WO2010116892A1 - 測定装置、測定方法、及び二酸化炭素回収システム - Google Patents

測定装置、測定方法、及び二酸化炭素回収システム Download PDF

Info

Publication number
WO2010116892A1
WO2010116892A1 PCT/JP2010/055218 JP2010055218W WO2010116892A1 WO 2010116892 A1 WO2010116892 A1 WO 2010116892A1 JP 2010055218 W JP2010055218 W JP 2010055218W WO 2010116892 A1 WO2010116892 A1 WO 2010116892A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
organic
carbon dioxide
unit
inorganic
Prior art date
Application number
PCT/JP2010/055218
Other languages
English (en)
French (fr)
Inventor
斗 小川
正敏 程塚
幸夫 大橋
桜井 学
山中 矢
直実 土屋
東彦 平田
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to US13/263,686 priority Critical patent/US20120067219A1/en
Priority to EP10761592.4A priority patent/EP2418470B1/en
Priority to CN201080015694.6A priority patent/CN102388301B/zh
Priority to AU2010235596A priority patent/AU2010235596B2/en
Publication of WO2010116892A1 publication Critical patent/WO2010116892A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1425Regeneration of liquid absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1412Controlling the absorption process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/30Controlling by gas-analysis apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0022General constructional details of gas analysers, e.g. portable test equipment using a number of analysing channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2247Sampling from a flowing stream of gas
    • G01N2001/2267Sampling from a flowing stream of gas separating gas from liquid, e.g. bubbles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the present invention relates to a measuring device, a measuring method, and a carbon dioxide recovery system.
  • an absorption tower that absorbs carbon dioxide contained in combustion exhaust gas in an amine-based absorption liquid and an absorption liquid (rich liquid) that has absorbed carbon dioxide are supplied from the absorption tower, the rich liquid is heated, and the rich liquid
  • a carbon dioxide recovery system including a regeneration tower for releasing carbon dioxide gas from the water and regenerating an absorbing solution is known (see, for example, Patent Document 1).
  • a reboiler for supplying a heat source is connected to the regeneration tower.
  • the absorption liquid (lean liquid) regenerated in the regeneration tower is supplied to the absorption tower, and the absorption liquid circulates in this system.
  • the titration method generally used as a method for measuring the carbon dioxide content requires a long time (1 to 1.5 hours) to obtain a measurement result. Therefore, from the carbon dioxide content measured by such a method, it is not possible to obtain an optimal adjustment amount such as thermal energy to be input to the reboiler, and it is not possible to improve the stability of the operation of the carbon dioxide recovery system. It was.
  • An object of the present invention is to provide a measuring device, a measuring method, and a carbon dioxide recovery system equipped with such a measuring device that can quickly measure the carbon dioxide content of the circulating absorbent in the carbon dioxide recovery system.
  • the measuring apparatus vaporizes an organic solution in which an inorganic gas is dissolved, and is supplied with a vaporization unit that is released together with a carrier gas, and a gas that is released from the vaporization unit.
  • An organic gas holding unit that passes an inorganic gas and releases the held organic gas at a second temperature higher than the first temperature, and the inorganic gas that has passed through the organic gas holding unit.
  • An inorganic gas separation unit that separates and discharges the contained inorganic component, an organic gas separation unit that separates and discharges the organic component contained in the organic gas discharged from the organic gas holding unit, and the inorganic gas separation unit
  • a detection unit that detects the inorganic component released from the organic component and the organic component released from the organic gas separation unit.
  • a measurement method includes an organic gas in which an inorganic gas is dissolved using a measurement device including a vaporization unit, an organic gas holding unit, a flow path switching unit, an inorganic gas separation unit, an organic gas separation unit, and a detection unit.
  • a measuring method for measuring a component of a solution wherein the vaporizing unit vaporizes the organic solution and releases it together with a carrier gas, and the organic gas holding unit is released from the vaporizing unit at a first temperature. Holding the organic gas contained in the gas and allowing the inorganic gas to pass therethrough, wherein the inorganic gas separation unit is higher than the first temperature and releases the organic gas held by the organic gas holding unit.
  • the inorganic component contained in the inorganic gas that has passed through the organic gas holding unit is separated and released at a third temperature lower than the temperature, and the detection unit releases the inorganic component from the inorganic gas separation unit.
  • the organic gas holding unit releases the organic gas at the second temperature, and the organic gas separation unit separates an organic component contained in the organic gas released from the organic gas holding unit.
  • the detection unit detects the organic component released from the organic gas separation unit.
  • a carbon dioxide recovery system is provided with an absorption tower that absorbs carbon dioxide contained in combustion exhaust gas into an absorption liquid and discharges the absorption liquid containing carbon dioxide, and an absorption liquid discharged from the absorption tower is supplied.
  • the carbon dioxide gas containing the vapor is removed from the absorption liquid, and the regeneration tower that regenerates and discharges the absorption liquid is provided between the absorption tower and the regeneration tower, and is discharged from the regeneration tower.
  • a regeneration heat exchanger for heating the absorption liquid discharged from the absorption tower and supplied to the regeneration tower, and the absorption liquid discharged from the absorption tower or the regeneration
  • a density meter for measuring the density of the absorption liquid discharged from the tower, a vaporization part for vaporizing a part of the absorption liquid and releasing it together with a carrier gas, and a gas released from the vaporization part are supplied, Yes, at temperature
  • An organic gas holding unit that holds the gas and allows the inorganic gas to pass through and releases the held organic gas at a second temperature higher than the first temperature, and the inorganic gas that has passed through the organic gas holding unit
  • An inorganic gas separation unit that separates and releases inorganic components contained in the organic gas separation unit, an organic gas separation unit that separates and releases organic components contained in the organic gas released from the organic gas holding unit, and the inorganic gas separation Based on the detection unit that detects the inorganic component released from the unit and the organic component released from
  • a carbon dioxide recovery system includes a gas temperature controller that adjusts and discharges the temperature of combustion exhaust gas, and carbon dioxide contained in the combustion exhaust gas discharged from the gas temperature controller is absorbed by the absorption liquid.
  • An absorption tower for discharging an absorption liquid containing carbon dioxide, and an absorption liquid discharged from the absorption tower are supplied, carbon dioxide gas containing vapor is removed from the absorption liquid, and the absorption liquid is regenerated and discharged.
  • a regenerator and is provided between the absorber and the regenerator, and is discharged from the absorber and supplied to the regenerator with an absorption liquid discharged from the regenerator and supplied to the absorber as a heat source
  • a regenerative heat exchanger that heats the absorbed liquid, a density meter that measures the density of the absorbed liquid discharged from the absorption tower, a vaporization part that vaporizes a part of the absorbed liquid and discharges it together with a carrier gas, Discharged from the vaporization part
  • An organic gas holding unit that is supplied with a gas, holds an organic gas at a first temperature, passes an inorganic gas, and releases the held organic gas at a second temperature higher than the first temperature.
  • the detection unit for detecting the inorganic component released from the inorganic gas separation unit and the organic component released from the organic gas separation unit, and the detection unit A first threshold value and a second threshold value are calculated, and when the density is smaller than the first threshold value, control is performed to lower the set temperature of the gas temperature controller, and when the density is larger than the second threshold value, the gas temperature is controlled.
  • a carbon dioxide recovery system is provided with an absorption tower that absorbs carbon dioxide contained in combustion exhaust gas into an absorption liquid and discharges the absorption liquid containing carbon dioxide, and an absorption liquid discharged from the absorption tower is supplied.
  • a regeneration tower that removes carbon dioxide gas containing vapor from the absorption liquid and regenerates and discharges the absorption liquid; a reboiler that heats a part of the absorption liquid stored in the regeneration tower; and the absorption tower
  • the absorption liquid that is provided between the regeneration tower and the regeneration tower and that is discharged from the regeneration tower and supplied to the absorption tower is used as a heat source to heat the absorption liquid that is discharged from the absorption tower and supplied to the regeneration tower.
  • a regeneration heat exchanger a density meter for measuring the density of the absorption liquid discharged from the regeneration tower, a vaporization part for vaporizing a part of the absorption liquid and releasing it together with a carrier gas, and discharged from the vaporization part Gas is supplied
  • An organic gas holding unit that holds an organic gas at a first temperature and allows an inorganic gas to pass therethrough and discharges the held organic gas at a second temperature higher than the first temperature; and the organic gas holding An inorganic gas separation part that separates and releases an inorganic component contained in the inorganic gas that has passed through the part, and an organic gas separation that separates and emits an organic component contained in the organic gas emitted from the organic gas holding part
  • a first threshold value and a second threshold value based on a detection result of the detection unit, a detection unit that detects the inorganic component released from the inorganic gas separation unit and the organic component released from the organic gas separation unit, A threshold value is calculated, and when the density is smaller than the first threshold value, control is
  • the carbon dioxide content of the circulating absorbent in the carbon dioxide recovery system can be measured quickly.
  • FIG. 1 shows a schematic configuration of a measuring apparatus according to a first embodiment of the present invention.
  • the measuring apparatus includes an automatic quantitative collection unit 1, a vaporization unit 2, an organic gas holding unit 3, a flow path switching unit 4, an inorganic gas separation unit 5, an organic gas separation unit 6, and a detection unit 7, and includes an inorganic gas (low molecular weight). Component analysis of an organic solution in which (gas) is dissolved.
  • the organic gas holding unit 3, the flow path switching unit 4, the inorganic gas separation unit 5, and the organic gas separation unit 6 are housed in a constant temperature unit 8, and are maintained at a constant temperature. The temperature in the thermostat 8 can be adjusted.
  • the automatic quantitative collection unit 1 automatically collects a measurement sample from the organic solution to be analyzed.
  • the vaporization unit 2 vaporizes the measurement sample collected by the automatic quantitative collection unit 1 and discharges it together with the carrier gas.
  • the carrier gas For example, helium is used as the carrier gas.
  • the organic gas holding unit 3 temporarily holds the organic gas in the exhaust gas discharged from the vaporization unit 2 and allows the inorganic gas to pass therethrough. Accordingly, the organic gas holding unit 3 separates the organic gas and the inorganic gas in the exhaust gas discharged from the vaporization unit 2.
  • the organic gas holding unit 3 holds the organic gas at a low temperature, and releases the held organic gas at a high temperature. Therefore, by keeping the inside of the constant temperature part 8 at a low temperature, the organic gas holding part 3 releases the inorganic gas in the exhaust gas discharged from the vaporization part 2, and when the inside of the constant temperature part 8 is heated to a high temperature, Release gas.
  • a trap tube having a filler capable of adsorbing organic components can be used for the organic gas holding unit 3.
  • the flow path switching unit 4 switches the flow path so that the gas released from the organic gas holding unit 3 is supplied to the inorganic gas separation unit 5 or the organic gas separation unit 6 and is released from the organic gas holding unit 3
  • a carrier gas is supplied to the inorganic gas separator 5 or the organic gas separator 6 to which no gas is supplied.
  • the carrier gas is helium gas, for example.
  • the flow path switching unit 4 converts the inorganic gas released from the organic gas holding unit 3 into the inorganic gas separation unit.
  • the carrier gas is supplied to the organic gas separation unit 6.
  • the flow path switching unit 4 converts the organic gas released from the organic gas holding unit 3 into the organic gas.
  • the carrier gas is supplied to the separation unit 6 and supplied to the inorganic gas separation unit 5.
  • the inorganic gas separation part 5 is prevented from being contaminated with organic gas
  • the organic gas separation part 6 is prevented from being contaminated with inorganic gas. it can.
  • the inorganic gas separation unit 5 is supplied with the inorganic gas that has passed through the organic gas holding unit 3 via the flow path switching unit 4, and separates the inorganic components in the inorganic gas and supplies them to the detection unit 7.
  • the inorganic gas separation unit 5 has different times for holding a plurality of inorganic components, and performs separation by supplying each inorganic component to the detection unit 7 at different times.
  • a trap tube having a filler capable of adsorbing inorganic components can be used for the inorganic gas separation unit 5.
  • the organic gas separating unit 6 is supplied with the organic gas released from the organic gas holding unit 3 via the flow path switching unit 4, and separates the organic components in the organic gas and supplies them to the detecting unit 7.
  • the organic gas separation unit 6 has different times for holding a plurality of organic components, and performs separation by supplying each organic component to the detection unit 7 at different times.
  • a trap tube having a filler capable of adsorbing an organic component for example, an amine component
  • the detection unit 7 detects the inorganic component supplied from the inorganic gas separation unit 5 and the organic component supplied from the organic gas separation unit 6.
  • a thermal conductivity detector TDC
  • the detection result of the component contained in the measurement sample by the detection unit 7 is displayed on a display unit (not shown). The operator can grasp the components of the organic solution to be analyzed from the displayed detection result.
  • the carbon dioxide recovery system 100 is supplied with an absorption tower 103 that absorbs carbon dioxide contained in the combustion exhaust gas 102a and an absorption liquid that absorbs carbon dioxide from the absorption tower 103 (hereinafter referred to as a rich liquid 104a).
  • the rich liquid 4a is heated to release carbon dioxide gas containing steam from the absorbing liquid, and an exhaust gas 102c containing carbon dioxide gas and steam is discharged, and a regeneration tower 105 that regenerates the absorbing liquid is provided.
  • the combustion exhaust gas 102a generated in a power generation facility such as a thermal power plant is supplied to the lower part of the absorption tower 103, and the combustion exhaust gas 102b from which carbon dioxide has been removed is discharged from the top of the absorption tower 103.
  • the absorbing solution capable of absorbing carbon dioxide for example, an amine compound aqueous solution in which an amine compound is dissolved in water is used.
  • the reboiler 106 heats a part of the lean liquid 104 b stored in the regeneration tower tank 105 to raise its temperature to generate steam, and supplies the steam to the regeneration tower 105.
  • a small amount of carbon dioxide gas is released from the lean solution 104b and supplied to the regeneration tower 105 together with the vapor.
  • the rich liquid 104a is heated in the regeneration tower 105 by this steam, and carbon dioxide gas is released.
