WO2010110137A1 - 高周波電極の接続方法を改善したウエハ保持体及びそれを搭載した半導体製造装置 - Google Patents

高周波電極の接続方法を改善したウエハ保持体及びそれを搭載した半導体製造装置 Download PDF

Info

Publication number
WO2010110137A1
WO2010110137A1 PCT/JP2010/054506 JP2010054506W WO2010110137A1 WO 2010110137 A1 WO2010110137 A1 WO 2010110137A1 JP 2010054506 W JP2010054506 W JP 2010054506W WO 2010110137 A1 WO2010110137 A1 WO 2010110137A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer
support member
wafer holder
frequency electrode
conductive connection
Prior art date
Application number
PCT/JP2010/054506
Other languages
English (en)
French (fr)
Inventor
晃 三雲
悦弘 西本
功一 木村
博彦 仲田
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to CN2010800016762A priority Critical patent/CN102047383A/zh
Publication of WO2010110137A1 publication Critical patent/WO2010110137A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4581Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber characterised by material of construction or surface finish of the means for supporting the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4586Elements in the interior of the support, e.g. electrodes, heating or cooling devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • H01J37/32577Electrical connecting means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68792Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by the construction of the shaft
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching

Definitions

  • the present invention relates to a wafer holder used for holding and heat-treating a wafer in a semiconductor manufacturing process, in particular, a wafer holder used for heat-treating a film or etching by CVD or the like on a wafer, or a resist.
  • the present invention also relates to a semiconductor manufacturing apparatus equipped with the same.
  • a resistance heating element circuit, a high-frequency electrode circuit, and, if necessary, electrodes for an electrostatic chuck are embedded in the wafer holder, and these electrode terminals are taken out from the opposite surface of the wafer mounting surface. Yes.
  • Conductive connection parts are connected to these electrode terminals as conductive lines.
  • the conduction line including the conductive connection component is taken out of the reaction vessel through the inside of the pipe-shaped support member and the metal or ceramic flange for connecting the chamber, and is connected to the power supply system as necessary.
  • a parallel plate type plasma CVD apparatus As a popular method of using such a wafer holder, there is a parallel plate type plasma CVD apparatus.
  • a plasma upper electrode is installed at the upper part of the reaction vessel, and a plasma lower electrode is installed inside the wafer holding unit, thereby generating plasma between them.
  • the reaction is assisted by this plasma to deposit and generate a necessary film on the wafer.
  • the lower electrode also has an electrostatic chuck function, a bias voltage may be applied to the lower electrode for wafer adsorption.
  • it is connected to an earth component and the earth component is fixed to the chamber to achieve zero. Often kept at electrical potential.
  • a conductive connection component For example, if the amount of thermal expansion of a conductive connection component is larger than that of a ceramic pipe-shaped support member, and the conductive connection component is rigidly fixed at the bottom of the pipe-shaped support member, the conductive connection component The component pushes up the wafer holder from the surface opposite to the wafer mounting surface, and in the worst case, the wafer holder may be deformed or damaged.
  • Patent Document 1 proposes a coupler structure inside a connector in which a metal flange portion and a conductive connecting part are slidable using a coiled spring contact.
  • connection point between the conductive connection part and the ground part serves both as sliding and electrical connection for stress relaxation due to thermal expansion.
  • the friction due to sliding during thermal expansion generates particles, or the connection is incomplete due to sliding.
  • the electric path is limited, and there is a case in which a drift occurs in that portion, causing abnormal overheating or burning.
  • the present invention connects the high-frequency electrode circuit to the ground via the ground part by an electrically strong connection method without a sliding part, thereby causing abnormal overheating and particles at the connection part.
  • An object of the present invention is to provide a wafer holder having a high-reliability high-frequency electrode circuit capable of preventing the occurrence of the above, and a semiconductor manufacturing apparatus equipped with the wafer holder.
  • a wafer holder provided by the present invention is provided in a chamber, a wafer holding part in which a high-frequency electrode circuit is embedded, and a surface of the wafer holding part opposite to the wafer mounting surface.
  • a support member that is supported from the ground, a grounding component that is provided on the opposite side of the wafer holding portion with respect to the support member, and a conductive member that is inserted into the support member and electrically connects the high-frequency electrode circuit and the grounding component.
  • the conductive connection part has a deformability in the vertical direction, and the connection part that bears the main current path of the conductive connection part is fixed by surface contact.
