WO2010114019A1 - 連続鋳造用ホットトップ及び連続鋳造方法 - Google Patents

連続鋳造用ホットトップ及び連続鋳造方法 Download PDF

Info

Publication number
WO2010114019A1
WO2010114019A1 PCT/JP2010/055849 JP2010055849W WO2010114019A1 WO 2010114019 A1 WO2010114019 A1 WO 2010114019A1 JP 2010055849 W JP2010055849 W JP 2010055849W WO 2010114019 A1 WO2010114019 A1 WO 2010114019A1
Authority
WO
WIPO (PCT)
Prior art keywords
molten metal
hot top
continuous casting
introduction
space
Prior art date
Application number
PCT/JP2010/055849
Other languages
English (en)
French (fr)
Inventor
岳人 小林
紀幸 上野
隆一 升田
薫 杉田
Original Assignee
トヨタ自動車 株式会社
日本軽金属 株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車 株式会社, 日本軽金属 株式会社 filed Critical トヨタ自動車 株式会社
Priority to US13/203,797 priority Critical patent/US9079242B2/en
Priority to DE112010002664.5T priority patent/DE112010002664B4/de
Priority to CN201080014208.9A priority patent/CN102365141B/zh
Publication of WO2010114019A1 publication Critical patent/WO2010114019A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/0401Moulds provided with a feed head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/041Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds for vertical casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/103Distributing the molten metal, e.g. using runners, floats, distributors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/116Refining the metal
    • B22D11/118Refining the metal by circulating the metal under, over or around weirs