  • Regenerative heat exchange is performed between the absorption tower 103 and the regeneration tower 105 by using the lean liquid 104b supplied from the regeneration tower 105 to the absorption tower 103 as a heat source and heating the rich liquid 104a supplied from the absorption tower 103 to the regeneration tower 105.
  • a container 107 is provided and configured to recover the heat of the lean liquid 104b.
  • the lean liquid 104b from the regenerative heat exchanger 107 is sent to the tank 113.
  • the tank 113 stores the absorbent that circulates in the carbon dioxide recovery system 100, is supplied with a new absorbent 104c from the top, and discards the absorbent 104d from the bottom. Thereby, it can prevent that the deteriorated absorption liquid circulates through the carbon dioxide recovery system 100.
  • an absorption liquid cooler 114 for cooling the lean liquid 104e supplied from the tank 113 is provided between the tank 113 and the absorption tower 103.
  • the lean liquid 104e cooled by the absorption liquid cooler 114 is supplied to the upper part of the absorption tower 103.
  • the lean liquid 104e supplied to the upper part of the absorption tower 103 descends from the upper part in the absorption tower 103.
  • the flue gas 102 a supplied to the absorption tower 103 rises from the lower part toward the top in the absorption tower 103. Therefore, the combustion exhaust gas 102a containing carbon dioxide and the lean liquid 104e come into countercurrent contact (direct contact), and carbon dioxide is removed from the combustion exhaust gas 102a and absorbed by the lean liquid 104e, thereby generating the rich liquid 104a.
  • the combustion exhaust gas 102 b from which carbon dioxide has been removed is discharged from the top of the absorption tower 103.
  • the condenser 117 condenses (cools) the exhaust gas 102c containing the carbon dioxide gas and steam discharged from the regeneration tower 105, and separates the carbon dioxide gas and the generated condensate.
  • the carbon dioxide gas 102d discharged from the condenser 117 is stored in a storage facility (not shown).
  • the gas cooler 116 cools the exhaust gas 102c discharged from the regeneration tower 105 using cooling water (cooling medium).
  • the condensate from the condenser 117 is supplied to the upper part of the regeneration tower 105.
  • Step S301 The absorbing liquid circulating in the carbon dioxide recovery system 100 is collected.
  • the absorption liquid (rich liquid 104a) supplied from the absorption tower 103 to the regeneration tower 105 is collected.
  • Step S302 The automatic quantitative collection unit 1 automatically collects a measurement sample from the absorption liquid collected in Step S301.
  • Step S303 The vaporization unit 2 vaporizes the measurement sample at 270 ° C. and supplies the sample to the organic gas holding unit 3 together with the carrier gas (helium).
  • the temperature at which the liquid sample is vaporized is the highest boiling point of the analysis component + 10 ° C or higher.
  • the temperature of the constant temperature part 8 is maintained at 70 ° C.
  • Step S304 The organic gas holding unit 3 holds the organic gas out of the gas discharged from the vaporizing unit 2 and allows the inorganic gas to pass therethrough.
  • the inorganic gas is supplied to the inorganic gas separation unit 5 via the flow path switching unit 4.
  • a carrier gas helium
  • Step S305 The temperature of the constant temperature unit 8 is increased from 70 ° C. to 190 ° C. Thereby, the inorganic component (carbon dioxide, water vapor) is separated by the inorganic gas separation unit 5.
  • the temperature of the constant temperature unit 8 is set to be equal to or higher than the temperature at which water vapor is completely discharged and lower than the temperature at which the organic component is separated from the organic gas holding unit 3.
  • Step S306 The inorganic component separated in Step S305 is measured by the detector 7.
  • the analysis temperature of the detector 7 was 270 ° C.
  • Step S307 The flow path of the flow path switching unit 4 is switched so that the gas from the organic gas holding unit 3 is supplied to the organic gas separation unit 6 and the carrier gas is supplied to the inorganic gas separation unit 5.
  • Step S308 The temperature of the constant temperature unit 8 is increased from 190 ° C. to 240 ° C. Thereby, the organic component held in the organic gas holding unit 3 is released and supplied to the organic gas holding unit 3. Note that the temperature of the constant temperature portion 8 is set to be equal to or higher than the highest boiling point of the analysis component.
  • Step S309 Organic components (amines) are separated by the organic gas separation unit 6.
  • Step S310 The organic component separated in Step S309 is measured by the detection unit 7.
  • the measurement results as shown in FIG. 4 were obtained by such a method.
  • peak P1 represents carbon dioxide
  • peak P2 represents water
  • peaks P3 and P4 represent amines.
  • the measurement result is obtained in 15 minutes or less, and it can be seen that it is extremely short compared to the titration method (required time: 1 to 1.5 hours).
  • the carbon dioxide content in the absorbing liquid circulating through the carbon dioxide recovery system can be measured quickly. Moreover, not only the carbon dioxide content in the absorbing solution but also the content of water and organic components (amines) can be measured quickly.
  • component analysis of the absorption liquid (rich liquid 104a) at the outlet of the absorption tower 103 has been described.
  • component analysis of the absorption liquid at various locations in the carbon dioxide recovery system 100 can be performed.
  • the component analysis of the absorbing solution at the inlet of the absorption tower 103 or the outlet of the regeneration tower 105 may be performed.
  • the input heat energy to the reboiler 106, the amount of new absorbent 104c supplied to the tank 113, the amount of absorbent 104d discarded from the tank 113, and the like are controlled. Also good.
  • the carbon dioxide content of the absorption liquid at the outlet of the absorption tower 103 and the outlet of the regeneration tower 105 are larger than the difference between the carbon dioxide content of the liquid at the outlet of the absorption tower 103 and the carbon dioxide content of the liquid at the inlet of the absorption tower 103.
  • the difference from the carbon dioxide content of the absorption liquid is larger, the reboiler 106 has more heat energy than necessary. Therefore, control is performed so as to reduce the heat energy input to the reboiler 106.
  • the component analysis of the absorbing solution can be performed quickly, so that the heat energy input to the reboiler 106 can be set to an optimum value, and the operating cost can be reduced.
  • the component analysis of the absorbing solution at a plurality of locations (upper stage, middle stage, lower stage) of the absorption tower 103 and the regeneration tower 105 may be performed to monitor whether an abnormality has occurred in the tower.
  • the component analysis of the absorption liquid can be performed quickly, so that an abnormality can be found quickly and the stability of the operation of the carbon dioxide recovery system 100 can be improved.
  • FIG. 5 shows a schematic configuration of a carbon dioxide recovery system according to a second embodiment of the present invention.
  • the carbon dioxide recovery system recovers carbon dioxide contained in combustion exhaust gas generated by the combustion of fossil fuel using an absorbing liquid capable of absorbing carbon dioxide.
  • the carbon dioxide recovery system 200 includes an absorption tower 203 that absorbs carbon dioxide contained in the combustion exhaust gas 202a into an absorption liquid, and an absorption liquid that absorbs carbon dioxide from the absorption tower 203 (hereinafter, rich liquid 204a and A regenerating tower that heats the rich liquid 204a, releases carbon dioxide gas containing steam from the absorbing liquid, discharges the exhaust gas 202c containing carbon dioxide gas and steam, and regenerates the absorbing liquid. 205.
  • combustion exhaust gas 202a generated in a power generation facility such as a thermal power plant is supplied to the lower part of the absorption tower 203, and the combustion exhaust gas 202b from which carbon dioxide has been removed is discharged from the top of the absorption tower 203. .
  • the absorption tower 203 has an absorption tower tank 203a that stores a rich liquid 204a that is generated when the absorption liquid absorbs carbon dioxide.
  • the regeneration tower 205 has a regeneration tower tank 205a that stores an absorbing liquid regenerated by releasing the carbon dioxide gas from the rich liquid 204a (hereinafter referred to as a lean liquid 204b).
  • the rich liquid 204a is an absorbent having a high carbon dioxide content
  • the lean liquid 204b is an absorbent having a low carbon dioxide content.
  • the absorbing solution capable of absorbing carbon dioxide for example, an amine compound aqueous solution in which an amine compound is dissolved in water is used.
  • the concentration of the aqueous amine compound solution is set to a value suitable for the separation and recovery of carbon dioxide.
  • the regenerator 205 is provided with a reboiler 206.
  • the reboiler 206 generates a steam by heating a part of the lean liquid 204b stored in the regeneration tower tank 205a using the plant steam supplied from the power generation equipment as a heat source to raise the temperature thereof. To supply.
  • carbon dioxide gas is released from the lean solution 204b and supplied to the regeneration tower 205 together with the vapor. Then, the rich liquid 204a is heated by the steam in the regeneration tower 205, and carbon dioxide gas is released.
  • a condenser 217 that condenses (cools) the exhaust gas 202c containing the carbon dioxide gas and steam discharged from the regeneration tower 205 and separates the carbon dioxide gas and the generated condensate (condensed water). It is connected to.
  • the carbon dioxide gas 202d discharged from the condenser 217 is stored in a storage facility (not shown).
  • a gas cooling line 215 for supplying the exhaust gas 202c discharged from the regeneration tower 205 to the condenser 217 is connected between the regeneration tower 205 and the condenser 217. Cooling water (cooling medium) is connected to the gas cooling line 215. Is used to cool the exhaust gas 202c.
  • a condensate line 218 for supplying the condensate from the condenser 217 to the upper part of the regeneration tower 205 is connected between the condenser 217 and the regeneration tower 205.
  • the condensate line 218 is provided with a condensate pump 219 for sending the condensate from the condenser 217 to the regeneration tower 205.
  • Regenerative heat exchange is performed between the absorption tower 203 and the regeneration tower 205 using the lean liquid 204b supplied from the regeneration tower 205 to the absorption tower 203 as a heat source to heat the rich liquid 204a supplied from the absorption tower 203 to the regeneration tower 205.
  • a vessel 207 is provided and configured to recover the heat of the lean liquid 204b.
  • the rich liquid 204a is heated using high-temperature steam from the reboiler 206 as a heat source. Therefore, the temperature of the lean liquid 204b supplied to the regenerative heat exchanger 207 is relatively high, and this lean liquid 204b is used as a heat source.
  • a first rich liquid line 208 for supplying the rich liquid 204a from the bottom of the absorption tower tank 203a to the regeneration heat exchanger 207 is connected.
  • a rich liquid pump 209 that feeds the rich liquid 204 a from the absorption tower 203 to the regenerative heat exchanger 207 is provided in the first rich liquid line 208.
  • the first rich liquid line 208 is provided with a density meter 301 that measures the density of the rich liquid 204a in real time.
  • the density meter 301 may be of any type as long as the density of the liquid fluid can be measured in real time.
  • the density meter 301 a Coriolis type mass flow meter can be used as the density meter 301.
  • the portion to which the density meter 301 (Coriolis mass flow meter) of the first rich liquid line 208 is attached may be U-shaped.
  • the Coriolis mass flow meter vibrates the pipe while flowing the rich liquid 204a through the pipe (first rich liquid line 208). Since the flow direction of the fluid (rich liquid 204a) is opposite between the inlet side and the outlet side of the pipe, a Coriolis force in the opposite direction is generated, and the pipe is twisted. This amount of twist is proportional to the mass flow rate.
  • the density of the fluid is calculated from the frequency of the pipe.
  • the Coriolis mass flow meter can quickly determine the vibration frequency of the pipe (first rich liquid line 208), and can measure the density of the rich liquid 204a almost in real time.
  • the entire flow rate of the rich liquid 204a is not passed through the Coriolis type flow meter, as shown in FIG. Alternatively, a part of the flow rate may be branched and a small amount of rich liquid 204a may be passed.
  • the density meter 301 notifies the control unit 302 of the measured density of the rich liquid 204a.
  • a rich liquid return line 303 for returning the rich liquid 204a to the upper part of the absorption tower 203 (above the filler in the absorption tower 203) is connected to the first rich liquid line 208.
  • the diameter of the pipe of the rich liquid return line 303 is about 1 ⁇ 2 to 1/5 of the diameter of the pipe of the first rich liquid line 208.
  • the rich liquid 204a returned to the absorption tower 203 by the rich liquid return line 303 again absorbs carbon dioxide from the combustion exhaust gas 202a.
  • the rich liquid return line 303 is provided with an adjustment valve 304, and the flow rate of the rich liquid 204 a returned to the absorption tower 203 can be adjusted by the opening degree of the adjustment valve 304.
  • the opening degree of the adjustment valve 304 is controlled by the control unit 302 based on the density of the rich liquid 204a.
  • the control unit 302 may calculate the carbon dioxide content of the rich liquid 204a from the density and control the opening degree of the adjustment valve 304 based on the calculation result. For example, the relationship between the density of the absorption liquid to be used and the carbon dioxide content is obtained in advance and stored in a storage unit (not shown), and the control unit 302 refers to the information in the storage unit so that the control unit 302 can The carbon dioxide content of 204a can be calculated.
  • a second rich liquid line 210 for supplying the rich liquid 204a from the regeneration heat exchanger 207 to the upper portion of the regeneration tower 205 is connected.
  • the second rich liquid line 210 is provided with a valve 213 for maintaining the high pressure side regeneration tower pressure and preventing the backflow of the absorbing liquid from the regeneration tower side when the pump 209 is stopped.
  • a first lean liquid line 211 for supplying the lean liquid 204b from the bottom of the regeneration tower tank 205a to the regeneration heat exchanger 207 is connected.
  • the lean liquid 204b from the regenerative heat exchanger 207 is sent to the absorbing liquid cooler 214 by the lean liquid pump 212 provided in the second lean liquid line 221.
  • the absorption liquid cooler 214 uses the cooling water (cooling medium) as a cooling source and cools the lean liquid 204b.
  • the lean liquid 204 c cooled by the absorption liquid cooler 214 is supplied to the upper part of the absorption tower 203.
  • the lean liquid 204c supplied to the upper part of the absorption tower 203 descends from the upper part toward the absorption tower tank 203a in the absorption tower 203.
  • Combustion exhaust gas 202a containing about 5 to 20% of carbon dioxide is adjusted to a constant temperature by the gas temperature controller 220 and then supplied to the lower part of the absorption tower 203, and rises from the lower part toward the top in the absorption tower 203.
  • the combustion exhaust gas 202a containing carbon dioxide and the lean liquid come into countercurrent contact (direct contact), carbon dioxide is removed from the combustion exhaust gas 202a and absorbed by the lean liquid, and the rich liquid 204a is generated.
  • the combustion exhaust gas 202b from which carbon dioxide has been removed is discharged from the top of the absorption tower 203, and the rich liquid 204a is stored in the absorption tower tank 203a of the absorption tower 203.
  • the amount of heat input to the reboiler 206 of the regeneration tower 205 (regeneration energy) is kept low while recovering 50% or more, preferably 90% or more, of carbon dioxide in the combustion exhaust gas 202a in the absorption tower 203. Is required. For this purpose, it is necessary to control the flow rate, temperature, composition, and pressure of the absorbing liquid to optimum values at various points in the carbon dioxide recovery system.
  • the lean liquid 204c with a small carbon dioxide content and the combustion exhaust gas 202a come into gas-liquid contact, and the carbon dioxide content in the absorbent increases to become the rich liquid 204a.
  • the rich liquid 204a transferred from the absorption tower 203 to the regeneration tower 205 carbon dioxide is separated by heating, and the carbon dioxide content decreases to become the lean liquid 204b.
  • the lean liquid 204b is supplied to the absorption tower 203 again. Therefore, the carbon dioxide content of the rich liquid 204a and / or the lean liquid 204b is an important parameter for operating the carbon dioxide recovery system in an optimal state.
