WO2010116474A1 - 光伝送システム及び光伝送方法 - Google Patents

光伝送システム及び光伝送方法 Download PDF

Info

Publication number
WO2010116474A1
WO2010116474A1 PCT/JP2009/056580 JP2009056580W WO2010116474A1 WO 2010116474 A1 WO2010116474 A1 WO 2010116474A1 JP 2009056580 W JP2009056580 W JP 2009056580W WO 2010116474 A1 WO2010116474 A1 WO 2010116474A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
frequency
optical
low
node device
Prior art date
Application number
PCT/JP2009/056580
Other languages
English (en)
French (fr)
Inventor
崇 豊巻
元義 関屋
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to JP2011508116A priority Critical patent/JP5206866B2/ja
Priority to PCT/JP2009/056580 priority patent/WO2010116474A1/ja
Publication of WO2010116474A1 publication Critical patent/WO2010116474A1/ja
Priority to US13/137,933 priority patent/US8699884B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/077Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
    • H04B10/0773Network aspects, e.g. central monitoring of transmission parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0272Transmission of OAMP information
    • H04J14/0276Transmission of OAMP information using pilot tones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2210/00Indexing scheme relating to optical transmission systems
    • H04B2210/07Monitoring an optical transmission system using a supervisory signal
    • H04B2210/074Monitoring an optical transmission system using a supervisory signal using a superposed, over-modulated signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/021Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM]
    • H04J14/0212Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM] using optical switches or wavelength selective switches [WSS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0256Optical medium access at the optical channel layer
    • H04J14/0258Wavelength identification or labelling

