WO2010119620A1 - 電源回路、及び電源回路の制御プログラムを記憶したコンピュータ読取可能な記憶媒体 - Google Patents
電源回路、及び電源回路の制御プログラムを記憶したコンピュータ読取可能な記憶媒体 Download PDFInfo
- Publication number
- WO2010119620A1 WO2010119620A1 PCT/JP2010/001955 JP2010001955W WO2010119620A1 WO 2010119620 A1 WO2010119620 A1 WO 2010119620A1 JP 2010001955 W JP2010001955 W JP 2010001955W WO 2010119620 A1 WO2010119620 A1 WO 2010119620A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- circuit
- main relay
- signal
- unit
- inverter
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P27/00—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
- H02P27/04—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
- H02P27/06—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P29/00—Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
- H02P29/02—Providing protection against overload without automatic interruption of supply
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/30—Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
- F24F11/32—Responding to malfunctions or emergencies
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/70—Control systems characterised by their outputs; Constructional details thereof
- F24F11/80—Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
- F24F11/83—Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/02—Compressor control
- F25B2600/021—Inverters therefor
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/70—Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating
Definitions
- the present invention relates to a technology of a power supply circuit of an air conditioner including an inverter motor.
- a power supply circuit of an air conditioner that performs a refrigeration cycle by circulating a refrigerant through a refrigerant circuit in which a compressor, a heat source side heat exchanger, an expansion valve, and a use side heat exchanger are connected to a pipe is connected to the power supply circuit.
- a main relay is provided in the current path of the power supply circuit in order to cut off the energization to the inverter motor that drives the compressor and stop the inverter motor.
- the main relay has been provided on the AC current path between the external power source and the rectifier circuit that rectifies AC power in the power supply circuit (see, for example, Patent Document 1 (air conditioner main switch 21)). .
- the main relay is provided on the DC current path between the rectifier circuit and the smoothing section, there is no need to provide a main relay on the AC power line for each phase, and the size and cost of the power circuit can be reduced. It becomes. However, in this case, the possibility of the deterioration and welding of the main relay increases for the following reasons.
- an inverter motor is connected to the power supply circuit, a large current flows through the current path in the power supply circuit when the inverter motor is driven. Therefore, for example, when opening the main relay to stop the inverter motor that is being driven when an abnormality occurs in the refrigeration cycle, if the main relay is opened in an energized state, a large burden is applied to the contact of the main relay, The contact of the main relay may be deteriorated or welded.
- the main relay In a power circuit in which the main relay is provided on an AC current path, the main relay is opened in a non-energized state by opening the main relay at a zero cross point of AC power supplied from the external power source.
- the main relay contact point can be prevented from being deteriorated or welded.
- the main relay cannot be opened at the zero cross point in the power supply circuit provided on the DC current path. For this reason, the possibility of deterioration and welding of the main relay increases.
- the present invention has been made to solve the above-described problem, and an object thereof is to provide a power supply circuit capable of preventing deterioration and welding of a contact of a main relay when a refrigeration cycle abnormality occurs at a low cost.
- a power supply circuit is an air conditioner that performs a refrigeration cycle by circulating a refrigerant in a refrigerant circuit in which a compressor, a heat source side heat exchanger, an expansion valve, and a use side heat exchanger are pipe-connected.
- a cutoff signal that is a control signal for opening the main relay (10) is supplied to the main relay (10).
- a microcomputer having an interruption signal output unit (140) for outputting and controlling the opening / closing operation of the main relay (10) and the operation of the inverter circuit (30) And 00), A delay circuit (40) for inputting the cutoff signal and outputting the cutoff signal to the main relay (10) after a predetermined time from the input;
- the waveform forced cutoff unit (130) 110) is electrically cut off, and the cut-off signal output from the cut-off signal output unit (140) is input to the main relay (10) via the delay circuit (40), and the main relay (10) Is opened by the input of the cutoff signal.
- a power supply circuit is an air conditioner that performs a refrigeration cycle by circulating a refrigerant through a refrigerant circuit in which a compressor, a heat source side heat exchanger, an expansion valve, and a use side heat exchanger are pipe-connected.
- Machine power circuit (2) A rectifier circuit (RC) for rectifying AC power supplied from an external power source; A smoothing section (C) for smoothing the output of the rectifier circuit (RC); A main relay (10) provided on a current path between the rectifier circuit (RC) and the smoothing unit (C); An inverter circuit (30) that is connected between the smoothing section (C) and an inverter motor (M) that is a load and generates AC power to be supplied to the inverter motor (M); A microcomputer (100A) for controlling the opening / closing operation of the main relay (10) and the operation of the inverter circuit (30), The microcomputer (100A) A main relay open / close control unit (120) for outputting an open / close control signal for instructing the main relay (10) to open / close; An inverter circuit controller (110) for outputting a drive signal to the inverter circuit (30); An abnormality signal output when the abnormality detection unit (200) detecting abnormality of the air conditioner detects the abnormality is input, and the inverter circuit control
- the main relay open / close control unit (120) maintains the closed state of the main relay (10).
- a power supply circuit includes an air that performs a refrigeration cycle by circulating a refrigerant in a refrigerant circuit in which a compressor, a heat source side heat exchanger, an expansion valve, and a use side heat exchanger are pipe-connected.
- a power supply circuit (3) for a harmony machine A rectifier circuit (RC) for rectifying AC power supplied from an external power source (E); A smoothing section (C) for smoothing the output of the rectifier circuit (RC); A main relay (10) provided on a current path between the rectifier circuit (RC) and the smoothing unit (C); An inverter circuit (30B) that is connected between the smoothing section (C) and an inverter motor (M) that is a load, and generates AC power to be supplied to the inverter motor (M); A gate IC (101) for driving the inverter circuit (30B); A microcomputer (100B) for controlling the opening / closing operation of the main relay (10) and the operation of the gate IC (101), The gate IC (101) A control signal input unit (160) to which a control signal output from the microcomputer (100B) is input; A drive signal output unit (170) that outputs a drive signal to the inverter circuit (30B) in response to the control signal; An abnormality signal output when the abnormality detection unit (200)
- the microcomputer (100B) maintains the closed state of the main relay (10).
- a power supply circuit includes an air that performs a refrigeration cycle by circulating a refrigerant in a refrigerant circuit in which a compressor, a heat source side heat exchanger, an expansion valve, and a use side heat exchanger are pipe-connected.
- a power supply circuit (4) for a harmony machine A rectifier circuit (RC) for rectifying AC power supplied from an external power source (E); A smoothing section (C) for smoothing the output of the rectifier circuit (RC); A main relay (10) provided on a current path between the rectifier circuit (RC) and the smoothing unit (C); An inverter circuit (30) that is connected between the smoothing section (C) and an inverter motor (M) that is a load and generates AC power to be supplied to the inverter motor (M); A control unit (100C) for controlling the opening and closing operation of the main relay and the operation of the inverter circuit, The control unit (100C) A main relay open / close control unit (120) for outputting a control signal for instructing the main relay (10) to open and close; An inverter circuit controller (110) for outputting a drive signal to the inverter circuit (30); An abnormality signal receiving unit (180) that receives an abnormality signal that is output when the abnormality detection unit (500) that detects the abnormality of the
- a computer-readable storage medium storing a control program provides a refrigerant to a refrigerant circuit in which a compressor, a heat source side heat exchanger, an expansion valve, and a use side heat exchanger are connected by piping.
- a rectifier circuit that rectifies AC power supplied from an external power source is provided in an air conditioner that circulates and executes a refrigeration cycle, a smoothing unit that smoothes the output of the rectifier circuit, the rectifier circuit, and the smoothing unit
- a main relay provided on a current path between the inverter, an inverter circuit that is connected between the smoothing unit and the inverter motor that is a load, and generates AC power to be supplied to the inverter motor; and
- a computer-readable storage medium storing a control program for a power supply circuit comprising a microcomputer for controlling an opening / closing operation and an operation of the inverter circuit, A first step of receiving an abnormality signal notifying the abnormality of the air conditioner; A second step of stopping the inverter circuit when the abnormal signal is received; After the execution of the second step, the microcomputer is caused to execute a third step of opening the main relay after a predetermined time.
- (A) is a high voltage abnormality signal state
- (B) is a drive signal state
- (C) is a waveform output state of a current output from a power supply circuit
- (D) is an open / close state of an electromagnetic contactor. Respectively.
