WO2010114036A1 - 電源システムを備えた建設機械及び産業車両 - Google Patents

電源システムを備えた建設機械及び産業車両 Download PDF

Info

Publication number
WO2010114036A1
WO2010114036A1 PCT/JP2010/055900 JP2010055900W WO2010114036A1 WO 2010114036 A1 WO2010114036 A1 WO 2010114036A1 JP 2010055900 W JP2010055900 W JP 2010055900W WO 2010114036 A1 WO2010114036 A1 WO 2010114036A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
energy
battery
power supply
supply system
Prior art date
Application number
PCT/JP2010/055900
Other languages
English (en)
French (fr)
Inventor
枝穂 泉
金子 悟
伊君 高志
信夫 正野
Original Assignee
日立建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立建機株式会社 filed Critical 日立建機株式会社
Priority to JP2011507268A priority Critical patent/JP5340381B2/ja
Priority to KR1020117019287A priority patent/KR101662863B1/ko
Priority to US13/202,143 priority patent/US8831805B2/en
Priority to CN201080008831.3A priority patent/CN102325947B/zh
Priority to EP10758807.1A priority patent/EP2415935A4/en
Publication of WO2010114036A1 publication Critical patent/WO2010114036A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/20Energy regeneration from auxiliary equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/40Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/16Dynamic electric regenerative braking for vehicles comprising converters between the power source and the motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F9/00Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
    • B66F9/06Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
    • B66F9/075Constructional features or details
    • B66F9/20Means for actuating or controlling masts, platforms, or forks
    • B66F9/24Electrical devices or systems
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2058Electric or electro-mechanical or mechanical control devices of vehicle sub-units
    • E02F9/2062Control of propulsion units
    • E02F9/2075Control of propulsion units of the hybrid type
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2058Electric or electro-mechanical or mechanical control devices of vehicle sub-units
    • E02F9/2091Control of energy storage means for electrical energy, e.g. battery or capacitors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • H02P3/08Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing a dc motor
    • H02P3/14Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing a dc motor by regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/40Working vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/40Working vehicles
    • B60L2200/42Fork lift trucks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/60Electric or hybrid propulsion means for production processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a construction machine and an industrial vehicle provided with a power supply system, for example, a construction machine and an industrial vehicle provided with a power supply system suitable for a hydraulic excavator, a forklift or the like.
  • a battery is provided to drive a running motor, and AC power is supplied from the battery to the motor via an inverter.
  • lead storage batteries are used as a power source.
  • a power supply system is configured by combining a battery and a capacitor, the energy from the load is stored in the capacitor, and the stored energy can be instantaneously supplied to the load to improve efficiency. Yes.
  • Patent Document 1 in a power supply system in which a battery and a capacitor are combined, a current-voltage converter is disposed between the charging / discharging capacitor and the battery, and the motor as a load is driven and controlled. Connect the capacitor to the discharge path, and connect the capacitor to the charge path when the motor is regeneratively braked, thereby reducing the capacity of the power source such as a battery and supplying the desired maximum energy to the load. Has been shown to do.
  • Patent Document 1 which is the conventional technique, it is possible to recover regenerative energy and reduce the capacity of a battery or a capacitor. However, it does not disclose details of a method for realizing recovery of regenerative energy or reduction of the capacity of a battery or a capacitor.
  • Patent Document 2 the regenerative operation is reduced only when conditions are set in advance when power running and regeneration are repeated, and the control load of regenerative energy is reduced. Even if it can be applied to simple controls such as the above, acceleration and braking exist in a series of operations like turning a hydraulic excavator, and if power running and regeneration are switched, the responsiveness of the power supply system is a problem. Therefore, application becomes difficult.
  • the present invention has been made in view of these points, and provides a control technique capable of recovering regenerative energy with high efficiency and reducing the capacity of a battery or a capacitor.
  • the present invention employs the following means in order to solve the above problems.
  • the load is an electric motor
  • the capacitor is connected to the load via a DC / DC converter
  • the DC / DC converter controls the energy charged and discharged by the capacitor via the DC / DC converter.
  • the control means includes the rotational speed and torque of the motor, or the DC current supplied to the inverter, or the operating lever information, and the power running / regenerative change point in the repetitive work held in advance.
  • a power running / regenerative operation estimation means for estimating an operation pattern including a change point of the motor power running / regeneration is provided, and the capacitor is operated based on the change point and the operation pattern estimated by the power running / regenerative operation estimation means.
  • DC / DC converter output command so that the target voltage is gradually lowered for power running and gradually lowered for regeneration.
  • the present invention has the above-described configuration, the regenerative energy can be recovered with high efficiency and the capacity of the battery can be reduced.
  • FIG. 1 is a diagram illustrating a hybrid hydraulic excavator equipped with a power supply system according to the first embodiment.
  • the hydraulic excavator includes a traveling body 401 and a turning body 402, and the traveling body 401 is driven by a traveling hydraulic motor 33.
  • a driver's seat 403 is provided on the left side of the front part of the revolving structure 402, and a multi-joint structure working device 400 having a boom 405, an arm 406, and a bucket 407 is provided on the right side of the front part.
  • the boom 405, the arm 406, and the bucket 407 are driven by a boom cylinder 32a, an arm cylinder 32b, and a bucket cylinder 32c, which are hydraulic actuators, respectively.
  • FIG. 2 is a diagram showing the configuration of the drive unit of the hybrid excavator shown in FIG. 1 and the configuration of the power supply system 1 according to the first embodiment.
  • the traveling hydraulic motor 33 and the working device driving hydraulic actuator are driven by hydraulic oil discharged from a hydraulic pump 31 driven by the engine 10. Further, a motor generator 8 is connected to the engine 10, and the motor generator 8 is driven by the engine 10 and is driven by the hydraulic pump 31 to perform a regenerative operation.
  • the traveling hydraulic motor 33, the arm cylinder 32b, and the bucket cylinder 32c communicate with the hydraulic pump 31 through the control valve 34, and hydraulic oil is exchanged.
  • the turning body 402 can turn on the traveling body 401 by a turning AC motor 36a.
  • the turning motor 36 is connected to the battery 12 and the DC / DC converter 15 via the inverter 37a, and the boom driving motor 36b is connected to the battery 12 and the DC / DC converter 15.
  • the DC / DC converter 15 is connected to the capacitor 13 and exchanges power running / regenerative energy with the motors 36a and 36b.
  • the inverters 37 a and 37 b are connected to the controller 11 and controlled by the controller 11.
  • the controller 11 controls the amount of operation of an operation lever (not shown), the motor torque or the rotational speed that is the basis of vehicle information such as the vehicle speed and the turning speed, the current value of the inverter, the load of the load such as earth and sand excavated by the work device, etc. Based on this information, the power supply system 1, the inverter 9 connected to the motor generator 8 driven by the engine 10, and the engine control unit (ECU) 15 are controlled.
  • the next power running / regenerative change point (the time when the operation changes from power running to regeneration or from regeneration to power running) is estimated, and the estimated change time is Correspondingly, the energy that can be input and output to the capacitor is calculated, and the target voltage Vc * of the capacitor 13 can be determined in accordance with the calculated energy.
  • a DC / DC converter 14 is provided between the motor 36a, which is a load, and the capacitor 13, and the voltage on the capacitor side can be stepped up and down.
  • the voltage of the battery 12 is 48V
  • the voltage on the capacitor 13 side operates in a voltage range of 48V to 90V, for example.
  • the DC / DC converter 14 is controlled to charge from the battery 12 when the charge amount of the capacitor 13 is insufficient, and when the charge amount of the capacitor 13 approaches a chargeable upper limit value. Or when it is reached, the battery 12 is charged.
  • the lead-acid battery has a large loss during charging, the regenerative energy cannot be efficiently collected in the battery. Moreover, if charging / discharging to the lead storage battery is repeated with a large current, the deterioration tends to proceed and the life tends to be shortened. For this reason, it is desirable to use charging / discharging by the capacitor 13 as much as possible when repeatedly performing power running and regeneration by the motor during the turning operation. Thereby, the energy efficiency by charging / discharging can be improved.
  • FIG. 3 is a block diagram showing each function of the controller 11 shown in FIG.
  • a change point between power running and regeneration for example, a change point from acceleration to deceleration in a turning operation, is often known in advance from a turning angle and a turning speed.
  • the motion estimation means 19 in the present embodiment includes a power running / regeneration change point in repetitive work based on the operation amount of the operation lever, the turning speed, the torque of the turning motor, the information of the stroke sensor provided in each actuator, and the like. Pattern information is obtained and stored in advance.
  • the next powering / regenerative change point and the motion pattern including the change point are estimated.
  • the direction of change (from power running to regeneration, or from regeneration to power running) can be estimated from lever operation.
  • the boom 405 or the arm 406 is in the raising operation (powering operation) by operating the lever, it can be estimated that the next operation is a regenerative operation that is a lowering operation.
  • the power running / regenerative energy calculation means 16 is information of torque and rotation speed of the motor 36a for turning that is currently required for acceleration / deceleration of turning, information on the movement pattern that has been held in advance, and information on the change point estimated by the action estimation means 19. Based on the above, the time delay until the power running / regenerative operation change point (grace time) and the power running / regenerative energy required by the time delay are calculated.
  • the capacitor input / output energy calculation means 17 calculates whether the power running / regenerative energy of the load can be output from the capacitor 13 or whether the capacitor can receive all the regenerative energy.
  • the battery input / output energy calculation means 20 is based on the calculation result of the capacitor input / output energy calculation means 17, when the load performs a power running operation, when the battery 12 needs to be discharged or when the load is regenerated. It is calculated whether the battery 12 should also be charged.
  • the capacitor target voltage calculation means 18 determines the final target voltage Vc * of the capacitor 13 according to the power running / regenerative energy calculation calculated by the power running / regenerative energy calculation means 16. For example, the target voltage Vc * of the capacitor 13 during regeneration is set to a value that allows the capacitor 13 to accept the regenerative energy as much as possible. At this time, the voltage of the capacitor 13 can be gradually boosted by controlling the current of the DC / DC converter according to the operation pattern information.
  • the capacitor voltage command value Vc * is calculated by calculating the energy amount E that can be charged and discharged to the capacitor based on the operation pattern information of the turning motor during turning. Can do.
  • the battery 12 is charged while avoiding a sudden change in the target voltage by controlling the DC / DC converter 14 so as to boost the target voltage Vc * of the capacitor 13 in accordance with, for example, operation pattern information based on the turning speed.
