WO2010111965A1 - 一种高纯二氧化碲单晶及制备方法 - Google Patents

一种高纯二氧化碲单晶及制备方法 Download PDF

Info

Publication number
WO2010111965A1
WO2010111965A1 PCT/CN2010/071525 CN2010071525W WO2010111965A1 WO 2010111965 A1 WO2010111965 A1 WO 2010111965A1 CN 2010071525 W CN2010071525 W CN 2010071525W WO 2010111965 A1 WO2010111965 A1 WO 2010111965A1
Authority
WO
WIPO (PCT)
Prior art keywords
single crystal
acid
purity
ratio
acousto
Prior art date
Application number
PCT/CN2010/071525
Other languages
English (en)
French (fr)
Inventor
葛增伟
朱勇
吴国庆
殷学技
唐林耀
赵寒冰
顾李臻
Original Assignee
上海硅酸盐研究所中试基地
中国科学院上海硅酸盐研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海硅酸盐研究所中试基地, 中国科学院上海硅酸盐研究所 filed Critical 上海硅酸盐研究所中试基地
Priority to EP10758067.2A priority Critical patent/EP2415912B1/en
Priority to US13/262,209 priority patent/US8480996B2/en
Publication of WO2010111965A1 publication Critical patent/WO2010111965A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/46Sulfur-, selenium- or tellurium-containing compounds
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides

Definitions

  • the invention relates to a high-purity ceria single crystal and a preparation method thereof, and belongs to the technical field of single crystal growth. Background technique
  • the decay rate (half-life) of double decay is an important research object.
  • detecting double beta decay is also the only experimental method for measuring the absolute mass of neutrinos (R. Ardi to et al., Annual Report for CU0RICIN0 and CU0RE 2004, 17-37).
  • Cerium Oxide (Te0 2 ) Single crystal is an acousto-optic material with high quality factor. It can be used in a variety of acousto-optic devices such as acousto-optic deflectors, acousto-optic modulators, acousto-optic resonators, and tunable filters. S. Kumaragurubaran et al., J. Crystal Growth 2000, 211: 276-280; P. Veber et al., J Crystal Growth 2004, 270: 77-84).
  • Te0 2 single crystal has double decay characteristics and can be used as a double decay source in the field of nuclear physics (I. Dafenei et al., Nucl. Instrum. Meth. A 2005, 554: 195-200). Thanks to 13 . Te has a high natural abundance, and Te0 2 single crystal can be used as a double decay source without concentration, so the cost is low.
  • a first object of the present invention is to provide a method for preparing a high-purity ceria single crystal, and specifically relates to using two growth processes to accelerate the decay of radioactive elements while improving the purity of the single crystal by two growth and removal processes. , thereby further reducing the content of radioactive impurities in the single crystal, and growing high-purity cerium oxide monoterpene
  • the invention provides a method for preparing a high-purity ceria single crystal, which comprises the following steps:
  • the cerium oxide raw material powder may be commercially available or prepared by itself;
  • the preparation method of the ceria raw material powder is a preparation method generally used in the art, including but not limited to a method such as dissolution neutralization, chlorination neutralization, citrate decomposition or direct oxidation. a kind
  • the single crystal growth method includes a Bridgemen method or a Czochralski method
  • the concentration of the acidic solvent is 0. 05 ⁇ 50wt %
  • L-38wt% The preferred concentration is 0. l-38wt% ;
  • the thickness of the surface layer is preferably 0. 05-5mm, further preferably l ⁇ 2mm;
  • the alkaline precipitating agent comprises one of ammonia water and urea.
  • the two may be any ratio;
  • the alkaline precipitant is preferably a concentration of 0.05-35 wt%, further preferably a concentration of 0. l-30 wt% ;
  • the single crystal growth method includes a descent method or a pulling method
  • the process conditions selected for the descent or pulling process are conventional in the art.
  • the second object of the present invention is to provide a high-purity single crystal tellurium dioxide, the high-purity single crystal tellurium dioxide content of less than U 9.9X10- 13 g / g, Th content is less than 9.9X10- 13 g / g; wherein the content of U is further lower than 9.9X10 - "g / g.
  • the above high-purity ceria single crystal can be used as a high-quality crystal for acousto-optic devices, especially involving acousto-optic deflectors, acousto-optic modulators, sound Optical resonator, tunable filter, etc.
  • the preparation method of the high-purity ceria single crystal provided by the present invention is characterized by:
  • the process of removing the impurities from the single crystal growth process, and selecting the single crystal grown for the first time to dissolve and grind the powder, the purity of the powder can be increased several times.
  • FIG. 1 is a process flow diagram of a method for preparing a high-purity ceria single crystal provided by the present invention.
  • Fig. 2 is a photograph of a high-purity ceria single crystal prepared in Example 1 of the present invention.
  • Te0 2 powder (referred to as Te0 2 (I) powder) prepared by the dissolution neutralization method was placed in a platinum crucible, calcined at 680 ° C for 12 hours, and then rapidly cooled to room temperature. Next, the calcined powder was placed in a platinum crucible together with the oriented seed crystals, sealed, and heated to 750 ° C for 10 hours. Then, the heating rate was controlled to be 2 ° C per hour, and the growth rate of the crucible was 1.0 mm per hour. After the growth was completed, the single crystal was lowered to room temperature at 30 ° C per hour, and then the entire growth process was completed after annealing at 680 ° C for 12 hours.
  • Te0 2 (I) powder Te0 2 (I) powder prepared by the dissolution neutralization method was placed in a platinum crucible, calcined at 680 ° C for 12 hours, and then rapidly cooled to room temperature. Next, the calcined powder was placed in a platinum crucible together with the
  • Te0 2 powder obtained in the step (3) is charged into a platinum crucible, and then a high-purity ceria single crystal is grown in accordance with the growth process of the step (1).
  • the purity of Te0 2 powder before and after the first single crystal growth that is, the purity of Te0 2 (I) powder and Te0 2 (II) powder, was measured by inductively coupled plasma mass spectrometry (ICP-MS). The results are shown in Table 1.
  • the content of (I) the powder U, Th radioactive impurities like first single crystal growth is used Te0 2 10- 9 g / g, the Pb concentration of the impurity is not intentionally doped 2.2X10 — 7 g/g.
  • the purity of Te0 2 (II) powder prepared by using high purity hydrochloric acid and ammonia water again has a large purity. Increase in range.
  • Content of U, Th and other radioactive impurities already below 2.0X10- 1Q g / g, while not intentionally doped impurity Pb concentration has decreased to 10- 7 g / g or less. It can be seen from the above analysis that after a single crystal growth process, impurities are eliminated to some extent, and the single crystal has higher purity.
  • the elimination effect of radioactive impurities (such as U, Th, etc.) is more obvious than that of unintentionally doped impurities (such as Bi, Pb, etc.).
  • radioactive impurities such as U, Th, etc.
  • unintentionally doped impurities such as Bi, Pb, etc.
  • the reason may be that when the single crystal is grown by the falling method, not only the impurities inside the single crystal but also the decay of the radioactive impurities can be accelerated. Therefore, the Te0 2 (II) powder is once again used for single crystal growth, and the growth process can be further reduced by two growth processes by two growth processes, and the high purity Te0 2 single crystal can be grown. (See Figure 2).
  • Te0 2 powder was placed in a platinum crucible, and oxygen was introduced and the flow rate was controlled to be 750 ml per minute. After the powder is melted, the temperature is kept for 4 hours, then the oriented seed crystal is gradually lowered, the surface temperature of the melt is adjusted, and the seed crystal is brought into contact with the liquid surface when the solid-liquid equilibrium is approached. After successful inoculation, the rate of controlled pull-up was 1.2 mm per hour, and the seed crystal rotation speed was 30 rpm to grow single crystals. After the growth was completed, the single crystal was lowered to room temperature at 60 ° C per hour. Finally, the entire process of the first growth was completed after 12 hours of annealing at 680 °C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