Definitions

  • the present invention relates to an optical transmission system and an optical transmission method. For example, when an optical transmission path is changed or an optical node device type is changed, whether or not wavelength-multiplexed light can be transmitted is determined on the user side.
  • the present invention relates to an optical transmission system and an optical transmission method capable of speeding up judgment.
  • a plurality of optical node devices that transmit wavelength-multiplexed wavelength multiplexed light are connected to each other via an optical transmission line.
  • a change in the optical transmission path of wavelength multiplexed light or a change in the type of the optical node device for example, optical add / drop from an optical amplification repeater (ILA: In Line Amp)
  • ILA optical amplification repeater
  • OADM Optical Add-Drop Multiplexer
  • a wavelength selective switch capable of switching and outputting a signal light of an arbitrary wavelength in an arbitrary direction and a signal for each wavelength.
  • a filter such as an arrayed waveguide grating (AWG) having a spectral function for extracting light is often used.
  • a filter such as an arrayed waveguide grating (AWG) having a spectral function for extracting light is often used.
  • a filter such as an arrayed waveguide grating (AWG) having a spectral function for extracting light is often used.
  • a filter such as an arrayed waveguide grating (AWG) having a spectral function for extracting light is often used.
  • AWG arrayed waveguide grating
  • the wavelength band is narrowed every time wavelength multiplexed light is transmitted. For this reason, there is an upper limit to the number of times wavelength multiplexed light passes through the optical node device. Therefore, in the optical transmission system, when the number of times that the wavelength multiplexed light passes through the optical
  • wavelength multiplexed light In a conventional optical transmission system, whether or not wavelength multiplexed light can be transmitted, such as the number of times wavelength multiplexed light passes through the optical node device, when the optical transmission path is changed or the type of the optical node device is changed.
  • This information (hereinafter referred to as “transmission availability information”) is stored in advance on the management system side that manages this system.
  • the present invention has been made to solve the above-described problems caused by the prior art, and is it possible to transmit wavelength division multiplexed light when the optical transmission path is changed or the type of the optical node device is changed? It is an object of the present invention to provide an optical transmission system and an optical transmission method capable of speeding up the judgment on the user side of whether or not.
  • an optical transmission system disclosed in this application includes, in one aspect, wavelength multiplexed light including a plurality of signal lights having different wavelengths connected to each other via an optical transmission line.
  • a superposed signal light generating means for superposing a low-frequency signal that is a frequency of the low-frequency signal, a low-frequency signal extracting means for extracting a low-frequency signal of a predetermined range of frequency for each of the plurality of signal lights, and the plurality of signals Based on the frequency of the low-frequency signal extracted by the low-frequency signal extraction means for each of the lights, the number of optical node devices that have passed through until being transmitted to the optical node device And a transit node count measuring means for measuring that number of passing nodes, respectively.
  • FIG. 1 is a diagram illustrating a schematic configuration of the optical transmission system according to the first embodiment.
  • FIG. 2 is a functional block diagram showing the configuration of the optical node device.
  • FIG. 3 is a functional block diagram showing the configuration of the wavelength selective switch.
  • FIG. 4 is a flowchart illustrating the processing procedure of the optical transmission process performed by the optical transmission system according to the first embodiment.
  • FIG. 5 is a functional block diagram of the configuration of the optical node device included in the optical transmission system according to the second embodiment.
  • FIG. 6 is a functional block diagram showing the configuration of the wavelength selective switch.
  • FIG. 7 is a diagram illustrating an example of a frequency spectrum analyzed by the frequency spectrum analysis unit.
  • FIG. 1 is a diagram illustrating a schematic configuration of the optical transmission system according to the first embodiment.
  • FIG. 2 is a functional block diagram showing the configuration of the optical node device.
  • FIG. 3 is a functional block diagram showing the configuration of the wavelength selective switch.
  • FIG. 4 is a flowchar
  • FIG. 8 is a flowchart illustrating a processing procedure of optical transmission processing by the optical transmission system according to the second embodiment.
  • FIG. 9 is a functional block diagram of the configuration of the optical node device included in the optical transmission system according to the third embodiment.
  • FIG. 10 is a diagram illustrating an example of a frequency spectrum analyzed by the frequency spectrum analysis unit.
  • FIG. 11 is a flowchart of a process procedure of an optical transmission process performed by the optical transmission system according to the third embodiment.
  • FIG. 12 is a diagram for explaining a problem when the optical transmission path is changed so as to straddle a plurality of optical transmission systems having different management systems.
  • the optical transmission system disclosed in the present application shows an example in which a plurality of optical node devices are connected to each other in a grid pattern through an optical transmission path.
  • the node devices may be configured to be connected to each other in a linear or other shape via an optical transmission line.
  • FIG. 1 is a diagram illustrating a schematic configuration of the optical transmission system according to the first embodiment.
  • an optical transmission system 1 includes a plurality of optical node devices 2 that transmit wavelength multiplexed light in which a plurality of signal lights having different wavelengths are multiplexed.
  • the optical node devices 2 are connected to each other in a grid pattern through an optical transmission line.
  • the optical node device 2 is an OADM device that performs insertion (Add) or branching (Drop) of signal light allocated for each wavelength.
  • each optical node device 2 has a low frequency signal (A ⁇ sin ( ⁇ ⁇ t) having the same (common) frequency in each optical node device 2, where A is a constant, A low frequency signal is superimposed on each of the signal light by performing amplitude modulation on each of the signal light included in the wavelength-multiplexed light by performing amplitude modulation with ⁇ being an angular velocity and t being time.
  • Each optical node device 2 extracts a low-frequency signal having a predetermined range of frequencies from each of the plurality of signal lights included in the wavelength multiplexed light, and analyzes the frequency spectrum of the extracted low-frequency signal.
  • each optical node device 2 analyzing the frequency spectrum of the low frequency signal.
  • one optical node device 2 superimposes a low-frequency signal on the wavelength-multiplexed light, so the frequency spectrum of the low-frequency signal is A ⁇ sin ( ⁇ ⁇ t).
  • each optical node device 2 transmits a low-frequency signal having the same frequency in each optical node device 2 to each of a plurality of signal lights included in the wavelength multiplexed light.
  • Each optical node device 2 extracts a low frequency signal having a predetermined frequency range from a plurality of optical signals included in the wavelength multiplexed light, and analyzes the frequency spectrum of the extracted low frequency signal. Then, each optical node device 2 measures the number of optical node devices 2 through which the wavelength multiplexed light has passed before being transmitted to the optical node device 2 based on the analyzed frequency spectrum.
  • the optical transmission path is changed or the type of the optical node device is changed, the number of passing nodes can be presented to the user side.
  • the conventional process of inquiring to can be omitted.
  • FIG. 2 is a functional block diagram showing the configuration of the optical node device 2.
  • each optical node device 2 includes a preamplifier 3, a wavelength selective switch 4, and a postamplifier 5.
  • the preamplifier 3 and the postamplifier 5 are optical amplifiers that amplify wavelength multiplexed light, and are disposed on the upstream side and the downstream side of the wavelength selective switch 4, respectively.
  • the wavelength selective switch 4 drops (drops) signal light of an arbitrary wavelength from the wavelength multiplexed light input to the optical node device 2 or inserts (Add) signal light of an arbitrary wavelength into the wavelength multiplexed light. . Further, the wavelength selective switch 4 selects signal light of an arbitrary wavelength from the wavelength multiplexed light, and outputs the signal light of the selected wavelength to an arbitrary output port.
  • the wavelength selective switch 4 includes a spectroscopic device such as an AWG and a diffraction grating, and an optical switch device such as a MEMS mirror and a liquid crystal device. The output port is switched by moving the optical switch device corresponding to each wavelength.
  • FIG. 3 is a functional block diagram showing a configuration for executing extraction / superposition of a low-frequency signal included in the wavelength selective switch 4.
  • FIG. 3 only the configuration related to the extraction / superposition characteristics of the wavelength selective switch 4 is shown, and the configuration corresponding to a plurality of inputs or a plurality of outputs is omitted.
  • the wavelength selective switch 4 includes a demultiplexing unit 15, a multiplexing unit 16, and low frequency signal extraction / superimposition units (10-1 to 10-n).
  • the low frequency signal extraction / superimposition units 10-1 to 10-n receive the signal lights having wavelengths ⁇ 1 to ⁇ n demultiplexed by the demultiplexing unit 15, respectively, and the superimposed signal light generation unit 11, the signal extraction unit 12, The frequency spectrum analyzing unit 13 and the passing node number measuring unit 14 are included.
  • the superimposed signal light generation unit 11 performs amplitude modulation on each signal light included in the wavelength multiplexed light by performing amplitude modulation with a low frequency signal having the same frequency in each optical node device 2, and the low frequency is superimposed on each signal light.
  • Wavelength multiplexed light hereinafter referred to as “low frequency superimposed signal multiplexed light” is generated.
  • the superimposed signal light generation unit 11 includes a low frequency signal generation unit 11a, a superposition circuit unit 11b, and a low frequency superposition unit 11c.
  • the low-frequency signal generator 11a outputs a low-frequency signal (A ⁇ sin ( ⁇ ⁇ t), where A is a constant, ⁇ is an angular velocity, and t is time) having the same frequency in each optical node device 2.
  • the superimposing circuit unit 11b multiplies the low frequency signal extracted by the signal extracting unit 12 and the low frequency signal A ⁇ sin ( ⁇ ⁇ t) output from the low frequency signal generating unit 11a. Outputs a frequency signal.
  • the low-frequency superimposing unit 11c generates low-frequency superimposed signal multiplexed light by performing amplitude modulation on the signal light ⁇ 1 demultiplexed by the demultiplexing unit 15 using the superimposed low-frequency signal.
  • the signal extraction unit 12 extracts a low frequency signal having a frequency within a predetermined range from the superimposed signal light generated by the superimposed signal light generation unit 11 in the immediately preceding optical node device 2, and the extracted low frequency signal is a frequency spectrum analysis unit. 13 to output.
  • the signal extraction unit 12 extracts the low frequency signal A ⁇ sin ( ⁇ ⁇ t) ⁇ A ⁇ sin ( ⁇ ⁇ t),
  • the extracted low frequency signal is output to the spectrum analysis unit 13.
  • the superimposing circuit unit 11b is obtained by multiplying the low frequency signal extracted by the signal extracting unit 12 and the low frequency signal A ⁇ sin ( ⁇ ⁇ t) generated by the low frequency signal generating unit 11a.
  • a new low frequency signal Asin ( ⁇ ⁇ t) ⁇ Asin ( ⁇ ⁇ t) ⁇ Asin ( ⁇ ⁇ t) is superimposed on the wavelength multiplexed light.
  • the frequency spectrum analysis unit 13 includes a spectrum analyzer, analyzes the frequency spectrum of the low frequency signal extracted by the signal extraction unit 12, and outputs the analyzed frequency spectrum to the passing node number measurement unit 14.
  • the passing node number measuring unit 14 is based on the frequency spectrum analyzed by the frequency spectrum analyzing unit 13 and is a passing node that is the number of optical node devices 2 through which wavelength multiplexed light has passed before being transmitted to the optical node device 2. Measure the number. Specifically, the passing node number measuring unit 14 identifies a signal component having the highest frequency among the signal components included in the frequency spectrum analyzed by the frequency spectrum analyzing unit 13, and determines the frequency of the identified signal component. In each optical node device 2, the number of passing nodes is measured by dividing by the frequency ⁇ ⁇ t of the same low-frequency signal A ⁇ sin ( ⁇ ⁇ t).
  • FIG. 4 is a flowchart of the process procedure of the optical transmission process performed by the optical transmission system 1 according to the first embodiment.
  • each optical node device 2 constituting the optical transmission system 1 the superimposed signal light generation unit 11 of the wavelength selective switch 4 performs a low-frequency signal Asin ( ⁇ having the same frequency in each optical node device 2. T) is superimposed on each signal light included in the wavelength multiplexed light (step S101).
  • Each optical node device 2 transmits the wavelength multiplexed light on which the low frequency signal is superimposed to the optical node device 2 immediately after as the low frequency superimposed wavelength multiplexed light.
  • the signal extraction unit 12 of the wavelength selective switch 4 has a low frequency with a frequency within a predetermined range from the low-frequency superimposed signal light generated by the superimposed signal light generation unit 11 of the immediately preceding optical node device 2.
  • a signal is extracted (step S102). Then, the signal extraction unit 12 outputs the extracted low frequency signal to the frequency spectrum analysis unit 13.
  • the frequency spectrum analysis unit 13 analyzes the frequency spectrum of the low frequency signal extracted by the signal extraction unit 12 (step S103).
  • the passing node number measuring unit 14 measures the number of passing nodes based on the frequency spectrum analyzed by the frequency spectrum analyzing unit 13 (step S104). The measured number of passing nodes is displayed on a predetermined display device or the like provided in the optical node device 2.
  • each optical node device 2 converts a low-frequency signal having the same frequency in each optical node device 2 into a plurality of signal lights included in the wavelength multiplexed light. Superimpose. Each optical node device 2 extracts a low-frequency signal having a frequency within a predetermined range from the low-frequency superimposed signal light, and analyzes the frequency spectrum of the extracted low-frequency signal. Each optical node device 2 measures the number of passing nodes based on the analyzed frequency spectrum. As a result, when the optical transmission path is changed or the type of the optical node device is changed, the number of passing nodes can be presented to the user side. The conventional process of inquiring to can be omitted. As a result, it is possible to speed up the determination on the user side as to whether or not wavelength multiplexed light can be transmitted.
  • the number of passing nodes is measured by superimposing a low frequency signal on each signal light included in the wavelength multiplexed light and analyzing the frequency spectrum of the superimposed low frequency signal
  • the low frequency signal is superimposed on each of the signal lights included in the wavelength multiplexed light, and the frequency spectrum of the superimposed low frequency signal is analyzed, thereby the optical node device.
  • An optical transmission system that identifies a passing optical node device, which is an optical node device through which wavelength multiplexed light has passed before transmission, will be described.
  • FIG. 5 is a functional block diagram of the configuration of the optical node device 6 included in the optical transmission system according to the second embodiment.