  • the conductive connecting component includes a metal rigid member extending downward in the vertical direction connected to the high-frequency electrode circuit, and a flexible member connected to the rigid member. It is preferable to have.
  • the flexible member can be formed of a spiral member or a leaf spring member that extends downward in the vertical direction, or a flat member that extends in the horizontal direction.
  • connection portion between the conductive connection component and the ground component can be connected at the same time as or after the connection between the support member and the ground component.
  • the present invention further provides a semiconductor manufacturing apparatus on which a wafer holder having these characteristics is mounted.
  • the electrical connection part between the high-frequency electrode circuit of the wafer holder and the grounding part can be made strong and reliable without a sliding part, so that abnormal overheating in the connection part can be achieved. And particle generation can be prevented. Therefore, it is possible to provide a wafer holder provided with a high-reliability high-frequency electrode circuit and a semiconductor manufacturing apparatus equipped with the wafer holder.
  • FIG. 6 is a partial cross-sectional view showing a conductive connection component provided in a wafer holder of Comparative Example 1.
  • FIG. 10 is a partial cross-sectional view showing a conductive connection component provided in a wafer holder of Comparative Example 2.
  • FIG. It is a fragmentary sectional view which shows the electroconductive connection component which the wafer holder of the comparative example 3 comprises.
  • a wafer holder 10 shown in FIG. 1 is mounted in a chamber of a semiconductor manufacturing apparatus such as a plasma CVD apparatus (not shown), and includes a disk-shaped wafer holder 1 on which a semiconductor wafer is placed, and the wafer holder.
  • a support member 2 preferably made of a ceramic that supports the portion 1 from the surface opposite to the wafer mounting surface 1a (hereinafter also referred to as the back surface 1b), and the support member 2 is connected to the wafer holding portion 1 with respect to the support member 2.
  • an earthing part 3 provided on the opposite side.
  • the resistance heating element circuit 4 has a pair of electrode terminals (not shown), and each one end thereof is connected to the back surface 1b of the wafer holding unit 1 so that a conductive connection component described later can be connected thereto. Exposed. Similarly, in the high-frequency electrode circuit 5, one end portion of the electrode terminal (not shown) is exposed from the back surface 1 b of the wafer holding unit 1.
  • the electrode terminals provided on the wafer holding unit 1 may be tungsten plated with Ni.
  • a threaded portion is provided in advance at one end of the electrode terminal of the resistance heating element circuit 4 exposed from the back surface 1b of the wafer holding portion 1.
  • the threaded portion is also provided in advance in the conductive connection component 6 for the resistance heating element circuit 4 so as to be screwed into the threaded portion.
  • the conductive connection component 6 for the resistance heating element circuit 4 is electrically connected to the resistance heating element circuit 4.
  • the conductive connection part 7 for the high-frequency electrode circuit 5 is also electrically connected to the high-frequency electrode circuit 5 through screw parts that are similarly screwed together.
  • the structure of the conductive connection component 6 for the resistance heating element circuit 4 is not particularly limited, and the power supply system (not shown) outside the chamber system is passed through the inside of the support member 2 and the through hole 3a provided in the grounding component 3. Connected).
  • the conductive connection part 7 for the high-frequency electrode circuit 5 may partially include a hollow pipe-like electrode structure as disclosed in, for example, Japanese Patent Application Laid-Open No. 2007-281161.
  • the conductive connection part 7 for the high-frequency electrode circuit 5 is an insulation made of an insulating material such as ceramics in order to avoid electrical interference with other electrode circuits, for example, the conductive connection part 6 of the resistance heating element circuit 4. It is desirable to be surrounded by a tube (not shown).
  • the lower part of the conductive connection part 7 for the high-frequency electrode circuit 5 is connected to the ground via the ground part 3.
  • the conductive connecting part 7 is directly fixed to the grounding part 3 provided at the lower part in the vertical direction while being in a deformable state, that is, in a rigid (rigid) state, the wafer holder 1 is heated.
  • the conductive connection component 7 is thermally expanded, and the wafer holding unit 1 is pushed up from the back surface.
  • the conductive connecting part 7 has a deformability in the vertical direction, and one end thereof is fixed to the grounding part 3 by surface contact.
  • the surface contact means that the connection part of the conductive connection part 7 and the grounding part 3 are in contact with each other instead of a point or a line, and the fixation means that the contact part between these surfaces is slid. It means that they are firmly fixed to each other without moving.