Definitions

  • the present invention relates to a hot top for continuous casting and a continuous casting method using the hot top for continuous casting.
  • Patent Documents 1, 2, and 3 disclose a technique for injecting molten metal from a rod into a casting mold from the viewpoint of improving the quality of an ingot cast in continuous casting.
  • the level of the molten metal at the melt outlet of the melting furnace and the level of the molten metal in the hot top are the same, and the entire hot top is spread widely from a pair of left and right openings formed in the bowl. So that molten metal is injected.
  • Patent Document 2 when semi-continuously casting an ingot having an extending portion, the molten metal is poured into the casting mold at a molten metal surface level substantially the same as the molten metal surface level in the casting mold provided with the hot top.
  • the flow of the molten metal is rectified so that the molten metal flows through the hot top along the extending direction of each extending portion due to the presence of the molten metal rectifying plate arranged in the hot top.
  • the molten metal is supplied from a bowl through a supply pipe to a distribution plate floated on the molten metal in the casting mold without using a hot top.
  • the molten metal in the distribution tray is ejected from the discharge hole of the distribution tray and supplied to the casting mold.
  • the distribution tray serves as a flow control valve for the supply pipe, so that the molten metal is supplied to the casting mold in a stable amount.
  • Japanese Patent Laid-Open No. 06-292946 page 3-4, FIG. 2
  • Japanese Patent Laid-Open No. 04-182046 page 4-5, FIG. 1
  • Japanese Patent Laid-Open No. 11-19755 page 3-4, FIG. 1
  • the flow of the molten metal discharged from the opening of the bowl may be stable without turbulent flow, but the molten metal is discharged radially from the center of the hot top. For this reason, after the molten metal is discharged into the hot top from the opening of the tub, it takes time until the molten metal flows over the entire outer peripheral portion that occupies a wide area in the hot top, and the molten metal flow velocity is also slowed down. Accordingly, the degree of cooling of the molten metal is increased by the influence of the environment, and the molten metal temperature distribution is likely to be uneven, and the temperature is uneven in the continuous casting mold, so that a sufficiently high quality ingot cannot be manufactured.
  • Patent Document 2 since the molten metal is discharged radially from a predetermined location on the hot top along the longitudinal direction of each extending portion, the molten metal is long-distance in the hot top until the tip of the extending portion. Will flow over. For this reason, the degree of cooling of the molten metal is increased due to the environment, and the molten metal temperature distribution is likely to be non-uniform, so that a sufficiently high-quality ingot cannot be produced due to non-uniform temperature in the continuous casting mold. .
  • Patent Document 3 the purpose is automatic adjustment of the supply amount of the molten metal, and the molten metal is discharged from a predetermined portion of the casting mold into the casting mold. It takes time for the flow to reach, and the molten metal flow rate also slows down. Accordingly, the degree of cooling of the molten metal is increased by the influence of the environment, and the molten metal temperature distribution is likely to be non-uniform, so that a sufficiently high quality ingot cannot be produced due to non-uniform temperature in the continuous casting mold.
  • the present invention provides a hot top for continuous casting and a continuous casting method capable of injecting molten metal from a hot top into a continuous casting mold without causing temperature non-uniformity in the continuous casting mold. is there.
  • a hot top for continuously casting an ingot by flowing a molten metal from a molten metal flow-down opening into a forming space of a continuous casting mold according to an embodiment of the present invention.
  • the inner peripheral shape of the hot top portion forming the molten metal flow lower opening is a shape corresponding to the inner peripheral shape of the continuous casting mold portion forming the molding space.
  • the hot top forms a molten metal introduction space around the molten metal flow lower opening, and includes a weir between the molten metal introduction space and the molten metal flow lower opening.
  • FIG. 3 The perspective view of the hot top for continuous casting which concerns on 1st Embodiment of this invention.
  • the top view of the hot top for continuous casting of FIG. FIG. 3 is a sectional view taken along line 3-3 in FIG. 2.
  • (A), (b), (c) is a figure for demonstrating the introduction state of the molten metal to the hot top for continuous casting of FIG. (A), (b), (c) is a longitudinal cross-sectional view of the hot top for continuous casting which concerns on 2nd Embodiment of this invention.
  • the perspective view of the hot top for continuous casting which concerns on 3rd Embodiment of this invention.
  • the longitudinal cross-sectional view of the hot top for continuous casting which concerns on 3rd Embodiment of this invention.
  • the perspective view of the hot top for continuous casting which concerns on 4th Embodiment of this invention.
  • the top view of the hot top for continuous casting of FIG. (A), (b), (c) is a figure for demonstrating the introduction state of the molten metal to the hot top for continuous casting of FIG. (A) And (b) is a perspective view for demonstrating operation
  • the top view of the hot top for continuous casting which concerns on another example.
  • the top view of the hot top for continuous casting which concerns on another example.
  • (A) And (b) is a longitudinal cross-sectional view of the hot top for continuous casting which concerns on another example.
  • the top view of the hot top for continuous casting which concerns on another example.
  • FIG. 1 is a perspective view of a hot top 2 for continuous casting.
  • FIG. 1 shows a continuous casting hot top 2 mounted on a continuous casting mold 4.
  • 2 is a plan view of FIG. 1
  • FIG. 3 is a sectional view taken along line 3-3 of FIG.
  • the hot top 2 for continuous casting is formed from a heat insulating material.
  • a molten metal flow lower port 6 is formed at the center of the hot top 2 for continuous casting.
  • a core 8 attached to the continuous casting mold 4 is disposed at the center of the molten metal flow lower port 6 from above.
  • the molten metal is supplied to the continuous casting mold 4 through the molten metal flow lower opening 6.
  • the molten metal is formed into a desired cylindrical shape, and the molten metal is supplied from the cooling water channel 4a.
  • the cylindrical ingot is continuously cast by being cooled with cooling water.
  • the inner peripheral shape of the portion of the hot top 2 that forms the molten metal flow lower opening 6 corresponds to the inner peripheral shape of the portion of the continuous casting mold 4 that forms the cylindrical space 10.
  • the part of the hot top 2 that forms the molten metal flow lower opening 6 is simply referred to as a flow hole forming part
  • the part of the continuous casting mold 4 that forms the cylindrical space 10 is referred to as a cylindrical space forming part.
  • the hot top 2 for continuous casting is supplied with molten metal from a melting furnace through a tub.
  • the molten metal is a molten aluminum alloy.
  • the molten metal is supplied from the eaves to the molten metal introduction path 12 formed in a groove shape by the hot top 2 for continuous casting.
  • the molten metal is introduced into an annular groove 14 as a molten metal introduction space formed so as to surround the molten metal flow lower opening 6 at the center of the hot top 2 for continuous casting.
  • a weir 16 is formed between the annular groove 14 and the molten metal flow lower opening 6. While the molten metal level in the annular groove 14 is lower than the height of the weir 16, that is, while the amount of molten metal accumulated in the annular groove 14 is less than the maximum volume of the annular groove 14, the molten metal passes through the weir 16. It does not flow beyond the molten metal flow lower opening 6.
  • the molten metal branches and flows around the molten metal flow lower opening 6 along the annular groove 14 and joins at the molten metal discharge path 18 formed on the side facing the molten metal introduction path 12. . Then, the molten metal flows from the molten metal discharge passage 18 into the molten metal tank 20. This state is shown in FIG.
  • the molten metal M introduced from the molten metal introduction path 12 is stored in the space 20 a in the molten metal tank 20 via the annular groove 14 and the molten metal discharge path 18.
  • the level of the molten metal M in the molten metal introducing path 12, including the molten metal tank 20, the annular groove 14, and the molten metal discharge path 18 as a whole increases.
  • the hot top 2 for continuous casting is heated by the amount of heat of the molten metal M.
  • the process from the start of the introduction of the molten metal M through the molten metal introduction path 12 to the process here corresponds to the casting preliminary process.
  • the accumulation of the molten metal M proceeds, and when the molten metal surface level reaches the top 16a of the weir 16 formed horizontally over the entire circumference of the annular groove 14 as shown in FIG. As shown in c), the molten metal M flows down over the weir 16 to the continuous casting mold 4. As a result, the molten metal M flows through the cylindrical space 10 and is cooled by the cooling water. A cylindrical ingot is continuously cast by pulling down the ingot from the lower side of the continuous casting mold 4. As the work process, the process from the continuous overflow of the molten metal M from the weir 16 to the flow down to the continuous casting mold 4 side corresponds to the molten metal flow-down process.
  • This embodiment has the following advantages. (1) The molten metal introduced into the annular groove 14 by the weir 16 formed between the annular groove 14 and the molten metal flow lower opening 6 flows down from the molten metal flow lower opening 6 to the continuous casting mold 4 in the initial stage of the introduction. Is prevented. Moreover, due to the presence of the molten metal tank 20, the molten metal flows into the space 20 a in the molten metal tank 20 through the molten metal discharge path 18.
  • the molten metal is discharged into the molten metal tank 20, the rising speed of the molten metal M level is suppressed, and the state where the injection of the molten metal M into the continuous casting mold 4 is prevented for a while. continue.
  • the molten metal M overflows from the weir 16, and thus the overflowed molten metal flows down to the continuous casting mold 4. Therefore, at the initial stage of the introduction of the molten metal, the molten metal flows through the annular groove 14 without flowing down from the molten metal flow outlet 6, thereby efficiently increasing the temperature of the hot top 2 for continuous casting, particularly the temperature of the weir 16. As a result, the molten metal that subsequently flows into the molten metal introduction path 12 overflows from the weir 16 and flows into the continuous casting mold 4 while maintaining a sufficiently high temperature.
  • the inner peripheral shape of the flow-down port forming part is a shape corresponding to the inner peripheral shape of the cylindrical space-forming part, and in this embodiment, the inner peripheral shape of the flow-down port forming part and the inner peripheral shape of the cylindrical space forming part are approximately Therefore, the molten metal overflowing from the weir 16 is smoothly injected without causing turbulent flow over the entire circumference of the cylindrical space 10, and as a result, the molten metal sufficiently maintained at a high temperature is continuously cast. It is supplied into the cylindrical space 10 of the mold 4.
  • the molten metal introduction path 12 and the molten metal discharge path 18 are arranged at positions facing each other with the molten metal flow lower port 6 therebetween. Thereby, the molten metal introduced into the annular groove 14 from the molten metal introduction path 12 flows evenly around the molten metal flow lower port 6, and the temperature around the molten metal flow lower port 6 can be raised evenly.
  • the bottom of the molten metal introduction path 12, the bottom of the annular groove 6, the bottom of the molten metal discharge path 18, and the bottom of the molten metal tank 20 are on the same horizontal plane and are the same as a whole. It is on a horizontal plane.
  • these bottom portions are inclined surfaces or provided with steps.
  • the bottom 54a of the annular groove 54 is inclined with respect to the bottom of the molten metal introduction path 56 and the bottom of the molten metal tank 60.
  • the bottom portion 54a is inclined so that the portion (introduction portion) connected to the molten metal introduction path 56 becomes the highest position and gradually decreases from the portion toward the molten metal discharge path 58.
  • the molten metal introduced from the molten metal introduction channel 56 quickly flows through the annular groove 54 and reaches the molten metal discharge channel 58, and further, as indicated by the arrow. It flows into the space 60 a in the molten metal tank 60.
  • the introduction of the molten metal from the molten metal introduction path 56 continues, and when the molten metal level reaches the top 62a of the weir 62 and further exceeds it, the molten metal flows down to the continuous casting mold and continuous casting is started.
  • the continuous casting hot top 72 shown in FIG. 5B has the molten metal introduction path 74, the annular groove 76, and the bottom portions 74a, 76a, 78a of the molten metal discharge path 78 on the same horizontal plane. It is on the same horizontal plane.
  • the bottom 80a of the molten metal tank 80 is horizontal, the height position thereof is lower than the height positions of the bottoms 74a, 76a and 78a of the molten metal introduction path 74, the annular groove 76 and the molten metal discharge path 78.
  • the molten metal introduced from the molten metal introduction path 74 is lower than the height positions of the other bottom portions 74a, 76a, 78a in the height position of the bottom portion 80a of the molten metal tank 80 as compared with the first embodiment. Only the difference in volume is stored in the molten metal tank 80. After the molten metal is introduced into the molten metal tank 80, the molten metal level reaches the top 82 a of the weir 82. By exceeding this, it flows down to the continuous casting mold 4 to start continuous casting.
  • the bottom 94a of the annular groove 94 is inclined with respect to the bottom of the molten metal introduction path 96 and the bottom of the molten metal tank 102.
  • FIG. 5A shows that the bottom portion 94a is inclined so that the portion (introduction portion) connected to the molten metal introduction passage 96 is the highest position and gradually decreases from the portion toward the molten metal discharge passage 100. It is the same as the hot top 52 for continuous casting shown.
  • top portion 98a of the weir 98 has the highest portion (introduction portion) corresponding to the molten metal introduction path 96 in the top portion 98a, similarly to the bottom portion 94a of the annular groove 94.