  • the situation where the battery is charged can be reduced, and the decrease in efficiency due to the charging of the battery can be prevented.
  • the capacitor 13 can be reduced in size by widening the charge / discharge voltage range of the capacitor 13.
  • FIG. 4 is a diagram showing an example of a change pattern of the target voltage of the capacitor in the turning operation of the turning motor.
  • the target voltage of the capacitor gradually decreases from Vci at the start of turning according to energy consumption due to power running during acceleration.
  • Vci becomes Vc1
  • Vci changes from power running to regeneration, and Vci gradually rises and finally becomes Vcf due to energy regeneration during regeneration (during deceleration).
  • the target voltage Vci of the capacitor rises from Vc1 to Vc2 in a stepped manner due to mechanical loss such as friction and electrical loss due to the efficiency of the inverter and the like. This is because all the obtained kinetic energy and potential energy cannot be recovered in the regeneration process.
  • the target voltage Vcf at the end of the turning operation is set higher than the start time Vci to compensate for the loss.
  • controller responsiveness becomes a problem because of a sudden increase in the target voltage when changing from power running to regeneration, and if this change point is known in advance, control that allows for controller responsiveness is possible. Become.
  • FIG. 5 is a diagram for explaining the processing of the controller 11 (processing for calculating the voltage command value of the capacitor).
  • step 40 in FIG. 5 the lever operation amount and the turning speed are input.
  • step 41 the torque command value Trq * and the rotational speed ⁇ m of the turning motor 36b are input.
  • step 42 the load output Pm is calculated using these pieces of information.
  • the output Pm of the turning motor during turning is calculated by the equation (1) by multiplying the torque command value Trq * of the motor by the rotational speed ⁇ m.
  • Pm Trq * ⁇ ⁇ m (1)
  • Pm Trq * ⁇ ⁇ m (1)
  • the determination is made using the torque command value and the rotation speed of the motor, it is determined from the positive / negative of the DC current Idc flowing through the inverter 4 whether the power is being discharged to the power supply device or the power supply device is being supplied with power. It is also possible to do.
  • the load output Pm can also be calculated based on the operation amount of the operation lever input in step 40.
  • step 43 the battery current Ib and the battery voltage Vb are input.
  • step 44 the capacitor voltage Vc and the capacitor current Ic are input.
  • the target voltage Vc of the capacitor 13 differs depending on whether the motor is running or regenerating, and is determined according to the battery voltage Vb or the capacitor 13 voltage Vc. For example, when the motor is running, the energy stored in the capacitor 13 is consumed as much as possible so that the battery is not discharged.
  • the DC / DC converter 14 is controlled so as to decrease the target voltage Vc * of the capacitor 13 and extract the power running energy from the capacitor 13. Further, during regeneration of the motor, regenerative energy is collected in the capacitor 13 as much as possible so that the battery is not charged.
  • the DC / DC converter 14 is controlled so that the target voltage Vc * of the capacitor 13 is increased and the regenerative energy is recovered by the capacitor 13.
  • step 45 the amount of energy that can be input and output to the capacitor is estimated based on the battery current Ib, the battery voltage Vb, the capacitor voltage Vc, the capacitor current Ic, the power running / regenerative energy Pm, and the potential energy.
  • the amount of energy that can be input and output to the capacitor can be realized by sequentially calculating the amount of energy that can be charged and discharged with respect to the current capacitor voltage Vc.
  • the higher the capacitor voltage Vc the greater the amount of energy that can be discharged, and the lower the amount, the less the amount of energy that can be discharged.
  • the capacitor voltage Vc is lower, the amount of energy that can be charged increases, and as the capacitor voltage Vc increases, the amount of energy that can be charged decreases.
  • the amount of energy that can be charged and discharged is determined in advance for the current capacitor voltage Vc. For this reason, in order to estimate the energy that can be input and output from the capacitor voltage, the relationship between the capacitor voltage according to the operation pattern information obtained in advance and the amount of energy that can be charged and discharged may be held in a table or the like. Next, the amount of regenerative energy in the turning operation is calculated, and the voltage command value Vc * of the capacitor 13 is calculated in step 46 based on the calculated energy amount.
  • the margin (time margin) to the power running / regenerative operation change point can be determined by the current turning acceleration or turning angle, and a control command corresponding to the response delay of the controller can be given in advance before the change point at which power running and regenerative operation change. If issued, the responsiveness of the DC / DC converter is improved.
  • the turning motion is to load the empty bucket. If the moment of inertia of the revolving structure is ⁇ I ⁇ and the angular velocity is ⁇ , the regenerative energy generated by the kinetic energy is expressed by the following equation.
  • Emax is the maximum value of energy that can be stored determined by the rating of the capacitor
  • C is the capacity of the capacitor.
  • the capacitor voltage command value Vc * is lowered as the current traveling speed increases or as the lift height and load increase, that is, as the kinetic energy or the potential energy increases.
  • the current command value of the DC / DC converter is calculated according to the capacitor voltage command value Vc * calculated as described above.
  • the charge / discharge current of the battery is determined as follows according to the relationship between the above-described capacitor voltage command value Vc * and the energy that can be input to and output from the capacitor 13.
  • the motor 36a When the motor 36a outputs regenerative energy during turning (Pm ⁇ 0), the energy that can be collected in the capacitor 13 is compared with the energy that should be regenerated during deceleration and the amount of energy that can be stored in the capacitor 13. If all can be recovered by the capacitor, all regenerative energy is recovered without charging the battery 12.
  • the DC / DC converter performs boosting control so that the capacitor voltage command value Vc * is obtained during regeneration (charging), and charges the capacitor with energy. However, control is performed so that the battery 12 is charged when the Vc of the capacitor 13 is nearly fully charged.
  • the battery 12 may be charged slightly to consume the energy of the capacitor 13.
  • the present embodiment most of the regenerative energy can be recovered in the capacitor 13 without charging the battery 12 with a large current during regeneration, and the utilization efficiency of the capacitor is improved.
  • the battery 12 when charging the battery 12 with a small current value Ib, the battery 12 can be efficiently charged.
  • the energy charged in the capacitor 13 decreases, that is, when the voltage Vc of the capacitor 13 becomes equal to or less than the battery voltage Vb, control is performed so as to charge from the battery.
  • the capacitor 13 is used to input and output energy as much as possible. Do it. Thereby, when charging / discharging the conventional battery (lead storage battery), it becomes possible to reduce the loss which generate
  • FIG. 6 is a diagram illustrating a forklift equipped with the power supply system according to the second embodiment.
  • FIG. 7 is a diagram for explaining the details of the power supply system 1 shown in FIG. 1 and the control system in the forklift.
  • the power supply system 1 includes a battery 12 and a capacitor 13.
  • the battery 12 is a lead storage battery or a lithium ion battery, and a lead storage battery with a voltage of 48 V is assumed here.
  • the capacitor 13 can be composed of an electric double layer capacitor or the like, and has a capacitance of several tens of F.
  • a current of about 150A normally flows, and when the load is large, 300A to 400A may flow.
  • a capacity of about 400 Ah is required, although it depends on the amount of work of the forklift and the working time of one day.
  • the forklift 2 includes a mast 7, a fork 8, a pedal 9, such as an accelerator and a brake, and a traveling AC motor 3a.
  • the driving force of the AC motor 3 a is transmitted to the driving wheel 10 to drive the driving wheel 10.
  • the output of AC motor 3a is controlled by inverter 4 that is controlled by a command from controller 11.
  • the AC motor 3a may be connected directly to the drive wheels or connected via a gear.
  • the AC motor 3a is a motor / generator, which generates a driving force as a motor when performing a power running operation, and regenerates energy by operating as a generator when driven by the drive wheels 10.
  • the inverter 4a is provided for arbitrarily controlling the power generated by the AC motor 3a. In other words, the inverter 4a converts the DC power stored in the power supply system 1 into AC power during powering and supplies the AC power to the AC motor 3a. The inverter 4 a converts the AC power output from the AC motor 3 a into DC power and supplies it to the power supply system 1 during regeneration.
  • the controller 11 calculates the torque command to the AC motor 3a based on the operation amount of the accelerator 9 or the brake operated by the driver or the state of each component, and controls the vehicle.
  • the lift operation and tilt operation of the fork 8 are operated using the lever 6.
  • an AC motor 3b is provided in order to perform the lift operation.
  • the forklift 2 is provided with an actuator that converts the rotational motion of the motor into a linear motion in the vertical direction in order to move the fork 8 up and down. Since the fork 8 is composed of a set of two claws, the output of the AC motor 3b is transmitted to the actuator, distributed to the two claws via a coupler (not shown), and receives an instruction from the controller 11 Controlled by 4b.
  • the AC motor 3b When the fork is raised, the AC motor 3b is driven by the inverter 4b. When the fork is lowered, the AC motor 3b is driven as a generator by the potential energy of the load, and the regenerated energy is supplied to the power supply system 1.
  • the left and right pawls for lift are driven by the AC motor 3b and the AC motor 3c, respectively, that is, by independent direct acting actuators. It is good also as a structure which goes up and down. In this case, the two AC motors are controlled by respective inverters provided correspondingly.
  • controller shown in FIG. 2 is used as the controller shown in FIG.
  • the motion estimation means 19 is based on the information on the rotational speed and torque of the motor, the operation amount of the accelerator 9, the brake or the lever 6 and the load mounted on the fork 8, and the current power running operation. If so, the next is regenerative, and conversely if it is the current regenerative operation, the next is power running and the change point to the next operation is estimated.
  • the accelerator when the accelerator is stepped on, the vehicle is traveling, and it can be estimated that the next operation is a regenerative operation for stopping. Further, when the fork 8 is being raised by the operation of the lever 6, it can be estimated that the next operation is a regenerative operation because the fork 8 is lowered.
  • it is possible to estimate the power change and regenerative operation change time points by detecting acceleration / deceleration during traveling or by detecting lift lifting / lowering operations during cargo handling operations. At this time, from the (current) traveling or cargo handling motor torque or the current value of the inverter and the operation pattern information acquired and held in advance, it is determined when the change to the braking regenerative operation for stopping (change) Point) can also be estimated.
  • the current of the DC / DC converter 14 is controlled so that the voltage Vc of the capacitor 13 becomes a desired value according to the operation of the forklift 2 and the state of each component.
  • FIG. 8A and 8B are diagrams illustrating changes in various outputs when the fork is raised and lowered.
  • FIG. 8A is a load output
  • FIG. 8B is a battery current and a capacitor current
  • FIG. 8C is a battery. Voltage and capacitor voltage
  • FIG. 8D shows changes in the output of the battery and the capacitor.
  • the present invention can be applied to forward and backward movement, loading and unloading of earth and sand in a wheel loader. In this way, unlike the automobile, the construction machine has a general operation, so the energy balance can be managed appropriately.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