  • the detailed description is abbreviate
  • FIG. The schematic configuration of the optical transmission system according to the second embodiment is the same as the schematic configuration shown in FIG.
  • each optical node device 6 newly includes a wavelength selective switch 104 and a superimposed signal light generation unit 51 in place of the wavelength selective switch 4 included in the optical node device 2 shown in FIG.
  • the wavelength selective switch 104 drops (drops) signal light of an arbitrary wavelength from the wavelength multiplexed light input to the optical node device 6, or inserts (Add) signal light of an arbitrary wavelength into the wavelength multiplexed light. . Further, the wavelength selective switch 104 selects signal light having an arbitrary wavelength from the wavelength multiplexed light, and outputs the signal light having the selected wavelength to an arbitrary output port.
  • the wavelength selective switch 104 includes a spectroscopic device such as an AWG or a diffraction grating, and an optical switch device such as a MEMS mirror or a liquid crystal device. The output port is switched by moving the optical switch device corresponding to each wavelength.
  • the superimposed signal light generation unit 51 generates wavelength multiplexed light (hereinafter referred to as “superimposed signal light”) obtained by superimposing low frequency signals having different frequencies on the wavelength multiplexed light in each optical node device 6. .
  • N 1 to 9
  • the superimposed signal light generation unit 51 outputs a low-frequency signal having a different frequency in each optical node device 6 to the post-amplifier 5, and the low-frequency signal is wavelength-multiplexed in the post-amplifier 5.
  • the superimposed signal light generation unit 51 can collectively superimpose the low frequency signals on the signal light of all wavelengths included in the wavelength multiplexed light.
  • FIG. 6 is a functional block diagram showing a configuration for executing extraction / superimposition of a low-frequency signal included in the wavelength selective switch 104.
  • FIG. 6 only the configuration related to the extraction / superimposition characteristics of the wavelength selective switch 104 is illustrated, and the configuration corresponding to multiple inputs or multiple outputs is omitted.
  • the wavelength selective switch 104 includes a demultiplexing unit 115, a multiplexing unit 116, and low frequency signal extraction units (10-1 to 10-n).
  • the low frequency signal extraction units 10-1 to 10-n respectively receive the signal lights having wavelengths ⁇ 1 to ⁇ demultiplexed by the demultiplexing unit 115, and the signal extraction unit 112, the frequency spectrum analysis unit 113, and the passing light A node device specifying unit 114.
  • the signal extraction unit 112 extracts a low-frequency signal having a frequency within a predetermined range from the superimposed signal light generated by the superimposed signal light generation unit 51 in the immediately preceding optical node device 2, and the extracted low-frequency signal is used as the frequency spectrum analysis unit 113. Output to.
  • the frequency spectrum analysis unit 113 is configured by a spectrum analyzer, analyzes the frequency spectrum of the low frequency signal extracted by the signal extraction unit 112, and outputs the analyzed frequency spectrum to the pass node device specifying unit 114.
  • the passing node device specifying unit 114 is a passing optical node device that is an optical node device 6 through which wavelength multiplexed light has passed before being transmitted to the optical node device 6. Is identified. Specifically, the transit node device identification unit 114 identifies the transit node device by identifying the frequency of the low frequency signal included in the frequency spectrum analyzed by the frequency spectrum analysis unit 113.
  • FIG. 7 is a diagram illustrating an example of a frequency spectrum analyzed by the frequency spectrum analysis unit 113.
  • the optical transmission system of the present embodiment has ten optical node devices 6 from the optical node device (1) to the optical node device (10), the optical node device (10)
  • the frequency spectrum analyzed by the spectrum analysis unit 113 is shown.
  • the frequency spectrum analyzed by the frequency spectrum analysis unit 113 includes low frequency signals of frequencies ⁇ 1, ⁇ 3, ⁇ 4, and ⁇ 6 to ⁇ 9, but includes low frequency signals of frequencies ⁇ 2 and ⁇ 5.
  • the passing node device specifying unit 114 identifies the frequencies ⁇ 1, ⁇ 3, ⁇ 4, and ⁇ 6 to ⁇ 9 of the low-frequency signal included in the frequency spectrum, so that the optical node device (1 ), (3), (4) and (6) to (9) are specified as transit node devices. Since the low-frequency signals having the frequencies ⁇ 2 and ⁇ 5 are not included in the frequency spectrum, the wavelength multiplexed light reaching the optical node device (10) does not pass through the optical node devices (2) and (5). I understand that.
  • FIG. 8 is a flowchart illustrating a processing procedure of optical transmission processing by the optical transmission system according to the second embodiment.
  • the superimposed signal light generation unit 51 converts a low frequency signal having a different frequency in each optical node device 2 into a signal light included in the wavelength multiplexed light. (Step S201).
  • Each optical node device 6 transmits the wavelength multiplexed light on which the low-frequency signal is superimposed to the optical node device 6 immediately after as the superimposed signal light.
  • the signal extraction unit 112 of the wavelength selective switch 104 has a low frequency in a predetermined range from the low frequency superimposed signal light generated by the superimposed signal light generation unit 51 in the immediately preceding optical node device 6.
  • a signal is extracted (step S202). Then, the signal extraction unit 112 outputs the extracted low frequency signal to the frequency spectrum analysis unit 113.
  • the frequency spectrum analysis unit 113 analyzes the frequency spectrum of the low frequency signal extracted by the signal extraction unit 112 (step S203).
  • the transit node device identification unit 114 identifies the transit node device based on the frequency spectrum analyzed by the spectrum analysis unit 113 (step S204).
  • the transit node device is displayed on a predetermined display device provided in the optical node device 6.
  • each optical node device 6 superimposes a low frequency signal having a different frequency in each optical node device 6 on a plurality of signal lights included in the wavelength multiplexed light. To do. Each optical node device 6 extracts a low-frequency signal having a predetermined range of frequencies from the superimposed signal light, and analyzes the frequency spectrum of the extracted low-frequency signal. Then, each optical node device 6 identifies a passing node device based on the analyzed frequency spectrum. Thereby, when the optical transmission path is changed or the type of the optical node device is changed, the passing node device can be presented to the user side. This information on the transit node device is useful when considering a traffic bias in the entire optical transmission system and a detour route when a transmission failure occurs.
  • the third embodiment is an optical node device in which a signal light having an arbitrary wavelength is inserted into the wavelength multiplexed light among the optical node devices included in the passing optical node device while specifying the passing optical node device.
  • FIG. 9 is a functional block diagram of the configuration of the optical node device 7 included in the optical transmission system according to the third embodiment.
  • the detailed description is abbreviate
  • FIG. The schematic configuration of the optical transmission system according to the third embodiment is the same as the schematic configuration shown in FIG.
  • each optical node device 7 includes a first superimposed signal light generation unit 52 and a second superimposed signal instead of the superimposed signal light generation unit 51 included in the optical node device 6 shown in FIG. And a light generation unit 54.
  • the first superposed signal light generation unit 52 is configured to transmit the first low-frequency signal having a different frequency in each optical node device 7 upstream from the position of branching (Drop) or insertion (Add) by the wavelength selective switch 104.
  • the optical signal is superimposed on each of the optical signals included in the wavelength multiplexed light. For example, if the optical transmission system of this embodiment has nine optical node devices 7 from the optical node device (1) to the optical node device (9), the first superimposed signal light generator 52 is provided.
  • the first superimposed signal light generation unit 52 outputs the first low-frequency signal to the preamplifier 3, and the first low-frequency signal is output to the wavelength multiplexed light in the preamplifier 3.
  • the 1st superimposition signal light generation part 52 can superimpose a 1st low frequency signal collectively with respect to the signal light of all the wavelengths contained in wavelength multiplexing light.
  • the second superimposed signal light generation unit 54 branches the second low-frequency signal having a frequency different from each optical node device 7 and having a frequency different from that of the first low-frequency signal by the wavelength selective switch 104 (Drop). Alternatively, it is superimposed on each of the signal lights included in the wavelength multiplexed light on the downstream side of the insertion (Add) position. For example, if the optical transmission system of this embodiment has nine optical node devices 7 from the optical node device (1) to the optical node device (9), the first superimposed signal light generation described above is performed.
  • the second superimposed signal light generation unit 54 outputs a low-frequency signal having a frequency ⁇ (N) to the second low-frequency signal for each of the signal lights included in the wavelength multiplexed light passing through the optical node device (N).
  • the second superimposed signal light generation unit 54 outputs the second low-frequency signal to the post-amplifier 5, and the second low-frequency signal is wavelength-multiplexed light within the post-amplifier 5. Is superimposed. Thereby, the 2nd superimposition signal light generation part 54 can superimpose a 2nd low frequency signal collectively with respect to the signal light of all the wavelengths contained in wavelength multiplexing light.
  • the pass node device specifying unit 114 (see FIG. 6) of the wavelength selective switch 104 specifies the pass node device based on the frequency spectrum analyzed by the spectrum analyzing unit 113, and the optical node device 7 included in the pass node device. Among these, the insertion node device is specified.
  • FIG. 10 is a diagram illustrating an example of a frequency spectrum analyzed by the frequency spectrum analysis unit 113.
  • the optical transmission system of the present embodiment has ten optical node devices 7 from the optical node device (1) to the optical node device (10), the optical node device (10)
  • the frequency spectrum analyzed by the frequency spectrum analysis unit 113 is shown.
  • the first superimposed signal light generation unit 52 superimposes a low-frequency signal having a frequency ⁇ (N) as a first low-frequency signal on the wavelength multiplexed light that passes through the optical node device (N).
  • the frequency spectrum analyzed by the frequency spectrum analyzing unit 113 includes the first low-frequency signal having the frequencies ⁇ 1, ⁇ 3, ⁇ 4, ⁇ 6 to ⁇ 9, and the frequencies ⁇ 1, ⁇ 2, ⁇ 3, ⁇ 4, ⁇ 6 to and a second low-frequency signal of ⁇ 9.
  • this frequency spectrum does not include the first low-frequency signal having the frequencies ⁇ 2 and ⁇ 5 and the second low-frequency signal having the frequency ⁇ 5.
  • the transit node device identification unit 114 identifies nine frequencies by identifying the frequencies ⁇ 1, ⁇ 1, ⁇ 2, ⁇ 3, ⁇ 3, ⁇ 4, ⁇ 4, ⁇ 6, ⁇ 6, ⁇ 7, ⁇ 7, ⁇ 8, ⁇ 8, ⁇ 9, and ⁇ 9.
  • the optical node devices (1), (2), (3), (4), and (6) to (9) are identified as transit node devices.
  • the transit node device specifying unit 114 inserts the optical node device (2) among the optical node devices included in the transit node device by identifying the frequency ⁇ 2 of the second low-frequency signal included in the frequency spectrum. Identifies as a node device.
  • the first superimposed signal light generation unit 52 converts the first low-frequency signal of the optical signal included in the wavelength multiplexed light upstream of the branching or inserting position by the wavelength selective switch 104. Superimpose for each.
  • the second superimposed signal light generation unit 54 superimposes the second low-frequency signal on each of the optical signals included in the wavelength multiplexed light on the downstream side of the branch or insertion position by the wavelength selective switch 104. To do. For this reason, the signal light of an arbitrary wavelength inserted by the wavelength selective switch 104 should include only the second low frequency signal, not including the first low frequency signal.
  • the pass node device specifying unit 114 inserts the optical node device (2) among the optical node devices included in the pass node device by identifying the frequency ⁇ 2 of the second low frequency signal included in the frequency spectrum. It can be specified as a node device.
  • FIG. 11 is a flowchart of a process procedure of an optical transmission process performed by the optical transmission system according to the third embodiment.
  • the first superimposed signal light generation unit 52 selects the first low-frequency signal having a different frequency in each optical node device 7 by wavelength selection.
  • the optical signal is superimposed on each of the optical signals included in the wavelength multiplexed light upstream of the position of branching or insertion by the switch 104.
  • the second superimposed signal light generator 54 branches the second low-frequency signal having a frequency different from each optical node device 7 and having a frequency different from that of the first low-frequency signal by the wavelength selective switch 104.
  • it is superimposed on each of the optical signals included in the wavelength multiplexed light downstream from the insertion position (step S301).
  • Each optical node device 7 transmits the wavelength multiplexed light on which the low-frequency signal is superimposed to the optical node device 7 immediately after as the superimposed signal light.
  • the signal extraction unit 112 of the wavelength selective switch 104 is generated by the first superimposed signal light generation unit 52 and the second superimposed signal light generation unit 54 in the immediately preceding optical node device 7.
  • a low frequency signal having a predetermined frequency range is extracted from the low frequency superimposed signal light (step S302). Then, the signal extraction unit 112 outputs the extracted low frequency signal to the frequency spectrum analysis unit 113.
  • the frequency spectrum analysis unit 113 analyzes the frequency spectrum of the low frequency signal extracted by the signal extraction unit 112 (step S303).
  • the transit node device identification unit 114 identifies the transit node device and the insertion node device based on the frequency spectrum analyzed by the spectrum analysis unit 113 (step S304).
  • the transit node device and the insertion node device are displayed on a predetermined display device or the like provided in the optical node device 7.
  • each optical node device 7 uses the wavelength selective switch 104 to branch or insert the first low-frequency signal having a different frequency in each optical node device 7. Further, it is superimposed on a plurality of signal lights included in the wavelength multiplexed light on the upstream side.
  • the optical node device 7 uses the wavelength selective switch 104 to branch or insert the second low-frequency signal having a frequency different from each optical node device 7 and having a frequency different from that of the first low-frequency signal. Is also superimposed on a plurality of signal lights included in the wavelength multiplexed light on the downstream side.
  • Each optical node device 7 extracts a low frequency signal having a frequency within a predetermined range from the superimposed signal light, and analyzes the frequency spectrum of the extracted low frequency signal. Then, each optical node device 7 specifies the passing node device and the insertion node device based on the analyzed frequency spectrum. Thus, when the optical transmission path is changed or the type of the optical node device is changed, the insertion node device can be presented to the user side in addition to the transit node device. This information on the insertion node device is useful when considering a traffic bias in the entire optical transmission system and a detour route when a transmission failure occurs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)