一种高纯二氧化碲单晶及制备方法 技术领域
本发明涉及一种高纯二氧化碲单晶及制备方法, 属于单晶生长技术领域。 背景技术
在核物理领域, 有关中微子的实验一直是世界关注的科学前沿。 1956 年, 美国莱因斯和柯万在实验中直接观测到中微子, 获得了 1995年诺贝尔物理奖; 1962 年, 美国莱德曼、 舒瓦茨、 斯坦伯格等发现第二种中微子 缪中微子, 获 1988年诺贝尔物理奖; 1968年, 美国戴维斯发现太阳中微子失踪现象, 他和 1987年通过实验观测到超新星中微子的小柴昌俊分享了 2002年诺贝尔物理奖。 然而, 至今为止, 中微子 (静) 质量的大小, 不同种类的中微子之间如何转化, 仍然是核物理领域一个尚待解决的基本科学问题(黄志洵, 中国工程科学 2002, 4 (10), 7-10 ) 。
在上述研究领域, 双 衰变的衰变速率 (半衰期) 是一个重要的研究对象, 双 衰变的衰变速率 (半衰期) 与中微子的绝对质量存在如下公式: r::: /a™5 = f )]Af¾i:u(f¾,)|2 因此通过探测双 β衰变的半衰期, 可以获得中微子的绝对质量。 而目前, 探测双 β 衰变也是测量中微子绝对质量的唯一实验方法 (R. Ardi to et al. , Annual Report for CU0RICIN0 and CU0RE 2004, 17-37 ) 。
二氧化碲 (Te02 ) 单晶是一种具有高品质因子的声光材料, 可用于声光偏转 器、声光调制器、声光谐振器、可调滤光器等各类声光器件(S. Kumaragurubaran et al. , J. Crystal Growth 2000, 211 : 276-280 ; P. Veber et al. , J Crystal Growth 2004, 270 : 77-84 ) 。
Te02单晶具有双 衰变特性,可以在核物理领域作为双 衰变源(I. Dafenei et al. , Nucl. Instrum. Meth. A 2005, 554 : 195-200 ) 。 由于 13。Te的自然丰 度高, 用 Te02单晶作双 衰变源可以不用浓缩, 因而成本较低。
然而, 要利用 Te02单晶作双 衰变源来测量中微子的绝对质量, 单晶必须 达到非常高的纯度, 尤其针对单晶中的某些放射性元素, 如 U、 Th等, 其含量必 需降低至 10— 13g/g。 中国专利 ZL03141999. 2曾报道了利用坩埚下降法生长优质大尺寸 Te02单晶 的方法, 使得 U、 Th等杂质含量可降低至 10— 12g/g, 但仍然高于双 衰变源所要 求的含量。
然而, 至本发明提出为止, 还未见任何有关降低杂质含量, 制备高纯二氧化 碲单晶的报道。 发明内容
本发明的第一目的在于提供一种高纯二氧化碲单晶的制备方法,具体涉及采 用两次生长工艺, 通过两次生长排杂过程, 在提高单晶纯度的同时, 加速放射性 元素的衰变, 从而进一步降低单晶中放射性杂质的含量, 生长出高纯二氧化碲单 曰
曰曰
本发明提供的一种高纯二氧化碲单晶的制备方法, 其特征在于, 包括下述 步骤:
( 1 ) 将二氧化碲原料粉体装入坩埚中进行第一次单晶生长;
所述的二氧化碲原料粉体可以选用市售或自行制备;
所述的二氧化碲原料粉体的制备方法为本领域中通常使用的制备方法, 包 括但不局限于溶解中和法、氯化中和法、碲酸盐分解法或直接氧化法等方法中的 一种;