【課題】回生エネルギを高効率で回収し、バッテリあるいはキャパシタの電圧を最適に制御する。  【解決手段】充放電可能なキャパシタと、充放電可能なバッテリおよび前記キャパシタと力行及び回生可能な負荷とを接続する給電回路を備え、前記キャパシタに蓄積されたエネルギをインバータを介して負荷に給電し、負荷の回生エネルギを前記インバータを介してキャパシタに充電する電源システムを備えた建設機械又は産業車両において、前記負荷が電動モータであり、かつ、前記キャパシタはDC/DCコンバータを介して負荷に接続され、該DC/DCコンバータは該DC/DCコンバータを介して前記キャパシタが充放電するエネルギを制御する制御手段を備え、前記制御手段は、モータの回転数及びトルク、又は、インバータに供給されるDC電流、又は、操作レバー情報、及び予め保持しておいた繰り返し作業における力行/回生の変化点を含む動作パターン情報に基づき、モータの力行/回生の変化点を含む動作パターンを推定する力行/回生動作推定手段19を備え、この力行/回生動作推定手段が推定した変化点および動作パターンに基づいてキャパシタの目標電圧を、力行の場合は徐々に低く、回生の場合は徐々に低くなるようにDC/DCコンバータの出力指令値を制御するキャパシタ目標電圧演算手段18を備えることを特徴とする電源システムを備えた。

