynamik aufweist, von der bekannt ist, dass sie zu einer Eigenresonanz des Zweimassenschwungrads 52 führen kann.
Besonders vorteilhaft ist, dass das Verhindern der möglichen Anregung von Eigenschwingungen des Zweimassenschwungrads 52 lediglich die Kenntnis des Verlaufs des Messsignals der Drehzahl N_FAST der Brennkraftmaschine in der zeitlich hoch aufgelösten Form erfordert. Es müssen insbesondere keine weite- ren Messgrößen ermittelt werden, um eine Unterscheidung zwischen dem Fall einer Anregung von Eigenschwingungen des Zweimassenschwungrads 52 und einem Betriebsfall ohne eine derartige Anregung zu ermöglichen. So kann insbesondere bei einem Start der Brennkraftmaschine bei tiefen Außentemperaturen durch das beschriebene Verfahren sowohl ein unnötiges Abstellen der Einspritzung von Kraftstoff in den Zylinder der Brennkraftmaschine vermieden als auch ein sicheres Detektie- ren der Anregung von Eigenschwingungen des Zweimassenschwung- rads 52 erreicht werden, da durch das beschriebene Verfahren das Laufverhalten der Brennkraftmaschine direkt ermittelt und nicht mittels weiterer Messgrößen und eines Modells lediglich näherungsweise abgebildet wird. In entsprechender Weise kann bei einem fehlerhaften Kupplungsverhalten des Fahrers ein sicheres und zuverlässiges Detektieren der Anregung von Eigenschwingungen des Zweimassenschwungrads 52 erreicht werden.
Insgesamt sind damit ein sehr zuverlässiges Erkennen der mög- liehen Anregung von Eigenschwingungen des Zweimassenschwungrads 52 und die Vermeidung von Fehlinterpretationen der Messergebnisse anderer Signalgeber ermöglicht.

Claims

Patentansprüche
1. Verfahren zum Betreiben einer Brennkraftmaschine, die mindestens einen Zylinder (Z1-Z4) mit einem Brennraum (26) aufweist, wobei in den Zylinder (Z1-Z4) Kraftstoff eingespritzt wird, wobei mittels des Verfahrens ein Logikwert (LV_FCUT) insbesondere zum Abstellen des Einspritzens von Kraftstoff in den Zylinder (Z1-Z4) eingestellt wird, mit den Schritten: - abhängig von einem Verlauf eines zeitlich hoch aufgelösten Messsignals einer Drehzahl (N_FAST) der Brennkraftmaschine wird ein lokaler Maximalwert (N FAST MAX) der Drehzahl ermittelt, eine Drehzahldifferenz (N FAST DIF) zwischen dem lokalen Maximalwert (N_FAST_MAX) und einem aktuellen Messwert (N_FAST_MES) der Drehzahl wird ermittelt, und abhängig von der ermittelten Drehzahldifferenz (N_FAST_DIF) wird der Logikwert (LV_FCUT) gesetzt.
2. Verfahren nach Anspruch 1, bei dem ein Zählerwert (CTR_N_DIF_MAX) inkrementiert wird, sobald die Drehzahldifferenz (N_FAST_DIF) größer oder gleich einem vorgegebenen Schwellenwert (C_N_FAST_DIF_MAX) der Drehzahldifferenz ist, und - der Logikwert (LV_FCUT) gesetzt wird, sobald der Zählerwert (CTR_N_DIF_MAX) größer oder gleich einem vorgegebenen Schwellenwert (C_CTR_N_DIF_MAX) des Zählers ist.
3 Verfahren nach Anspruch 1 oder 2, bei dem das Messsignal der Drehzahl (N_FAST) der Brennkraftmaschine mit einer zeitlichen Auflösung von ungefähr 10 Millisekunden er- fasst wird.
4. Vorrichtung zum Betreiben einer Brennkraftmaschine, die mindestens einen Zylinder (Z1-Z4) mit einem Brennraum (26) aufweist, der aus gebildet ist zum Einspritzen von Kraftstoff in den Zylinder, wobei die Vorrichtung ausge- bildet ist zum Einstellen eines Logikwerts (LV_FCUT) insbesondere zum Abstellen des Einspritzens von Kraftstoff in den Zylinder (Z1-Z4), zum Ermitteln eines lokalen Maximalwerts (N FAST MAX) der Drehzahl abhängig von einem Verlauf eines zeitlich hoch aufgelösten Messsignals einer Drehzahl (N FAST) der Brennkraftmaschine, zum Ermitteln einer Drehzahldifferenz (N FAST DIF) zwischen dem lokalen Maximalwert (N_FAST_MAX) und einem aktuellen Messwert (N_FAST_MES) der Drehzahl, und - zum Setzen des Logikwerts (LV_FCUT) in Abhängigkeit von der ermittelten Drehzahldifferenz (N FAST DIF) .
PCT/EP2010/054181 2009-04-20 2010-03-30 Verfahren und vorrichtung zum betreiben einer brennkraftmaschine WO2010121888A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201080017528.XA CN102405343B (zh) 2009-04-20 2010-03-30 用于使得内燃机工作的方法和装置
KR1020117027561A KR101698355B1 (ko) 2009-04-20 2010-03-30 내연 기관의 작동 방법 및 장치
US13/265,226 US9284901B2 (en) 2009-04-20 2010-03-30 Method and device for operating an internal combustion engine
US14/966,663 US9797324B2 (en) 2009-04-20 2015-12-11 Method and device for operating an internal combustion engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009018081.8 2009-04-20
DE102009018081A DE102009018081B4 (de) 2009-04-20 2009-04-20 Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/265,226 A-371-Of-International US9284901B2 (en) 2009-04-20 2010-03-30 Method and device for operating an internal combustion engine
US14/966,663 Continuation US9797324B2 (en) 2009-04-20 2015-12-11 Method and device for operating an internal combustion engine