Abstract

 光伝送経路の変更や光ノード装置の種別の変更が行われた場合に、波長多重光の伝送ができるか否かの使用者側の判断を迅速化することを課題とする。この課題を解決するため、光伝送システムを構成する各光ノード装置が、各光ノード装置で周波数が同一の低周波信号を波長多重光に含まれる複数の信号光に対して重畳する。また、各光ノード装置は、重畳信号光から低周波信号を抽出し、抽出した低周波信号の周波数スペクトルを解析する。そして、各光ノード装置は、解析した周波数スペクトルに基づいて、通過ノード数を計測する。これにより、光伝送経路の変更や光ノード装置の種別の変更が行われた場合に、通過ノード数を使用者側に提示することができるため、各光ノード装置によって通過ノード数を管理システム側へ問い合わせる従来の処理を省略することができる。その結果、波長多重光の伝送ができるか否かの使用者側の判断を迅速化することができる。

Description

光伝送システム及び光伝送方法
 本発明は、光伝送システム及び光伝送方法に関し、例えば、光伝送経路の変更や光ノード装置の種別の変更が行われた場合に、波長多重光の伝送ができるか否かの使用者側の判断を迅速化することができる光伝送システム及び光伝送方法に関する。
 波長多重分割方式(WDM:Wavelength Division multiplexing)による光伝送システムでは、波長多重化された波長多重光を伝送する複数の光ノード装置が光伝送路を介して互いに接続されている。かかる光伝送システムでは、通信要求の変化に応じて、波長多重光の光伝送経路の変更や、光ノード装置の種別の変更(例えば、光増幅中継装置(ILA:In Line Amp)から光挿入分岐装置(OADM:Optical Add-Drop Multiplexer)への変更)等が行われることがある。波長多重光の光伝送経路の変更や、光ノード装置の種別の変更が行われると、波長多重光が光ノード装置を通過する回数が変動する。
 ところで、光伝送システムを構成する光ノード装置がOADMである場合、任意の波長の信号光を任意の方向に切り替えて出力することのできる波長選択スイッチ(WSS:Wavelength Selective Switch)や波長ごとに信号光を取り出す分光機能を備えたアレイ導波路型回折格子(AWG:Arrayed Waveguide Grating)等のフィルタが用いられることが多い。かかるフィルタでは、波長多重光を透過させるたびに、その波長帯域を狭くする。このため、波長多重光が光ノード装置を通過する回数には、上限が存在する。したがって、光伝送システムでは、波長多重光が光ノード装置を通過する回数が、上限値を超えてしまった場合、波長多重光の伝送ができなくなる。
 従来の光伝送システムでは、光伝送経路の変更や、光ノード装置の種別の変更が行われた場合に、波長多重光が光ノード装置を通過する回数等、波長多重光の伝送ができるか否かを判断するための情報(以下、「伝送可否情報」という。)を、このシステムを管理している管理システム側に予め保管していた。
特開平9-247104号公報
 しかしながら、上記した従来の光伝送システムでは、光伝送経路の変更や、光ノード装置の種別の変更が行われた場合に、波長多重光の伝送ができるか否かの判断に時間がかかるという問題があった。すなわち、従来の光伝送システムでは、光伝送経路の変更や、光ノード装置の種別の変更が行われるたびに、各光ノード装置が、伝送可否情報を管理システム側に問い合わせる必要があり、使用者がその伝送可否情報を確認するまでに時間がかかっていた。このため、使用者が波長多重光の伝送ができるか否かの判断を瞬時に行うことが困難であった。なお、図12に示すように、互いに管理システムの異なる複数の光伝送システムどうしを跨ぐように光伝送経路が変更される場合にも、上記の問題が同様に発生していた。
 この発明は、上述した従来技術による問題点を解消するためになされたものであり、光伝送経路の変更や光ノード装置の種別の変更が行われた場合に、波長多重光の伝送ができるか否かの使用者側の判断を迅速化することができる光伝送システム及び光伝送方法を提供することを目的とする。
 上述した課題を解決し、目的を達成するため、本願の開示する光伝送システムは、一つの態様において、波長の異なる複数の信号光を含む波長多重光が、光伝送路を介して互いに接続された複数の光ノード装置により伝送される光伝送システムであって、前記光ノード装置は、入力された前記波長多重光に含まれる前記複数の信号光のそれぞれに、前記複数の光ノード装置で共通の周波数である低周波信号を重畳する重畳信号光生成手段と、前記複数の信号光のそれぞれに対し、所定範囲の周波数の低周波信号をそれぞれ抽出する低周波信号抽出手段と、前記複数の信号光のそれぞれに対し、前記低周波信号抽出手段によって抽出された前記低周波信号の周波数に基づき、当該光ノード装置へ伝送されるまでに通過した光ノード装置の数である通過ノード数をそれぞれ計測する通過ノード数計測手段とを備える。
 光伝送経路の変更や光ノード装置の種別の変更が行われた場合に、波長多重光の伝送ができるか否かの使用者側の判断を迅速化することができる。
図1は、実施例1に係る光伝送システムの概略構成を示す図である。 図2は、光ノード装置の構成を示す機能ブロック図である。 図3は、波長選択スイッチの構成を示す機能ブロック図である。 図4は、実施例1に係る光伝送システムによる光伝送処理の処理手順を示すフローチャートである。 図5は、実施例2に係る光伝送システムが有する光ノード装置の構成を示す機能ブロック図である。 図6は、波長選択スイッチの構成を示す機能ブロック図である。 図7は、周波数スペクトル解析部によって解析された周波数スペクトルの一例を示す図である。 図8は、実施例2に係る光伝送システムによる光伝送処理の処理手順を示すフローチャートである。 図9は、実施例3に係る光伝送システムが有する光ノード装置の構成を示す機能ブロック図である。 図10は、周波数スペクトル解析部によって解析された周波数スペクトルの一例を示す図である。 図11は、実施例3に係る光伝送システムによる光伝送処理の処理手順を示すフローチャートである。 図12は、互いに管理システムの異なる複数の光伝送システムどうしを跨ぐように光伝送経路が変更される場合の問題点を説明するための図である。
符号の説明
1    光伝送システム
2    光ノード装置
3    プリアンプ
4    波長選択スイッチ
5    ポストアンプ
6    光ノード装置
7    光ノード装置
11   重畳信号光生成部
11a  低周波信号発生部
11b  重畳回路部
12   信号抽出部
13   周波数スペクトル解析部
14   通過ノード数計測部
51   重畳信号光生成部
52   第1の重畳信号光生成部
54   第2の重畳信号光生成部
104  波長選択スイッチ
112  信号抽出部
113  周波数スペクトル解析部
114  通過ノード装置特定部
 以下に、本願の開示する光伝送システム及び光伝送方法の実施例を図面に基づいて詳細に説明する。なお、以下の実施例では、本願の開示する光伝送システムが、複数の光ノード装置を光伝送路を介して互いに格子状に接続している例を示すが、光伝送システムが、複数の光ノード装置を光伝送路を介して互いに線状その他の如何なる形状に接続して構成されていてもよい。
 まず、実施例1に係る光伝送システムの構成について説明する。図1は、実施例1に係る光伝送システムの概略構成を示す図である。
 図1に示すように、本実施例に係る光伝送システム1は、波長の異なる複数の信号光が多重化された波長多重光を伝送する複数の光ノード装置2を有しており、これら複数の光ノード装置2を光伝送路を介して互いに格子状に接続している。光ノード装置2は、波長ごとに割り当てられた信号光の挿入(Add)又は分岐(Drop)を行うOADM装置である。
 本実施例に係る光伝送システム1では、各光ノード装置2が、各光ノード装置2で周波数が同一(共通)の低周波信号(A・sin(ω・t)、ただし、Aは定数、ωは角速度、tは時間)による振幅変調を波長多重光に含まれる信号光の各々に対して行うことにより、信号光のそれぞれに対して低周波信号を重畳する。また、各光ノード装置2は、波長多重光に含まれる複数の信号光のそれぞれから、所定範囲の周波数の低周波信号を抽出し、抽出した低周波信号の周波数スペクトルを解析する。
 ここで、各光ノード装置2が低周波信号の周波数スペクトルを解析した結果について説明する。波長多重光が1つの光ノード装置2を通過した場合、1つの光ノード装置2が低周波信号を波長多重光に対して重畳するため、低周波信号の周波数スペクトルは、A・sin(ω・t)となる。また、波長多重光が2つの光ノード装置2を通過した場合、2つの光ノード装置2が低周波信号を波長多重光に対して重畳するため、低周波信号の周波数スペクトルは、A・sin(ω・t)×A・sin(ω・t)=B・cos(2ω・t)+C(ただし、B及びCは定数)となる。また、波長多重光が3つの光ノード装置2を通過した場合、3つの光ノード装置2が低周波信号を波長多重光に対して重畳するため、低周波信号の周波数スペクトルは、A・sin(ω・t)×A・sin(ω・t)×A・sin(ω・t)=D・sin(3ω・t)+E・sin(ω・t)(ただし、D及びEは定数)となる。すなわち、波長多重光がn個の光ノード装置2を通過した場合、低周波信号の周波数スペクトルに含まれる信号成分の周波数の最大値は、n・ω・tとなる(ただし、nは自然数)。
 そして、各光ノード装置2は、解析した周波数スペクトルに基づいて、その光ノード装置2へ伝送されるまでに波長多重光が通過した光ノード装置2の数(通過ノード数)を計測する。具体的には、光ノード装置2は、周波数スペクトルに含まれる信号成分のうち、最も周波数が高い信号成分を特定し、その特定した信号成分の周波数を、各光ノード装置2で同一の低周波信号の周波数で除算することにより、通過ノード数を計測する。すなわち、波長多重光がn個の光ノード装置2を通過した場合、最も周波数が高い信号成分の周波数は、上述のように、n・ω・tであるので、通過ノード数は、n・ω・t/(ω・t)=n個と計測される。なお、通過ノード数は、各光ノード装置2に設けられた所定の表示装置等に表示される。
 このように、本実施例に係る光伝送システム1では、各光ノード装置2が、各光ノード装置2で周波数が同一の低周波信号を、波長多重光に含まれる複数の信号光のそれぞれに対して重畳する。また、各光ノード装置2は、波長多重光に含まれる複数の光信号から所定範囲の周波数の低周波信号を抽出し、抽出した低周波信号の周波数スペクトルを解析する。そして、各光ノード装置2は、解析した周波数スペクトルに基づいて、その光ノード装置2へ伝送されるまでに波長多重光が通過した光ノード装置2の数(通過ノード数)を計測する。これにより、光伝送経路の変更や光ノード装置の種別の変更が行われた場合に、通過ノード数を使用者側に提示することができるため、各光ノード装置によって通過ノード数を管理システム側へ問い合わせる従来の処理を省略することができる。その結果、波長多重光の伝送ができるか否かの使用者側の判断を迅速化することができる。
 次に、光ノード装置2の具体的な構成について説明する。図2は、光ノード装置2の構成を示す機能ブロック図である。図2に示すように、各光ノード装置2は、プリアンプ3と、波長選択スイッチ4と、ポストアンプ5とを有する。プリアンプ3及びポストアンプ5は、波長多重光を増幅する光増幅器であり、波長選択スイッチ4の上流側及び下流側にそれぞれ配設される。