所述的单晶生长方法包括下降法 ( Bridgemen method ) 或提拉法 ( Czochralski method ) ;
所述的下降法或提拉法所选用的工艺条件是本领域中的常规技术;
( 2 ) 将步骤 (1 ) 所得单晶用酸性溶剂溶解为溶液;
所述的酸性溶剂可以为盐酸或盐酸与其它酸的混合酸, 其他酸优选无机酸, 其他酸进一步优选硫酸或硝酸, 盐酸与其它酸混合配比可以为体积比 1 : 0. 01〜 10;
所述的酸性溶剂的浓度为 0. 05〜50wt %
所述的酸性溶剂优选盐酸, 所述的酸性溶剂优选浓度为 0. 05-40wt%, 进一 步优选浓度为 0. l-38wt%;
上述溶解过程前, 优选将步骤 (1 ) 所得单晶去除表面层, 去除表面层的厚 度进一步优选为 0. 05-5mm, 进一步优选为 l〜2mm;
( 3 ) 将碱性沉淀剂加入到步骤 (2 ) 所得溶液中, 过滤、 干燥后得到二氧 化碲粉体;
所述的碱性沉淀剂包括氨水、 尿素中的一种, 选用氨水与尿素的组合时, 两者可以为任意配比;
所述的碱性沉淀剂优选氨水, 所述的碱性沉淀剂优选浓度为 0.05-35wt%, 进一步优选浓度为 0. l-30wt%;
(4) 将步骤 (3) 的所得第二次二氧化碲原料粉体 (Te02 (II) ) 粉料装入 坩埚中进行第二次单晶生长;
所述的单晶生长方法包括下降法或提拉法;
所述的下降法或提拉法所选用的工艺条件本领域中的常规技术。 本发明的第二目的在于提供一种高纯二氧化碲单晶, 该高纯二氧化碲单晶 中 U的含量低于 9.9X10—13g/g, Th的含量低于 9.9X10—13g/g; 其中 U的含量进 一步低于 9.9X10—"g/g。 上述高纯二氧化碲单晶可作为高品质晶体用于声光器件, 尤其涉及声光偏 转器、 声光调制器、 声光谐振器、 可调滤光器等。 本发明提供的高纯二氧化碲单晶的制备方法的特点在于:
(1) 单晶生长过程使杂质的得到排除过程, 选取第一次生长所得单晶进行 溶解制粉, 可以将粉体的纯度提高数倍。
(2)两次生长工艺形成了两次生长排杂过程, 除了可以提高单晶纯度之外, 还可以加速放射性元素的衰变, 使单晶中放射性杂质的含量降低十倍以上, 获得 高纯单晶。 附图概述
图 1 本发明提供的高纯二氧化碲单晶的制备方法的工艺流程图。
图 2 本发明实施例 1制备的高纯二氧化碲单晶照片。 本发明的最佳实施方案
下面结合具体实施例, 进一步阐述本发明。 应理解, 这些实施例仅用于说明 本发明而不用于限制本发明的范围。 下列实施例中未注明具体条件的实验方法, 通常按照常规条件, 或按照制造厂商所建议的条件进行。
除非另有定义或说明,本文中所使用的所有专业与科学用语与本领域技术熟 练人员所熟悉的意义相同。此外任何与所记载内容相似或均等的方法及材料皆可 应用于本发明方法中。 实施例 1
(1) 将溶解中和法制备的 Te02粉 (记为 Te02 (I) 粉) 装入铂金坩埚中, 680°C煅烧 12小时, 之后快速冷却至室温。接着将煅烧后的粉体与定向好的籽晶 一起装入铂金坩埚中, 密封后升温至 750°C并保温 10小时。 然后控制升温速率 为每小时 2°C, 坩埚下降速率为每小时 1.0mm生长单晶。 生长完成后以每小时 30 °C将单晶降至室温, 之后在 680 °C经过 12小时的退火处理后即完成了第一次生 长的全部过程。
(2) 用粗磨法除去步骤 (1) 所得单晶表面 l-2mm, 接着用 37.5wt%的盐酸 将单晶溶解为 TeCl4溶液。
(3) 然后将 28 wt%的浓氨水加入到步骤 (2) 所得 TeCl4溶液中, 得到白色 沉淀, 过滤、 干燥后得到 Te02粉, 记为 Te02 (II) 粉。
(4) 将步骤 (3) 所得的 Te02粉装入铂金坩埚中, 然后按照步骤 (1) 的生 长工艺生长出高纯二氧化碲单晶。 用感应耦合等离子体质谱 (ICP-MS) 测试第一次单晶生长前后的 Te02粉体 纯度, 即 Te02 (I) 粉和 Te02 (II) 粉体纯度, 其结果见表 1。 表 1 Te02粉体的 ICP-MS测试结果 (单位: g/g)
Figure imgf000006_0001
从表 1中可以看出, 第一次单晶生长所用的 Te02 (I) 粉中 U、 Th等放射性 杂质的含量为 10— 9g/g, 非故意掺杂杂质 Pb的浓度为 2.2X10— 7g/g。 而经过第一 次单晶生长排杂后, 再次利用高纯盐酸和氨水制备的 Te02 (II)粉体纯度有了大 幅度的提高。 U、 Th等放射性杂质的含量已经低于 2.0X10— 1Q g/g, 同时非故意 掺杂杂质 Pb的浓度已降低至 10— 7g/g以下。 从以上分析可以看出, 经过一次单 晶生长过程之后, 杂质得到了一定程度的排除, 单晶具有更高的纯度。
而在此过程中放射性杂质(如 U、 Th等) 的排除效果比非故意掺杂杂质(如 Bi、 Pb 等) 的更为明显。 原因可能是下降法生长单晶时, 不但能够排除单晶内 部的杂质, 而且还能加速放射性杂质的衰变。 因而将 Te02 (II)粉体再一次用于 单晶生长, 利用两次生长工艺, 通过两次生长排杂过程, 可以进一步降低单晶中 放射性杂质的含量, 生长出高纯 Te02单晶 (见图 2) 。
用放射性阵列探测器测出此方法制备的高纯 Te02单晶中 U 的含量为 8.2X10— 14g/g, Th的含量为 1.1X10— 13g/g, 完全满足核物理用 Te02单晶的纯度 要求。 实施例 2〜3的原料选取和具体工艺参数见表 2 (其余参数同实施例 1) 。 实施例 4
(1) 将市售的 Te02粉装入铂金坩埚中, 通入氧气并控制其流量为每分钟 750ml。 待粉体融化后, 恒温 4小时, 然后逐渐下降定向好的籽晶, 调试熔体表 面温度, 在接近固液平衡时使籽晶接触液面。接种成功后控制拉升速率为每小时 1.2mm, 籽晶转速为每分钟 30转生长单晶。 生长完成后以每小时 60 °C将单晶降 至室温。 最后在 680 °C经过 12小时的退火处理后即完成了第一次生长的全部过 程。
(2) 用粗磨法除去步骤 (1) 所得单晶表面 0.5-0.8mm, 接着用 37.5^%的 盐酸将单晶溶解为 TeCl4溶液。
(3) 然后将 28 wt%的浓氨水加入到步骤 (2) 所得 TeCl4溶液中, 得到白色 沉淀, 过滤、 干燥后得到 Te02粉。
(4) 将步骤 (3) 所得的 Te02粉装入铂金坩埚中, 然后按照实施例 1 中步 骤 (1) 的下降法生长工艺生长出高纯二氧化碲单晶。 实施例 5〜8 的原料选取和具体工艺参数见表 2 (其余参数可参考实施例 1 的下降法工艺和实施例 4的提拉法工艺) 。 表 2
Figure imgf000008_0001