Description

電源システムを備えた建設機械及び産業車両
 本発明は、電源システムを備えた建設機械及び産業車両に係り、例えば、油圧ショベルやフォークリフト等に好適な電源システムを備えた建設機械及び産業車両に関する。
 車両の駆動系にモータが用いられるハイブリッド自動車、電気自動車、あるいはバッテリフォークリフトなどでは、走行用のモータを駆動するためにバッテリを備え、該バッテリからインバータを介してモータに交流電力を供給している。
 バッテリフォークリフト等の産業車両では、電源として鉛蓄電池を使用しているが、このような産業車両の走行時あるいは作業時における消費エネルギを考慮すると、バッテリの容量は大きくしておく必要がある。
 なお、大容量のバッテリを搭載していても、搭載するバッテリとして鉛蓄電池を用いた場合には、鉛蓄電池は急速充電に適していないため回生制動する際の回生エネルギの殆どがロスとなり回収できないことがある。
 そこで、近年では、バッテリとキャパシタを組合せて電源システムを構成し、負荷からのエネルギをキャパシタに蓄積し、さらに、蓄積したエネルギを瞬間的に負荷に供給できるようにすることで効率向上を図っている。
 例えば、特許文献1には、バッテリとキャパシタを組合せた電源システムにおいて、充放電用キャパシタとバッテリとの間に電流電圧変換器を配置し、負荷であるモータが駆動制御されている際には前記キャパシタを放電経路に接続し、前記モータが回生制動されている際には前記キャパシタを充電経路に接続することにより、バッテリ等の電源の容量を少なくして、所望の必要最大エネルギを負荷に供給することが示されている。
特開2002-320302号公報 特開2006-321640号公報
 前記従来技術である特許文献1によれば、回生エネルギを回収することが可能であり、また、バッテリあるいはキャパシタの容量を減らすことはできる。しかしながら、回生エネルギの回収、あるいはバッテリやキャパシタの容量の低減を実現するための方法の詳細について開示するものではない。
 また特許文献2では、力行と回生を繰り返す場合にあらかじめ設定した条件のときのみ回生動作とすることで、回生エネルギの制御負担を軽減するものであるが、適用対象がクレーンにおけるフリーフォール時の回生といった単純な制御の場合には適用できても、油圧ショベルの旋回のように加速と制動が一連の動作の過程に存在し、力行と回生が切替わる場合には、電源システムの応答性が問題となり、適用は困難となる。
 本発明はこれらの点に鑑みてなされたもので、回生エネルギを高効率で回収し、バッテリあるいはキャパシタの容量を低減することのできる制御技術を提供するものである。
 本発明は上記課題を解決するため、次のような手段を採用した。
充放電可能なキャパシタと、充放電可能なバッテリおよび前記キャパシタと力行及び回生可能な負荷とを接続する給電回路を備え、前記キャパシタに蓄積されたエネルギをインバータを介して負荷に給電し、負荷の回生エネルギを前記インバータを介してキャパシタに充電する電源システムを備えた建設機械又は産業車両において、
 前記負荷が電動モータであり、かつ、前記キャパシタはDC/DCコンバータを介して負荷に接続され、該DC/DCコンバータは該DC/DCコンバータを介して前記キャパシタが充放電するエネルギを制御する制御手段を備え、前記制御手段は、モータの回転数及びトルク、又は、インバータに供給されるDC電流、又は、操作レバー情報、及び予め保持しておいた繰り返し作業における力行/回生の変化点を含む動作パターン情報に基づき、モータの力行/回生の変化点を含む動作パターンを推定する力行/回生動作推定手段を備え、この力行/回生動作推定手段が推定した変化点および動作パターンに基づいてキャパシタの目標電圧を、力行の場合は徐々に低く、回生の場合は徐々に低くなるようにDC/DCコンバータの出力指令値を制御するキャパシタ目標電圧演算手段を備えることを特徴とする電源システムを備えた。
 本発明は、以上の構成を備えるため、回生エネルギを高効率で回収し、バッテリの容量を低減することができる。
第1の実施形態に係る電源システムを搭載したハイブリッド式油圧ショベルを説明する図である。 ハイブリッド式油圧ショベルの駆動部の構成および搭載した第1の実施形態にかかる電源システムの構成を示す図である 図2に示すコントローラの各機能を示すブロック図である。 旋回モータの旋回動作におけるキャパシタの目標電圧の変化例を示す図である。 コントローラの処理(キャパシタの電圧指令値を算出する処理)を説明する図である。 第2の実施形態に係る電源システムを搭載したフォークリフトを説明する図である。 図6に示すフォークリフトの構成及び搭載した電源システムの詳細を説明する図である。 フォークの上昇および下降時における各種の出力の変化を表す図である。
 以下、最良の実施形態を、添付図面を参照しながら説明する。
(実施形態1)
 図1は、第1の実施形態に係る電源システムを搭載したハイブリッド式油圧ショベルを説明する図である。
 図1において,油圧ショベルは,走行体401,旋回体402を有し、走行体401は走行用油圧モータ33により駆動される。また、旋回体402の前部左側には運転席403が設けられ、前部右側にはブーム405,アーム406,バケット407を有する多関節構造の作業装置400が設けられている。
 ブーム405、アーム406,バケット407は,それぞれ油圧アクチュエータであるブームシリンダ32a、アームシリンダ32b,バケットシリンダ32cにより駆動される。
 図2は、図1に示すハイブリッド式油圧ショベルの駆動部の構成および搭載した第1の実施形態にかかる電源システム1の構成を示す図である。
 走行用油圧モータ33および作業装置駆動用油圧アクチュエータ(アームシリンダ32b,バケットシリンダ32c)は、エンジン10により駆動される油圧ポンプ31から吐出される作動油にて駆動される。さらにエンジン10にはモータジェネレータ8が接続され、モータジェネレータ8はエンジン10により駆動され、また油圧ポンプ31により駆動されて回生動作を行う。
 走行用油圧モータ33、アームシリンダ32bおよびバケットシリンダ32cはコントロールバルブ34を介して各々油圧ポンプ31と連通し、作動油が授受される。旋回体402は旋回用の交流モータ36aにより走行体401上で旋回可能である。旋回用モータ36はインバータ37aを介して、またブーム駆動用モータ36bはインバータ37bを介して、バッテリ12およびDC/DCコンバータ15に接続される。またDC/DCコンバータ15はキャパシタ13と接続し、モータ36a,36bとの間で力行/回生エネルギの授受を行う。
 インバータ37aおよび37bはコントローラ11に接続され、コントローラ11により制御される。なお、コントローラ11は、図示しない操作レバーの操作量、車速や旋回速度などの車体情報の基となるモータトルクあるいは回転数、インバータの電流値、作業装置で掘削した土砂などの積載物の荷重などの情報を基に、電源システム1、エンジン10により駆動されるモータジェネレータ8と接続されたインバータ9、及びエンジンコントロールユニット(ECU)15を制御する。
 油圧ショベルなどの建設機械やフォークリフトなどの産業車両では、作業パターンがほぼ決まっているため、作業パターンをもとに必要な力行エネルギや発生する回生エネルギを推定しやすい。
 すなわち、現在の動作状態と予め得られた動作パターン情報を用いることにより次の力行/回生の変化点(力行から回生あるいは回生から力行への動作の変化時点)を推定し、推定した変化時点に対応してキャパシタに入出力可能なエネルギを演算し、演算したエネルギに合わせてキャパシタ13の目標電圧Vc*を決定することができる。
 本実施形態では、負荷であるモータ36aとキャパシタ13の間にDC/DCコンバータ14を設け、キャパシタ側の電圧を昇降圧を可能としている。ここでは、バッテリ12の電圧が48Vであるのに対して、キャパシタ13側の電圧はたとえば48V~90Vの電圧範囲で動作する。
 この電源システム1では、DC/DCコンバータ14を制御して、キャパシタ13の充電量が不足しているときにバッテリ12から充電し、キャパシタ13の充電量が充電可能な上限値に近くなったとき、あるいは達したときに、バッテリ12を充電する。
 ところで、鉛蓄電池は充電時における損失が大きいため、回生エネルギを効率よくバッテリに回収することができない.また、鉛蓄電池への充放電を大電流で繰り返すと、劣化を進めてしまい寿命が短くなる傾向にある。このため、旋回動作時において、モータによる力行と回生を繰返しおこなう場合、可能な限りキャパシタ13による充放電を利用することが望ましい。これにより充放電によるエネルギ効率を向上させることができる。
 図3は、図2に示すコントローラ11の各機能を示すブロック図である。一般に、建設機械では繰り返し動作が多いため、力行と回生の変化点、例えば旋回動作なら加速から減速への変化点は、旋回角度や旋回速度からあらかじめわかる場合が多い。
 本実施例における動作推定手段19は、操作レバーの操作量、旋回速度、旋回モータのトルク、各アクチュエータに設けたストロークセンサの情報などをもとに繰り返し作業における力行/回生の変化点を含む動作パターン情報をあらかじめ得て保持しておく。
 そして、この保持しておいた動作パターン情報と、現在の動作情報をもとに次の力行/回生の変化点、及び該変化点を含む動作パターンを推定する。
 例えば旋回用の交流モータ36aが力行回転しているときは旋回加速中であり、このとき(現在)の旋回速度やモータトルク、旋回モータ用インバータの電流値と、前述のあらかじめ保持しておいた前記動作パターン情報から、いつ停止するための制動回生動作に変化するのかを(変化点を)推定することができる。
 なお、変化の方向(力行から回生、または回生から力行)は、レバー操作から推定することができる。例えば、レバーの操作でブーム405あるいはアーム406が上げ動作(力行動作)の場合、次の動作は下げ動作である回生動作であると推定できる。
 力行/回生エネルギ演算手段16は、現在における旋回の加減速に必要な旋回用モータ36aのトルク、回転数の情報、予め保持しておいた動作パターンおよび動作推定手段19が推定した変化点の情報をもとに、力行/回生動作変化点までの時間的猶予(猶予時間)および猶予時間までに要求される力行/回生エネルギを演算する。
 キャパシタ入出力エネルギ演算手段17は、負荷の力行/回生エネルギを全てキャパシタ13から出力可能か、あるいはキャパシタが回生エネルギ全てを受け入れ可能か計算する。
 バッテリ入出力エネルギ演算手段20は、キャパシタ入出力エネルギ演算手段17の前記計算結果をもとに、負荷が力行動作をする場合、バッテリ12から放電する必要があるか、負荷が回生する場合にはバッテリ12にも充電すべきかを計算する。
 キャパシタ目標電圧演算手段18は、力行/回生エネルギ演算手段16で算出した力行/回生エネルギ演算に応じて、キャパシタ13の最終目標電圧Vc*を決める。例えば、回生時におけるキャパシタ13の目標電圧Vc*は、回生エネルギを可能な限りキャパシタ13で受け入れられるような値に設定する。このとき、動作パターン情報に従ってDC/DCコンバータの電流を制御することにより、徐々にキャパシタ13の電圧を昇圧することができる。
 以上説明したように、第1の実施形態においては、旋回時における旋回モータの動作パターン情報などをもとにキャパシタに充放電可能なエネルギ量Eを算出しキャパシタ電圧指令値Vc*を算出することができる。
 回生時には、キャパシタ13の目標電圧Vc*を例えば旋回速度に基づく動作パターン情報に従って昇圧するように、DC/DCコンバータ14を制御することで、急激な目標電圧変化を回避しつつバッテリ12が充電される状況を少なくし、バッテリへの充電による効率の低下を防ぐことができる。
 また、キャパシタ13の充放電電圧範囲を広くすることで、キャパシタ13を小型化することが可能となる。
 図4は、旋回モータの旋回動作におけるキャパシタの目標電圧の変化パターン例を示す図である。
 キャパシタの目標電圧は、旋回開始時のVciから加速時の力行によるエネルギ消費にしたがって徐々に低下する。VciがVc1になった時点で力行から回生に変化し、回生時(減速時)のエネルギ回生により、Vciは徐々に上昇して最終的にはVcfとなって停止する。
 ここで力行から回生へと変化するとき、キャパシタの目標電圧VciがVc1からVc2へとステップ状に上昇するのは、摩擦などの機械的ロスおよびインバータの効率などに起因する電気的ロスにより力行で得た運動エネルギや位置エネルギをすべて回生過程で回収できないためである。同様に旋回動作の終了時点における目標電圧Vcfは開始時点Vciに対してロス分を補うために高く設定される。
 ここでコントローラの応答性が問題になるのは、力行から回生に変化するときの目標電圧の急な上昇であり、この変化点が予めわかっているとコントローラの応答性を見込んだ制御が可能となる。
 図5は、コントローラ11の処理(キャパシタの電圧指令値を算出する処理)を説明する図である。
 図5のステップ40において、レバーの操作量、旋回速度を入力する。
ステップ41において、旋回用モータ36bのトルク指令値Trq*および回転速度ωmを入力する。
 ステップ42において、これらの情報を用いて負荷の出力Pmを計算する。例えば、旋回中における旋回モータの出力Pmは、モータのトルク指令値Trq*と回転速度ωmを乗算して式(1)により算出する。
 Pm = Trq*・ωm           (1)
 ここで、Pm>0であるか否かにより、モータが駆動力を出力している(モータ力行時である)か、制動して回生をしている(回生時である)かを判断することができる。
 なお、ここでは、モータのトルク指令値と回転速度を用いて判断したが、インバータ4に流れるDC電流Idcの正負から、電源装置へ放電しているのか又は電源装置から給電されているのかを判断することも可能である。また、負荷の出力Pmは、ステップ40において入力した操作レバーの操作量をもとに算出することも可能である。
 ステップ43において、バッテリ電流Ib、バッテリ電圧Vbを入力する。
 ステップ44において、キャパシタ電圧Vc、キャパシタ電流Icを入力する。ここで、キャパシタ13の目標電圧Vcは、モータの力行時と回生時で異なり、バッテリ電圧Vbやキャパシタ13電圧Vcに応じて決める。例えば、モータの力行時は、可能な限りキャパシタ13に蓄積されたエネルギを消費させ、バッテリから放電しないようにする。