 波長選択スイッチ4は、光ノード装置2に入力された波長多重光から任意の波長の信号光を分岐(Drop)し、若しくは、当該波長多重光へ任意の波長の信号光を挿入(Add)する。また、波長選択スイッチ4は、波長多重光から任意の波長の信号光を選択し、選択した波長の信号光を任意の出力ポートへ出力する。具体的には、波長選択スイッチ4は、AWGや回折格子等の分光デバイスと、MEMSミラーや液晶デバイス等の光スイッチデバイスとを備えており、入力された波長多重光を分光デバイスによって任意の波長の信号光に分離し、各波長に対応して光スイッチデバイスを可動することで出力ポートを切り替える。
 図3は、波長選択スイッチ4に含まれる低周波信号の抽出・重畳を実行するための構成を示す機能ブロック図である。なお、図3に示す例では、波長選択スイッチ4の抽出・重畳の特徴に関わる構成のみを示しており、複数入力または複数出力に対応した構成については図示を省略する。
 図3に示すように、波長選択スイッチ4は、分波部15と、合波部16と、低周波信号抽出・重畳部(10-1~10-n)とを有する。低周波信号抽出・重畳部 10-1~10-nは、分波部15により分波された波長λ1~λnの信号光をそれぞれ入力し、重畳信号光生成部11と、信号抽出部12と、周波数スペクトル解析部13と、通過ノード数計測部14とをそれぞれ有する。
 重畳信号光生成部11は、各光ノード装置2で周波数が同一の低周波信号による振幅変調を波長多重光に含まれる信号光の各々に対して行い、各信号光に低周波が重畳された波長多重光(以下、「低周波重畳信号多重光」と言う)を生成する。
 具体的には、重畳信号光生成部11は、低周波信号発生部11aと、重畳回路部11bと、低周波重畳部11cを有する。低周波信号発生部11aは、各光ノード装置2で周波数が同一の低周波信号(A・sin(ω・t)、ただし、Aは定数、ωは角速度、tは時間)を出力する。
 重畳回路部11bは、信号抽出部12によって抽出された低周波信号と、低周波信号発生部11aより出力された低周波信号A・sin(ω・t)とを乗算して得られた重畳低周波信号を出力する。低周波重畳部11cは、分波部15より分波された信号光λ1に重畳低周波信号により振幅変調を行うことにより、低周波重畳信号多重光を生成する。
 信号抽出部12は、直前の光ノード装置2における重畳信号光生成部11によって生成された重畳信号光から、所定範囲の周波数の低周波信号を抽出し、抽出した低周波信号を周波数スペクトル解析部13へ出力する。例えば、波長多重光が既に2つの光ノード装置2を通過している場合、信号抽出部12は、低周波信号A・sin(ω・t)×A・sin(ω・t)を抽出し、この抽出した低周波信号をスペクトル解析部13へ出力する。このとき、重畳回路部11bは、信号抽出部12によって抽出された低周波信号と低周波信号発生部11aにて発生した低周波信号A・sin(ω・t)とを乗算して得られた新たな低周波信号Asin(ω・t)×Asin(ω・t)×Asin(ω・t)を波長多重光に対して重畳する。
 周波数スペクトル解析部13は、スペクトラムアナライザにより構成されており、信号抽出部12によって抽出された低周波信号の周波数スペクトルを解析し、解析した周波数スペクトルを通過ノード数計測部14へ出力する。
 通過ノード数計測部14は、周波数スペクトル解析部13によって解析された周波数スペクトルに基づいて、当該光ノード装置2へ伝送されるまでに波長多重光が通過した光ノード装置2の数である通過ノード数を計測する。具体的には、通過ノード数計測部14は、周波数スペクトル解析部13によって解析された周波数スペクトルに含まれる信号成分のうち、最も周波数が高い信号成分を特定し、この特定した信号成分の周波数を、各光ノード装置2で同一の低周波信号A・sin(ω・t)の周波数ω・tで除算することにより、通過ノード数を計測する。すなわち、波長多重光がn個の光ノード装置2を通過した場合、最も周波数が高い信号成分の周波数は、n・ω・tであるので、通過ノード数は、nω・t/(ω・t)=n個と計測される。
 次に、実施例1に係る光伝送システム1による光伝送処理について説明する。図4は、実施例1に係る光伝送システム1による光伝送処理の処理手順を示すフローチャートである。
 図4に示すように、光伝送システム1を構成する各光ノード装置2では、波長選択スイッチ4の重畳信号光生成部11が、各光ノード装置2で周波数が同一の低周波信号Asin(ω・t)を、波長多重光に含まれる信号光の各々に対して重畳する(ステップS101)。なお、各光ノード装置2は、低周波信号の重畳された波長多重光を、低周波重畳波長多重光として直後の光ノード装置2へ伝送する。
 また、各光ノード装置2では、波長選択スイッチ4の信号抽出部12は、直前の光ノード装置2の重畳信号光生成部11によって生成された低周波重畳信号光から所定範囲の周波数の低周波信号を抽出する(ステップS102)。そして、信号抽出部12は、抽出した低周波信号を周波数スペクトル解析部13へ出力する。
 続いて、周波数スペクトル解析部13は、信号抽出部12によって抽出された低周波信号の周波数スペクトルを解析する(ステップS103)。続いて、通過ノード数計測部14は、周波数スペクトル解析部13によって解析された周波数スペクトルに基づいて、通過ノード数を計測する(ステップS104)。なお、計測された通過ノード数は、光ノード装置2に設けられた所定の表示装置等に表示される。
 上述してきたように、実施例1に係る光伝送システム1では、各光ノード装置2が、各光ノード装置2で周波数が同一の低周波信号を、波長多重光に含まれる複数の信号光に対して重畳する。また、各光ノード装置2は、低周波重畳信号光から所定範囲の周波数の低周波信号を抽出し、抽出した低周波信号の周波数スペクトルを解析する。そして、各光ノード装置2は、解析した周波数スペクトルに基づいて、通過ノード数を計測する。これにより、光伝送経路の変更や光ノード装置の種別の変更が行われた場合に、通過ノード数を使用者側に提示することができるため、各光ノード装置によって通過ノード数を管理システム側へ問い合わせる従来の処理を省略することができる。その結果、波長多重光の伝送ができるか否かの使用者側の判断を迅速化することができる。
 上記実施例1では、低周波信号を波長多重光に含まれる信号光の各々に対して重畳し、その重畳した低周波信号の周波数スペクトルを解析することにより、通過ノード数を計測する例を説明した。これに対して、実施例2では、低周波信号を波長多重光に含まれる信号光の各々に対して重畳し、その重畳した低周波信号の周波数スペクトルを解析することにより、当該光ノード装置へ伝送されるまでに波長多重光が通過した光ノード装置である通過光ノード装置を特定する光伝送システムについて説明する。
 まず、実施例2に係る光伝送システムが有する光ノード装置6の構成について説明する。図5は、実施例2に係る光伝送システムが有する光ノード装置6の構成を示す機能ブロック図である。なお、以下では、実施例1と同様の機能を有する部位には同一の符号を付すこととして、その詳細な説明を省略する。また、実施例2に係る光伝送システムの概略構成は、図1に示した概略構成と同様であるため、ここでは、その説明を省略する。
 図5に示すように、各光ノード装置6は、図2に示す光ノード装置2が有する波長選択スイッチ4に代えて、波長選択スイッチ104と、重畳信号光生成部51とを新たに有する。
 波長選択スイッチ104は、光ノード装置6に入力された波長多重光から任意の波長の信号光を分岐(Drop)し、若しくは、当該波長多重光へ任意の波長の信号光を挿入(Add)する。また、波長選択スイッチ104は、波長多重光から任意の波長の信号光を選択し、選択した波長の信号光を任意の出力ポートへ出力する。具体的には、波長選択スイッチ104は、AWGや回折格子等の分光デバイスと、MEMSミラーや液晶デバイス等の光スイッチデバイスとを備えており、入力された波長多重光を分光デバイスにより任意の波長の信号光に分離し、各波長に対応して光スイッチデバイスを可動することで出力ポートを切り替える。
 重畳信号光生成部51は、各光ノード装置6で周波数が異なる低周波信号を波長多重光に対して重畳することにより得られる波長多重光(以下、「重畳信号光」と言う)を生成する。例えば、本実施例の光伝送システムが、光ノード装置(1)から光ノード装置(9)まで9個の光ノード装置6を有しているとすれば、重畳信号光生成部51は、光ノード装置(N)を通過する波長多重光に対して、周波数α(N)の低周波信号を重畳する(ただし、N=1~9とし、Nが異なる場合はα(N)の値も異なるものとする)。
 なお、図5に示した例では、重畳信号光生成部51は、各光ノード装置6で周波数が異なる低周波信号をポストアンプ5へ出力し、ポストアンプ5内で低周波信号を波長多重光に対して重畳する。これにより、重畳信号光生成部51は、波長多重光に含まれる全波長の信号光に対して低周波信号を一括して重畳することができる。
 図6は、波長選択スイッチ104に含まれる低周波信号の抽出・重畳を実行するための構成を示す機能ブロック図である。なお、図6に示す例では、波長選択スイッチ104の抽出・重畳の特徴に関わる構成のみを示しており、複数入力または複数出力に対応した構成については図示を省略する。
 図6に示すように、波長選択スイッチ104は、分波部115と、合波部116と、低周波信号抽出部(10-1~10-n)とを有する。低周波信号抽出部10-1~10-nは、分波部115により分波された波長λ1~λんの信号光をそれぞれ入力し、信号抽出部112と、周波数スペクトル解析部113と、通過ノード装置特定部114とをそれぞれ有する。
 信号抽出部112は、直前の光ノード装置2における重畳信号光生成部51によって生成された重畳信号光から所定範囲の周波数の低周波信号を抽出し、抽出した低周波信号を周波数スペクトル解析部113へ出力する。
 周波数スペクトル解析部113は、スペクトラムアナライザにより構成されており、信号抽出部112によって抽出された低周波信号の周波数スペクトルを解析し、解析した周波数スペクトルを通過ノード装置特定部114へ出力する。
 通過ノード装置特定部114は、周波数スペクトル解析部113によって解析された周波数スペクトルに基づいて、当該光ノード装置6へ伝送されるまでに波長多重光が通過した光ノード装置6である通過光ノード装置を特定する。具体的には、通過ノード装置特定部114は、周波数スペクトル解析部113によって解析された周波数スペクトルに含まれる低周波信号の周波数を識別することにより、通過ノード装置を特定する。
 ここで、通過ノード装置特定部114が通過ノード装置を特定する手法について説明する。図7は、周波数スペクトル解析部113によって解析された周波数スペクトルの一例を示す図である。なお、図7では、本実施例の光伝送システムが、光ノード装置(1)から光ノード装置(10)まで10個の光ノード装置6を有するとした場合に、光ノード装置(10)のスペクトル解析部113によって解析された周波数スペクトルを示している。また、重畳信号光生成部51は、光ノード装置(N)を通過する波長多重光に対して、周波数α(N)の低周波信号を重畳するものとする(ただし、N=1~9とし、Nが異なる場合はα(N)の値も異なるものとする)。
 図7に示すように、周波数スペクトル解析部113によって解析された周波数スペクトルは、周波数α1、α3、α4及びα6~α9の低周波信号を含んでいるが、周波数α2及びα5の低周波信号を含んでいない。この場合、通過ノード装置特定部114は、周波数スペクトルに含まれる低周波信号の周波数α1、α3、α4及びα6~α9を識別することにより、9個の光ノード装置6のうち光ノード装置(1)、(3)、(4)及び(6)~(9)を通過ノード装置として特定する。なお、周波数α2及びα5の低周波信号は、周波数スペクトルに含まれていないため、光ノード装置(10)へ至った波長多重光は、光ノード装置(2)及び(5)を通過していないことが分かる。