- (A) is a high voltage abnormality signal state
- (B) is a drive signal state
- (C) is a waveform output state of a current output from a power supply circuit
- (D) is an open / close state of an electromagnetic contactor.
- (A) shows the state of the abnormality flag
- (B) shows the waveform output state of the current output from the power supply circuit
- (C) shows the change over time of the open / close state of the magnetic contactor.
- FIG. 1 is a circuit diagram showing a power supply circuit according to Embodiment 1 of the present invention.
- the power supply circuit 1 is a power supply device that drives an inverter motor M of a compressor provided in an air conditioner (not shown), for example, and includes a rectifier circuit RC, a coil L, a main relay 10, and a capacitor C (smoothing unit).
- the voltage detection circuit 20, the shunt resistor R3, the inverter circuit 30, the delay circuit 40, and the microcomputer 100 are configured.
- the rectifier circuit RC is composed of, for example, a diode bridge circuit and is connected to output terminals T1 to T3 of an external power source E which is a commercial power source, for example, and rectifies AC power output from the external power source E.
- the coil L, the main relay 10 and the capacitor C are connected in series. Both terminals of this series circuit are connected to the respective output terminals of the rectifier circuit RC.
- the capacitor C forms a smoothing circuit and smoothes the output of the rectifier circuit RC.
- the coil L is a reactor provided for improving the power factor of the inverter circuit 30.
- the main relay 10 includes an electromagnetic contactor 11 (52C) and an unillustrated thermal relay.
- the main relay 10, more correctly, the magnetic contactor 11, is provided on the current path between the rectifier circuit RC and the capacitor C, and opens and closes the current path.
- the main relay 10 is provided on the AC power supply line closer to the external power supply E than the rectifier circuit RC.
- the main relay 10 is required for each AC power line of each phase connected to the external power source E, the power circuit 1 is increased in size and cost.
- the main relay 10 is provided on the current path between the rectifier circuit RC and the capacitor C, that is, on the direct current side. Therefore, it is necessary to provide the main relay 10 on the AC power supply line of each phase. Disappear. As a result, the size and cost of the power supply circuit can be reduced.
- the voltage detection circuit 20 is a circuit in which two voltage dividing resistors R1 and R2 are connected in series between both electrodes of the capacitor C in order to detect a voltage between both electrodes of the capacitor C.
- a connection point between the voltage dividing resistor R1 and the voltage dividing resistor R2 is connected to an inverter circuit control unit 110 included in the microcomputer 100 via a signal line L11, and a voltage value at the connection point is output to the inverter circuit control unit 110. .
- the shunt resistor R3 is connected on the current path between the capacitor C and the inverter circuit 30 in order to monitor the current for driving the inverter motor M, and the current value after passing through the shunt resistor R3 is the signal line L12. Is output to the inverter circuit control unit 110.
- the inverter circuit 30 is composed of, for example, a switching element or a diode, which is an insulated gate bipolar transistor (IGBT), and converts the DC power output from the capacitor C into AC power having a predetermined frequency. Then, the inverter motor M is driven.
- the inverter circuit 30 receives a drive signal, which is a PWM signal output from the inverter circuit control unit 110 and input to the inverter circuit 30 via the signal line L15, and turns the IGBT on and off, so that the DC power is Convert to AC power.
- a drive signal which is a PWM signal output from the inverter circuit control unit 110 and input to the inverter circuit 30 via the signal line L15, and turns the IGBT on and off, so that the DC power is Convert to AC power.
- the microcomputer 100 controls the operation of the air conditioner by controlling the drive of the inverter motor M and the fan motor that drive the compressor and the opening of a plurality of electric valves included in the air conditioner.
- the microcomputer 100 includes an inverter circuit control unit 110, a main relay opening / closing control unit 120, a waveform forced cutoff unit 130, and a cutoff signal output unit 140.
- the inverter circuit control unit 110 is connected to a connection point between the voltage dividing resistors R1 and R2 through the signal line L11, is connected to the shunt resistor R3 through the signal line L12, and is connected to the inverter circuit 30 through the signal line L13.
- Various electrical signals that are connected and sent via the signal lines L11 to L13 are monitored.
- the inverter circuit control unit 110 outputs a drive signal, which is a PWM signal, to the inverter circuit 30 through the signal line L15 so that the drive frequency of the inverter motor M becomes a predetermined value.
- the inverter circuit 30 is controlled.
- the main relay opening / closing control unit 120 outputs an opening / closing control signal for instructing opening / closing of the magnetic contactor 11 to the main relay 10 via the signal line L16, and is provided on a current path between the rectifier circuit RC and the capacitor C. Open and close the electromagnetic contactor 11.
- the main relay opening / closing control unit 120 closes the electromagnetic contactor 11 at the start of the operation of the air conditioner or at the time of return after the abnormality is resolved. At this time, the current path becomes conductive, the output from the rectifier circuit RC is supplied to the capacitor C and the inverter circuit 30, and the inverter motor M starts driving.
- the main relay opening / closing control unit 120 opens the electromagnetic contactor 11. At this time, the current path is interrupted, the output from the rectifier circuit RC is not supplied to the capacitor C and the inverter circuit 30, and the inverter motor M stops.
- a high-pressure abnormality signal output when the high-pressure switch 200 (abnormality detection unit) that detects an abnormal increase in the high-pressure pressure in the refrigeration cycle detects an abnormal increase in the high-pressure pressure is displayed on the waveform forced cutoff unit 130 as a signal line L14. Is input through.
- the waveform forced cutoff unit 130 is a so-called POE (Port Output Enable), and when the high voltage abnormality signal is input, the drive signal output from the signal line L15 by the inverter circuit control unit 110 is automatically set to high impedance, The inverter circuit control unit 110 is electrically disconnected.
- the cutoff signal output unit 140 sends a cutoff signal, which is a control signal for opening the electromagnetic contactor 11, to the main relay 10 via the signal line L17. Output to.
- the delay circuit 40 is an RC circuit that is provided on the signal line L17 and includes, for example, a resistor and a capacitor.
- the cutoff signal output by the cutoff signal output unit 140 is input to the delay circuit 40, and after a predetermined time from the input, the delay circuit 40 outputs the cutoff signal to the main relay 10.
- FIG. 2A is the state of the high voltage abnormality signal
- FIG. 2B is the state of the drive signal
- FIG. 2C is the state of the waveform output of the current output from the power supply circuit 1
- FIG. 5C The time-dependent change of the open / close state of the contactor 11 (52C) is shown.
- the waveform forced cutoff unit 130 controls the inverter circuit. Since the unit 110 is electrically cut off, the output of the drive signal from the inverter circuit control unit 110 is stopped (FIG. 2B). Therefore, the waveform output from the power supply circuit 1 is stopped (FIG. 2C), and the drive of the inverter motor M is also stopped. At this time, the cutoff signal output unit 140 outputs the cutoff signal to the main relay 10, but the cutoff signal is input to the main relay 10 via the delay circuit 40, so that waveform output from the power supply circuit 1 is stopped.
- the waveform forced cutoff unit 130 stops the inverter motor M by electrically cutting off the inverter circuit control unit 110. Therefore, when the high pressure of the refrigeration cycle increases abnormally, the inverter motor M can be stopped immediately to stop the refrigeration cycle.
- the waveform forced cutoff unit 130 is hardware that functions independently of the control program executed by the microcomputer 100, the inverter motor can be used even when an abnormal increase in high pressure occurs when an error occurs in the control program.
- the refrigeration cycle can be stopped by reliably stopping M. Therefore, the safety
- the cutoff signal output from the cutoff signal output unit 140 in response to the input of the high voltage abnormality signal to the waveform forced cutoff unit 130 is input to the main relay 10 via the delay circuit 40. Is done. Therefore, the electromagnetic contactor 11 is opened after the inverter motor M is stopped, that is, in a state where the electromagnetic contactor 11 is not energized. Therefore, when the electromagnetic contactor 11 is opened when the high pressure of the refrigeration cycle is abnormally increased, contact deterioration of the electromagnetic contactor 11 and welding can be prevented.
- FIG. 3 is a circuit diagram showing the power supply circuit 2.
- the same components as those of the power supply circuit 1 are denoted by the same reference numerals.
- the power supply circuit 2 is configured by removing the cutoff signal output unit 140 and the delay circuit 40 from the power supply circuit 1. Therefore, the microcomputer 100 ⁇ / b> A included in the power supply circuit 2 includes the inverter circuit control unit 110, the main relay opening / closing control unit 120, and the waveform forced cutoff unit 130. It becomes.