 よって、キャパシタ電圧Vcがバッテリ電圧Vbよりも高いときは、キャパシタ13の目標電圧Vc*を低下させ、キャパシタ13から力行エネルギを取り出すように、DC/DCコンバータ14を制御する。また、モータの回生時は、可能な限りキャパシタ13に回生エネルギを回収し、バッテリには充電しないようにする。
 よって、キャパシタ電圧Vcが所定値よりも低いときは、キャパシタ13の目標電圧Vc*を上昇させて、キャパシタ13に回生エネルギを回収するように、DC/DCコンバータ14を制御する。
 そこで、ステップ45において、バッテリ電流Ib、バッテリ電圧Vb、キャパシタ電圧Vc、キャパシタ電流Ic、力行/回生エネルギPm、位置エネルギをもとに、キャパシタに入出力可能なエネルギ量を推定する。
 本実施形態において,キャパシタに入出力可能なエネルギ量は,現在のキャパシタ電圧Vcに対して充放電可能なエネルギ量を逐次計算することにより実現できる。
 力行時であれば,キャパシタ電圧Vcが高いほど,放電可能なエネルギ量は多くなり,低くなるにつれて放電可能なエネルギ量は少なくなる。回生時であれば、キャパシタ電圧Vcが低いほど,充電可能なエネルギ量は多くなり、キャパシタ電圧Vcが高くなるにつれて、充電可能なエネルギ量は少なくなる。
 すなわち,現在のキャパシタ電圧Vcに対して,充放電可能なエネルギ量はあらかじめ決まっている。このため、キャパシタ電圧から入出力可能なエネルギを推定するには、予め得られた動作パターン情報にしたがったキャパシタ電圧と充放電可能なエネルギ量の関連をテーブルなどで保持しておけばよい。 
 次に、旋回動作における回生エネルギ量を算出し、算出したエネルギ量に基づき,ステップ46にてキャパシタ13の電圧指令値Vc*を演算する。
 すなわち,現在の旋回加速度あるいは旋回角度によって力行/回生動作変化点までの裕度(時間的余裕)がわかり、コントローラの応答遅れに見合った制御指令を力行と回生動作が変化する変化点以前に予め発行しておけばDC/DCコンバータの応答性が向上する。
 ここで,空のバケットに積載物を積み込むための旋回動作を考える。旋回体のの慣性モーメントを I 、角速度 をωとすると,運動エネルギにより生じる回生エネルギは次式で表される。
 Ev=KvIω2         (2)
ここで、Kvはあらかじめ設定した定数を示す。
 運動エネルギーEvを回生する場合、摩擦に起因する機械的なロスなどにより、すべてのエネルギが回生可能ではないため、たとえば70%程度が回生されると見積もる。この場合はKv=0.7となる。油圧ショベルやフォークリフトなどでは作業パターンが決まっているため、Kvはほぼ一定とみなすことができる。よって,キャパシタ電圧指令値Vc*は次式で算出できる。
 なお、Emaxはキャパシタの定格で決まる蓄電可能なエネルギの最大値、Cはキャパシタの容量である。
Figure JPOXMLDOC01-appb-I000001
 式(3)に示すように,現在の走行速度が大きいほど,又はリフトの高さおよび荷重が大きいほど,すなわち,運動エネルギや位置エネルギが大きいほど,キャパシタ電圧指令値Vc*を下げておくように制御する。 
 ステップ47において,以上より算出したキャパシタ電圧指令値Vc*に応じて,DC/DCコンバータの電流指令値を算出する。
 上述したキャパシタ電圧指令値Vc*とキャパシタ13に入出力可能なエネルギとの関係により,バッテリの充放電電流は下記のように決まる。
 例えば、加速走行時にモータ3aが力行する場合(Pm>0)、キャパシタ13から出力可能なエネルギと走行に必要なエネルギEを比較し、全てキャパシタ13から出力可能であれば、バッテリ12から放電することなく負荷から要求されるエネルギを出力することが可能である。よって、キャパシタの容量をC[F]とすると、C/2・(Vc^2-Vc*^2)=Eが成り立つような、キャパシタ電圧指令値Vc*を算出すればよい。よって、放電時には、キャパシタ電圧指令値Vc*になるようにDC/DCコンバータ14を制御することで、キャパシタ13から全エネルギを供給する。このとき、バッテリ12からはエネルギを供給しない、すなわち、バッテリ電流Ib=0となるように制御する。キャパシタ電圧Vcがバッテリ電圧Vb以下となった場合には、バッテリ12から負荷へエネルギを供給するように制御する。
 また、旋回時にモータ36aが回生エネルギを出力する場合(Pm≦0)、キャパシタ13へ回収可能なエネルギと減速時において回生されるはずのエネルギとキャパシタ13に蓄電可能なエネルギ量とを比較し、全てキャパシタに回収可能であれば、バッテリ12に充電することなく全回生エネルギを回収する。
 よって、DC/DCコンバータは、回生時(充電時)においては、キャパシタ電圧指令値Vc*になるように昇圧制御をおこない、キャパシタにエネルギを充電する。ただし、キャパシタ13のVcが満充電に近くなった場合には、バッテリ12へ充電するように制御する。
 なお、力行時における消費エネルギが少なく、キャパシタ13の電圧Vcが下がらない場合には、バッテリ12に微少充電をおこない、キャパシタ13のエネルギを消費してもよい。
 このように、本実施形態によれば、回生時にバッテリ12に大電流で充電することなく、殆どの回生エネルギをキャパシタ13に回収することが可能となり、キャパシタの利用効率が向上する。なお、バッテリ12を微少な電流値Ibで充電する場合には、効率よくバッテリ12を充電することができる。また、キャパシタ13に充電されているエネルギが少なくなった場合、すなわちキャパシタ13の電圧Vcがバッテリ電圧Vbと同等以下になった場合には、バッテリから充電するように制御する。
 以上説明したように、本実施形態によれば、油圧ショベルが旋回に際して加速と停止を繰り返したり、ブームの上昇と下降を繰り返すような状況において、可能な限りキャパシタ13を用いてエネルギの入出力をおこなう。これにより、従来のバッテリ(鉛蓄電池)に充放電を行う場合において回生時に発生する損失を低減することが可能となる。またバッテリの容量を少なくできるため小型化を図ることが可能であり、電源システムの利用効率を向上することができる。
(実施形態2) 
 次に第2の実施形態について説明する. 
 図6は、第2の実施形態に係る電源システムを搭載したフォークリフトを説明する図である。
 図7は、図1に示す電源システム1の詳細及びフォークリフトにおける制御系を説明する図である。図7において、電源システム1は、バッテリ12およびキャパシタ13を備えている。バッテリ12は、鉛蓄電池あるいはリチウムイオン電池であり、ここでは電圧が48Vの鉛蓄電池を想定している。キャパシタ13は、電気二重層コンデンサなどで構成することができ、容量は数十Fである。
 インバータ4には、通常150A程度の電流が流れ、負荷が大きい場合には300A~400Aが流れることもある。バッテリ12として鉛蓄電池を用いる場合、フォークリフトの作業量および1日の作業時間にもよるが、400Ah程度の容量が必要である。
 フォークリフト2は、マスト7、フォーク8、アクセル、ブレーキ等のペダル9、走行用の交流モータ3aを備える。交流モータ3aの駆動力は、駆動輪10に伝達され、駆動輪10を駆動する。なお、交流モータ3aの出力は、コントローラ11からの指令により制御されるインバータ4により制御される。交流モータ3aは、駆動輪に直接接続する構成でも、ギアを介して接続する構成でもよい。
 交流モータ3aは、モータ・ジェネレータであり、力行動作する場合にはモータとして駆動力を発生し、駆動輪10によって駆動される場合には発電機として動作してエネルギを回生する。
 インバータ4aは、交流モータ3aで発生する動力を任意に制御するために設けられている。すなわち、インバータ4aは、力行時には電源システム1に蓄えられた直流電力を交流電力に変換して交流モータ3aに供給する。インバータ4aは、回生時には、交流モータ3aが出力する交流電力を直流電力に変換し、電源システム1に供給する。
 コントローラ11は、ドライバが操作するアクセル9あるいはブレーキの操作量、あるいは各部品の状態に基づいて交流モータ3aへのトルク指令などを計算し、車両を制御する。
 フォークリフト2では、レバー6を用いてフォーク8のリフト動作およびティルト動作を操作する。リフト動作をおこなうために、交流モータ3bを備える。さらにフォークリフト2は、フォーク8を上下に昇降するために、モータの回転運動を上下方向の直線運動に変換するアクチュエータを備えている。フォーク8は2本1組の爪で構成されるため、交流モータ3bの出力は、アクチュエータに伝達され、図示しないカプラを介して2本の爪に分配され、コントローラ11からの指令を受けたインバータ4bにより制御される。
 フォークの上昇時には、インバータ4bにより交流モータ3bを駆動し、フォークの降下時には積み荷の位置エネルギにより交流モータ3bを発電機として駆動し、回生したエネルギを電源システム1に供給する。ここではリフト用の交流モータ3bを1個備えた構成の例を示したが、リフト用の左右の爪を、それぞれ交流モータ3bおよび交流モータ3cにより駆する構成、すなわち独立した直動型アクチュエータで昇降する構成としてもよい。この場合、2個の交流モータは対応して設けたそれぞれのインバータにより制御される。
 なお、本実施形態においても図7に示すコントローラとして図2に示すコントローラを用いる。
 この例においても、動作推定手段19は、モータの回転数やトルク、アクセル9、ブレーキあるいはレバー6などの操作量、更にはフォーク8に搭載している荷重の情報をもとに、現在力行動作であれば次は回生、逆に現在回生動作であれば次は力行と、次の動作への変化点を推定する。
 例えばアクセルを踏んでいる場合は走行中であり、次の動作は停車するための回生動作であると推定できる。また、レバー6の操作でフォーク8が上昇中の場合、次の動作はフォーク8が下降する動作であるため回生動作であると推定できる。このように走行時には、加減速を検出したり、荷役動作中には、リフトの上げ下げ動作を検出することにより、力行と回生の動作変化時点の推定が可能である。なお、このとき(現在の)走行あるいは荷役モータトルク、あるいはインバータの電流値と、あらかじめ取得して保持しておいた動作パターン情報から、いつ停止するための制動回生動作に変化するのかを(変化点を)推定することもできる。
 本実施形態においては、フォークリフト2の動作や各コンポーネントの状態に応じて、キャパシタ13の電圧Vcが所望の値になるように、DC/DCコンバータ14の電流を制御する。
 図8は、フォークの上昇および下降時における各種の出力の変化を表す図であり、図8(a)は負荷出力、図8(b)はバッテリ電流およびキャパシタ電流、図8(c)はバッテリ電圧およびキャパシタ電圧、図8(d)はバッテリおよびキャパシタの出力の変化を表している。
 図8に示すように、フォークが上昇し始める区間(A)においては、キャパシタからエネルギを出力させるため、バッテリに電流Ibが流れないように制御し、キャパシタ電圧Vcを降下させる。キャパシタ電圧Vcがバッテリ電圧Vbまで下がった後の区間(B)では、バッテリ12からもエネルギを供給する。
 次に、フォーク下降時には、エネルギが回生されるが、この回生区間(C)では、バッテリ電流Ib=0となるように、キャパシタ電圧Vcを昇圧するように制御している。これにより、キャパシタ13の電圧が上昇し、全ての回生エネルギをキャパシタで回収していることがわかる。
 以上説明したように、フォークリフトが走行と停止を繰り返すような動作パターンにおいて、可能な限りキャパシタ13を用いてエネルギの入出力をおこなう。これにより、従来の鉛蓄電池における回生時の損失を減らすことが可能となり、電源システムの利用効率が向上する。
 以上の説明では、バッテリフォークが走行する際における走行用モータ3aによる例を示したが、リフト用モータ3b,3cの場合も同様である。リフト用モータ3b,3cの場合には、フォークに荷物を載せた状態でフォークを上昇あるいは下降する場合と、荷物を載せた状態でフォークを上昇して、荷物を降ろしてから下降する場合など、状況が様々である。
 このような場合においても、図3に示す動作推定手段19において得られる操作レバーの情報を用いることにより、負荷(荷物)がある場合とない場合を推測することができる。例えばリフト動作と共にティルト動作が入った場合は、荷物を搭載しており、再度ティルト動作があった場合には荷物を降ろしたという状況などが推測できる。また、荷重センサを設けて、荷物の重量を計測することによって、リフト降下時にどれぐらいの回生エネルギが得られるのかを推定することができる。回生エネルギを事前に推定することによって、キャパシタ13に全回生エネルギを回収できるか否かを判断することができる。また、走行用モータ3aの場合と同様に、リフト用のモータの場合にも、フォークの上昇時および下降時に発生するエネルギの入出力を可能な限りキャパシタでおこなうことにより、電源システムの利用効率を向上することができる。
 以上説明したように、本発明の実施形態によれば、フォークリフトが走行と停止を繰り返したり、リフトの上昇と下降を繰り返すような場面において、可能な限りキャパシタ13を用いてエネルギの入出力をおこなう。これにより、従来のバッテリ(鉛蓄電池)を利用した回生時の損失を減らすことが可能となり、効率が向上する。
 なお、以上は油圧ショベルの旋回動作や掘削、フォークリフトの走行動作やリフト動作について説明してきたが、他の建設機械においても同様に適用することができる。例えば、ホイールローダにおける前進と後退、土砂の積載、積み降ろし動作などに適用できる。このように、建設機械では自動車と異なり凡その動作が定まっているため、適切にエネルギ収支を管理することができる。
 1 電源システム
 2 フォークリフト
 3 交流モータ
 4 インバータ
 5 プラグ
 6 操作レバー
 7 マスト
 8 フォーク
 12 バッテリ
 13 キャパシタ
 14 DC/DCコンバータ
 16 力行/回生エネルギ推定手段
 17 キャパシタ入出力負荷エネルギ推定手段
 18 キャパシタ目標電圧演算手段
 19 動作推定手段
 20 バッテリ入出力エネルギ演算手段