  • the position is inclined with respect to the bottom of the molten metal introduction path 96 and the bottom of the molten metal tank 102 so as to gradually become lower from the portion toward the molten metal discharge path 100.
  • the inclination degree of the top part 98a is not necessarily the same as the inclination degree of the bottom part 94a.
  • the molten metal introduced from the molten metal introduction path 96 as indicated by the arrow line quickly flows through the annular groove 94 and reaches the molten metal discharge path 100, and further enters the space 102a in the molten metal tank 102 as indicated by the arrow line. Inflow.
  • the molten metal quickly flows through the entire annular groove 94, and the point that the entire annular groove 94 can be quickly heated to high temperature without unevenness is shown in FIG. 5 (a). The same as the hot top 52.
  • the molten metal introduced from the molten metal introducing passage 56 with a high flow velocity of the molten metal collides with the weir 62, so that the molten metal introducing passage in the annular groove 54 is obtained.
  • the surface level of the molten metal near 56 becomes higher than the level of the molten metal near the molten metal discharge passage 58, and the molten metal level in the annular groove 54 may be inclined.
  • the molten metal level near the molten metal introduction path 56 in the annular groove 54 is higher than the molten metal surface level near the molten metal discharge path 58, and the molten metal in the annular groove 54.
  • the surface level may be tilted.
  • the top portion 98a of the weir 98 is inclined so as to correspond to the inclination of the molten metal level in the annular groove 94.
  • the amount of molten metal that flows over the weir 98 and flows down to the molten metal flow lower port 104 is uniform over the entire circumference of the molten metal flow lower port 104. As a result, a higher quality ingot can be obtained.
  • FIG. 7 is a longitudinal sectional view of FIG. FIG. 6 shows the state before the core 208 is attached.
  • the other configuration in which the shape of the bottom 214a of the annular groove 214 is different from that of the first embodiment is the same.
  • the depth of the annular groove 214 decreases as it moves away from the weir 216 in the radial direction.
  • the bottom portion 214 a of the annular groove 214 becomes gradually higher as the distance from the weir 216 increases.
  • the depth of the annular groove 214 is initially at the bottom 214 a of the annular groove 214. It flows in a large portion near the weir 216 and is discharged to the space 220 a in the molten metal tank 220 through the molten metal discharge path 218.
  • the level of the molten metal in the annular groove 214 including the space 220a in the molten metal tank 220 rises, and after flowing over the top 216a of the weir 216, it flows down from the entire circumference of the molten metal flow lower port 206 to the continuous casting mold 204. .
  • the present embodiment has the following advantages in addition to the advantages (1) to (3) of the first embodiment. (4) In the initial stage of the introduction of the molten metal, the portion near the weir 216 at the bottom 214a of the annular groove 214 is quickly heated, and the supply rate at the start of the introduction of the molten metal can be increased, enabling more efficient continuous casting. .
  • a hot top 252 for continuous casting according to a fourth embodiment of the present invention will be described with reference to FIGS. 8, 9, and 10 (a) to 10 (c).
  • the first weir 266 and the second weir 267 disposed radially inward from the first weir 266 are disposed in the annular groove 264. It differs from the first embodiment in that it exists. Other configurations are the same as those in the first embodiment.
  • the molten metal flows from the molten metal introduction path 262 into a space radially outside the first weir 266 in the annular groove 264, and flows through the molten metal discharge path 268. And flows into the space 270a in the molten metal tank 270.
  • FIG. 10A is a cross-sectional view taken along the line 10-10 in FIG.
  • the molten metal is introduced from the molten metal introduction path 262 and the molten metal level rises and exceeds the top portion 266a of the first weir 266, the molten metal is first in the annular groove 264 as shown in FIG. It flows into the space between the weir 266 and the second weir 267.
  • the present embodiment has the following advantages in addition to the advantages (1) to (3) of the first embodiment. (5)
  • the distribution of the amount of the molten metal over the top 266a of the first weir 266 is all around. Even if it is uneven and biased, the bias is suppressed by the existence of the space between the first weir 266 and the second weir 267.
  • the molten metal gets over the top portion 267a of the inner second weir 267, the molten metal flows down into the molten metal flow outlet 256 at a uniform flow rate on the entire circumference.
  • a continuous casting hot top 302 according to a fifth embodiment of the present invention will be described with reference to FIGS. 11 (a) and 11 (b).
  • the continuous casting hot top 302 of this embodiment does not include the molten metal tank 20.
  • a pair of projecting portions 318a projecting from both side walls toward the opposite side walls are formed in the middle of the molten metal discharge passage 318, and an opening / closing member 319 is disposed upstream of the pair of projecting portions 318a. ing.
  • the molten metal introduced from the molten metal introduction path 312 is used for continuous casting immediately after being introduced into the molten metal discharge path 318 around the annular groove 314 formed so as to surround the molten metal flow lower port 306. It is discharged out of the hot top 302. Accordingly, the molten metal whose temperature has been lowered by heating the continuous casting hot top 302 is discharged out of the continuous casting hot top 302.
  • an opening / closing member 319 is disposed on the upstream side of the pair of protrusions 318a formed in the molten metal discharge passage 318.
  • the molten metal discharge passage 318 is blocked to prevent the molten metal from being discharged, the molten metal level in the hot top 302 for continuous casting gradually increases.
  • the molten metal gets over the top 316a of the weir 316 as indicated by the broken arrow line. As a result, the molten metal flows down to the molten metal flow outlet 306, and continuous casting in the continuous casting mold 304 is started.
  • the present embodiment has the following advantages in addition to the advantages (2) and (3) of the first embodiment. (6) Due to the damming effect by the weir 316 formed between the annular groove 314 and the molten metal flow outlet 306 and the discharge of the molten metal from the molten metal discharge passage 318, the molten metal is introduced into the annular groove 314 at the initial stage of the introduction of the molten metal. The molten metal is prevented from flowing from the molten metal flow lower port 306 to the continuous casting mold 304. Therefore, in the initial stage of the introduction of the molten metal, the molten metal does not flow down to the continuous casting die 304 but flows in the annular groove 314.
  • the temperature of the continuous casting hot top 302, particularly the weir 316 can be efficiently increased. . Since this temperature rising period can be arbitrarily set according to the closing timing of the molten metal discharge passage 318 by the opening / closing member 319, the work for equalizing the molten metal flowing down into the continuous casting mold 304 has a high degree of freedom. Can do.
  • the molten metal discharge passage 318 When the molten metal discharge passage 318 is closed by the opening / closing member 319 after an arbitrary temperature rising period, the molten metal introduced thereafter overflows from the weir 316 and flows down to the continuous casting mold 304 while maintaining a sufficiently high temperature.
  • the continuous casting mold 304 is injected in a smooth flow over the entire circumference.
  • the molten metal introduction path and the molten metal discharge path are formed with a certain width.
  • this embodiment is not, and the molten metal is not as in the continuous casting hot top 352 shown in FIG.
  • the width of the connecting portion connected to the annular groove 364 in the introduction path 362 is gradually enlarged, and the connecting portion is smooth without having corners.
  • the molten metal introduced from the molten metal introduction path 362 smoothly flows into the annular groove 364 without generating turbulent flow, and further, the collision of the molten metal against the weir 366 from the front can be weakened.
  • the portion of the molten metal discharge passage 368 connected to the annular groove 364 is smoothly connected to the annular groove 364 without forming a corner.
  • the molten metal is smoothly discharged from the annular groove 364 to the space 370a in the molten metal tank 370 through the molten metal discharge path 368, and the molten metal collides with each other at the portion where it collects and flows into the molten metal discharge path 368. Can weaken.
  • the molten metal gets over from the portion near the molten metal discharge passage 368 in the weir 366 at the initial stage of introduction and flows down from the molten metal flow lower port 356, and then the molten metal amount is partially biased when the molten metal gets over the weir 366 all around. Therefore, a sufficiently high quality ingot can be continuously cast without causing non-uniformity of the molten metal temperature in the continuous casting mold 354.
  • each of the molten metal introduction path and the molten metal discharge path is one, but a plurality of molten metal may be used.
  • the hot top 402 for continuous casting shown in the plan view of FIG. 13 shows an example in which two molten metal introduction paths 412 and 413 and two molten metal discharge paths 418 and 419 are formed.
  • Two melt tanks 420 and 421 having spaces 420a and 421a are also formed corresponding to the melt discharge paths 418 and 419, respectively.
  • the two molten metal introducing paths 412 and 413 are arranged to face each other at a position of 180 degrees with the molten metal flow lower port 406 as the center, and the two molten metal discharging paths 418 and 419 are also arranged in the molten metal introducing paths 412 and 413.
  • the molten metal introduction paths 412 and 413 are plural, the molten metal introduced into the annular groove 414 is dispersed, so that the molten metal can be smoothly introduced. Furthermore, since there are a plurality of molten metal discharge paths 418 and 419, the molten metal discharged from the annular groove 414 can be smoothly discharged. As a result, the molten metal flows down from the molten metal flow path 406 and the molten metal discharge paths 418 and 419 in the weir 416 from the molten metal flow outlet 406 at the initial stage of introduction, or flows in a biased amount. Therefore, a sufficiently high quality ingot can be continuously cast without causing non-uniformity of the molten metal temperature in the continuous casting mold 404.
  • the weir is formed in a wall shape having a constant thickness.
  • the inner peripheral surface 466a of the weir 466 is near the top 466b of the weir 466. It may be formed in a curved surface shape.
  • the molten metal smoothly flows along the inner peripheral surface 466a of the weir 466 when the molten metal overflows from the annular groove 464 and flows down to the molten metal flow inlet 456 as indicated by the broken line, and prevents the molten metal from entraining air. can do.
  • the flow rate is partially biased at the molten metal flow lower port 456 and the molten metal temperature does not become uneven in the continuous casting mold, and a sufficiently high quality ingot can be continuously cast.
  • a barb 516d is formed near the top 516b of the weir 516 on the outer peripheral surface 516c of the weir 516.
  • FIG. 15 shows an example of a continuous casting hot top 602 disposed in a continuous casting mold 604 that forms a cross-shaped ingot.
  • the core is not used, but it may be hollow using a core.
  • the inner peripheral shape of the flow-down port forming portion is a shape corresponding to the inner peripheral shape of the cylindrical space forming portion, and a cross-shaped molten metal introduction space 614 is provided on the outer periphery of the molten metal flow lower port 606, and this molten metal introduction space 614.
  • a cross-shaped weir 616 is formed between the slag and the molten metal flow lower opening 606.
  • the molten metal surface level does not exceed the weir 616 at the initial stage of the molten metal introduction, and the molten metal flows through the molten metal introduction space 614 on the outer peripheral side of the weir 616. It flows into the space 620 a in the molten metal tank 620 through the discharge path 618.
  • the molten metal does not flow down to the molten metal flow lower port 606 but raises the temperature of the hot top 602 for continuous casting. Then, the molten metal that flows in afterwards overflows from the weir 616 and flows into the continuous casting mold 604 while maintaining a sufficiently high temperature. Moreover, since the inner peripheral shape of the hot top 602 portion forming the molten metal flow lower opening 606 corresponds to the inner peripheral shape of the continuous casting mold 604 portion forming the forming space, it overflows from the weir 616 and flows down. The molten metal is poured in a smooth flow over the entire circumference of the continuous casting mold 604, and the molten metal sufficiently maintained at a high temperature is supplied to the continuous casting mold 604.
  • the first to fifth embodiments can be applied even without a core.
  • the hot top for continuous casting according to the first to fifth embodiments is provided with a molten metal discharge passage in order to discharge the molten metal from the molten metal introduction space (annular groove) in the initial stage of the molten metal introduction. It is not necessary to provide a molten metal discharge path. In this case, at the initial stage of the introduction of the molten metal, the temperature of the weir is increased by the molten metal accumulated in the molten metal introduction space (annular groove), and then the molten metal gets over the weir. The hot melt is poured in a smooth flow across. Therefore, temperature non-uniformity does not occur in the continuous casting mold.
  • the molten metal introduction space has a groove shape with a constant width, but the width may be changed according to the degree of flow of the molten metal. Further, the molten metal introducing space may be used as a substitute for the molten metal tank by forming the molten metal introducing space as much as possible in the continuous casting hot top without forming the molten metal tank.
  • M molten metal, 2, 52, 72, 92, 202, 252, 302, 352, 402, 602 ... hot top for continuous casting, 4, 204, 254, 304, 354, 404, 604 ... continuous casting mold, 8, 208,258 ... core, DESCRIPTION OF SYMBOLS 10 ... Cylindrical space as forming space, 12, 56, 74, 96, 212, 262, 312, 362, 412, 413, 512, 612 ... Molten metal introduction path, 14, 54, 76, 94, 214, 264, 314 , 364, 414, 464, 614 ...
  • annular groove as molten metal introduction space 16, 62, 82, 98, 216, 266, 267, 316, 366, 416, 466, 516, 616 ... weir, 16a, 62a, 82a , 98a, 216a, 266a, 267a, 316a, 466b, 516b ... top, 18, 58, 78, 100, 218, 268, 318, 368, 418, 419, 618 ... molten metal discharge path, 20, 60, 80, 102 , 220, 270, 370, 420, 421, 620 ... molten metal tank, 54a, 76a, 214a ... bottom of molten metal introduction space, 7 a ...