  • This embodiment pays attention to the carbon dioxide content of the rich liquid 204a (the density related to the carbon dioxide content) and controls this to supply the reboiler 206 while ensuring the target recovery rate of carbon dioxide. The amount of heat is suppressed, and the operational stability is improved.
  • the density of the rich liquid 204a notified from the density meter 301 is lower than a predetermined value, that is, when the carbon dioxide content of the rich liquid 204a is low, a desired amount of carbon dioxide is not absorbed in the absorption liquid in the absorption tower 203. Therefore, the target recovery rate of carbon dioxide has not been secured.
  • a predetermined value that is, when the carbon dioxide content of the rich liquid 204a is low
  • the target recovery rate of carbon dioxide has not been secured.
  • the absorption liquid has not been replaced so much time has passed and the absorption liquid has deteriorated.
  • control unit 302 increases the opening of the adjustment valve 304 and increases the flow rate of the rich liquid return line 303.
  • the rich liquid 204a returned to the absorption tower 203 again absorbs carbon dioxide from the combustion exhaust gas 202a, so that the absorption liquid can absorb a desired amount of carbon dioxide and the density increases. Thereby, the target recovery rate of carbon dioxide can be secured.
  • the flow rate of the pump 209 may be increased so that the flow rate of the rich liquid 204a supplied to the regeneration tower 205 does not decrease.
  • the control unit 302 decreases the flow rate of the rich liquid return line 303 by lowering the opening degree of the adjustment valve 304.
  • the circulation amount of the absorption liquid having a large carbon dioxide content in the absorption tower 203 is reduced, the carbon dioxide content of the rich liquid 204a discharged from the absorption tower 203 is reduced and the density is lowered. As a result, carbon dioxide can be sufficiently separated from the absorbent in the regeneration tower 205 without increasing the amount of heat supplied to the reboiler 206.
  • the flow rate of the pump 209 may be decreased so that the flow rate of the rich liquid 204a supplied to the regeneration tower 205 does not increase.
  • FIG. 7 shows an example of the change in the density of the rich liquid 204a with time and the control timing of the opening degree of the regulating valve 304.
  • the supply to the reboiler 206 is ensured while ensuring the target recovery rate of carbon dioxide by adjusting the flow rate of the rich liquid 204a returned to the absorption tower 203 according to the density of the rich liquid 204a.
  • the density measurement result can be quickly reflected in the control of the flow rate of the rich liquid 204a returning to the absorption tower 203, and the operation stability of the carbon dioxide recovery system can be improved. Can be improved.
  • FIG. 8 shows a schematic configuration of a carbon dioxide recovery system according to a twenty-third embodiment of the present invention.
  • this embodiment replaces the density meter 301, the control unit 302, the rich liquid return line 303, and the adjustment valve 304 with a density meter 401, a control unit 402, and a lean valve.
  • a liquid return line 403 and a regulating valve 404 are provided.
  • a pump 212 is provided between the branch point of the lean liquid return line 403 branched from the first lean liquid line 211 and the regeneration tower tank 205a.
  • FIG. 8 the same parts as those of the second embodiment shown in FIG.
  • the density meter 401 is provided in the first rich liquid line 208 in the same manner as the density meter 301 in the second embodiment, and measures the density of the rich liquid 204a in real time.
  • the density meter 401 may be of any type as long as the density of the liquid fluid can be measured in real time. For example, a Coriolis type mass flow meter is used.
  • the density meter 401 notifies the controller 402 of the measured concentration of the rich liquid 204a.
  • the lean liquid return line 403 is connected to the first lean liquid line 211, and returns the lean liquid 204b to the lower part of the regeneration tower 205.
  • the diameter of the pipe of the lean liquid return line 403 is about 1/2 to 1/5 of the diameter of the pipe of the first lean liquid line 211.
  • the adjusting valve 404 is provided in the lean liquid return line 403, and can adjust the flow rate of the lean liquid 204b returned to the regeneration tower 205 according to its opening.
  • the opening degree of the regulating valve 404 is controlled by the control unit 402 based on the density of the rich liquid 204a.
  • the control unit 402 increases the opening degree of the adjustment valve 404 and increases the flow rate of the lean liquid return line 403.
  • the carbon dioxide content of the absorption liquid is increased, and a desired amount of carbon dioxide is added to the absorption liquid. Carbon can be absorbed and density is increased. Thereby, the target recovery rate of carbon dioxide can be secured.
  • the control unit 402 reduces the flow rate of the lean liquid return line 403 by lowering the opening of the adjustment valve 404.
  • the supply to the reboiler 206 is ensured while ensuring the target recovery rate of carbon dioxide by adjusting the flow rate of the lean liquid 204b returned to the regeneration tower 205 according to the density of the rich liquid 204a.
  • the density measurement result can be quickly reflected in the control of the flow rate of the lean liquid 204b returning to the regeneration tower 205, and the operation stability of the carbon dioxide recovery system can be improved. Can be improved.
  • FIG. 9 shows a schematic configuration of a carbon dioxide recovery system according to a fourth embodiment of the present invention.
  • this embodiment is provided with a density meter 501 and a control unit 502 instead of the density meter 301, the control unit 302, the rich liquid return line 303, and the adjustment valve 304. Is different.
  • the same parts as those of the second embodiment shown in FIG. are provided with a density meter 501 and a control unit 502 instead of the density meter 301, the control unit 302, the rich liquid return line 303, and the adjustment valve 304.
  • the density meter 501 is provided in the first rich liquid line 208 in the same manner as the density meter 301 in the first embodiment, and measures the density of the rich liquid 204a in real time.
  • the density meter 501 may be of any type as long as the density of the liquid fluid can be measured in real time. For example, a Coriolis type mass flow meter is used.
  • the density meter 501 notifies the controller 502 of the measured concentration of the rich liquid 204a.
  • the control unit 502 controls the set temperature of the gas temperature controller 220 based on the concentration of the rich liquid 204a.
  • the control unit 502 lowers the set temperature of the gas temperature controller 220.
  • the carbon dioxide absorption rate of the absorption liquid increases, so that the absorption liquid can absorb a desired amount of carbon dioxide and the density increases. Thereby, the target recovery rate of carbon dioxide can be secured.
  • the control unit 502 increases the set temperature of the gas temperature controller 220.
  • the amount of heat supplied to the reboiler 206 is reduced while ensuring the target recovery rate of carbon dioxide. Suppress.
  • the density measurement result can be quickly reflected in the control of the set temperature of the gas temperature controller 220, and the operational stability of the carbon dioxide recovery system can be improved. Can be improved.
  • FIG. 10 shows a schematic configuration of a carbon dioxide recovery system according to a fifth embodiment of the present invention.
  • this embodiment replaces the density meter 301, the control unit 302, the rich liquid return line 303, and the adjustment valve 304 with a density meter 601, a control unit 602, and a lean valve.
  • a liquid return line 603 and a regulating valve 604 are provided.
  • the pump 212 is provided between the branch point of the lean liquid return line 603 branched from the first lean liquid line 211 and the regeneration tower tank 205a.
  • FIG. 10 the same parts as those of the second embodiment shown in FIG.
  • the density meter 601 is provided in the second lean liquid line 221 and measures the density of the lean liquid 204b in real time.
  • the density meter 601 may be of any type as long as the density of the liquid fluid can be measured in real time. For example, a Coriolis type mass flow meter is used.
  • the density meter 601 notifies the control unit 602 of the measured density of the lean liquid 204b.
  • the lean liquid return line 603 is connected to the first lean liquid line 211, and returns the lean liquid 204b to the lower part of the regeneration tower 205.
  • the diameter of the pipe of the lean liquid return line 603 is about 1 ⁇ 2 to 1/5 of the diameter of the pipe of the first lean liquid line 211.
  • the adjusting valve 604 is provided in the lean liquid return line 603, and can adjust the flow rate of the lean liquid 204b returned to the regeneration tower 205 according to its opening.
  • the opening degree of the regulating valve 604 is controlled by the control unit 602 based on the density of the lean liquid 204b.
  • a method for controlling the opening degree of the regulating valve 604 by the control unit 602 according to the present embodiment will be described.
  • the control unit 602 decreases the opening degree of the adjustment valve 604 and decreases the flow rate of the lean liquid return line 603.
  • the carbon dioxide content of the lean liquid 204b increases and the density increases.
  • the carbon dioxide content of the lean liquid 204b supplied to the absorption tower 203 can be set to a desired amount.
  • the flow rate of the pump 212 may be decreased so that the flow rate of the lean liquid 204b supplied to the absorption tower 203 does not increase.
  • the control unit 602 increases the opening of the regulating valve 604 and increases the flow rate of the lean liquid return line 603.
  • the carbon dioxide content of the lean liquid 204b supplied to the absorption tower 203 can be set to a desired amount.
  • the flow rate of the pump 212 may be increased so that the flow rate of the lean liquid 204b supplied to the absorption tower 203 does not decrease.
  • the present embodiment by adjusting the flow rate of the lean liquid 204b to be returned to the regeneration tower 205 according to the density of the lean liquid 204b, supply to the reboiler 206 while ensuring the target recovery rate of carbon dioxide. Reduce the amount of heat.
  • the density measurement result can be quickly reflected in the control of the flow rate of the lean solution 204b that returns to the regeneration tower 205, and the operation stability of the carbon dioxide recovery system can be improved. Can be improved.
  • FIG. 11 shows a schematic configuration of a carbon dioxide recovery system according to a sixth embodiment of the present invention.
  • This embodiment is different from the second embodiment shown in FIG. 5 in that a density meter 701 and a control unit 702 are provided instead of the density meter 301 and the control unit 302.
  • the same parts as those of the second embodiment shown in FIG. It is assumed that the rich liquid return line 703 and the adjustment valve 704 have the same configuration as the rich liquid return line 303 and the adjustment valve 304 in FIG.
  • the density meter 701 is provided in the second lean liquid line 221 and measures the density of the lean liquid 204b in real time.
  • the density meter 701 may be of any type as long as the density of the liquid fluid can be measured in real time. For example, a Coriolis type mass flow meter is used.
  • the density meter 701 notifies the control unit 702 of the measured density of the lean liquid 204b.
  • the control unit 702 controls the opening degree of the adjustment valve 704 based on the density of the lean liquid 204b.
  • the control unit 702 decreases the opening degree of the adjustment valve 704 and decreases the flow rate of the rich liquid return line 703.
  • the amount of the rich liquid 204a supplied to the regeneration tower 205 is increased, and the amount of the absorbing liquid flowing down in the regeneration tower 205 is increased, so that the carbon dioxide content of the lean liquid 204b is increased and the density is increased. Since the rich liquid 204a supply amount is adapted to the amount of heat supplied to the reboiler 206, the carbon dioxide content of the lean liquid 204b becomes a desired amount, and the target recovery rate of carbon dioxide can be ensured.
  • the control unit 702 increases the opening of the adjustment valve 704 and increases the flow rate of the rich liquid return line 703.
  • the amount of the rich liquid 204a supplied to the regeneration tower 205 is reduced, and the amount of the absorbent flowing down in the regeneration tower 205 is reduced, so that carbon dioxide is sufficiently separated from the absorbent in the regeneration tower 205, and the lean The density of the liquid 204b decreases. Carbon dioxide can be sufficiently separated from the absorbent in the regeneration tower 205 without increasing the amount of heat supplied to the reboiler 206.
  • the supply to the reboiler 206 is ensured while ensuring the target recovery rate of carbon dioxide by adjusting the flow rate of the rich liquid 204a returned to the absorption tower 203 according to the density of the lean liquid 204b.
  • Reduce the amount of heat since the density of the lean liquid 204b is obtained in real time by the density meter 701, the density measurement result can be quickly reflected in the control of the flow rate of the rich liquid 204a returning to the absorption tower 203, and the operation stability of the carbon dioxide recovery system can be improved. Can be improved.
  • FIG. 12 shows a schematic configuration of a carbon dioxide recovery system according to a seventh embodiment of the present invention.
  • this embodiment includes a density meter 801 and a control unit 802 instead of the density meter 301, the control unit 302, the rich liquid return line 303, and the adjustment valve 304. Is different.
  • FIG. 12 the same parts as those of the second embodiment shown in FIG.
  • the density meter 801 is provided in the second lean liquid line 221 and measures the density of the lean liquid 204b in real time.
  • the density meter 801 may be of any type as long as the density of the liquid fluid can be measured in real time. For example, a Coriolis type mass flow meter is used.
  • the density meter 801 notifies the control unit 802 of the measured density of the lean liquid 204b.
  • the control unit 802 controls the set temperature (supplied heat amount) of the reboiler 206 based on the density of the lean liquid 204b.
  • the control unit 802 decreases the set temperature of the reboiler 206.
  • the carbon dioxide content of the lean liquid 204b becomes a desired amount, and the target recovery rate of carbon dioxide can be ensured.
  • the amount of heat supplied to the reboiler 206 can be reduced.
  • the control unit 802 increases the set temperature of the reboiler 206.
  • the amount of heat supplied to the reboiler 206 is suppressed while ensuring the target recovery rate of carbon dioxide.
  • the density measurement result can be quickly reflected in the control of the set temperature of the reboiler 206, and the operational stability of the carbon dioxide recovery system can be improved. Can do.
  • the density of the absorbing solution is measured in real time, and the carbon dioxide content is calculated (estimated) from this density.
  • this method is based on the premise that the composition of the absorbing solution has not changed. This is because when the composition of the absorbent changes, the relationship between the density of the absorbent and the carbon dioxide content also changes.
  • the component analysis of the absorption liquid is performed every predetermined time (for example, 15 minutes) using the measurement apparatus according to the first embodiment, and the relationship between the density of the absorption liquid and the carbon dioxide content is based on the analysis result. Is preferably corrected.
  • control units 302 to 802 obtain the detection results of the detection unit 7 of the measuring device, and calculate the relationship between the density of the absorbent and the carbon dioxide content. Then, the control units 302 to 802 calculate an absorption liquid density range corresponding to a suitable carbon dioxide content as shown in FIG. 7, and when the measurement results of the density meters 301 to 801 are out of this range, The amount of the absorption liquid returned to the absorption tower 203 and the regeneration tower 205, the set temperature of the gas temperature controller 220, or the set temperature of the reboiler 206 is controlled.
  • the carbon dioxide content in the absorption liquid can be obtained with higher accuracy, and the operational stability of the carbon dioxide recovery system can be further improved. Can do.
  • the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying constituent elements without departing from the scope of the invention in the implementation stage.
  • various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment.
  • constituent elements over different embodiments may be appropriately combined.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Gas Separation By Absorption (AREA)
  • Treating Waste Gases (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