Claims

权 利 要 求
1、 一种高纯二氧化碲单晶的制备方法, 其特征在于, 包括下述步骤:
( 1 ) 将二氧化碲原料粉体装入坩埚中进行第一次单晶生长;
( 2 ) 将步骤 (1 ) 所得单晶用酸性溶剂溶解为溶液;
( 3 ) 将碱性沉淀剂加入到步骤 (2 ) 所得溶液中, 过滤、 干燥;
( 4 ) 将步骤 (3 ) 的所得二氧化碲粉体装入坩埚中进行第二次单晶生长。
2、 按权利要求 1所述的制备方法, 其特征在于, 所述的酸性溶剂为盐酸或 盐酸与其它酸的混合酸。
3、 按权利要求 2所述的制备方法, 其特征在于, 所述的酸性溶剂为盐酸。
4、 按权利要求 2或 3所述的制备方法, 其特征在于, 所述的酸性溶剂的浓 度为 0. 05〜50wt %。
5、 按权利要求 4所述的制备方法, 其特征在于, 所述的酸性溶剂的浓度为 0. 05-40wt%, 进一步优选为 0. l-38wt%
6、 按权利要求 2所述的制备方法, 其特征在于, 所述的其他酸为无机酸。
7、 按权利要求 6所述的制备方法, 其特征在于, 所述的其他酸为硫酸或硝 酸。
8、 按权利要求 7所述的制备方法, 其特征在于, 所述的盐酸与其它酸混合 配比为体积比 1: 0. 01〜10。
9、 按权利要求 1所述的制备方法, 其特征在于, 所述的碱性沉淀剂包括氨 水或尿素中的一种。
10、 按权利要求 9 所述的制备方法, 其特征在于, 所述的碱性沉淀剂为氨 水。
11、 按权利要求 9或 10所述的制备方法, 其特征在于, 所述的碱性沉淀剂 的浓度为 0. 05-35wt%, 进一步优选浓度为 0. l-30wt%o
12、 按权利要求 9 所述的制备方法, 其特征在于, 所述的氨水与尿素为任 意配比。
13、 按权利要求 1 所述的制备方法, 其特征在于, 所述的单晶生长方法包 括下降法或提拉法。
14、 按权利要求 1所述的制备方法, 其特征在于, 所述的步骤 (1 ) 的原料 粉体为市售或自行制备, 制备方法包括溶解中和法、 氯化中和法、 碲酸盐分解法 或直接氧化法中的一种。
15、 按权利要求 1 所述的制备方法, 其特征在于, 所述的去除表面层的厚 度为 0.05- 5mm, 进一步优选为 l〜2mm。
16、一种高纯二氧化碲单晶,其特征在于,其中 U的含量低于 9.9X 10— 13g/g, Th的含量低于 9.9X10— 13 g/g;
17、一种高纯二氧化碲单晶, 其特征在于, 其中 U的含量低于 9.9X10—14g/g
18、 按权利要求 16或 17所述的一种高纯二氧化碲单晶用于声光器件。
19、按权利要求 18所述的一种高纯二氧化碲单晶用于声光偏转器、声光调制器、 声光谐振器、 可调滤光器。
PCT/CN2010/071525 2009-04-03 2010-04-02 一种高纯二氧化碲单晶及制备方法 WO2010111965A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP10758067.2A EP2415912B1 (en) 2009-04-03 2010-04-02 High-purity tellurium dioxide single crystal and manufacturing method thereof
US13/262,209 US8480996B2 (en) 2009-04-03 2010-04-02 High-purity tellurium dioxide single crystal and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910048849.5 2009-04-03
CN2009100488495A CN101851783B (zh) 2009-04-03 2009-04-03 一种高纯二氧化碲单晶及制备方法

Publications (1)

Publication Number Publication Date
WO2010111965A1 true WO2010111965A1 (zh) 2010-10-07

Family

ID=42803455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/071525 WO2010111965A1 (zh) 2009-04-03 2010-04-02 一种高纯二氧化碲单晶及制备方法

Country Status (4)

Country Link
US (1) US8480996B2 (zh)
EP (1) EP2415912B1 (zh)
CN (1) CN101851783B (zh)
WO (1) WO2010111965A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114229806A (zh) * 2021-12-01 2022-03-25 广东先导稀贵金属材料有限公司 一种水解制备晶体级二氧化碲的方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103303879A (zh) * 2013-06-28 2013-09-18 上海应用技术学院 一种高纯二氧化碲粉体的制备方法
RU2600381C1 (ru) * 2015-12-29 2016-10-20 Федеральное государственное бюджетное образовательное учреждение высшего образования "Тверской государственный университет" Способ выращивания монокристаллов веществ, имеющих плотность, превышающую плотность их расплава
CN106348259A (zh) * 2016-09-13 2017-01-25 乐山凯亚达光电科技有限公司 一种高纯度二氧化碲粉体的制备方法
CN106757305A (zh) * 2016-11-25 2017-05-31 广东先导稀材股份有限公司 一种二氧化碲单晶体的生长方法
CN112608263B (zh) * 2020-11-30 2022-05-27 中国科学院高能物理研究所 一种碲有机络合物、其制备方法及包含该络合物的掺碲液体闪烁体
CN112725877A (zh) * 2020-12-18 2021-04-30 桂林百锐光电技术有限公司 一种二氧化碲单晶的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57135794A (en) * 1981-02-09 1982-08-21 Nec Corp Method of growing crystal of low-melting oxide
CN85107803A (zh) * 1985-10-09 1987-04-15 中国科学院上海硅酸盐研究所 二氧化碲单晶体的生长技术
CN1487126A (zh) * 2003-08-01 2004-04-07 中国科学院上海硅酸盐研究所 一种二氧化碲单晶体的坩埚下降生长技术

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61174199A (ja) * 1985-01-25 1986-08-05 Tohoku Metal Ind Ltd 二酸化テルル単結晶の育成方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57135794A (en) * 1981-02-09 1982-08-21 Nec Corp Method of growing crystal of low-melting oxide
CN85107803A (zh) * 1985-10-09 1987-04-15 中国科学院上海硅酸盐研究所 二氧化碲单晶体的生长技术
CN1487126A (zh) * 2003-08-01 2004-04-07 中国科学院上海硅酸盐研究所 一种二氧化碲单晶体的坩埚下降生长技术