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

 溶湯流下口から溶湯を連続鋳造型の円筒空間内に流下させることにより連続的に鋳塊を鋳造するためのホットトップが開示される。流下口形成部位の内周形状は円筒空間形成部位の内周形状に対応した形状である。前記ホットトップは、前記溶湯流下口の周囲に環状溝を形成するとともに、該環状溝と前記溶湯流下口との間に堰を備える。

Description

連続鋳造用ホットトップ及び連続鋳造方法
 本発明は、連続鋳造用ホットトップ及びこの連続鋳造用ホットトップを用いた連続鋳造方法に関する。
 特許文献1,2,3には、連続鋳造において鋳造される鋳塊の品質向上の観点から、樋から鋳造型へ溶湯を注入するための技術が開示されている。
 特許文献1では、溶解炉の溶湯出口での溶湯の湯面レベルとホットトップ内の溶湯の湯面レベルとを同一として、樋に形成された左右一対の開口部からホットトップの全体に広く行き渡るように溶湯を注入している。
 特許文献2では、延出部を有する鋳塊を半連続鋳造するにあたり、溶湯を、ホットトップを備えた鋳造型内の溶湯の湯面レベルと略同一の湯面レベルで鋳造型に注入する。この溶湯の注入の際に、ホットトップ内に配置された溶湯整流板の存在により、各延出部の延出方向に沿って溶湯がホットトップを流れるように溶湯の流れを整流する。
 特許文献3では、ホットトップを用いずに、鋳造型内の溶湯上に浮かべられた分配皿に樋から供給管を介して溶湯を供給している。分配皿内の溶湯は、該分配皿の吐出穴から噴出して鋳造型に供給される。分配皿が供給管の流量調節弁の働きをすることによって鋳造型に溶湯が安定した量で供給される。
特開平06-292946号公報(第3-4頁、図2) 特開平04-182046号公報(第4-5頁、図1) 特開平11-19755号公報(第3-4頁、図1)
 しかし特許文献1では、樋の開口部から放出される溶湯の流れ自体は乱流の生じない安定したものとなるかもしれないが、溶湯はホットトップの中央部から全体に放射状に放出される。このため、溶湯が樋の開口部からホットトップ内に放出された後に、ホットトップにおいて広い領域を占める外周部の全体に溶湯の流れが至るまでには、時間がかかり溶湯流速も遅くなる。したがって環境に影響されて溶湯の冷却程度が大きくなったり、溶湯温度分布の不均一が生じやすくなり、連続鋳造型内にて温度が不均一となり十分に高品質の鋳塊が製造できない。
 特許文献2では、溶湯は、ホットトップにおける所定の一箇所から各延出部の長手方向に沿って放射状に放出されることから、溶湯が延出部の先端までに、ホットトップ内を長距離にわたって流れることになる。このため、環境に影響されて溶湯の冷却程度が大きくなったり、溶湯温度分布の不均一が生じやすくなり、連続鋳造型内にて温度不均一を招いて十分に高品質の鋳塊が製造できない。
 特許文献3では、目的は溶湯の供給量の自動調節であり、鋳造型の所定の一箇所から鋳造型内に溶湯が放出されることには変わりはなく、鋳造型の外周部全体に溶湯の流れが至るまでには、時間がかかり溶湯流速も遅くなる。したがって環境に影響されて溶湯の冷却程度が大きくなったり、溶湯温度分布の不均一が生じやすくなり、連続鋳造型内にて温度不均一を招いて十分に高品質の鋳塊が製造できない。
 本発明は、ホットトップから連続鋳造型内に溶湯を注入した場合に、連続鋳造型内にて温度不均一を招かない注入を可能とする連続鋳造用ホットトップ及び連続鋳造方法を提供するものである。
 上記目的を達成するために、本発明の態様に従い、溶湯流下口から溶湯を連続鋳造型の成形空間内に流下させることにより連続的に鋳塊を鋳造するためのホットトップが開示される。前記溶湯流下口を形成するホットトップの部位の内周形状は、前記成形空間を形成する連続鋳造型の部位の内周形状に対応した形状である。前記ホットトップは、前記溶湯流下口の周囲に溶湯導入空間を形成するとともに、該溶湯導入空間と前記溶湯流下口との間に堰を備える。
本発明の第1実施形態に係る連続鋳造用ホットトップの斜視図。 図1の連続鋳造用ホットトップの平面図。 図2における3-3線断面図。 (a)、(b)、(c)はいずれも、図1の連続鋳造用ホットトップへの溶湯の導入状態を説明するための図。 (a)、(b)、(c)はいずれも、本発明の第2実施形態に係る連続鋳造用ホットトップの縦断面図。 本発明の第3実施形態に係る連続鋳造用ホットトップの斜視図。 本発明の第3実施形態に係る連続鋳造用ホットトップの縦断面図。 本発明の第4実施形態に係る連続鋳造用ホットトップの斜視図。 図8の連続鋳造用ホットトップの平面図。 (a)、(b)、(c)はいずれも、図8の連続鋳造用ホットトップへの溶湯の導入状態を説明するための図。 (a)及び(b)はいずれも、本発明の第5実施形態に係る連続鋳造用ホットトップの動作を説明するための斜視図。 別例に係る連続鋳造用ホットトップの平面図。 別例に係る連続鋳造用ホットトップの平面図。 (a)及び(b)はいずれも、別例に係る連続鋳造用ホットトップの縦断面図。 別例に係る連続鋳造用ホットトップの平面図。
 本発明の第1実施形態に係る連続鋳造用ホットトップ2を図1~図4(c)に従って述べる。図1は連続鋳造用ホットトップ2の斜視図を示している。尚、図1は連続鋳造用ホットトップ2を連続鋳造型4上に取り付けた状態で示している。図2は図1の平面図、図3は図2の3-3線断面図である。
 連続鋳造用ホットトップ2は断熱材から形成されているものである。この連続鋳造用ホットトップ2の中央部には溶湯流下口6が形成されている。図1では溶湯流下口6の中央に、連続鋳造型4に付属する中子8が上方から吊られた状態で配置されている。この溶湯流下口6を通って溶湯が連続鋳造型4に供給される。金属製の連続鋳造型4とその中子8との間の円筒空間10(成形空間)に溶湯が供給されることによって溶湯が所望の円筒形に成形され、その溶湯が冷却水路4aから供給される冷却水にて冷却されることにより、円筒形の鋳塊が連続的に鋳造される。ここで溶湯流下口6を形成するホットトップ2の部位の内周形状は、円筒空間10を形成する連続鋳造型4の部位の内周形状と対応している。以下、溶湯流下口6を形成するホットトップ2の部位を単に流下口形成部位といい、円筒空間10を形成する連続鋳造型4の部位を円筒空間形成部位という。尚、これらの内周形状同士が対応することの一形態は両者が一致するものであるが、完全に一致する必要はなく、円筒空間10の内周形状に対して溶湯流下口6の内周形状が対応したものであれば良く、溶湯流下口6の内周形状が、円筒空間10の内周形状よりも多少大きくても、小さくても良い。
 連続鋳造用ホットトップ2には溶解炉から樋を介して溶湯が供給される。ここでは例えば、溶湯はアルミニウム合金の溶湯である。樋からは連続鋳造用ホットトップ2にて溝状に形成された溶湯導入路12へ溶湯が供給される。
 溶湯導入路12から、溶湯は連続鋳造用ホットトップ2の中央部にて溶湯流下口6を囲むように形成されている溶湯導入空間としての環状溝14に導入される。環状溝14と溶湯流下口6との間には堰16が形成されている。環状溝14内の溶湯の湯面レベルが堰16の高さよりも低い状態、すなわち環状溝14内に蓄積された溶湯量が環状溝14の最大容積量よりも少ない間は、溶湯は堰16を越えて溶湯流下口6に流れることはない。
 したがって溶湯の導入初期においては、溶湯は環状溝14に沿って溶湯流下口6の周囲を分岐して流れ、溶湯導入路12とは対向する側に形成されている溶湯排出路18にて合流する。そして、溶湯は、同溶湯排出路18から溶湯タンク20内へ流れ込む。この状態を図4(a)に示す。
 図4(a)に示したごとく溶湯導入路12から導入された溶湯Mは、環状溝14、溶湯排出路18を介して溶湯タンク20内の空間20aに貯留される。樋から溶湯導入路12への溶湯Mの導入が継続すると、溶湯タンク20も含めた溶湯導入路12、環状溝14、溶湯排出路18全体の溶湯Mの湯面レベルが上昇する。この間に、溶湯Mの熱量により連続鋳造用ホットトップ2が昇温する。特に環状溝14により溶湯流下口6の周りに溶湯Mが常に流れることで、堰16等の溶湯流下口6の周りの部位が高温となる。作業工程としては、溶湯導入路12からの溶湯Mの導入開始から、ここまでの工程が鋳造予備工程に相当する。
 その後、溶湯Mの蓄積が進み、図4(b)に示すごとく溶湯Mの湯面レベルが環状溝14の全周に渡って水平に形成された堰16の頂部16aに到達すると、図4(c)に示すごとく、溶湯Mは堰16を越えて、連続鋳造型4へ流下する。このことにより溶湯Mは円筒空間10を流れて冷却水にて冷却される。連続鋳造型4の下側から鋳塊が引き下げられることにより円筒状の鋳塊が連続的に鋳造される。作業工程としては、堰16から溶湯Mを連続的に溢れさせてから連続鋳造型4側へ流下させるまでの工程が溶湯流下工程に相当する。
 本実施形態は、以下の利点を有する。
 (1)環状溝14と溶湯流下口6との間に形成された堰16により、環状溝14に導入された溶湯は、その導入初期においては溶湯流下口6から連続鋳造型4へ流下されるのが阻止される。しかも溶湯タンク20の存在により溶湯排出路18を介して溶湯タンク20内の空間20aにも溶湯が流れ込む。このため、溶湯の導入初期においては、溶湯が溶湯タンク20に排出され、溶湯Mの湯面レベルの上昇速度が抑制されて、連続鋳造型4への溶湯Mの注入が阻止された状態がしばらく継続する。
 その後、溶湯Mの湯面レベルが堰16の頂部16aに到達すると、溶湯Mは堰16から溢れるようになり、このことにより溢れた分の溶湯が連続鋳造型4に流下する。
 したがって溶湯の導入初期においては、溶湯は溶湯流下口6から流下せずに環状溝14内を流れることにより連続鋳造用ホットトップ2の温度、特に堰16の温度を効率的に上昇させる。このことにより、その後、溶湯導入路12に流入した溶湯は十分な高温を維持したまま、堰16から溢れて連続鋳造型4内に流れ込むことになる。
 しかも、流下口形成部位の内周形状は円筒空間形成部位の内周形状に対応した形状であり、本実施形態では流下口形成部位の内周形状と円筒空間形成部位の内周形状とは略一致しているため、堰16から溢れて流下した溶湯は、円筒空間10の全周に渡って乱流を生じることなく円滑に注入され、その結果、高温状態を十分に維持した溶湯が連続鋳造型4の円筒空間10内に供給される。