 測定装置は、無機ガスが溶け込んだ有機溶液を気化し、キャリアガスと共に放出する気化部2と、気化部2から放出されたガスが供給され、第1の温度において、有機ガスを保持すると共に無機ガスを通過させ、前記第1の温度より高い第2の温度において、保持している有機ガスを放出する有機ガス保持部3と、有機ガス保持部3を通過した前記無機ガスに含まれる無機成分を分離して放出する無機ガス分離部5と、有機ガス保持部3から放出された前記有機ガスに含まれる有機成分を分離して放出する有機ガス分離部6と、無機ガス分離部5から放出された前記無機成分及び有機ガス分離部6から放出された前記有機成分を検知する検知部7と、を備え、二酸化炭素回収システムを循環する吸収液の二酸化炭素含有量を速やかに測定できる。

Description

測定装置、測定方法、及び二酸化炭素回収システム
 本発明は、測定装置、測定方法、及び二酸化炭素回収システムに関するものである。
 近年、多量の化石燃料を使用する火力発電所等において、化石燃料を燃焼して生成された燃焼排ガスをアミン系吸収液と接触させ、燃焼排ガスから二酸化炭素を分離して回収し、この回収された二酸化炭素を大気中へ放出することなく貯蔵する方法が研究されている。
 具体的には、燃焼排ガスに含まれる二酸化炭素をアミン系吸収液に吸収させる吸収塔と、二酸化炭素を吸収した吸収液(リッチ液)が吸収塔から供給され、リッチ液を加熱し、リッチ液から二酸化炭素ガスを放出させるとともに、吸収液を再生する再生塔と、を備えた二酸化炭素回収システムが知られている(例えば特許文献1参照)。再生塔には、熱源を供給するリボイラーが連結されている。再生塔において再生された吸収液(リーン液)は吸収塔に供給され、このシステム内で吸収液が循環するようになっている。
 このような二酸化炭素回収システムが安定して稼働するためには、吸収塔において吸収液に吸収される二酸化炭素量と、再生塔において吸収液から放出される二酸化炭素量とを常に一致させる必要がある。従って、例えば、再生塔出口や吸収塔入口のリーン液の二酸化炭素含有量が安定して所望の値をとり続けるように、二酸化炭素含有量を監視しながら、リボイラーへ投入する熱エネルギー、劣化した吸収液の排出量、新しい吸収液の供給量などを調整することが求められる。
 しかし、二酸化炭素含有量を測定する方法として一般的に用いられる滴定法は、測定結果を得るまでに長い時間(1~1.5時間)を要する。そのため、このような手法で測定された二酸化炭素含有量からでは、リボイラーへ投入する熱エネルギー等の最適な調整量が得られず、二酸化炭素回収システムの動作の安定性を向上させることは出来なかった。
特開2004-323339号公報
 本発明は、二酸化炭素回収システムの循環吸収液の二酸化炭素含有量を速やかに測定できる測定装置、測定方法、及びこのような測定装置を備える二酸化炭素回収システムを提供することを目的とする。
 本発明の一態様による測定装置は、無機ガスが溶け込んだ有機溶液を気化し、キャリアガスと共に放出する気化部と、前記気化部から放出されたガスが供給され、第1の温度において、有機ガスを保持すると共に無機ガスを通過させ、前記第1の温度より高い第2の温度において、保持している有機ガスを放出する有機ガス保持部と、前記有機ガス保持部を通過した前記無機ガスに含まれる無機成分を分離して放出する無機ガス分離部と、前記有機ガス保持部から放出された前記有機ガスに含まれる有機成分を分離して放出する有機ガス分離部と、前記無機ガス分離部から放出された前記無機成分及び前記有機ガス分離部から放出された前記有機成分を検知する検知部と、を備えるものである。
 本発明の一態様による測定方法は、気化部、有機ガス保持部、流路切り替え部、無機ガス分離部、有機ガス分離部、及び検知部を備える測定装置を用いて、無機ガスが溶け込んだ有機溶液の成分を測定する測定方法であって、前記気化部が、前記有機溶液を気化して、キャリアガスと共に放出し、前記有機ガス保持部が、第1の温度において、前記気化部から放出されたガスに含まれる有機ガスを保持すると共に無機ガスを通過させ、前記無機ガス分離部が、前記第1の温度より高く、前記有機ガス保持部が保持している有機ガスを放出する第2の温度よりも低い第3の温度において、前記有機ガス保持部を通過した前記無機ガスに含まれる無機成分を分離して放出し、前記検知部が、前記無機ガス分離部から放出された前記無機成分を検知し、前記有機ガス保持部が、前記第2の温度において、前記有機ガスを放出し、前記有機ガス分離部が、前記有機ガス保持部から放出された前記有機ガスに含まれる有機成分を分離して放出し、前記検知部が、前記有機ガス分離部から放出された前記有機成分を検知するものである。
 本発明の一態様による二酸化炭素回収システムは、燃焼排ガスに含まれる二酸化炭素を吸収液に吸収させ、二酸化炭素を含む吸収液を排出する吸収塔と、前記吸収塔から排出された吸収液が供給され、当該吸収液から蒸気を含む二酸化炭素ガスを除去し、当該吸収液を再生して排出する再生塔と、前記吸収塔と前記再生塔との間に設けられ、前記再生塔から排出されて前記吸収塔に供給される吸収液を熱源として、前記吸収塔から排出されて前記再生塔に供給される吸収液を加熱する再生熱交換器と、前記吸収塔から排出された吸収液又は前記再生塔から排出された吸収液の密度を測定する密度計と、前記吸収液の一部を気化し、キャリアガスと共に放出する気化部と、前記気化部から放出されたガスが供給され、第1の温度において、有機ガスを保持すると共に無機ガスを通過させ、前記第1の温度より高い第2の温度において、保持している有機ガスを放出する有機ガス保持部と、前記有機ガス保持部を通過した前記無機ガスに含まれる無機成分を分離して放出する無機ガス分離部と、前記有機ガス保持部から放出された前記有機ガスに含まれる有機成分を分離して放出する有機ガス分離部と、前記無機ガス分離部から放出された前記無機成分及び前記有機ガス分離部から放出された前記有機成分を検知する検知部と、前記密度計によって測定された密度及び前記検知部の検知結果に基づいて、前記吸収塔から排出され前記吸収塔に戻される吸収液の量、又は前記再生塔から排出され前記再生塔に戻される吸収液の量を制御する制御部と、を備えるものである。
 本発明の一態様による二酸化炭素回収システムは、燃焼排ガスの温度を調整して排出するガス温調器と、前記ガス温調器から排出された燃焼排ガスに含まれる二酸化炭素を吸収液に吸収させ、二酸化炭素を含む吸収液を排出する吸収塔と、前記吸収塔から排出された吸収液が供給され、当該吸収液から蒸気を含む二酸化炭素ガスを除去し、当該吸収液を再生して排出する再生塔と、前記吸収塔と前記再生塔との間に設けられ、前記再生塔から排出されて前記吸収塔に供給される吸収液を熱源として、前記吸収塔から排出されて前記再生塔に供給される吸収液を加熱する再生熱交換器と、前記吸収塔から排出された吸収液の密度を測定する密度計と、前記吸収液の一部を気化し、キャリアガスと共に放出する気化部と、前記気化部から放出されたガスが供給され、第1の温度において、有機ガスを保持すると共に無機ガスを通過させ、前記第1の温度より高い第2の温度において、保持している有機ガスを放出する有機ガス保持部と、前記有機ガス保持部を通過した前記無機ガスに含まれる無機成分を分離して放出する無機ガス分離部と、前記有機ガス保持部から放出された前記有機ガスに含まれる有機成分を分離して放出する有機ガス分離部と、前記無機ガス分離部から放出された前記無機成分及び前記有機ガス分離部から放出された前記有機成分を検知する検知部と、前記検知部の検知結果に基づいて第1閾値及び第2閾値を算出し、前記密度が前記第1閾値より小さい場合に前記ガス温調器の設定温度を下げるように制御し、前記密度が第2閾値より大きい場合に前記ガス温調器の設定温度を上げるように制御する制御部と、を備えるものである。
 本発明の一態様による二酸化炭素回収システムは、燃焼排ガスに含まれる二酸化炭素を吸収液に吸収させ、二酸化炭素を含む吸収液を排出する吸収塔と、前記吸収塔から排出された吸収液が供給され、当該吸収液から蒸気を含む二酸化炭素ガスを除去し、当該吸収液を再生して排出する再生塔と、前記再生塔に貯留される吸収液の一部を加熱するリボイラーと、前記吸収塔と前記再生塔との間に設けられ、前記再生塔から排出されて前記吸収塔に供給される吸収液を熱源として、前記吸収塔から排出されて前記再生塔に供給される吸収液を加熱する再生熱交換器と、前記再生塔から排出された吸収液の密度を測定する密度計と、前記吸収液の一部を気化し、キャリアガスと共に放出する気化部と、前記気化部から放出されたガスが供給され、第1の温度において、有機ガスを保持すると共に無機ガスを通過させ、前記第1の温度より高い第2の温度において、保持している有機ガスを放出する有機ガス保持部と、前記有機ガス保持部を通過した前記無機ガスに含まれる無機成分を分離して放出する無機ガス分離部と、前記有機ガス保持部から放出された前記有機ガスに含まれる有機成分を分離して放出する有機ガス分離部と、前記無機ガス分離部から放出された前記無機成分及び前記有機ガス分離部から放出された前記有機成分を検知する検知部と、前記検知部の検知結果に基づいて第1閾値及び第2閾値を算出し、前記密度が前記第1閾値より小さい場合に前記リボイラーの設定温度を下げるように制御し、前記密度が前記第2閾値より大きい場合に前記リボイラーの設定温度を上げるように制御する制御部と、を備えるものである。
 本発明によれば、二酸化炭素回収システムの循環吸収液の二酸化炭素含有量を速やかに測定できる。
本発明の第1の実施形態に係る測定装置の概略構成図である。 二酸化炭素回収システムの概略構成図である。 同第1の実施形態に係る測定装置を用いて、二酸化炭素回収システムを循環する吸収液の成分を測定する方法を説明するフローチャートである。 同第1の実施形態に係る測定装置を用いて測定した、二酸化炭素回収システムを循環する吸収液の成分分析結果を示すグラフである。 本発明の第2の実施形態に係る二酸化炭素回収システムの概略構成図である。 流量の一部を分岐したリッチ液ラインの概略構成図である。 密度と調整弁の開度の制御との関係の一例を示すグラフである。 本発明の第3の実施形態に係る二酸化炭素回収システムの概略構成図である。 本発明の第4の実施形態に係る二酸化炭素回収システムの概略構成図である。 本発明の第5の実施形態に係る二酸化炭素回収システムの概略構成図である。 本発明の第6の実施形態に係る二酸化炭素回収システムの概略構成図である。 本発明の第7の実施形態に係る二酸化炭素回収システムの概略構成図である。
 以下、本発明の実施の形態を図面に基づいて説明する。
 (第1の実施形態)図1に本発明の第1の実施形態に係る測定装置の概略構成を示す。測定装置は、自動定量採取部1、気化部2、有機ガス保持部3、流路切り替え部4、無機ガス分離部5、有機ガス分離部6、及び検知部7を備え、無機ガス(低分子ガス)が溶け込んだ有機溶液の成分分析を行うものである。なお、有機ガス保持部3、流路切り替え部4、無機ガス分離部5、及び有機ガス分離部6は、恒温部8の中に収納されており、一定温度に保たれる。恒温部8内の温度は調整可能である。
 自動定量採取部1は、成分分析対象の有機溶液から測定サンプルを自動定量採取する。
 気化部2は、自動定量採取部1によって採取された測定サンプルを気化し、キャリアガスと共に排出する。キャリアガスには、例えばヘリウムを使用する。
 有機ガス保持部3は、気化部2から排出された排出ガス中の有機ガスを一時的に保持すると共に、無機ガスを通過させる。従って、有機ガス保持部3により、気化部2から排出された排出ガス中の有機ガスと無機ガスとが分離される。
 有機ガス保持部3は、低温時に有機ガスを保持し、高温になると保持していた有機ガスを放出する。従って、恒温部8の中を低温にしておくことで、有機ガス保持部3は、気化部2から排出された排出ガス中の無機ガスを放出し、恒温部8の中を高温にすると、有機ガスを放出する。有機ガス保持部3には、有機成分を吸着可能な充填材を有するトラップ管を使用することができる。
 流路切り替え部4は、有機ガス保持部3から放出されたガスが無機ガス分離部5又は有機ガス分離部6へ供給されるように流路を切り替えると共に、有機ガス保持部3から放出されたガスが供給されない無機ガス分離部5又は有機ガス分離部6へキャリアガスを供給する。キャリアガスは例えばヘリウムガスである。
 流路切り替え部4は、有機ガス保持部3から無機ガスが放出される場合は、すなわち恒温部8の温度が低温の場合は、有機ガス保持部3から放出された無機ガスを無機ガス分離部5へ供給し、有機ガス分離部6へキャリアガスが供給されるようにする。
 また、流路切り替え部4は、有機ガス保持部3から有機ガスが放出される場合は、すなわち恒温部8の温度が高温の場合は、有機ガス保持部3から放出された有機ガスを有機ガス分離部6へ供給し、無機ガス分離部5へキャリアガスが供給されるようにする。
 このように、使用していない分離部へキャリアガスを流すことで、無機ガス分離部5が有機ガスで汚染されることを防止し、有機ガス分離部6が無機ガスで汚染されることを防止できる。
 無機ガス分離部5は、有機ガス保持部3を通過した無機ガスが流路切り替え部4を介して供給され、無機ガス中の無機成分を分離して検知部7へ供給する。無機ガス分離部5は、複数の無機成分を保持する時間が異なり、各無機成分を異なる時間で検知部7へ供給することで分離を行う。無機ガス分離部5には、無機成分を吸着可能な充填材を有するトラップ管を使用することができる。
 有機ガス分離部6は、有機ガス保持部3から放出された有機ガスが流路切り替え部4を介して供給され、有機ガス中の有機成分を分離して検知部7へ供給する。有機ガス分離部6は、複数の有機成分を保持する時間が異なり、各有機成分を異なる時間で検知部7へ供給することで分離を行う。有機ガス分離部6には、有機成分(例えばアミン成分)を吸着可能な充填材を有するトラップ管を使用することができる。
 検知部7は、無機ガス分離部5から供給された無機成分、有機ガス分離部6から供給された有機成分の検出を行う。検知部7には、例えば熱伝導度検出器(TDC:Thermal Conductivity Detector)を使用することができる。検知部7による測定サンプルに含まれる成分の検出結果は、図示しない表示部に表示される。操作者は、表示された検出結果から、分析対象である有機溶液の成分を把握できる。
 このような測定装置を用いて、例えば、図2に示すような二酸化炭素回収システム100を循環する吸収液の成分分析を行うことができる。二酸化炭素回収システム100は、燃焼排ガス102aに含まれる二酸化炭素を吸収液に吸収させる吸収塔103と、吸収塔103から二酸化炭素を吸収した吸収液(以下、リッチ液104aと記す)が供給され、このリッチ液4aを加熱し、吸収液から蒸気を含む二酸化炭素ガスを放出させて、二酸化炭素ガスと蒸気とを含む排出ガス102cを排出するとともに吸収液を再生する再生塔105とを備える。
 例えば、火力発電所などの発電設備において生成された燃焼排ガス102aが吸収塔103の下部に供給され、吸収塔103の頂部から二酸化炭素が取り除かれた燃焼排ガス102bが排出されるようになっている。二酸化炭素を吸収可能な吸収液には、例えばアミン化合物を水に溶かしたアミン化合物水溶液が使用される。
 リボイラー106は、再生塔タンク105に貯留されていたリーン液104bの一部を加熱してその温度を上昇させて蒸気を生成し、再生塔105に供給する。なお、リボイラー106においてリーン液104bを加熱する際、リーン液104bから微量の二酸化炭素ガスが放出され、蒸気とともに再生塔105に供給される。そして、この蒸気により、再生塔105においてリッチ液104aが加熱されて二酸化炭素ガスが放出される。
 吸収塔103と再生塔105との間に、再生塔105から吸収塔103に供給されるリーン液104bを熱源として、吸収塔103から再生塔105に供給されるリッチ液104aを加熱する再生熱交換器107が設けられ、リーン液104bの熱を回収するように構成されている。
 再生熱交換器107からのリーン液104bは、タンク113へ送り込まれる。タンク113は、この二酸化炭素回収システム100を循環する吸収液を溜め、その上部から新品の吸収液104cが供給され、底部から吸収液104dを破棄する。これにより、劣化した吸収液が二酸化炭素回収システム100を循環することを防止できる。
 タンク113と吸収塔103との間に、タンク113から供給されるリーン液104eを冷却する吸収液冷却器114が設けられている。吸収液冷却器114により冷却されたリーン液104eが吸収塔103の上部に供給される。
 吸収塔103の上部に供給されたリーン液104eは、吸収塔103内において上部から下降する。一方、吸収塔103に供給された燃焼排ガス102aは、吸収塔103内において下部から頂部に向けて上昇する。そのため、二酸化炭素を含む燃焼排ガス102aとリーン液104eが向流接触(直接接触)し、燃焼排ガス102aから二酸化炭素が取り除かれてリーン液104eに吸収され、リッチ液104aが生成される。二酸化炭素が取り除かれた燃焼排ガス102bは、吸収塔103の頂部から排出される。