Claims (7)

  1.  充放電可能なキャパシタと、充放電可能なバッテリおよび前記キャパシタと力行及び回生可能な負荷とを接続する給電回路を備え、前記キャパシタに蓄積されたエネルギをインバータを介して負荷に給電し、負荷の回生エネルギを前記インバータを介してキャパシタに充電する電源システムを備えた建設機械又は産業車両において、
     前記負荷が電動モータであり、かつ、前記キャパシタはDC/DCコンバータを介して負荷に接続され、該DC/DCコンバータは該DC/DCコンバータを介して前記キャパシタが充放電するエネルギを制御する制御手段を備え、前記制御手段は、モータの回転数及びトルク、又は、インバータに供給されるDC電流、又は、操作レバー情報、及び予め保持しておいた繰り返し作業における力行/回生の変化点を含む動作パターン情報に基づき、モータの力行/回生の変化点を含む動作パターンを推定する力行/回生動作推定手段を備え、この力行/回生動作推定手段が推定した変化点および動作パターンに基づいてキャパシタの目標電圧を、力行の場合は徐々に低く、回生の場合は徐々に高くなるようにDC/DCコンバータの出力指令値を制御するキャパシタ目標電圧演算手段を備えることを特徴とする電源システムを備えた建設機械又は産業車両。
  2.  請求項1記載の電源システムを備えた建設機械又は産業車両において、
     前記力行/回生動作推定手段が推定した動作パターンに基づいてキャパシタの目標電圧を、力行と回生の変化点よりも前記制御手段の応答遅れ分だけ前に、力行と回生の間のエネルギロスに相当する電圧分をステップ状に変化させる命令を発行することを特徴とする電源システムを備えた建設機械又は産業車両。
  3.  請求項1ないし2記載の電源システムを備えた建設機械又は産業車両において、
     前記制御手段は、力行/回生エネルギを推定する推定手段を備え、この推定手段が推定したエネルギおよびキャパシタ電圧にしたがって前記キャパシタに入出力すべきエネルギを推定するキャパシタ入出力エネルギ推定手段を備え、該キャパシタ入出力エネルギ推定手段が推定した入出力エネルギにしたがってキャパシタの目標電圧を演算し、この目標電圧に応じてDC/DCコンバータの出力指令値を制御することを特徴とする電源システムを備えた建設機械又は産業車両。
  4.  請求項3記載の電源システムを備えた建設機械又は産業車両において、
     前記制御手段は、前記力行/回生エネルギ推定手段が推定したエネルギ量およびバッテリ電圧にしたがって前記バッテリに入出力可能なエネルギを推定するバッテリ入出力エネルギ推定手段を備え、力行/回生エネルギおよび該バッテリ入出力エネルギ推定手段が推定した入出力エネルギにしたがってキャパシタの目標電圧を演算しこの目標電圧に応じてDC/DCコンバータの出力指令値を制御することを特徴とする電源システムを備えた建設機械又は産業車両。
  5.  請求項1記載の電源システムを備えた建設機械又は産業車両において、
     前記制御手段は、前記力行/回生エネルギ推定手段が推定した電力およびキャパシタ電圧にしたがって前記キャパシタに入出力すべき電力を推定するキャパシタ入出力エネルギ推定手段を備え、該キャパシタ入出力エネルギ推定手段が推定した入出力エネルギにしたがってキャパシタの目標電圧を演算し、それに伴いDC/DCコンバータの出力指令値を制御することを特徴とする電源システムを備えた建設機械又は産業車両。
  6.  請求項1記載の電源システムを備えた建設機械又は産業車両において、
    前記建設機械又は産業機械は、前記負荷と接続されるバッテリを備え、前記制御手段は、前記力行/回生エネルギ推定手段が推定した電力およびバッテリ電圧にしたがって前記バッテリに入出力すべき電力を推定するバッテリ入出力エネルギ推定手段を備え、該バッテリ入出力エネルギ推定手段が推定した入出力エネルギにしたがってキャパシタの目標電圧を演算し、それに伴いDC/DCコンバータの出力指令値を制御することを特徴とする電源システムを備えた建設機械又は産業車両。
  7.  請求項1記載の電源システムを備えた建設機械又は産業車両において、前記建設機械又は産業機械は、前記負荷と接続されるバッテリを備え、
     前記制御手段は、現在の作業状態が回生動作であるとき、前記キャパシタ電圧を昇圧するように前記DC/DCコンバータの出力を制御することを特徴とする電源システムを備えた建設機械又は産業車両。
PCT/JP2010/055900 2009-03-31 2010-03-31 電源システムを備えた建設機械及び産業車両 WO2010114036A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011507268A JP5340381B2 (ja) 2009-03-31 2010-03-31 電源システムを備えた建設機械及び産業車両
KR1020117019287A KR101662863B1 (ko) 2009-03-31 2010-03-31 전원 시스템을 구비한 건설 기계 및 산업 차량
US13/202,143 US8831805B2 (en) 2009-03-31 2010-03-31 Construction machine and industrial vehicle having power supply system
CN201080008831.3A CN102325947B (zh) 2009-03-31 2010-03-31 具备电源系统的建筑机械以及工业车辆
EP10758807.1A EP2415935A4 (en) 2009-03-31 2010-03-31 CONSTRUCTION MACHINE AND INDUSTRIAL VEHICLE WITH ELECTRIC POWER SUPPLY SYSTEM