Publications (1)

Publication Number Publication Date
WO2010121888A1 true WO2010121888A1 (de) 2010-10-28

Family

ID=42121405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/054181 WO2010121888A1 (de) 2009-04-20 2010-03-30 Verfahren und vorrichtung zum betreiben einer brennkraftmaschine

Country Status (5)

Country Link
US (2) US9284901B2 (de)
KR (1) KR101698355B1 (de)
CN (1) CN102405343B (de)
DE (1) DE102009018081B4 (de)
WO (1) WO2010121888A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011115970A1 (de) 2011-10-13 2013-04-18 Avl Deutschland Gmbh Verfahren und Vorrichtung zur Steuerung einer Verbrennungskraftmaschine
DE102011115927A1 (de) 2011-10-13 2013-04-18 Audi Ag Verfahren und Vorrichtung zum Erkennen von Drehzahl-/Drehmomentschwankungen in einer Antriebsvorrichtung
DE102011115972A1 (de) 2011-10-13 2013-04-18 Avl Deutschland Gmbh Verfahren und Vorrichtung zum Steuern einer Antriebsvorrichtung insbesondere für ein Kraftfahrzeug
EP2664772A1 (de) * 2011-03-28 2013-11-20 Honda Motor Co., Ltd. Steuervorrichtung für einen verbrennungsmotor

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8453620B2 (en) * 2010-05-25 2013-06-04 GM Global Technology Operations LLC Systems and methods for improved engine start-stop response
DE202013009182U1 (de) * 2013-10-17 2015-01-19 Gm Global Technology Operations, Inc. Zweimassenschwungradschutz
DE102013223396B4 (de) * 2013-11-15 2019-03-07 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Vermeidung einer fehlerhaften Verbrennungsaussetzerfehlererkennung in einem Kraftfahrzeug
DE102014219043A1 (de) * 2014-09-22 2016-03-24 Volkswagen Ag Antriebsstrang einer Brennkraftmaschine und Verfahren zur Erkennung von Zündaussetzern der Brennkraftmaschine
KR20160063848A (ko) * 2014-11-27 2016-06-07 현대자동차주식회사 차량의 dmf 보호 방법, 및 차량의 dmf 보호 장치
DE102015101005B4 (de) * 2015-01-23 2022-12-08 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren zum Starten eines Kraftfahrzeugmotors sowie Motorsteuergerät zur Steuerung eines Kraftfahrzeugmotors
DE102018207400A1 (de) * 2018-05-14 2019-11-14 Zf Friedrichshafen Ag Verfahren zum Schützen eines Torsionsdämpfers für ein Fahrzeug
JP7431512B2 (ja) * 2019-05-23 2024-02-15 日立Astemo株式会社 内燃機関制御装置
CN111737830B (zh) * 2020-05-14 2024-05-17 广州明珞汽车装备有限公司 多轴气缸的逻辑块生成方法、系统、装置和存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5985443A (ja) * 1982-11-08 1984-05-17 Toyota Motor Corp 二分割フライホイ−ルのトルク変動低減装置
EP0382872A1 (de) * 1989-02-17 1990-08-22 Robert Bosch Gmbh Schwingungsdämpfung in einem Antriebsstrang mit einem Zweimassenschwungrad
EP0655554A1 (de) * 1993-11-30 1995-05-31 Société Anonyme dite: REGIE NATIONALE DES USINES RENAULT Verfahren zur Korrektur von Drehmomentstössen einer inneren Brennkraftmaschine
EP0831225A2 (de) * 1996-09-18 1998-03-25 Toyota Jidosha Kabushiki Kaisha Brennstoff-Einspritzvorrichtung

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4050296A (en) * 1976-05-07 1977-09-27 United Technologies Corporation Relative compression of an internal combustion engine
JPS56146068A (en) * 1980-04-11 1981-11-13 Nissan Motor Co Ltd Ignition energy control apparatus
JPS60209645A (ja) * 1984-04-04 1985-10-22 Nissan Motor Co Ltd 内燃機関の燃料供給装置
US4674485A (en) 1985-06-03 1987-06-23 Swanson Robert E Patient controllable traction device
JP2843871B2 (ja) * 1990-05-14 1999-01-06 本田技研工業株式会社 内燃エンジンの燃焼異常検出装置
DE4100527C2 (de) * 1991-01-10 2001-11-29 Bosch Gmbh Robert Verfahren und Vorrichtung zum Bestimmen von Aussetzern in einer Brennkraftmaschine
JPH05306752A (ja) * 1992-04-28 1993-11-19 Jatco Corp 自動変速機の制御装置
DE59305782D1 (de) * 1993-06-28 1997-04-17 Siemens Ag Verfahren zum Erkennen von Verbrennungsaussetzern bei mehreren Zylindern
DE4420290A1 (de) * 1994-06-10 1995-12-14 Bosch Gmbh Robert Verfahren zum Erkennen eines undichten Auslaßventils
JP3213227B2 (ja) * 1995-11-21 2001-10-02 本田技研工業株式会社 自動変速機のトルク検出及び制御装置
DE19941171B4 (de) * 1999-08-30 2006-12-14 Robert Bosch Gmbh Verfahren zum Bestimmen des von einer Brennkraftmaschine aufgebrachten Moments
DE19956936A1 (de) * 1999-11-26 2001-05-31 Bosch Gmbh Robert Katalysatorschutzverfahren
JP2002138893A (ja) * 2000-11-01 2002-05-17 Denso Corp 内燃機関の燃焼状態検出装置
JP4029581B2 (ja) * 2000-11-15 2008-01-09 トヨタ自動車株式会社 内燃機関運転停止時回転制御装置
JP4409800B2 (ja) * 2001-11-28 2010-02-03 三菱電機株式会社 エンジン制御装置
JP3614145B2 (ja) * 2002-03-18 2005-01-26 日産自動車株式会社 ハイブリッド車の制御装置
JP2005023856A (ja) * 2003-07-03 2005-01-27 Nissan Motor Co Ltd エンジンの排気浄化装置
JP4017575B2 (ja) * 2003-08-28 2007-12-05 本田技研工業株式会社 内燃機関の制御装置
DE102006018958A1 (de) * 2006-04-24 2007-10-25 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine und Steuergerät hierfür
JP2008144589A (ja) * 2006-12-06 2008-06-26 Denso Corp 内燃機関の制御装置
US7708127B2 (en) * 2007-02-06 2010-05-04 Gm Global Technology Operations, Inc. Fluid model control of electro-viscous fan clutch
DE102007019641A1 (de) * 2007-04-26 2008-10-30 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
JP4424380B2 (ja) * 2007-06-20 2010-03-03 株式会社デンソー 噴射量制御装置およびそれを用いた燃料噴射システム
JP4433018B2 (ja) * 2007-08-31 2010-03-17 トヨタ自動車株式会社 内燃機関制御装置
JP4483927B2 (ja) * 2007-10-26 2010-06-16 トヨタ自動車株式会社 多気筒内燃機関の失火気筒特定装置
JP4600469B2 (ja) * 2007-12-11 2010-12-15 株式会社デンソー 燃料性状検出装置、燃料性状検出方法
JP2009261084A (ja) * 2008-04-15 2009-11-05 Yamaha Motor Electronics Co Ltd エンジンのアイドリング安定化装置
JP4670912B2 (ja) * 2008-08-01 2011-04-13 トヨタ自動車株式会社 内燃機関制御装置
JP2010127105A (ja) * 2008-11-25 2010-06-10 Toyota Motor Corp 内燃機関制御装置
JP5613321B2 (ja) * 2011-03-28 2014-10-22 本田技研工業株式会社 内燃機関の制御装置
GB2489499B (en) * 2011-03-31 2016-08-24 Ford Global Tech Llc A method and system for controlling an engine
DE102011115927A1 (de) * 2011-10-13 2013-04-18 Audi Ag Verfahren und Vorrichtung zum Erkennen von Drehzahl-/Drehmomentschwankungen in einer Antriebsvorrichtung
DE102011115972A1 (de) * 2011-10-13 2013-04-18 Avl Deutschland Gmbh Verfahren und Vorrichtung zum Steuern einer Antriebsvorrichtung insbesondere für ein Kraftfahrzeug
CN104198181B (zh) * 2014-07-31 2017-02-01 长城汽车股份有限公司 双质量飞轮的共振检测方法及系统
KR20160063848A (ko) * 2014-11-27 2016-06-07 현대자동차주식회사 차량의 dmf 보호 방법, 및 차량의 dmf 보호 장치
CN104929786A (zh) * 2015-05-12 2015-09-23 安徽江淮汽车股份有限公司 车辆断油控制方法及装置
DE102015211178B4 (de) * 2015-06-18 2018-05-09 Schaeffler Technologies AG & Co. KG Verfahren zur Erkennung von Zündaussetzern einer Brennkraftmaschine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5985443A (ja) * 1982-11-08 1984-05-17 Toyota Motor Corp 二分割フライホイ−ルのトルク変動低減装置
EP0382872A1 (de) * 1989-02-17 1990-08-22 Robert Bosch Gmbh Schwingungsdämpfung in einem Antriebsstrang mit einem Zweimassenschwungrad
EP0655554A1 (de) * 1993-11-30 1995-05-31 Société Anonyme dite: REGIE NATIONALE DES USINES RENAULT Verfahren zur Korrektur von Drehmomentstössen einer inneren Brennkraftmaschine
EP0831225A2 (de) * 1996-09-18 1998-03-25 Toyota Jidosha Kabushiki Kaisha Brennstoff-Einspritzvorrichtung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Handbuch Verbrennungsmotor", June 2002, VIEWEG & SOHN VERLAGSGESELLSCHAFT MBH, pages: 79 - 80