 次に、実施例2に係る光伝送システムによる光伝送処理について説明する。図8は、実施例2に係る光伝送システムによる光伝送処理の処理手順を示すフローチャートである。
 図8に示すように、光伝送システムを構成する各光ノード装置6では、重畳信号光生成部51は、各光ノード装置2で周波数が異なる低周波信号を、波長多重光に含まれる信号光の各々に対して重畳する(ステップS201)。なお、各光ノード装置6は、低周波信号の重畳された波長多重光を、重畳信号光として直後の光ノード装置6へ伝送する。
 また、各光ノード装置6では、波長選択スイッチ104の信号抽出部112は、直前の光ノード装置6における重畳信号光生成部51によって生成された低周波重畳信号光から所定範囲の周波数の低周波信号を抽出する(ステップS202)。そして、信号抽出部112は、抽出した低周波信号を周波数スペクトル解析部113へ出力する。
 続いて、周波数スペクトル解析部113は、信号抽出部112によって抽出された低周波信号の周波数スペクトルを解析する(ステップS203)。続いて、通過ノード装置特定部114は、スペクトル解析部113によって解析された周波数スペクトルに基づいて、通過ノード装置を特定する(ステップS204)。なお、通過ノード装置は、光ノード装置6に設けられた所定の表示装置等に表示される。
 上述してきたように、実施例2に係る光伝送システムでは、各光ノード装置6が、各光ノード装置6で周波数が異なる低周波信号を波長多重光に含まれる複数の信号光に対して重畳する。また、各光ノード装置6は、重畳信号光から所定範囲の周波数の低周波信号を抽出し、抽出した低周波信号の周波数スペクトルを解析する。そして、各光ノード装置6は、解析した周波数スペクトルに基づいて、通過ノード装置を特定する。これにより、光伝送経路の変更や光ノード装置の種別の変更が行われた場合に、通過ノード装置を使用者側に提示することができる。この通過ノード装置の情報は、光伝送システム全体におけるトラフィックの偏りや、伝送障害が生じた場合の迂回経路を検討する際に有用である。
 上記実施例2では、低周波信号を波長多重光に含まれる信号光の各々に対して重畳し、その重畳した低周波信号の周波数スペクトルを解析することにより、通過光ノード装置を特定する例について説明した。これに対して、実施例3では、通過光ノード装置を特定すると共に、通過光ノード装置に含まれる光ノード装置のうち、波長多重光へ任意の波長の信号光を挿入した光ノード装置である挿入ノード装置を特定する光伝送システムについて説明する。
 まず、実施例3に係る光伝送システムが有する光ノード装置7の構成について説明する。図9は、実施例3に係る光伝送システムが有する光ノード装置7の構成を示す機能ブロック図である。なお、以下では、実施例2と同様の機能を有する部位には同一の符号を付すこととして、その詳細な説明を省略する。また、実施例3に係る光伝送システムの概略構成は、図1に示した概略構成と同様であるため、ここでは、その説明を省略する。
 図9に示すように、各光ノード装置7は、図5に示す光ノード装置6が有する重畳信号光生成部51に代えて、第1の重畳信号光生成部52と、第2の重畳信号光生成部54とを新たに有する。
 第1の重畳信号光生成部52は、各光ノード装置7で周波数が異なる第1の低周波信号を、波長選択スイッチ104による分岐(Drop)若しくは挿入(Add)の位置よりも上流側で、波長多重光に含まれる光信号の各々に対して重畳する。例えば、本実施例の光伝送システムが、光ノード装置(1)から光ノード装置(9)まで9個の光ノード装置7を有しているとすれば、第1の重畳信号光生成部52は、光ノード装置(N)を通過する波長多重光に対して、周波数α(N)の低周波信号を第1の低周波信号として重畳する(ただし、N=1~9とし、Nが異なる場合はα(N)の値も異なるものとする)。
 なお、図9に示した例では、第1の重畳信号光生成部52は、第1の低周波信号をプリアンプ3へ出力し、プリアンプ3内で第1の低周波信号を波長多重光に対して重畳する。これにより、第1の重畳信号光生成部52は、波長多重光に含まれる全波長の信号光に対して第1の低周波信号を一括して重畳することができる。
 第2の重畳信号光生成部54は、各光ノード装置7で周波数が異なり、かつ、第1の低周波信号と周波数が異なる第2の低周波信号を、波長選択スイッチ104による分岐(Drop)若しくは挿入(Add)の位置よりも下流側で、波長多重光に含まれる信号光の各々に対して重畳する。例えば、本実施例の光伝送システムが、光ノード装置(1)から光ノード装置(9)まで9個の光ノード装置7を有しているとすれば、上述した第1の重畳信号光生成部52は、光ノード装置(N)を通過する波長多重光に含まれる信号光の各々に対して、周波数α(N)の低周波信号を第1の低周波信号として重畳する(ただし、N=1~9とし、Nが異なる場合はα(N)の値も異なるものとする)。一方、第2の重畳信号光生成部54は、光ノード装置(N)を通過する波長多重光に含まれる信号光の各々に対して、周波数β(N)の低周波信号を第2の低周波信号として重畳する(ただし、N=1~9とし、Nが異なる場合はβ(N)の値も異なり、α(N)≠β(N)とする)。
 なお、図9に示した例では、第2の重畳信号光生成部54は、第2の低周波信号をポストアンプ5へ出力し、ポストアンプ5内で第2の低周波信号を波長多重光に対して重畳する。これにより、第2の重畳信号光生成部54は、波長多重光に含まれる全波長の信号光に対して第2の低周波信号を一括して重畳することができる。
 波長選択スイッチ104の通過ノード装置特定部114(図6参照)は、スペクトル解析部113によって解析された周波数スペクトルに基づいて、通過ノード装置を特定すると共に、通過ノード装置に含まれる光ノード装置7のうち、挿入ノード装置を特定する。
 ここで、通過ノード装置特定部114が通過ノード装置及び挿入ノード装置を特定する手法について説明する。図10は、周波数スペクトル解析部113によって解析された周波数スペクトルの一例を示す図である。なお、図10では、本実施例の光伝送システムが、光ノード装置(1)から光ノード装置(10)まで10個の光ノード装置7を有するとした場合に、光ノード装置(10)の周波数スペクトル解析部113によって解析された周波数スペクトルを示している。また、第1の重畳信号光生成部52は、光ノード装置(N)を通過する波長多重光に対して、周波数α(N)の低周波信号を第1の低周波信号として重畳するものとする(ただし、N=1~9とし、Nが異なる場合はα(N)の値も異なるものとする)。また、第2の重畳信号光生成部54は、光ノード装置(N)を通過する波長多重光に対して、周波数β(N)の低周波信号を第2の低周波信号として重畳するものとする(ただし、N=1~9とし、Nが異なる場合はβ(N)の値も異なり、α(N)≠β(N)とする)。
 図10に示すように、周波数スペクトル解析部113によって解析された周波数スペクトルは、周波数α1、α3、α4、α6~α9の第1の低周波信号と、周波数β1、β2、β3、β4、β6~β9の第2の低周波信号とを含む。一方、この周波数スペクトルは、周波数α2、α5の第1の低周波信号と、周波数β5の第2の低周波信号とを含んでいない。この場合、通過ノード装置特定部114は、周波数α1、β1、β2、α3、β3、α4、β4、α6、β6、α7、β7、α8、β8、α9及びβ9を識別することにより、9個の光ノード装置7のうち光ノード装置(1)、(2)、(3)、(4)、(6)~(9)を通過ノード装置として特定する。
 また、通過ノード装置特定部114は、周波数スペクトルに含まれる第2の低周波信号の周波数β2を識別することにより、通過ノード装置に含まれる光ノード装置のうち、光ノード装置(2)を挿入ノード装置として特定する。
 すなわち、上述したように、第1の重畳信号光生成部52は、波長選択スイッチ104による分岐若しくは挿入の位置よりも上流側で、第1の低周波信号を波長多重光に含まれる光信号の各々に対して重畳する。一方、第2の重畳信号光生成部54は、波長選択スイッチ104による分岐若しくは挿入の位置よりも下流側で、第2の低周波信号を波長多重光に含まれる光信号の各々に対して重畳する。このため、波長選択スイッチ104によって挿入された任意の波長の信号光は、第1の低周波信号を含まず、第2の低周波信号だけを含むはずである。したがって、通過ノード装置特定部114は、周波数スペクトルに含まれる第2の低周波信号の周波数β2を識別することにより、通過ノード装置に含まれる光ノード装置のうち、光ノード装置(2)を挿入ノード装置として特定することができる。
 次に、実施例3に係る光伝送システムによる光伝送処理について説明する。図11は、実施例3に係る光伝送システムによる光伝送処理の処理手順を示すフローチャートである。
 図11に示すように、光伝送システムを構成する各光ノード装置7では、第1の重畳信号光生成部52は、各光ノード装置7で周波数が異なる第1の低周波信号を、波長選択スイッチ104による分岐若しくは挿入の位置よりも上流側で、波長多重光に含まれる光信号の各々に対して重畳する。これと共に、第2の重畳信号光生成部54は、各光ノード装置7で周波数が異なり、かつ、第1の低周波信号と周波数が異なる第2の低周波信号を、波長選択スイッチ104による分岐若しくは挿入の位置よりも下流側で、波長多重光に含まれる光信号の各々に対して重畳する(ステップS301)。なお、各光ノード装置7は、低周波信号の重畳された波長多重光を、重畳信号光として直後の光ノード装置7へ伝送する。
 また、各光ノード装置7では、波長選択スイッチ104の信号抽出部112は、直前の光ノード装置7における第1の重畳信号光生成部52及び第2の重畳信号光生成部54によって生成された低周波重畳信号光から所定範囲の周波数の低周波信号を抽出する(ステップS302)。そして、信号抽出部112は、抽出した低周波信号を周波数スペクトル解析部113へ出力する。
 続いて、周波数スペクトル解析部113は、信号抽出部112によって抽出された低周波信号の周波数スペクトルを解析する(ステップS303)。続いて、通過ノード装置特定部114は、スペクトル解析部113によって解析された周波数スペクトルに基づいて、通過ノード装置を特定すると共に、挿入ノード装置を特定する(ステップS304)。なお、通過ノード装置及び挿入ノード装置は、光ノード装置7に設けられた所定の表示装置等に表示される。
 上述してきたように、実施例3に係る光伝送システムでは、各光ノード装置7が、各光ノード装置7で周波数が異なる第1の低周波信号を、波長選択スイッチ104による分岐若しくは挿入の位置よりも上流側で、波長多重光に含まれる複数の信号光に対して重畳する。これと共に、光ノード装置7が、各光ノード装置7で周波数が異なり、かつ、第1の低周波信号と周波数が異なる第2の低周波信号を、波長選択スイッチ104による分岐若しくは挿入の位置よりも下流側で、波長多重光に含まれる複数の信号光に対して重畳する。また、各光ノード装置7は、重畳信号光から所定範囲の周波数の低周波信号を抽出し、抽出した低周波信号の周波数スペクトルを解析する。そして、各光ノード装置7は、解析した周波数スペクトルに基づいて、通過ノード装置を特定すると共に、挿入ノード装置を特定する。これにより、光伝送経路の変更や光ノード装置の種別の変更が行われた場合に、通過ノード装置に加えて挿入ノード装置を使用者側に提示することができる。この挿入ノード装置の情報は、光伝送システム全体におけるトラフィックの偏りや、伝送障害が生じた場合の迂回経路を検討する際に有用である。