  • Specific examples of the method of fixing by surface contact include screwing, brazing, welding, and the like.
  • a metal rigid member extending downward in the vertical direction from a connection portion with the electrode terminal and a metal flexible member electrically connected thereto are used. This can be achieved by configuring the conductive connecting component 7 with the two members.
  • the conductive connecting component 7 shown in FIG. 1 includes a metal rod 7a extending vertically downward, and a plate-like metal lead 7b having a flexibility extending in the horizontal direction attached to the lower portion of the metal rod 7a.
  • the conductive connection component 7 is configured as described above.
  • the lower end portion of the metal rod 7a is made to have a structure in which a male screw or a female screw is threaded, and both end portions are previously connected to the lower end portion of the metal rod 7a.
  • the other hole of the metal lead 7b is preferably screwed to the grounding part 3 provided at the lower part of the support member 2, so that the end of the metal lead 7b provided with the other hole is provided. And the upper surface of the grounding part 3 maintain a surface contact state.
  • the metal lead 7b is preferably attached so as to extend in the horizontal direction, so that it can freely move in the vertical direction in response to the vertical thermal expansion and contraction of the conductive connection part 7 for the high-frequency electrode circuit 5. Can bend. Therefore, it is not necessary to provide a sliding portion in the connection portion of the conductive connection component 7, a strong fixed state can be maintained in the electrical path (conduction path), and high reliability can be maintained over a long period of time. Structure can be provided.
  • the surface contact in the connection part of the electroconductive connection component 7 may be a surface contact between planes, or may be a surface contact between curved surfaces having substantially the same shape.
  • the connecting portion of the conductive connecting part 7 is constituted by a cylindrical rod, and an annular member having substantially the same inner diameter as this is half-cracked, and the cylindrical rod is sandwiched to ensure surface contact. It doesn't matter how.
  • the flat metal lead 7b When the flat metal lead 7b is fixed to the grounding component 3, it is preferable that it can be connected from the outside of the supporting member 2 at the same time as or after the support member 2 is connected to the grounding component 3 as a procedure. Otherwise, it is assumed that fixing the metal lead 7b to the grounding part 3 before attaching the grounding part 3 to the support member 2 is substantially difficult or very complicated. This is because that.
  • the hole provided in the edge part of the metal lead 7b is matched with the hole of the flange part of the supporting member 2, and the said Examples include a method in which the end portion of the metal lead 7 b is sandwiched between the flange portion and the ground component 3, and the end portion of the metal lead 7 b is connected to the ground component 3 with a bolt 8 that connects the support member 2 and the ground component 3. it can.
  • the aspect ratio of the cross section parallel to the paper surface of FIG. 1 is preferably 3 or more in the horizontal direction / vertical direction, and more preferably 5 or more. Is more preferable. If the thickness of the flat metal lead 7b is too thin, it may break due to thermal expansion and contraction, and if it is too thick, it becomes difficult to bend. Therefore, the thickness is preferably 0.3 mm or more and 1.5 mm or less.
  • the frequency of high frequency used for plasma and the like has become higher and higher, for example, a frequency of 13.56 MHz or higher is used. For this reason, it is preferable to increase the surface area so that the high-frequency line can be used without generating heat, particularly in a high frequency field.
  • the flat plate is superior in order to increase the surface area with the same cross-sectional area.
  • the metal lead 7b may be almost completely flat, or may have a bent portion or a curved portion in the middle.
  • the metal lead 7b can be easily bent in the vertical direction with the metal flange portion constituting the grounding part 3. It is preferable that spaces are secured above and below the metal lead 7b except for the connecting portion.
  • a bottomed hole 3b into which the lower end portion of the metal rod 7a is fitted is provided in the ground component 3, and the metal lead 7b and the ground component 3 are opposed to each other on the upper surface of the ground component 3. It is preferable to form an inclined groove 3c that gradually becomes deeper toward the hole 3b except in the connection portion between the metal lead 7b and the grounding component 3 in the region to be formed.
  • a bottomed hole 3d into which the lower end of the metal rod 7a and the entire metal lead 7b extending in the horizontal direction are fitted is provided in the ground component 3, and the upper surface of the metal lead 7b is the ground component 3 You may connect so that it may surface-contact. In this case, it is preferable to form the connection portion of the ground part 3 with the metal lead 7b in an overhang shape.
  • a flat plate-like member is used for the metal lead 7b.
  • the member is not limited to such a member, and another shape member may be used as long as it can be deformed in the vertical direction.