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009086434 2009-03-31
JP2009-086434 2009-03-31
JP2009-195529 2009-08-26
JP2009195529 2009-08-26

Publications (1)

Publication Number Publication Date
WO2010114036A1 true WO2010114036A1 (ja) 2010-10-07

Family

ID=42828325

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/055900 WO2010114036A1 (ja) 2009-03-31 2010-03-31 電源システムを備えた建設機械及び産業車両

Country Status (6)

Country Link
US (1) US8831805B2 (ja)
EP (1) EP2415935A4 (ja)
JP (1) JP5340381B2 (ja)
KR (1) KR101662863B1 (ja)
CN (1) CN102325947B (ja)
WO (1) WO2010114036A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010242434A (ja) * 2009-04-09 2010-10-28 Sumitomo Heavy Ind Ltd ハイブリッド型作業機械
WO2012050010A1 (ja) * 2010-10-14 2012-04-19 日立建機株式会社 建設機械
WO2012050133A1 (ja) * 2010-10-15 2012-04-19 日立建機株式会社 建設機械
CN102518168A (zh) * 2011-12-08 2012-06-27 上海三一重机有限公司 液压系统控制装置及其控制方法及包括该装置的挖掘机
WO2013003014A1 (en) * 2011-06-29 2013-01-03 Caterpillar Inc. System for controlling power in machine having electric and/or hydraulic devices
WO2013003015A1 (en) * 2011-06-29 2013-01-03 Caterpillar Inc. System for managing power in machine having electric and/or hydraulic devices
WO2013054928A1 (ja) * 2011-10-14 2013-04-18 日立建機株式会社 ハイブリッド式建設機械及びその制御方法
JP2013514755A (ja) * 2009-12-17 2013-04-25 ルノー・トラックス 操舵モータ電力供給方法及び係る方法に適応される電源システム
US20140083089A1 (en) * 2012-09-21 2014-03-27 Harnischfeger Technologies, Inc. Energy management system for machinery performing a predictable work cycle
JP2014087115A (ja) * 2012-10-22 2014-05-12 Kobe Steel Ltd 建設機械用2次電池保護回路
EP3130557B1 (en) * 2011-04-27 2020-03-25 CVS Ferrari S.p.A. An apparatus for lifting and transporting a load
US10981761B2 (en) 2015-07-28 2021-04-20 Cvs Ferrari S.P.A. Apparatus for lifting and transporting loads, in particular containers

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101516830B1 (ko) * 2007-03-23 2015-05-04 가부시키가이샤 고마쓰 세이사쿠쇼 하이브리드 건설 기계의 발전 제어 방법 및 하이브리드 건설 기계
US8362629B2 (en) * 2010-03-23 2013-01-29 Bucyrus International Inc. Energy management system for heavy equipment
JP5226733B2 (ja) * 2010-05-20 2013-07-03 株式会社小松製作所 ハイブリッド建設機械およびハイブリッド建設機械の蓄電器容量計測方法
US8909438B2 (en) * 2010-12-07 2014-12-09 Volvo Construction Equipment Ab Swing control system for hybrid construction machine
US9178449B2 (en) * 2011-01-11 2015-11-03 Toyota Jidosha Kabushiki Kaisha Motor drive system control apparatus
JP5356423B2 (ja) * 2011-01-21 2013-12-04 日立建機株式会社 旋回体を有する建設機械
JP5488529B2 (ja) * 2011-05-17 2014-05-14 マツダ株式会社 車両の電源制御装置
CN102535563A (zh) * 2011-12-30 2012-07-04 杭州杭重工程机械有限公司 船用抓斗挖掘机的节能装置
US9206587B2 (en) 2012-03-16 2015-12-08 Harnischfeger Technologies, Inc. Automated control of dipper swing for a shovel
KR101988053B1 (ko) 2012-12-26 2019-06-11 두산인프라코어 주식회사 하이브리드 건설기계의 에너지 저장 장치의 충전 시스템 및 충전방법
KR102046178B1 (ko) * 2013-01-24 2019-11-18 두산인프라코어 주식회사 전동기를 구비한 건설기계의 직류단 전압 제어 장치 및 그 방법
AU2014227692A1 (en) * 2013-03-15 2015-08-13 Crown Equipment Corporation Normalizing performance data across industrial vehicles
US9960396B2 (en) 2013-09-24 2018-05-01 Artisan Vehicle Systems Inc. Module backbone system
US10063069B1 (en) 2014-05-23 2018-08-28 Artisan Vehicle Systems Inc. Module maintenance system
KR102128385B1 (ko) * 2013-12-24 2020-06-30 주식회사 두산 엔진식 지게차의 전원 이상 감지장치 및 감지방법
JP6324072B2 (ja) * 2014-01-07 2018-05-16 株式会社Kcm ハイブリッド式ホイールローダ
WO2015175558A2 (en) 2014-05-12 2015-11-19 Capacitor Sciences Incorporated Energy storage device and method of production thereof
US10319523B2 (en) 2014-05-12 2019-06-11 Capacitor Sciences Incorporated Yanli dielectric materials and capacitor thereof
US10340082B2 (en) 2015-05-12 2019-07-02 Capacitor Sciences Incorporated Capacitor and method of production thereof
US10347423B2 (en) 2014-05-12 2019-07-09 Capacitor Sciences Incorporated Solid multilayer structure as semiproduct for meta-capacitor
US20170301477A1 (en) 2016-04-04 2017-10-19 Capacitor Sciences Incorporated Electro-polarizable compound and capacitor
WO2015198455A1 (ja) * 2014-06-26 2015-12-30 三菱電機株式会社 位置決め制御装置
WO2016104016A1 (ja) * 2014-12-26 2016-06-30 住友建機株式会社 ショベル
US9932358B2 (en) 2015-05-21 2018-04-03 Capacitor Science Incorporated Energy storage molecular material, crystal dielectric layer and capacitor
US10636575B2 (en) 2016-02-12 2020-04-28 Capacitor Sciences Incorporated Furuta and para-Furuta polymer formulations and capacitors
US10305295B2 (en) 2016-02-12 2019-05-28 Capacitor Sciences Incorporated Energy storage cell, capacitive energy storage module, and capacitive energy storage system
US20170236648A1 (en) * 2016-02-12 2017-08-17 Capacitor Sciences Incorporated Grid capacitive power storage system
US20170232853A1 (en) * 2016-02-12 2017-08-17 Capacitor Sciences Incorporated Electric vehicle powered by capacitive energy storage modules
US9978517B2 (en) 2016-04-04 2018-05-22 Capacitor Sciences Incorporated Electro-polarizable compound and capacitor
US10153087B2 (en) 2016-04-04 2018-12-11 Capacitor Sciences Incorporated Electro-polarizable compound and capacitor
US10566138B2 (en) 2016-04-04 2020-02-18 Capacitor Sciences Incorporated Hein electro-polarizable compound and capacitor thereof
US10395841B2 (en) 2016-12-02 2019-08-27 Capacitor Sciences Incorporated Multilayered electrode and film energy storage device
CN109689979B (zh) * 2017-03-07 2021-05-18 日立建机株式会社 工程机械
JP6707065B2 (ja) * 2017-09-29 2020-06-10 日立建機株式会社 建設機械
JP6738497B2 (ja) * 2018-02-23 2020-08-12 日立建機株式会社 作業車両の電力回生システム
JP6881350B2 (ja) * 2018-02-28 2021-06-02 トヨタ自動車株式会社 スイッチトリラクタンスモータの制御装置
JP7149093B2 (ja) * 2018-03-30 2022-10-06 本田技研工業株式会社 車両電源システム
JP6922820B2 (ja) * 2018-04-13 2021-08-18 トヨタ自動車株式会社 電源制御装置
CN108944475A (zh) * 2018-06-28 2018-12-07 安徽合力股份有限公司 一种增程式电动叉车电气系统
DE102020002352A1 (de) * 2019-04-25 2020-10-29 Fanuc Corporation Motorantriebsvorrichtung mit Energiespeicher