 このことにより連続鋳造用ホットトップ2から連続鋳造型4内に溶湯を注入した場合に、連続鋳造型4内にて温度不均一を招くことがない。したがって鋳塊の表面性状や内部性状が均一となり、十分に高品質の円筒状の鋳塊を製造できる。
 (2)溶湯導入路12と溶湯排出路18とは溶湯流下口6を間にして対向する位置に配置されている。このことにより、溶湯導入路12から環状溝14に導入された溶湯が溶湯流下口6の周りを満遍なく流れ、溶湯流下口6の周りを偏りなく昇温させることができる。
 (3)本実施形態では連続鋳造型4に中子8が用いられていることから、円筒空間形成部位の内径が大きくなる傾向にあると共に、更に中空状の、本実施形態では円筒状の鋳塊を製造することになるが、前述したごとくの利点により、全周に渡り均一な温度管理が十分に行われるので、高品質の鋳塊が得られる。
 次に、本発明の第2実施形態について図5(a)~図5(c)に従って述べる。上記第1実施形態では、溶湯導入路12の底部、環状溝6の底部、溶湯排出路18の底部及び溶湯タンク20内の底部は、それら同士が相互に同一水平面上にあり、全体としても同一水平面上にある。本実施形態では図5に示すごとくこれらの底部を傾斜面としたり、段差を設けたりしている。
 図5(a)に示す連続鋳造用ホットトップ52においては、環状溝54の底部54aが溶湯導入路56の底部及び溶湯タンク60の底部に対して傾斜している。底部54aは、その溶湯導入路56に接続した部位(導入部)を最高位置として、該部位から溶湯排出路58に向かって次第に低くなるように傾斜している。
 このことにより図5(a)において矢線で示すごとく、溶湯導入路56から導入された溶湯は環状溝54内を迅速に流れて溶湯排出路58に到達し、更にその勢いで矢線のごとく溶湯タンク60内の空間60aに流入する。
 その後、更に溶湯導入路56からの溶湯の導入が継続して、溶湯の湯面レベルが堰62の頂部62aに達して、更に越えると、溶湯は連続鋳造型に流下して連続鋳造が開始される。
 このような連続鋳造用ホットトップ52においては、溶湯の導入初期において、溶湯は迅速に環状溝54全体に流れて行き渡ることになり、環状溝54全体を迅速に偏りなく高温化させてから連続鋳造を開始させることができる。
 図5(b)に示す連続鋳造用ホットトップ72は、溶湯導入路74、環状溝76及び溶湯排出路78の底部74a,76a,78aはそれら同士が相互に同一水平面上にあり、全体としても同一水平面上にある。溶湯タンク80の底部80aは水平であるが、その高さ位置は溶湯導入路74、環状溝76及び溶湯排出路78の底部74a,76a,78aの高さ位置よりも低い。
 このことにより溶湯導入路74から導入された溶湯は、前記第1実施形態と比較して、溶湯タンク80の底部80aの高さ位置が他の底部74a,76a,78aの高さ位置より低い分の容積差だけ、余計に溶湯タンク80内に貯留される。溶湯タンク80内に溶湯が導入された後に、溶湯の湯面レベルが堰82の頂部82aに達する。そしてこれを越えることにより、連続鋳造型4に流下して連続鋳造が開始される。
 このような連続鋳造用ホットトップ72においては、何らかの理由で溶湯導入路74、環状溝76及び溶湯排出路78を浅く形成する必要があったとしても、溶湯タンク80の底部80aの高さ位置を調節することにより、環状溝76内に十分に溶湯を流した後に、溶湯に堰82を越えさせて連続鋳造を開始させることができる。このことにより環状溝76全体を迅速に偏りなく高温化させてから連続鋳造を開始させることができる。
 図5(c)に示す連続鋳造用ホットトップ92においては、環状溝94の底部94aが溶湯導入路96の底部及び溶湯タンク102の底部に対して傾斜している。底部94aは、その溶湯導入路96に接続した部位(導入部)を最高位置として、該部位から溶湯排出路100に向かって次第に低くなるように傾斜している点は、図5(a)に示す連続鋳造用ホットトップ52と同じである。
 図5(a)に示す連続鋳造用ホットトップ52と異なる点は、堰98の頂部98aも環状溝94の底部94aと同じく、頂部98aにおける溶湯導入路96に対応した部位(導入部)を最高位置として、該部位から溶湯排出路100に向かって次第に低くなるように溶湯導入路96の底部及び溶湯タンク102の底部に対して傾斜していることである。ただし頂部98aの傾き度合いは底部94aの傾き度合いと同じとは限らない。
 このことにより矢線のごとく溶湯導入路96から導入された溶湯は環状溝94内を迅速に流れて溶湯排出路100に到達し、更にその勢いで矢線のごとく溶湯タンク102内の空間102aに流入する。このことにより溶湯の導入初期において、溶湯は迅速に環状溝94全体に流れることになり、環状溝94全体を迅速に偏りなく高温化させることができる点については図5(a)の連続鋳造用ホットトップ52と同じである。
 ただし、図5(a)の連続鋳造用ホットトップ52においては、溶湯の流速が高い状態で溶湯導入路56から導入された溶湯が堰62に衝突することにより、環状溝54内において溶湯導入路56寄りの溶湯の湯面レベルが溶湯排出路58寄りの溶湯の湯面レベルよりも高くなって、環状溝54内の溶湯の湯面レベルが傾く場合がある。あるいは溶湯の流動性が低いために環状溝54内において溶湯導入路56寄りの溶湯の湯面レベルが溶湯排出路58寄りの溶湯の湯面レベルよりも高くなり、環状溝54内の溶湯の湯面レベルが傾く場合がある。
 これに対して、図5(c)に示す連続鋳造用ホットトップ92では、堰98の頂部98aが環状溝94内の溶湯の湯面レベルの傾きに対応するように傾けられていることから、堰98を乗り越えて溶湯流下口104へ流下する溶湯の量は、溶湯流下口104の全周に渡って均一となる。このことにより、より高品質の鋳塊が得られる。
 次に、本発明の第3実施形態に係る連続鋳造用ホットトップ202を図6及び図7に従って述べる。図7は図6の縦断面図である。尚、図6では中子208を取り付ける前の状態で示している。
 前記第1実施形態とは、環状溝214の底部214aの形状が異なる他の構成は同じである。即ち、環状溝214の深さが、堰216から径方向外側に離れるにつれて小さくなっている。換言すると、環状溝214の底部214aは、堰216から離れるにつれて次第に高くなっている。
 図7の断面図において矢線にて示したごとく、溶湯が溶湯導入路212から環状溝214へ導入されると、その初期においては、環状溝214の底部214aにおいて、環状溝214の深さが大きな、堰216寄りの部分に集中して流れ、そして溶湯排出路218を介して溶湯タンク220内の空間220aへ排出される。
 その後、溶湯タンク220内の空間220aを含めて環状溝214内の溶湯の湯面レベルが上昇し、堰216の頂部216aを越えると、溶湯流下口206の全周から連続鋳造型204へ流下する。
 前記本実施形態は、前記第1実施形態の利点(1)~(3)に加えて以下の利点を有する。
 (4)溶湯の導入初期において、環状溝214の底部214aにおける堰216寄りの部分が迅速に昇温し、溶湯の導入開始時の供給速度を高くでき、より効率的な連続鋳造が可能となる。
 次に、本発明の第4実施形態に係る連続鋳造用ホットトップ252を図8、図9、図10(a)~図10(c)に従って述べる。図8及び図9に示すごとく、本実施形態の連続鋳造用ホットトップ252においては、環状溝264内に第1堰266及び該第1堰266より径方向内側に配置された第2堰267が存在している点が前記第1実施形態と異なる。他の構成は前記第1実施形態と同じである。
 このため、溶湯の導入初期においては図9において矢線で示したごとく、溶湯は、溶湯導入路262から環状溝264における第1堰266よりも径方向外側の空間に流れ込み、溶湯排出路268を介して溶湯タンク270内の空間270aに流れ込む。
 したがって溶湯の導入初期においては、溶湯の湯面レベルは図10(a)の縦断面図に示すごとくとなり、環状溝264における第1堰266と第2堰267との間の空間、及び溶湯流下口256に流れ込むことはない。尚、図10(a)は、図9の10-10線断面図である。
 更に、溶湯が溶湯導入路262から導入されて溶湯の湯面レベルが上昇し、第1堰266の頂部266aを越えると、溶湯は、図10(b)に示すごとく、環状溝264における第1堰266と第2堰267との間の空間に流れ込む。
 そしてこのように溶湯が環状溝264における第1堰266と第2堰267との間の空間に流れ込む状態が継続した後に、図10(c)に示したごとく第2堰267の頂部267aを溶湯の湯面レベルが越えると、溶湯流下口256へ溶湯が流下し、中子258を有する連続鋳造型254での連続鋳造が開始される。
 本実施形態は、前記第1実施形態の利点(1)~(3)に加えて以下の利点を有する。
 (5)環状溝264内において、複数の堰(第1堰266及び第2堰267)が設けられていることにより、第1堰266の頂部266aを越える際の溶湯の量の分布が全周において均一でなく偏っていたとしても、第1堰266と第2堰267との間の空間の存在により、その偏りが抑制される。このことにより水平である内側の第2堰267の頂部267aを溶湯が乗り越える際には、その全周にて溶湯が均一な流量にて溶湯流下口256内に流下するようになる。
 このことにより連続鋳造型254内での温度均一性を更に高めることができ、より高品質の円筒状の鋳塊を製造できる。
 次に、本発明の第5実施形態に係る連続鋳造用ホットトップ302を図11(a)及び図11(b)に従って述べる。図11(a)に示すごとく、本実施形態の連続鋳造用ホットトップ302は前記第1実施形態と異なり、溶湯タンク20を備えていない。また、溶湯排出路318の途中にはその両側壁から対向する側壁に向かって突出した一対の突出部318aが形成されており、該一対の突出部318aよりも上流には開閉部材319が配置されている。溶湯の導入初期においては、溶湯導入路312から導入された溶湯は、溶湯流下口306を囲むように形成されている環状溝314を周って溶湯排出路318に導入されてから直ちに連続鋳造用ホットトップ302外に排出される。従って、連続鋳造用ホットトップ302を暖めることによって低温化した溶湯は連続鋳造用ホットトップ302外に排出される。