 凝縮器117は、再生塔105から排出された二酸化炭素ガスと蒸気とを含む排出ガス102cを凝縮(冷却)して、二酸化炭素ガスと生成された凝縮液とを分離する。凝縮器117から排出された二酸化炭素ガス102dは、貯蔵設備(図示せず)で貯蔵される。
 ガス冷却器116は、再生塔105から排出された排出ガス102cを、冷却水(冷却媒体)を用いて冷却する。また、凝縮器117からの凝縮液は、再生塔105の上部に供給される。
 本実施形態に係る測定装置を用いて、図2に示すような二酸化炭素回収システム100を循環する吸収液の成分分析を行う方法を図3に示すフローチャートを用いて説明する。
 (ステップS301)二酸化炭素回収システム100を循環する吸収液を採集する。例えば、吸収塔103から再生塔105へ供給される吸収液(リッチ液104a)を採集する。
 (ステップS302)自動定量採取部1が、ステップS301で採集した吸収液から測定サンプルを自動定量採取する。
 (ステップS303)気化部2が、270℃で測定サンプルを気化し、キャリアガス(ヘリウム)と共に、有機ガス保持部3に供給する。液体サンプルを気化する温度は、分析成分の最高沸点+10℃以上とする。
 また、この時、恒温部8の温度は70℃に維持される。
 (ステップS304)有機ガス保持部3が、気化部2から排出されたガスのうち、有機ガスを保持し、無機ガスを通過させる。無機ガスは流路切り替え部4を介して無機ガス分離部5に供給される。この時、有機ガス分離部6にはキャリアガス(ヘリウム)が供給される。
 (ステップS305)恒温部8の温度を70℃から190℃に上昇させる。これにより無機ガス分離部5で無機成分(二酸化炭素、水蒸気)が分離される。なお、恒温部8の温度は、水蒸気が完全に排出される温度以上で、かつ有機ガス保持部3から有機成分が分離される温度未満となるようにする。
 (ステップS306)ステップS305で分離された無機成分が検知部7で測定される。検知部7(熱伝導度検出器)の分析温度は270℃とした。
 (ステップS307)有機ガス保持部3からのガスが有機ガス分離部6に供給され、キャリアガスが無機ガス分離部5に供給されるように、流路切り替え部4の流路が切り替えられる。
 (ステップS308)恒温部8の温度を190℃から240℃に上昇させる。これにより、有機ガス保持部3に保持されていた有機成分が放出され、有機ガス保持部3に供給される。なお、恒温部8の温度は、分析成分の最高沸点以上となるようにする。
 (ステップS309)有機ガス分離部6で有機成分(アミン類)が分離される。
 (ステップS310)ステップS309で分離された有機成分が検知部7で測定される。
 このような方法により、図4に示すような測定結果が得られた。図4では、ピークP1が二酸化炭素、ピークP2が水、ピークP3、P4がアミン類を示す。測定結果は15分以下で得られ、滴定法(所要時間:1~1.5時間)と比較して、極めて短時間であることが分かる。
 このように、本実施形態に係る測定装置を用いることで、二酸化炭素回収システムを循環する吸収液中の二酸化炭素含有量を速やかに測定できる。また、吸収液中の二酸化炭素含有量だけでなく、水や有機成分(アミン類)の含有量についても速やかに測定することができる。
 上記実施形態では、吸収塔103出口の吸収液(リッチ液104a)の成分分析を行う例について説明したが、二酸化炭素回収システム100中の様々な箇所における吸収液の成分分析を行うことができる。例えば、吸収塔103入口や、再生塔105出口における吸収液の成分分析を行ってもよい。
 また、複数箇所の成分分析結果に基づいて、リボイラー106への投入熱エネルギー、タンク113に供給する新品の吸収液104cの量、タンク113から廃棄する吸収液104dの量などを制御するようにしてもよい。
 例えば、吸収塔103出口の吸収液の二酸化炭素含有量と吸収塔103入口の吸収液の二酸化炭素含有量との差分よりも、吸収塔103出口の吸収液の二酸化炭素含有量と再生塔105出口の吸収液の二酸化炭素含有量との差分の方が大きい場合、リボイラー106へ必要以上の熱エネルギーが投入されていることになる。そのため、リボイラー106への投入熱エネルギーを小さくするように制御する。本実施形態による測定装置により、吸収液の成分分析を速やかに行うことができるため、リボイラー106への投入熱エネルギーを最適な値とすることができ、運転コストを低減できる。
 また、吸収塔103や再生塔105の複数箇所(上段部、中段部、下段部)における吸収液の成分分析を行い、塔内で異常が発生しているか否かを監視してもよい。本実施形態による測定装置により、吸収液の成分分析を速やかに行うことができるため、異常を迅速に発見し、二酸化炭素回収システム100の動作の安定性を向上できる。
 (第2の実施形態)図5に本発明の第2の実施形態に係る二酸化炭素回収システムの概略構成を示す。ここで二酸化炭素回収システムは、二酸化炭素を吸収可能な吸収液を用いて、化石燃料の燃焼により生成された燃焼排ガスに含まれる二酸化炭素を回収するものである。
 図5に示すように二酸化炭素回収システム200は、燃焼排ガス202aに含まれる二酸化炭素を吸収液に吸収させる吸収塔203と、吸収塔203から二酸化炭素を吸収した吸収液(以下、リッチ液204aと記す)が供給され、このリッチ液204aを加熱し、吸収液から蒸気を含む二酸化炭素ガスを放出させて、二酸化炭素ガスと蒸気とを含む排出ガス202cを排出して吸収液を再生する再生塔205とを備える。例えば、火力発電所などの発電設備において生成された燃焼排ガス202aが吸収塔203の下部に供給され、吸収塔203の頂部から二酸化炭素が取り除かれた燃焼排ガス202bが排出されるようになっている。
 吸収塔203は、吸収液が二酸化炭素を吸収することにより生成されたリッチ液204aを貯留する吸収塔タンク203aを有する。同様に、再生塔205は、リッチ液204aが二酸化炭素ガスを放出することにより再生された吸収液(以下、リーン液204bと記す)を貯留する再生塔タンク205aを有する。リッチ液204aは二酸化炭素含有量の多い吸収液であり、リーン液204bは二酸化炭素含有量の少ない吸収液である。
 ここで、二酸化炭素を吸収可能な吸収液には、例えばアミン化合物を水に溶かしたアミン化合物水溶液が使用される。アミン化合物水溶液の濃度は二酸化炭素の分離回収に好適な値に設定されている。
 図5に示すように、再生塔205にはリボイラー206が設けられている。リボイラー206は、発電設備から供給されるプラント蒸気等を熱源として、再生塔タンク205aに貯留されているリーン液204bの一部を加熱してその温度を上昇させて蒸気を生成し、再生塔205に供給する。なお、リボイラー206においてリーン液204bを加熱する際、リーン液204bから二酸化炭素ガスが放出され、蒸気とともに再生塔205に供給される。そして、この蒸気により、再生塔205においてリッチ液204aが加熱されて二酸化炭素ガスが放出される。
 再生塔205から排出された二酸化炭素ガスと蒸気とを含む排出ガス202cを凝縮(冷却)して、二酸化炭素ガスと生成された凝縮液(凝縮水)とを分離する凝縮器217が再生塔205に連結されている。凝縮器217から排出された二酸化炭素ガス202dは、貯蔵設備(図示せず)で貯蔵される。
 再生塔205と凝縮器217との間に、再生塔205から排出された排出ガス202cを凝縮器217に供給するガス冷却ライン215が連結され、このガス冷却ライン215に、冷却水(冷却媒体)を用いて排出ガス202cを冷却するガス冷却器216が設けられている。また、凝縮器217と再生塔205との間に、凝縮器217からの凝縮液を再生塔205の上部に供給する凝縮液ライン218が連結される。この凝縮液ライン218には、凝縮器217からの凝縮液を再生塔205に送り込む凝縮液ポンプ219が設けられている。
 吸収塔203と再生塔205との間に、再生塔205から吸収塔203に供給されるリーン液204bを熱源として、吸収塔203から再生塔205に供給されるリッチ液204aを加熱する再生熱交換器207が設けられ、リーン液204bの熱を回収するように構成されている。ここで、上述したように、再生塔205においてリッチ液204aから二酸化炭素ガスを放出させる際、リッチ液204aはリボイラー206からの高温の蒸気を熱源として加熱される。従って、再生熱交換器207に供給されるリーン液204bの温度は比較的高く、このリーン液204bが熱源として用いられている。
 吸収塔203と再生熱交換器207との間に、吸収塔タンク203aの底部から再生熱交換器207にリッチ液204aを供給する第1リッチ液ライン208が連結されている。この第1リッチ液ライン208に、吸収塔203からのリッチ液204aを再生熱交換器207に送り込むリッチ液ポンプ209が設けられている。
 また、第1リッチ液ライン208にはリッチ液204aの密度をリアルタイムで測定する密度計301が設けられている。密度計301は、液流体の密度をリアルタイムで測定できるものであれば、どのようなタイプのものでもよい。
 例えば、密度計301として、コリオリ式の質量流量計を用いることができる。この時、第1リッチ液ライン208の密度計301(コリオリ式質量流量計)を取り付ける部分はU字形にしてもよい。コリオリ式質量流量計は、リッチ液204aを配管(第1リッチ液ライン208)に流しながら、配管を振動させる。配管の入口側と出口側とでは、流体(リッチ液204a)の流れの方向が逆なので、反対方向のコリオリ力が発生し、配管にねじれが生じる。このねじれ量は質量流量に比例する。また、配管の振動数は流体密度に依存するため、配管の振動数から、流体(リッチ液204a)の密度が算出される。コリオリ式質量流量計は、配管(第1リッチ液ライン208)の振動数を迅速に求め、リッチ液204aの密度をほぼリアルタイムで測定することができる。
 コリオリ式流量計は流速が大きい場合には圧損が大きくなるため、リッチ液204aの密度を測定する際には、リッチ液204aの全流量をコリオリ式流量計に通さず、図6に示すように、流量の一部を分岐して少量のリッチ液204aを通すようにしてもよい。
 密度計301は、測定したリッチ液204aの密度を制御部302に通知する。
 第1リッチ液ライン208には、リッチ液204aを吸収塔203の上部(吸収塔203内の充填剤よりも上部)へ戻すリッチ液戻りライン303が連結されている。ここで、リッチ液戻りライン303の配管の口径は、第1リッチ液ライン208の配管の口径の1/2~1/5程度とする。リッチ液戻りライン303により吸収塔203に戻されたリッチ液204aは、再度、燃焼排ガス202aから二酸化炭素を吸収する。
 リッチ液戻りライン303には調整弁304が設けられており、吸収塔203に戻されるリッチ液204aの流量は調整弁304の開度によって調節することができる。調整弁304の開度は、制御部302がリッチ液204aの密度に基づいて制御する。制御部302は、密度からリッチ液204aの二酸化炭素含有量を算出し、算出結果に基づいて調整弁304の開度を制御してもよい。例えば、使用する吸収液の密度と二酸化炭素含有量との関係を予め求めて記憶部(図示せず)に記憶させておき、この記憶部内の情報を参照することで、制御部302はリッチ液204aの二酸化炭素含有量を算出できる。
 調整弁304の開度の制御方法については後述する。
 再生熱交換器207と再生塔205との間に、再生熱交換器207から再生塔205の上部にリッチ液204aを供給する第2リッチ液ライン210が連結されている。第2リッチ液ライン210にはポンプ209の停止時等に、高圧側の再生塔圧力を保持し、再生塔側からの吸収液の逆流を防止するための弁213が設けられている。ポンプ209を用いてリッチ液の圧力を高めることで、再生熱交換器207においてリッチ液から二酸化炭素が分離して二相流化により熱交換率が低下することが抑制される。
 再生塔205と再生熱交換器207との間に、再生塔タンク205aの底部から再生熱交換器207にリーン液204bを供給する第1リーン液ライン211が連結されている。
 再生熱交換器207からのリーン液204bは、第2リーン液ライン221に設けられたリーン液ポンプ212により吸収液冷却器214へ送り込まれる。吸収液冷却器214は、冷却水(冷却媒体)を冷却源とし、リーン液204bを冷却する。吸収液冷却器214により冷却されたリーン液204cが吸収塔203の上部に供給される。
 吸収塔203の上部に供給されたリーン液204cは、吸収塔203内において上部から吸収塔タンク203aに向けて下降する。二酸化炭素を5~20%程度含有する燃焼排ガス202aは、ガス温調器220により一定温度に調節された後、吸収塔203の下部に供給され、吸収塔203内において下部から頂部に向けて上昇する。そのため、二酸化炭素を含む燃焼排ガス202aとリーン液が向流接触(直接接触)し、燃焼排ガス202aから二酸化炭素が取り除かれてリーン液に吸収され、リッチ液204aが生成される。二酸化炭素が取り除かれた燃焼排ガス202bは吸収塔203の頂部から排出され、リッチ液204aは吸収塔203の吸収塔タンク203aに貯留される。
 二酸化炭素回収システムでは、吸収塔203において燃焼排ガス202a中の二酸化炭素を50%以上、望ましくは90%以上、回収しながら、再生塔205のリボイラー206に投入する熱量(再生エネルギー)を低く抑えることが要求される。そのためには、二酸化炭素回収システムの各所において、吸収液の流量、温度、組成、及び圧力を最適値に制御する必要がある。
 吸収塔203においては、二酸化炭素含有量が小さいリーン液204cと燃焼排ガス202aとが気液接触し、吸収液中の二酸化炭素含有量が増大しリッチ液204aになる。吸収塔203から再生塔205へ移送されたリッチ液204aは、加熱により二酸化炭素が分離され、二酸化炭素含有量が減少してリーン液204bになる。このリーン液204bは再度、吸収塔203へ供給される。従って、リッチ液204a及び/又はリーン液204bの二酸化炭素含有量は、二酸化炭素回収システムを最適な状態で運転する上で重要なパラメータとなる。
 本実施形態は、リッチ液204aの二酸化炭素含有量(二酸化炭素含有量に関連する密度)に着目し、これを制御することにより、二酸化炭素の目標回収率を確保しながら、リボイラー206への供給熱量を抑制し、運転安定性の向上を図るものである。
 本実施形態に係る制御部302による調整弁304の開度の制御方法について説明する。
 密度計301から通知されるリッチ液204aの密度が所定値より低い場合、すなわちリッチ液204aの二酸化炭素含有量が少ない場合、吸収塔203において吸収液に所望の量の二酸化炭素が吸収されておらず、二酸化炭素の目標回収率が確保されていない。なお、リッチ液204aの密度が低くなる要因としては、吸収液を交換してあまり時間が経っていないことや、吸収液が劣化したことなどが考えられる。
 この時、制御部302は、調整弁304の開度を上げ、リッチ液戻りライン303の流量を増やす。
 吸収塔203に戻されたリッチ液204aは、再度、燃焼排ガス202aから二酸化炭素を吸収するため、吸収液に所望の量の二酸化炭素を吸収させることができ、密度が増す。これにより、二酸化炭素の目標回収率を確保することができる。なお、再生塔205に供給されるリッチ液204aの流量が低下しないように、ポンプ209の流量を増大させても良い。
 一方、密度計301から通知されるリッチ液204aの密度が所定値より高い場合、すなわちリッチ液204aの二酸化炭素含有量が多い場合、吸収液に所望量以上の二酸化炭素が吸収されており、再生塔205において吸収液から十分に二酸化炭素を分離できなくなる。この時、制御部302は、調整弁304の開度を下げて、リッチ液戻りライン303の流量を減らす。
 吸収塔203内での二酸化炭素含有量の大きな吸収液の循環量が減少するため、吸収塔203から排出されるリッチ液204aの二酸化炭素含有量が減少し、密度が下がる。これにより、リボイラー206への供給熱量を増やすことなく、再生塔205において吸収液から十分に二酸化炭素を分離することができる。なお、再生塔205に供給されるリッチ液204aの流量が増大しないように、ポンプ209の流量を減少させても良い。
 図7にリッチ液204aの密度の経時変化と、調整弁304の開度の制御タイミングの一例を示す。リッチ液204aの密度が所定の基準密度から0.003g/cc以上小さくなった場合に調整弁304の開度を上げ、リッチ液204aの密度が所定の基準密度から0.003g/cc以上大きくなった場合に調整弁304の開度を下げる。
 このように、本実施形態では、リッチ液204aの密度に応じて、吸収塔203へ戻すリッチ液204aの流量を調整することで、二酸化炭素の目標回収率を確保しながら、リボイラー206への供給熱量を抑制する。上述したように、リッチ液204aの密度は密度計301によりリアルタイムに求められるため、密度測定結果を吸収塔203へ戻すリッチ液204aの流量の制御に迅速に反映でき、二酸化炭素回収システムの運転安定性を向上させることができる。