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002320302A (ja) 2001-04-19 2002-10-31 Mitsubishi Heavy Ind Ltd 電源装置
JP2003219566A (ja) * 2002-01-17 2003-07-31 Komatsu Ltd ハイブリッド電源システム
JP2006059685A (ja) * 2004-08-20 2006-03-02 Nissan Motor Co Ltd 燃料電池電源装置及び燃料電池電源装置の制御方法
JP2006321640A (ja) 2005-05-20 2006-11-30 Ishikawajima Harima Heavy Ind Co Ltd 負荷駆動装置
JP2008297121A (ja) * 2007-06-04 2008-12-11 Toyota Industries Corp フォークリフト

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US800801A (en) * 1902-03-10 1905-10-03 Austin C Dunham Type-writer escapement.
JP4397739B2 (ja) * 2004-06-03 2010-01-13 本田技研工業株式会社 燃料電池車両の電圧状態設定方法
JP4163222B2 (ja) * 2006-05-26 2008-10-08 本田技研工業株式会社 燃料電池車両の電源システム
CN100491154C (zh) * 2006-06-07 2009-05-27 清华大学 一种车用燃料电池系统输出功率的控制方法
KR101516830B1 (ko) 2007-03-23 2015-05-04 가부시키가이샤 고마쓰 세이사쿠쇼 하이브리드 건설 기계의 발전 제어 방법 및 하이브리드 건설 기계
WO2008140359A1 (en) * 2007-05-10 2008-11-20 Volvo Construction Equipment Ab A method and a control system for controlling a work machine
JP4618814B2 (ja) * 2007-12-07 2011-01-26 本田技研工業株式会社 車両用電源装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002320302A (ja) 2001-04-19 2002-10-31 Mitsubishi Heavy Ind Ltd 電源装置
JP2003219566A (ja) * 2002-01-17 2003-07-31 Komatsu Ltd ハイブリッド電源システム
JP2006059685A (ja) * 2004-08-20 2006-03-02 Nissan Motor Co Ltd 燃料電池電源装置及び燃料電池電源装置の制御方法
JP2006321640A (ja) 2005-05-20 2006-11-30 Ishikawajima Harima Heavy Ind Co Ltd 負荷駆動装置
JP2008297121A (ja) * 2007-06-04 2008-12-11 Toyota Industries Corp フォークリフト

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2415935A4

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010242434A (ja) * 2009-04-09 2010-10-28 Sumitomo Heavy Ind Ltd ハイブリッド型作業機械
JP2013514755A (ja) * 2009-12-17 2013-04-25 ルノー・トラックス 操舵モータ電力供給方法及び係る方法に適応される電源システム
CN103154388A (zh) * 2010-10-14 2013-06-12 日立建机株式会社 工程机械
WO2012050010A1 (ja) * 2010-10-14 2012-04-19 日立建機株式会社 建設機械
JP2012082644A (ja) * 2010-10-14 2012-04-26 Hitachi Constr Mach Co Ltd 建設機械
WO2012050133A1 (ja) * 2010-10-15 2012-04-19 日立建機株式会社 建設機械
US9421873B2 (en) 2010-10-15 2016-08-23 Hitachi Construction Machinery Co., Ltd. Construction machine
JP5605815B2 (ja) * 2010-10-15 2014-10-15 日立建機株式会社 建設機械
CN103189576A (zh) * 2010-10-15 2013-07-03 日立建机株式会社 工程机械
EP3130557B1 (en) * 2011-04-27 2020-03-25 CVS Ferrari S.p.A. An apparatus for lifting and transporting a load
US8606448B2 (en) 2011-06-29 2013-12-10 Caterpillar Inc. System and method for managing power in machine having electric and/or hydraulic devices
WO2013003014A1 (en) * 2011-06-29 2013-01-03 Caterpillar Inc. System for controlling power in machine having electric and/or hydraulic devices
WO2013003015A1 (en) * 2011-06-29 2013-01-03 Caterpillar Inc. System for managing power in machine having electric and/or hydraulic devices
CN103703191A (zh) * 2011-06-29 2014-04-02 卡特彼勒公司 用于管理具有电气和/或液压装置的机器中的动力的系统
WO2013054928A1 (ja) * 2011-10-14 2013-04-18 日立建機株式会社 ハイブリッド式建設機械及びその制御方法
US9187294B2 (en) 2011-10-14 2015-11-17 Hitachi Construction Machinery Co., Ltd. Hybrid construction machine and method for controlling the same
JP2013087456A (ja) * 2011-10-14 2013-05-13 Hitachi Constr Mach Co Ltd ハイブリッド式建設機械及びその制御方法
CN102518168B (zh) * 2011-12-08 2015-04-08 上海三一重机有限公司 液压系统控制装置及其控制方法及包括该装置的挖掘机
CN102518168A (zh) * 2011-12-08 2012-06-27 上海三一重机有限公司 液压系统控制装置及其控制方法及包括该装置的挖掘机
US20140083089A1 (en) * 2012-09-21 2014-03-27 Harnischfeger Technologies, Inc. Energy management system for machinery performing a predictable work cycle
JP2015529293A (ja) * 2012-09-21 2015-10-05 ハーニッシュフェガー テクノロジーズ インコーポレーテッド 予測可能な作業サイクルを遂行する機械類のためのエネルギー管理システム
JP2018150803A (ja) * 2012-09-21 2018-09-27 ハーニッシュフェガー テクノロジーズ インコーポレーテッド 予測可能な作業サイクルを遂行する機械類のためのエネルギー管理システム
US10132335B2 (en) * 2012-09-21 2018-11-20 Joy Global Surface Mining Inc Energy management system for machinery performing a predictable work cycle
JP2014087115A (ja) * 2012-10-22 2014-05-12 Kobe Steel Ltd 建設機械用2次電池保護回路
US10981761B2 (en) 2015-07-28 2021-04-20 Cvs Ferrari S.P.A. Apparatus for lifting and transporting loads, in particular containers

Also Published As

Publication number Publication date
CN102325947B (zh) 2014-04-16
KR101662863B1 (ko) 2016-10-07
CN102325947A (zh) 2012-01-18
JPWO2010114036A1 (ja) 2012-10-11
EP2415935A1 (en) 2012-02-08
KR20120022707A (ko) 2012-03-12
EP2415935A4 (en) 2016-09-21
JP5340381B2 (ja) 2013-11-13
US8831805B2 (en) 2014-09-09
US20110313608A1 (en) 2011-12-22

Similar Documents

Publication Publication Date Title
JP5340381B2 (ja) 電源システムを備えた建設機械及び産業車両
CN102459769B (zh) 混合式挖土机及其控制方法
WO2012050010A1 (ja) 建設機械
EP2617902B1 (en) Hybrid wheel loader
CN104768785B (zh) 作业车辆
JP5356543B2 (ja) 作業用車両の駆動制御装置
US9151017B2 (en) Wheel loader
JP5841399B2 (ja) ハイブリッド式建設機械及びその制御方法
JP2010173599A (ja) ハイブリッド式作業機械の制御方法、及びサーボ制御システムの制御方法
CN106337456A (zh) 工程机械的控制装置
JP2011079637A (ja) 電動産業車両
JP2010248736A (ja) ハイブリッド型建設機械

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080008831.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10758807

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2011507268

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20117019287

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 6355/DELNP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2010758807

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13202143

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE