WO2010117057A1 - 抗tim-3抗体を用いた血液腫瘍治療法 - Google Patents
抗tim-3抗体を用いた血液腫瘍治療法 Download PDFInfo
- Publication number
- WO2010117057A1 WO2010117057A1 PCT/JP2010/056445 JP2010056445W WO2010117057A1 WO 2010117057 A1 WO2010117057 A1 WO 2010117057A1 JP 2010056445 W JP2010056445 W JP 2010056445W WO 2010117057 A1 WO2010117057 A1 WO 2010117057A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cells
- tim
- antibody
- cell
- human
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/574—Immunoassay; Biospecific binding assay; Materials therefor for cancer
- G01N33/57407—Specifically defined cancers
- G01N33/57426—Specifically defined cancers leukemia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
- A61P35/02—Antineoplastic agents specific for leukemia
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2803—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/30—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
- C07K16/3061—Blood cells
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/574—Immunoassay; Biospecific binding assay; Materials therefor for cancer
- G01N33/57407—Specifically defined cancers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/505—Medicinal preparations containing antigens or antibodies comprising antibodies
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/70—Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
- C07K2317/73—Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/70—Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
- C07K2317/73—Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
- C07K2317/732—Antibody-dependent cellular cytotoxicity [ADCC]
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/70—Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
- C07K2317/73—Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
- C07K2317/734—Complement-dependent cytotoxicity [CDC]
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/435—Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
- G01N2333/705—Assays involving receptors, cell surface antigens or cell surface determinants
- G01N2333/70503—Immunoglobulin superfamily, e.g. VCAMs, PECAM, LFA-3
Definitions
- the present invention relates to a therapeutic agent and a diagnostic agent for myeloid malignant tumors, particularly acute myeloid leukemia (Acute Leukemia; AML), comprising an antibody against human TIM-3 protein (also known as human HAVCR2) as an active ingredient. Furthermore, the present invention relates to a method for isolating leukemia stem cells.
- AML acute myeloid leukemia
- human TIM-3 protein also known as human HAVCR2
- malignant tumors Malignant tumors (cancer) are the leading cause of death in Japan, and the number of patients is increasing year by year, and the development of highly effective and safe drugs and treatment methods is strongly desired. .
- causes of malignant tumor formation include DNA mutation caused by radiation, ultraviolet rays, and various carcinogens.
- Research on malignant tumors has focused on molecularly identifying these genetic changes. As a result, it is thought that tumor formation is caused by accumulation of a large number of mutations.
- Some critical mutations have been shown to be directly linked to tumorigenesis by cell line models and the like.
- leukemia which is one of the target diseases of the present invention, many chromosomal abnormalities are recognized and classified.
- translocation-related genes have already been identified for the major chromosomal translocations. From the functional analysis of translocation-related genes, there are known examples in which the genes are involved in the development of leukemia.
- Cancer Stem Cells On the other hand, from the viewpoint of cell biology, a so-called cancer stem cell hypothesis has been proposed for a long time that stem cells are the origin of malignant tumors as in normal tissues.
- Stem cells are defined as cells having self-replicating ability and pluripotency, and are generally divided into totipotent stem cells and tissue stem cells. Tissue stem cells originate from specific tissues and organs such as the blood system, liver, and nervous system, and are present at a very low frequency.
- Non-patent Document 1 Cancer stem cells, unlike normal stem cells, have not been able to capture the entity for a long time, and research has been delayed. However, in 1997, Dick et al. Identified cancer stem cells for the first time in acute myeloid leukemia (Non-patent Document 2). Since then, the presence of cancer stem cells has been reported in various malignant tumors.
- cancer stem cells Collectively, it is present at a frequency of several percent or less of the entire tumor, and is a rare cell like normal stem cells. The remaining cells that form the tumor are considered to be tumor progenitor cells or tumor cells with limited amplification capacity. These reports indicate that tumors also have a hierarchy similar to normal tissues, and that cancer stem cells at the apex (origin) have a strong tumor-forming ability. Based on the above, it is considered that the onset of malignant tumor is that various mutations are added to normal stem cells and changed to so-called cancer stem cells. Characteristics of cancer stem cells and therapeutic problems In summary of many reports, cancer stem cells are thought to retain various characteristics of normal stem cells.
- the multidrug resistance gene BCRP is a pump that attenuates the drug efficacy by discharging various anticancer agents out of the cell, and a method of collecting stem cells using the activity has been reported (Non-patent Document 3).
- Non-patent Document 4 Stem cells are thought to be in a “hibernation” state that refrains from dividing as much as possible to supply cells for the rest of their lives (Non-patent Document 4), and their sensitivity to many anticancer drugs and radiation is reduced (Non-patents) References 5 and 6). Due to these characteristics, it is considered that rare cancer stem cells are resistant to treatment, causing tumor recurrence. About molecular targeted drugs Three main strategies for the treatment of malignant tumors are anticancer drug therapy, radiation therapy, and resection. In blood tumors, as described above, cancer stem cells can be resistant to these treatments, limited to anticancer drug therapy and radiation therapy. Another problem is that these two treatments have significant side effects because they affect the whole body.
- molecular targeted medicine One of the countermeasures against this problem is molecular targeted medicine. Side effects are reduced by exerting the drug effect only in cells in which the target molecule is expressed.
- molecular target drugs in the blood disease region include imatinib and rituximab.
- Imatinib targets a leukemic factor called Bcr-Abl produced by a chromosomal abnormality (Philadelphia chromosome) observed in 95% of patients with chronic myeloid leukemia (CML). It is a small molecule drug that induces suicide of leukemia cells by inhibiting the function of Bcr-Abl.
- Rituximab is an antibody drug that recognizes CD20, a surface molecule on B cells, and has antitumor effects against non-Hodgkin's lymphoma, which is a malignant tumor of B cells.
- gemtuzumab ozogamicin Mylotarg
- Mylotarg is a monoclonal antibody against CD33 that appears as an AML cell surface antigen, combined with the antibiotic calicheamicin (Non-patent document 7), but expression of CD33 is 80 It can be said that its use is restricted only when four conditions are met, such as% or more, recurrence, 60 years of age or older, and resistance to other chemotherapy.
- An antibody is characterized by a long half-life in blood and a high specificity to an antigen, and is particularly useful as an antitumor agent.
- an antibody is targeted to a tumor-specific antigen, the administered antibody is presumed to accumulate in the tumor, so complement-dependent cytotoxicity (CDC) or antibody-dependent cellular cytotoxicity (ADCC) is expected to attack cancer cells of the immune system.
- CDC complement-dependent cytotoxicity
- ADCC antibody-dependent cellular cytotoxicity
- a drug such as a radionuclide or a cytotoxic substance
- the tumor-specific antigen has activity that induces cell death, administer an antibody with agonistic activity, and if the tumor-specific antigen is involved in cell growth and survival, neutralize activity It is expected that tumor-specific antibody accumulation and tumor growth arrest or regression due to antibody activity will be administered.
- the antibody is considered suitable for application as an antitumor agent due to its characteristics as described above.
- About antibody drugs The mouse was used as the target animal for the first antibody production. However, the use of murine antibodies in vivo is limited for a number of reasons. Mouse antibodies that are recognized as foreign by human hosts elicit a so-called “human anti-mouse antibody” or “HAMA” response (Non-Patent Document 8). Furthermore, the Fc portion of mouse antibodies is not effective for stimulating human complement or cytotoxic activity.
- a chimeric antibody was developed as one approach to avoid such problems (European Patent Application Publication Nos. 120694 and 125023).
- a chimeric antibody comprises a portion of an antibody from two or more species, such as a murine antibody variable region and a human antibody constant region. Although the advantage of such a chimeric antibody retains the characteristics of a mouse antibody, it has human Fc and can stimulate human complement or cytotoxic activity. However, such chimeric antibodies still elicit a “human anti-chimeric antibody” or “HACA” response (9).
- Non-patent Documents 1 and 2 An antibody consisting of mouse CDR, human variable region framework and constant region (ie, “humanized antibody”) has been produced using CDR grafting technology (Non-patent Document 10).
- TIM-3 The TIM gene family consists of 8 genes in mice and 3 genes in humans, which are present in the 11th chromosome and the 5q33 region, respectively (Non-patent Document 11.). These gene regions are associated with autoimmune and allergic diseases.
- the TIM protein is a type I transmembrane protein having a structurally conserved immunoglobulin variable (IgV) domain and a mucin domain.
- IgV immunoglobulin variable
- TIM proteins were initially expressed specifically on T cells and thought to directly control their activity, but recently their expression and function on antigen-presenting cells have also been reported ( Non-patent document 12). From the crystal structure analysis, it is known that the TIM protein has a conserved structure and has a ligand binding site in the IgV domain.
- TIM-3 was identified as a molecule that is not expressed in Th2 cells but specifically expressed in mouse Th1 cells (Non-patent Document 13). Binding of TIM-3 to its ligand galectin-9 induces apoptosis in mouse Th1 cells, inhibits Th1 response, and induces peripheral tolerance. Like mice, it is selectively expressed in human Th1 cells, and is also expressed in macrophages and dendritic cells. Increased secretion of interferon ⁇ (IFN ⁇ ) from CD4-positive T cells has been observed due to attenuation of siRNA expression to human TIM-3 and inhibition by blocking antibodies, and TIM-3 has an inhibitory role in human T cells I support you.
- IFN ⁇ interferon ⁇
- TIM-3 expression was not observed in CD4-positive T cells derived from patients with autoimmune diseases.
- the expression of TIM-3 was lower and the secretion of interferon ⁇ was higher than in clones derived from healthy individuals (Non-patent Document 14).
- Non-patent Document 15 reports on microarray analysis of stem cells of acute myeloid leukemia and normal hematopoietic stem cells. Many of the associations with tumors have yet to be elucidated.
- the challenges of conventional treatments for malignant tumors are: firstly, anti-cancer drugs and radiation treatments cause systemic side effects, and secondly, the presence of rare cancer stem cells that are resistant to treatment cause tumor recurrence.
- the third possibility is that the possibility can be increased, and the third point is that there are still few molecular targeted drugs among the therapeutic agents in the blood tumor region.
- the first object of the present invention is to prevent, diagnose or treat various blood tumors by developing an antitumor substance that specifically binds to TIM-3 and can attack malignant tumor cells expressing TIM-3. It is to provide an agent.
- the second object of the present invention is to provide a method for utilizing TIM-3 molecules based on the knowledge that TIM-3 is expressed in blood tumor cells.
- new molecular target drugs for blood tumors including leukemia, and the discovery and use of new target molecules is thought to lead to the development of safe and effective treatments.
- antibodies inherently have recognition specificity, they are effective as a means of molecular targeting. Accordingly, the present inventors have intensively studied the expression of human TIM-3 in hematological tumors and the production of antibodies against human TIM-3, and as a result, have found the use of TIM-3 as a therapeutic target.
- the present invention provides a novel molecular target blood tumor therapeutic agent by attacking malignant tumor cells including cancer stem cells using a human monoclonal antibody against TIM-3, which is a gene highly expressed in blood tumors. is there.
- the present invention includes the following features.
- Administering TIM-3 antibody to a subject suspected of having a blood tumor in which cells expressing TIM-3 in bone marrow or peripheral blood are observed, or a subject treated with blood tumor A method of treatment comprising: (2) A composition for preventing or treating a blood tumor in which cells expressing TIM-3 are found in bone marrow or peripheral blood in a subject, comprising TIM-3 antibody as an active ingredient . (3) A composition for detecting a blood tumor in which cells expressing TIM-3 are found in bone marrow or peripheral blood in a biological specimen from a subject, comprising a TIM-3 antibody object.
- TIM-3 antibody is a TIM-3 monoclonal antibody.
- TIM-3 monoclonal antibody is an antibody having ADCC activity and / or CDC activity.
- TIM-3 has been known as a gene that controls the immune function of the living body.
- an antitumor substance preferably an anti-TIM-3 antibody
- the condition of CD33 expression rate, recurrence, age, and chemotherapy resistance Exists.
- cytotoxicity by TIM-3 antibody has been confirmed in TIM-3 expression strains or AML primary cells. This also suggests therapeutic effects on various blood diseases using TIM-3 antibody.
- 3 is a multicolor flow cytometric analysis of human TIM-3 molecule expression in bone marrow Lin ( ⁇ ) CD34 (+) CD38 ( ⁇ ) cells from AML (M0) patients.
- 3 is a multicolor flow cytometric analysis of human TIM-3 molecule expression in bone marrow Lin ( ⁇ ) CD34 (+) CD38 ( ⁇ ) cells from AML (M1) patients.
- 3 is a multicolor flow cytometric analysis of human TIM-3 molecule expression in bone marrow Lin ( ⁇ ) CD34 (+) CD38 ( ⁇ ) cells from AML (M2) patients.
- 3 is a multicolor flow cytometric analysis of human TIM-3 molecule expression in bone marrow Lin ( ⁇ ) CD34 (+) CD38 ( ⁇ ) cells from AML (M3) patients.
- 2 is a multicolor flow cytometric analysis of human TIM-3 molecule expression in bone marrow Lin ( ⁇ ) CD34 (+) CD38 ( ⁇ ) cells from AML (M4) patients.
- 2 is a multicolor flow cytometric analysis of human TIM-3 molecule expression in bone marrow Lin (-) CD34 (+) CD38 (-) cells from AML (M5) patients.
- 2 is a multicolor flow cytometric analysis of human TIM-3 molecule expression in bone marrow Lin ( ⁇ ) CD34 (+) CD38 ( ⁇ ) cells from AML (M6) patients. It is a result of the AML primary cytotoxicity test by anti- TIM-3 polyclonal antibody.
- 3 is a multi-color flow cytometric analysis of human TIM-3 molecule expression in bone marrow Lin ( ⁇ ) CD34 (+) CD38 ( ⁇ ) cells from CML patients.
- 3 is a multicolor flow cytometric analysis of human TIM-3 molecule expression in bone marrow Lin ( ⁇ ) CD34 (+) CD38 ( ⁇ ) cells from ALL patients.
- Multicolored flow sites of human TIM-3 molecule expression in healthy human bone marrow and stem cell mobilized peripheral blood-derived Lin (-) CD34 (+) CD38 (-) cells and Lin (-) CD34 (+) CD38 (+) cells It is a measurement analysis. It is a flow cytometric analysis of the expression of human TIM-3 molecule in normal peripheral blood cells derived from healthy individuals. Flow cytometric analysis of human TIM-3 expression in human cell lines. It is the result of the AML cell line ADCC test by anti- TIM-3 polyclonal antibody. The vertical axis shows the specific dissolution rate. It is the result of the AML cell line CDC test by anti- TIM-3 polyclonal antibody.
- the present invention provides a preventive, diagnostic or therapeutic agent for malignant tumors targeting TIM-3 expressing cells or a method thereof.
- the antibody has binding activity to a TIM-3 molecule and induces reduction or elimination of TIM-3 expressing cells by an immune system centered on effector cells. Involved in functional control of TIM-3 expressing cells, induces cell survival, proliferation, rest, cell death, etc. It participates in functional control of TIM-3-expressing cells and increases or decreases the production of cytokines or interferons from the cells.
- TIM-3 The TIM gene family consists of 8 genes in mice and 3 genes in humans, which are located on chromosome 11 and 5q33 region, respectively. These gene regions are associated with autoimmune and allergic diseases.
- the TIM protein is a type I transmembrane protein having a structurally conserved immunoglobulin variable (IgV) domain and a mucin domain.
- Galectin-9 a known ligand of TIM-3, has been reported to be expressed in peripheral leukocytes and lymphoid tissues in humans (Wada J et al., J Biol Chem. 272: 6078-86. (1997) ).
- human galectin-9 is known to bind to GLUT-2 transporter protein and various oligosaccharides (Nagae M et al., J Mol Biol. 375: 119-35. (2008) .).
- TIM-3 is also called HAVCR2.
- TIM-3 includes mammalian (eg, primate, human) TIM-3.
- the TIM-3 antibody of the present invention includes an antibody that specifically binds to a mammalian TIM-3 sequence such as human TIM-3.
- TIM-3 sequences such as human TIM-3 include polymorphic variants.
- full-length human TIM-3 is MFSHLPFDCVLLLLLLLLTRSSEVEYRAEVGQNAYLPCFYTPAAPGNLVPVCWGKGACPVFECGNVVLRTDERDVNYWTSRYWLNGDFRKGDVSLTIENVTLADSGIYCCRIQIPGIMNDEKFNLKLVIKPAKVTPAPTRQRDFTAAFPRMLTTRGHGPAETQTLGSLPDINLTQISTLANELRDSRLANDLRDSGATIRIGIYIGAGICAGLALALIFGALIFKWYSHSKEKIQNLSLISLANLPPSGLANAVAEGIRSEENIYTIEENVYEVEEPNEYYCYVSSRQQPSQPLGCRFAMP (SEQ ID NO: 1) Is the sequence described as (antibody)
- the term antibody is
- the antibody comprises a mature heavy or light chain variable region sequence.
- Antibodies also have modified and mutated forms, such as substitutions within or outside of the antibody constant region, complementarity determining region (CDR) or framework (FR) region of the mature heavy or light chain variable region sequence. Including.
- the substitution includes a conservative amino acid substitution.
- the antibody also includes a partial sequence of a mature heavy or light chain variable region sequence.
- the subsequence is selected from Fab, Fab ′, F (ab ′) 2, Fv, Fd, single chain Fv (scFv), disulfide bond Fv (sdFv) and VL or VH.
- the antibody also includes a heterologous domain.
- the heterologous domain includes a tag, a detectable label, or a cytotoxic agent.
- Antibodies include monoclonal and polyclonal antibodies, any isotype or subclass thereof.
- the antibody is an IgG (eg, IgG1, IgG2, IgG3 or IgG4), IgA, IgM, IgE, or IgD isotype.
- a “monoclonal” antibody is based on a single clone, including a eukaryotic clone, a prokaryotic clone, or a phage clone, and is derived from a single clone, including a eukaryotic clone, a prokaryotic clone, or a phage clone, or a eukaryotic clone.
- a “monoclonal” antibody is therefore structurally defined and not the method by which it is produced.
- TIM-3 antibody, anti-TIM-3 and anti-TIM-3 antibody refer to an antibody that specifically binds to TIM-3. Specific binding is selective for an epitope present in TIM-3. Specific binding can be distinguished from non-specific binding using assays known in the art (eg, immunoprecipitation, ELISA, flow cytometry, Western blotting).
- An antibody can bind to a different protein if all or part of the antigenic epitope to which the TIM-3 antibody specifically binds is present on a different protein. Therefore, a TIM-3 antibody specifically binds to another protein with high sequence or structural homology to that TIM-3 epitope, depending on the sequence or structural homology of the TIM-3 epitope. there is a possibility.
- TIM-3 antibodies may bind to different proteins when epitopes with sufficient sequence or structural homology exist in different proteins.
- TIM-3 antibodies in this application include isolated and purified antibodies.
- Antibodies of the present invention, including isolated or purified TIM-3 antibodies, include humans.
- isolated used as a modifier of a composition means that the composition is made by hand or one or more other components in a naturally occurring in vivo environment. Generally means separated by one or more operational steps or processes. In general, a composition so separated is substantially free of one or more materials to which such composition normally binds naturally, eg, one or more proteins, nucleic acids, lipids, carbohydrates, cell membranes. . Thus, an isolated composition is separated from other biological components in the cells of the organism in which it naturally occurs, or from an artificial medium from which the composition is produced (eg, synthetically or by cell culture). ing.
- an isolated TIM-3 antibody is obtained from an animal from which the antibody is produced (eg, a non-transgenic mammal or a transgenic mammal (such as a rodent (mouse) or ungulate (bovine) animal)). Separated from other polypeptides and nucleic acids. Therefore, the serum containing the antibody obtained from the animal is considered to be isolated.
- isolated does not exclude other physical forms; for example, an isolated antibody can include antibody subsequences, chimeric, multimeric, or derivatized forms.
- purified used as a composition modifier refers to a composition that is generally free of most or substantially all of the materials with which it naturally binds. Purified antibodies are generally removed from components normally present in the antibody environment. Therefore, it is considered that the antibody supernatant separated from the antibody-producing hybridoma cell culture is purified. Thus, purification does not require absolute purity, but is a context specific. Furthermore, a “purified” composition can be combined with one or more other molecules. As such, the term “purified” does not exclude combinations of compositions.
- Purity should be determined by any appropriate method such as, for example, UV spectroscopy, chromatography (eg, HPLC, gas phase), gel electrophoresis (eg, silver or Coomassie staining) and sequence analysis (peptides and nucleic acids). Can do.
- Protein and nucleic acids include proteins and nucleic acids obtained by standard purification methods. The term also includes proteins and nucleic acids obtained by recombinant expression or chemical synthesis in a host cell. Also, “purified” means that the level of contaminants is higher than the level approved by regulatory authorities for administration to humans or non-human animals, eg, the Food and Drug Administration (FDA). Sometimes refers to a low composition.
- TIM-3 antibodies further include those that specifically bind to TIM-3 expressed in cells.
- the TIM-3 antibody is a hematologic tumor cell that expresses TIM-3 (AML cell, CML cell, myelodysplastic synndromes (MDS) cell, ALL cell, CLL cell, multiple myeloma ( MultipleMyeloma) cells, or various lymphomas such as B cell lymphoma, T cell lymphoma, NK cell lymphoma), helper T cells (eg, Th1 cells, Th17 cells), antigen presenting cells (eg, dendritic cells, monocytes / macrophages and the like) Specific cells (liver stellate cells, osteoclasts, microglial cells, intraepidermal macrophages, dust cells (alveolar macrophages), etc.)) or specific to TIM-3 expressed in TIM-3 transgenic cells Join.
- TIM-3 AML cell, CML cell, myelodysplastic synndromes (MDS) cell, ALL cell, CLL cell, multiple myeloma ( MultipleMyelom
- TIM-3 antibody includes an antibody that specifically binds to an epitope in the amino acid sequence of the TIM-3 extracellular domain.
- exemplary TIM-3 antibodies specifically bind to three “epitopes” on TIM-3, as determined by an across-blocking assay.
- a non-limiting exemplary human TIM-3 extracellular domain sequence is described as MFSHLPFDCVLLLLLLTRSSEVEYRAEVGQNAYLPCFYTPAAPGNLVPVCWGKGACPVFECGNVVLRTDERDVNYWTSRYWLNGDFRKGDVSLTIENVTLADSGIYCCRIQIPGIMNDEKFNLKLVLVIKPAKQRTPATLGH
- TIM-3 antibodies include antibodies capable of binding to TIM-3 present in primary cell isolates, subcultured cells, cultured cells and immortalized cells on one or more in vivo cells.
- Non-limiting specific cell types that can express TIM-3 include AML cells and other blood tumor cells (eg, CML cells, ALL cells, CLL cells, MDS cells, Multiple ⁇ Myeloma cells, or B cell lymphomas, T Cell lymphoma, various lymphoma cells such as NK cell lymphoma) and non-blood tumor cells.
- non-hematologic tumor cells include monocytes, dendritic cells, macrophages, helper T cells, natural killer cells, myeloid progenitor cells, lymphocyte progenitor cells, and the like.
- TIM-3 can be expressed, for example, by transfecting or transforming the cells with a nucleic acid encoding TIM-3.
- a TIM-3 antibody capable of binding to TIM-3 can bind to one or more transfected or transformed cells that express or produce TIM-3.
- AML cells, CML cells, ALL cells, CLL cells, MDS cells, Multiple Myeloma cells, or various lymphoma cells such as B cell lymphoma, T cell lymphoma, NK cell lymphoma include respective tumor stem cells.
- a tumor stem cell is one of a group of cells constituting a tumor, represented by, for example, Lineage ( ⁇ ) CD34 (+) CD38 ( ⁇ ) bone marrow cells.
- cancer stem cells and leukemia stem cells as aliases according to the disease.
- leukemia cells collected from the bone marrow of leukemia patients can be fractionated by differentiation antigens (Lineage markers) and cell surface molecular markers such as CD34 and CD38.
- Lineage markers markers
- cell surface molecular markers such as CD34 and CD38.
- Many leukemia stem cells are present in the Lineage (-) CD34 (+) CD38 (-) cell fraction.
- blasts are morphologically determined and are Lineage (-) CD34 (+) CD38 (+) cells, but Lineage (-) CD34 (+) CD38 (-) cell fractions and Lineage (-) CD34 ( -) Present in various cell populations including cell fractions.
- TIM-3 antibodies include antibodies that bind to TIM-3 and modulate TIM-3 function or activity in vivo or in vitro (eg, in a subject).
- modulate and grammatical variations thereof when used with respect to TIM-3 activity or function is intended to affect, modify or alter TIM-3 activity or function in a detectable manner. It means receiving.
- a TIM-3 antibody that modulates the activity or function of TIM-3 is an antibody that affects, modifies, or alters one or more TIM-3 activities or functions in a detectable manner, such TIM-3 -3 activity or function includes, for example, binding of TIM-3 to a TIM-3 ligand, TIM-3-mediated signaling or a TIM-3-mediated cellular response or a cellular response that can be modulated by TIM-3, or Other TIM-3 activities or functions that are described in the document, or otherwise known or known can be included.
- TIM-3 activities and functions that can be modulated include, for example, TIM-3 mediated signaling or TIM-3 mediated cellular responses or cell responses that can be modulated by TIM-3, cell proliferation or Increase (eg, AML cells, CML cells, ALL cells, CLL cells, MDS cells, MultipleMyeloma cells, or various lymphoma cells such as B cell lymphoma, T cell lymphoma, NK cell lymphoma, monocytes, dendritic cells, macrophages, helper T Cell, natural killer cell, myeloid progenitor cell, lymphoid progenitor cell, etc.), cell survival or cell death such as apoptosis (eg, AML cell, CML cell, ALL cell, CLL cell, MDS cell, MultipleMyeloma cell, or B Various lymphoma cells such as cell lymphoma, T cell lymphoma, NK cell lymphoma, monocytes, macrophages, helper T cells, natural
- Specific cytokines that are modulated include, but are not limited to, IL-1, IL-2, IL-4, IL-5, IL-6, IL-9, IL-10, IL-14, IL-16, IL-17, IL-23, IL-26, TNF- ⁇ , interferon ⁇ (invivo or in vitro).
- Specific anti-apoptotic protein or pro-apoptotic protein expression includes, but is not limited to, Bcl-xL, Bcl-2, Bad, Bim and Mcl-1.
- exemplary antibodies described herein include one or more TIM-3-mediated signaling or TIM-3-mediated cellular responses or cell responses induced by TIM-3, cell proliferation (eg, AML cells, CML cells, ALL cells, CLL cells, MDS cells, MultipleMyeloma cells, or various lymphoma cells such as B cell lymphoma, T cell lymphoma, NK cell lymphoma, monocytes, macrophages, helper T cells, natural killer cells, myeloid progenitor cells Cell death or cell death (eg, AML cells, CML cells, ALL cells, CLL cells, MDS cells, MultipleMyeloma cells, or B cell lymphomas, T cell lymphomas, NK cell lymphomas, etc.)
- cytokines For example, Th1, Th2, and other non-Th1 /
- the antibody of the invention modulates the growth or survival of AML cells and other blood tumor cells (eg, CML cells, ALL cells, CLL cells, MDS cells, MultipleMultiMyeloma cells, or B cell lymphomas,
- Non-blood such as monocytes, dendritic cells, macrophages, helper T cells, natural killer cells, myeloid progenitor cells, lymphoid progenitor cells Modulates tumor cell growth or survival, or reduces or eliminates AML, CML, ALL, CLL, MDS, MultipleMyeloma, or various lymphoma cells such as B-cell, T-cell, and NK-cell lymphoma Or deplete.
- TIM-3 antibodies include modified forms such as substitutions (eg, amino acid substitutions), additions and deletions (eg, partial sequences or fragments), which are also called “mutants”. Such modified antibody forms and variants may bind at least a portion of the function or activity of the TIM-3 antibody shown in the present invention, eg, TIM-3, or the activity or function of TIM-3 (eg, TIM-3 -3 signaling) is retained.
- a modified TIM-3 antibody can retain, for example, the ability to modulate at least some TIM-3 binding or one or more TIM-3 functions or activities (eg, signaling, cellular responses, etc.). it can.
- Modify and grammatical variations thereof mean that the composition is out of the reference composition.
- Modified proteins, nucleic acids and other compositions have higher or lower activity than unmodified reference proteins, nucleic acids or other compositions, or are unmodified reference proteins, nucleic acids or other compositions Can have different functions.
- nucleic acid sequences encoding antibodies that contain amino acid substitutions are also provided.
- identity or “identical” means that two or more referenced entities are the same. Thus, when two protein sequences (eg, TIM-3 antibodies) are identical, they have the same amino acid sequence at least within the referenced region or portion. “Identity region” refers to the same portion of two or more referenced entities. Thus, if two protein sequences are identical in one or more sequence regions, they share identity within that region.