 その後、図11(b)に示すごとく、溶湯排出路318に形成された一対の突出部318aの上流側に開閉部材319が配置される。開閉部材319が開状態から閉状態に移行することにより溶湯排出路318が開放状態から閉塞状態となる。
 この溶湯排出路318が閉塞状態に移行することにより溶湯の排出が阻止されることから、次第に連続鋳造用ホットトップ302内の溶湯の湯面レベルが上昇する。そして堰316の頂部316aを破線の矢線で示すごとく溶湯が乗り越える。このことにより溶湯流下口306へ溶湯が流下して、連続鋳造型304での連続鋳造が開始される。
 本実施形態は、前記第1実施形態の利点(2),(3)に加えて以下の利点を有する。
 (6)環状溝314と溶湯流下口306との間に形成された堰316による堰き止め効果、及び溶湯排出路318からの溶湯の排出により、溶湯の導入初期においては、環状溝314に導入された溶湯は、溶湯流下口306から連続鋳造型304へ流下されるのが阻止される。したがって溶湯の導入初期において、溶湯は連続鋳造型304へ流下せずに環状溝314内を流れるが、その間に、連続鋳造用ホットトップ302、特に堰316の温度を効率的に上昇させることができる。この昇温期間は、開閉部材319による溶湯排出路318の閉塞タイミングにより任意に設定できるので、連続鋳造型304内に流下する溶湯温度の均一化のための作業を自由度の高いものとすることができる。
 任意の昇温期間後に開閉部材319にて溶湯排出路318を閉じると、その後に導入された溶湯は高温を十分に維持したまま、堰316から溢れて連続鋳造型304に流下することになり、連続鋳造型304の全周に渡って円滑な流れとなって注入されることになる。
 このことにより連続鋳造用ホットトップ302から連続鋳造型304内に溶湯を注入した場合に、連続鋳造型304内に温度不均一を招くことがない。したがって鋳塊の表面性状や内部性状が均一となり、十分に高品質の円筒状の鋳塊を製造できる。
 上記第1~第5実施形態においては、溶湯導入路や溶湯排出路は一定幅に形成されていたが、本実施形態はそうではなく、図12に示す連続鋳造用ホットトップ352のごとく、溶湯導入路362において環状溝364に接続する接続部分の幅が次第に拡大しており、かつ、該接続部分は角を有せずに滑らかである。このことにより溶湯導入路362から導入される溶湯は乱流を生じることなく円滑に環状溝364に流れ込み、更に堰366に対する溶湯の正面からの衝突を弱めることができる。このことにより堰366における、溶湯導入路362寄りの部分から導入初期に溶湯が乗り越えたり、その後、全周にて堰366を乗り越える際に溶湯量が部分的に偏ったりすることが無くなり、連続鋳造型354内にて溶湯温度の不均一を招くことがなく、十分に高品質の鋳塊を連続鋳造できる。
 更に、図12に示す実施形態においては、溶湯排出路368について環状溝364と接続する部分は角を形成せずに滑らかに環状溝364と接続されている。このことにより環状溝364から溶湯排出路368を介して溶湯タンク370内の空間370aへ、溶湯は円滑に排出され、環状溝364から溶湯排出路368に集合して流れ込む部分で溶湯同士の衝突を弱めることができる。このことにより堰366における、溶湯排出路368寄りの部分から導入初期に溶湯が乗り越えて溶湯流下口356から流下したり、その後、全周にて堰366を乗り越える際に溶湯量が部分的に偏ったりすることが無くなり、連続鋳造型354内にて溶湯温度の不均一を招くことがなく、十分に高品質の鋳塊を連続鋳造できる。
 前記第1~第5実施形態においては、溶湯導入路や溶湯排出路はそれぞれ1本であったが、複数本でも良い。図13の平面図で示す連続鋳造用ホットトップ402では、2本の溶湯導入路412,413及び2本の溶湯排出路418,419を形成している例を示している。尚、溶湯排出路418,419に対応させて、空間420a,421aを有する溶湯タンク420,421も2つ形成されている。
 図13では2本の溶湯導入路412,413は溶湯流下口406を中心として180度の位置で対向して配置され、更に2本の溶湯排出路418,419についても、溶湯導入路412,413とは溶湯流下口406を中心として90度ずらして、すなわち、溶湯流下口406を中心として180度の位置で互いに対向して配置されている。
 このように溶湯導入路412,413が複数本であることにより、環状溝414へ導入される溶湯を分散することで円滑な溶湯の導入がなされる。更に溶湯排出路418,419が複数本であることにより、環状溝414から排出される溶湯を分散することで円滑な排出ができる。このことにより堰416における、溶湯導入路412,413寄りの部分や溶湯排出路418,419寄りの部分から導入初期に溶湯が溶湯流下口406から流下したり、量的に偏って流下したりすることが防止されて、連続鋳造型404内にて溶湯温度の不均一を招くことがなく、十分に高品質の鋳塊を連続鋳造できる。
 前記第1~第5実施形態においては、堰は一定厚の壁状に形成されていたが、図14(a)に示すごとく、堰466の内周面466aは、堰466の頂部466b付近において曲面状に形成されていても良い。このことにより破線で示す矢線のごとく環状溝464から溢れて溶湯流下口456に流下する際に、堰466の内周面466aに沿って溶湯が円滑に流れ、溶湯が空気を巻き込むことを防止することができる。このことにより溶湯流下口456において部分的に流下量が偏って連続鋳造型内に溶湯温度の不均一を招くことがなく、十分に高品質の鋳塊を連続鋳造できる。
 図14(b)の堰516では、更に堰516の外周面516cの、堰516の頂部516b付近において返し516dが形成されている。このことにより矢線で示すごとく、溶湯導入路512から流入して外周面516cに衝突する溶湯は、返し516dにより溶湯導入路512側に返されるので、溶湯導入路512側で溶湯の湯面レベルが部分的に高くなるのを防止できる。このことにより、溶湯流下口506において部分的に流下量が偏って連続鋳造型内にて溶湯温度の不均一を招くことが、より効果的に防止されて、より高品質の鋳塊を連続鋳造できる。
 前記第1~第5実施形態においては、円筒形の鋳塊を形成する場合の連続鋳造用ホットトップを示したが、これ以外の形状の鋳塊を連続鋳造する場合にも本発明を適用できる。図15は断面十字状の鋳塊を形成する連続鋳造型604に配置された連続鋳造用ホットトップ602の例を示している。ここでは鋳塊は中実状態で形成するので中子は用いられていないが、中子を用いて中空にするものでも良い。
 流下口形成部位の内周形状は、円筒空間形成部位の内周形状に対応した形状であると共に、溶湯流下口606の外周には十字環状の溶湯導入空間614が設けられ、この溶湯導入空間614と溶湯流下口606との間には、十字環状の堰616が形成されている。
 溶湯導入路612から溶湯が導入されると、溶湯の導入初期には溶湯の湯面レベルは堰616を越えることはなく、溶湯は、堰616の外周側の溶湯導入空間614を流れて、溶湯排出路618を介して溶湯タンク620内の空間620aに流れ込む。
 その後、溶湯の湯面レベルが上昇すると溶湯流下口606の周りから堰616を乗り越えて溶湯が溶湯流下口606へ流下する。このことにより連続鋳造型604にて断面十字状の鋳塊が連続鋳造される。
 したがって溶湯の導入初期において、溶湯は溶湯流下口606に流下せずに連続鋳造用ホットトップ602の温度を上昇させる。そして、後から流入した溶湯は高温を十分に維持したまま、堰616から溢れて連続鋳造型604に流れ込むことになる。しかも、溶湯流下口606を形成するホットトップ602の部位の内周形状は成形空間を形成する連続鋳造型604の部位の内周形状に対応した形状をしているため、堰616から溢れて流下した溶湯は、連続鋳造型604の全周に渡って円滑な流れとなって注入されることになり、高温状態を十分に維持した溶湯が連続鋳造型604に供給される。
 このように鋳造目的である鋳塊の断面形状に対応させた溶湯流下口606の形状が複雑であっても、連続鋳造用ホットトップ602から連続鋳造型604内に溶湯を注入した場合に、連続鋳造型604内にて溶湯温度の不均一を招くことがない。
 前記第1~第5実施形態は中子のないものでも適用できる。
 前記第1~第5実施形態の連続鋳造用ホットトップは、溶湯の導入初期については、溶湯を溶湯導入空間(環状溝)から全部あるいは部分的に排出するために溶湯排出路を備えていたが、溶湯排出路を設けなくても良い。この場合には、溶湯の導入初期においては溶湯導入空間(環状溝)内に蓄積される溶湯により堰が昇温し、その後に、溶湯が堰を乗り越えることになり、連続鋳造型の全周に渡って円滑な流れとなって高温の溶湯が注入されることになる。したがって連続鋳造型内にて温度不均一を招くことがない。
 前記第1~第5実施形態において、溶湯の導入空間は一定幅の溝状としたが、幅は溶湯の流れの程度に応じて変化させても良い。又、溶湯タンクを形成せずに、溶湯導入空間を連続鋳造用ホットトップ内でできるだけ拡大することにより、溶湯導入空間を溶湯タンクの代わりとしても良い。
 M…溶湯,2,52,72,92,202,252,302,352,402,602…連続鋳造用ホットトップ、4,204,254,304,354,404,604…連続鋳造型、8,208,258…中子、
10…成形空間としての円筒空間、12,56,74,96,212,262,312,362,412,413,512,612…溶湯導入路、14,54,76,94,214,264,314,364,414,464,614…溶湯導入空間としての環状溝、16,62,82,98,216,266,267,316,366,416,466,516,616…堰、16a,62a,82a,98a,216a,266a,267a,316a,466b,516b…頂部、18,58,78,100,218,268,318,368,418,419,618…溶湯排出路、20,60,80,102,220,270,370,420,421,620…溶湯タンク、54a,76a,214a…溶湯導入空間の底部、74a…溶湯導入路の底部、78a,94a…溶湯排出路の底部、80a…溶湯タンクの底部、104,206,256,306,356,406,456,506,606…溶湯流下口、319…開閉部材。