- the electromagnetic contactor 11 is in a closed state, and the high voltage abnormality signal is The operation of the power supply circuit 2 when input to the waveform forced cutoff unit 130 is different from that of the power supply circuit 1.
- 4A shows the state of the high voltage abnormality signal
- FIG. 4B shows the state of the drive signal
- FIG. 4C shows the state of waveform output of the current output from the power supply circuit 2
- FIG. 4D Indicates time-dependent changes in the open / close state of the magnetic contactor 11 (52C).
- the waveform forced cutoff unit 130 controls the inverter circuit. Since the unit 110 is electrically cut off, the output of the drive signal from the inverter circuit control unit 110 is stopped (FIG. 4B). Therefore, the waveform output from the power supply circuit 2 is stopped (FIG. 4C). At this time, the main relay open / close control unit 120 maintains the electromagnetic contactor 11 in the closed state without outputting the open / close control signal to the main relay 10 (FIG. 4D). That is, when the electromagnetic contactor 11 is in the closed state, the power supply circuit 2 is in phase with the power supply circuit 1 in that the electromagnetic contactor 11 remains closed even if the high voltage abnormality signal is input to the waveform forced cutoff unit 130. Different.
- the main relay switching control unit 120 maintains the electromagnetic contactor 11 in the closed state when the high pressure of the refrigeration cycle is abnormally increased, so that the electromagnetic contactor 11 is opened when energized. Degradation and welding of the generated contact of the electromagnetic contactor 11 can be prevented.
- the electromagnetic contactor 11 since the electromagnetic contactor 11 is in the closed state, it is possible to drive the fan motor of a heat exchanger (not shown) connected to the power supply circuit 3 together with the inverter motor M. Therefore, since the heat exchange efficiency between the refrigerant, the indoor air, and the outdoor air in the heat exchanger does not decrease, the return from the high pressure abnormality of the air conditioner is faster than when the electromagnetic contactor 11 is opened.
- FIG. 3 is a circuit diagram showing the power supply circuit 3.
- the same components as those of the power supply circuits 1 and 2 are denoted by the same reference numerals.
- the power supply circuit 3 requires the gate IC 101 for the drive of the inverter circuit 30B, and stops the inverter motor M by cutting off the drive signal output by the gate IC 101 to the inverter circuit 30B when the high pressure of the refrigeration cycle rises abnormally. In this respect, it differs from the power supply circuit 2.
- the power supply circuit 3 includes a rectifier circuit RC, a coil L, a main relay 10, a capacitor C (smoothing unit), a voltage detection circuit 20, a shunt resistor R3, an inverter circuit 30B, a microcomputer 100B, and a gate IC 101. It is configured with.
- the rectifier circuit RC, the coil L, the main relay 10, the capacitor C, the voltage detection circuit 20, the shunt resistor R3, and the inverter circuit 30B are connected to each other in the same manner as the power supply circuits 1 and 2.
- Inverter circuit 30B like power supply circuits 1 and 2, is composed of an IGBT (switching element), a diode, and the like, and converts the DC power output from capacitor C into AC power having a predetermined frequency to convert the inverter motor.
- Drive M The inverter circuit 30B receives a drive signal that is a PWM signal that is output from the drive signal output unit 170 included in the gate IC 101 and is input to the inverter circuit 30B via the signal line L15B2, and turns the IGBT on and off. Conversion from DC power to AC power.
- the microcomputer 100B controls the inverter motor M and the fan motor that drive the compressor, and controls the opening of a plurality of electric valves included in the air conditioner, thereby operating the air conditioner.
- the microcomputer 100B includes a gate IC control unit 150 instead of the inverter circuit control unit 110, and the waveform forced cutoff unit 130 is different from the microcomputer 100A of the power supply circuit 2 in that it is provided in the gate IC 101 instead of the microcomputer 100B. .
- the gate IC control unit 150 is connected to a connection point between the voltage dividing resistors R1 and R2 via the signal line L11, connected to the shunt resistor R3 via the signal line L12, and connected to the inverter circuit 30 via the signal line L13. Various electrical signals that are connected and sent via the signal lines L11 to L13 are monitored. In response to the electric signal, the gate IC control unit 150 controls the gate IC 101 by outputting a control signal to the gate IC 101 via the signal line L15B1 so that the drive frequency of the inverter motor M becomes a predetermined value. To do.
- the gate IC 101 includes a control signal input unit 160, a drive signal output unit 170, and a waveform forced cutoff unit 130.
- a control signal output from the gate IC control unit 150 is input to the control signal input unit 160 via the signal line L15B1.
- the drive signal output unit 170 generates a PWM signal corresponding to the control signal input to the control signal input unit 160 as a drive signal, and outputs the drive signal to the inverter circuit 30 via the signal line L15B2.
- the power supply circuits 1 to 3 according to the first to third embodiments of the present invention have been described.
- the present invention is not limited to this, and for example, the following modified embodiments can be taken.
- the inverter circuit 30B that requires the gate IC 101 for driving is used as the inverter circuit.
- the control signal input unit 160, the drive signal output A so-called intelligent power module having the function of a gate IC having the unit 170 and the waveform forced cutoff unit 130 can be used as an inverter circuit.
- FIG. 6 is a circuit diagram showing the power supply circuit 4.
- configurations that are not particularly described are common to the first to third embodiments without any difference. Therefore, description of the configuration is omitted unless necessary.
- the power supply circuit 4 is a power supply device that drives an inverter motor M of a compressor provided in, for example, an unillustrated air conditioner, and includes a rectifier circuit RC, a coil L, a main relay 10, and a capacitor C (smoothing unit).
- the voltage detection circuit 20, the shunt resistor R3, the inverter circuit 30, the delay circuit 40A, and the microcomputer 100C (control unit) are configured.
- the voltage detection circuit 20 is a circuit in which two voltage dividing resistors R1 and R2 are connected in series between both electrodes of the capacitor C in order to detect a voltage between both electrodes of the capacitor C.
- a connection point between the voltage dividing resistor R1 and the voltage dividing resistor R2 is connected to the inverter circuit control unit 110 included in the microcomputer 100C via the signal line L11, and a voltage value at the connection point is output to the inverter circuit control unit 110. .
- the shunt resistor R3 is connected on the current path between the capacitor C and the inverter circuit 30 in order to monitor the current for driving the inverter motor M, and the current value after passing through the shunt resistor R3 is the signal line. It is output to the inverter circuit control unit 110 via L12.
- the inverter circuit 30 receives a drive signal, which is a PWM signal output from the inverter circuit control unit 110 and input to the inverter circuit 30 via the signal line L15, and turns the IGBT on and off, so that the DC power is Convert to AC power.
- a drive signal which is a PWM signal output from the inverter circuit control unit 110 and input to the inverter circuit 30 via the signal line L15, and turns the IGBT on and off, so that the DC power is Convert to AC power.
- the microcomputer 100C controls the operation of the air conditioner by controlling the drive of the inverter motor M and the fan motor that drive the compressor and the opening degrees of the plurality of electric valves included in the air conditioner.
- the microcomputer 100 ⁇ / b> C includes an inverter circuit control unit 110, a main relay opening / closing control unit 120, and an abnormal signal receiving unit 180.
- the inverter circuit control unit 110 is connected to a connection point between the voltage dividing resistors R1 and R2 through the signal line L11, is connected to the shunt resistor R3 through the signal line L12, and is connected to the inverter circuit 30 through the signal line L13.
- Various electrical signals that are connected and sent via the signal lines L11 to L13 are monitored.
- the inverter circuit control unit 110 Based on the electrical signal, the inverter circuit control unit 110 outputs a drive signal, which is a PWM signal, to the inverter circuit 30 via the signal line L15 so that the drive frequency of the inverter motor M becomes a predetermined value.
- the inverter circuit 30 is controlled.
- the anomaly signal receiving unit 180 receives an anomaly signal that is output when the anomaly detection unit 500 that detects an anomaly in the refrigeration cycle detects the anomaly via the signal line L19.
- the abnormal signal receiving unit 180 receives the abnormal signal, it outputs an abnormal flag and triggers the abnormal flag.
- the inverter circuit control unit 110 outputs a drive signal for stopping the inverter circuit 30 and triggers the abnormal flag.
- the main relay open / close control unit 120 outputs a control signal for opening the electromagnetic contactor 11 of the main relay 10 after a first delay time of, for example, 10 ms, which is predetermined from the output.
- the main relay 10 is a signal output when the high pressure switch 400 that detects an abnormal increase in the high pressure of the refrigeration cycle detects an abnormal increase in the high pressure, and the electromagnetic contactor 11 is opened.
- a high-voltage cutoff signal that is a control signal to be input is also input via the signal line L18.
- the signal line L18 is branched and connected to the abnormal signal receiving unit 180, and the high-voltage cutoff signal is also input to the abnormal signal receiving unit 180.
- the abnormal signal receiving unit 180 that has received the high voltage cutoff signal processes the high voltage cutoff signal as the abnormal signal and outputs an abnormal flag.
- the delay circuit 40A is an RC circuit that is provided on the signal line L18 connected to the main relay 10 and is composed of, for example, a resistor and a capacitor.
- the high-pressure cutoff signal output from the high-pressure switch 400 to the main relay 10 is first input to the delay circuit 40A, and after a second delay time longer than the first delay time determined in advance from the input, the delay circuit 40A The high voltage cutoff signal is output to the main relay 10.
- the inverter motor M can be reliably stopped to stop the refrigeration cycle. Therefore, the safety of the air conditioner can be improved.
- FIG. 7A shows the state of the abnormality flag
- FIG. 7B shows the waveform output state of the current output from the power supply circuit
- FIG. 7C shows the change over time of the electromagnetic contactor open / close state.
- the abnormality signal reception unit 180 When an abnormality occurs in the refrigeration cycle and the abnormality signal output from the abnormality detection unit 500 is input to the abnormality signal reception unit 180, the abnormality signal reception unit 180 performs abnormality determination for determining the abnormality signal and noise. After that, an abnormality flag is output (FIG. 7A).
- the inverter circuit control unit 110 outputs a drive signal for stopping the inverter circuit 30 using the abnormality flag as a trigger, so that the waveform output from the power supply circuit 4 is stopped (FIG. 7B), and the inverter motor M is driven. Also stop.
- the main relay switching control unit 120 outputs a control signal for opening the electromagnetic contactor 11 of the main relay 10 after the first delay time of 10 ms from the output.
- the electromagnetic contactor 11 is opened (FIG. 7C).
- the waveform output again after the waveform output from the power supply circuit 4 is stopped is a waveform due to capacitor discharge in which the power charged in the capacitor C for safety is output to the inverter motor M and discharged (FIG. 7). (C)).
- the inverter motor M is stopped by the inverter circuit control unit 110 outputting a drive signal for stopping the inverter circuit 30. Therefore, when the abnormality of the refrigeration cycle occurs, the inverter motor M can be stopped immediately to stop the refrigeration cycle.
- the inverter circuit control unit 110 when an abnormality occurs in the refrigeration cycle, that is, when the abnormal signal receiving unit 180 receives the abnormal signal, the inverter circuit control unit 110 outputs a drive signal for stopping the inverter circuit 30 and outputs the drive signal.
- the main relay opening / closing control unit 120 After a predetermined first delay time (10 ms in the above embodiment), the main relay opening / closing control unit 120 outputs a control signal for opening the electromagnetic contactor 11 of the main relay 10. Therefore, the electromagnetic contactor 11 is opened after the inverter motor M is stopped, that is, in a state where the electromagnetic contactor 11 is not energized. Therefore, when the electromagnetic contactor 11 is opened when an abnormality occurs in the refrigeration cycle, it is possible to prevent deterioration and welding of the contacts of the electromagnetic contactor 11.
- the first delay time can be set to a time shorter than the determination time of the zero cross point, such as 10 ms in the above embodiment.
- the inverter motor M that drives the compressor stops when an abnormality occurs in the refrigeration cycle, so that the refrigeration cycle in which the abnormality occurs can be stopped and the air conditioner can be protected.
- Embodiment 4 described above when an abnormality occurs in the refrigeration cycle, the inverter motor M is stopped and the electromagnetic contactor 11 is opened after the electromagnetic contactor 11 is de-energized. Welding is prevented. Instead, in the point that the inverter motor M is stopped when an abnormality occurs in the refrigeration cycle, it is the same as in the above embodiment. However, when an abnormality occurs in the refrigeration cycle, the main relay open / close control unit 120 controls the electromagnetic contactor of the main relay 10. Even when the electromagnetic contactor 11 is maintained in the closed state without outputting a control signal for opening the magnetic contactor 11, the contact of the electromagnetic contactor 11 is deteriorated when the electromagnetic contactor 11 is opened when energized. And welding can be prevented. According to this structure, there exists an advantage that the fan motor of the heat exchanger of the omission of illustration connected to the power supply circuit 4 with the inverter motor M of a compressor is possible.
- a plurality of main relays 10 may be provided in parallel. As a result, it is not necessary to use a large capacity main relay, so that it is easy to procure the main relay and it is possible to reduce the cost.
- the present invention is a power supply circuit of an air conditioner that executes a refrigeration cycle by circulating a refrigerant through a refrigerant circuit in which a compressor, a heat source side heat exchanger, an expansion valve, and a use side heat exchanger are connected by piping.
- an inverter circuit that generates AC power to be supplied to the inverter motor, and an open / close control signal that instructs the main relay to open / close.
- a control unit an inverter circuit control unit that outputs a drive signal to the inverter circuit, and an abnormality detection unit that detects an abnormality of the air conditioner outputs an error when the abnormality is detected.
- a cut-off signal output unit for outputting a cut-off signal, which is a control signal, to the main relay, a microcomputer for controlling the opening / closing operation of the main relay and the operation of the inverter circuit, and the cut-off signal being input,
- a delay circuit that outputs the cutoff signal to the main relay after a predetermined time from when the main relay is in a closed state and the abnormal signal is input to the waveform forced cutoff unit
- the waveform forced cutoff unit electrically shuts off the inverter circuit control unit, and the cutoff signal output from the cutoff signal output unit is the delay circuit. Is inputted to the main relay via a said main relay is made of an open state by the input of the interruption signal.
- the main relay is provided on a DC current path between the rectifier circuit and the smoothing unit, and opens and closes the current path. Therefore, unlike the case where the main relay, which requires the main relay for each phase AC power line connected to the external power source, is provided on the AC power line on the external power source side of the rectifier circuit, the AC of each phase Since it is not necessary to provide the main relay on the power line, the size and cost of the power circuit can be reduced.
- the waveform forced cutoff unit is the inverter.
- the inverter motor is stopped by electrically cutting off the circuit control unit. Therefore, the inverter motor can be reliably stopped when an abnormality occurs in the refrigeration cycle.
- the inverter motor Is stopped, that is, in a state where the main relay is not energized, the main relay is opened. Therefore, when the main relay is opened when an abnormality occurs in the refrigeration cycle, it is possible to prevent deterioration and welding of the contacts of the main relay.
- the inverter motor to which the inverter circuit is connected is preferably an inverter motor that drives the compressor.
- the abnormality detection unit is a high-pressure pressure switch that detects an abnormal increase in the high-pressure pressure of the refrigeration cycle
- the abnormality signal is a high-pressure switch of the refrigeration cycle. It may be a high pressure abnormality signal output when the pressure rises abnormally.
- the compressor when the high pressure of the refrigeration cycle is abnormally increased, the compressor can be stopped reliably and the refrigeration cycle can be stopped, so that the safety of the air conditioner can be improved.
- the present invention is also a power supply circuit for an air conditioner that executes a refrigeration cycle by circulating a refrigerant through a refrigerant circuit in which a compressor, a heat source side heat exchanger, an expansion valve, and a use side heat exchanger are connected by piping.
- the microcomputer includes a main relay opening / closing control unit that outputs an opening / closing control signal that instructs the main relay to open / close, and a drive signal to the inverter circuit.
- the main relay open / close control unit maintains the closed state of the main relay.
- the main relay is provided on a DC current path between the rectifier circuit and the smoothing unit, and opens and closes the current path. Therefore, unlike the case where the main relay, which requires the main relay for each phase AC power line connected to the external power source, is provided on the AC power line on the external power source side of the rectifier circuit, the AC of each phase Since it is not necessary to provide the main relay on the power line, the size and cost of the power circuit can be reduced.
- the waveform forced cutoff unit is the inverter.
- the inverter motor is stopped by electrically cutting off the circuit control unit. Therefore, the inverter motor can be reliably stopped when an abnormality occurs in the refrigeration cycle.
- the main relay open / close control unit maintains the closed state of the main relay, it is possible to prevent deterioration and welding of the contact of the main relay that occurs when the main relay is opened when energized.
- the present invention is also a power supply circuit for an air conditioner that executes a refrigeration cycle by circulating a refrigerant through a refrigerant circuit in which a compressor, a heat source side heat exchanger, an expansion valve, and a use side heat exchanger are connected by piping.
- an inverter circuit that is connected between the smoothing unit and an inverter motor that is a load and generates AC power to be supplied to the inverter motor
- a gate IC that drives the inverter circuit, an opening / closing operation of the main relay
- a microcomputer for controlling the operation of the gate IC, and the gate IC includes a control signal input unit to which a control signal output from the microcomputer is input, and the control signal.
- a drive signal output unit that outputs a drive signal to the inverter and an abnormality signal that is output when the abnormality detection unit that detects abnormality of the air conditioner detects the abnormality are input, and when the abnormality signal is input
- a waveform forced cutoff unit that electrically shuts off the drive signal output unit, and the main relay is in a closed state, and when the abnormal signal is input to the waveform forced cutoff unit,
- the waveform forced cut-off unit electrically cuts off the drive signal output unit, and the microcomputer maintains the closed state of the main relay.
- the main relay is provided on a DC current path between the rectifier circuit and the smoothing unit, and opens and closes the current path. Therefore, unlike the case where the main relay, which requires the main relay for each phase AC power line connected to the external power source, is provided on the AC power line on the external power source side of the rectifier circuit, the AC of each phase Since it is not necessary to provide the main relay on the power line, the size and cost of the power circuit can be reduced.
- the waveform forced cutoff unit is driven.
- the inverter motor is stopped by electrically cutting off the signal output unit. Therefore, the inverter motor can be reliably stopped when an abnormality occurs in the refrigeration cycle.
- the microcomputer maintains the closed state of the main relay, it is possible to prevent deterioration and welding of the contact of the main relay that occurs when the main relay is opened when energized.
- the inverter circuit includes a control signal input unit that receives a control signal output from the microcomputer, and a drive that outputs a drive signal to the inverter according to the control signal.
- a signal output unit and an abnormality signal output when the abnormality detection unit detecting an abnormality of the air conditioner detects the abnormality is input, and the drive signal output unit is electrically cut off when the abnormality signal is input. It is good also as an intelligent power module provided with the function of the said gate IC which has a waveform forced interruption
- the gate IC is provided integrally with the inverter circuit, the power supply circuit can be downsized and the cost can be reduced by reducing the number of parts.
- the present invention is also a power supply circuit for an air conditioner that executes a refrigeration cycle by circulating a refrigerant through a refrigerant circuit in which a compressor, a heat source side heat exchanger, an expansion valve, and a use side heat exchanger are connected by piping.
- an inverter circuit that is connected between the smoothing unit and an inverter motor that is a load and generates AC power to be supplied to the inverter motor
- a control unit that controls the opening / closing operation of the main relay and the operation of the inverter circuit
- the control unit includes a main relay opening / closing control unit that outputs a control signal that instructs the main relay to open / close, and an inverter that outputs a control signal to the inverter circuit.
- an abnormality signal receiving unit that receives an abnormality signal that is output when the abnormality detecting unit that detects the abnormality of the air conditioner detects the abnormality.
- the inverter circuit control unit When the signal is received, the inverter circuit control unit outputs a drive signal for stopping the inverter circuit, and after the first delay time determined in advance from the output, the main relay opening / closing control unit A control signal for opening is output.
- the main relay is provided on a DC current path between the rectifier circuit and the smoothing unit, and opens and closes the current path. Therefore, unlike the case where the main relay, which requires the main relay for each phase AC power line connected to the external power source, is provided on the AC power line on the external power source side of the rectifier circuit, the AC of each phase Since it is not necessary to provide the main relay on the power line, the size and cost of the power circuit can be reduced.
- the inverter circuit control unit when the abnormal signal receiving unit receives the abnormal signal, the inverter circuit control unit outputs a drive signal for stopping the inverter circuit, and a first predetermined value is output from the output. After the delay time, the main relay open / close control unit outputs a control signal for opening the main relay. Therefore, after the inverter motor is stopped, that is, in a state where the main relay is not energized, the main relay is opened. Therefore, when the main relay is opened when an abnormality occurs in the refrigeration cycle, it is possible to prevent deterioration and welding of the contacts of the main relay.
- the inverter motor to which the inverter circuit is connected may be an inverter motor that drives the compressor.
- the abnormality signal receiving unit further outputs a high-pressure cutoff signal for opening the main relay that is output by a high-pressure switch when the high-pressure pressure of the refrigeration cycle is abnormally increased.
- a delay circuit that receives the high-voltage cutoff signal as a signal and outputs the high-voltage cutoff signal to the main relay after a predetermined second delay time longer than the first delay time from the input.
- the high-voltage cutoff signal may be input to the main relay via the delay circuit.
- the compressor when the high pressure of the refrigeration cycle is abnormally increased, the compressor can be stopped reliably and the refrigeration cycle can be stopped, so that the safety of the air conditioner can be improved.
- the present invention is provided in an air conditioner that executes a refrigeration cycle by circulating a refrigerant in a refrigerant circuit in which a compressor, a heat source side heat exchanger, an expansion valve, and a use side heat exchanger are connected by piping.
- a rectifying circuit for rectifying AC power supplied from a power supply a smoothing unit for smoothing an output of the rectifying circuit; a main relay provided on a current path between the rectifying circuit and the smoothing unit;
- An inverter circuit that is connected between the smoothing unit and the inverter motor that is a load and generates AC power supplied to the inverter motor; and a microcomputer that controls the opening and closing operation of the main relay and the operation of the inverter circuit.
- a computer-readable storage medium storing a control program for a power supply circuit, wherein a first step of receiving an abnormality signal notifying the abnormality of the air conditioner; A second step of stopping the inverter circuit when an abnormal signal is received, and a third step of opening the main relay after a predetermined time after executing the second step, This is what is executed by the microcomputer.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Inverter Devices (AREA)
- Control Of Ac Motors In General (AREA)
- Air Conditioning Control Device (AREA)
Abstract
Description
外部電源から供給される交流電力を整流する整流回路(RC)と、
前記整流回路(RC)の出力を平滑化する平滑部(C)と、
前記整流回路(RC)と前記平滑部(C)との間の電流経路上に設けられたメインリレー(10)と、
前記平滑部(C)と負荷であるインバータモータ(M)との間に接続され、当該インバータモータ(M)に供給する交流電力を生成するインバータ回路(30)と、
前記メインリレー(10)に開閉を指示する開閉制御信号を出力するメインリレー開閉制御部(120)、前記インバータ回路(30)に駆動信号を出力するインバータ回路制御部(110)、前記空気調和機の異常を検知する異常検知部(200)が当該異常を検知した場合に出力する異常信号が入力され、当該異常信号の入力時に前記インバータ回路制御部(110)を電気的に遮断する波形強制遮断部(130)、および前記波形強制遮断部(130)に前記異常信号が入力された場合に、前記メインリレー(10)を開状態とする制御信号である遮断信号を当該メインリレー(10)に出力する遮断信号出力部(140)を有し、前記メインリレー(10)の開閉動作および前記インバータ回路(30)の動作を制御するマイコン(100)と、
前記遮断信号が入力され、当該入力から予め定められた時間の後に、当該遮断信号を前記メインリレー(10)に出力する遅延回路(40)を備え、
前記メインリレー(10)が閉状態の場合であって、前記異常信号が前記波形強制遮断部(130)に入力されたときに、前記波形強制遮断部(130)は、前記インバータ回路制御部(110)を電気的に遮断し、前記遮断信号出力部(140)から出力された前記遮断信号は前記遅延回路(40)を介して前記メインリレー(10)に入力され、当該メインリレー(10)は当該遮断信号の入力により開状態となるものである。
外部電源から供給される交流電力を整流する整流回路(RC)と、
前記整流回路(RC)の出力を平滑化する平滑部(C)と、
前記整流回路(RC)と前記平滑部(C)との間の電流経路上に設けられたメインリレー(10)と、
前記平滑部(C)と負荷であるインバータモータ(M)との間に接続され、当該インバータモータ(M)に供給する交流電力を生成するインバータ回路(30)と、
前記メインリレー(10)の開閉動作および前記インバータ回路(30)の動作を制御するマイコン(100A)と、を備え、
前記マイコン(100A)は、
前記メインリレー(10)に開閉を指示する開閉制御信号を出力するメインリレー開閉制御部(120)と、
前記インバータ回路(30)に駆動信号を出力するインバータ回路制御部(110)と、
前記空気調和機の異常を検知する異常検知部(200)が当該異常を検知した場合に出力する異常信号が入力され、当該異常信号の入力時に前記インバータ回路制御部(110)を電気的に遮断する波形強制遮断部(130)と、を有し、
前記メインリレー(10)が閉状態の場合であって、前記異常信号が前記波形強制遮断部(130)に入力されたときに、前記波形強制遮断部(130)は前記インバータ回路制御部(110)を電気的に遮断し、前記メインリレー開閉制御部(120)は前記メインリレー(10)の閉状態を維持するものである。
外部電源(E)から供給される交流電力を整流する整流回路(RC)と、
前記整流回路(RC)の出力を平滑化する平滑部(C)と、
前記整流回路(RC)と前記平滑部(C)との間の電流経路上に設けられたメインリレー(10)と、
前記平滑部(C)と負荷であるインバータモータ(M)との間に接続され、当該インバータモータ(M)に供給する交流電力を生成するインバータ回路(30B)と、
前記インバータ回路(30B)を駆動するゲートIC(101)と、
前記メインリレー(10)の開閉動作および前記ゲートIC(101)の動作を制御するマイコン(100B)と、を備え、
前記ゲートIC(101)は、
前記マイコン(100B)から出力された制御信号が入力される制御信号入力部(160)と、
前記制御信号に応じて前記インバータ回路(30B)に駆動信号を出力する駆動信号出力部(170)と、
前記空気調和機の異常を検知する異常検知部(200)が当該異常を検知した場合に出力する異常信号が入力され、当該異常信号の入力時に前記駆動信号出力部(170)を電気的に遮断する波形強制遮断部(130)と、を有し、
前記メインリレー(10)が閉状態の場合であって、前記異常信号が前記波形強制遮断部(130)に入力されたときに、前記波形強制遮断部(130)は前記駆動信号出力部(170)を電気的に遮断し、前記マイコン(100B)は前記メインリレー(10)の閉状態を維持するものである。
外部電源(E)から供給される交流電力を整流する整流回路(RC)と、
前記整流回路(RC)の出力を平滑化する平滑部(C)と、
前記整流回路(RC)と前記平滑部(C)との間の電流経路上に設けられたメインリレー(10)と、
前記平滑部(C)と負荷であるインバータモータ(M)との間に接続され、当該インバータモータ(M)に供給する交流電力を生成するインバータ回路(30)と、
前記メインリレーの開閉動作および前記インバータ回路の動作を制御する制御部(100C)と、を備え、
前記制御部(100C)は、
前記メインリレー(10)に開閉を指示する制御信号を出力するメインリレー開閉制御部(120)と、
前記インバータ回路(30)に駆動信号を出力するインバータ回路制御部(110)と、
前記空気調和機の異常を検知する異常検知部(500)が当該異常を検知した場合に出力する異常信号を受信する異常信号受信部(180)と、を備え、
前記異常信号受信部(180)が前記異常信号を受信した場合に、前記インバータ回路制御部(110)は前記インバータ回路(30)を停止させる駆動信号を出力し、当該出力から予め定められた第1遅延時間の後に、前記メインリレー開閉制御部(120)は、前記メインリレー(10)を開状態とする制御信号を出力するものである。
前記空気調和機の異常を報知する異常信号を受信する第1のステップと、
前記異常信号を受信した場合に前記インバータ回路を停止させる第2のステップと、
前記第2のステップを実行後、予め定められた時間の後に前記メインリレーを開放する第3のステップと
を前記マイコンに実行させるものである。
図1は、本発明の実施形態1に係る電源回路を示す回路図である。電源回路1は、例えば図略の空気調和機に備えられる圧縮機のインバータモータMを駆動する電源装置であり、整流回路RCと、コイルLと、メインリレー10と、コンデンサC(平滑部)と、電圧検出回路20と、シャント抵抗R3と、インバータ回路30と、遅延回路40と、マイコン100とを備えて構成されている。
本発明の実施形態2に係る電源回路2について以下に説明する。なお、実施形態1に係る電源回路1と相違のない点については、必要がない限り説明を省略する。図3は、電源回路2を示す回路図である。電源回路1と同一の構成については同一の符号を付している。電源回路2は、電源回路1から遮断信号出力部140と遅延回路40とを除いた構成とされている。そのため、電源回路2が備えるマイコン100Aは、インバータ回路制御部110、メインリレー開閉制御部120、および波形強制遮断部130を備え、電源回路1が備えるマイコン100から遮断信号出力部140を除いた構成となる。
本発明の実施形態3に係る電源回路3について以下に説明する。なお、実施形態1および2と相違のない点については、必要がない限り説明を省略する。図3は、電源回路3を示す回路図である。電源回路1および2と同一の構成については同一の符号を付している。電源回路3は、インバータ回路30Bが駆動にゲートIC101を必要とし、冷凍サイクルの高圧圧力の異常上昇時に、ゲートIC101がインバータ回路30Bに出力する駆動信号を遮断することで、インバータモータMを停止させる点で、電源回路2と相異する。
本発明の実施形態4に係る電源回路4と、電源回路4の制御プログラムとについて以下に説明する。図面に基づいて本発明の実施形態4に係る電源回路4および電源回路4の制御プログラムにつき詳細に説明する。図6は、電源回路4を示す回路図である。以下、電源回路4についての説明において、特に説明のない構成は、実施形態1~3と相違がなく共通するものである。そのため、当該構成については、必要がない限り説明を省略する。
Claims (10)
- 圧縮機、熱源側熱交換器、膨張弁、および利用側熱交換器が配管接続された冷媒回路に冷媒を循環させて冷凍サイクルを実行する空気調和機の電源回路であって、
外部電源から供給される交流電力を整流する整流回路(RC)と、
前記整流回路(RC)の出力を平滑化する平滑部(C)と、
前記整流回路(RC)と前記平滑部(C)との間の電流経路上に設けられたメインリレー(10)と、
前記平滑部(C)と負荷であるインバータモータ(M)との間に接続され、当該インバータモータ(M)に供給する交流電力を生成するインバータ回路(30)と、
前記メインリレー(10)に開閉を指示する開閉制御信号を出力するメインリレー開閉制御部(120)、前記インバータ回路(30)に駆動信号を出力するインバータ回路制御部(110)、前記空気調和機の異常を検知する異常検知部(200)が当該異常を検知した場合に出力する異常信号が入力され、当該異常信号の入力時に前記インバータ回路制御部(110)を電気的に遮断する波形強制遮断部(130)、および前記波形強制遮断部(130)に前記異常信号が入力された場合に、前記メインリレー(10)を開状態とする制御信号である遮断信号を当該メインリレー(10)に出力する遮断信号出力部(140)を有し、前記メインリレー(10)の開閉動作および前記インバータ回路(30)の動作を制御するマイコン(100)と、
前記遮断信号が入力され、当該入力から予め定められた時間の後に、当該遮断信号を前記メインリレー(10)に出力する遅延回路(40)を備え、
前記メインリレー(10)が閉状態の場合であって、前記異常信号が前記波形強制遮断部(130)に入力されたときに、前記波形強制遮断部(130)は、前記インバータ回路制御部(110)を電気的に遮断し、前記遮断信号出力部(140)から出力された前記遮断信号は前記遅延回路(40)を介して前記メインリレー(10)に入力され、当該メインリレー(10)は当該遮断信号の入力により開状態となる電源回路(1)。 - 前記インバータ回路(30)が接続される前記インバータモータは、前記圧縮機を駆動するインバータモータ(M)である請求項1に記載の電源回路(1)。
- 前記異常検知部(200)は、前記冷凍サイクルの高圧圧力の異常上昇を検出する高圧圧力スイッチ(200)であり、
前記異常信号は、前記高圧圧力スイッチ(200)が前記冷凍サイクルの高圧圧力の異常上昇時に出力する高圧異常信号である請求項2に記載の電源回路(1)。 - 圧縮機、熱源側熱交換器、膨張弁、および利用側熱交換器が配管接続された冷媒回路に冷媒を循環させて冷凍サイクルを実行する空気調和機の電源回路であって、
外部電源から供給される交流電力を整流する整流回路(RC)と、
前記整流回路(RC)の出力を平滑化する平滑部(C)と、
前記整流回路(RC)と前記平滑部(C)との間の電流経路上に設けられたメインリレー(10)と、
前記平滑部(C)と負荷であるインバータモータ(M)との間に接続され、当該インバータモータ(M)に供給する交流電力を生成するインバータ回路(30)と、
前記メインリレー(10)の開閉動作および前記インバータ回路(30)の動作を制御するマイコン(100A)と、を備え、
前記マイコン(100A)は、
前記メインリレー(10)に開閉を指示する開閉制御信号を出力するメインリレー開閉制御部(120)と、
前記インバータ回路(30)に駆動信号を出力するインバータ回路制御部(110)と、
前記空気調和機の異常を検知する異常検知部(200)が当該異常を検知した場合に出力する異常信号が入力され、当該異常信号の入力時に前記インバータ回路制御部(110)を電気的に遮断する波形強制遮断部(130)と、を有し、
前記メインリレー(10)が閉状態の場合であって、前記異常信号が前記波形強制遮断部(130)に入力されたときに、前記波形強制遮断部(130)は前記インバータ回路制御部(110)を電気的に遮断し、前記メインリレー開閉制御部(120)は前記メインリレー(10)の閉状態を維持する電源回路(2)。 - 圧縮機、熱源側熱交換器、膨張弁、および利用側熱交換器が配管接続された冷媒回路に冷媒を循環させて冷凍サイクルを実行する空気調和機の電源回路であって、
外部電源(E)から供給される交流電力を整流する整流回路(RC)と、
前記整流回路(RC)の出力を平滑化する平滑部(C)と、
前記整流回路(RC)と前記平滑部(C)との間の電流経路上に設けられたメインリレー(10)と、
前記平滑部(C)と負荷であるインバータモータ(M)との間に接続され、当該インバータモータ(M)に供給する交流電力を生成するインバータ回路(30B)と、
前記インバータ回路(30B)を駆動するゲートIC(101)と、
前記メインリレー(10)の開閉動作および前記ゲートIC(101)の動作を制御するマイコン(100B)と、を備え、
前記ゲートIC(101)は、
前記マイコン(100B)から出力された制御信号が入力される制御信号入力部(160)と、
前記制御信号に応じて前記インバータ回路(30B)に駆動信号を出力する駆動信号出力部(170)と、
前記空気調和機の異常を検知する異常検知部(200)が当該異常を検知した場合に出力する異常信号が入力され、当該異常信号の入力時に前記駆動信号出力部(170)を電気的に遮断する波形強制遮断部(130)と、を有し、
前記メインリレー(10)が閉状態の場合であって、前記異常信号が前記波形強制遮断部(130)に入力されたときに、前記波形強制遮断部(130)は前記駆動信号出力部(170)を電気的に遮断し、前記マイコン(100B)は前記メインリレー(10)の閉状態を維持する電源回路(3)。 - 前記インバータ回路は、前記マイコンから出力された制御信号が入力される制御信号入力部と、前記制御信号に応じて前記インバータに駆動信号を出力する駆動信号出力部と、前記空気調和機の異常を検知する異常検知部が当該異常を検知した場合に出力する異常信号が入力され、当該異常信号の入力時に前記駆動信号出力部を電気的に遮断する波形強制遮断部と、を有する前記ゲートICの機能を備えるインテリジェントパワーモジュールである請求項5に記載の電源回路。
- 圧縮機、熱源側熱交換器、膨張弁、および利用側熱交換器が配管接続された冷媒回路に冷媒を循環させて冷凍サイクルを実行する空気調和機の電源回路であって、
外部電源(E)から供給される交流電力を整流する整流回路(RC)と、
前記整流回路(RC)の出力を平滑化する平滑部(C)と、
前記整流回路(RC)と前記平滑部(C)との間の電流経路上に設けられたメインリレー(10)と、
前記平滑部(C)と負荷であるインバータモータ(M)との間に接続され、当該インバータモータ(M)に供給する交流電力を生成するインバータ回路(30)と、
前記メインリレーの開閉動作および前記インバータ回路の動作を制御する制御部(100C)と、を備え、
前記制御部(100C)は、
前記メインリレー(10)に開閉を指示する制御信号を出力するメインリレー開閉制御部(120)と、
前記インバータ回路(30)に駆動信号を出力するインバータ回路制御部(110)と、
前記空気調和機の異常を検知する異常検知部(500)が当該異常を検知した場合に出力する異常信号を受信する異常信号受信部(180)と、を備え、
前記異常信号受信部(180)が前記異常信号を受信した場合に、前記インバータ回路制御部(110)は前記インバータ回路(30)を停止させる駆動信号を出力し、当該出力から予め定められた第1遅延時間の後に、前記メインリレー開閉制御部(120)は、前記メインリレー(10)を開状態とする制御信号を出力する電源回路(4)。 - 前記インバータ回路(30)が接続される前記インバータモータ(M)は、前記圧縮機を駆動するインバータモータ(M)である請求項7に記載の電源回路。
- 前記異常信号受信部(180)はさらに、前記冷凍サイクルの高圧圧力の異常上昇時に高圧圧力スイッチ(400)が出力する前記メインリレー(10)を開状態とさせる高圧遮断信号を前記異常信号として受信し、
前記高圧遮断信号が入力され、当該入力から前記第1遅延時間よりも長い予め定められた第2遅延時間の後に、当該高圧遮断信号を前記メインリレー(10)に出力する遅延回路(40)をさらに備え、
前記高圧遮断信号は前記遅延回路(40)を介して前記メインリレー(10)に入力される請求項7または8に記載の電源回路。 - 圧縮機、熱源側熱交換器、膨張弁、および利用側熱交換器が配管接続された冷媒回路に冷媒を循環させて冷凍サイクルを実行する空気調和機に設けられ、外部電源から供給される交流電力を整流する整流回路と、前記整流回路の出力を平滑化する平滑部と、前記整流回路と前記平滑部との間の電流経路上に設けられたメインリレーと、前記平滑部と負荷であるインバータモータとの間に接続され、当該インバータモータに供給する交流電力を生成するインバータ回路と、前記メインリレーの開閉動作および前記インバータ回路の動作を制御するマイコンとを備える電源回路の制御プログラムを記憶したコンピュータ読取可能な記憶媒体であって、
前記空気調和機の異常を報知する異常信号を受信する第1のステップと、
前記異常信号を受信した場合に前記インバータ回路を停止させる第2のステップと、
前記第2のステップを実行後、予め定められた時間の後に前記メインリレーを開放する第3のステップと
を前記マイコンに実行させる制御プログラムを記憶したコンピュータ読取可能な記憶媒体。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2010238133A AU2010238133B2 (en) | 2009-04-17 | 2010-03-18 | Power circuit, and computer-readable recording medium storing a control program for power circuits |
EP10764207.6A EP2421149A4 (en) | 2009-04-17 | 2010-03-18 | Power circuit, and computer-readable recording medium containing a control program for power circuits |
US13/264,639 US8988836B2 (en) | 2009-04-17 | 2010-03-18 | Power circuit, and computer-readable recording medium storing a control program for power circuits |
KR1020117026047A KR101270336B1 (ko) | 2009-04-17 | 2010-03-18 | 전원 회로, 및 전원 회로의 제어 프로그램을 기억한 컴퓨터 판독 가능한 기억 매체 |
CN201080016374.2A CN102396150B (zh) | 2009-04-17 | 2010-03-18 | 电源电路 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009100747A JP4623220B2 (ja) | 2009-04-17 | 2009-04-17 | 電源回路 |
JP2009-101325 | 2009-04-17 | ||
JP2009-100747 | 2009-04-17 | ||
JP2009101325A JP4623221B2 (ja) | 2009-04-17 | 2009-04-17 | 電源回路 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010119620A1 true WO2010119620A1 (ja) | 2010-10-21 |
Family
ID=42982295
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/001955 WO2010119620A1 (ja) | 2009-04-17 | 2010-03-18 | 電源回路、及び電源回路の制御プログラムを記憶したコンピュータ読取可能な記憶媒体 |
Country Status (6)
Country | Link |
---|---|
US (1) | US8988836B2 (ja) |
EP (1) | EP2421149A4 (ja) |
KR (1) | KR101270336B1 (ja) |
CN (1) | CN102396150B (ja) |
AU (1) | AU2010238133B2 (ja) |