- “Substantial identity” means that a molecule has a function or activity of at least part of one or more reference molecule functions or activities, or an associated / corresponding region or part of a reference molecule with which the molecule shares identity Means that it is structurally or functionally preserved, as expected.
- a polypeptide having substantial identity eg, a TIM-3 antibody
- a TIM-3 antibody having one or more modifications eg, amino acid substitutions, deletions or additions
- the amount of sequence identity required to retain function or activity depends on the protein, the region, and the function or activity of the region.
- a protein can retain some activity or function with only 30% amino acid sequence identity, but is generally higher than the reference sequence, e.g., at least 50%, 60%, 75%, There is 85%, 90%, 95%, 96%, 97%, or 98% identity.
- the degree of identity between two sequences can be ascertained using computer programs and mathematical algorithms known in the art. Such algorithms that calculate percent sequence identity (homology) generally account for sequence gaps and mismatches across the comparison region. For example, the BLAST (eg, BLAST 2.0) search algorithm (see, eg, Altschul et al., J. Mol.
- Biol. 215: 403 (1990), publicly available through NCBI) uses exemplary search parameters such as: Has: mismatch-2; gap start 5; gap extension 2.
- the BLASTP algorithm is typically used in combination with a score matrix such as PAM100, PAM 250, BLOSUM 62, or BLOSUM50.FASTA (eg, FASTA2 and FASTA3), and the SSEARCH sequence comparison program also quantifies the degree of identity (Pearson et al., Proc. Natl. Acad. Sci USA 85: 2444 (1988); Pearson, Methods Mol Biol. 132: 185 (2000); and Smith et al., J. Mol. Biol. 147: 195 (1981)).
- a program for quantifying protein structural similarity using Delaunay-based phase mapping has also been developed (Bostick et al., BiochemBiophysResCommun. 304: 320 (2003)).
- a “conservative substitution” is a substitution of one amino acid with a biologically, chemically or structurally similar residue.
- Biologically similar means that the substitution does not destroy biological activity, eg, TIM-3 binding activity.
- Structurally similar means that the amino acids have side chains of the same length (eg, alanine, glycine and serine) or are of similar size.
- Chemical similarity means that the residues have the same charge or are hydrophilic or hydrophobic.
- substitution of one hydrophobic residue with another such as isoleucine, valine, leucine or methionine, or substitution of another monopolar residue, for example, substitution of arginine with lysine
- substitution of glutamic acid with aspartic acid substitution of glutamine with asparagine, substitution of serine with threonine, and the like.
- Modified antibodies also include peptides having one or more D-amino acids, structural and functional analogs substituted with L-amino acids (and mixtures thereof), eg, synthetic or unnatural amino acids or amino acid analogs Also included are mimetics and derivatized forms. Modifications include cyclic structures such as end-to-end amide bonds or intra- or intermolecular disulfide bonds between amino and carboxy terminals.
- Non-limiting further specific examples of amino acid modifications include TIM-3 subsequences and fragments.
- Exemplary TIM-3 subsequences and fragments comprise a portion of a TIM-3 sequence to which an exemplary TIM-3 antibody of the invention binds.
- Exemplary TIM-3 subsequences and fragments also include an immunogenic portion, eg, a portion of TIM-3 that includes a sequence to which an exemplary TIM-3 antibody of the invention binds.
- TIM-3 antibody subsequences and fragments have a binding affinity as a full-length antibody, a binding specificity as a full-length antibody, or one or more activities or functions as a full-length antibody, for example, a function of a TIM-3 antagonist or agonist antibody Or it may have activity.
- the terms “functional subsequence” and “functional fragment” when referring to an antibody retain one or more functions or activities as a full-length reference antibody, eg, at least part of the function or activity of a TIM-3 antibody. Refers to the antibody portion. For example, an antibody subsequence or fragment that binds to TIM-3 or a fragment of TIM-3 is considered a functional subsequence.
- Antibody partial sequences and fragments can be combined.
- VL or VH subsequences can be linked by a linker sequence, thereby forming a VL-VH chimera.
- Combinations of single chain Fv (scFv) subsequences can be linked by a linker sequence, thereby forming an scFv-scFv chimera.
- TIM-3 antibody subsequences and fragments include single chain antibodies or variable regions alone or in combination with all or part of other TIM-3 antibody subsequences.
- Antibody partial sequences and fragments can be prepared by proteolytic hydrolysis of antibodies, for example, pepsin or papain digestion of whole antibodies.
- Antibody subsequences and fragments generated by enzymatic cleavage with pepsin yield a 5S fragment denoted as F (ab ') 2.
- This fragment can be further cleaved using a thiol reducing agent to create a 3.5S Fab ′ monovalent fragment.
- enzymatic cleavage with pepsin directly results in two monovalent Fab ′ and Fc fragments (see, eg, US Pat. Nos. 4,036,945 and 4,331,647; Tsuji and Edelman et al., Methods Enymol. 1: 422 ( 1967)).
- Other antibody cleavage methods may also be used, such as separation of the heavy chain to form a monovalent light-heavy chain fragment, further cleavage of the fragment, or other enzymatic or chemical methods.
- Proteins and antibodies, and their partial sequences and fragments can be created by genetic methods.
- the technology involves expressing all or part of a gene encoding a protein or antibody in a host cell such as Cos cells or E. coli.
- Recombinant host cells synthesize full-length or partial sequences, eg, scFv (eg, Whitlow et al., In: Methods: A Companion to Methods in Enzymology 2: 97 (1991), Bird et al., Science 242: 423 (1988) ; And U.S. Pat. No. 4,946,778).
- Single chain Fv and antibodies are described in U.S. Pat.Nos.
- Modified forms include derivatized sequences such as free amino groups forming amine hydrochlorides, p-toluenesulfonyl groups, carbobenzoxy groups; free carboxy groups forming salts, methyl and ethyl esters.
- Modified forms of proteins include adducts and inserts.
- an addition can be a covalent or non-covalent association of any type of molecule with a protein (eg, antibody), nucleic acid or other composition.
- Adducts and inserts include fusion (chimeric) polypeptide or nucleic acid sequences that have one or more molecules that are not normally present in a reference natural (wild-type) sequence covalently linked to said sequence. It is.
- a specific example is the amino acid sequence of another protein (eg, antibody) to create a multifunctional protein (eg, multispecific antibody).
- TIM-3 antibodies also include chimeras or fusions in which one or more additional domains are covalently linked to provide different or accessory functions or activities.
- Antibodies include chimeras or fusions that do not naturally occur in nature, in which two or more amino acid sequences are linked together.
- a linker sequence such that the two entities at least partially maintain different functions or activities between a protein (eg, antibody), nucleic acid, or other composition and an adduct or insert (eg, a heterologous domain) May be inserted.
- a linker sequence may have one or more properties that can promote or interact with either domain, such as flexible structure, Subsequent structures cannot be formed or include hydrophobicity or chargeability.
- Linkers include chemical crosslinkers and conjugating agents such as sulfo-succinimidyl derivatives (sulfo-SMCC, sulfo-SMPB), disuccinimidyl suberate (DSS), disuccinimidyl glutarate (DSG) and tartaric acid Further included is disuccinimidyl (DST).
- Modified and mutated antibodies are those that can retain the detectable activity of a TIM-3 antibody.
- the modified antibody has binding activity to a TIM-3 molecule and induces reduction or elimination of TIM-3 expressing cells by an immune system centered on effector cells. Involved in functional control of TIM-3 expressing cells, induces cell survival, proliferation, rest, cell death, etc. Cell death includes apoptosis, necrosis, autophagy and the like.
- cell-free methods eg, in solution, in solid phase
- cell-based methods eg, in vitro or in vivo
- the method comprises contacting a biomaterial or sample with an antibody that binds to TIM-3 under conditions that allow binding of the antibody to TIM-3; binding of the antibody to TIM-3; Assaying for.
- the presence of TIM-3 is detected by binding the antibody to TIM-3.
- TIM-3 is present in a cell or tissue.
- the biomaterial or sample is obtained from a mammalian subject.
- composition such as a protein (eg, TIM-3 antibody), material, sample, or treatment
- contacting refers to that composition (eg, TIM-3 antibody) and other references.
- a specific example of direct interaction is binding.
- a specific example of indirect interaction is when the composition acts on an intermediate molecule that acts on the next referenced entity.
- a cell eg, lymphocyte
- the antibody is bound to the cell (eg, through binding to TIM-3) or the antibody is intermediate And this intermediate then acts on the cell.
- TIM-3 antibody binding to TIM-3 can be assayed or measured by flow cytometry assays. (Preparation of antibody)
- the present application also provides a method for producing a human TIM-3 antibody having TIM-3 positive cytotoxic activity.
- the method comprises transferring a human TIM-3 extracellular domain or TIM-3 transgenic cell conjugated to a human Fc recombinant protein into an animal capable of expressing human immunoglobulin (eg, a transgenic mouse or a trans Screening the animal for expression of human TIM-3 antibody; selecting an animal producing human TIM-3 antibody; isolating the antibody from the selected animal; Determining whether the human TIM-3 antibody has TIM-3 antagonist activity.
- human immunoglobulin eg, a transgenic mouse or a trans Screening the animal for expression of human TIM-3 antibody; selecting an animal producing human TIM-3 antibody; isolating the antibody from the selected animal; Determining whether the human TIM-3 antibody has TIM-3 antagonist activity.
- TIM-3 protein suitable for antibody production can be produced by any of a variety of standard protein purification or recombinant expression techniques.
- TIM-3 sequences can be created by standard peptide synthesis techniques, such as solid phase synthesis.
- a portion of the protein may include an amino acid sequence such as a FLAG tag, T7 tag or polyhistidine sequence to facilitate purification of the expressed or synthesized protein.
- the protein can be expressed in cells and purified.
- the protein can be expressed as part of a larger protein (eg, a fusion or chimera) by recombinant methods.
- Suitable forms of TIM-3 for raising an immune response include TIM-3 subsequences, such as immunogenic fragments.
- Further forms of TIM-3 include TIM-3 expressing cells, TIM-3-containing preparations or cell extracts or fractions, partially purified TIM-3.
- TIM-3 or an immunogenic fragment thereof is optionally conjugated with a carrier such as keyhole limpet hemocyanin (KLH) or ovalbumin (eg BSA), or an adjuvant such as Freund's complete or incomplete adjuvant. And is used to immunize animals.
- KLH keyhole limpet hemocyanin
- BSA ovalbumin
- an adjuvant such as Freund's complete or incomplete adjuvant.
- splenocytes from immunized animals that respond to TIM-3 can be isolated and fused with myeloma cells.
- Monoclonal antibodies produced by hybridomas can be screened for reactivity with TIM-3 or immunogenic fragments thereof.
- Immunized animals include primates, mice, rats, rabbits, goats, sheep, cows, or guinea pigs.
- the initial and optional boosts may be by intravenous, intraperitoneal, intramuscular, or subcutaneous routes.
- the antigen can be combined with another protein such as ovalbumin or keyhole limpet hemocyanin (KLH), thyroglobulin and tetanus toxoid, or such as Freund's complete or incomplete adjuvant. Can be mixed with an adjuvant.
- KLH keyhole limpet hemocyanin
- thyroglobulin and tetanus toxoid or such as Freund's complete or incomplete adjuvant.
- the initial and optional booster immunization may be by the intraperitoneal route, intramuscular route, intraocular route, or subcutaneous route.
- the booster immunizations can be TIM-3 preparations at the same or different concentrations and can be regular or irregular intervals.
- Animals include those that have been genetically modified to include human loci and can be used to create human antibodies.
- Transgenic animals having one or more human immunoglobulin genes are described, for example, in US Pat. No. 5,939,598, WO 02/43478, and WO 02/092812.
- splenocytes from immunized mice that are highly responsive to antigen can be isolated and fused with myeloma cells.
- Monoclonal antibodies that bind to TIM-3 can be obtained.
- human when used in reference to an antibody means that the amino acid sequence of the antibody is a fully human amino acid sequence, ie, a human heavy and light chain variable region and a human constant region. Thus, all of the amino acids are human amino acids or are present in human antibodies.
- An antibody that is a non-human antibody can be made a fully human antibody by replacing non-human amino acid residues with amino acid residues present in the human antibody.
- Amino acid residues, CDR region maps, and human antibody consensus residues present in human antibodies are known in the art (eg, Kabat, Sequences of Proteins of Immunological Interest, 4th edition US Department of Health Hand Human Services. Public See Health Service (1987); Chothia and Lesk (1987).
- a human antibody includes an antibody in which one or more amino acid residues are replaced with one or more amino acids present in any other human antibody.
- TIM-3 antibodies include, for example, CDR-grafting (EP 239,400; W091 / 09967; U.S. Pat.Nos. 5,225,539; 5,530,101; and 5,585,089), veneering or Resurfacing (EP 592,106; EP519,596; Padlan, MolecularImmunol. 28: 489 (1991); Studnicka et al., Protein Engineering 7: 805 (1994); Roguska. Et al., Proc. Nat'l Acad. Sci. USA 91: 969 (1994)), and chain shuffling (US Pat. No. 5,565,332). Humanized antibodies that can be produced using these techniques are included. Human consensus sequences (Padlan, Mol. Immunol.
- humanized when used in reference to an antibody refers to one or more complementarity determining region (CDR) non-human amino acids whose antibody amino acid sequence specifically binds to a desired antigen in an acceptor human immunoglobulin molecule. Having residues (eg, mouse, rat, goat, rabbit, etc.) and one or more human amino acid residues in the Fv framework region (FR) (which are amino acid residues flanking the CDR) means.
- CDR complementarity determining region
- Antibodies referred to as “primatization” include any human amino acid residue in the acceptor human immunoglobulin molecule and framework region in addition to any human residue (eg, monkey, gibbon, gorilla, It is within the meaning of “humanization” except that it can be a chimpanzee orangutan, macaque monkey).
- the human FR residues of the immunoglobulin can be replaced with corresponding non-human residues.
- a humanized antibody may comprise residues that are found neither in the human antibody nor in the donor CDRs or framework sequences.
- FR substitutions at a particular position not found in human antibodies or donor non-human antibodies can be expected to improve binding affinity or specific human antibodies at that position.
- Antibody frameworks and CDR substitutions based on molecular modeling are well known in the art, for example, modeling of CDR and framework residue interactions and specific locations to identify framework residues important for antigen binding. By sequence comparison to identify unusual framework residues in (see, eg, US Pat. No. 5,585,089; Tsuji and Riechmann et al., Nature 332: 323 (1988)).
- TIM-3 antibody includes chimeric antibody.
- the term “chimera” and grammatical variations thereof when used with respect to an antibody is derived from two or more different species, wherein the amino acid sequence of the antibody is derived from two or more different species, or simply Means containing one or more moieties that are separated or based on two or more different species.
- a portion of the antibody can be human (eg, a constant region) and another portion of the antibody can be non-human (eg, a murine heavy chain or murine light chain variable region).
- an example of a chimeric antibody is an antibody in which different portions of the antibody are of different species origin. Chimeric antibodies, unlike humanized or primatized antibodies, can have different species of sequences in any region of the antibody.
- TIM-3 antibodies can also be produced using hybridoma technology, recombinant technology, and phage display technology, or combinations thereof (US Pat. Nos. 4,902,614, 4,543,439, and 4,411,993). See MonoclonalAntibodies.Hybridomas: ANewDimensionin Biological Analyses, Plenum Press, Kennett, McKearn, and Bechtol (Ed.), 1980, and Harlow et al., Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory Press, 2nd edition, 1988).
- Human anti-human TIM-3 antibodies can be generated using chromosomally transfected mice (KM mice TM) immunized with various forms of soluble recombinant human TIM-3 protein or cell lines expressing TIM-3 (WO) 02/43478, WO 02/092812, and Ishida, et al., IBC's 11th Antibody Engineering Meeting. Abstract (2000)).
- Human anti-human antibodies can be detected to detect human TIM-3 stably transfected cell lines, such as Jurkat-TIM-3 cells and L929-TIM-3 cells, rather than non-transformed parental cell lines.
- the antibodies in this application are kappa or lambda light chain sequences, either full-length, as in naturally occurring antibodies, mixtures thereof (ie, fusions of kappa and lambda chain sequences), and You can have their subsequences / fragments.
- Naturally occurring antibody molecules contain two kappa or two lambda light chains.
- human TIM-3 antibody specifically binds to TIM-3 and prevents binding of rat anti-human TIM-3 antibody 344823 (R & D Systems, catalog number MAB2365 or FAB2365P) to TIM-3 or Antibodies that do not block are also included.
- Human TIM-3 antibodies also include antibodies that specifically bind to TIM-3 and inhibit binding to each other, and antibodies that do not inhibit binding to each other. Methods for producing antibodies that specifically bind to TIM-3 are provided below.
- a method for making a TIM-3 antibody comprises a human TIM-3, subsequence or fragment (eg, TIM-3 extracellular domain), optionally conjugated to a human Fc recombinant protein.
- a human immunoglobulin eg, a transgenic mouse or transgenic bovine
- screening the animal for expression of human TIM-3 antibody and producing human TIM-3 antibody Selecting an animal to be isolated, and isolating an antibody from the selected animal. In one aspect, this method determines whether a human TIM-3 antibody has TIM-3 antagonist or agonist activity.
- a method for producing a human TIM-3 antibody that inhibits or prevents TIM-3 binding to TIM-3 ligand (TIM-3L).
- a method for making a human TIM-3 antibody optionally comprises TIM-3, subsequences or fragments (eg, TIM-3 extracellular domain) conjugated to a human Fc recombinant protein.
- Administering to an animal capable of expressing human immunoglobulin eg, a transgenic mouse or transgenic bovine
- screening the animal for expression of a human TIM-3 antibody and producing a human TIM-3 antibody Selecting an animal and isolating the antibody from the selected animal producing human TIM-3 antibody.
- this method determines whether a human TIM-3 antibody inhibits or prevents binding of TIM-3 to a TIM-3 ligand (TIM-3L).
- N-acetylglucosamine present at the reducing end of the N-linked complex sugar chain that binds to the 297th asparagine (Asn) of the Fc region of the antibody
- Fucose also referred to as core fucose
- the effector activity can be controlled using any method for the anti-TIM-3 monoclonal antibody of the present invention.
- Effector activity refers to antibody-dependent activity caused through the Fc region of an antibody.
- Antibody-dependent cytotoxic activity ADCC activity
- complement-dependent cytotoxic activity CDC activity
- macrophages macrophages
- dendritic cells Antibody-dependent phagocytosis (antibody dependent phagocytosis, ADP activity) such as phagocytic cells is known.
- the effector activity of the antibody can be increased or decreased.
- the antibody is expressed using CHO cells deficient in ⁇ 1,6-fucose transferase gene, An antibody to which fucose is not bound can be obtained.
- Antibodies without fucose binding have high ADCC activity.
- the antibody is expressed using a host cell into which an ⁇ 1,6-fucose transferase gene has been introduced.
- an antibody to which fucose is bound can be obtained.
- An antibody to which fucose is bound has a lower ADCC activity than an antibody to which fucose is not bound.
- ADCC activity and CDC activity can be increased or decreased by modifying amino acid residues in the Fc region of the antibody.
- the CDC activity of an antibody can be increased by using the amino acid sequence of the Fc region described in US2007 / 0148165.
- ADCC activity or CDC activity can be increased or decreased by carrying out the amino acid modification described in US 6,737,056, US 7,297,775, or US 7,317,091.
- Nucleic acids can be of various lengths.
- the length of a nucleic acid encoding a TIM-3 antibody or a subsequence thereof is generally about 100 nucleotides to 600 nucleotides, or any numerical value or numerical range within such a length range, 100 to 150. 150-200, 200-250, 250-300, 300-350, 350-400, 400-450, 450-500, 500-550, or about 550-600 nucleotides in length, Or any numerical value or range or value within such a length range.
- the length of the nucleic acid that specifically hybridizes with the nucleic acid encoding the TIM-3 antibody or a partial sequence thereof is generally about 10-20, 20-30, 30-50, 50-100, 100- 150, 150-200, 200-250, 250-300, 300-400, 400-500, 500-600 nucleotides, or any number or number within such a range Range.
- nucleic acid and “polynucleotide” refer to at least two or more ribo- or deoxy-ribonucleobase pairs (nucleotides) joined by a phosphate ester bond or equivalent.
- Nucleic acids include polynucleotides and polynucleosides. Nucleic acids include single molecules, double molecules or triple molecules, circular molecules or linear molecules. Exemplary nucleic acids include, but are not limited to: RNA, DNA, cDNA, genomic nucleic acids, naturally occurring and non-natural nucleic acids, eg, synthetic nucleic acids.
- Short nucleic acids and polynucleotides are generally “oligonucleotides” or “probes” of single- or double-stranded DNA. Called.
- Nucleic acids can be created using a variety of standard cloning and chemical synthesis techniques. Techniques include, but are not limited to, nucleic acid amplification of genomic DNA or cDNA targets using primers (eg, degenerate primer mixtures) that can be annealed to antibody coding sequences, such as polymerase chain reaction (PCR). It is done. Nucleic acids can also be created by chemical synthesis (eg, solid phase phosphoramidite synthesis) or transcription from a gene.
- primers eg, degenerate primer mixtures
- PCR polymerase chain reaction
- the generated sequence is then translated in vitro or cloned into a plasmid, propagated, and then in a cell (eg, a host cell such as yeast or bacteria, eukaryote (such as an animal or mammalian cell or plant)) Can be expressed.
- a cell eg, a host cell such as yeast or bacteria, eukaryote (such as an animal or mammalian cell or plant)
- a cell eg, a host cell such as yeast or bacteria, eukaryote (such as an animal or mammalian cell or plant)
- a vector is a mediator that can be manipulated by insertion or incorporation of nucleic acids.
- Vectors include plasmid vectors, viral vectors, prokaryotic (bacterial) vectors and eukaryotic (plant, fungal, mammalian) vectors.
- Vectors can be used for expression of nucleic acids in vitro or in vivo.
- Such vectors are called “expression vectors” and can be used to introduce nucleic acids, including nucleic acids encoding TIM-3 antibodies, subsequences and fragments thereof, or in vitro of the encoded protein (eg, in solution). Useful in expression in a subject in cells or in vivo.
- Vectors can also be used to manipulate nucleic acids.
- a “cloning vector” can be used to transcribe or translate an inserted nucleic acid in vitro (eg, in solution or in solid phase), in a cell, or in a subject in vivo.
- Vectors generally contain an origin of replication for propagation in cells in vitro or in vivo.
- Control elements such as expression control elements present in the vector can be included to facilitate transcription and translation, if desired.
- ⁇ Vectors may contain selectable markers.
- a “selectable marker” is a gene that allows for selection of cells containing the gene. “Positive selection” refers to the process by which positive selection occurs to select cells containing a selectable marker. Drug resistance is an example of a positive selection marker, cells containing the marker survive in the drug-containing culture medium, and cells without the marker die. Selectable markers include drug resistance genes such as neo that confer G418 resistance; hygr that confer hygromycin resistance; and puro that confer puromycin resistance. Other positive selectable marker genes include genes that allow identification or screening of cells that contain the marker.
- GFP and GFP-like chromophore, luciferase are surface markers such as fluorescent protein (GFP and GFP-like chromophore, luciferase) gene, lacZ gene, alkaline phosphatase gene, and CD8, among others.
- Negative selection refers to the process of exposing cells containing a negative selection marker to exposure to an appropriate negative selection agent.
- cells containing the herpes simplex virus thymidine kinase (HSV-tk) gene (Wigler et al., Cell 11: 223 (1977)) are sensitive to the drug ganciclovir (GANC).
- GANC herpes simplex virus thymidine kinase
- the gpt gene renders cells sensitive to 6-thioxanthine.
- Viral vectors include retrovirus (a lentivirus for infecting not only dividing cells but also non-dividing cells), foamy viruses (US Pat. Nos. 5,624,820, 5,693,508, 5,665,577, 6,013,516 and 5,674,703; WO92 / 05266 and WO92 / 14829), adenovirus (US Pat. Nos. 5,700,470, 5,731,172 and 5,928,944), adeno-associated virus (AAV) (US Pat. No. 5,604,090) ), Herpes simplex virus vectors (US Pat. No. 5,501,979), cytomegalovirus (CMV) vectors (US Pat. No.
- retrovirus a lentivirus for infecting not only dividing cells but also non-dividing cells
- foamy viruses US Pat. Nos. 5,624,820, 5,693,508, 5,665,577, 6,013,516 and 5,674,703; WO92 / 05266 and
- Adenoviruses can efficiently infect slowly replicating and / or terminally differentiated cells and can be used to target slowly replicating and / or terminally differentiated cells.
- Additional viral vectors useful for expression include parvovirus, norwalk virus, coronavirus, paramyxovirus and rhabdovirus, togavirus (eg, Sindbis virus and Semliki Forest virus) and vesicular stomatitis virus (VSV).
- a vector containing a nucleic acid can be expressed when the nucleic acid is operably linked to an expression control element.
- operably linked refers to a physical or functional relationship between the elements that allows them to function as intended.
- a nucleic acid “operably linked” to an expression control element means that the control element modulates nucleic acid transcription, and optionally, translation of the transcript.
- an “expression control element” or “expression control sequence” is a polynucleotide that affects the expression of operably linked nucleic acids. Promoters and enhancers are non-limiting specific examples of expression control elements and sequences.
- a “promoter” is a cis-acting DNA regulatory region capable of initiating transcription of a downstream (3 ′ direction) nucleic acid sequence. The promoter sequence includes nucleotides that promote transcription initiation. Enhancers also regulate nucleic acid expression but act away from the transcription start site of the nucleic acid to which it is operably linked. Enhancers also act when present at either the 5 ′ or 3 ′ end of a nucleic acid and also when present within a nucleic acid (eg, an intron or coding sequence).
- Additional expression control elements include leader and fusion partner sequences, endogenous ribosome binding site (IRES) elements for the creation of multiple genes, or polycistronic messages, intron splicing signals, in-frame translation of mRNA Maintenance of the correct reading frame of the gene to do, a polyadenylation signal that results in proper polyadenylation of the transcript of interest, and a stop codon.
- IRS endogenous ribosome binding site
- Expression control elements include “constitutive” elements in which transcription of operably linked nucleic acids occurs in the absence of a signal or stimulus.
- An expression control element that provides expression in response to a signal or stimulus and increases or decreases the expression of a operably linked nucleic acid is “regulatable”.
- a regulatable element that increases the expression of a linked nucleic acid in a manner that is responsive to a signal or stimulus is called an “inducible element”.
- a regulatable element that reduces the expression of a linked nucleic acid in a manner that is functionally responsive to a signal or stimulus is a “suppressor element” (ie, the signal decreases expression; if the signal is removed or absent) The expression increases).
- constitutive promoters include T7, as well as inducible promoters such as bacteriophage lambda pL, plac, ptrp, ptac (ptrp-lac hybrid promoter).
- constitutive or inducible promoters eg, ecdysone
- constitutive promoters include, for example, inducible promoters such as ADH or LEU2 and GAL (see, eg, Ausubel et al., In: CurrentProtocolsin Molecular Biology, Volume 2, Chapter 13, GreenePublish.Assoc.
- a constitutive promoter of virus or other origin may be used.
- LTR viral long terminal repeat
- mammalian cell genome eg, metallothionein IIA promoter; heat shock promoter, steroid / thyroid hormone / retinoic acid response element
- mammalian virus eg, An inducible promoter derived from an adenovirus late promoter; mouse breast cancer virus LTR
- the expression control element includes an element that is active in a specific tissue or cell type, and such an element is called a “tissue-specific expression control element”.
- a tissue-specific expression control element is generally more active in a particular cell or tissue type, which means that the tissue-specific expression control element is that particular cell or tissue compared to other cells or tissue types. This is because it is recognized by transcription-activating proteins active in the species, or other transcriptional regulators.
- Non-limiting specific examples of such expression control elements include hexokinase II, COX-2, ⁇ -fetoprotein, carcinoembryonic antigen, DE3 / MUC1, prostate specific antigen, C-erB2 / neu, glucose dependent insulin Promoters such as secretory stimulating polypeptides (GIP), telomerase reverse transcriptase and hypoxia-responsive promoters.
- GIP secretory stimulating polypeptides
- a host cell transformed or transfected with a TIM-3 nucleic acid or vector is provided.
- Host cells include, but are not limited to, prokaryotic and eukaryotic cells such as cells of bacteria, fungi (yeast), plants, insects, and animals (eg, mammals such as primates and humans). .
- Non-limiting examples of transformed cells include bacteria transformed with recombinant bacteriophage nucleic acid, plasmid nucleic acid or cosmid nucleic acid expression vectors; yeast transformed with recombinant yeast expression vectors; recombinant virus expression vectors (for example, plant cells infected with cauliflower mosaic virus, CaMV; tobacco mosaic virus, TMV) or transformed with recombinant plasmid expression vectors (eg, Ti plasmid); recombinant virus expression vectors (eg, baculovirus) Infected insect cells; and animal cells infected with recombinant viral expression vectors (eg, retroviruses, adenoviruses, vaccinia viruses), or transformed animal cells engineered for stable expression.
- recombinant virus expression vectors for example, plant cells infected with cauliflower mosaic virus, CaMV; tobacco mosaic virus, TMV
- recombinant virus expression vectors eg, Ti plasmid
- Non-limiting examples of mammalian host cells that express TIM-3 antibodies, subsequences and fragments thereof are CHO cells.
- the host cell may be a primary cell isolate, an isolated secondary cell or subculture cell, or a plurality of cells or cell populations derived from a cell line or immortal cell culture.
- transfected when used in reference to a cell (eg, a host cell) or organism refers to an exogenous molecule, eg, a protein or nucleic acid (eg, a transgene), into the cell. It means a genetic change in cells after uptake.
- a “transfected” or “transformed” cell is a cell into which an exogenous molecule has been introduced by the hand of man, eg, by recombinant DNA technology, or a progeny thereof.
- the nucleic acid or protein can be stably or transiently transfected or transformed (expressed) in the cell and its progeny.
- Cells can be grown and the introduced protein can be expressed or the nucleic acid can be transcribed. Because there may be mutations that occur during replication, the progeny of the transfected or transformed cell may not be identical to the parent cell.
- vectors are used for cell transfection or transformation.
- the vector can be contained within a viral particle or vesicle and, if desired, can be directed to a particular cell type by including a protein on the particle or vesicle surface that binds to a target cell ligand or receptor.
- viral particles or vesicles themselves, or viral surface proteins can be made to target cells for transfection or transformation in vitro, ex vivo or in vivo.
- introduction of a nucleic acid into a target cell can also be performed by methods known in the art such as osmotic impact (eg, calcium phosphate), electroporation, microinjection, cell fusion, and the like. Can do. Introduction of nucleic acids and polypeptides in vitro, ex vivo and in vivo can also be performed using other techniques.
- polymeric materials such as polyester, polyamic acid, hydrogel, polyvinyl pyrrolidone, ethylene-vinyl acetate, methyl cellulose, carboxymethyl cellulose, protamine sulfate, or lactide / glycolide copolymer, polylactide / glycolide copolymer, or ethylene vinyl acetate copolymer.
- Nucleic acids are produced by coacervation techniques or by interfacial polymerization, for example, in microcapsules prepared using hydroxymethylcellulose or gelatin-microcapsules, or poly (methylmethacrolate) microcapsules, respectively.
- it can be encapsulated in a colloidal system.
- Colloidal dispersions include systems based on polymer complexes, nanocapsules, microspheres, beads, and lipids (such as oil-in-water emulsions, micelles, mixed micelles, and liposomes).
- Liposomes for introducing various compositions into cells are known in the art and include, for example, phosphatidylcholine, phosphatidylserine, lipofectin and DOTAP (eg, US Pat. Nos. 4,844,904, 5,000,959, 4,863,740, and 4,975,282; moths and GIBCO-BRL, Gaithersburg, Md).
- Piperazine-based amphilic cationic lipids based on piperazine useful for gene therapy are also known (see, for example, US Pat. No. 5,861,397).
- Cationic lipid systems are also known (see, eg, US Pat. No. 5,459,127).
- polymeric materials, microcapsules and colloidal dispersions such as liposomes
- vesicles are collectively referred to as “vesicles”.
- TIM-3 based affinity purification non-denaturing gel purification, HPLC or RP-HPLC, size exclusion, purification on a protein A column, or any combination of these techniques.
- the TIM-3 antibody isotype can be determined using an ELISA assay, for example, human Ig can be identified using mouse Ig absorbed anti-human Ig.
- Binding affinity can be determined by binding (Ka) and dissociation (Kd) rates.
- the equilibrium affinity constant, KD is the Ka / Kd ratio.
- Binding (Ka) and dissociation (Kd) rates can be measured using surface plasmon resonance (SPR) (Rich and Myszka, Curr. Opin. Biotechnol 11:54 (2000); Englebienne, Analyst. 123: 1599 (1998)). Instrumentation and methods for real-time detection and monitoring of binding rates are known and commercially available (BiaCore 2000, Biacore AB, Upsala, Sweden; and Malmqvist, Biochem. Soc. Trans. 27: 335 (1999)).
- the KD value can be defined as the TIM-3 antibody concentration required to saturate half of the binding sites in TIM-3 (50%).
- the antibody can be included in a pharmaceutical composition.
- the antibody comprises a pharmaceutically acceptable carrier, stabilizer or excipient and is prepared in the form of an aqueous solution or as a lyophilized formulation. Typically, an appropriate amount of pharmaceutically acceptable salt is used to make the formulation isotonic.
- Acceptable carriers, stabilizers or excipients include, for example, buffers such as phosphate, citrate, and other organic acids; low molecular weight (less than 10 residues) polypeptides; serum albumin, gelatin, or immune Proteins such as globulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine, histidine, arginine, or lysine; monosaccharides such as glucose, mannose or dextrin, disaccharides and other carbohydrates; Chelating agents; sugars such as sucrose, mannitol, trehalose or sorbitol, salt-forming counterions such as sodium; antioxidants including methionine and ascorbic acid; metal complexes (eg Zn-protein complexes); preservatives (eg octadecyldimethylbenzyl) Ammonium chloride; hexamethonium chloride ; Benzalkon
- TIM-3 AML cells, CML cells, MDS cells, ALL cells, CLL cells, multiple myeloma cells, etc.
- helper T cells eg , Th1 cells, Th17 cells
- antigen-presenting cells eg, dendritic cells, monocytes / macrophages and similar cells (liver stellate cells, osteoclasts, microglia cells, macrophages in the epidermis, dust cells (alveolar large)) Diseases that can be treated by binding to or targeting phagocytic cells)
- TIM-3 AML cells, CML cells, MDS cells, ALL cells, CLL cells, multiple myeloma cells, etc.
- helper T cells eg , Th1 cells, Th17 cells
- antigen-presenting cells eg, dendritic cells, monocytes / macrophages and similar cells (liver stellate cells, osteoclasts, microglia cells, macrophages in the epidermis, dust cells (al
- AML acute myeloid leukemia
- M0 differentiated based on FAB classification (French-American-British criteria) ⁇ ⁇ ⁇
- FAB classification Frnch-American-British criteria
- M1 undifferentiated myeloblastic leukemia
- M2 differentiateiated myeloblastic leukemia
- M3 promyelocytic leukemia
- M4 myelomonocytic leukemia
- M5 Monocytic leukemia
- M6 erythroleukemia
- M7 megakaryocytic leukemia
- Further diseases include, for example, acute lymphocytic leukemia, atypical leukemia, chronic myelogenous leukemia, chronic lymphocytic leukemia, adult T-cell leukemia, NK / T-cell lymphoma, granular lymphocytosis (LGL leukemia) ), Polycythemia vera, essential thrombocythemia, hypereosinophilic syndrome, myelodysplastic syndrome, lymphoma (Hodgkin lymphoma, non-Hodgkin lymphoma), B cell lymphoma (follicular lymphoma, MALT lymphoma, mantle cell lymphoma, Diffuse large B cell lymphoma, Burkitt lymphoma, lymphoblastic lymphoma and Catsleman disease), T cell lymphoma (T / NK cell lymphoma, adult T cell leukemia, and NK cell leukemia).
- acute lymphocytic leukemia atypical leuk
- anti-tumor agents targeting TIM-3 antibodies or TIM-3-expressing cells can be performed by any acceptable method. In certain embodiments, they are administered locally, locally, or systemically to the subject. In addition, anti-tumor substances targeting TIM-3 antibodies or TIM-3-expressing cells to treat the above diseases are combined with other therapeutic agents (typically chemotherapeutic agents) suitable for similar diseases. Combination with radiation therapy can also be considered.
- chemotherapeutic agents such as cytarabine (Ara-C), anthracycline antitumor agents (typically daunorubicin (DNR), idarubicin (IDA)), all-trans retinoic acid (ATRA), differentiation induction therapy agents such as arsenite and Am80 (tamibarotene), gemtuzumab ozogamicin (ozogamicin-conjugated anti-CD33 antibody), topotecan, fludarabine, cyclosporine, mitoxantrone (MIT), interferon and imatinib , But is not limited to these, and includes combinations with clinically effective therapies.
- chemotherapeutic agents such as cytarabine (Ara-C), anthracycline antitumor agents (typically daunorubicin (DNR), idarubicin (IDA)), all-trans retinoic acid (ATRA), differentiation induction therapy agents such as arsenite and Am80 (tami
- Subjects that can be treated according to the present invention include mammals (eg, humans).
- a subject suspected of having a blood tumor or having been treated for a blood tumor a subject suspected of having a blood tumor in which cells expressing TIM-3 are observed Or a subject who has been treated for a blood tumor; a subject who is a candidate for a TIM-3 mediated cell response or who has been treated for a TIM-3 mediated cell response; a subject who is suspected of having a myeloid malignancy Or a subject treated for myeloid malignancy; a subject suspected of having acute myeloid leukemia or a subject treated for acute myeloid leukemia.
- the terms “treat”, “treatment”, “treatment” and grammatical variations thereof are performed in each subject or patient in whom it is desirable to obtain a physiological effect or outcome in the patient.
- the methods of the present invention include, among other things, treatments and therapies that provide measurable improvements or beneficial effects in a particular subject's disorder, disease, physiological condition, condition or symptom.
- a measurable improvement or beneficial effect is any objective or subjective, excessive, temporary, or long-term improvement in a disorder, disease, physiological condition, condition or symptom, or the disorder, disease, physiological Reduction in the onset, severity, duration or frequency of adverse symptoms associated with or resulting from a condition, medical condition or condition.
- the method of the present invention does not necessarily have an immediate effect, with a slight delay, and may see a final improvement or beneficial effect over time, resulting in stabilization or improvement in a particular subject.
- the term “recurrence” means that the symptoms worsen or become a non-hematological remission after treatment for the subject has been successful or has become a hematological remission.
- “Remission” in leukemia means a state in which leukemia cell blasts are not found in peripheral blood. Remission status in acute myeloid leukemia has been proposed by NIH (Cheson BD, etal., Journal of Clinical Oncology, Vol 8, 813-819).
- “refractory” refers to a condition in which no effect is observed in the treatment of a subject. (Antagonist) Antibodies further include those that affect TIM-3 function or activity.
- the antibody inhibits or prevents binding of TIM-3 ligand to TIM-3; inhibits or prevents binding of TIM-3 ligand to cells; Modulate (eg, inhibit or suppress); modulate a TIM-3-mediated cellular response.
- the TIM-3-expressing cell response causes proliferation of TIM-3-expressing cells, increased production of cytokines such as IFN ⁇ , and enhanced tumor immunity.
- Antibodies further include those that affect TIM-3 function or activity.
- the antibody mimics TIM-3 ligand binding to TIM-3; modulates (eg, promotes or enhances) signaling across TIM-3; TIM-3 mediated cells Modulate response.
- TIM-3-expressing cell responses cause growth arrest of TIM-3 expressing cells, control of cytokine production, and the like.
- Example 1 Preparation of bone marrow and peripheral blood cells
- Samples from patients and healthy volunteers were approved by the Kyushu University Hospital Ethics Committee.
- Bone marrow cells were collected by bone marrow aspiration from patients with leukemia or myelodysplastic syndromes and healthy volunteers.
- Peripheral blood was collected from healthy volunteers by venous blood collection.
- Stem cell mobilized peripheral blood was collected from patients with indications for autologous peripheral blood stem cell transplantation (cases with relapse of diffuse large B-cell lymphoma that had undergone complete remission by chemotherapy and sensitive to chemotherapy).
- Mononuclear cells were separated from serum and platelets by centrifugation (no brake) at 1700 rpm for 30 minutes. The interface containing PBMC was collected and washed with a staining medium. The suspension was again suspended using staining medium, and the cells were counted after mixing with Turku's solution. 1 ⁇ 10 6 cells were resuspended with 100 uL of staining medium. When staining normal hematopoietic stem cells and progenitor cells, after selecting mononuclear cells, positive selection of CD34 positive cells using Indirect CD34 MicroBead kit (Miltenyi Biotec), and finally adding a staining medium The total capacity was 100 uL.
- Example 2 Bone marrow normal hematopoiesis and tumor stem cell staining and analysis method
- primary antibodies anti-human CD34 antibody (Becton Dickinson (BD) Cat No.340441) 2uL, anti-human CD38 antibody (CALTAG, CatNo.MHCD3815) 20uL, anti-human CD90 antibody (BD) Cat No. 555595) 2 uL and TIM-3 antibody (R & DSystems, 344823) 20 uL, stained at 4 ° C. for 40 minutes. Thereafter, PBS was added, centrifuged at 1500 rpm for 5 minutes, washed, the supernatant was discarded, and 100 uL of staining medium was added again.
- Anti-human Lineage antibodies (anti-human CD3 (BD, CatNo. 555341), CD4 (BD, CatNo. 555348), CD8 (BD, CatNo. 555636), CD10 (BD, Cat No. 555376), CD19 (BD, CatNo. 555414), CD20 (BD, Cat No. 555624), CD11b (BD, Cat No. 555389), CD14 (Beckman Coulter, Cat No. A07765), 5 ⁇ L each of CD56 (BD, Cat No. 555517), GPA (BD, Cat No. 559944 antibody), and Streptavidin APC-Cy7 (BD, Cat No. 554063) 5 uL were added, 4 Stained at 40 ° C for 40 minutes.
- Example 3 Expression of Human TIM-3 Molecule in Human Blood Tumor Using the methods of Example 1 and Example 2, the expression of human TIM-3 molecules in human blood tumors was examined.
- the expression of human TIM-3 molecule in bone marrow Lin (-) CD34 (+) CD38 (-) cells from MDS patients was investigated by multicolor flow cytometry analysis. The results are shown in FIG. TIM-3 expression was observed in all 7 patients with MDS.
- the expression of human TIM-3 molecule in bone marrow Lin (-) CD34 (+) CD38 (-) cells from CML patients was investigated by multicolor flow cytometry analysis. The results are shown in FIG. TIM-3 expression was observed in all 2 patients with CML.
- TIM-3 molecules in bone marrow Lin (-) CD34 (+) CD38 (-) cells from ALL patients was investigated by multicolor flow cytometry analysis. The results are shown in FIG. One patient with ALL had no TIM-3 expression.
- the expression of human TIM-3 molecules in bone marrow Lin (-) CD34 (+) CD38 (-) and Lin (-) CD34 (+) CD38 (+) cells from relapsed AML patients was investigated by multicolor flow cytometry analysis . A typical result is shown in FIG. In patients with AML recurrence, TIM-3 expression was observed in Lin (-) CD34 (+) CD38 (-) leukemia stem cells and Lin (-) CD34 (+) CD38 (+) AML cells.
- Example 4 Expression of human TIM-3 molecule in normal human blood cells
- the method is as described in the preparation of bone marrow and peripheral blood cells in Example 1, and the method for staining and analysis of normal hematopoiesis and tumor stem cells in Example 2.
- TIM-3 molecule in normal bone marrow and stem cell mobilized peripheral blood-derived Lin (-) CD34 (+) CD38 (-) cells and Lin (-) CD34 (+) CD38 (+) cells Investigated by metric analysis. The results are shown in FIG. In normal hematopoietic stem cell fractions, Lin (-) CD34 (+) CD38 (-) CD90 (+) cells did not express TIM-3. In addition, TIM-3 expression was observed in some of the lymphoid common progenitor cells (CLP), myeloid common progenitor cells (CMP), and granulocytes / monocyte progenitor cells (GMP). Expression was not observed in erythroid progenitor cells (MEP).
- CLP lymphoid common progenitor cells
- CMP myeloid common progenitor cells
- GMP granulocytes / monocyte progenitor cells
- TIM-3 molecule in normal peripheral blood cells derived from healthy subjects was investigated by flow cytometry analysis.
- 2 ⁇ L of anti-CD3 antibody (BD, CatNo. 555339), 2 ⁇ L of anti-CD14 antibody (BD, CatNo. 555413), anti-CD19 antibody (BD, Cat No.555399) 10uL and TIM-3 antibody (R & D Systems, 344823) 20 uL, stained at 4 ° C for 40 minutes. After washing with a staining medium, it was resuspended in a staining medium to which PI was added. Samples were analyzed with FACSAria (BD).
- TIM-3 was clearly expressed in monocytes. Expression was also observed in some CD3-positive T cells. No expression was observed in granulocytes and B cells.
- Example 5 Expression of TIM-3 in cell line Expression of hTIM-3 in human cell lines was analyzed by flow cytometry. Cells in culture were collected by pipetting and concentrated by centrifugation. After washing with staining medium, it was blocked with human IgG (final concentration 1 mg / ml manufactured by SIGMA). Stained with PE-labeled anti-human TIM-3 monoclonal antibody (R & D Systems) and allowed to stand at 4 ° C. for 30 minutes.
- TIM-3 may be expressed in multiple myeloma and AML, suggesting the usefulness of anti-human TIM-3 antibody as a therapeutic agent for these diseases.
- Example 6 Preparation of soluble extracellular human TIM-3 human Fc fusion protein and soluble extracellular human TIM-3 protein
- Protein was prepared by the following method.
- hTIM-3 cDNA was amplified from leukocyte-derived cDNA (CLONTECHHumanMTCPanel) by PCR using ExTaq (Takara Bio Inc.).
- the PCR apparatus used was GeneAmpPCRSystem 9700 (Applied Biosystems) (used in all PCR reactions in this specification).
- the PCR reaction was performed at a denaturation step of 95 ° C. for 1 minute, followed by 40 cycles of 3 steps of 95 ° C. for 15 seconds-58 ° C. for 15 seconds-72 ° C. for 30 seconds, followed by extension reaction at 72 ° C. for 2 minutes.
- the PCR primers used were as follows: TIM-3 Fw2: 5'-GCCACCATGTTTTCACATCTTCCCTT-3 '(SEQ ID NO: 3)
- TIM-3 Re2 5'-CTATGGCATTGCAAAGCGAC-3 '(SEQ ID NO: 4)
- the obtained PCR product was subjected to 0.8% agarose gel electrophoresis (135 V, 15 minutes, TAE buffer).
- DNA was visualized by ethidium bromide staining. A band around 0.9 kb was cut out, and DNA was extracted using Wizard SV Gel and PCR Clean-Up System.
- the extracted DNA 4.5 uL and pGEM-T Easy vector (Promega) 0.5 uL were mixed and ligated using TaKaRa Ligation Kit.
- the ligation sample and DH10B competent cells were mixed and plated on LB plates (containing X-Gal and ampicillin).
- Insert check of pGEM-T Easy vector was performed by colony direct PCR using LA Taq (Takara Bio Inc.). The PCR reaction was performed at a denaturation step of 95 ° C. for 1 minute, followed by 35 cycles of 95 ° C. 15 seconds-56 ° C. 15 seconds-72 ° C. 30 seconds, followed by extension reaction at 72 ° C. for 2 minutes.
- the PCR primers used were as follows: T7: 5'-TAATACGACTCACTATAGGG-3 '(SEQ ID NO: 5)
- SP6 5'-CATACGATTTAGGTGACACTATAG-3 '(SEQ ID NO: 6)
- the obtained PCR product was subjected to 0.8% agarose gel electrophoresis (135 V, 15 minutes, TAE buffer). DNA was visualized by ethidium bromide staining.
- the base sequence was determined by direct sequencing for the colony from which amplification of about 1.2 kb was obtained.
- the sequence sample reaction was carried out using BigDye (R) Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems) and GeneAmp PCR System 9700 (Applied Biosystems) (these were used for all DNA sequence analysis in this specification). T7 and SP6 were used as primers.
- the ABI 3700XL DNA analyzer (Applied Biosystems) was used as the sequence analyzer (this is used for all DNA sequence analysis in this specification).
- a clone having the same sequence as the coding region of GenBank accession number NM_032782 was selected, and plasmid DNA was extracted by the miniprep method.
- hTIM-3 expression vector For the preparation of the hTIM-3 expression vector, a clone in which the 5 ′ end of human TIM-3 cDNA is on the T7 side of the cloning site in the pGEM-TEasy vector was used.
- hTIM-3 / GEM-T EasyplasmidDNA and pMCs-IGRetrovirus Vector (Cosmo Bio) were digested with NotI, and 0.8% agarose gel electrophoresis (135V, 15 minutes, TAEbuffer) was performed. DNA was visualized by ethidium bromide staining.
- PCR primers used were as follows: pMCs-Fw: 5'-TCAAAGTAGACGGCATCGCAG-3 '(SEQ ID NO: 7) TIM-3 Re1: 5'-GCATTGCAAAGCGACAAC-3 '(SEQ ID NO: 8)
- the obtained PCR product was subjected to 0.8% agarose gel electrophoresis (135 V, 15 minutes, TAE buffer). DNA was visualized by ethidium bromide staining. Plasmid DNA was extracted by a miniprep method from a colony from which amplification of about 1.1 kb was obtained.
- hTIM-3 / pMCs-IG plasmid DNA was confirmed by DNA sequence analysis to have the same sequence as the coding region of GenBank accession number NM_032782. Primers used for DNA sequence analysis are as follows: pMCs-Fw: 5'-TCAAAGTAGACGGCATCGCAG-3 '(SEQ ID NO: 9) hTIM-3 Fw1: 5'-ACTCTGGAGCAACCATCA-3 '(SEQ ID NO: 10) In order to confirm the expression of hTIM-3 protein, hTIM-3 / pMCs-IGplasmidDNA was transiently expressed in 293T cells. FuGene6 (Roche) was used for gene transfer.
- FuGene6 (Roche) was used for gene transfer. Three days later, the culture supernatant was collected, and impurities were removed with a 0.45 um filter (Millipore). After centrifugation (6000 ⁇ g, 4 ° C., 7 hours), the precipitate was dissolved in IMDM medium (Invitrogen). Concentrated retrovirus solution and protamine solution (Wako Pure Chemicals, final concentration 100 ⁇ g / ml) were added to EoL-1 cell and Jurkat cell cultures. After several passages, GFP positive infected cells were collected in the culture medium with FACSAria. Further, after several passages, GFP-positive infected cells were again collected in the culture medium using FACSAria.
- TIM-3 expression was confirmed by flow cytometry using a PE-labeled anti-TIM-3 monoclonal antibody.
- Preparation of soluble extracellular TIM-3 human Fc fusion protein expression vector A cDNA encoding the extracellular region of human TIM-3 was amplified by PCR, and a FLAG tag and a human Fc sequence were ligated downstream (sTIM-3-FLAG-Fc / pTracerCMV).
- CDNA encoding the extracellular region of human TIM-3 was amplified by PCR using PrimeSTAR® HS DNA Polymerase (Takara Bio Inc.) using hTIM-3 / pMCs-IG plasmid DNA as a template.
- the PCR reaction was 20 cycles of a 2-step reaction at 98 ° C. for 10 seconds and 68 ° C. for 40 seconds.
- PCR primers used were as follows: pMCs-Fw: 5'-TCAAAGTAGACGGCATCGCAG-3 '(SEQ ID NO: 11)
- TIM3ED-FcReXba 5'-TTTTTCTAGATCTGATGGTTGCTCCAGA-3 '(SEQ ID NO: 12)
- the obtained PCR product was subjected to 0.8% agarose gel electrophoresis (135 V, 15 minutes, TAE buffer). DNA was visualized by ethidium bromide staining. A band around 0.6 kb was cut out, and DNA was extracted using Wizard SV Gel and PCR Clean-Up System.
- the purified DNA was digested with EcoRI and XbaI, and 0.8% agarose gel electrophoresis (135 V, 15 minutes, TAE buffer) was performed again. A band around 0.9 kb was cut out, and DNA was extracted using Wizard SV Gel and PCR Clean-Up System.
- the pTracer-CMV-FLAG-humanFc vector modified pTracer-CMV [manufactured by Invitrogen] cleaved with the same enzyme as the purified DNA contains the Fc region of FLAG and human IgG1 at the Xba I and Apa I sites.
- the introduced plasmid was mixed and ligated using TaKaRa Ligation Kit.
- ligation samples and DH10B competent cells were mixed and plated on LB plates (containing ampicillin). Insert check was performed by colony direct PCR using LA Taq (Takara Bio Inc.). The PCR reaction was performed at a denaturation step of 95 ° C. for 1 minute, followed by 35 cycles of 95 ° C. 15 seconds-56 ° C. 15 seconds-72 ° C. 40 seconds, followed by extension reaction at 72 ° C. for 2 minutes.
- PCR primers used were as follows: T7: 5'-TAATACGACTCACTATAGGG-3 '(SEQ ID NO: 13)
- TIM3ED-FcReXba 5'-TTTTTCTAGATCTGATGGTTGCTCCAGA-3 '(SEQ ID NO: 14)
- the obtained PCR product was subjected to 0.8% agarose gel electrophoresis (135 V, 15 minutes, TAE buffer). DNA was visualized by ethidium bromide staining. Plasmid DNA was extracted by a miniprep method from a colony in which amplification around 0.7 kb was obtained.
- sTIM-3-FLAG-Fc / pTracerCMVplasmidDNA was confirmed to have the same sequence as that region of GenBank accession number NM_032782 by DNA sequence analysis.
- Primers used for DNA sequence analysis are as follows: T7: 5'-TAATACGACTCACTATAGGG-3 '(SEQ ID NO: 15) hTIM-3 Fw1: 5'-ACTCTGGAGCAACCATCA-3 '(SEQ ID NO: 16)
- the sequence of the insert (from behind the EcoRI recognition site to just before the ApaI recognition site) is as follows: (SEQ ID NO: 17) (Preparation of soluble extracellular TIM-3 protein expression vector) CDNA encoding the extracellular region of human TIM-3 was amplified by PCR, and a FLAG tag was ligated downstream (sTIM-3-FLAG / pEF6 Myc_HisC).
- CDNA encoding the extracellular region of human TIM-3 was amplified by PCR using PrimeSTAR® HS DNA Polymerase (Takara Bio Inc.) using hTIM-3 / pGEM-T Easy plasmid DNA as a template.
- the PCR reaction was 25 cycles of a 2-step reaction at 98 ° C. for 10 seconds to 68 ° C. for 30 seconds.
- PCR primers used were as follows: TIM-3 Fw2: 5'-GCCACCATGTTTTCACATCTTCCCTT-3 '(SEQ ID NO: 18) TIM3ED-FLAG4aa: 5'- GTCCTTGTAGTCTCTGATGGTTGCTCCAGA-3 '(SEQ ID NO: 19)
- the obtained PCR product 2 uL was used as a template and amplified by the PCR method using LA Taq (Takara Bio Inc.).
- the PCR reaction was performed at a denaturation step of 95 ° C. for 1 minute, followed by 16 cycles of a 3-step reaction at 95 ° C. for 15 seconds-58 ° C. for 15 seconds-72 ° C.
- PCR primers used were as follows: TIM-3 Fw2: 5'-GCCACCATGTTTTCACATCTTCCCTT-3 '(SEQ ID NO: 20) C-FLAG-NotR2: 5'-AAAAGCGGCCGCTCACTTGTCGTCATCGTCCTTGTAGTC-3 '(SEQ ID NO: 21)
- the obtained PCR product was subjected to 0.8% agarose gel electrophoresis (135 V, 15 minutes, TAE buffer). DNA was visualized by ethidium bromide staining. A band around 0.6 kb was cut out, and DNA was extracted using Wizard SV Gel and PCR Clean-Up System.
- Extracted DNA 4uL and pGEM-T Easy vector (Promega) 0.5uL were mixed and ligated using Quick Ligation (TM) Kit (New England Biolabs).
- TM Quick Ligation
- Insert check of pGEM-T Easy vector was performed by colony direct PCR using LA Taq (Takara Bio Inc.). The PCR reaction was performed at a denaturation step of 95 ° C. for 1 minute, followed by 38 cycles of 3 steps of 95 ° C. for 15 seconds-56 ° C. for 15 seconds-72 ° C. for 30 seconds, followed by extension reaction at 72 ° C. for 2 minutes.
- the PCR primers used were as follows: T7: 5'-TAATACGACTCACTATAGGG-3 '(SEQ ID NO: 22) SP6: 5'-CATACGATTTAGGTGACACTATAG-3 '(SEQ ID NO: 23)
- the obtained PCR product was subjected to 0.8% agarose gel electrophoresis (135 V, 15 minutes, TAE buffer). DNA was visualized by ethidium bromide staining. The base sequence was determined by direct sequencing for the colony from which amplification of about 0.8 kb was obtained.
- T7 and SP6 were used as primers.
- a clone having the same sequence as the coding region of GenBank accession number NM_032782 was selected, and plasmid DNA was extracted by the miniprep method.
- a clone having the 5 ′ end of human TIM-3 cDNA on the T7 side of the cloning site in pGEM-TEasyvector was used for the production of a soluble extracellular TIM-3 protein expression vector.
- hTIM-3 / GEM-T EasyplasmidDNA and pEF6Myc_HisC were digested with NotI, and 0.8% agarose gel electrophoresis (135V, 15 minutes, TAEbuffer) was performed. DNA was visualized by ethidium bromide staining. Bands around 0.6 kb and 5 kb were cut out, respectively, and DNA was extracted using WizardSVGel and PCR Clean-Up System.
- the extracted sTIM-3 cDNA4uL and pEF6 Myc_HisC vector DNA0.5uL were mixed and ligated using QuickLigation (TM) Kit (New England Biolabs).
- TM QuickLigation
- ligation samples and DH10B competent cells were mixed and plated on LB plates (containing ampicillin). Insert check was performed by colony direct PCR using LA Taq (Takara Bio Inc.). The PCR reaction was performed at a denaturation step of 95 ° C for 1 minute, followed by 38 cycles of 3 steps of 95 ° C for 15 seconds-56 ° C for 15 seconds-72 ° C for 60 seconds, followed by extension reaction at 72 ° C for 2 minutes.
- PCR primers used were as follows: TIM-3 Fw2: 5'-GCCACCATGTTTTCACATCTTCCCTT-3 '(SEQ ID NO: 24) BGH-R: 5'-TAGAAGGCACAGTCGAGG-3 '(SEQ ID NO: 25) Plasmid DNA was extracted by a miniprep method from a colony in which amplification around 0.8 kb was obtained.
- HEK293F cells were used as host cells for expression.
- HEK293F cells were cultured with shaking using FreeStyle 293 Expression Medium (Invitrogen) (37 ° C., 5% CO 2 ).
- the PEI method was used for gene transfer.
- Polyethylenimine, Linear, MW 25,000 (manufactured by Polysciences) were weighed and dissolved in PBS (manufactured by Invitrogen) while adjusting the pH to around 7.0 with HCl (1 g / L). After stirring for 1 hour, the solution was sterilized by filtration with a membrane filter MILLEX-GV (manufactured by Millipore) having a pore size of 0.22 ⁇ m.
- a solution A 1 mg of the purified plasmid DNA and 20 mL of Opti-Pro SFM (manufactured by Invitrogen) were mixed to prepare a solution A.
- a solution B was prepared by mixing 2.5 mL of PEI solution (1 g / L) and 20 mL of Opti-ProSFM (manufactured by Invitrogen). Solution A and solution B were mixed and allowed to stand for 10 minutes, and then added to 1 L of 293F cells (1000000 cells per mL). After 6 days, the cell supernatant was collected and used for protein purification.
- Elution was performed using FLAG peptide (manufactured by Sigma) according to the manual.
- Silver staining reagent “Daiichi” (Daiichi Chemical Co., Ltd.) was used for silver staining.
- anti-FLAG M2 antibody manufactured by Sigma
- alkaline phosphatase-labeled rabbit anti-mouse immunoglobulin antibody were used.
- the fraction in which the target protein was observed was concentrated using Amicon Ultra-4 10K (Millipore), and gel filtration chromatography was performed using Superdex 200 gp (GE Healthcare). After fractionation, each fraction was subjected to SDS-PAGE under reducing conditions (Multigel II Mini 10/20% Gradient Gel; manufactured by Cosmo Bio), followed by silver staining and Western blotting. Silver staining reagent “Daiichi” (Daiichi Chemical Co., Ltd.) was used for silver staining. For Western blotting, anti-FLAG M2 antibody (manufactured by Sigma) and alkaline phosphatase-labeled rabbit anti-mouse immunoglobulin antibody were used.
- the fraction in which the target protein was observed was concentrated using Amicon Ultra-4 10K (Millipore) and washed with 0.5 mL of PBS.
- the solution was sterilized by filtration with a membrane filter MILLEX-GV (Millipore) having a pore size of 0.22 ⁇ m to obtain a soluble extracellular human TIM-3 human Fc fusion protein and a soluble extracellular human TIM-3 protein.
- a membrane filter MILLEX-GV Micropore having a pore size of 0.22 ⁇ m to obtain a soluble extracellular human TIM-3 human Fc fusion protein and a soluble extracellular human TIM-3 protein.
- TIM-3-expressing cell line cytotoxicity test using anti-TIM-3 polyclonal antibody Antibody-mediated cellular cytotoxicity uses human peripheral blood-derived mononuclear cells (PeripheralBloodMononuclearCells) (PBMC) as effectors in the presence of antibodies, and acts on target cells (antibody-dependent cellular cytotoxicity) (Antibody-Dependent Cellular Cytotoxicity) Hereinafter, ADCC) was measured.
- PBMC peripheral blood-derived mononuclear cells
- ADCC antibody-dependent cellular cytotoxicity
- As the antibody goat-derived anti-TIM-3 polyclonal antibody (R &DSystems; AF2365) and goat-derived IgG (manufactured by Sigma; I5256-10MG) were used as a negative control.
- target cells are cultured in the presence of PBMC, and lysis of the target cells by the antibody is measured.
- sodium chromate Na 2 51 CrO 4 , manufactured by PerkinElmer, NEZ030S, labeled with radioisotope 51 Cr as a target cell, TIM-3 forced expression Jurkat cell and TIM-3 forced expression EoL-1 cell were used.
- 37 ° C. in the presence of 5% CO 2 for 1 hour to label the target cells with 51 Cr.
- the labeled target cells were washed 3 times with 10% FCS-containing RPMI-1640 medium to remove excess 51 Cr, suspended in the medium (40,000 cells / mL), and 50 uL / well was transferred to a 96-well plate .
- PBMC peripheral blood
- effector / target ratio 100
- the antibody was suspended in the medium, 50 uL was added to the plate (final concentration 10 ug / mL), and the cells were cultured at 37 ° C. in the presence of 5% CO 2 for 4 hours.
- Anti-human TIM-3 goat polyclonal antibody R & D Systems
- goat IgG goat IgG (Sigma) was used as the negative control.
- the PBMC used for the effector was a sample derived from healthy human peripheral blood. The solubility of the target cells was determined by measuring the amount of 51 Cr in sodium chromate released from the cells after cell lysis.
- the supernatant was transferred to a 96-well plate with scintillator (Lumaplate-TM, manufactured by PerkinElmer) and dried at 56 ° C. for 2 hours.
- the plate was sealed (TopSeal-A, Packard) and measured with a microplate reader (TopCount, PerkinElmer).
- radioactive chromium 51 Cr was taken into the cytoplasm in the target cell, and the amount of 51 Cr released into the culture medium due to cell death was measured with a ⁇ dose.
- 51 Cr radioactive chromium
- the prepared sodium chromate manufactured by PerkinElmer: hereinafter referred to as 51 Cr was added and cultured at 37 ° C. for 1 hour.
- CDC consists of 2000 rabbits of 51 Cr-labeled TIM-3 forced-expressing EoL-1 cells. Final concentration of 2.5% young rabbit serum-derived complement (Cedarlane; CL3441) and each concentration of antibody (final concentration 0ug) / ml, 0.01 ug / ml, 0.1 ug / ml, 1 ug / ml, 10 ug / ml). In a U-bottom 96-well plate, the total volume of the mixture was 150 ⁇ L, and both were cultured at 37 ° C.
- Triton-X100 was added at a final concentration of 0.33%. After culturing, the plate was centrifuged to settle the cells, and then 50 ⁇ L of the supernatant was transferred to a 96-well plate containing a powder scintillator (LumaplateTM-96: manufactured by Packard) and dried at 56 ° C. for 2 hours. After confirming drying, the plate was covered with a special cover (TopSealTM-A: 96-well Microplates: Packard), and the ⁇ dose was measured with a scintillation counter (Topcount: Packard).
- a powder scintillator LiaplateTM-96: manufactured by Packard
- the specific lysis rate was calculated by dividing the value obtained by subtracting the ⁇ dose at the antibody concentration of 0 ug / ml from the value of each well by the value of the well added with Triton-X100 (specific lysis rate 100%). .
- the result is shown in FIG.
- Inhibitory activity against target cells was observed depending on the concentration of TIM-3 polyclonal antibody. Therefore, this example shows the possibility of treatment with TIM-3 positive cell removal using CDC as a medicinal effect.
- Example 8 AML primary cytotoxicity test using anti-TIM-3 polyclonal antibody
- Antibody-mediated cytotoxic activity was determined by measuring the cytotoxic activity against target cells (complement-dependent cytotoxicity, hereinafter referred to as CDC) in the presence of complement and antibody.
- target cells are cultured in the presence of complement components, and the decrease in cell viability due to antibodies is measured.
- antibody goat-derived anti-TIM-3 polyclonal antibody and goat-derived IgG (manufactured by Sigma; I5256-10MG) were used as a negative control.
- primary AML cells were suspended as target cells from a patient specimen in RPMI-1640 medium containing 10% FCS, and 1000000 cells / well were transferred to a 24-well plate (462.5 uL / well). Young rabbit serum-derived complement (Cedarlane; CL3441) 12.5 ⁇ L / well (final concentration 2.5%) was added.
- 25 ⁇ L of goat-derived anti-TIM-3 polyclonal antibody (0.2 mg / ml) was added (final concentration 10 ⁇ g / mL), and cultured at 37 ° C. in the presence of 5% CO 2 for 3 hours.
- the ratio of dead cells was evaluated by flow cytometry using AnnexinV staining. After washing with PBS, resuspend in Annexin V Binding Buffer (BD) 50 ⁇ l, add PI and Annexin V-FITC (BD), and stain at room temperature for 10 minutes, then Annexin V Binding Buffer (BD) ) Dilute with 200 ⁇ L. The specimen was analyzed with FACSAria (BD). The frequency of AnnexinV (+) PI (-) cells and PI (+) cells in all AML cells was defined as the dead cell rate.
- a subject suspected of having a blood tumor in which TIM-3 is expressed in the Lin (-) CD34 (+) CD38 (-) cell fraction of bone marrow or peripheral blood or a blood tumor is treated.
- a therapeutic method comprising administering a TIM-3 antibody to a subject.
- SEQ ID NO: 3 TIM-3Fw2 primer
- SEQ ID NO: 4 TIM-3 Re2 primer
- SEQ ID NO: 5 T7 primer
- SEQ ID NO: 6 SP6 primer
- SEQ ID NO: 7 pMCs-Fw primer
- SEQ ID NO: 8 TIM-3 Re1 primer
- SEQ ID NO: 9 pMCs-Fw primer
- SEQ ID NO: 10 hTIM-3 Fw1 primer
- SEQ ID NO: 12 TIM3ED-FcReXba primer
- SEQ ID NO: 13 T7 primer
- SEQ ID NO: 14 TIM3ED-FcReXba primer
- SEQ ID NO: 15 T7 primer sequence No.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Immunology (AREA)
- Organic Chemistry (AREA)
- Molecular Biology (AREA)
- Hematology (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Cell Biology (AREA)
- Biomedical Technology (AREA)
- Urology & Nephrology (AREA)
- Biophysics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Genetics & Genomics (AREA)
- Oncology (AREA)
- General Physics & Mathematics (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- Food Science & Technology (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Hospice & Palliative Care (AREA)
- Pathology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Peptides Or Proteins (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
Abstract
Description
悪性腫瘍(癌)は、わが国における死亡原因の第一位を占め、さらに患者数は年々増加してきており、有効性及び安全性の高い薬剤や治療法の開発が強く望まれている。悪性腫瘍を形成する原因として、放射線、紫外線や各種発癌性物質によるDNAの変異がある。悪性腫瘍に関する研究は、これら遺伝的な変化を分子生物学的に同定することに注力されてきた。その結果、多数の変異の蓄積などにより腫瘍化が引き起こされると考えられている。いくつかの決定的な変異については細胞株のモデルなどにより腫瘍化に直結することが示されてきている。本発明の対象疾患の一つである白血病においては、染色体異常が多く認められ、分類されている。その多くが染色体転座であり、おもな染色体転座についてはすでに転座関連遺伝子が同定されている。転座関連遺伝子の機能解析により、その遺伝子が白血病の発症に関与する例が知られている。
癌幹細胞について
一方、細胞生物学的な見地から、正常組織同様に幹細胞が悪性腫瘍の起源であるとする、いわゆる癌幹細胞仮説が古くから提唱されてきた。幹細胞は、自己複製能と多分化能を有する細胞であると定義され、一般に全能性幹細胞と組織幹細胞に大別される。組織幹細胞は、血液系、肝臓、神経系など特定の組織・臓器の起源であり、極めて低い頻度で存在する。中でも造血幹細胞はもっとも研究が進んでいる。致死量の放射線照射により造血系を破壊したマウスに対し、1個の造血幹細胞を移植することで長期にわたって造血系を再建できることが報告されている(非特許文献1)。癌幹細胞は、正常幹細胞と異なり、長い間その実体を捉えられず、研究が遅れていた。しかし、1997年にDickらにより、急性骨髄性白血病においてはじめて癌幹細胞が同定された(非特許文献2)。以後、様々な悪性腫瘍において癌幹細胞の存在が報告されている。総合すると、腫瘍全体の数%以下の頻度で存在し、正常幹細胞同様に希少な細胞である。腫瘍を形成する残りの細胞は増幅能力の制限された腫瘍前駆細胞または腫瘍細胞であると考えられる。
これらの報告により、腫瘍においても正常組織同様にヒエラルキーが存在し、その頂点(起源)にある癌幹細胞が強い腫瘍形成能を有することが示された。以上のことから、正常な幹細胞にさまざまな変異が加わり、いわゆる癌幹細胞へ変化することが悪性腫瘍発症の始まりと考えられている。
癌幹細胞の特性と治療上の問題
多くの報告を総合すると、癌幹細胞は正常幹細胞の持つ様々な特性を保持していると考えられる。たとえば、希少な細胞であること、幹細胞が存在する微小環境(niche)、多剤耐性遺伝子を含む遺伝子発現、細胞周期などに関する類似性が挙げられる。
なかでも、癌幹細胞は、正常幹細胞同様に多剤耐性遺伝子群を発現することと、細胞周期の休止期に存在するという特性は治療上の大きな問題点となりうる。多剤耐性遺伝子BCRPは様々な抗癌剤を細胞外に排出することで薬効を減弱させるポンプであり、その活性を利用した幹細胞の採取法が報告されている(非特許文献3)。幹細胞は、一生にわたって細胞を供給するために、分裂を極力控えた「冬眠」状態にあると考えられており(非特許文献4)、多くの抗癌剤や放射線に対する感受性が低下している(非特許文献5及び6)。これらの特性により、希少な癌幹細胞が治療に抵抗性を示すことが腫瘍再発の原因と考えられている。
分子標的薬について
悪性腫瘍の治療は、抗癌剤療法、放射線療法、切除の3つが主な方針となる。血液腫瘍においては、抗癌剤療法と放射線療法に限られ、癌幹細胞がこれらの治療に対する抵抗性を持ちうることは前述したとおりである。もう一つの問題は、この二つの治療は影響が全身に及ぶため、副作用が大きい。この問題に対する対策の一つが分子標的医薬である。標的分子が発現している細胞でのみ薬効が発揮されることにより、副作用が軽減される。
血液疾患領域における分子標的医薬の代表的なものとして、イマチニブとリツキシマブが挙げられる。イマチニブは、慢性骨髄性白血病(chronic myeloid leukemia;CML)患者の95%に観察される染色体異常(フィラデルフィア染色体)により産生される、Bcr-Ablという白血病化因子を標的とするものである。Bcr-Ablの機能を阻害することにより、白血病細胞の自殺を誘導する低分子医薬品である。リツキシマブは、B細胞上の表面分子であるCD20を認識する抗体医薬品で、B細胞の悪性腫瘍である非ホジキンリンパ腫に対する抗腫瘍効果を持つ。AMLに対する分子標的薬は少なく、AML細胞表面抗原として現れるCD33に対するモノクローナル抗体に抗生物質カリケアマイシンを結合させた薬剤ゲムツズマブ・オゾガマイシン (Mylotarg)があるが(非特許文献7)、CD33の発現が80%以上であること、再発、60歳以上、他の化学療法に抵抗性を示すことなど、4つの条件がそろった場合のみ適応となり、利用が制限されているといえる。これらのことから、新たな標的遺伝子の発見とそれに対する治療薬の開発は、治療の可能性と選択肢の拡大に直結する重要な発明であるといえる。
分子標的薬の形態について
分子標的薬の形態として、抗体医薬品、低分子医薬品をはじめとし、ペプチド医薬品、サイトカインなど生体内蛋白製剤、siRNA、アプタマーなど、さまざまなものが研究・開発されている。治療薬としての抗体の使用は、抗体の特異性により、腫瘍特異的抗原が異種細胞の特性を示す病態の治療に有用である。抗体は、細胞表面に発現する蛋白質である腫瘍特異的抗原に結合し、このような細胞を有効に標的とする。抗体は、血中半減期が長く、抗原への特異性が高いという特徴を持ち、抗腫瘍剤として特に有用である。例えば、腫瘍特異的な抗原を標的とした抗体であれば、投与した抗体は腫瘍に集積することが推定されるので、補体依存性細胞傷害活性(CDC)や抗体依存的細胞性細胞傷害活性(ADCC)による、免疫システムの癌細胞に対する攻撃が期待できる。また、その抗体に放射性核種や細胞毒性物質などの薬剤を結合しておくことにより、結合した薬剤を効率よく腫瘍部位に送達することが可能となり、同時に、非特異的な他組織への該薬剤到達量が減少することで、副作用の軽減も見込むことができる。腫瘍特異的抗原に細胞死を誘導するような活性がある場合はアゴニスティックな活性を持つ抗体を投与することで、また、腫瘍特異的抗原が細胞の増殖及び生存に関与する場合は中和活性を持つ抗体を投与することで、腫瘍特異的な抗体の集積と、抗体の活性による腫瘍の増殖停止又は退縮が期待される。抗体は、上記のようにその特徴から抗腫瘍剤として適用するのに適切であると考えられる。
抗体医薬品について
最初の抗体製造への進出には、対象動物としてマウスが使用された。しかしながら、多数の理由によりマウス抗体のinvivoでの使用は制限されている。ヒト宿主によって外来物として認識されるマウス抗体は、いわゆる「ヒト抗マウス抗体」すなわち「HAMA」応答を惹起する(非特許文献8)。さらに、マウス抗体のFc部分は、ヒト補体または細胞傷害活性の刺激に有効ではない。
TIM-3について
TIM遺伝子ファミリーはマウスでは8つ、ヒトでは3つの遺伝子から構成され、それぞれ11番染色体と5q33領域に存在する(非特許文献11.)。これらの遺伝子領域は、自己免疫疾患およびアレルギー疾患に関連する。TIM蛋白質は構造的に保存されたイムノグロブリン・バリアブル(immunoglobulinvariable(IgV))ドメインとムチンドメインを持つI型膜貫通蛋白質である。TIM蛋白は、当初T細胞上に特異的に発現し、それらの活性を直接的に制御していると考えられてきたが、最近では抗原提示細胞上での発現および機能も報告されている(非特許文献12)。結晶構造解析により、TIM蛋白は保存された構造をもち、IgVドメイン内にリガンド結合部位を持つことが知られている。
等)、TIM-3と血液腫瘍との関連は、急性骨髄性白血病の幹細胞と正常な造血幹細胞のマイクロアレイ解析を行った報告(非特許文献15)がなされているのみで、TIM-3と血液腫瘍との関連の多くはまだ解明されていない。
本発明の第一の目的は、TIM-3に特異的に結合し、TIM-3を発現する悪性腫瘍細胞を攻撃しうる抗腫瘍物質を開発することにより、各種血液腫瘍の予防・診断又は治療剤を提供することにある。
上述のように、白血病をはじめとする血液腫瘍に対する新規分子標的薬に対する期待は高く、新たな標的分子の発見とその利用は、安全かつ有効な治療法の開発につながるものと考えられる。抗体は本来認識特異性持つことから、分子標的の手段として有効である。そこで、本発明者らは、ヒトTIM-3の血液腫瘍における発現とヒトTIM-3に対する抗体の作製に関して鋭意研究した結果、TIM-3の治療標的としての利用法を見出した。
本発明は、血液腫瘍に高発現する遺伝子であるTIM-3に対するヒトモノクローナル抗体を用い、癌幹細胞を含む悪性腫瘍細胞を攻撃することで、新たな分子標的型血液腫瘍治療薬を提供するものである。
(1)骨髄または末梢血にTIM-3が発現している細胞が認められる血液腫瘍の疑いのある被験体あるいは血液腫瘍の治療を受けた被験体に対して、TIM-3抗体を投与することを含む治療方法。
(2)TIM-3抗体を有効成分として含むことを特徴とする、被験体において、骨髄または末梢血にTIM-3が発現している細胞が認められる血液腫瘍を予防又は治療するための組成物。
(3)TIM-3抗体を含むことを特徴とする、被験体からの生物学的検体において、骨髄または末梢血にTIM-3が発現している細胞が認められる血液腫瘍を検出するための組成物。
(4)細胞が、以下の(a)から(c)のいずれかの細胞画分である、上記(1)から(3)のいずれかに記載の方法又は組成物。
(a) Lin(-)CD34(+)CD38(-)
(b) Lin(-)CD34(+)CD38(+)
(c) Lin(-)CD34(-)
(5)上記血液腫瘍が、AMLである、上記(1)から(4)のいずれかに記載の方法又は組成物。
(6)上記血液腫瘍が、リンパ腫、MDSまたはCMLである、上記(1)から(4)のいずれかに記載の方法又は組成物。
(7)上記血液腫瘍が、再発及び/又は難治性である、上記(1)から(6)のいずれかに記載の方法または組成物。
(8)上記TIM-3抗体が、TIM-3モノクローナル抗体である、上記(1)から(7)のいずれかに記載の方法又は組成物。
(9)上記TIM-3モノクローナル抗体が、ADCC活性及び/又はCDC活性を有する抗体である、上記(8)に記載の方法又は組成物。
これまで、血液腫瘍領域においていくつかの分子標的薬が開発されてきたが、標的細胞に癌幹細胞が含まれるものは少ない。たとえば、CD33蛋白に対するAML治療薬Mylotargはその一つであるが(Bernstein、Leukemia (2000) 14, 474-475)、上述のとおり、CD33の発現率や再発、年齢及び化学療法抵抗性の条件が存在する。
本明細書に用いられるセクションの見出しは、組織化の目的のためのみであるが、記載される主題に限定されると解釈されるべきではない。本出願に引用される全ての引用文献は、任意の目的のために本明細書について参照として明白に援用される。
(概要)
本発明は、TIM-3発現細胞を標的とした悪性腫瘍に対する予防、診断又は治療剤またはそれらの方法を提供する。
TIM-3発現細胞の機能制御に関与し、細胞の生存、増殖、休止、細胞死などを誘導する。
TIM-3発現細胞の機能制御に関与し、その細胞からのサイトカインまたはインターフェロン産生量を増加または減少させる。
(TIM-3)
TIM遺伝子ファミリーはマウスでは8つ、ヒトでは3つの遺伝子から構成され、それぞれ11番染色体と5q33領域に存在する。これらの遺伝子領域は、自己免疫疾患およびアレルギー疾患に関連する。TIM蛋白質は構造的に保存されたイムノグロブリン・バリアブル(immunoglobulinvariable(IgV))ドメインとムチンドメインを持つI型膜貫通蛋白質である。
また、TIM-3は、HAVCR2とも呼ばれる。TIM-3には、哺乳類(例えば、霊長類、ヒト)型TIM-3が含まれる。そのため、本発明TIM-3抗体には、ヒトTIM-3などの哺乳類TIM-3配列と特異的に結合する抗体が含まれる。ヒトTIM-3などのTIM-3配列には、多型変異体が含まれる。全長ヒトTIM-3の非限定的な一例は、
MFSHLPFDCVLLLLLLLLTRSSEVEYRAEVGQNAYLPCFYTPAAPGNLVPVCWGKGACPVFECGNVVLRTDERDVNYWTSRYWLNGDFRKGDVSLTIENVTLADSGIYCCRIQIPGIMNDEKFNLKLVIKPAKVTPAPTRQRDFTAAFPRMLTTRGHGPAETQTLGSLPDINLTQISTLANELRDSRLANDLRDSGATIRIGIYIGAGICAGLALALIFGALIFKWYSHSKEKIQNLSLISLANLPPSGLANAVAEGIRSEENIYTIEENVYEVEEPNEYYCYVSSRQQPSQPLGCRFAMP(配列番号1)
として記載される配列である。
(抗体)
抗体とは、最も広義に使用され、モノクローナル抗体、ポリクローナル抗体、多価抗体、多重特異性抗体(例えば、二重特異性抗体)、及びそれらの所望の生物学的活性を示す限りにおいて抗体断片も含む。
また、抗体は、成熟重鎖または軽鎖可変領域配列の部分配列も含む。特定の態様では、部分配列は、Fab、Fab'、F(ab')2、Fv、Fd、単鎖Fv(scFv)、ジスルフィド結合Fv(sdFv)およびVLまたはVHから選択される。
抗体には、モノクローナル抗体およびポリクローナル抗体、それらのいずれものイソタイプまたはサブクラスが含まれる。特定の態様では、前記抗体はIgG(例えば、IgG1、IgG2、IgG3またはIgG4)、IgA、IgM、IgE、またはIgDアイソタイプである。「モノクローナル」抗体とは、真核生物クローン、原核生物クローン、またはファージクローンを含む単一クローンに基づき、真核生物クローン、原核生物クローン、またはファージクローンを含む単一クローンから得られあるいは真核生物クローン、原核生物クローン、またはファージクローンを含む単一クローンから誘導される抗体を指す。ゆえに、「モノクローナル」抗体は、構造的に定義されるものであり、それが産生される方法ではない。
TIM-3抗体が特異的に結合する抗原エピトープの全てまたは一部が異なるタンパク質に存在する場合に、この抗体は異なるタンパク質と結合する可能性がある。そのため、TIM-3抗体は、TIM-3エピトープの配列または構造的相同性の程度に応じて、そのTIM-3エピトープに対して高い配列または構造的相同性を有する別のタンパク質と特異的に結合可能性がある。よって、TIM-3抗体は、異なるタンパク質に、十分な配列または構造的相同性を有するエピトープが存在する場合に、異なるタンパク質と結合する可能性がある。
組成物の修飾語として用いられる用語「単離(された)」とは、その組成物が人の手で作られるということ、あるいは天然に存在するin vivo環境にある1種以上の他の成分から、一般に、1以上の操作ステップまたはプロセスにより分離されるということを意味する。一般に、そのように分離された組成物は、そのような組成物が通常自然に結合する1種以上の材料、例えば、1種以上のタンパク質、核酸、脂質、炭水化物、細胞膜を実質的に含まない。そのため、単離組成物は、その組成物が自然に発生する生物の細胞中の他の生体成分から、あるいはその組成物が(例えば、合成によりまたは細胞培養により)産生される人工培地から分離されている。例えば、単離TIM-3抗体は、その抗体が産生される動物(例えば、非トランスジェニック哺乳類またはトランスジェニック哺乳類(齧歯類(マウス)または有蹄類(ウシ)動物などの))から得ることができ、他のポリペプチドおよび核酸から分離されている。よって、その動物から得られる抗体を含有する血清は単離されていると考えられる。用語「単離(された)」は、別の物理的形状を排除するものではなく、例えば、単離抗体には、抗体部分配列、キメラ、マルチマー、または誘導体化された形態が含まれ得る。
TIM-3抗体には、細胞で発現されるTIM-3と特異的に結合するものもさらに含まれる。特定の実施形態では、TIM-3抗体は、TIM-3を発現する血液腫瘍細胞(AML細胞、CML細胞、骨髄異形成症候群(myelodysplasticsyndromes,MDS)細胞、ALL細胞、CLL細胞、多発性骨髄腫(MultipleMyeloma)細胞、またはB細胞リンパ腫、T細胞リンパ腫、NK細胞リンパ腫など各種リンパ腫)、ヘルパーT細胞(たとえば、Th1細胞、Th17細胞)、抗原提示細胞(例えば、樹状細胞、単球・マクロファージおよびそれに類する細胞(肝臓星細胞、破骨細胞、ミクログリア細胞、表皮内大食細胞、塵埃細胞(肺胞大食細胞)など))またはTIM-3遺伝子導入細胞で発現されるTIM-3に特異的に結合する。
腫瘍幹細胞とは、例えばLineage(-)CD34(+)CD38(-)骨髄細胞に代表される、腫瘍を構成する細胞群の一つである。疾患に応じた別名として、癌幹細胞や白血病幹細胞などがある。
用語「同一性」または「同一の」とは、2つ以上の参照される実体が同じであるということを意味する。よって、2つのタンパク質配列(例えば、TIM-3抗体)が同一である場合、それらは少なくとも参照される領域または部分内で同じアミノ酸配列を有する。「同一性領域」とは、2つ以上の参照される実体の同じである部分を指す。よって、2つのタンパク質配列が1つ以上の配列領域で同一である場合、それらはその領域内で同一性を共有する。「実質的同一性」とは、分子が、1種以上の参照分子機能または活性の少なくとも一部の機能または活性、あるいはその分子が同一性を共有する参照分子の関連/対応領域または部分を有するかあるいは有すると予測されるように、構造的にまたは機能的に保存されているということを意味する。よって、実質的同一性を有するポリペプチド(例えば、TIM-3抗体)は、参照ポリペプチド(例えば、TIM-3抗体)としての少なくとも一部の活性または機能を有するかあるいは有すると予測される。例えば、特定の一実施形態では、非改変TIM-3抗体の少なくとも一部の活性または機能を保持する1種以上の改変(例えば、アミノ酸置換、欠失または付加)を有するTIM-3抗体は、参照TIM-3抗体に対して実質的同一性を有すると考えられる。
Biol.132:185 (2000); およびSmithら,
J.Mol. Biol. 147:195 (1981))。Delaunayに基づく位相マッピングを用いてタンパク質構造的類似性を定量するためのプログラムも開発された(Bostick ら,BiochemBiophysResCommun.304:320(2003))。
付加物および挿入物には、融合(キメラ)ポリペプチドまたは核酸配列が含まれ、それらは前記配列と共有結合した参照天然(野生型)配列中には通常存在しない1種以上の分子を有する配列である。特定の例は、多機能タンパク質(例えば、多重特異性抗体)を作り出すための別のタンパク質(例えば、抗体)のアミノ酸配列である。
タンパク質(例えば、抗体)、核酸、または他の組成物と付加物または挿入物(例えば、異種ドメイン)との間に、2つの実体が異なる機能または活性を少なくとも一部維持するように、リンカー配列を挿入してよい。リンカー配列は、どちらかのドメインを促進することができまたはどちらかのドメインと相互作用することができる1種以上の特性を有していてよく、そのような特性には、フレキシブル構造、秩序二次構造が形成不能であることまたは疎水性もしくは荷電性が含まれる。フレキシブルタンパク質領域において一般に見られるアミノ酸には、グリシン、アスパラギンおよびセリンが含まれる。他の中性に近いアミノ酸、例えばトレオニンおよびアラニンもまた、リンカー配列に用いてよい。リンカー配列の長さは変動し得る(例えば、米国特許第6,087,329号参照)。リンカーには、化学架橋剤および結合剤(conjugatingagents)、例えばスルホ-スクシンイミジル誘導体(スルホ-SMCC、スルホ-SMPB)、スベリン酸ジスクシンイミジル(DSS)、グルタル酸ジスクシンイミジル(DSG)および酒石酸ジスクシンイミジル(DST)がさらに含まれる。
そのような修飾配列は、細胞発現またはin vitro翻訳を介する組換えDNA技術を用いて作製することができる。ポリペプチドおよび核酸配列は、当技術分野で公知の方法、例えば、自動ペプチド合成装置(例えば、Applied Biosystems, Foster City, CA参照)を用いた化学合成によっても作り出すことができる。
本願において、TIM-3をスクリーニングし、検出し、同定する無細胞方法(例えば、溶液中で、固相で)および細胞に基づいた方法(例えば、in vitroまたはin vivo)がさらに提供される。これらの方法は、溶液中で、in vitroで生体材料またはサンプルを用いて、およびin vivoで、例えば、動物由来の細胞(例えば、リンパ球)のサンプルにおいて実施することができる。一実施形態では、方法は、生体材料またはサンプルを、TIM-3との抗体の結合を可能にする条件下でTIM-3と結合する抗体と接触させることと;TIM-3との抗体の結合についてアッセイすることとを含む。抗体をTIM-3と結合させることによりTIM-3の存在が検出される。一態様では、TIM-3は細胞または組織に存在する。別の態様では、前記生体材料またはサンプルは哺乳類被験体から得られる。
(抗体の調製)
本願においては、TIM-3陽性細胞障害活性を有するヒトTIM-3抗体を作製するための方法も提供する。一実施形態では、方法は、ヒトFc組換えタンパク質とコンジュゲートされたヒトTIM-3細胞外ドメインまたはTIM-3遺伝子導入細胞を、ヒト免疫グロブリンを発現可能な動物(例えば、トランスジェニックマウスまたはトランスジェニックウシ)に投与すること;該動物をヒトTIM-3抗体の発現についてスクリーニングすること;ヒトTIM-3抗体を産生する動物を選択すること;選択された動物から抗体を単離すること;該ヒトTIM-3抗体がTIM-3アンタゴニスト活性を有するかどうかを判定することを含む。
96/33735; 米国特許第5,413,923号; 同第5,625,126号; 同第5,633,425号; 同第5,569,825号;同第5,661,016号; 同第5,545,806号; 同第5,814,318号; 同第5,885,793号; 同第5,916,771号; および同第5,939,598号参照)。
Health Service (1987); ChothiaおよびLesk(1987)参照。22の既知ヒトVHIII配列を対象にした調査に基づいたヒトVHサブグループIIIのコンセンサス配列、および30の既知ヒトκ I配列を対象にした調査に基づいたヒトVL κ鎖サブグループIのコンセンサス配列については、Padlan Mol. Immunol. 31:169 (1994); およびPadlanMol.Immunol.28:489(1991)に記載されている。よって、ヒト抗体には、1個以上のアミノ酸残基が任意の他のヒト抗体中に存在する1個以上のアミノ酸と置換されている抗体が含まれる。
Studnicka ら,ProteinEngineering7:805(1994);Roguska. ら,Proc. Nat'lAcad.Sci. USA91:969(1994))、およびチェーンシャッフリング(chainshuffling)(米国特許第5,565,332号)などの当技術分野で公知の技術を用いて作り出すことができるヒト化抗体が含まれる。ヒト化抗体を作り出すには、これまでヒトコンセンサス配列(Padlan, Mol. Immunol. 31:169 (1994); およびPadlan,Mol.Immunol.28:489(1991))が用いられてきた(Carter ら,Proc.Natl. Acad. Sci.
USA89:4285(1992); およびPresta ら,
J.Immunol.151:2623 (1993))。
Immunol.Methods 125:191 (1989); ならびに米国特許第5,807,715号; 同第4,816,567号; および同第4,816,397号)。例えば、Munro, Nature 312:597(1984);
Neuberger ら,Nature312:604(1984);Sharonら, Nature 309:364(1984);Morrison ら,
Proc.Nat'l. Acad. Sci. USA 81:6851(1984);Boulianne ら,Nature
312:643 (1984); Capon ら,Nature337:525(1989); およびTraunecker ら,Nature339:68 (1989)では、ある種の抗体由来の可変領域が別の種の可変領域と置換されているキメラ抗体が記載されている。
Biological Analyses, Plenum Press,Kennett,McKearn, およびBechtol
(編),1980年、およびHarlow ら,Antibodies:ALaboratoryManual,ColdSpring Harbor Laboratory Press, 第2版 1988年も参照のこと)。
Abstract (2000))。ヒト抗ヒト抗体は、非形質転換親細胞系ではなく、ヒトTIM-3安定トランスフェクト細胞系、例えばJurkat-TIM-3細胞およびL929-TIM-3細胞を検出可能なように染色できる。
また、ヒトTIM-3抗体には、TIM-3と特異的に結合し、ラット抗ヒトTIM-3抗体344823(R&D Systems社製, カタログ番号MAB2365またはFAB2365P)のTIM-3との結合を阻止または遮断しない抗体も含まれる。
TIM-3と特異的に結合する抗体を作製する方法は以下に提供される。一実施形態では、TIM-3抗体を作製するための方法は、所望により、ヒトFc組換えタンパク質とコンジュゲートされた、ヒトTIM-3、部分配列またはフラグメント(例えば、TIM-3細胞外ドメイン)を、ヒト免疫グロブリンを発現可能な動物(例えば、トランスジェニックマウスまたはトランスジェニックウシ)に投与することと、その動物をヒトTIM-3抗体の発現についてスクリーニングすることと、ヒトTIM-3抗体を産生する動物を選択すること、選択された動物から抗体を単離することとを含む。一態様では、この方法によりヒトTIM-3抗体がTIM-3アンタゴニストまたはアゴニスト活性を有するかどうかが判定される。
核酸は、様々な長さのものであり得る。TIM-3抗体またはその部分配列をコードする核酸の長さは、一般に、約100個ヌクレオチド~600個ヌクレオチド、あるいはそのような長さの範囲以内での任意の数値または数値域、100~150個、150~200個、200~250個、250~300個、300~350個、350~400個、400~450個、450~500個、500~550個、または約550~600個ヌクレオチド長、あるいはそのような長さの範囲以内での任意の数値または数値域または値(any numerical value or range or value)に及ぶ。TIM-3抗体またはその部分配列をコードする核酸と特異的にハイブリダイズする核酸の長さは、一般に、約10~20個、20~30個、30~50個、50~100個、100~150個、150~200個、200~250個、250~300個、300~400個、400~500個、500~600個ヌクレオチド、あるいはそのような長さの範囲以内での任意の数値または数値域に及ぶ。
ベクターは、一般に、in vitroでまたはin vivoでの細胞における増殖のための複製起点を含む。ベクター内に存在する発現制御エレメントなどの制御エレメントは、必要に応じて、転写および翻訳を容易にするために含めることができる。
Acad.Sci.USA81:6349(1984);EukaryoticViral Vectors, Cold Spring
HarborLaboratory,Gluzman編,1982年;Sarver
ら,Mol.Cell. Biol.1:486 (1981); 米国特許第5,719,054号)に基づくものが含まれる。アデノウイルスはゆっくりと複製するかつ/または最終分化した細胞に効率よく感染し、このアデノウイルスを用いて、ゆっくりと複製する細胞かつ/または最終分化した細胞を標的にすることができる。発現に有用なさらなるウイルスベクターとしては、パルボウイルス、ノーウォークウイルス、コロナウイルス、パラミクソウイルスおよびラブドウイルス、トガウイルス(例えば、シンドビスウイルスおよびセムリキ森林ウイルス)ならびに水疱性口内炎ウイルス(VSV)が挙げられる。
第2巻, 第13章,GreenePublish.Assoc.&WileyInterscience編,
1988年;Grantら, In: Methods
inEnzymology,153:516-544(1987),Wu& Grossman編, 1987年,Acad.Press,N.Y.; Glover, DNACloning, 第II巻,第3章,IRLPress,Wash.,D.
C., 1986年; Bitter, In:MethodsinEnzymology,152:673-684
(1987), Berger&Kimmel編,Acad.Press,N.Y.; および,Strathern ら,TheMolecular Biology of
theYeast SaccharomycesCold SpringHarborPress編, 第I巻および第II巻 (1982)参照)。
Analyst. 123: 1599 (1998))。結合速度のリアルタイム検出およびモニタリングについての計装および方法は公知であり、市販されている(BiaCore 2000, Biacore AB, Upsala, Sweden; およびMalmqvist, Biochem. Soc. Trans. 27:335 (1999))。KD値は、TIM-3における結合部位の半分(50%)を飽和させるのに必要なTIM-3抗体濃度として定義することができる。
(医薬組成物)
抗体は医薬組成物に含めることができる。一実施形態では、抗体は製薬上許容される担体、安定剤または賦形剤を含んでおり、水溶液の形態又は凍結乾燥製剤として調整される。典型的には、製薬的に許容可能な適当量の塩が製剤の等張化のために用いられる。許容できる担体、安定化剤又は賦形剤は、例えば、リン酸、クエン酸、及び他の有機酸等の緩衝液;低分子量(残基数10個未満)ポリペプチド;血清アルブミン、ゼラチン又は免疫グロブリン等のタンパク質;ポリビニルピロリドン等の親水性重合体;グリシン、グルタミン、アスパラギン、ヒスチジン、アルギニン、又はリシン等のアミノ酸;グルコース、マンノース又はデキストリン等の単糖類、二糖類及び他の炭水化物;EDTA等のキレート剤;スクロース、マンニトール、トレハロース又はソルビトール等の糖類、ナトリウム等の塩形成対イオン;メチオニン及びアスコルビン酸を含む抗酸化剤;金属錯体(例えばZn-タンパク質錯体);防腐剤(例えば、オクタデシルジメチルベンジルアンモニウムクロリド;塩化ヘキサメトニウム;塩化ベンザルコニウム;塩化ベンゼトニウム;フェノール、ブチル又はベンジルアルコール;アルキルパラベン類、例えばメチル又はプロピルパラベン;カテコール;レゾルシノール;シクロヘキサノール;3-ペンタノール;及びm-クレゾール);及び/又はTWEENTM、PLURONICSTM又はポリエチレングリコール(PEG)等の非イオン性界面活性剤を含む。
(TIM-3発現細胞を標的とした抗腫瘍物質の治療的使用)
TIM-3発現細胞を標的とした抗腫瘍物質としては、TIM-3抗体が挙げられるがこれに限定されるものではない。
また、上記の疾患を治療するためにTIM-3抗体あるいはTIM-3発現細胞を標的とした抗腫瘍物質は、同様の疾患に好適な他の治療剤(典型的には化学療法剤)と組み合わせや放射線療法との併用も考慮することができる。
BD,etal.,JournalofClinicalOncology, Vol 8, 813-819参照)。また、「難治性」とは、被験体に対する治療に効果が認められない状態をいう。
(アンタゴニスト)
抗体には、TIM-3の機能または活性に作用するものもさらに含まれる。特定の実施形態では、抗体は、TIM-3リガンドのTIM-3との結合を阻害または阻止し;TIM-3リガンドの細胞との結合を阻害または阻止し;TIM-3を解したシグナル伝達をモジュレートし(例えば、阻害または抑制する);TIM-3媒介細胞応答をモジュレートする。TIM-3発現細胞応答は、TIM-3発現細胞の増殖、IFNγなどサイトカイン産生の亢進、腫瘍免疫の増強を引き起こす。
(アゴニスト抗体の利用法)
抗体には、TIM-3の機能または活性に作用するものもさらに含まれる。特定の実施形態では、抗体は、TIM-3へのTIM-3リガンドの結合を模倣し;TIM-3を解したシグナル伝達をモジュレートし(例えば、促進または増強する);TIM-3媒介細胞応答をモジュレートする。TIM-3発現細胞応答は、TIM-3発現細胞の増殖停止、サイトカイン産生の制御などを引き起こす。
患者および健康なボランティアからの検体の提供は九州大学病院倫理委員会承認のもと実施された。骨髄細胞は、白血病または骨髄異形成症候群患者および健康なボランティアから骨髄穿刺法により採取した。末梢血液は健康なボランティアから静脈採血により採取した。幹細胞動員末梢血は、自家末梢血幹細胞移植の適応疾患患者(化学療法により完全寛解に入ったびまん性大細胞型B細胞リンパ腫再発症例で、化学療法に感受性のある症例)より採取した。詳しくは、化学療法(Cyclophosphamide(CY)大量療法またはVP-16(etoposide)大量療法)終了後、G-CSF製剤(Filgrastim)であるグラン(R)(協和発酵キリン社)を投与することで末梢血幹細胞を動員し、標準的なアフェレーシスにより採取した。実験には、検体中のCD34陽性細胞を確認するために採取した単核球の一部を用いた。なお、薬剤の投与量、スケジュールは保険適用の、標準的なプロトコールである。
採取した細胞は、凝固を防ぐために、ヘパリンを加えた。検体をPBSで希釈した後、Ficoll-Plaque Plus(GEHealthcare)を下に敷いた。単核細胞を血清および血小板から、1700 rpm、30分で遠心分離すること(ブレーキをかけない)により分離した。PBMCを含有する界面を集め、ステイニングメディウムを用いて洗浄した。再びステイニングメディウムを用いて懸濁し、細胞をチュルク液と混合後に計測した。1 x 106個の細胞あたり、ステイニングメディウム 100 uLを用いて再懸濁した。正常造血幹細胞および前駆細胞を染色する場合には上記、単核球分離後にIndirect CD34 MicroBead kit(Miltenyi Biotec)を用いてCD34陽性細胞のpositive selectionを行った後、最終的にステイニングメディウムを加えて全体で100uLの容量とした。
(実施例2 骨髄正常造血および腫瘍幹細胞の染色と解析方法)
1次抗体として、抗ヒトCD34抗体(ベクトンディッキンソン(以下BDと略)社製 Cat No.340441) 2uL、抗ヒトCD38抗体(CALTAG社製、CatNo.MHCD3815) 20uL、抗ヒトCD90抗体(BD社製、CatNo.555595)2uL、およびTIM-3抗体(R&DSystems社製、344823)20 uLで4℃40分間染色した。その後PBSを加えて1500rpm5分間で遠心、洗浄後、上清を捨て、再度ステイニングメディウム100uLを加えた。2次抗体として抗ヒトLineage抗体(抗ヒトCD3(BD社製、CatNo.555341)、CD4(BD社製、CatNo.555348)、CD8(BD社製、CatNo.555636)、CD10(BD社製、CatNo.555376)、CD19(BD社製、CatNo.555414)、CD20(BD社製、CatNo.555624)、CD11b(BD社製、CatNo.555389)、CD14(ベックマンコールター社製、CatNo.A07765)、CD56(BD社製、CatNo.555517)、GPA(BD社製、Cat No.559944)抗体)をそれぞれ 5uLずつ、およびストレプトアビジンAPC-Cy7(BD社製、Cat No.554063) 5uLを加え、4℃40分間染色した。PBSを用いて洗浄後、PIを添加したステイニングメディウムで再懸濁した。検体はFACS Aria(BD)で解析およびsortingを施行した。
(実施例3 ヒトTIM-3分子のヒト血液腫瘍における発現)
実施例1及び実施例2の方法を用いて、ヒトの血液腫瘍におけるヒトTIM-3分子の発現を調べた。
ヒトTIM-3分子のCML患者由来骨髄Lin(-)CD34(+)CD38(-)細胞における発現をマルチカラーのフローサイトメトリー解析により調査した。結果を図10に示す。CMLの患者では2例全例においてTIM-3の発現が認められた。
ヒトTIM-3分子の再発AML患者由来骨髄Lin(-)CD34(+)CD38(-)およびLin(-)CD34(+)CD38(+)細胞における発現をマルチカラーのフローサイトメトリー解析により調査した。典型的な結果を図12に示す。AML再発患者ではLin(-)CD34(+)CD38(-)白血病幹細胞細胞およびLin(-)CD34(+)CD38(+)AML細胞においてTIM-3の発現が認められた。
(実施例4 ヒトTIM-3分子のヒト正常血液細胞における発現)
方法は実施例1の骨髄および末梢血液細胞の調製、および、実施例2の骨髄正常造血および腫瘍幹細胞の染色と解析方法のとおりである。
また、リンパ球系共通前駆細胞(CLP)、骨髄系共通前駆細胞(CMP)、顆粒球・単球系前駆細胞(GMP)の一部でTIM-3の発現が認められたが、巨核球・赤血球系前駆細胞(MEP)では発現が認められなかった。
No.555399) 10uL、およびTIM-3抗体(R&D
Systems社製、344823)20 uLで4℃40分間染色した。ステイニングメディウムを用いて洗浄後、PIを添加したステイニングメディウムで再懸濁した。検体はFACSAria(BD)で解析した。
(実施例5 TIM-3の細胞株における発現)
hTIM-3のヒト細胞株における発現をフローサイトメトリー法にて解析した。
培養中の細胞をピペッティングにより回収し、遠心分離により濃縮した。ステイニングメディウムで洗浄後、ヒトIgG(終濃度1 mg/ml SIGMA社製)でブロッキングした。PE標識抗ヒトTIM-3モノクローナル抗体(R&D Systems)で染色し、4℃で30分間静置した。7-AAD(BDBiosciences)を添加し、ステイニングメディウムで洗浄後、再びステイニングメディウムで懸濁し、FACSCalibur(日本ベクトン・ディッキンソン株式会社)により解析した。その結果を図15に示す。Multiple Myelomaに由来するRPMI-8226細胞とARH77細胞、B細胞リンパ腫に由来するDaudi細胞、T細胞リンパ腫に由来するSR-786細胞、及びNK細胞リンパ腫に由来するNK-92細胞においてTIM-3の発現が認められた。さらに、AML由来であるKG-1細胞においてもTIM-3の発現が認められた。
(実施例6 可溶型細胞膜外ヒトTIM-3ヒトFc融合蛋白質および可溶型細胞膜外ヒトTIM-3蛋白の調製)
以下の方法により蛋白を調製した。
(hTIM-3 cDNAの分子クローニング)
hTIM-3 cDNAは白血球由来cDNA(CLONTECHHumanMTCPanel)よりExTaq(タカラバイオ株式会社)を用いたPCR法により増幅した。PCR装置はGeneAmpPCRSystem9700(アプライドバイオシステムズ)を用いた(本明細書における全てのPCR反応でこれを使用)。PCR反応は95℃1分間の変性段階につづいて、95℃15秒-58℃15秒-72℃30秒の3ステップ反応を40サイクル行った後、72℃2分間の伸長反応を行った。用いたPCRプライマーは以下のとおり;
TIM-3 Fw2:5’-GCCACCATGTTTTCACATCTTCCCTT-3’ (配列番号3)
TIM-3 Re2:5’-CTATGGCATTGCAAAGCGAC-3’ (配列番号4)
得られたPCR産物は0.8%アガロースゲル電気泳動(135V、15分、TAEbuffer)を行った。DNAはエチジウムブロマイド染色により可視化した。0.9kb付近のバンドを切り出し、DNAをWizard SV Gel and PCR Clean-Up Systemを用いて抽出した。抽出したDNA 4.5uLとpGEM-T Easy vector (Promega) 0.5uLを混合し、TaKaRa Ligation Kitを用い連結した。形質転換は、ライゲーションサンプルとDH10Bコンピテント細胞と混合し、LBプレート(X-Gal、アンピシリン含有)へ撒いた。pGEM-T Easy vectorのインサートチェックは、LA Taq(タカラバイオ株式会社)を用いたコロニーダイレクトPCRにより行った。PCR反応は95℃1分間の変性段階につづいて、95℃15秒-56℃15秒-72℃30秒の3ステップ反応を35サイクル行った後、72℃2分間の伸長反応を行った。
T7: 5’- TAATACGACTCACTATAGGG-3’ (配列番号5)
SP6: 5’-CATACGATTTAGGTGACACTATAG-3’ (配列番号6)
得られたPCR産物は0.8%アガロースゲル電気泳動(135V、15分、TAEbuffer)を行った。DNAはエチジウムブロマイド染色により可視化した。1.2kb付近の増幅が得られたコロニーを対象に、ダイレクトシークエンシング法により塩基配列を決定した。シークエンスサンプルの反応はBigDye(R) Terminator v3.1 Cycle Sequencing Kit(アプライドバイオシステムズ)とGeneAmp PCR System 9700(アプライドバイオシステムズ)を用いた(本明細書における全てのDNA配列解析でこれらを使用)。プライマーはT7およびSP6を用いた。シークエンス解析装置はABI 3700XL DNA analyzer(アプライドバイオシステムズ)を用いた(本明細書における全てのDNA配列解析でこれを使用)。GenBankaccessionnumberNM_032782のコーディングリージョンと同一の配列を有するクローンを選定し、ミニプレップ法によりプラスミドDNAを抽出した。
(hTIM-3発現ベクターの作製)
hTIM-3発現ベクターの作製には、ヒトTIM-3 cDNAの5’末端がpGEM-TEasy vector内のクローニングサイトのT7側にあるクローンを用いた。hTIM-3 / GEM-T EasyplasmidDNAとpMCs-IGRetrovirus Vector(コスモバイオ)をNotIで消化し、0.8%アガロースゲル電気泳動(135V、15分、TAEbuffer)を行った。DNAはエチジウムブロマイド染色により可視化した。それぞれ、0.9kb付近と5kb付近のバンドを切り出し、DNAをWizardSVGelandPCR
Clean-Up Systemを用いて抽出した。抽出したhTIM-3 DNA4.5μLとpMCs-IGvector DNA 0.5μLを混合し、TaKaRaLigationKitを用い連結した。形質転換は、ライゲーションサンプルとDH10Bコンピテント細胞と混合し、LBプレート(アンピシリン含有)へ撒いた。インサートチェックは、LA Taq(タカラバイオ株式会社)を用いたコロニーダイレクトPCRにより行った。PCR反応は95℃1分間の変性段階につづいて、95℃15秒-56℃15秒-72℃45秒の3ステップ反応を35サイクル行った後、72℃2分間の伸長反応を行った。
pMCs-Fw: 5’-TCAAAGTAGACGGCATCGCAG-3’ (配列番号7)
TIM-3 Re1: 5’-GCATTGCAAAGCGACAAC-3’ (配列番号8)
得られたPCR産物は0.8%アガロースゲル電気泳動(135V、15分、TAEbuffer)を行った。DNAはエチジウムブロマイド染色により可視化した。1.1kb付近の増幅が得られたコロニーからミニプレップ法によりプラスミドDNAを抽出した。精製したhTIM-3 / pMCs-IG plasmid DNAはDNA配列解析によりGenBank accession number NM_032782のコーディングリージョンと同一の配列を有することを確認した。DNA配列解析に用いたプライマーは以下のとおり;
pMCs-Fw: 5’-TCAAAGTAGACGGCATCGCAG-3’ (配列番号9)
hTIM-3 Fw1:5’-ACTCTGGAGCAACCATCA-3’ (配列番号10)
hTIM-3蛋白の発現を確認するために、hTIM-3/pMCs-IGplasmidDNAを293T細胞へ一過性に発現させた。遺伝子導入にはFuGene6(Roche)を用いた。二日後に293T細胞を回収し、ステイニングメディウム(2% FCSおよび0.05%アジ化ナトリウム含有PBS)で洗浄後、PE標識抗ヒトTIM-3モノクローナル抗体(R&D Systems)を用いて染色した。再びステイニングメディウムで洗浄後、7-AAD(BDBiosciences)を添加し、FACSCalibur(日本ベクトン・ディッキンソン株式会社)により解析した。その結果、hTIM-3 / pMCs-IGベクターからのhTIM-3蛋白の発現が確認できた。
(hTIM-3安定発現細胞株の作製)
hTIM-3 /pMCs-IGまたはEmptypMCs-IGおよびVSV-G発現ベクターを293gp細胞に遺伝子導入した。遺伝子導入にはFuGene6(Roche)を用いた。3日後、培養上清を回収し、0.45 um filter(ミリポア)で不純物を除いた。遠心分離(6000 x g、4℃、7時間)の後、沈殿をIMDM培地(Invitrogen)で溶解した。濃縮したレトロウイルス溶液とプロタミン溶液(和光純薬、終濃度100 μg/ ml)を、EoL-1細胞およびJurkat細胞培養液に加えた。数回の継代の後、FACSAriaにて培養培地中にGFP陽性感染細胞を採取した。さらに数回の継代の後、再度FACSAriaにて培養培地中にGFP陽性感染細胞を採取した。数回の継代の後、PE標識抗TIM-3モノクローナル抗体を用いたフローサイトメトリー法によりTIM-3の発現を確認した。
(可溶型細胞膜外ヒトTIM-3ヒトFc融合蛋白質発現ベクターの調製)
ヒトTIM-3の細胞外領域をコードするcDNAをPCR法で増幅し、下流にFLAGタグとヒトFc配列を連結した(sTIM-3-FLAG-Fc / pTracerCMV)。
pMCs-Fw: 5’-TCAAAGTAGACGGCATCGCAG-3’ (配列番号11)
TIM3ED-FcReXba:5’- TTTTCTAGATCTGATGGTTGCTCCAGA-3’ (配列番号12)
得られたPCR産物は0.8%アガロースゲル電気泳動(135V、15分、TAEbuffer)を行った。DNAはエチジウムブロマイド染色により可視化した。0.6kb付近のバンドを切り出し、DNAをWizard SV Gel and PCR Clean-Up Systemを用いて抽出した。精製されたDNAをEcoRIとXbaIで消化し、再度0.8%アガロースゲル電気泳動(135V、15分、TAE buffer)を行った。0.9kb付近のバンドを切り出し、DNAをWizard SV Gel and PCR Clean-Up Systemを用いて抽出した。精製されたDNAと同一酵素で解裂されていたpTracer-CMV-FLAG-humanFcベクター(改変pTracer-CMV[インビトロジェン社製]のXba I部位とApa I部位のところにFLAG及びヒトIgG1のFc領域を導入したプラスミド)を混合し、TaKaRa Ligation Kitを用い連結した。形質転換は、ライゲーションサンプルとDH10Bコンピテント細胞と混合し、LBプレート(アンピシリン含有)へ撒いた。インサートチェックは、LA Taq(タカラバイオ株式会社)を用いたコロニーダイレクトPCRにより行った。PCR反応は95℃1分間の変性段階につづいて、95℃15秒-56℃15秒-72℃40秒の3ステップ反応を35サイクル行った後、72℃2分間の伸長反応を行った。用いたPCRプライマーは以下のとおり;
T7: 5’-TAATACGACTCACTATAGGG-3’ (配列番号13)
TIM3ED-FcReXba:5’- TTTTCTAGATCTGATGGTTGCTCCAGA-3’ (配列番号14)
得られたPCR産物は0.8%アガロースゲル電気泳動(135V、15分、TAEbuffer)を行った。DNAはエチジウムブロマイド染色により可視化した。0.7kb付近の増幅が得られたコロニーからミニプレップ法によりプラスミドDNAを抽出した。精製したsTIM-3-FLAG-Fc/pTracerCMVplasmidDNAはDNA配列解析によりGenBankaccessionnumber NM_032782の当該領域と同一の配列を有することを確認した。DNA配列解析に用いたプライマーは以下のとおり;
T7: 5’-TAATACGACTCACTATAGGG-3’ (配列番号15)
hTIM-3 Fw1:5’-ACTCTGGAGCAACCATCA-3’ (配列番号16)
インサート(EcoRI認識部位の後ろからApaI認識部位直前まで)の配列は以下のとおり:
GATTGCCACCATGTTTTCACATCTTCCCTTTGACTGTGTCCTGCTGCTGCTGCTGCTACTACTTACAAGGTCCTCAGAAGTGGAATACAGAGCGGAGGTCGGTCAGAATGCCTATCTGCCCTGCTTCTACACCCCAGCCGCCCCAGGGAACCTCGTGCCCGTCTGCTGGGGCAAAGGAGCCTGTCCTGTGTTTGAATGTGGCAACGTGGTGCTCAGGACTGATGAAAGGGATGTGAATTATTGGACATCCAGATACTGGCTAAATGGGGATTTCCGCAAAGGAGATGTGTCCCTGACCATAGAGAATGTGACTCTAGCAGACAGTGGGATCTACTGCTGCCGGATCCAAATCCCAGGCATAATGAATGATGAAAAATTTAACCTGAAGTTGGTCATCAAACCAGCCAAGGTCACCCCTGCACCGACTCGGCAGAGAGACTTCACTGCAGCCTTTCCAAGGATGCTTACCACCAGGGGACATGGCCCAGCAGAGACACAGACACTGGGGAGCCTCCCTGATATAAATCTAACACAAATATCCACATTGGCCAATGAGTTACGGGACTCTAGATTGGCCAATGACTTACGGGACTCTGGAGCAACCATCAGATCTAGAGCAGACTACAAGGACGACGATGACAAGACTAGTGACAAAACTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGCGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAATGATGA (配列番号17)
(可溶型細胞膜外ヒトTIM-3蛋白質発現ベクターの調製)
ヒトTIM-3の細胞外領域をコードするcDNAをPCR法で増幅し、下流にFLAGタグを連結した(sTIM-3-FLAG / pEF6 Myc_HisC)。
TIM-3 Fw2:5’-GCCACCATGTTTTCACATCTTCCCTT-3’ (配列番号18)
TIM3ED-FLAG4aa:5’- GTCCTTGTAGTCTCTGATGGTTGCTCCAGA-3’ (配列番号19)
得られたPCR産物2 uLを鋳型に、LA Taq (タカラバイオ株式会社) を用いたPCR法により増幅した。PCR反応は95℃1分間の変性段階につづいて、95℃15秒-58℃15秒-72℃30秒の3ステップ反応を16サイクル行った後、72℃2分間の伸長反応を行った。用いたPCRプライマーは以下のとおり;
TIM-3 Fw2:5’-GCCACCATGTTTTCACATCTTCCCTT-3’ (配列番号20)
C-FLAG-NotR2:5’-AAAAGCGGCCGCTCACTTGTCGTCATCGTCCTTGTAGTC-3’ (配列番号21)
得られたPCR産物は0.8%アガロースゲル電気泳動(135V、15分、TAEbuffer)を行った。DNAはエチジウムブロマイド染色により可視化した。0.6kb付近のバンドを切り出し、DNAをWizard SV Gel and PCR Clean-Up Systemを用いて抽出した。抽出したDNA 4uLとpGEM-T Easy vector (Promega) 0.5uLを混合し、Quick Ligation(TM) Kit(New England Biolabs社)を用い連結した。形質転換は、ライゲーションサンプルとDH10Bコンピテント細胞と混合し、LBプレート(X-Gal、アンピシリン含有)へ撒いた。pGEM-T Easy vectorのインサートチェックは、LA Taq(タカラバイオ株式会社)を用いたコロニーダイレクトPCRにより行った。PCR反応は95℃1分間の変性段階につづいて、95℃15秒-56℃15秒-72℃30秒の3ステップ反応を38サイクル行った後、72℃2分間の伸長反応を行った。用いたPCRプライマーは以下のとおり;
T7: 5’-TAATACGACTCACTATAGGG-3’ (配列番号22)
SP6: 5’-CATACGATTTAGGTGACACTATAG-3’ (配列番号23)
得られたPCR産物は0.8%アガロースゲル電気泳動(135V、15分、TAEbuffer)を行った。DNAはエチジウムブロマイド染色により可視化した。0.8kb付近の増幅が得られたコロニーを対象に、ダイレクトシークエンシング法により塩基配列を決定した。プライマーはT7およびSP6を用いた。GenBankaccessionnumberNM_032782のコーディングリージョンと同一の配列を有するクローンを選定し、ミニプレップ法によりプラスミドDNAを抽出した。
TIM-3 Fw2:5’-GCCACCATGTTTTCACATCTTCCCTT-3’ (配列番号24)
BGH-R: 5’-TAGAAGGCACAGTCGAGG-3’ (配列番号25)
0.8kb付近の増幅が得られたコロニーから、ミニプレップ法によりプラスミドDNAを抽出した。
T7: 5’-TAATACGACTCACTATAGGG-3’ (配列番号26)
BGH-R: 5’-TAGAAGGCACAGTCGAGG-3’ (配列番号27)
インサート(NotI認識部位の後ろからNotI認識部位直前まで)の配列は以下のとおり:
GGGAATTCGATTGCCACCATGTTTTCACATCTTCCCTTTGACTGTGTCCTGCTGCTGCTGCTGCTACTACTTACAAGGTCCTCAGAAGTGGAATACAGAGCGGAGGTCGGTCAGAATGCCTATCTGCCCTGCTTCTACACCCCAGCCGCCCCAGGGAACCTCGTGCCCGTCTGCTGGGGCAAAGGAGCCTGTCCTGTGTTTGAATGTGGCAACGTGGTGCTCAGGACTGATGAAAGGGATGTGAATTATTGGACATCCAGATACTGGCTAAATGGGGATTTCCGCAAAGGAGATGTGTCCCTGACCATAGAGAATGTGACTCTAGCAGACAGTGGGATCTACTGCTGCCGGATCCAAATCCCAGGCATAATGAATGATGAAAAATTTAACCTGAAGTTGGTCATCAAACCAGCCAAGGTCACCCCTGCACCGACTCGGCAGAGAGACTTCACTGCAGCCTTTCCAAGGATGCTTACCACCAGGGGACATGGCCCAGCAGAGACACAGACACTGGGGAGCCTCCCTGATATAAATCTAACACAAATATCCACATTGGCCAATGAGTTACGGGACTCTAGATTGGCCAATGACTTACGGGACTCTGGAGCAACCATCAGAGACTACAAGGACGATGACGACAAGTGA (配列番号28)
(可溶型細胞膜外ヒトTIM-3ヒトFc融合蛋白質および可溶型細胞膜外ヒトTIM-3蛋白質の調製)
sTIM-3-FLAG-Fc/ pTracerCMV プラスミドDNAおよびsTIM-3-FLAG/ pEF6 Myc_HisCプラスミドDNAをQIAGENPlasmid Maxi Kitにより精製した。
発現のための宿主細胞には、HEK293F細胞を用いた。HEK293F細胞はFreeStyle 293 Expression Medium(インビトロジェン社)を用いて振とう培養した(37℃、5 % CO2)。
遺伝子導入にはPEI法を用いた。Polyethylenimine,Linear,MW25,000(Polysciences社製)を秤量し、HClでpH7.0付近に調整しながらPBS(Invitrogen社製)中に溶解させた(1g/L)。1時間攪拌後、孔径0.22μmのメンブランフィルターMILLEX-GV(ミリポア社製)でろ過滅菌した。精製したプラスミドDNA 1mgとOpti-Pro SFM (Invitrogen社製) 20 mLを混合し、溶液Aとした。PEI溶液(1 g/L)2.5mLとOpti-ProSFM(Invitrogen社製) 20 mLを混合し、溶液Bとした。溶液Aと溶液Bを混合し、10分間静置した後、293F細胞1L(1 mL あたり細胞1000000個)に添加した。6日後、細胞上清を回収し、蛋白精製に用いた。
(実施例7 抗TIM-3ポリクローナル抗体によるTIM-3発現細胞株傷害性試験)
抗体を介した細胞性の細胞傷害活性は、抗体の存在下でエフェクターとしてヒト末梢血由来単核球(PeripheralBloodMononuclearCells以下、PBMC)を用い、ターゲット細胞への傷害活性(抗体依存性細胞性細胞傷害活性(Antibody-DependentCellularCytotoxicity)以下、ADCC)の測定を実施した。
抗体は、ヤギ由来抗TIM-3ポリクローナル抗体(R&DSystems社; AF2365)さらに、陰性コントロールとしてヤギ由来IgG(シグマ社製; I5256-10MG)を用いた。
具体的には、ターゲット細胞としてTIM-3強制発現Jurkat細胞およびTIM-3強制発現EoL-1細胞を放射性同位元素51Crでラベルされたクロム酸ナトリウム(Na2 51CrO4、PerkinElmer社製、NEZ030S)と37℃、5% CO2存在下で1時間培養することでターゲット細胞を51Crでラベルした。ラベルしたターゲット細胞は、10% FCS含有RPMI-1640培地で3回洗浄し余分な51Crを除いた後に培地に懸濁し(40,000 cells / mL)、50 uL / wellを96-ウェルプレートに移した。PBMCを培地に懸濁し(4,000,000 cells / mL)、50 uL / wellをプレートに移した(エフェクター/ターゲット率=100)。抗体を培地に懸濁してプレートに50 uLを添加し(終濃度 10ug / mL)、37℃、5%CO2存在下で4時間培養した。抗体としては、抗ヒトTIM-3ヤギポリクローナル抗体(R&D Systems社製)、陰性コントロールとしてヤギIgG(シグマ社製)を用いた。エフェクターに用いたPBMCは、健常ヒト末梢血由来のサンプルを用いた。
ターゲット細胞の溶解度は、細胞が溶解し培地中に放出されたクロム酸ナトリウム中の51Cr量を測定した。すなわち、プレートと遠心した後、上清をシンチレータ入り96穴プレート(Lumaplate-TM、PerkinElmer社製)に50 μL移し、56℃、2時間で乾燥させた。プレートをシールし(TopSeal-A、Packard社製)、マイクロプレートリーダー(TopCount、PerkinElmer社製)で測定した。
ヒト由来IgGコントロールと比較して、下に示す抗TIM-3ポリクローナル抗体において有意にターゲット細胞溶解率の増加が認められた。このことから、TIM-3発現細胞に対するADCCを持つことが示された。よって、本実施例は、ADCCを用いたTIM-3陽性細胞除去を薬効とした治療の可能性を示すものである。
また、補体と抗体の存在下でターゲット細胞への傷害活性補体依存性細胞傷害活性(Complement-DependentCytotoxicity、以下、CDC)の測定を実施した。
具体的には、ターゲット細胞としてTIM-3強制発現EoL-1細胞およびTIM-3強制発現Jurkat細胞106個を15μLのFetal CalfSerum (FCS)に懸濁し、50μL(37MBq/mL)の51Crラベルされたクロム酸ナトリウム(PerkinElmer社製:以下、51Crと書く)を添加し、1時間37℃で培養した。次に、培地を10mL添加し、遠心して培地を捨てることを3回繰り返すことで、細胞内に取り込まれていない51Crを除いた。
CDCは、51CrラベルしたTIM-3強制発現EoL-1細胞2000個に対して、最終濃度2.5%の幼弱ウサギ血清由来補体(Cedarlane社製; CL3441)と各濃度の抗体(終濃度0ug/ml、0.01ug/ml、0.1 ug/ml、1 ug/ml、10ug/ml)を混合した。U底96ウェルプレートにおいて、混合液の全体容量を150μLとし、ともに37℃、5% CO2存在下で2時間培養した。また、対照として、Triton-X100を終濃度0.33%で添加した。培養後、プレートを遠心して細胞を沈めた後、上清50μLを粉末シンチレーター含有の96穴プレート(LumaplateTM-96:パッカード社製)に移し、56℃、2時間で乾燥した。乾燥を確認後、専用カバー(TopSealTM-A:96-wellMicroplates:パッカード社製)でプレートをカバーし、シンチレーションカウンター(トップカウント:パッカード社製)でγ線量を測定した。
(実施例8 抗TIM-3ポリクローナル抗体によるAML初代細胞傷害性試験)
抗体を介した細胞傷害性活性は、補体と抗体の存在下でターゲット細胞への傷害活性(補体依存性細胞傷害活性(Complement-DependentCytotoxicity)以下、CDC)の測定を実施した。
抗体は、ヤギ由来抗TIM-3ポリクローナル抗体さらに、陰性コントロールとしてヤギ由来IgG(シグマ社製; I5256-10MG)を用いた。
具体的には、ターゲット細胞として患者検体よりprimary AML細胞を10%FCS含有RPMI-1640培地に懸濁し1000000cells / wellを24-ウェルプレートに移した(462.5uL / well)。幼弱ウサギ血清由来補体(Cedarlane社製; CL3441)12.5 μL/well(最終濃度2.5%)を加えた。ヤギ由来抗TIM-3ポリクローナル抗体 (0.2 mg/ml) 25 μLを添加し(終濃度 10 μg / mL)、37℃、5% CO2存在下で3時間培養した。
ヒト由来IgGコントロールと比較して、抗TIM-3ポリクローナル抗体において有意に死細胞率の上昇が認められた。このことから、TIM-3陽性初代AML細胞に対するCDCを持つことが示された。よって、本実施例は、初代AML細胞除去を薬効とした治療の可能性を示すものである。
配列番号4:TIM-3 Re2プライマー
配列番号5:T7プライマー
配列番号6:SP6プライマー
配列番号7:pMCs-Fwプライマー
配列番号8:TIM-3 Re1プライマー
配列番号9:pMCs-Fwプライマー
配列番号10:hTIM-3 Fw1プライマー
配列番号11:pMCs-Fwプライマー
配列番号12:TIM3ED-FcReXbaプライマー
配列番号13:T7プライマー
配列番号14:TIM3ED-FcReXbaプライマー
配列番号15:T7プライマー
配列番号16:hTIM-3 Fw1プライマー
配列番号17:インサート(EcoRI認識部位の後ろからApal認識部位直前まで)
配列番号18:TIM-3Fw2プライマー
配列番号19:TIM3ED-FLAG4aaプライマー
配列番号20:TIM-3 Fw2プライマー
配列番号21:C-FLAG-NotR2プライマー
配列番号22:T7プライマー
配列番号23:SP6プライマー
配列番号24:TIM-3 Fw2プライマー
配列番号25:BGH-Rプライマー
配列番号26:T7プライマー
配列番号27:BGH-Rプライマー
配列番号28:インサート(NotI認識部位の後ろからNotI認識部位の直前まで)
Claims (9)
- 骨髄または末梢血にTIM-3が発現している細胞が認められる血液腫瘍の疑いのある被験体あるいは血液腫瘍の治療を受けた被験体に対して、TIM-3抗体を投与することを含む治療方法。
- TIM-3抗体を有効成分として含むことを特徴とする、被験体において、骨髄または末梢血にTIM-3が発現している細胞が認められる血液腫瘍を予防又は治療するための組成物。
- TIM-3抗体を含むことを特徴とする、被験体からの生物学的検体において、骨髄または末梢血にTIM-3が発現している細胞が認められる血液腫瘍を検出するための組成物。
- 細胞が、以下の(a)~(c)のいずれかの細胞画分である、請求項1から3のいずれかに記載の方法又は組成物。
(a) Lin(-)CD34(+)CD38(-)
(b) Lin(-)CD34(+)CD38(+)
(c) Lin(-)CD34(-) - 上記血液腫瘍が、AMLである、請求項1から4のいずれかに記載の方法又は組成物。
- 上記血液腫瘍が、リンパ腫、MDSまたはCMLである、請求項1から4のいずれかに記載の方法又は組成物。
- 上記血液腫瘍が、再発及び/又は難治性である、請求項1から6のいずれかに記載の方法または組成物。
- 上記TIM-3抗体が、TIM-3モノクローナル抗体である、請求項1から7のいずれかに記載の方法又は組成物。
- 上記TIM-3モノクローナル抗体が、ADCC活性及び/又はCDC活性を有する抗体である、請求項7に記載の方法又は組成物。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ES10761756T ES2571235T3 (es) | 2009-04-10 | 2010-04-09 | Procedimiento para el tratamiento de un tumor sanguíneo que utiliza el anticuerpo anti-TIM-3 |
US13/263,434 US8647623B2 (en) | 2009-04-10 | 2010-04-09 | Method for treatment of blood tumor using anti-TIM-3 antibody |
JP2011508396A JP5748653B2 (ja) | 2009-04-10 | 2010-04-09 | 抗tim−3抗体を用いた血液腫瘍治療法 |
EP10761756.5A EP2417984B1 (en) | 2009-04-10 | 2010-04-09 | Method for treatment of blood tumor using anti-tim-3 antibody |
US14/136,394 US9103832B2 (en) | 2009-04-10 | 2013-12-20 | Method for treatment of blood tumor using anti-TIM-3 antibody |
US14/739,154 US9487591B2 (en) | 2009-04-10 | 2015-06-15 | Method for treatment of blood tumor using anti-TIM-3 antibody |
US15/249,992 US9958446B2 (en) | 2009-04-10 | 2016-08-29 | Method for treatment of blood tumor using anti-TIM-3 antibody |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16842809P | 2009-04-10 | 2009-04-10 | |
US61/168428 | 2009-04-10 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/263,434 A-371-Of-International US8647623B2 (en) | 2009-04-10 | 2010-04-09 | Method for treatment of blood tumor using anti-TIM-3 antibody |
US14/136,394 Division US9103832B2 (en) | 2009-04-10 | 2013-12-20 | Method for treatment of blood tumor using anti-TIM-3 antibody |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010117057A1 true WO2010117057A1 (ja) | 2010-10-14 |
Family
ID=42936338
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/056445 WO2010117057A1 (ja) | 2009-04-10 | 2010-04-09 | 抗tim-3抗体を用いた血液腫瘍治療法 |
Country Status (5)
Country | Link |
---|---|
US (4) | US8647623B2 (ja) |
EP (1) | EP2417984B1 (ja) |