Claims (15)

  1.  溶湯流下口から溶湯を連続鋳造型の成形空間内に流下させることにより連続的に鋳塊を鋳造するためのホットトップにおいて、
     前記溶湯流下口を形成するホットトップの部位の内周形状は、前記成形空間を形成する連続鋳造型の部位の内周形状に対応した形状であり、
     前記ホットトップは、前記溶湯流下口の周囲に溶湯導入空間を形成するとともに、該溶湯導入空間と前記溶湯流下口との間に堰を備える、ホットトップ。
  2.  請求項1に記載のホットトップにおいて、前記溶湯流下口を形成する前記ホットトップの部位の内周形状は、前記成形空間を形成する前記連続鋳造型の部位の内周形状に略一致する、ホットトップ。
  3.  請求項1又は2に記載のホットトップにおいて、前記溶湯導入空間は前記溶湯流下口を囲む環状溝である、ホットトップ。
  4.  請求項1~3のいずれか一項に記載のホットトップにおいて、前記溶湯導入空間は溶湯が導入される導入部を有し、該導入部の底部は、その導入部における高さ位置を最高位置として該導入部から離れるにつれて次第に低くなるように傾斜している、ホットトップ。
  5.  請求項1~4のいずれか一項に記載のホットトップにおいて、前記堰の頂部は、水平に形成されている、ホットトップ。
  6.  請求項1~4のいずれか一項に記載のホットトップにおいて、前記溶湯導入空間は溶湯が導入される導入部を有し、前記堰の頂部は、前記導入部と対応する部位における高さ位置を最高位置として前記導入部から離れるにつれて次第に低くなるように傾斜している、ホットトップ。
  7.  請求項1~6のいずれか一項に記載のホットトップにおいて、前記溶湯導入空間の底部は、前記堰から離れるにつれて次第に高くなる、ホットトップ。
  8.  請求項1~7のいずれか一項に記載のホットトップは更に、
     前記溶湯導入空間に開口して溶湯を同溶湯導入空間に導入する溶湯導入路と、
     前記溶湯導入空間に開口して溶湯を同溶湯導入空間から排出する溶湯排出路と、
     前記溶湯排出路を介して前記溶湯導入空間に接続され、前記溶湯導入空間から排出された溶湯を蓄積する溶湯タンクと
    を備えている、ホットトップ。
  9.  請求項8に記載のホットトップにおいて、
     前記溶湯タンクの底部の高さ位置は、前記溶湯導入空間の底部の高さ位置よりも低く設定され、
     前記溶湯排出路の底部は、前記溶湯タンクの底部及び前記溶湯導入空間の底部のいずれか一方と同じ高さ位置にある、あるいは前記溶湯タンクの底部と前記溶湯導入空間の底部との間を傾斜状に延びる、ホットトップ。
  10.  請求項1~7のいずれか一項に記載のホットトップは更に、
     前記溶湯導入空間に開口して溶湯を同溶湯導入空間に導入する溶湯導入路と、
     前記溶湯導入空間に開口して溶湯を同溶湯導入空間から排出する溶湯排出路と、
     前記溶湯排出路を開閉可能とする開閉部材と
    を備えている、ホットトップ。
  11.  請求項8~10のいずれか一項に記載のホットトップにおいて、
     前記溶湯導入路と前記溶湯排出路とは前記溶湯流下口を間にして対向する位置にて前記溶湯導入空間に開口している、ホットトップ。
  12.  請求項1~11のいずれか一項に記載のホットトップにおいて、前記堰は複数である、ホットトップ。
  13.  請求項12に記載のホットトップにおいて、前記堰は二重である、ホットトップ。
  14.  請求項1~13のいずれか一項に記載のホットトップにおいて、前記溶湯流下口の中心には中子が配置されている、ホットトップ。
  15.  連続鋳造型の上方に配置され、溶湯流下口から溶湯を連続鋳造型の成形空間内に流下させることにより連続的に鋳塊を鋳造するためのホットトップを用いた連続鋳造方法において、前記ホットトップは、前記溶湯流下口を形成するホットトップの部位の内周形状は、前記成形空間を形成する連続鋳造型の部位の内周形状に対応した形状であり、前記ホットトップは、前記溶湯流下口の周囲に溶湯導入空間を形成するとともに、該溶湯導入空間と前記溶湯流下口との間に堰を備え、前記方法は、
     前記溶湯導入空間に溶湯を導入する鋳造予備工程と、
     この鋳造予備工程の後に、更に溶湯を前記溶湯導入空間に導入することにより、溶湯を前記堰から連続的に溢れさせて連続鋳造型へ流下させる溶湯流下工程と
    を備えている、方法。
PCT/JP2010/055849 2009-03-31 2010-03-31 連続鋳造用ホットトップ及び連続鋳造方法 WO2010114019A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/203,797 US9079242B2 (en) 2009-03-31 2010-03-31 Hot-top for continuous casting and method of continuous casting
DE112010002664.5T DE112010002664B4 (de) 2009-03-31 2010-03-31 Speisesystem zum Stranggießen und Verfahren zum Stranggießen
CN201080014208.9A CN102365141B (zh) 2009-03-31 2010-03-31 连续铸造用保温帽及连续铸造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-085855 2009-03-31
JP2009085855A JP5394796B2 (ja) 2009-03-31 2009-03-31 連続鋳造用ホットトップ及び連続鋳造方法