Claims (6)

  1.  波長の異なる複数の信号光を含む波長多重光が、光伝送路を介して互いに接続された複数の光ノード装置により伝送される光伝送システムであって、
     前記光ノード装置は、
     入力された前記波長多重光に含まれる前記複数の信号光のそれぞれに、前記複数の光ノード装置で共通の周波数である低周波信号を重畳する重畳信号光生成手段と、
     前記複数の信号光のそれぞれに対し、所定範囲の周波数の低周波信号をそれぞれ抽出する低周波信号抽出手段と、
     前記複数の信号光のそれぞれに対し、
    前記低周波信号抽出手段によって抽出された前記低周波信号の周波数に基づき、当該光ノード装置へ伝送されるまでに通過した光ノード装置の数である通過ノード数をそれぞれ計測する通過ノード数計測手段と
     を備えることを特徴とする光伝送システム。
  2.  前記通過ノード数計測手段は、
     前記低周波信号抽出手段によって抽出された前記低周波信号に含まれる信号成分のうち、最も周波数が高い信号成分を特定し、当該特定した信号成分の周波数を、前記複数の光ノード装置で共通の低周波信号の周波数で除算することにより、前記通過ノード数を計測することを特徴とする請求項1に記載の光伝送システム。
  3.  波長の異なる複数の信号光を含む波長多重光が、光伝送路を介して互いに接続された複数の光ノード装置により伝送される光伝送システムであって、
     前記光ノード装置は、
     入力された前記波長多重光に含まれる前記複数の信号光のそれぞれに、
    前記複数の光ノード装置で周波数が異なる低周波信号を重畳する重畳信号光生成手段と、
     前記複数の信号光のそれぞれに対し、
    所定範囲の周波数の低周波信号をそれぞれ抽出する低周波信号抽出手段と、
     前記複数の信号光のそれぞれに対し、
    前記低周波信号抽出手段によって抽出された前記低周波信号の周波数に基づき、当該光ノード装置へ伝送されるまでに前記波長多重光が通過した光ノード装置である通過光ノード装置を特定する通過ノード装置特定手段と
     を備えることを特徴とする光伝送システム。
  4.  前記通過ノード装置特定手段は、
     前記低周波信号抽出手段によって抽出された前記低周波信号の周波数を識別することにより、前記通過光ノード装置を特定することを特徴とする請求項3に記載の光伝送システム。
  5.  前記光ノード装置は、前記波長多重光から任意の波長の信号光を分岐し、若しくは、前記波長多重光へ任意の波長の信号光を挿入する光挿入分岐装置(OADM:Optical Add-Drop Multiplexer)装置であって、
     前記重畳信号光生成手段は、前記複数の信号光のそれぞれに、前記複数の光ノード装置で周波数が異なる第1の低周波信号を、前記分岐若しくは前記挿入の位置よりも上流側で重畳すると共に、前記複数の光ノード装置で周波数が異なり、かつ、前記第1の低周波信号と周波数が異なる第2の低周波信号を、前記分岐若しくは前記挿入の位置よりも下流側で重畳することを特徴とする請求項3又は4に記載の光伝送システム。
  6.  波長の異なる複数の信号光を含む波長多重光が、光伝送路を介して互いに接続された複数の光ノード装置により伝送される光伝送システムによる光伝送方法であって、
     前記光伝送システムを構成する各前記光ノード装置が、
     入力された前記波長多重光に含まれる前記複数の信号光のそれぞれに、前記複数の光ノード装置で共通の周波数である低周波信号を重畳する重畳信号光生成工程と、
     前記複数の信号光のそれぞれに対し、所定範囲の周波数の低周波信号をそれぞれ抽出する低周波信号抽出工程と、
     前記複数の信号光のそれぞれに対し、前記低周波信号抽出工程によって抽出された前記低周波信号の周波数に基づき、当該光ノード装置へ伝送されるまでに通過した光ノード装置の数である通過ノード数をそれぞれ計測する通過ノード数計測工程と
     を含んだことを特徴とする光伝送方法。
PCT/JP2009/056580 2009-03-30 2009-03-30 光伝送システム及び光伝送方法 WO2010116474A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011508116A JP5206866B2 (ja) 2009-03-30 2009-03-30 光伝送システム及び光伝送方法
PCT/JP2009/056580 WO2010116474A1 (ja) 2009-03-30 2009-03-30 光伝送システム及び光伝送方法
US13/137,933 US8699884B2 (en) 2009-03-30 2011-09-21 Optical transmission system and optical transmission method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/056580 WO2010116474A1 (ja) 2009-03-30 2009-03-30 光伝送システム及び光伝送方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/137,933 Continuation US8699884B2 (en) 2009-03-30 2011-09-21 Optical transmission system and optical transmission method