JP (1) | JP5748653B2 (ja) |
ES (1) | ES2571235T3 (ja) |
WO (1) | WO2010117057A1 (ja) |
Cited By (89)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011155607A1 (ja) * | 2010-06-11 | 2011-12-15 | 協和発酵キリン株式会社 | 抗tim-3抗体 |
JP2014502955A (ja) * | 2010-10-20 | 2014-02-06 | オックスフォード ビオトヘラペウトイクス エルティーディー. | 抗体 |
US9605070B2 (en) | 2014-01-31 | 2017-03-28 | Novartis Ag | Antibody molecules to TIM-3 and uses thereof |
WO2017055484A1 (en) | 2015-09-29 | 2017-04-06 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for determining the metabolic status of lymphomas |
WO2017118634A1 (en) | 2016-01-04 | 2017-07-13 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Use of pd-1 and tim-3 as a measure for cd8+ cells in predicting and treating renal cell carcinoma |
WO2017129769A1 (en) | 2016-01-28 | 2017-08-03 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for enhancing the potency of the immune checkpoint inhibitors |
WO2017129790A1 (en) | 2016-01-28 | 2017-08-03 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and pharmaceutical composition for the treatment of cancer |
WO2017144668A1 (en) | 2016-02-26 | 2017-08-31 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Antibodies having specificity for btla and uses thereof |
WO2017202962A1 (en) | 2016-05-24 | 2017-11-30 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and pharmaceutical compositions for the treatment of non small cell lung cancer (nsclc) that coexists with chronic obstructive pulmonary disease (copd) |
JP2017538441A (ja) * | 2014-10-27 | 2017-12-28 | エージェンシー フォー サイエンス,テクノロジー アンド リサーチ | 抗tim−3抗体 |
WO2018046736A1 (en) | 2016-09-12 | 2018-03-15 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for predicting the survival time of patients suffering from cancer |
WO2018046738A1 (en) | 2016-09-12 | 2018-03-15 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for predicting the survival time of patients suffering from cancer |
WO2018055080A1 (en) | 2016-09-22 | 2018-03-29 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and pharmaceutical compositions for reprograming immune environment in a subject in need thereof |
WO2018122245A1 (en) | 2016-12-28 | 2018-07-05 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods of predicting the survival time of patients suffering from cms3 colorectal cancer |
WO2018122249A1 (en) | 2016-12-28 | 2018-07-05 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for predicting the survival time of patients suffering from a microsatellite stable colorectal cancer |
WO2018146148A1 (en) | 2017-02-07 | 2018-08-16 | INSERM (Institut National de la Santé et de la Recherche Médicale) | A method for predicting the response to checkpoint blockade cancer immunotherapy |
WO2018146128A1 (en) | 2017-02-07 | 2018-08-16 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Detection of kit polymorphism for predicting the response to checkpoint blockade cancer immunotherapy |
US10077306B2 (en) | 2016-07-14 | 2018-09-18 | Bristol-Myers Squibb Company | Antibodies against TIM3 and uses thereof |
WO2018172508A1 (en) | 2017-03-24 | 2018-09-27 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for treating melanoma |
KR20180133482A (ko) * | 2016-04-12 | 2018-12-14 | 심포젠 에이/에스 | 항-tim-3 항체 및 조성물 |
WO2018234367A1 (en) | 2017-06-20 | 2018-12-27 | Institut Curie | SUV39H1 HISTONE METHYLTRANSFERASE INHIBITOR FOR USE IN ANTICANCER POLYTHERAPY |
WO2019020593A1 (en) | 2017-07-25 | 2019-01-31 | INSERM (Institut National de la Santé et de la Recherche Médicale) | METHODS AND PHARMACEUTICAL COMPOSITIONS FOR MODULATION OF MONOCYTOPOISIS |
WO2019057744A1 (en) | 2017-09-19 | 2019-03-28 | Institut Curie | AROMATIC HYDROCARBON RECEPTOR AGONIST FOR USE IN ASSOCIATION TREATMENT AGAINST CANCER |
JP2019517999A (ja) * | 2016-08-25 | 2019-06-27 | イーライ リリー アンド カンパニー | 抗Tim−3抗体 |
WO2019134946A1 (en) | 2018-01-04 | 2019-07-11 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for treating melanoma resistant |
WO2019143607A1 (en) | 2018-01-16 | 2019-07-25 | Bristol-Myers Squibb Company | Methods of treating cancer with antibodies against tim3 |
WO2019162325A1 (en) | 2018-02-21 | 2019-08-29 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Use of sk1 as biomarker for predicting response to immunecheckpoint inhibitors |
WO2019170727A1 (en) | 2018-03-06 | 2019-09-12 | Institut Curie | Inhibitor of setdb1 histone methyltransferase for use in cancer combination therapy |
WO2019175113A1 (en) | 2018-03-12 | 2019-09-19 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Use of caloric restriction mimetics for potentiating chemo-immunotherapy for the treatment of cancers |
WO2019207030A1 (en) | 2018-04-26 | 2019-10-31 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for predicting a response with an immune checkpoint inhibitor in a patient suffering from a lung cancer |
US10570204B2 (en) | 2013-09-26 | 2020-02-25 | The Medical College Of Wisconsin, Inc. | Methods for treating hematologic cancers |
WO2020048942A1 (en) | 2018-09-04 | 2020-03-12 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and pharmaceutical compositions for enhancing cytotoxic t lymphocyte-dependent immune responses |
WO2020058372A1 (en) | 2018-09-19 | 2020-03-26 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and pharmaceutical composition for the treatment of cancers resistant to immune checkpoint therapy |
WO2020070062A1 (en) | 2018-10-01 | 2020-04-09 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Use of tim-3 inhibitors for the treatment of exacerbations in patients suffering from severe asthma |
WO2020070053A1 (en) | 2018-10-01 | 2020-04-09 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Use of inhibitors of stress granule formation for targeting the regulation of immune responses |
WO2020079164A1 (en) | 2018-10-18 | 2020-04-23 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Combination of a big-h3 antagonist and an immune checkpoint inhibitor for the treatment of solid tumor |
US10639368B2 (en) | 2016-05-27 | 2020-05-05 | Agenus Inc. | Anti-TIM-3 antibodies and methods of use thereof |
WO2020104479A1 (en) | 2018-11-20 | 2020-05-28 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for treating cancers and resistant cancers with anti transferrin receptor 1 antibodies |
WO2020104496A1 (en) | 2018-11-20 | 2020-05-28 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Bispecific antibody targeting transferrin receptor 1 and soluble antigen |
WO2020109355A1 (en) | 2018-11-28 | 2020-06-04 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and kit for assaying lytic potential of immune effector cells |
WO2020115262A1 (en) | 2018-12-07 | 2020-06-11 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Use of cd26 and cd39 as new phenotypic markers for assessing maturation of foxp3+ t cells and uses thereof for diagnostic purposes |
WO2020115261A1 (en) | 2018-12-07 | 2020-06-11 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for treating melanoma |
WO2020120592A1 (en) | 2018-12-12 | 2020-06-18 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for predicting and treating melanoma |
WO2020127059A1 (en) | 2018-12-17 | 2020-06-25 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Use of sulconazole as a furin inhibitor |
WO2020127411A1 (en) | 2018-12-19 | 2020-06-25 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for treating cancers by immuno-modulation using antibodies against cathespin-d |
WO2020127885A1 (en) | 2018-12-21 | 2020-06-25 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Compositions for treating cancers and resistant cancers |
WO2020141199A1 (en) | 2019-01-03 | 2020-07-09 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and pharmaceutical compositions for enhancing cd8+ t cell-dependent immune responses in subjects suffering from cancer |
WO2020148338A1 (en) | 2019-01-15 | 2020-07-23 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Mutated interleukin-34 (il-34) polypeptides and uses thereof in therapy |
WO2020157131A1 (en) | 2019-01-30 | 2020-08-06 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for identifying whether a subject suffering from a cancer will achieve a response with an immune-checkpoint inhibitor |
WO2020161083A1 (en) | 2019-02-04 | 2020-08-13 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for modulating blood-brain barrier |
WO2020165370A1 (en) | 2019-02-13 | 2020-08-20 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for selecting a cancer treatment in a subject suffering from cancer |
US10752687B2 (en) | 2014-01-24 | 2020-08-25 | Novartis Ag | Antibody molecules to PD-1 and uses thereof |
WO2020169472A2 (en) | 2019-02-18 | 2020-08-27 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods of inducing phenotypic changes in macrophages |
WO2020201362A2 (en) | 2019-04-02 | 2020-10-08 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods of predicting and preventing cancer in patients having premalignant lesions |
WO2020208060A1 (en) | 2019-04-09 | 2020-10-15 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Use of sk2 inhibitors in combination with immune checkpoint blockade therapy for the treatment of cancer |
WO2020212484A1 (en) | 2019-04-17 | 2020-10-22 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for treatment of nlrp3 inflammasome mediated il-1beta dependent disorders |
WO2020221796A1 (en) | 2019-04-30 | 2020-11-05 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for treating melanoma |
JP2020200351A (ja) * | 2012-07-31 | 2020-12-17 | ザ ブリガム アンド ウィメンズ ホスピタル インコーポレイテッドThe Brigham and Women’s Hospital, Inc. | 免疫応答の調節 |
WO2021003432A1 (en) | 2019-07-02 | 2021-01-07 | Fred Hutchinson Cancer Research Center | Recombinant ad35 vectors and related gene therapy improvements |
WO2021048292A1 (en) | 2019-09-11 | 2021-03-18 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for treating melanoma |
EP3800201A1 (en) | 2019-10-01 | 2021-04-07 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Cd28h stimulation enhances nk cell killing activities |
WO2021064180A1 (en) | 2019-10-03 | 2021-04-08 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for modulating macrophages polarization |
WO2021064184A1 (en) | 2019-10-04 | 2021-04-08 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and pharmaceutical composition for the treatment of ovarian cancer, breast cancer or pancreatic cancer |
WO2021074391A1 (en) | 2019-10-17 | 2021-04-22 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for diagnosing nasal intestinal type adenocarcinomas |
WO2021083959A1 (en) | 2019-10-29 | 2021-05-06 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for treating uveal melanoma |
WO2021123243A1 (en) | 2019-12-19 | 2021-06-24 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and vaccine compositions to treat cancers |
WO2021144426A1 (en) | 2020-01-17 | 2021-07-22 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for treating melanoma |
WO2021156360A1 (en) | 2020-02-05 | 2021-08-12 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for discontinuing a treatment with a tyrosine kinase inhibitor (tki) |
WO2021170777A1 (en) | 2020-02-28 | 2021-09-02 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for diagnosing, prognosing and managing treatment of breast cancer |
US11214615B2 (en) | 2017-07-28 | 2022-01-04 | Phanes Therapeutics, Inc. | Anti-TIM-3 antibodies and uses thereof |
WO2022002873A1 (en) | 2020-06-30 | 2022-01-06 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for predicting the risk of recurrence and/or death of patients suffering from a solid cancer after preoperative adjuvant therapies |
WO2022002874A1 (en) | 2020-06-30 | 2022-01-06 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for predicting the risk of recurrence and/or death of patients suffering from a solid cancer after preoperative adjuvant therapy and radical surgery |
WO2022023379A1 (en) | 2020-07-28 | 2022-02-03 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for preventing and treating a cancer |
WO2022084531A1 (en) | 2020-10-23 | 2022-04-28 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for treating glioma |
WO2022101481A1 (en) | 2020-11-16 | 2022-05-19 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for predicting and treating uveal melanoma |
WO2022101484A1 (en) | 2020-11-16 | 2022-05-19 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for predicting and treating uveal melanoma |
US11344620B2 (en) | 2014-09-13 | 2022-05-31 | Novartis Ag | Combination therapies |
WO2022194908A1 (en) | 2021-03-17 | 2022-09-22 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for treating melanoma |
WO2022223791A1 (en) | 2021-04-23 | 2022-10-27 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for treating cell senescence accumulation related disease |
WO2023078900A1 (en) | 2021-11-03 | 2023-05-11 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for treating triple negative breast cancer (tnbc) |
WO2023118165A1 (en) | 2021-12-21 | 2023-06-29 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for treating melanoma |
WO2024033399A1 (en) | 2022-08-10 | 2024-02-15 | Institut National de la Santé et de la Recherche Médicale | Sigmar1 ligand for the treatment of pancreatic cancer |
WO2024033400A1 (en) | 2022-08-10 | 2024-02-15 | Institut National de la Santé et de la Recherche Médicale | Sk2 inhibitor for the treatment of pancreatic cancer |
WO2024052356A1 (en) | 2022-09-06 | 2024-03-14 | Institut National de la Santé et de la Recherche Médicale | Inhibitors of the ceramide metabolic pathway for overcoming immunotherapy resistance in cancer |
WO2024056716A1 (en) | 2022-09-14 | 2024-03-21 | Institut National de la Santé et de la Recherche Médicale | Methods and pharmaceutical compositions for the treatment of dilated cardiomyopathy |
WO2024084013A1 (en) | 2022-10-20 | 2024-04-25 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Combination therapy for the treatment of cancer |
WO2024084034A1 (en) | 2022-10-21 | 2024-04-25 | Institut National de la Santé et de la Recherche Médicale | Methods and pharmaceutical compositions for the treatment of osteoarthritis |
WO2024161015A1 (en) | 2023-02-03 | 2024-08-08 | Institut National de la Santé et de la Recherche Médicale | Method to treat age-related diseases |
WO2024200571A1 (en) | 2023-03-28 | 2024-10-03 | Institut National de la Santé et de la Recherche Médicale | Method for discriminating mono-immunotherapy from combined immunotherapy in cancers |
Families Citing this family (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8969372B2 (en) | 2003-11-14 | 2015-03-03 | Aptose Boisciences Inc. | Aryl imidazoles and their use as anti-cancer agents |
WO2009120903A2 (en) * | 2008-03-26 | 2009-10-01 | Cellerant Therapeutics, Inc. | Cytokine receptors associated with myelogenous haematological proliferative disorders and uses thereof |
JP5748653B2 (ja) | 2009-04-10 | 2015-07-15 | 協和発酵キリン株式会社 | 抗tim−3抗体を用いた血液腫瘍治療法 |
CA2802344C (en) * | 2010-06-18 | 2023-06-13 | The Brigham And Women's Hospital, Inc. | Bi-specific antibodies against tim-3 and pd-1 for immunotherapy in chronic immune conditions |
ES2670874T3 (es) | 2011-03-16 | 2018-06-01 | Argenx Bvba | Anticuerpos contra CD70 |
US8841418B2 (en) | 2011-07-01 | 2014-09-23 | Cellerant Therapeutics, Inc. | Antibodies that specifically bind to TIM3 |
US20150104392A1 (en) * | 2013-10-04 | 2015-04-16 | Aptose Biosciences Inc. | Compositions, biomarkers and their use in the treatment of cancer |
EP3613859A1 (en) | 2013-10-24 | 2020-02-26 | Ospedale San Raffaele S.r.l. | Method |
CU24481B1 (es) | 2014-03-14 | 2020-03-04 | Immutep Sas | Moléculas de anticuerpo que se unen a lag-3 |
US10391168B1 (en) | 2014-08-22 | 2019-08-27 | University Of Bern | Anti-CD70 combination therapy |
CR20170143A (es) | 2014-10-14 | 2017-06-19 | Dana Farber Cancer Inst Inc | Moléculas de anticuerpo que se unen a pd-l1 y usos de las mismas |
SG11201703403TA (en) | 2014-10-27 | 2017-05-30 | Agency Science Tech & Res | Anti-tim-3 antibodies |
CN107922484A (zh) * | 2015-03-06 | 2018-04-17 | 索伦托治疗有限公司 | 结合tim3的抗体治疗剂 |
KR20180063881A (ko) | 2015-07-16 | 2018-06-12 | 바이오카인 테라퓨틱스 리미티드 | 암 치료용 조성물 및 방법 |
US11014983B2 (en) | 2015-08-20 | 2021-05-25 | Sutro Biopharma, Inc. | Anti-Tim-3 antibodies, compositions comprising anti-Tim-3 antibodies and methods of making and using anti-Tim-3 antibodies |
CN105288617B (zh) * | 2015-10-20 | 2018-07-31 | 陈雪玲 | 一种抑制细粒棘球蚴感染的方法和药物 |
EP3452032B1 (en) * | 2016-04-08 | 2024-09-04 | Syros Pharmaceuticals, Inc. | Rara agonists for the treatment of aml and mds |
CA3058960C (en) | 2017-04-05 | 2023-08-29 | Symphogen A/S | Combination therapies targeting pd-1, tim-3, and lag-3 |
CN111417395A (zh) | 2017-10-30 | 2020-07-14 | 艾普托斯生物科学公司 | 用于治疗癌症的芳基咪唑 |
GB201800649D0 (en) | 2018-01-16 | 2018-02-28 | Argenx Bvba | CD70 Combination Therapy |
AU2019287765A1 (en) | 2018-06-15 | 2021-01-07 | Flagship Pioneering Innovations V, Inc. | Increasing immune activity through modulation of postcellular signaling factors |
TWI848030B (zh) | 2018-12-18 | 2024-07-11 | 比利時商阿根思公司 | Cd70組合治療 |
WO2020227159A2 (en) | 2019-05-03 | 2020-11-12 | Flagship Pioneering Innovations V, Inc. | Methods of modulating immune activity |
AU2020370832A1 (en) * | 2019-10-21 | 2022-05-19 | Novartis Ag | TIM-3 inhibitors and uses thereof |
JP2023509359A (ja) | 2019-12-17 | 2023-03-08 | フラグシップ パイオニアリング イノベーションズ ブイ,インコーポレーテッド | 鉄依存性細胞分解の誘導物質との併用抗癌療法 |
KR102536302B1 (ko) * | 2020-02-25 | 2023-05-26 | 국립암센터 | Tim-3 에 특이적으로 결합하는 단일클론항체 및 이의 용도 |
EP4172323A1 (en) | 2020-06-29 | 2023-05-03 | Flagship Pioneering Innovations V, Inc. | Viruses engineered to promote thanotransmission and their use in treating cancer |
JP2023542273A (ja) * | 2020-08-06 | 2023-10-06 | サイロス ファーマシューティカルズ, インコーポレイテッド | Amlを処置するための治療、ならびにraraアゴニスト、低メチル化剤、およびbcl-2阻害剤の使用 |
EP4225792A1 (en) | 2020-10-08 | 2023-08-16 | Affimed GmbH | Trispecific binders |
KR20230165276A (ko) | 2021-03-31 | 2023-12-05 | 플래그쉽 파이어니어링 이노베이션스 브이, 인크. | 타노트랜스미션 폴리펩티드 및 암의 치료에서의 이의 용도 |
AU2022303363A1 (en) | 2021-06-29 | 2024-01-18 | Flagship Pioneering Innovations V, Inc. | Immune cells engineered to promote thanotransmission and uses thereof |
WO2023007023A1 (en) | 2021-07-30 | 2023-02-02 | Affimed Gmbh | Duplexbodies |
WO2024077191A1 (en) | 2022-10-05 | 2024-04-11 | Flagship Pioneering Innovations V, Inc. | Nucleic acid molecules encoding trif and additionalpolypeptides and their use in treating cancer |
US20240269251A1 (en) | 2023-01-09 | 2024-08-15 | Flagship Pioneering Innovations V, Inc. | Genetic switches and their use in treating cancer |
Citations (65)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4036945A (en) | 1976-05-03 | 1977-07-19 | The Massachusetts General Hospital | Composition and method for determining the size and location of myocardial infarcts |
US4331647A (en) | 1980-03-03 | 1982-05-25 | Goldenberg Milton David | Tumor localization and therapy with labeled antibody fragments specific to tumor-associated markers |
US4411993A (en) | 1981-04-29 | 1983-10-25 | Steven Gillis | Hybridoma antibody which inhibits interleukin 2 activity |
EP0120694A2 (en) | 1983-03-25 | 1984-10-03 | Celltech Limited | Processes for the production of multichain polypeptides or proteins |
EP0125023A1 (en) | 1983-04-08 | 1984-11-14 | Genentech, Inc. | Recombinant immunoglobulin preparations, methods for their preparation, DNA sequences, expression vectors and recombinant host cells therefor |
US4543439A (en) | 1982-12-13 | 1985-09-24 | Massachusetts Institute Of Technology | Production and use of monoclonal antibodies to phosphotyrosine-containing proteins |
EP0239400A2 (en) | 1986-03-27 | 1987-09-30 | Medical Research Council | Recombinant antibodies and methods for their production |
US4844904A (en) | 1985-11-22 | 1989-07-04 | Takeda Chemical Industries, Ltd. | Liposome composition |
US4863740A (en) | 1984-04-09 | 1989-09-05 | Sandoz Ltd. | Interleukin therapy |
US4902614A (en) | 1984-12-03 | 1990-02-20 | Teijin Limited | Monoclonal antibody to human protein C |
US4946778A (en) | 1987-09-21 | 1990-08-07 | Genex Corporation | Single polypeptide chain binding molecules |
US4975282A (en) | 1985-06-26 | 1990-12-04 | The Liposome Company, Inc. | Multilamellar liposomes having improved trapping efficiencies |
US5000959A (en) | 1987-04-16 | 1991-03-19 | Takeda Chemical Industries, Ltd. | Liposome composition and production thereof |