  • a metal rod 17 a that extends downward in the vertical direction of the conductive connection component 7, and a plate spring-like metal lead that extends in the vertical direction and is curved except for both ends. 17b may be included.
  • a part or the whole of the conductive connection part 7 may be formed in a spiral shape.
  • the conductive connecting part 7 includes a metal rod 27 a extending vertically downward and a metal lead 27 b formed in a spiral shape except for a connecting part to the ground part 3. Also good.
  • the spiral portion is accommodated in a ceramic pipe-shaped support tube 9, or a rod-like shape. It is preferable to wind a spiral portion along the member.
  • the cross section of the spiral part may be any shape such as round or flat, but for the most compact structure, a flat lead is made using a thin metal foil and this is spiraled. It is desirable to wind in a shape.
  • the material of the metal lead is preferably one that is resistant to repeated fatigue and is less likely to generate particles, such as nickel, inconel, stainless steel, kovar, and iron-nickel alloy.
  • Kovar and iron-nickel alloy are preferably subjected to nickel plating in advance. Copper is not preferred as a CVD susceptor because it is a material that is abolished as metal contamination.
  • the material of the ground component 3 is generally aluminum alloy or stainless steel in order to avoid generation of particles, but aluminum alloy is preferable for weight reduction.
  • the main current path from the embedded high-frequency electrode circuit 5 to the grounding part 3 through the conductive connection part 7 is connected by surface contact.
  • the conduction route that bears the main current path as the high-frequency line is characterized by having no point contact portion or sliding portion. Thereby, abnormal overheating and generation
  • a conduction route branched from the current path may be separately provided in order to secure a conduction route by surface contact.
  • a stranded wire having a relatively large cross-sectional area and a flexible structure can be selected as a current lead for energizing the resistance heating element circuit 4 as a heater for heating.
  • the high-frequency current flows intensively on the surface of the conductive connection component 7. Since there are many point contact parts, it is not easy to divert current to another strand in each cross section, so abnormal heating may occur in some strands, and high-frequency energization should be continued for a long time. I can't.
  • the balance of the L component, C component, and R component of the entire high-frequency system is important, and impedance matching must be performed using a matching box.
  • an error mode may occur when plasma is applied if the high-frequency conduction line physically moves inside the support member 2 every time it is transferred to the apparatus. Therefore, it is not preferable from the viewpoint of reproducibility to connect using a flexible electric wire such as a stranded wire simply because it has flexibility. In other words, it is necessary to have a structure that can maintain a certain characteristic over the long term.
  • the fixing point of the conductive connecting part 7 and the grounding part 3 is shifted in the horizontal direction with respect to the direction of thermal expansion / contraction of the conductive connecting part 7 via a flexible member. It is based on a new concept such as fixing, and with regard to a practical fixing method, the conductivity is collected at the same time or after the gathering of our wisdom and fixing the pipe-shaped support member 2 to the grounding part 3. The structure is excellent in originality in which the connection component 7 and the ground component 3 are tightened with screws.
  • the support member 2 that supports the wafer holding unit 1 is not particularly limited with respect to the shape, and an arbitrary shape can be adopted, but it has a simple structure and has high mechanical strength. Pipe shape is more desirable.
  • the support member 2 may be physically fixed to the wafer holding unit 1 or may be chemically bonded. In order to reduce the stress acting on the wafer holding unit 1, it is preferable to physically fix the support member 2 by a method such as screwing instead of chemically bonding the support member 2 using a brazing material or glass. .
  • the temperature of the support member 2 is high in the vicinity of the wafer holding unit 1, and conversely, the temperature is low on the opposite side, so that the support member 2 is easily deformed due to this temperature difference. If the support member 2 at this time is chemically bonded to the wafer holding unit 1, the deformation of the support member 2 affects the wafer holding unit 1, and stress acting on the wafer holding unit 1 is increased, which is not preferable.
  • Ceramic materials such as an alumina, aluminum nitride, silicon nitride, silicon carbide, or its composite_body
  • the raw material powder of AlN used preferably has a specific surface area of 2.0 to 10.0 m 2 / g. When the specific surface area is less than 2.0 m 2 / g, the sinterability of aluminum nitride is lowered. When the specific surface area is more than 10.0 m 2 / g, the agglomeration of the powder becomes very strong and handling becomes difficult.