Publications (1)

Publication Number Publication Date
WO2010114019A1 true WO2010114019A1 (ja) 2010-10-07

Family

ID=42828308

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/055849 WO2010114019A1 (ja) 2009-03-31 2010-03-31 連続鋳造用ホットトップ及び連続鋳造方法

Country Status (5)

Country Link
US (1) US9079242B2 (ja)
JP (1) JP5394796B2 (ja)
CN (1) CN102365141B (ja)
DE (1) DE112010002664B4 (ja)
WO (1) WO2010114019A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107081824A (zh) * 2017-05-03 2017-08-22 深圳慢物质文化创意有限公司 一种木材融补方法及融补用母模

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01249241A (ja) * 1988-03-29 1989-10-04 Furukawa Alum Co Ltd 中空ビレットの製造方法
JP2001001111A (ja) * 1999-06-17 2001-01-09 Furukawa Electric Co Ltd:The 中空ビレット鋳造用中子および前記中子を用いた中空ビレットのホットトップ式連続鋳造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3375863A (en) * 1966-03-16 1968-04-02 Anaconda American Brass Co Apparatus for continuous casting metal tubes
US3650311A (en) * 1969-05-14 1972-03-21 Sandel Ind Inc Method for homogeneous refining and continuously casting metals and alloys
US3885617A (en) * 1972-06-14 1975-05-27 Kaiser Aluminium Chem Corp DC casting mold assembly
US4069862A (en) * 1976-10-01 1978-01-24 Reynolds Metals Company Continuous casting mold with horizontal inlet
US4597432A (en) * 1981-04-29 1986-07-01 Wagstaff Engineering, Inc. Molding device
US4852632A (en) * 1985-12-13 1989-08-01 Inland Steel Co. Apparatus for preventing undissolved alloying ingredient from entering continuous casting mold
JPS63273553A (ja) * 1987-04-30 1988-11-10 Furukawa Alum Co Ltd 中空ビレツトの製造方法および装置
JPH0713609B2 (ja) * 1987-11-02 1995-02-15 株式会社ユニシアジェックス 内燃機関の酸素センサ
US4936375A (en) * 1988-10-13 1990-06-26 Axel Johnson Metals, Inc. Continuous casting of ingots
JPH0767598B2 (ja) 1990-11-16 1995-07-26 日本軽金属株式会社 分岐断面鋳塊の半連続鋳造法
DE4207895A1 (de) * 1992-03-12 1993-09-16 Vaw Ver Aluminium Werke Ag Verfahren und anordnung zum vertikalstranggiessen von metall
JPH10249241A (ja) * 1997-03-18 1998-09-22 Daisen Sangyo Kk 遠心分離装置
JPH1119755A (ja) 1997-06-30 1999-01-26 Hitachi Cable Ltd 自動鋳造方法及びその装置
ITMI20031356A1 (it) * 2003-07-02 2005-01-03 Danieli Off Mecc Dispositivo di alimentazione di metallo fuso in cristallizzatore.
US8215376B2 (en) * 2008-09-01 2012-07-10 Wagstaff, Inc. Continuous cast molten metal mold and casting system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01249241A (ja) * 1988-03-29 1989-10-04 Furukawa Alum Co Ltd 中空ビレットの製造方法
JP2001001111A (ja) * 1999-06-17 2001-01-09 Furukawa Electric Co Ltd:The 中空ビレット鋳造用中子および前記中子を用いた中空ビレットのホットトップ式連続鋳造方法

Also Published As

Publication number Publication date
US9079242B2 (en) 2015-07-14
JP5394796B2 (ja) 2014-01-22
US20110308759A1 (en) 2011-12-22
DE112010002664B4 (de) 2014-11-20
CN102365141A (zh) 2012-02-29
DE112010002664T5 (de) 2012-06-14
JP2010234413A (ja) 2010-10-21
CN102365141B (zh) 2014-02-19

Similar Documents

Publication Publication Date Title
RU2212980C2 (ru) Магниевое литье под давлением
KR101170673B1 (ko) 주조용 침지노즐 및 이를 포함하는 연속 주조 장치
WO2010114019A1 (ja) 連続鋳造用ホットトップ及び連続鋳造方法
JP6701517B2 (ja) 連続鋳造用タンディッシュ、及びそのタンディッシュを用いた連続鋳造方法
JP4591528B2 (ja) 金属鋳造方法および金属鋳造装置
KR101840274B1 (ko) 스프루와 라이저가 일체화된 사형 주조용 사형 몰드
KR101167366B1 (ko) 연속 주조 주편용 주형 및 주형의 냉각능 조정방법
KR101864562B1 (ko) 저압 주조 장치의 탕구 구조 및 당해 탕구를 갖는 저압 주조 장치
KR20140129338A (ko) 티타늄 또는 티타늄 합금을 포함하여 이루어지는 주괴의 연속 주조용 주형 및 이것을 구비한 연속 주조 장치
KR101316912B1 (ko) 연속 주조 장치의 침지노즐
JP6668567B2 (ja) 連続鋳造用タンディッシュ、及びそのタンディッシュを用いた連続鋳造方法
JP6668568B2 (ja) 連続鋳造用タンディッシュ、及びそのタンディッシュを用いた連続鋳造方法
CN212264472U (zh) 一种立式连续铸造用石墨浇管
JP6672549B2 (ja) 連続鋳造用タンディッシュ、及びそのタンディッシュを用いた連続鋳造方法
CN114433790B (zh) 一种顶注式铸造模具
US11577305B2 (en) System, apparatus, and method for direct chill casting venting
JP6701516B2 (ja) 連続鋳造用タンディッシュ、及びそのタンディッシュを用いた連続鋳造方法
KR100946659B1 (ko) 연속주조용 침지노즐
JP2010013291A (ja) ガラス成形型及びガラス成形体の製造装置
JP2008055487A (ja) ダイカスト金型及び鋳造方法
JPS59163062A (ja) タンデイツシユ内溶鋼の加熱装置
KR101408227B1 (ko) 연속주조장치 및 연속주조방법
JP2003290880A (ja) 非鉄金属の鋳造用鋳型
JP4643344B2 (ja) 鋳造装置及び鋳造方法
JPH04309438A (ja) 非鉄金属用鋳造装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080014208.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10758790

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13203797

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120100026645

Country of ref document: DE

Ref document number: 112010002664

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10758790

Country of ref document: EP

Kind code of ref document: A1