WO1991009967A1 (en) | 1989-12-21 | 1991-07-11 | Celltech Limited | Humanised antibodies |
WO1992001047A1 (en) | 1990-07-10 | 1992-01-23 | Cambridge Antibody Technology Limited | Methods for producing members of specific binding pairs |
WO1992005266A2 (en) | 1990-09-21 | 1992-04-02 | Viagene, Inc. | Packaging cells |
WO1992014829A1 (en) | 1991-02-19 | 1992-09-03 | The Regents Of The University Of California | Viral particles having altered host range |
EP0519596A1 (en) | 1991-05-17 | 1992-12-23 | Merck & Co. Inc. | A method for reducing the immunogenicity of antibody variable domains |
US5225539A (en) | 1986-03-27 | 1993-07-06 | Medical Research Council | Recombinant altered antibodies and methods of making altered antibodies |
US5258498A (en) | 1987-05-21 | 1993-11-02 | Creative Biomolecules, Inc. | Polypeptide linkers for production of biosynthetic proteins |
EP0592106A1 (en) | 1992-09-09 | 1994-04-13 | Immunogen Inc | Resurfacing of rodent antibodies |
US5413923A (en) | 1989-07-25 | 1995-05-09 | Cell Genesys, Inc. | Homologous recombination for universal donor cells and chimeric mammalian hosts |
US5459127A (en) | 1990-04-19 | 1995-10-17 | Vical, Inc. | Cationic lipids for intracellular delivery of biologically active molecules |
US5501979A (en) | 1989-02-01 | 1996-03-26 | The General Hospital Corporation | Herpes simplex virus type I expression vector |
US5530101A (en) | 1988-12-28 | 1996-06-25 | Protein Design Labs, Inc. | Humanized immunoglobulins |
US5545806A (en) | 1990-08-29 | 1996-08-13 | Genpharm International, Inc. | Ransgenic non-human animals for producing heterologous antibodies |
WO1996027603A1 (en) | 1995-03-03 | 1996-09-12 | Millennium Pharmaceuticals, Inc. | Compositions and methods for the treatment and diagnosis of immune disorders |
US5561063A (en) | 1987-06-26 | 1996-10-01 | Syntro Corporation | Recombinant human cytomegalovirus containing foreign gene |
US5565332A (en) | 1991-09-23 | 1996-10-15 | Medical Research Council | Production of chimeric antibodies - a combinatorial approach |
US5569825A (en) | 1990-08-29 | 1996-10-29 | Genpharm International | Transgenic non-human animals capable of producing heterologous antibodies of various isotypes |
WO1996033735A1 (en) | 1995-04-27 | 1996-10-31 | Abgenix, Inc. | Human antibodies derived from immunized xenomice |
WO1996034096A1 (en) | 1995-04-28 | 1996-10-31 | Abgenix, Inc. | Human antibodies derived from immunized xenomice |
US5604090A (en) | 1994-06-06 | 1997-02-18 | Fred Hutchinson Cancer Research Center | Method for increasing transduction of cells by adeno-associated virus vectors |
US5625126A (en) | 1990-08-29 | 1997-04-29 | Genpharm International, Inc. | Transgenic non-human animals for producing heterologous antibodies |
US5624820A (en) | 1993-11-12 | 1997-04-29 | Case Western Reserve University | Episomal expression vector for human gene therapy |
US5633425A (en) | 1990-08-29 | 1997-05-27 | Genpharm International, Inc. | Transgenic non-human animals capable of producing heterologous antibodies |
US5661016A (en) | 1990-08-29 | 1997-08-26 | Genpharm International Inc. | Transgenic non-human animals capable of producing heterologous antibodies of various isotypes |
US5665577A (en) | 1989-02-06 | 1997-09-09 | Dana-Farber Cancer Institute | Vectors containing HIV packaging sequences, packaging defective HIV vectors, and uses thereof |
US5674703A (en) | 1992-12-02 | 1997-10-07 | Woo; Savio L. C. | Episomal vector systems and related methods |
US5693508A (en) | 1994-11-08 | 1997-12-02 | Chang; Lung-Ji | Retroviral expression vectors containing MoMLV/CMV-IE/HIV-TAR chimeric long terminal repeats |
US5700470A (en) | 1995-03-15 | 1997-12-23 | Sumitomo Pharmaceuticals Company, Limited | Recombinant adenovirus with removed EZA gene and method of preparation |
US5719054A (en) | 1991-03-14 | 1998-02-17 | Cantab Pharmaceuticals Research Limited | Recombinant virus vectors encoding human papillomavirus proteins |
US5731172A (en) | 1994-03-09 | 1998-03-24 | Sumitomo Pharmaceuticals Company, Ltd. | Recombinant adenovirus and process for producing the same |
WO1998024893A2 (en) | 1996-12-03 | 1998-06-11 | Abgenix, Inc. | TRANSGENIC MAMMALS HAVING HUMAN IG LOCI INCLUDING PLURAL VH AND Vλ REGIONS AND ANTIBODIES PRODUCED THEREFROM |
US5807715A (en) | 1984-08-27 | 1998-09-15 | The Board Of Trustees Of The Leland Stanford Junior University | Methods and transformed mammalian lymphocyte cells for producing functional antigen-binding protein including chimeric immunoglobulin |
US5814318A (en) | 1990-08-29 | 1998-09-29 | Genpharm International Inc. | Transgenic non-human animals for producing heterologous antibodies |
US5861397A (en) | 1996-10-03 | 1999-01-19 | Vical Incorporated | Piperazine based cytofectins |
US5885793A (en) | 1991-12-02 | 1999-03-23 | Medical Research Council | Production of anti-self antibodies from antibody segment repertoires and displayed on phage |
US5916771A (en) | 1996-10-11 | 1999-06-29 | Abgenix, Inc. | Production of a multimeric protein by cell fusion method |
US5928944A (en) | 1994-02-04 | 1999-07-27 | The United States Of America As Represented By The Department Of Health And Human Services | Method of adenoviral-medicated cell transfection |
US5939598A (en) | 1990-01-12 | 1999-08-17 | Abgenix, Inc. | Method of making transgenic mice lacking endogenous heavy chains |
US6013516A (en) | 1995-10-06 | 2000-01-11 | The Salk Institute For Biological Studies | Vector and method of use for nucleic acid delivery to non-dividing cells |
US6087329A (en) | 1991-10-25 | 2000-07-11 | Immunex Corporation | CD40 ligand polypeptide |
WO2000061739A1 (en) | 1999-04-09 | 2000-10-19 | Kyowa Hakko Kogyo Co., Ltd. | Method for controlling the activity of immunologically functional molecule |
WO2002031140A1 (fr) | 2000-10-06 | 2002-04-18 | Kyowa Hakko Kogyo Co., Ltd. | Cellules produisant des compositions d'anticorps |
WO2002043478A2 (en) | 2000-11-30 | 2002-06-06 | Medarex, Inc. | Transgenic transchromosomal rodents for making human antibodies |
WO2002092812A1 (en) | 2001-05-11 | 2002-11-21 | Kirin Beer Kabushiki Kaisha | ARTIFICIAL HUMAN CHROMOSOME CONTAINING HUMAN ANTIBODY μ LIGHT CHAIN GENE |
WO2003063792A2 (en) | 2002-01-30 | 2003-08-07 | The Brigham And Women's Hospital, Inc. | Compositions and methods related to tim-3, a th1-specific cell surface molecule |
US6737056B1 (en) | 1999-01-15 | 2004-05-18 | Genentech, Inc. | Polypeptide variants with altered effector function |
WO2005035586A1 (ja) | 2003-10-08 | 2005-04-21 | Kyowa Hakko Kogyo Co., Ltd. | 融合蛋白質組成物 |
US20070148165A1 (en) | 2005-07-22 | 2007-06-28 | Kyowa Hakko Kogyo Co., Ltd. | Recombinant antibody composition |
JP2007530560A (ja) * | 2004-03-24 | 2007-11-01 | テロス ファーマシューティカルズ, インコーポレイテッド | ワクチンに対する免疫応答を向上させるためのアジュバントおよび使用方法 |
US7297775B2 (en) | 1998-04-02 | 2007-11-20 | Genentech, Inc. | Polypeptide variants |
US7317091B2 (en) | 2002-03-01 | 2008-01-08 | Xencor, Inc. | Optimized Fc variants |
JP2008500013A (ja) * | 2003-10-03 | 2008-01-10 | ザ ブライハム アンド ウイメンズ ホスピタル,インコーポレイテッド | Tim−3ポリペプチド |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
HUE050958T2 (hu) * | 2008-01-15 | 2021-01-28 | Univ Leland Stanford Junior | Akut mieloid leukémia õssejtek markerei |
JP5748653B2 (ja) * | 2009-04-10 | 2015-07-15 | 協和発酵キリン株式会社 | 抗tim−3抗体を用いた血液腫瘍治療法 |
ES2682078T3 (es) * | 2010-06-11 | 2018-09-18 | Kyowa Hakko Kirin Co., Ltd. | Anticuerpo anti-TIM-3 |
-
2010
- 2010-04-09 JP JP2011508396A patent/JP5748653B2/ja active Active
- 2010-04-09 US US13/263,434 patent/US8647623B2/en active Active
- 2010-04-09 ES ES10761756T patent/ES2571235T3/es active Active
- 2010-04-09 WO PCT/JP2010/056445 patent/WO2010117057A1/ja active Application Filing
- 2010-04-09 EP EP10761756.5A patent/EP2417984B1/en active Active
-
2013
- 2013-12-20 US US14/136,394 patent/US9103832B2/en active Active
-
2015
- 2015-06-15 US US14/739,154 patent/US9487591B2/en active Active
-
2016
- 2016-08-29 US US15/249,992 patent/US9958446B2/en active Active
Patent Citations (70)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4036945A (en) | 1976-05-03 | 1977-07-19 | The Massachusetts General Hospital | Composition and method for determining the size and location of myocardial infarcts |
US4331647A (en) | 1980-03-03 | 1982-05-25 | Goldenberg Milton David | Tumor localization and therapy with labeled antibody fragments specific to tumor-associated markers |
US4411993A (en) | 1981-04-29 | 1983-10-25 | Steven Gillis | Hybridoma antibody which inhibits interleukin 2 activity |
US4543439A (en) | 1982-12-13 | 1985-09-24 | Massachusetts Institute Of Technology | Production and use of monoclonal antibodies to phosphotyrosine-containing proteins |
EP0120694A2 (en) | 1983-03-25 | 1984-10-03 | Celltech Limited | Processes for the production of multichain polypeptides or proteins |
US4816397A (en) | 1983-03-25 | 1989-03-28 | Celltech, Limited | Multichain polypeptides or proteins and processes for their production |
EP0125023A1 (en) | 1983-04-08 | 1984-11-14 | Genentech, Inc. | Recombinant immunoglobulin preparations, methods for their preparation, DNA sequences, expression vectors and recombinant host cells therefor |
US4816567A (en) | 1983-04-08 | 1989-03-28 | Genentech, Inc. | Recombinant immunoglobin preparations |
US4863740A (en) | 1984-04-09 | 1989-09-05 | Sandoz Ltd. | Interleukin therapy |
US5807715A (en) | 1984-08-27 | 1998-09-15 | The Board Of Trustees Of The Leland Stanford Junior University | Methods and transformed mammalian lymphocyte cells for producing functional antigen-binding protein including chimeric immunoglobulin |
US4902614A (en) | 1984-12-03 | 1990-02-20 | Teijin Limited | Monoclonal antibody to human protein C |
US4975282A (en) | 1985-06-26 | 1990-12-04 | The Liposome Company, Inc. | Multilamellar liposomes having improved trapping efficiencies |
US4844904A (en) | 1985-11-22 | 1989-07-04 | Takeda Chemical Industries, Ltd. | Liposome composition |
EP0239400A2 (en) | 1986-03-27 | 1987-09-30 | Medical Research Council | Recombinant antibodies and methods for their production |
GB2188638A (en) | 1986-03-27 | 1987-10-07 | Gregory Paul Winter | Chimeric antibodies |
US5225539A (en) | 1986-03-27 | 1993-07-06 | Medical Research Council | Recombinant altered antibodies and methods of making altered antibodies |
US5000959A (en) | 1987-04-16 | 1991-03-19 | Takeda Chemical Industries, Ltd. | Liposome composition and production thereof |
US5258498A (en) | 1987-05-21 | 1993-11-02 | Creative Biomolecules, Inc. | Polypeptide linkers for production of biosynthetic proteins |
US5561063A (en) | 1987-06-26 | 1996-10-01 | Syntro Corporation | Recombinant human cytomegalovirus containing foreign gene |
US4946778A (en) | 1987-09-21 | 1990-08-07 | Genex Corporation | Single polypeptide chain binding molecules |
US5585089A (en) | 1988-12-28 | 1996-12-17 | Protein Design Labs, Inc. | Humanized immunoglobulins |
US5530101A (en) | 1988-12-28 | 1996-06-25 | Protein Design Labs, Inc. | Humanized immunoglobulins |
US5501979A (en) | 1989-02-01 | 1996-03-26 | The General Hospital Corporation | Herpes simplex virus type I expression vector |
US5665577A (en) | 1989-02-06 | 1997-09-09 | Dana-Farber Cancer Institute | Vectors containing HIV packaging sequences, packaging defective HIV vectors, and uses thereof |
US5413923A (en) | 1989-07-25 | 1995-05-09 | Cell Genesys, Inc. | Homologous recombination for universal donor cells and chimeric mammalian hosts |
WO1991009967A1 (en) | 1989-12-21 | 1991-07-11 | Celltech Limited | Humanised antibodies |
US5939598A (en) | 1990-01-12 | 1999-08-17 | Abgenix, Inc. | Method of making transgenic mice lacking endogenous heavy chains |
US5459127A (en) | 1990-04-19 | 1995-10-17 | Vical, Inc. | Cationic lipids for intracellular delivery of biologically active molecules |
WO1992001047A1 (en) | 1990-07-10 | 1992-01-23 | Cambridge Antibody Technology Limited | Methods for producing members of specific binding pairs |
US5569825A (en) | 1990-08-29 | 1996-10-29 | Genpharm International | Transgenic non-human animals capable of producing heterologous antibodies of various isotypes |
US5633425A (en) | 1990-08-29 | 1997-05-27 | Genpharm International, Inc. | Transgenic non-human animals capable of producing heterologous antibodies |
US5661016A (en) | 1990-08-29 | 1997-08-26 | Genpharm International Inc. | Transgenic non-human animals capable of producing heterologous antibodies of various isotypes |
US5814318A (en) | 1990-08-29 | 1998-09-29 | Genpharm International Inc. | Transgenic non-human animals for producing heterologous antibodies |
US5545806A (en) | 1990-08-29 | 1996-08-13 | Genpharm International, Inc. | Ransgenic non-human animals for producing heterologous antibodies |
US5625126A (en) | 1990-08-29 | 1997-04-29 | Genpharm International, Inc. | Transgenic non-human animals for producing heterologous antibodies |
WO1992005266A2 (en) | 1990-09-21 | 1992-04-02 | Viagene, Inc. | Packaging cells |
WO1992014829A1 (en) | 1991-02-19 | 1992-09-03 | The Regents Of The University Of California | Viral particles having altered host range |
US5719054A (en) | 1991-03-14 | 1998-02-17 | Cantab Pharmaceuticals Research Limited | Recombinant virus vectors encoding human papillomavirus proteins |
EP0519596A1 (en) | 1991-05-17 | 1992-12-23 | Merck & Co. Inc. | A method for reducing the immunogenicity of antibody variable domains |
US5565332A (en) | 1991-09-23 | 1996-10-15 | Medical Research Council | Production of chimeric antibodies - a combinatorial approach |
US6087329A (en) | 1991-10-25 | 2000-07-11 | Immunex Corporation | CD40 ligand polypeptide |
US5885793A (en) | 1991-12-02 | 1999-03-23 | Medical Research Council | Production of anti-self antibodies from antibody segment repertoires and displayed on phage |
EP0592106A1 (en) | 1992-09-09 | 1994-04-13 | Immunogen Inc | Resurfacing of rodent antibodies |
US5674703A (en) | 1992-12-02 | 1997-10-07 | Woo; Savio L. C. | Episomal vector systems and related methods |
US5624820A (en) | 1993-11-12 | 1997-04-29 | Case Western Reserve University | Episomal expression vector for human gene therapy |
US5928944A (en) | 1994-02-04 | 1999-07-27 | The United States Of America As Represented By The Department Of Health And Human Services | Method of adenoviral-medicated cell transfection |
US5731172A (en) | 1994-03-09 | 1998-03-24 | Sumitomo Pharmaceuticals Company, Ltd. | Recombinant adenovirus and process for producing the same |
US5604090A (en) | 1994-06-06 | 1997-02-18 | Fred Hutchinson Cancer Research Center | Method for increasing transduction of cells by adeno-associated virus vectors |
US5693508A (en) | 1994-11-08 | 1997-12-02 | Chang; Lung-Ji | Retroviral expression vectors containing MoMLV/CMV-IE/HIV-TAR chimeric long terminal repeats |
WO1996027603A1 (en) | 1995-03-03 | 1996-09-12 | Millennium Pharmaceuticals, Inc. | Compositions and methods for the treatment and diagnosis of immune disorders |
US5700470A (en) | 1995-03-15 | 1997-12-23 | Sumitomo Pharmaceuticals Company, Limited | Recombinant adenovirus with removed EZA gene and method of preparation |
WO1996033735A1 (en) | 1995-04-27 | 1996-10-31 | Abgenix, Inc. | Human antibodies derived from immunized xenomice |
WO1996034096A1 (en) | 1995-04-28 | 1996-10-31 | Abgenix, Inc. | Human antibodies derived from immunized xenomice |
US6013516A (en) | 1995-10-06 | 2000-01-11 | The Salk Institute For Biological Studies | Vector and method of use for nucleic acid delivery to non-dividing cells |
US5861397A (en) | 1996-10-03 | 1999-01-19 | Vical Incorporated | Piperazine based cytofectins |
US5916771A (en) | 1996-10-11 | 1999-06-29 | Abgenix, Inc. | Production of a multimeric protein by cell fusion method |
WO1998024893A2 (en) | 1996-12-03 | 1998-06-11 | Abgenix, Inc. | TRANSGENIC MAMMALS HAVING HUMAN IG LOCI INCLUDING PLURAL VH AND Vλ REGIONS AND ANTIBODIES PRODUCED THEREFROM |
US7297775B2 (en) | 1998-04-02 | 2007-11-20 | Genentech, Inc. | Polypeptide variants |
US6737056B1 (en) | 1999-01-15 | 2004-05-18 | Genentech, Inc. | Polypeptide variants with altered effector function |
WO2000061739A1 (en) | 1999-04-09 | 2000-10-19 | Kyowa Hakko Kogyo Co., Ltd. | Method for controlling the activity of immunologically functional molecule |
WO2002031140A1 (fr) | 2000-10-06 | 2002-04-18 | Kyowa Hakko Kogyo Co., Ltd. | Cellules produisant des compositions d'anticorps |
WO2002043478A2 (en) | 2000-11-30 | 2002-06-06 | Medarex, Inc. | Transgenic transchromosomal rodents for making human antibodies |
WO2002092812A1 (en) | 2001-05-11 | 2002-11-21 | Kirin Beer Kabushiki Kaisha | ARTIFICIAL HUMAN CHROMOSOME CONTAINING HUMAN ANTIBODY μ LIGHT CHAIN GENE |
JP2005526018A (ja) * | 2002-01-30 | 2005-09-02 | ザ ブライハム アンド ウイミンズ ホスピタル, インコーポレイテッド | TIM−3、Th1特異的細胞表面分子に関連した組成物および方法 |
WO2003063792A2 (en) | 2002-01-30 | 2003-08-07 | The Brigham And Women's Hospital, Inc. | Compositions and methods related to tim-3, a th1-specific cell surface molecule |
US7317091B2 (en) | 2002-03-01 | 2008-01-08 | Xencor, Inc. | Optimized Fc variants |
JP2008500013A (ja) * | 2003-10-03 | 2008-01-10 | ザ ブライハム アンド ウイメンズ ホスピタル,インコーポレイテッド | Tim−3ポリペプチド |
WO2005035586A1 (ja) | 2003-10-08 | 2005-04-21 | Kyowa Hakko Kogyo Co., Ltd. | 融合蛋白質組成物 |
JP2007530560A (ja) * | 2004-03-24 | 2007-11-01 | テロス ファーマシューティカルズ, インコーポレイテッド | ワクチンに対する免疫応答を向上させるためのアジュバントおよび使用方法 |
US20070148165A1 (en) | 2005-07-22 | 2007-06-28 | Kyowa Hakko Kogyo Co., Ltd. | Recombinant antibody composition |
Non-Patent Citations (68)
Title |
---|
ALTSCHUL ET AL., J MOL. BIOL., vol. 215, 1990, pages 403 |
ANDERSONAC ET AL., SCIENCE, vol. 318, 2007, pages 1141 - 3 |
AUSUBEL ET AL.: "Current Protocols in Molecular Biology", vol. 2, 1988, GREENE PUBLISH. ASSOC. & WILEY INTERSCIENCE |
BAO S ET AL., NATURE, vol. 444, 2006, pages 756 - 60 |
BERNSTEIN I D, LEUKEMIA, vol. 14, 2000, pages 474 - 475 |
BERNSTEIN, LEUKEMIA, vol. 14, 2000, pages 474 - 475 |
BIACORE, 2000 |
BIRD ET AL., SCIENCE, vol. 242, 1988, pages 423 |
BITTER: "Methods in Enzymology", vol. 152, 1987, ACAD. PRESS, pages: 673 - 684 |
BONNET D, DICK JE, NAT MED., vol. 3, 1997, pages 730 - 7 |
BOSTICK ET AL., BIOCHEM. BIOPHYS. RES. COMMUN., vol. 304, 2003, pages 320 |
BOULIANNE ET AL., NATURE, vol. 312, 1984, pages 643 |
BRUGGEMANN, J EXP.MED, vol. 170, 1989, pages 2153 - 2157 |
CAPON ET AL., NATURE, vol. 337, 1989, pages 525 |
CARTER ET AL., PROC. NATL. ACAD SCI. USA, vol. 89, 1992, pages 4285 |
CHESON BD ET AL., JOURNAL OF CLINICAL ONCOLOGY, vol. 8, pages 813 - 819 |
CONE ET AL., PROC. NATL. ACAD SCI. USA, vol. 81, 1984, pages 6349 |
EDELMAN ET AL., METHODS ENZYMOL., vol. 1, 1967, pages 422 |
ENGLEBIENNE, ANALYST, vol. 123, 1998, pages 1599 |
GILLIES ET AL., I 1MMUNOL METHODS, vol. 125, 1989, pages 191 |
GLOVER: "DNA Cloning", vol. 11, 1986, IRL PRESS |
GLUZMAN,: "Eukaryotic Viral Vectors", 1982, COLD SPRING HARBOR LABORATORY |
GOODELL MA ET AL., JEXP MED., vol. 183, 1996, pages 1797 - 806 |
GRANT ET AL.: "Methods in Enzymology", vol. 153, 1987, ACAD. PRESS, pages: 516 - 544 |
HAFLERDA ET AL., JEXP MED., vol. 205, 2008, pages 2699 - 701 |
HARLOW ET AL.: "Antibodies: A Laboratory Manual, the second edition,", 1988, COLD SPRING HARBOR LABORATORY PRESS |
HUSTON ET AL., METHODS ENZYMOL, vol. 203, 1991, pages 46 |
ISHIDA ET AL., IBC'S 11TH ANTIBODY ENGINEERING MEETING, ABSTRACT, 2000 |
ISHIKAWA F ET AL., NAT BIOTECHNOL., vol. 25, 2007, pages 1315 - 21 |
KABAT: "Sequences of Proteins ofimmunological Interest, 4th edition,", 1987, PUBLIC HEALTH SERVICE |
KENNETT, MCKEARN, BECHTOL ET AL.: "Hybridomas: A New Dimensionin Biological Analyses", 1980, PLENUM PRESS, article "Monoclonal Antibodies" |
KOGUCHIK, J EXP MED., vol. 203, 2006, pages 1413 - 8 |
KUROIWA ET AL., NAT. BIOTECHNOL., vol. 20, 2002, pages 889 |
MAJETI, R. ET AL.: "Dysregulated gene expression networks in human acute myelogenous leukemia stem cells", PROC NATL ACAD SCI, vol. 106, no. 9, 2009, pages 3396 - 3401 * |
MAJETIR ET AL., PROC NATL ACAD SCI USA., 13 February 2009 (2009-02-13) |
MALMQVIST, BIOCHEM. SOC. TRANS., vol. 27, 1999, pages 335 |
MONNEYL ET AL., NATURE, vol. 415, 2002, pages 536 - 41 |
MORRISON ET AL., PROC. NAT'L. ACAD SCI. USA, vol. 81, 1984, pages 6851 |
MORRISON, SCIENCE, vol. 229, 1985, pages 1202 |
MUNRO, NATURE, vol. 312, 1984, pages 597 |