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
CHU, YAOQING ET AL.: "Growth of the high quality and large size paratellurite single crystals", JOURNAL OF CRYSTAL GROWTH, vol. 295, 2006, pages 158 - 161 *
I. DAFENEI ET AL., NUCL. INSTRUM. METH. A, vol. 554, 2005, pages 195 - 200
P. VEBER ET AL., J. CRYSTAL GROWTH, vol. 270, 2004, pages 77 - 84
S. KUMARAGURUBARAN ET AL., J. CRYSTAL GROWTH, vol. 211, 2000, pages 276 - 280
See also references of EP2415912A4 *
SHINTARA MIYAZAWA ET AL.: "Single crystal growth of paratellurite TeO2", JAPANESE JOURNAL OF APPLIED PHYSICS, vol. 9, no. 5, 5 May 1970 (1970-05-05), pages 441 - 445 *
ZHIXUN HUANG, ENGINEERING SCIENCE, vol. 4, no. 10, 2002, pages 7 - 10

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114229806A (zh) * 2021-12-01 2022-03-25 广东先导稀贵金属材料有限公司 一种水解制备晶体级二氧化碲的方法
CN114229806B (zh) * 2021-12-01 2024-01-09 广东先导稀贵金属材料有限公司 一种水解制备晶体级二氧化碲的方法

Also Published As

Publication number Publication date
EP2415912B1 (en) 2014-07-09
EP2415912A4 (en) 2013-02-27
EP2415912A1 (en) 2012-02-08
US8480996B2 (en) 2013-07-09
CN101851783B (zh) 2012-08-08
CN101851783A (zh) 2010-10-06
US20120070366A1 (en) 2012-03-22

Similar Documents

Publication Publication Date Title
WO2010111965A1 (zh) 一种高纯二氧化碲单晶及制备方法
TW522456B (en) Silicon single crystal wafer and method for manufacturing the same
TWI266815B (en) Method for growing silicon single crystal and method for manufacturing silicon wafer
DE10205084A1 (de) Verfahren zur thermischen Behandlung einer Siliciumscheibe sowie dadurch hergestellte Siliciumscheibe
TW201128002A (de) Verfahren zum ziehen eines einkristalls aus silicium aus einer in einem tiegel enthaltenen schmelze und dadurch hergestellter einkristall
TWI245084B (en) Silicon wafer manufacturing method, silicon epitaxial wafer manufacturing method, and silicon epitaxial wafer
JPH0582360B2 (zh)
JP2005015296A (ja) 単結晶の製造方法及び単結晶
CN108560053A (zh) 一种镧、镝、铈共掺的硅酸钇镥闪烁材料及其晶体生长方法
JP5375794B2 (ja) シリコン単結晶の製造方法
TW201128004A (en) Method of manufacturing dislocation-free single-crystal silicon by Czochralski method
CN101363131B (zh) 一种助熔剂生长法中顶部籽晶重入技术
Loison et al. Progress in melt growth of Cu2O
JP2009023851A (ja) シリコン単結晶製造用原料の製造方法およびシリコン単結晶の製造方法
JP2822887B2 (ja) 結晶欠陥の少ないシリコン単結晶の製造方法
JP3062753B1 (ja) フッ化物バルク単結晶の製造方法
JP5510359B2 (ja) 炭素ドープシリコン単結晶の製造方法
JP6500807B2 (ja) CaMgZr置換型ガドリニウム・ガリウム・ガーネット(SGGG)単結晶の育成方法
TWI654343B (zh) 單晶矽之成長方法及其製備之單晶矽錠(一)
JP4044315B2 (ja) 単結晶製造方法
JP4090345B2 (ja) 液相結晶成長法
KR101465425B1 (ko) 실리콘 단결정의 육성방법
JP2009249253A (ja) シリコン単結晶の製造方法
TWI609997B (zh) 在石英坩堝中製備矽熔融體的方法
JP5782996B2 (ja) 単結晶の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10758067

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010758067

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13262209

Country of ref document: US