 (第3の実施形態)図8に本発明の第23の実施形態に係る二酸化炭素回収システムの概略構成を示す。本実施形態は、図5に示す第2の実施形態と比較して、密度計301、制御部302、リッチ液戻りライン303、及び調整弁304の代わりに、密度計401、制御部402、リーン液戻りライン403、及び調整弁404が設けられている点が異なる。また、本実施形態では、第1リーン液ライン211から分岐するリーン液戻りライン403の分岐点と、再生塔タンク205aとの間にポンプ212が設けられる。図8において、図5に示す第2の実施形態と同一部分には同一符号を付して説明を省略する。
 密度計401は、上記第2の実施形態における密度計301と同様に、第1リッチ液ライン208に設けられ、リッチ液204aの密度をリアルタイムで測定する。密度計401は、液流体の密度をリアルタイムで測定できるものであれば、どのようなタイプのものでもよく、例えば、コリオリ式の質量流量計を用いる。密度計401は測定したリッチ液204aの濃度を制御部402に通知する。
 リーン液戻りライン403は、第1リーン液ライン211に連結され、リーン液204bを再生塔205の下部へ戻す。ここで、リーン液戻りライン403の配管の口径は、第1リーン液ライン211の配管の口径の1/2~1/5程度とする。
 調整弁404は、リーン液戻りライン403に設けられており、再生塔205に戻されるリーン液204bの流量をその開度によって調節することができる。調整弁404の開度は、制御部402がリッチ液204aの密度に基づいて制御する。
 本実施形態に係る制御部402による調整弁404の開度の制御方法について説明する。
 密度計401から通知されるリッチ液204aの密度が所定値より低い場合、すなわちリッチ液204aの二酸化炭素含有量が少ない場合、吸収液に所望の量の二酸化炭素が吸収されておらず、二酸化炭素の目標回収率が確保されていない。この時、制御部402は、調整弁404の開度を上げ、リーン液戻りライン403の流量を増やす。
 吸収塔203へのリーン液204bの供給量が減少し、吸収塔203内での吸収液の流下量が減少するため、吸収液の二酸化炭素含有量が増加し、吸収液に所望の量の二酸化炭素を吸収させることができ、密度が増す。これにより、二酸化炭素の目標回収率を確保することができる。
 一方、密度計401から通知されるリッチ液204aの密度が所定値より高い場合、すなわちリッチ液204aの二酸化炭素含有量が多い場合、吸収液に所望以上の量の二酸化炭素が吸収されており、再生塔205において吸収液から十分に二酸化炭素を分離できなくなる。この時、制御部402は、調整弁404の開度を下げて、リーン液戻りライン403の流量を減らす。
 吸収塔203へのリーン液204bの供給量が増加し、吸収塔203内での吸収液の流下量が増加するため、吸収液の二酸化炭素含有量が減少し、密度が減る。これにより、リボイラー206への供給熱量を増やすことなく、再生塔205において吸収液から十分に二酸化炭素を分離することができる。
 このように、本実施形態では、リッチ液204aの密度に応じて、再生塔205へ戻すリーン液204bの流量を調整することで、二酸化炭素の目標回収率を確保しながら、リボイラー206への供給熱量を抑制する。上述したように、リッチ液204aの密度は密度計401によりリアルタイムに求められるため、密度測定結果を再生塔205へ戻すリーン液204bの流量の制御に迅速に反映でき、二酸化炭素回収システムの運転安定性を向上させることができる。
 (第4の実施形態)図9に本発明の第4の実施形態に係る二酸化炭素回収システムの概略構成を示す。本実施形態は、図5に示す第2の実施形態と比較して、密度計301、制御部302、リッチ液戻りライン303、及び調整弁304の代わりに、密度計501及び制御部502が設けられている点が異なる。図9において、図5に示す第2の実施形態と同一部分には同一符号を付して説明を省略する。
 密度計501は、上記第1の実施形態における密度計301と同様に、第1リッチ液ライン208に設けられ、リッチ液204aの密度をリアルタイムで測定する。密度計501は、液流体の密度をリアルタイムで測定できるものであれば、どのようなタイプのものでもよく、例えば、コリオリ式の質量流量計を用いる。密度計501は測定したリッチ液204aの濃度を制御部502に通知する。
 制御部502は、リッチ液204aの濃度に基づいて、ガス温調器220の設定温度を制御する。
 密度計501から通知されるリッチ液204aの密度が所定値より低い場合、すなわちリッチ液204aの二酸化炭素含有量が少ない場合、吸収液に所望の量の二酸化炭素が吸収されておらず、二酸化炭素の目標回収率が確保されていない。この時、制御部502は、ガス温調器220の設定温度を下げる。
 吸収塔203への供給される燃焼排ガス202aの温度が下がると、吸収液の二酸化炭素吸収率が上がるため、吸収液に所望の量の二酸化炭素を吸収させることができ、密度が増す。これにより、二酸化炭素の目標回収率を確保することができる。
 一方、密度計501から通知されるリッチ液204aの密度が所定値より高い場合、すなわちリッチ液204aの二酸化炭素含有量が多い場合、吸収液に所望以上の量の二酸化炭素が吸収されており、再生塔205において吸収液から十分に二酸化炭素を分離できなくなる。この時、制御部502は、ガス温調器220の設定温度を上げる。
 吸収塔203への供給される燃焼排ガス202aの温度が上がると、吸収液の二酸化炭素吸収率が下がるため、吸収液の二酸化炭素含有量が減少し、密度が減る。これにより、リボイラー206への供給熱量を増やすことなく、再生塔205において吸収液から十分に二酸化炭素を分離することができる。
 このように、本実施形態では、リッチ液204aの密度に応じて、ガス温調器220の設定温度を調整することで、二酸化炭素の目標回収率を確保しながら、リボイラー206への供給熱量を抑制する。上述したように、リッチ液204aの密度は密度計501によりリアルタイムに求められるため、密度測定結果をガス温調器220の設定温度の制御に迅速に反映でき、二酸化炭素回収システムの運転安定性を向上させることができる。
 (第5の実施形態)図10に本発明の第5の実施形態に係る二酸化炭素回収システムの概略構成を示す。本実施形態は、図5に示す第2の実施形態と比較して、密度計301、制御部302、リッチ液戻りライン303、及び調整弁304の代わりに、密度計601、制御部602、リーン液戻りライン603、及び調整弁604が設けられている点が異なる。また、本実施形態では、第1リーン液ライン211から分岐するリーン液戻りライン603の分岐点と、再生塔タンク205aとの間にポンプ212が設けられる。図10において、図5に示す第2の実施形態と同一部分には同一符号を付して説明を省略する。
 密度計601は、第2リーン液ライン221に設けられ、リーン液204bの密度をリアルタイムで測定する。密度計601は、液流体の密度をリアルタイムで測定できるものであれば、どのようなタイプのものでもよく、例えば、コリオリ式の質量流量計を用いる。密度計601は測定したリーン液204bの密度を制御部602に通知する。
 リーン液戻りライン603は、第1リーン液ライン211に連結され、リーン液204bを再生塔205の下部へ戻す。ここで、リーン液戻りライン603の配管の口径は、第1リーン液ライン211の配管の口径の1/2~1/5程度とする。
 調整弁604は、リーン液戻りライン603に設けられており、再生塔205に戻されるリーン液204bの流量をその開度によって調節することができる。調整弁604の開度は、制御部602がリーン液204bの密度に基づいて制御する。
 本実施形態に係る制御部602による調整弁604の開度の制御方法について説明する。
 密度計601から通知されるリーン液204bの密度が所定値より低い場合、すなわちリーン液204bの二酸化炭素含有量が少ない場合、再生塔205内で加熱による二酸化炭素の分離が過剰に行われている。この時、制御部602は、調整弁604の開度を下げ、リーン液戻りライン603の流量を減らす。
 これにより、再生塔205内での加熱による二酸化炭素の分離が抑制されるため、リーン液204bの二酸化炭素含有量が増加し、密度が増す。また、吸収塔203に供給されるリーン液204bの二酸化炭素含有量を所望の量にすることができる。なお、このとき、吸収塔203に供給されるリーン液204bの流量が増大しないように、ポンプ212の流量を減少させてもよい。
 一方、密度計601から通知されるリーン液204bの密度が所定値より高い場合、すなわちリーン液204bの二酸化炭素含有量が多い場合、再生塔205において吸収液から十分に二酸化炭素が分離されていない。この時、制御部602は、調整弁604の開度を上げて、リーン液戻りライン603の流量を増やす。
 これにより、再生塔205内での加熱による二酸化炭素の分離が促進されるため、リーン液204bの二酸化炭素含有量が減少し、密度が低下する。また、吸収塔203に供給されるリーン液204bの二酸化炭素含有量を所望の量にすることができる。なお、このとき、吸収塔203に供給されるリーン液204bの流量が減少しないように、ポンプ212の流量を増加させてもよい。
 このように、本実施形態では、リーン液204bの密度に応じて、再生塔205へ戻すリーン液204bの流量を調整することで、二酸化炭素の目標回収率を確保しながら、リボイラー206への供給熱量を抑制する。上述したように、リーン液204bの密度は密度計601によりリアルタイムに求められるため、密度測定結果を再生塔205へ戻すリーン液204bの流量の制御に迅速に反映でき、二酸化炭素回収システムの運転安定性を向上させることができる。
 (第6の実施形態)図11に本発明の第6の実施形態に係る二酸化炭素回収システムの概略構成を示す。本実施形態は、図5に示す第2の実施形態と比較して、密度計301及び制御部302の代わりに、密度計701及び制御部702が設けられている点が異なる。図11において、図5に示す第2の実施形態と同一部分には同一符号を付して説明を省略する。なお、リッチ液戻りライン703及び調整弁704は、図5におけるリッチ液戻りライン303及び調整弁304と同様の構成であるとする。
 密度計701は、第2リーン液ライン221に設けられ、リーン液204bの密度をリアルタイムで測定する。密度計701は、液流体の密度をリアルタイムで測定できるものであれば、どのようなタイプのものでもよく、例えば、コリオリ式の質量流量計を用いる。密度計701は測定したリーン液204bの密度を制御部702に通知する。制御部702は、リーン液204bの密度に基づいて、調整弁704の開度を制御する。
 本実施形態に係る制御部702による調整弁704の開度の制御方法について説明する。
 密度計701から通知されるリーン液204bの密度が所定値より低い場合、すなわちリーン液204bの二酸化炭素含有量が少ない場合、再生塔205において吸収液から所望量以上の二酸化炭素が分離されている。この時、制御部702は、調整弁704の開度を下げ、リッチ液戻りライン703の流量を減らす。
 これにより、再生塔205に供給されるリッチ液204aの量が増え、再生塔205内での吸収液の流下量が増大するため、リーン液204bの二酸化炭素含有量が増加し、密度が増す。リボイラー206への供給熱量に適応したリッチ液204a供給量となるため、リーン液204bの二酸化炭素含有量が所望の量となり、二酸化炭素の目標回収率を確保することができる。
 一方、密度計701から通知されるリーン液204bの密度が所定値より高い場合、すなわちリーン液204bの二酸化炭素含有量が多い場合、再生塔205において吸収液から十分に二酸化炭素が分離されていない。この時、制御部702は、調整弁704の開度を上げて、リッチ液戻りライン703の流量を増やす。
 これにより、再生塔205に供給されるリッチ液204aの量が減り、再生塔205内での吸収液の流下量が減少するため、再生塔205で吸収液から二酸化炭素が十分に分離され、リーン液204bの密度が低下する。リボイラー206への供給熱量を増やすことなく、再生塔205において吸収液から十分に二酸化炭素を分離することができる。
 このように、本実施形態では、リーン液204bの密度に応じて、吸収塔203へ戻すリッチ液204aの流量を調整することで、二酸化炭素の目標回収率を確保しながら、リボイラー206への供給熱量を抑制する。上述したように、リーン液204bの密度は密度計701によりリアルタイムに求められるため、密度測定結果を吸収塔203へ戻すリッチ液204aの流量の制御に迅速に反映でき、二酸化炭素回収システムの運転安定性を向上させることができる。
 (第7の実施形態)図12に本発明の第7の実施形態に係る二酸化炭素回収システムの概略構成を示す。本実施形態は、図5に示す第2の実施形態と比較して、密度計301、制御部302、リッチ液戻りライン303、及び調整弁304の代わりに、密度計801及び制御部802が設けられている点が異なる。図12において、図5に示す第2の実施形態と同一部分には同一符号を付して説明を省略する。
 密度計801は、第2リーン液ライン221に設けられ、リーン液204bの密度をリアルタイムで測定する。密度計801は、液流体の密度をリアルタイムで測定できるものであれば、どのようなタイプのものでもよく、例えば、コリオリ式の質量流量計を用いる。密度計801は測定したリーン液204bの密度を制御部802に通知する。制御部802は、リーン液204bの密度に基づいて、リボイラー206の設定温度(供給熱量)を制御する。
 本実施形態に係る制御部802によるリボイラー206の設定温度の制御方法について説明する。
 密度計801から通知されるリーン液204bの密度が所定値より低い場合、すなわちリーン液204bの二酸化炭素含有量が少ない場合、制御部802は、リボイラー206の設定温度を下げる。
 これにより、リーン液204bの二酸化炭素含有量が増加し、密度が増加する。リーン液204bの二酸化炭素含有量が所望の量となり、二酸化炭素の目標回収率を確保することができる。また、リボイラー206への供給熱量を低減することができる。
 一方、密度計801から通知されるリーン液204bの密度が所定値より高い場合、すなわちリーン液204bの二酸化炭素含有量が多い場合、再生塔205において吸収液から十分に二酸化炭素が分離されていない。この時、制御部802は、リボイラー206の設定温度を上げる。
 これにより、再生塔205で吸収液から二酸化炭素が十分に分離され、リーン液204bの密度が低下する。リーン液204bの二酸化炭素含有量が所望の量となり、二酸化炭素の目標回収率を確保することができる。
 このように、本実施形態では、リーン液204bの密度に応じて、リボイラー206の設定温度を調整することで、二酸化炭素の目標回収率を確保しながら、リボイラー206への供給熱量を抑制する。上述したように、リーン液204bの密度は密度計801によりリアルタイムに求められるため、密度測定結果をリボイラー206の設定温度の制御に迅速に反映でき、二酸化炭素回収システムの運転安定性を向上させることができる。
 上記第2~第7の実施形態では、吸収液の密度をリアルタイムに測定し、この密度から二酸化炭素含有量を算出(推定)していた。但し、この手法は、吸収液の組成が変化していないことを前提にしている。吸収液の組成が変化した場合、吸収液の密度と二酸化炭素含有量との関係も変化するためである。
 従って、上記第1の実施形態に係る測定装置を用いて所定時間(例えば15分)毎に吸収液の成分分析を行い、分析結果に基づいて、吸収液の密度と二酸化炭素含有量との関係を補正することが好適である。
 例えば、制御部302~802は、測定装置の検知部7の検知結果を取得し、吸収液の密度と二酸化炭素含有量との関係を算出する。そして、制御部302~802は、図7に示すような好適な二酸化炭素含有量に相当する吸収液密度範囲を算出し、密度計301~801の測定結果がこの範囲から外れていた場合は、吸収塔203や再生塔205に戻す吸収液の量、又はガス温調器220の設定温度、又はリボイラー206の設定温度を制御する。
 このように、上記第1の実施形態に係る測定装置を併用することで、吸収液中の二酸化炭素含有量をさらに精度良く求めることができ、二酸化炭素回収システムの運転安定性をさらに向上させることができる。
 上記実施形態では、吸収液としてアミン化合物水溶液等の有機溶液を用いる例を説明したが、水を含まない有機溶媒を吸収液として用いる場合でも、二酸化炭素回収システムを循環する吸収液には燃焼排ガスから吸収した水分が含まれる。従って、測定装置で成分分析される吸収液は有機溶液とみなすことができる。
 なお、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。
1 自動定量採取部
2 気化部
3 有機ガス保持部
4 流路切り替え部
5 無機ガス分離部
6 有機ガス分離部
7 検知部
8 恒温部
301、401、501、601、701、801 密度計
302、402、502、602、702、802 制御部