NAGAE M ET AL., J MOL BIOL., vol. 375, 2008, pages 119 - 35 |
NEUBERGER ET AL., NATURE, vol. 312, 1984, pages 604 |
OI ET AL., BIOTECHNIQUES, vol. 4, 1986, pages 214 |
OSAWA M ET AL., SCIENCE, vol. 273, 1996, pages 242 - 5 |
PADLAN, MOL. IMMUNOL., vol. 28, 1991, pages 489 |
PADLAN, MOL. IMMUNOL., vol. 31, 1994, pages 169 |
PADLAN, MOLECULAR IMMUNOL., vol. 28, 1991, pages 489 |
PEARSON ET AL., PROC. NATL. A CAD SCI. USA, vol. 85, 1988, pages 2444 |
PEARSON, METHODS MOL. BIO., vol. 132, 2000, pages 185 |
PRESTA ET AL., J IMMUNOL., vol. 151, 1993, pages 2623 |
RICH, MYSZKA, CURR. OPIN. BIOTECHNOL., vol. 11, 2000, pages 54 |
RIECHMANN ET AL., NATURE, vol. 332, 1988, pages 323 |
RIECHMANN ET AL., NATURE, vol. 332, 1988, pages 323 - 327 |
ROGUSKA ET AL., PROC. NAT'L ACAD. SCI. USA, vol. 91, 1994, pages 969 |
SARVER ET AL., MOL. CELL. BIOL., vol. 1, 1981, pages 486 |
SCHIFFETAL., CANC.RES, vol. 45, 1985, pages 879 - 885 |
See also references of EP2417984A4 |
SHARON ET AL., NATURE, vol. 309, 1984, pages 364 |
SHU ET AL., PROC. NATL. ACAD. SCI. USA, vol. 90, 1993, pages 7995 |
SKERRA ET AL., SCIENCE, vol. 240, 1988, pages 1038 |
SMITH ET AL., J. MOL. BIOL., vol. 147, 1981, pages 195 |
STRATHEM ET AL.: "The Molecular Biology of the Yeast Saccharomyces", vol. I, 11, 1982, COLD SPRING HARBOR PRESS |
STUDNICKA ET AL., PROTEIN ENGINEERING, vol. 7, 1994, pages 805 |
TRAUNECKER ET AL., NATURE, vol. 339, 1989, pages 68 |
WADA J ET AL., J BIOL CHEM., vol. 272, 1997, pages 6078 - 86 |
WHITLOW ET AL., METHODS: A COMPANION TO METHODS IN ENZYMOLOGY, vol. 2, 1991, pages 97 |
WIGLER ET AL., CELL, vol. 11, 1977, pages 223 |
YAMAZAKI S ET AL., EMBO J, vol. 25, 2006, pages 3515 - 23 |
Cited By (110)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011155607A1 (ja) * | 2010-06-11 | 2011-12-15 | 協和発酵キリン株式会社 | 抗tim-3抗体 |
EP2581113A1 (en) * | 2010-06-11 | 2013-04-17 | Kyowa Hakko Kirin Co., Ltd. | Anti-tim-3 antibody |
JPWO2011155607A1 (ja) * | 2010-06-11 | 2013-08-15 | 協和発酵キリン株式会社 | 抗tim−3抗体 |
US10550181B2 (en) | 2010-06-11 | 2020-02-04 | Kyowa Kirin Co., Ltd | Anti-TIM-3 antibody |
EP2581113A4 (en) * | 2010-06-11 | 2013-12-25 | Kyowa Hakko Kirin Co Ltd | ANTI-TIM-3 ANTIBODIES |
EP3363499A1 (en) * | 2010-06-11 | 2018-08-22 | Kyowa Hakko Kirin Co., Ltd. | Anti-tim-3 antibody |
US9556270B2 (en) | 2010-06-11 | 2017-01-31 | Kyowa Hakko Kirin Co., Ltd | Anti-TIM-3 antibody |
US8552156B2 (en) | 2010-06-11 | 2013-10-08 | Kyowa Hakko Kirin Co., Ltd | Anti-TIM-3 antibody |
JP2014502955A (ja) * | 2010-10-20 | 2014-02-06 | オックスフォード ビオトヘラペウトイクス エルティーディー. | 抗体 |
JP2020200351A (ja) * | 2012-07-31 | 2020-12-17 | ザ ブリガム アンド ウィメンズ ホスピタル インコーポレイテッドThe Brigham and Women’s Hospital, Inc. | 免疫応答の調節 |
US10570204B2 (en) | 2013-09-26 | 2020-02-25 | The Medical College Of Wisconsin, Inc. | Methods for treating hematologic cancers |
US11708412B2 (en) | 2013-09-26 | 2023-07-25 | Novartis Ag | Methods for treating hematologic cancers |
US10752687B2 (en) | 2014-01-24 | 2020-08-25 | Novartis Ag | Antibody molecules to PD-1 and uses thereof |
US11827704B2 (en) | 2014-01-24 | 2023-11-28 | Novartis Ag | Antibody molecules to PD-1 and uses thereof |
US9605070B2 (en) | 2014-01-31 | 2017-03-28 | Novartis Ag | Antibody molecules to TIM-3 and uses thereof |
US9884913B2 (en) | 2014-01-31 | 2018-02-06 | Novartis Ag | Antibody molecules to TIM-3 and uses thereof |
US10981990B2 (en) | 2014-01-31 | 2021-04-20 | Novartis Ag | Antibody molecules to TIM-3 and uses thereof |
US11155620B2 (en) | 2014-01-31 | 2021-10-26 | Novartis Ag | Method of detecting TIM-3 using antibody molecules to TIM-3 |
US10472419B2 (en) | 2014-01-31 | 2019-11-12 | Novartis Ag | Antibody molecules to TIM-3 and uses thereof |
US11344620B2 (en) | 2014-09-13 | 2022-05-31 | Novartis Ag | Combination therapies |
JP2017538441A (ja) * | 2014-10-27 | 2017-12-28 | エージェンシー フォー サイエンス,テクノロジー アンド リサーチ | 抗tim−3抗体 |
WO2017055484A1 (en) | 2015-09-29 | 2017-04-06 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for determining the metabolic status of lymphomas |
WO2017118634A1 (en) | 2016-01-04 | 2017-07-13 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Use of pd-1 and tim-3 as a measure for cd8+ cells in predicting and treating renal cell carcinoma |
WO2017129790A1 (en) | 2016-01-28 | 2017-08-03 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and pharmaceutical composition for the treatment of cancer |
WO2017129769A1 (en) | 2016-01-28 | 2017-08-03 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for enhancing the potency of the immune checkpoint inhibitors |
EP4035681A1 (en) | 2016-01-28 | 2022-08-03 | Institut National de la Santé et de la Recherche Médicale (INSERM) | Methods and pharmaceutical composition for the treatment of cancer |
WO2017144668A1 (en) | 2016-02-26 | 2017-08-31 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Antibodies having specificity for btla and uses thereof |
KR102473028B1 (ko) | 2016-04-12 | 2022-11-30 | 심포젠 에이/에스 | 항-tim-3 항체 및 조성물 |
KR20180133482A (ko) * | 2016-04-12 | 2018-12-14 | 심포젠 에이/에스 | 항-tim-3 항체 및 조성물 |
WO2017202962A1 (en) | 2016-05-24 | 2017-11-30 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and pharmaceutical compositions for the treatment of non small cell lung cancer (nsclc) that coexists with chronic obstructive pulmonary disease (copd) |
US12011481B2 (en) | 2016-05-27 | 2024-06-18 | Agenus Inc. | Anti-TIM-3 antibodies and methods of use thereof |
US10912828B2 (en) | 2016-05-27 | 2021-02-09 | Agenus Inc. | Anti-TIM-3 antibodies and methods of use thereof |
US11839653B2 (en) | 2016-05-27 | 2023-12-12 | Agenus Inc. | Anti-TIM-3 antibodies and methods of use thereof |
US10639368B2 (en) | 2016-05-27 | 2020-05-05 | Agenus Inc. | Anti-TIM-3 antibodies and methods of use thereof |
US10077306B2 (en) | 2016-07-14 | 2018-09-18 | Bristol-Myers Squibb Company | Antibodies against TIM3 and uses thereof |
US11591392B2 (en) | 2016-07-14 | 2023-02-28 | Bristol-Myers Squibb Company | Antibodies against TIM3 and uses thereof |
US10533052B2 (en) | 2016-07-14 | 2020-01-14 | Bristol-Myers Squibb Company | Antibodies against TIM3 and uses thereof |
JP2019517999A (ja) * | 2016-08-25 | 2019-06-27 | イーライ リリー アンド カンパニー | 抗Tim−3抗体 |
WO2018046738A1 (en) | 2016-09-12 | 2018-03-15 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for predicting the survival time of patients suffering from cancer |
WO2018046736A1 (en) | 2016-09-12 | 2018-03-15 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for predicting the survival time of patients suffering from cancer |
WO2018055080A1 (en) | 2016-09-22 | 2018-03-29 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and pharmaceutical compositions for reprograming immune environment in a subject in need thereof |
WO2018122245A1 (en) | 2016-12-28 | 2018-07-05 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods of predicting the survival time of patients suffering from cms3 colorectal cancer |
WO2018122249A1 (en) | 2016-12-28 | 2018-07-05 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for predicting the survival time of patients suffering from a microsatellite stable colorectal cancer |
WO2018146148A1 (en) | 2017-02-07 | 2018-08-16 | INSERM (Institut National de la Santé et de la Recherche Médicale) | A method for predicting the response to checkpoint blockade cancer immunotherapy |
WO2018146128A1 (en) | 2017-02-07 | 2018-08-16 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Detection of kit polymorphism for predicting the response to checkpoint blockade cancer immunotherapy |
WO2018172508A1 (en) | 2017-03-24 | 2018-09-27 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for treating melanoma |
WO2018234367A1 (en) | 2017-06-20 | 2018-12-27 | Institut Curie | SUV39H1 HISTONE METHYLTRANSFERASE INHIBITOR FOR USE IN ANTICANCER POLYTHERAPY |
WO2019020593A1 (en) | 2017-07-25 | 2019-01-31 | INSERM (Institut National de la Santé et de la Recherche Médicale) | METHODS AND PHARMACEUTICAL COMPOSITIONS FOR MODULATION OF MONOCYTOPOISIS |
US11214615B2 (en) | 2017-07-28 | 2022-01-04 | Phanes Therapeutics, Inc. | Anti-TIM-3 antibodies and uses thereof |
WO2019057744A1 (en) | 2017-09-19 | 2019-03-28 | Institut Curie | AROMATIC HYDROCARBON RECEPTOR AGONIST FOR USE IN ASSOCIATION TREATMENT AGAINST CANCER |
WO2019134946A1 (en) | 2018-01-04 | 2019-07-11 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for treating melanoma resistant |
WO2019143607A1 (en) | 2018-01-16 | 2019-07-25 | Bristol-Myers Squibb Company | Methods of treating cancer with antibodies against tim3 |
WO2019162325A1 (en) | 2018-02-21 | 2019-08-29 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Use of sk1 as biomarker for predicting response to immunecheckpoint inhibitors |
WO2019170727A1 (en) | 2018-03-06 | 2019-09-12 | Institut Curie | Inhibitor of setdb1 histone methyltransferase for use in cancer combination therapy |
WO2019175113A1 (en) | 2018-03-12 | 2019-09-19 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Use of caloric restriction mimetics for potentiating chemo-immunotherapy for the treatment of cancers |
WO2019207030A1 (en) | 2018-04-26 | 2019-10-31 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for predicting a response with an immune checkpoint inhibitor in a patient suffering from a lung cancer |
WO2020048942A1 (en) | 2018-09-04 | 2020-03-12 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and pharmaceutical compositions for enhancing cytotoxic t lymphocyte-dependent immune responses |
WO2020058372A1 (en) | 2018-09-19 | 2020-03-26 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and pharmaceutical composition for the treatment of cancers resistant to immune checkpoint therapy |
WO2020070062A1 (en) | 2018-10-01 | 2020-04-09 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Use of tim-3 inhibitors for the treatment of exacerbations in patients suffering from severe asthma |
WO2020070053A1 (en) | 2018-10-01 | 2020-04-09 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Use of inhibitors of stress granule formation for targeting the regulation of immune responses |
WO2020079164A1 (en) | 2018-10-18 | 2020-04-23 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Combination of a big-h3 antagonist and an immune checkpoint inhibitor for the treatment of solid tumor |
WO2020104479A1 (en) | 2018-11-20 | 2020-05-28 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for treating cancers and resistant cancers with anti transferrin receptor 1 antibodies |
WO2020104496A1 (en) | 2018-11-20 | 2020-05-28 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Bispecific antibody targeting transferrin receptor 1 and soluble antigen |
WO2020109355A1 (en) | 2018-11-28 | 2020-06-04 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and kit for assaying lytic potential of immune effector cells |
WO2020115261A1 (en) | 2018-12-07 | 2020-06-11 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for treating melanoma |
WO2020115262A1 (en) | 2018-12-07 | 2020-06-11 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Use of cd26 and cd39 as new phenotypic markers for assessing maturation of foxp3+ t cells and uses thereof for diagnostic purposes |
WO2020120592A1 (en) | 2018-12-12 | 2020-06-18 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for predicting and treating melanoma |
WO2020127059A1 (en) | 2018-12-17 | 2020-06-25 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Use of sulconazole as a furin inhibitor |
WO2020127411A1 (en) | 2018-12-19 | 2020-06-25 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for treating cancers by immuno-modulation using antibodies against cathespin-d |
WO2020127885A1 (en) | 2018-12-21 | 2020-06-25 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Compositions for treating cancers and resistant cancers |
WO2020141199A1 (en) | 2019-01-03 | 2020-07-09 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and pharmaceutical compositions for enhancing cd8+ t cell-dependent immune responses in subjects suffering from cancer |
EP4059569A1 (en) | 2019-01-03 | 2022-09-21 | Institut National De La Sante Et De La Recherche Medicale (Inserm) | Methods and pharmaceutical compositions for enhancing cd8+ t cell-dependent immune responses in subjects suffering from cancer |
WO2020148338A1 (en) | 2019-01-15 | 2020-07-23 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Mutated interleukin-34 (il-34) polypeptides and uses thereof in therapy |
WO2020157131A1 (en) | 2019-01-30 | 2020-08-06 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for identifying whether a subject suffering from a cancer will achieve a response with an immune-checkpoint inhibitor |
WO2020161083A1 (en) | 2019-02-04 | 2020-08-13 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for modulating blood-brain barrier |
WO2020165370A1 (en) | 2019-02-13 | 2020-08-20 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for selecting a cancer treatment in a subject suffering from cancer |
WO2020169472A2 (en) | 2019-02-18 | 2020-08-27 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods of inducing phenotypic changes in macrophages |
WO2020201362A2 (en) | 2019-04-02 | 2020-10-08 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods of predicting and preventing cancer in patients having premalignant lesions |
WO2020208060A1 (en) | 2019-04-09 | 2020-10-15 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Use of sk2 inhibitors in combination with immune checkpoint blockade therapy for the treatment of cancer |
WO2020212484A1 (en) | 2019-04-17 | 2020-10-22 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for treatment of nlrp3 inflammasome mediated il-1beta dependent disorders |
WO2020221796A1 (en) | 2019-04-30 | 2020-11-05 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for treating melanoma |
WO2021003432A1 (en) | 2019-07-02 | 2021-01-07 | Fred Hutchinson Cancer Research Center | Recombinant ad35 vectors and related gene therapy improvements |
WO2021048292A1 (en) | 2019-09-11 | 2021-03-18 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for treating melanoma |
EP3800201A1 (en) | 2019-10-01 | 2021-04-07 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Cd28h stimulation enhances nk cell killing activities |
WO2021064180A1 (en) | 2019-10-03 | 2021-04-08 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for modulating macrophages polarization |
WO2021064184A1 (en) | 2019-10-04 | 2021-04-08 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and pharmaceutical composition for the treatment of ovarian cancer, breast cancer or pancreatic cancer |
WO2021074391A1 (en) | 2019-10-17 | 2021-04-22 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for diagnosing nasal intestinal type adenocarcinomas |
WO2021083959A1 (en) | 2019-10-29 | 2021-05-06 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for treating uveal melanoma |
WO2021123243A1 (en) | 2019-12-19 | 2021-06-24 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and vaccine compositions to treat cancers |
WO2021144426A1 (en) | 2020-01-17 | 2021-07-22 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for treating melanoma |
WO2021156360A1 (en) | 2020-02-05 | 2021-08-12 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for discontinuing a treatment with a tyrosine kinase inhibitor (tki) |
WO2021170777A1 (en) | 2020-02-28 | 2021-09-02 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for diagnosing, prognosing and managing treatment of breast cancer |
WO2022002874A1 (en) | 2020-06-30 | 2022-01-06 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for predicting the risk of recurrence and/or death of patients suffering from a solid cancer after preoperative adjuvant therapy and radical surgery |
WO2022002873A1 (en) | 2020-06-30 | 2022-01-06 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for predicting the risk of recurrence and/or death of patients suffering from a solid cancer after preoperative adjuvant therapies |
WO2022023379A1 (en) | 2020-07-28 | 2022-02-03 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for preventing and treating a cancer |
WO2022084531A1 (en) | 2020-10-23 | 2022-04-28 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for treating glioma |
WO2022101484A1 (en) | 2020-11-16 | 2022-05-19 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for predicting and treating uveal melanoma |
WO2022101481A1 (en) | 2020-11-16 | 2022-05-19 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for predicting and treating uveal melanoma |
WO2022194908A1 (en) | 2021-03-17 | 2022-09-22 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for treating melanoma |
WO2022223791A1 (en) | 2021-04-23 | 2022-10-27 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for treating cell senescence accumulation related disease |
WO2023078900A1 (en) | 2021-11-03 | 2023-05-11 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for treating triple negative breast cancer (tnbc) |
WO2023118165A1 (en) | 2021-12-21 | 2023-06-29 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods and compositions for treating melanoma |
WO2024033400A1 (en) | 2022-08-10 | 2024-02-15 | Institut National de la Santé et de la Recherche Médicale | Sk2 inhibitor for the treatment of pancreatic cancer |
WO2024033399A1 (en) | 2022-08-10 | 2024-02-15 | Institut National de la Santé et de la Recherche Médicale | Sigmar1 ligand for the treatment of pancreatic cancer |
WO2024052356A1 (en) | 2022-09-06 | 2024-03-14 | Institut National de la Santé et de la Recherche Médicale | Inhibitors of the ceramide metabolic pathway for overcoming immunotherapy resistance in cancer |
WO2024056716A1 (en) | 2022-09-14 | 2024-03-21 | Institut National de la Santé et de la Recherche Médicale | Methods and pharmaceutical compositions for the treatment of dilated cardiomyopathy |
WO2024084013A1 (en) | 2022-10-20 | 2024-04-25 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Combination therapy for the treatment of cancer |
WO2024084034A1 (en) | 2022-10-21 | 2024-04-25 | Institut National de la Santé et de la Recherche Médicale | Methods and pharmaceutical compositions for the treatment of osteoarthritis |
WO2024161015A1 (en) | 2023-02-03 | 2024-08-08 | Institut National de la Santé et de la Recherche Médicale | Method to treat age-related diseases |
WO2024200571A1 (en) | 2023-03-28 | 2024-10-03 | Institut National de la Santé et de la Recherche Médicale | Method for discriminating mono-immunotherapy from combined immunotherapy in cancers |
Also Published As
Publication number | Publication date |
---|---|
US8647623B2 (en) | 2014-02-11 |
US20160363595A1 (en) | 2016-12-15 |
EP2417984A1 (en) | 2012-02-15 |
US9487591B2 (en) | 2016-11-08 |
US20150284468A1 (en) | 2015-10-08 |
JP5748653B2 (ja) | 2015-07-15 |
US9103832B2 (en) | 2015-08-11 |
US20120100131A1 (en) | 2012-04-26 |
US9958446B2 (en) | 2018-05-01 |
EP2417984B1 (en) | 2016-03-30 |
JPWO2010117057A1 (ja) | 2012-10-18 |
EP2417984A4 (en) | 2013-11-27 |
ES2571235T3 (es) | 2016-05-24 |
US20140134639A1 (en) | 2014-05-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5748653B2 (ja) | 抗tim−3抗体を用いた血液腫瘍治療法 | |
US9540441B2 (en) | Polynucleotide encoding antibody to human IL-3 receptor alpha chain | |
CN107835820B (zh) | 识别癌症特异性IL13Rα2的CAR T细胞 | |
CN115429877A (zh) | Tigit结合剂和其用途 | |
EP4269436A1 (en) | Claudin18.2 chimeric antigen receptor and use thereof | |
CN118251409A (zh) | 分子开关调控型嵌合抗原受体细胞和抗体的组合及其应用 | |
TWI818916B (zh) | 抗cd147抗體、及其用途與製造方法 | |
CN110291107B (zh) | 靶向cd43的独特唾液酸糖基化的癌症相关表位的单克隆抗体 | |
KR20210101235A (ko) | 뮤신-16에 대한 항체 및 이의 사용 방법 | |
AU2014227539B2 (en) | Anti-IL-3Ra antibody for use in treatment of blood tumor | |
CA3126063A1 (en) | Constructs targeting labyrinthin or a portion thereof and uses thereof | |
TW202321287A (zh) | 特異性靶向間皮素之經工程改造之免疫細胞及其用途 | |
CN118103397A (zh) | 特异性识别tnfr2的抗体及其用途 | |
WO2019183375A1 (en) | Antibody agents specifically recognizing monocarboxylate transporter 4 and uses thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10761756 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2011508396 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13263434 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 1118136 Country of ref document: GB Kind code of ref document: A Free format text: PCT FILING DATE = 20100223 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010761756 Country of ref document: EP |