Publications (1)

Publication Number Publication Date
WO2010116474A1 true WO2010116474A1 (ja) 2010-10-14

Family

ID=42935785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/056580 WO2010116474A1 (ja) 2009-03-30 2009-03-30 光伝送システム及び光伝送方法

Country Status (3)

Country Link
US (1) US8699884B2 (ja)
JP (1) JP5206866B2 (ja)
WO (1) WO2010116474A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012109711A (ja) * 2010-11-16 2012-06-07 Mitsubishi Electric Corp 光伝送システム
JP2012227662A (ja) * 2011-04-18 2012-11-15 Fujitsu Ltd 光伝送装置および光スイッチ装置
JP2013197668A (ja) * 2012-03-16 2013-09-30 Fujitsu Ltd 測定装置、ネットワーク設計装置、伝送システム、ネットワーク管理装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10270554B2 (en) * 2015-09-22 2019-04-23 Exfo Inc. Optical power measurement in a passive optical network
JP2023161898A (ja) * 2022-04-26 2023-11-08 富士通株式会社 光伝送システム及び受信装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05130058A (ja) * 1991-03-26 1993-05-25 Nippon Telegr & Teleph Corp <Ntt> 中継器の監視方式
JPH09321701A (ja) * 1996-05-31 1997-12-12 Fujitsu Ltd 光通信システム及び光増幅器
JPH10229384A (ja) * 1997-02-13 1998-08-25 Nippon Telegr & Teleph Corp <Ntt> 光制御信号伝送装置
JP2000165357A (ja) * 1998-11-25 2000-06-16 Nortel Networks Corp 波長分割多重システムにおける補助デ―タ伝送装置および補助デ―タ伝送方法
JP2005340959A (ja) * 2004-05-24 2005-12-08 Toshiba Corp 光伝送システム

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09214428A (ja) 1996-02-02 1997-08-15 Nippon Telegr & Teleph Corp <Ntt> 波長監視方法およびそれを用いた光増幅装置
JPH09247104A (ja) 1996-03-12 1997-09-19 Nippon Telegr & Teleph Corp <Ntt> 光中継器監視方式
JP3102379B2 (ja) * 1997-04-30 2000-10-23 日本電気株式会社 波長多重光伝送システム用監視制御方式
DE10000503A1 (de) 2000-01-08 2001-07-12 Philips Corp Intellectual Pty Datenverarbeitungseinrichtung und Verfahren zu dessen Betrieb
JP3588435B2 (ja) * 2000-02-28 2004-11-10 富士通株式会社 光増幅装置、複合光増幅装置および光通信システム
JP2002141897A (ja) 2000-10-31 2002-05-17 Advanced Mobile Telecommunications Security Technology Research Lab Co Ltd 耐タンパー機能を有する暗号回路
JP3844116B2 (ja) 2001-04-16 2006-11-08 株式会社ルネサステクノロジ 暗号化・復号化装置とicカード
US7031606B2 (en) 2001-11-23 2006-04-18 Tropic Networks Inc. Method and system for monitoring performance of optical network
JP4291970B2 (ja) 2001-12-20 2009-07-08 富士通株式会社 暗号処理装置
GB2406684B (en) 2002-12-12 2005-08-24 Advanced Risc Mach Ltd Processing activity masking in a data processing system
JP2005045752A (ja) 2003-07-07 2005-02-17 Sony Corp 暗号処理装置、および暗号処理方法
US7542678B2 (en) * 2004-12-30 2009-06-02 Alcatel-Lucent Usa Inc. Method and apparatus for a supervisory channel in a WDM fiber-optic communication system
JP2007122657A (ja) 2005-10-31 2007-05-17 Toshiba Corp 消費電流制御システム
JP2007195132A (ja) 2005-12-20 2007-08-02 Sony Corp 暗号処理装置
FR2903830B1 (fr) * 2006-07-11 2008-08-22 Alcatel Sa Procede et dispositif de surveillance des chemins optiques de connexion pour un reseau optique transparent
JP2008141381A (ja) 2006-11-30 2008-06-19 Toshiba Corp 情報処理装置
JP5130058B2 (ja) 2008-01-11 2013-01-30 新日鐵住金株式会社 利用加工性に優れた高耐食性防錆塗料用ペースト、高耐食性防錆塗料、該塗料を塗装した高耐食鋼および鋼構造物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05130058A (ja) * 1991-03-26 1993-05-25 Nippon Telegr & Teleph Corp <Ntt> 中継器の監視方式
JPH09321701A (ja) * 1996-05-31 1997-12-12 Fujitsu Ltd 光通信システム及び光増幅器
JPH10229384A (ja) * 1997-02-13 1998-08-25 Nippon Telegr & Teleph Corp <Ntt> 光制御信号伝送装置
JP2000165357A (ja) * 1998-11-25 2000-06-16 Nortel Networks Corp 波長分割多重システムにおける補助デ―タ伝送装置および補助デ―タ伝送方法
JP2005340959A (ja) * 2004-05-24 2005-12-08 Toshiba Corp 光伝送システム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012109711A (ja) * 2010-11-16 2012-06-07 Mitsubishi Electric Corp 光伝送システム
JP2012227662A (ja) * 2011-04-18 2012-11-15 Fujitsu Ltd 光伝送装置および光スイッチ装置
JP2013197668A (ja) * 2012-03-16 2013-09-30 Fujitsu Ltd 測定装置、ネットワーク設計装置、伝送システム、ネットワーク管理装置

Also Published As

Publication number Publication date
US20120008957A1 (en) 2012-01-12
JP5206866B2 (ja) 2013-06-12
JPWO2010116474A1 (ja) 2012-10-11
US8699884B2 (en) 2014-04-15

Similar Documents

Publication Publication Date Title
JP5811631B2 (ja) 重畳信号検出回路および光ノード装置
JP7074152B2 (ja) 光通信装置、光伝送システム、および、光通信方法
KR101022640B1 (ko) 투과성 광 네트워크를 위한 광 접속 경로의 감시를 위한 방법 및 디바이스
JP6079276B2 (ja) 信号検出回路および光伝送装置
EP2736185A1 (en) Optical transmission device, node device, optical transmission method, and optical transmission system
JP5206866B2 (ja) 光伝送システム及び光伝送方法
US8655185B2 (en) Optical node, optical network system, and method for measuring polarization mode dispersion
US11165529B2 (en) Optical wavelength multiplex transmission system, optical wavelength multiplex apparatus, and standby system checking method
JPWO2018051935A1 (ja) 監視システム及び監視方法
JP6379455B2 (ja) 周波数変調信号検出器及び光受信装置
US20120318965A1 (en) Optical transmission system and optical transmission method
US10505626B2 (en) Communication apparatus, communication method, and communication system
US9680597B2 (en) Optical branching/coupling device and optical branching/coupling method
JP5522229B2 (ja) 光伝送システム
US20130315602A1 (en) Optical transmission device
JP6625946B2 (ja) 光伝送システム、光ノード装置及び光伝送方法
JP4150193B2 (ja) 波長制御装置及び波長制御方法
JP2009206707A (ja) 光分岐挿入装置、光クロスコネクト装置、光クロスコネクトシステム、及び光クロスコネクト装置の制御方法
JP6070062B2 (ja) 光送信システムおよび制御方法
JPH09210740A (ja) 海底観測システム
JP3641425B2 (ja) インタフェース装置
JP5315466B1 (ja) 波長監視システム
JP2000201110A (ja) 光伝送装置
JP2000324065A (ja) Adm光モジュール及び光通信線路の試験方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09842984

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011508116

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09842984

Country of ref document: EP

Kind code of ref document: A1