Claims (14)

  1.  無機ガスが溶け込んだ有機溶液を気化し、キャリアガスと共に放出する気化部と、
     前記気化部から放出されたガスが供給され、第1の温度において、有機ガスを保持すると共に無機ガスを通過させ、前記第1の温度より高い第2の温度において、保持している有機ガスを放出する有機ガス保持部と、
     前記有機ガス保持部を通過した前記無機ガスに含まれる無機成分を分離して放出する無機ガス分離部と、
     前記有機ガス保持部から放出された前記有機ガスに含まれる有機成分を分離して放出する有機ガス分離部と、
     前記無機ガス分離部から放出された前記無機成分及び前記有機ガス分離部から放出された前記有機成分を検知する検知部と、
     を備える測定装置。
  2.  前記有機ガス保持部を通過した前記無機ガスを前記無機ガス分離部へ供給すると共に前記有機ガス分離部へキャリアガスを供給し、前記有機ガス保持部から放出された前記有機ガスを前記有機ガス分離部へ供給すると共に前記無機ガス分離部へキャリアガスを供給する流路切り替え部をさらに備えることを特徴とする請求項1に記載の測定装置。
  3.  前記有機ガス保持部、前記流路切り替え部、前記無機ガス分離部、及び前記有機ガス分離部を収納し、所定温度に保つことができる恒温部をさらに備えることを特徴とする請求項2に記載の測定装置。
  4.  前記無機ガス分離部は、前記第1の温度より高く、前記第2の温度より低い第3の温度において、水蒸気を放出し、
     前記流路切り替え部は、前記第1の温度から前記第3の温度への上昇に伴い、前記有機ガス保持部から放出されたガスの供給先を前記無機ガス分離部から前記有機ガス分離部へ切り替えることを特徴とする請求項2又は3に記載の測定装置。
  5.  前記有機溶液は、燃焼排ガスに含まれる二酸化炭素を吸収液に吸収させる吸収塔と、前記吸収塔から二酸化炭素を吸収した吸収液が供給され、当該吸収液から蒸気を含む二酸化炭素ガスを放出させるとともに当該吸収液を再生する再生塔と、を有する二酸化炭素回収システムを循環する吸収液であり、
     前記検知部は、前記吸収液の二酸化炭素含有量を検知することを特徴とする請求項1乃至4のいずれかに記載の測定装置。
  6.  気化部、有機ガス保持部、流路切り替え部、無機ガス分離部、有機ガス分離部、及び検知部を備える測定装置を用いて、無機ガスが溶け込んだ有機溶液の成分を測定する測定方法であって、
     前記気化部が、前記有機溶液を気化して、キャリアガスと共に放出し、
     前記有機ガス保持部が、第1の温度において、前記気化部から放出されたガスに含まれる有機ガスを保持すると共に無機ガスを通過させ、
     前記無機ガス分離部が、前記第1の温度より高く、前記有機ガス保持部が保持している有機ガスを放出する第2の温度よりも低い第3の温度において、前記有機ガス保持部を通過した前記無機ガスに含まれる無機成分を分離して放出し、
     前記検知部が、前記無機ガス分離部から放出された前記無機成分を検知し、
     前記有機ガス保持部が、前記第2の温度において、前記有機ガスを放出し、
     前記有機ガス分離部が、前記有機ガス保持部から放出された前記有機ガスに含まれる有機成分を分離して放出し、
     前記検知部が、前記有機ガス分離部から放出された前記有機成分を検知することを特徴とする測定方法。
  7.  燃焼排ガスに含まれる二酸化炭素を吸収液に吸収させ、二酸化炭素を含む吸収液を排出する吸収塔と、
     前記吸収塔から排出された吸収液が供給され、当該吸収液から蒸気を含む二酸化炭素ガスを除去し、当該吸収液を再生して排出する再生塔と、
     前記吸収塔と前記再生塔との間に設けられ、前記再生塔から排出されて前記吸収塔に供給される吸収液を熱源として、前記吸収塔から排出されて前記再生塔に供給される吸収液を加熱する再生熱交換器と、
     前記吸収塔から排出された吸収液又は前記再生塔から排出された吸収液の密度を測定する密度計と、
     前記吸収液の一部を気化し、キャリアガスと共に放出する気化部と、
     前記気化部から放出されたガスが供給され、第1の温度において、有機ガスを保持すると共に無機ガスを通過させ、前記第1の温度より高い第2の温度において、保持している有機ガスを放出する有機ガス保持部と、
     前記有機ガス保持部を通過した前記無機ガスに含まれる無機成分を分離して放出する無機ガス分離部と、
     前記有機ガス保持部から放出された前記有機ガスに含まれる有機成分を分離して放出する有機ガス分離部と、
     前記無機ガス分離部から放出された前記無機成分及び前記有機ガス分離部から放出された前記有機成分を検知する検知部と、
     前記密度計によって測定された密度及び前記検知部の検知結果に基づいて、前記吸収塔から排出され前記吸収塔に戻される吸収液の量、又は前記再生塔から排出され前記再生塔に戻される吸収液の量を制御する制御部と、
     を備える二酸化炭素回収システム。
  8.  前記吸収塔から排出された吸収液を前記吸収塔へ戻す吸収液戻りラインと、
     前記吸収液戻りラインの流量を調整する調整弁と、
     をさらに備え、
     前記密度計は前記吸収塔から排出された吸収液の密度を測定し、
     前記制御部は、前記検知部の検知結果に基づいて第1閾値及び第2閾値を算出し、前記密度が前記第1閾値より小さい場合、前記前記吸収液戻りラインの流量を増やすように前記調整弁を制御し、前記密度が前記第2閾値より大きい場合、前記前記吸収液戻りラインの流量を減らすように前記調整弁を制御することを特徴とする請求項7に記載の二酸化炭素回収システム。
  9.  前記再生塔から排出された吸収液を前記再生塔へ戻す吸収液戻りラインと、
     前記吸収液戻りラインの流量を調整する調整弁と、
     をさらに備え、
     前記密度計は前記吸収塔から排出された吸収液の密度を測定し、
     前記制御部は、前記検知部の検知結果に基づいて第1閾値及び第2閾値を算出し、前記密度が前記第1閾値より小さい場合、前記前記吸収液戻りラインの流量を増やすように前記調整弁を制御し、前記密度が前記第2閾値より大きい場合、前記前記吸収液戻りラインの流量を減らすように前記調整弁を制御することを特徴とする請求項7に記載の二酸化炭素回収システム。
  10.  前記再生塔から排出された吸収液を前記再生塔へ戻す吸収液戻りラインと、
     前記吸収液戻りラインの流量を調整する調整弁と、
     をさらに備え、
     前記密度計は前記再生塔から排出された吸収液の密度を測定し、
     前記制御部は、前記検知部の検知結果に基づいて第1閾値及び第2閾値を算出し、前記密度が前記第1閾値より小さい場合、前記前記吸収液戻りラインの流量を減らすように前記調整弁を制御し、前記密度が前記第2閾値より大きい場合、前記前記吸収液戻りラインの流量を増やすように前記調整弁を制御することを特徴とする請求項7に記載の二酸化炭素回収システム。
  11.  前記吸収塔から排出された吸収液を前記吸収塔へ戻す吸収液戻りラインと、
     前記吸収液戻りラインの流量を調整する調整弁と、
     をさらに備え、
     前記密度計は前記再生塔から排出された吸収液の密度を測定し、
     前記制御部は、前記検知部の検知結果に基づいて第1閾値及び第2閾値を算出し、前記密度が前記第1閾値より小さい場合、前記前記吸収液戻りラインの流量を減らすように前記調整弁を制御し、前記密度が前記第2閾値より大きい場合、前記前記吸収液戻りラインの流量を増やすように前記調整弁を制御することを特徴とする請求項7に記載の二酸化炭素回収システム。
  12.  燃焼排ガスの温度を調整して排出するガス温調器と、
     前記ガス温調器から排出された燃焼排ガスに含まれる二酸化炭素を吸収液に吸収させ、二酸化炭素を含む吸収液を排出する吸収塔と、
     前記吸収塔から排出された吸収液が供給され、当該吸収液から蒸気を含む二酸化炭素ガスを除去し、当該吸収液を再生して排出する再生塔と、
     前記吸収塔と前記再生塔との間に設けられ、前記再生塔から排出されて前記吸収塔に供給される吸収液を熱源として、前記吸収塔から排出されて前記再生塔に供給される吸収液を加熱する再生熱交換器と、
     前記吸収塔から排出された吸収液の密度を測定する密度計と、
     前記吸収液の一部を気化し、キャリアガスと共に放出する気化部と、
     前記気化部から放出されたガスが供給され、第1の温度において、有機ガスを保持すると共に無機ガスを通過させ、前記第1の温度より高い第2の温度において、保持している有機ガスを放出する有機ガス保持部と、
     前記有機ガス保持部を通過した前記無機ガスに含まれる無機成分を分離して放出する無機ガス分離部と、
     前記有機ガス保持部から放出された前記有機ガスに含まれる有機成分を分離して放出する有機ガス分離部と、
     前記無機ガス分離部から放出された前記無機成分及び前記有機ガス分離部から放出された前記有機成分を検知する検知部と、
     前記検知部の検知結果に基づいて第1閾値及び第2閾値を算出し、前記密度が前記第1閾値より小さい場合に前記ガス温調器の設定温度を下げるように制御し、前記密度が第2閾値より大きい場合に前記ガス温調器の設定温度を上げるように制御する制御部と、
     を備える二酸化炭素回収システム。
  13.  燃焼排ガスに含まれる二酸化炭素を吸収液に吸収させ、二酸化炭素を含む吸収液を排出する吸収塔と、
     前記吸収塔から排出された吸収液が供給され、当該吸収液から蒸気を含む二酸化炭素ガスを除去し、当該吸収液を再生して排出する再生塔と、
     前記再生塔に貯留される吸収液の一部を加熱するリボイラーと、
     前記吸収塔と前記再生塔との間に設けられ、前記再生塔から排出されて前記吸収塔に供給される吸収液を熱源として、前記吸収塔から排出されて前記再生塔に供給される吸収液を加熱する再生熱交換器と、
     前記再生塔から排出された吸収液の密度を測定する密度計と、
     前記吸収液の一部を気化し、キャリアガスと共に放出する気化部と、
     前記気化部から放出されたガスが供給され、第1の温度において、有機ガスを保持すると共に無機ガスを通過させ、前記第1の温度より高い第2の温度において、保持している有機ガスを放出する有機ガス保持部と、
     前記有機ガス保持部を通過した前記無機ガスに含まれる無機成分を分離して放出する無機ガス分離部と、
     前記有機ガス保持部から放出された前記有機ガスに含まれる有機成分を分離して放出する有機ガス分離部と、
     前記無機ガス分離部から放出された前記無機成分及び前記有機ガス分離部から放出された前記有機成分を検知する検知部と、
     前記検知部の検知結果に基づいて第1閾値及び第2閾値を算出し、前記密度が前記第1閾値より小さい場合に前記リボイラーの設定温度を下げるように制御し、前記密度が前記第2閾値より大きい場合に前記リボイラーの設定温度を上げるように制御する制御部と、
     を備える二酸化炭素回収システム。
  14.  前記密度計はコリオリ式質量流量計を含むことを特徴とする請求項7乃至13のいずれかに記載の二酸化炭素回収システム。
PCT/JP2010/055218 2009-04-08 2010-03-25 測定装置、測定方法、及び二酸化炭素回収システム WO2010116892A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/263,686 US20120067219A1 (en) 2009-04-08 2010-03-25 Measurement device, measurement method, and carbon dioxide recovery system
EP10761592.4A EP2418470B1 (en) 2009-04-08 2010-03-25 Measurement device, measurement method, and carbon dioxide recovery system
CN201080015694.6A CN102388301B (zh) 2009-04-08 2010-03-25 测量装置、测量方法以及二氧化碳回收系统
AU2010235596A AU2010235596B2 (en) 2009-04-08 2010-03-25 Measurement device, measurement method, and carbon dioxide recovery system