WO (1) | WO2010119620A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111030055A (zh) * | 2019-12-12 | 2020-04-17 | 科陆国际技术有限公司 | 一种继电器控制电路及智能电表 |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8988386B2 (en) | 2012-01-27 | 2015-03-24 | Sony Corporation | Sensor managed apparatus, method and computer program product |
JP5454596B2 (ja) | 2012-02-08 | 2014-03-26 | ダイキン工業株式会社 | 電源制御装置 |
CN102966578B (zh) * | 2012-11-30 | 2015-11-18 | 中广核工程有限公司 | 核电站泵组压力控制方法及装置 |
WO2015152245A1 (ja) * | 2014-04-03 | 2015-10-08 | 富士電機株式会社 | 安全制御装置 |
JP6203126B2 (ja) * | 2014-06-04 | 2017-09-27 | 三菱電機株式会社 | 密閉型圧縮機駆動装置 |
JP6464903B2 (ja) * | 2015-04-16 | 2019-02-06 | ダイキン工業株式会社 | 空気調和機のインバータ駆動装置 |
JP6226914B2 (ja) * | 2015-06-12 | 2017-11-08 | ファナック株式会社 | 非常停止時にサーボモータを制御して停止させるサーボモータ停止制御装置 |
JP7124716B2 (ja) * | 2017-01-31 | 2022-08-24 | 日本電産株式会社 | モータ駆動装置、および電動パワーステアリング装置 |
JP6485520B1 (ja) * | 2017-11-06 | 2019-03-20 | ダイキン工業株式会社 | 電力変換装置及び空気調和装置 |
KR101979454B1 (ko) * | 2017-11-13 | 2019-05-16 | 엘지전자 주식회사 | 압축기 동작 차단 회로 |
JP6965179B2 (ja) | 2018-02-16 | 2021-11-10 | 株式会社マキタ | 電動工具 |
KR102110536B1 (ko) * | 2018-06-21 | 2020-05-28 | 엘지전자 주식회사 | 압축기 구동 장치 및 이를 구비하는 공기조화기 |
JP6711385B2 (ja) * | 2018-10-16 | 2020-06-17 | ダイキン工業株式会社 | 電源回路、その電源回路を備えたモータ駆動回路、及び、その電源回路又はそのモータ駆動回路を備えた冷凍装置 |
CN110594953A (zh) | 2019-09-09 | 2019-12-20 | 广东美的暖通设备有限公司 | 压缩机驱动装置、压缩机压力保护方法及空调器 |
KR102287162B1 (ko) * | 2019-10-01 | 2021-08-06 | 엘지전자 주식회사 | 공기 조화기 |
WO2021070341A1 (ja) * | 2019-10-10 | 2021-04-15 | 三菱電機株式会社 | ファンモータ停止装置 |
CN111525494B (zh) * | 2020-05-06 | 2022-07-01 | 广东美的暖通设备有限公司 | 驱动控制电路、控制方法、装置、压缩机、空调器和介质 |
JP2022090847A (ja) * | 2020-12-08 | 2022-06-20 | 日本電産サンキョー株式会社 | 電源測定制御回路及びロボットコントローラ |
CN113038639B (zh) * | 2021-02-22 | 2024-02-23 | 青岛海尔空调电子有限公司 | 电加热开关控制电路以及具有该电路的空调器 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001045679A (ja) | 1999-07-28 | 2001-02-16 | Daikin Ind Ltd | 蓄電電気機器制御方法およびその装置 |
JP2007282318A (ja) * | 2006-04-03 | 2007-10-25 | Toshiba Kyaria Kk | 空気調和機 |
JP2008014511A (ja) * | 2006-07-03 | 2008-01-24 | Sharp Corp | ヒートポンプ式給湯機 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3742302A (en) * | 1971-10-12 | 1973-06-26 | Carrier Corp | Motor relay protection for refrigerant compressor motors |
US3777240A (en) * | 1972-09-21 | 1973-12-04 | Carrier Corp | Thermostat chatter protection for refrigeration compressor motors |
JPS59231344A (ja) * | 1983-06-15 | 1984-12-26 | Hitachi Ltd | 空気調和機の制御回路 |
JPH0674522A (ja) * | 1992-06-26 | 1994-03-15 | Sanyo Electric Co Ltd | 空気調和機の制御方法 |
JP3584847B2 (ja) * | 2000-04-03 | 2004-11-04 | ダイキン工業株式会社 | 空気調和機 |
CN2669068Y (zh) * | 2003-07-16 | 2005-01-05 | 上海泰阳工业控制设备公司 | 使用中频电源的空调器 |
JP3960350B1 (ja) * | 2006-03-09 | 2007-08-15 | ダイキン工業株式会社 | 地絡検出方法 |
US8498136B2 (en) * | 2007-08-29 | 2013-07-30 | Mitsubishi Electric Corporation | AC-DC converter and compressor driving apparatus and air conditioning apparatus using the same |
-
2010
- 2010-03-18 CN CN201080016374.2A patent/CN102396150B/zh not_active Expired - Fee Related
- 2010-03-18 US US13/264,639 patent/US8988836B2/en not_active Expired - Fee Related
- 2010-03-18 AU AU2010238133A patent/AU2010238133B2/en not_active Ceased
- 2010-03-18 EP EP10764207.6A patent/EP2421149A4/en not_active Withdrawn
- 2010-03-18 KR KR1020117026047A patent/KR101270336B1/ko active IP Right Grant
- 2010-03-18 WO PCT/JP2010/001955 patent/WO2010119620A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001045679A (ja) | 1999-07-28 | 2001-02-16 | Daikin Ind Ltd | 蓄電電気機器制御方法およびその装置 |
JP2007282318A (ja) * | 2006-04-03 | 2007-10-25 | Toshiba Kyaria Kk | 空気調和機 |
JP2008014511A (ja) * | 2006-07-03 | 2008-01-24 | Sharp Corp | ヒートポンプ式給湯機 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2421149A4 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111030055A (zh) * | 2019-12-12 | 2020-04-17 | 科陆国际技术有限公司 | 一种继电器控制电路及智能电表 |
Also Published As
Publication number | Publication date |
---|---|
AU2010238133A1 (en) | 2011-11-10 |
KR20120011862A (ko) | 2012-02-08 |
EP2421149A1 (en) | 2012-02-22 |
AU2010238133B2 (en) | 2013-10-10 |
CN102396150A (zh) | 2012-03-28 |
US8988836B2 (en) | 2015-03-24 |
CN102396150B (zh) | 2014-05-14 |
US20120033334A1 (en) | 2012-02-09 |
EP2421149A4 (en) | 2017-10-25 |
KR101270336B1 (ko) | 2013-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010119620A1 (ja) | 電源回路、及び電源回路の制御プログラムを記憶したコンピュータ読取可能な記憶媒体 | |
WO2012150649A1 (ja) | 電力変換回路および空気調和装置 | |
JP2008148366A (ja) | 冷凍装置及び冷凍装置に用いられるインバータ装置 | |
JP4975352B2 (ja) | 空気調和機 | |
JP4623220B2 (ja) | 電源回路 | |
JP2007221850A (ja) | 三相電動機の位相切換え装置 | |
US11398790B2 (en) | Air conditioner | |
JPWO2017158916A1 (ja) | 電源装置 | |
WO2019021397A1 (ja) | 空気調和機 | |
JP4623221B2 (ja) | 電源回路 | |
US20150354579A1 (en) | Hermetic compressor driving device | |
JP7511753B2 (ja) | モータ駆動装置およびそれを有する空気調和装置の室外機 | |
JP4762993B2 (ja) | 空気調和機の制御装置 | |
JP6121290B2 (ja) | 冷凍装置 | |
JP2009189200A (ja) | 三相電動機の位相切換え装置 | |
JPH035673A (ja) | 冷凍サイクル装置 | |
WO2019155527A1 (ja) | インバータ制御装置 | |
WO2012114626A1 (ja) | 電源回路およびヒートポンプユニット | |
JP5999141B2 (ja) | 電力変換装置 | |
JP6173488B2 (ja) | インバータ装置及びインバータ装置を用いた空気調和機 | |
JP2012228009A (ja) | インバータ制御装置 | |
WO2023079672A1 (ja) | モータ駆動装置及び冷凍サイクル適用機器 | |
WO2024176355A1 (ja) | 電気機器及び冷凍サイクル装置 | |
JP2004147450A (ja) | 冷凍空調装置の制御装置及び冷凍空調装置 | |
JPWO2019180828A1 (ja) | 空気調和機 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080016374.2 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10764207 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13264639 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010764207 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20117026047 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2010238133 Country of ref document: AU Date of ref document: 20100318 Kind code of ref document: A |