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2664772A1 (de) * 2011-03-28 2013-11-20 Honda Motor Co., Ltd. Steuervorrichtung für einen verbrennungsmotor
EP2664772A4 (de) * 2011-03-28 2014-08-20 Honda Motor Co Ltd Steuervorrichtung für einen verbrennungsmotor
US9441554B2 (en) 2011-03-28 2016-09-13 Honda Motor Co., Ltd. Control system for internal combustion engine
DE102011115970A1 (de) 2011-10-13 2013-04-18 Avl Deutschland Gmbh Verfahren und Vorrichtung zur Steuerung einer Verbrennungskraftmaschine
DE102011115927A1 (de) 2011-10-13 2013-04-18 Audi Ag Verfahren und Vorrichtung zum Erkennen von Drehzahl-/Drehmomentschwankungen in einer Antriebsvorrichtung
WO2013053461A1 (de) 2011-10-13 2013-04-18 Avl Deutschland Gmbh Verfahren und vorrichtung zum erkennen von drehzahl-/drehmomentschwankungen in einer antriebsvorrichtung
DE102011115972A1 (de) 2011-10-13 2013-04-18 Avl Deutschland Gmbh Verfahren und Vorrichtung zum Steuern einer Antriebsvorrichtung insbesondere für ein Kraftfahrzeug
US9250157B2 (en) 2011-10-13 2016-02-02 Audi Ag Method and device for recognizing rotational speed / torque fluctuations in a drive device

Also Published As

Publication number Publication date
CN102405343B (zh) 2015-07-29
US20120037120A1 (en) 2012-02-16
DE102009018081B4 (de) 2011-01-13
US20160097335A1 (en) 2016-04-07
DE102009018081A1 (de) 2010-11-04
US9284901B2 (en) 2016-03-15
KR101698355B1 (ko) 2017-01-20
KR20120015444A (ko) 2012-02-21
US9797324B2 (en) 2017-10-24
CN102405343A (zh) 2012-04-04

Similar Documents

Publication Publication Date Title
DE102009018081B4 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
EP2238339B1 (de) Verfahren zum betreiben einer hybridantriebsvorrichtung
DE102005012942B4 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102010017282B4 (de) Vorrichtung zur Erfassung von Moment-Unterbrechungen und Steuergerät für einen Verbrennungsmotor mit derselben
EP2071165B1 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102005049069A1 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102008050287A1 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE102012112627A1 (de) Abnormalitätsdiagnosevorrichtung für ein Verbrennungsmotorsteuersystem
DE102010031220A1 (de) Verfahren und Vorrichtung zum Betreiben eines Kraftstoffeinspritzsystems
EP1843023A2 (de) Adaptionsverfahren einer Einspritzanlage einer Brennkraftmaschine
EP2639433B1 (de) Verfahren zur Verhinderung einer Vorentflammung eines Kraftstoff-Luft-Gemisches in einem Zylinderraum einer Brennkraftmaschine
WO2014071900A1 (de) Adaption einer klopfregelung
EP2076667B1 (de) Verfahren und vorrichtung zur überwachung eines kraftstoffeinspritzsystems
EP2142783B1 (de) Verfahren und vorrichtung zur steuerung einer brennkraftmaschine
DE102013223396A1 (de) Verfahren zur Vermeidung einer fehlerhaften Verbrennungsaussetzerfehlererkennung in einem Kraftfahrzeug
DE102010039800A1 (de) Verfahren und Vorrichtung zur Erkennung des selbständigen Laufens eines Verbrennungsmotors
DE4220286C2 (de) Verfahren zur Funktionsüberprüfung eines Stellelements in einem Fahrzeug
EP2092181B1 (de) Verfahren zum betreiben einer brennkraftmaschine
DE102007045642A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine
DE102008051102B4 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE102014206262A1 (de) Erkennung einer Zustandsänderung einer Brennkraftmaschine aus Beschleunigungsmessung
EP1029168B1 (de) Verfahren zum betreiben einer brennkraftmaschine insbesondere eines kraftfahrzeugs
AT524463B1 (de) Verfahren und System zum Ermitteln einer Länge eines verstellbaren Pleuels
WO2016020083A1 (de) Verfahren zur interpretierenden erkennung einer vorentflammung in einem brennraum eines verbrennungsmotors
DE102006045892B4 (de) Verfahren und Vorrichtungen zum Regeln einer Drehzahl im Leerlauf einer Brennkraftmaschine

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080017528.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10711406

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13265226

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117027561

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 10711406

Country of ref document: EP

Kind code of ref document: A1