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2009093701 2009-04-08
JP2009-093701 2009-04-08
JP2009-170795 2009-07-22
JP2009170795 2009-07-22
JP2010-046923 2010-03-03
JP2010046923A JP5479949B2 (ja) 2009-04-08 2010-03-03 測定装置、測定方法、及び二酸化炭素回収システム

Publications (1)

Publication Number Publication Date
WO2010116892A1 true WO2010116892A1 (ja) 2010-10-14

Family

ID=42936178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/055218 WO2010116892A1 (ja) 2009-04-08 2010-03-25 測定装置、測定方法、及び二酸化炭素回収システム

Country Status (6)

Country Link
US (1) US20120067219A1 (ja)
EP (1) EP2418470B1 (ja)
JP (1) JP5479949B2 (ja)
CN (1) CN102388301B (ja)
AU (1) AU2010235596B2 (ja)
WO (1) WO2010116892A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120167760A1 (en) * 2011-01-05 2012-07-05 Kabushiki Kaisha Toshiba Carbon dioxide separating and recovering system and method of controlling the same
CN103429881A (zh) * 2011-03-08 2013-12-04 丰田自动车株式会社 带混合气体生成系统的车辆及带燃料制造系统的车辆
EP2659948A4 (en) * 2010-12-01 2017-04-19 Mitsubishi Heavy Industries, Ltd. C02 recovery system
CN107643369A (zh) * 2017-10-16 2018-01-30 大连理工大学 一种气体‑溶液两相流鼓泡吸收过程特性测试装置
JP2018134604A (ja) * 2017-02-23 2018-08-30 川崎重工業株式会社 二酸化炭素分離回収システム

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5582960B2 (ja) 2010-10-22 2014-09-03 株式会社東芝 二酸化炭素分離回収システム及びリボイラー入熱量測定方法
EP2786793B1 (en) * 2011-12-01 2017-10-18 Kabushiki Kaisha Toshiba, Inc. Carbon dioxide recovery device, carbon dioxide recovery method, and amine compound recovery method
JP6180793B2 (ja) 2012-06-20 2017-08-16 株式会社東芝 二酸化炭素回収装置及び二酸化炭素回収方法
RS57795B1 (sr) 2012-07-16 2018-12-31 Fibrogen Inc Kristalni oblici inhibitora prolil hidroksilaze
CN104508456B (zh) * 2012-07-27 2018-10-23 通用电气公司 用于流体流中的污染物检测的系统和方法
US9901870B2 (en) 2013-04-09 2018-02-27 Kabushiki Kaisha Toshiba Carbon dioxide capturing system and method of operating same
JP6158054B2 (ja) * 2013-11-29 2017-07-05 株式会社東芝 二酸化炭素回収システムおよびその運転方法
US10005019B2 (en) * 2014-02-21 2018-06-26 Sharp Kabushiki Kaisha Carbon dioxide concentration-controlling device and electronic apparatus
WO2015156787A1 (en) * 2014-04-09 2015-10-15 Empire Technology Development Llc Removal of target compounds from gases
CN106659962B (zh) 2014-08-20 2019-06-21 夏普株式会社 二氧化碳浓度控制系统和二氧化碳浓度控制装置
JP6269576B2 (ja) * 2015-05-25 2018-01-31 横河電機株式会社 多成分ガス分析システム及び方法
JP7043249B2 (ja) * 2017-12-27 2022-03-29 三菱重工エンジニアリング株式会社 Co2回収装置、co2回収方法
ES2868875T3 (es) * 2018-10-15 2021-10-22 Alfa Laval Corp Ab Sistema de limpieza de gases de escape y método para limpiar gases de escape
JP7332404B2 (ja) * 2019-09-12 2023-08-23 株式会社東芝 二酸化炭素回収システムおよびその運転方法
DE102020134417A1 (de) 2020-12-21 2022-06-23 Endress+Hauser Conducta Gmbh+Co. Kg TOC-Analysator und Verfahren zur Anfeuchtung eines Bindemittels in einem TOC-Analysator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61213655A (ja) * 1985-03-19 1986-09-22 Shimadzu Corp ガスクロマトグラフと質量分析計を備えた熱分析装置
JP2001033437A (ja) * 1999-07-26 2001-02-09 Mitsubishi Heavy Ind Ltd 金属中の微量ヘリウム測定方法
JP2004323339A (ja) 2003-04-30 2004-11-18 Mitsubishi Heavy Ind Ltd 二酸化炭素の回収方法及びそのシステム
JP2010100491A (ja) * 2008-10-24 2010-05-06 Toshiba Corp 二酸化炭素の回収装置および方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2806123C2 (de) * 1978-02-14 1985-02-21 Siemens AG, 1000 Berlin und 8000 München Umschalteinrichtung mit einem Verzweigungsstück zwischen zwei gaschromatographischen Trennsäulen
GB8720611D0 (en) * 1987-09-02 1987-10-07 Philips Electronic Associated Gas chromatography apparatus
DE3735814A1 (de) * 1987-10-22 1989-05-11 Siemens Ag Einrichtung und verfahren zum dosieren von proben fuer die gaschromatographische analyse
DE19843942C1 (de) * 1998-09-24 2000-03-16 Siemens Ag Gasdurchfluß-Umschalteinrichtung
BR0104703A (pt) * 2000-02-29 2002-02-05 Mitsubishi Heavy Ind Ltd Sistema de sìntese se metanol fazendo uso de biomassa
JP2002147948A (ja) * 2000-11-10 2002-05-22 Japan Organo Co Ltd ガス分離装置及びガス分離方法
WO2006037320A1 (en) * 2004-10-08 2006-04-13 Union Engineering A/S Method for recovery of carbon dioxide from a gas
CN101103262B (zh) * 2005-06-07 2011-06-08 东京毅力科创株式会社 测定有机物气体浓度的装置和方法
WO2007020715A1 (ja) * 2005-08-12 2007-02-22 Toshihiro Abe 二酸化炭素回収及び燃焼装置
JP4828443B2 (ja) * 2007-01-25 2011-11-30 電源開発株式会社 有機ハロゲン類の分離方法および低揮発性有機ハロゲン類濃度の測定方法ならびにダイオキシン類濃度の測定方法
DE102007007581A1 (de) * 2007-02-15 2008-08-21 Linde Ag Verfahren und Vorrichtung zur Trennung eines Gasgemisches
TWI332576B (en) * 2007-04-26 2010-11-01 Sumitomo Electric Industries Analysis method of red phosphorus contained in organic material
TWI352615B (en) * 2009-06-09 2011-11-21 Univ Nat Taiwan Science Tech Fluid separation method and fluid seperation appar

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61213655A (ja) * 1985-03-19 1986-09-22 Shimadzu Corp ガスクロマトグラフと質量分析計を備えた熱分析装置
JP2001033437A (ja) * 1999-07-26 2001-02-09 Mitsubishi Heavy Ind Ltd 金属中の微量ヘリウム測定方法
JP2004323339A (ja) 2003-04-30 2004-11-18 Mitsubishi Heavy Ind Ltd 二酸化炭素の回収方法及びそのシステム
JP2010100491A (ja) * 2008-10-24 2010-05-06 Toshiba Corp 二酸化炭素の回収装置および方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2418470A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2659948A4 (en) * 2010-12-01 2017-04-19 Mitsubishi Heavy Industries, Ltd. C02 recovery system
US20120167760A1 (en) * 2011-01-05 2012-07-05 Kabushiki Kaisha Toshiba Carbon dioxide separating and recovering system and method of controlling the same
EP2474348A3 (en) * 2011-01-05 2012-08-15 Kabushiki Kaisha Toshiba Carbon dioxide separating and recovering system and method of controlling the same
JP2012152731A (ja) * 2011-01-05 2012-08-16 Toshiba Corp 二酸化炭素分離回収システム及びその制御方法
US8741028B2 (en) 2011-01-05 2014-06-03 Kabushiki Kaisha Toshiba Carbon dioxide separating and recovering system and method of controlling the same
CN103429881A (zh) * 2011-03-08 2013-12-04 丰田自动车株式会社 带混合气体生成系统的车辆及带燃料制造系统的车辆
CN103429881B (zh) * 2011-03-08 2015-07-22 丰田自动车株式会社 带混合气体生成系统的车辆及带燃料制造系统的车辆
JP2018134604A (ja) * 2017-02-23 2018-08-30 川崎重工業株式会社 二酸化炭素分離回収システム
CN107643369A (zh) * 2017-10-16 2018-01-30 大连理工大学 一种气体‑溶液两相流鼓泡吸收过程特性测试装置
CN107643369B (zh) * 2017-10-16 2023-11-24 大连理工大学 一种气体-溶液两相流鼓泡吸收过程特性测试装置

Also Published As

Publication number Publication date
JP5479949B2 (ja) 2014-04-23
US20120067219A1 (en) 2012-03-22
EP2418470B1 (en) 2013-12-11
JP2011042554A (ja) 2011-03-03
CN102388301A (zh) 2012-03-21
CN102388301B (zh) 2014-08-06
AU2010235596B2 (en) 2012-12-13
EP2418470A1 (en) 2012-02-15
EP2418470A4 (en) 2013-04-10
AU2010235596A1 (en) 2011-10-20

Similar Documents

Publication Publication Date Title
JP5479949B2 (ja) 測定装置、測定方法、及び二酸化炭素回収システム
JP5331587B2 (ja) 二酸化炭素回収システム
US8425849B2 (en) Reclaiming apparatus
JP5694137B2 (ja) 二酸化炭素分離回収システム及びその制御方法
CA2754466C (en) Carbon dioxide separation recovery system and method of measuring amount of reboiler input heat
JP5383339B2 (ja) Co2回収装置に用いるco2吸収液の濃度管理方法
JP5741690B2 (ja) 二酸化炭素の回収方法及び回収装置
JP2010201379A (ja) 二酸化炭素回収システム
WO2013161574A1 (ja) Co2回収装置およびco2回収方法
JP2014226583A (ja) 二酸化炭素分離回収装置及びその運転方法
JP5431005B2 (ja) 二酸化炭素回収システム
JP2011177684A (ja) 二酸化炭素分離回収システム
JP5527095B2 (ja) 二酸化炭素の回収方法及び回収装置
EP2998012B1 (en) Method for operating a gas absorption and regeneration apparatus
AU2015286248B2 (en) CO2 recovery unit and CO2 recovery method
KR101351316B1 (ko) 이산화탄소 회수장치
CN109718636B (zh) 二氧化碳分离回收系统以及二氧化碳分离回收系统的运转方法
WO2014046147A1 (ja) 蒸気供給システム及びこれを備えたco2回収設備
JP2015020091A (ja) 二酸化炭素分離回収システム及びその運転方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080015694.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10761592

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010235596

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2010761592

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2010235596

Country of ref document: AU

Date of ref document: 20100325

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13263686

Country of ref document: US