  • the amount of oxygen contained in the raw material powder is preferably 2% by weight or less. When the amount of oxygen exceeds 2% by weight, the thermal conductivity of the sintered body decreases.
  • the total amount of metal impurities other than aluminum contained in the raw material powder is preferably 2000 ppm or less.
  • the thermal conductivity of the sintered body decreases.
  • group 4 elements such as Si and iron group elements such as Fe as metal impurities have a high effect of reducing the thermal conductivity of the sintered body, and therefore the content is preferably 1000 ppm or less.
  • AlN is a hardly sinterable material
  • a sintering aid to be added.
  • a rare earth element compound or an alkaline earth metal compound is preferable. These compounds react with the aluminum oxide or aluminum oxynitride present on the surface of the aluminum nitride powder particles during the sintering to promote the densification of the aluminum nitride and the thermal conductivity of the aluminum nitride sintered body. Therefore, the thermal conductivity of the aluminum nitride sintered body can be improved.
  • the amount of sintering aid added is preferably in the range of 0.01 to 5% by weight. When the addition amount is less than 0.01% by weight, it is difficult to obtain a dense sintered body, and the thermal conductivity of the sintered body is lowered. If the added amount exceeds 5% by weight, a sintering aid exists at the grain boundary of the aluminum nitride sintered body. Therefore, when used in a corrosive atmosphere, the sintering aid present at this grain boundary. Is etched, causing degranulation and generation of particles. More preferably, the addition amount of the sintering aid is 1% by weight or less. If the added amount is 1% by weight or less, the sintering aid does not exist at the triple point of the grain boundary, so that the corrosion resistance of the sintered body is further improved.
  • rare earth element compounds are preferable, and yttrium compounds that have a remarkable function of removing oxygen are particularly preferable.
  • oxides, nitrides, fluorides, stearic acid compounds, and the like can be used as rare earth element compounds.
  • oxides are preferable in that they are inexpensive and easily available.
  • the stearic acid compound has high affinity with the organic solvent, mixing the AlN raw material powder and the sintering aid with the organic solvent is preferable because the mixing property is increased.
  • AlN raw material powder and sintering aid powder are mixed with a predetermined amount of solvent, binder and, if necessary, a dispersant and a glaze.
  • a mixing method ball mill mixing, ultrasonic mixing, or the like is possible.
  • a raw material slurry can be obtained by such mixing.
  • By molding and sintering the obtained raw material slurry an AlN sintered body serving as a wafer holding part can be obtained.
  • the method two types of methods, a cofire method and a post metallization method, are possible.
  • Granules are produced from the raw material slurry by a technique such as a spray dryer.
  • the granules are filled into a predetermined mold and press-molded.
  • the pressing pressure is desirably 9.8 MPa or more. When the pressure is less than 9.8 MPa, the strength of the molded body is often not sufficiently obtained, and is easily damaged by handling.
  • the density of a molded object changes with content of a binder, and the addition amount of a sintering auxiliary agent, it is preferable that it is 1.5 g / cm ⁇ 3 > or more. If it is less than 1.5 g / cm 3 , the distance between the raw material powder particles becomes relatively large, so that sintering does not proceed easily. Moreover, it is preferable that a molded object density is 2.5 g / cm ⁇ 3 > or less. If it exceeds 2.5 g / cm 3 , it is difficult to sufficiently remove the binder in the molded body by the degreasing process in the next step, and it becomes difficult to obtain a dense sintered body as described above.
  • the obtained molded body is degreased by heating in a non-oxidizing atmosphere such as nitrogen or argon.
  • a non-oxidizing atmosphere such as nitrogen or argon.
  • the degreasing treatment is performed in an oxidizing atmosphere such as the air, the surface of the AlN powder is oxidized, so that the thermal conductivity of the sintered body is lowered.
  • the heating temperature for the degreasing treatment is preferably 500 to 1000 ° C. When the temperature is less than 500 ° C., the binder cannot be sufficiently removed, and excessive carbon remains in the molded body after the degreasing treatment, which hinders sintering in the subsequent sintering step.
  • the amount of remaining carbon becomes too small, so the ability of the oxide film present on the surface of the AlN powder to remove oxygen is lowered, and the thermal conductivity of the sintered body is lowered.
  • the amount of carbon remaining in the molded body after the degreasing treatment is preferably 1.0% by weight or less. If carbon exceeding 1.0% by weight remains, sintering is hindered, so that a dense AlN sintered body cannot be obtained.
  • the degreased compact is sintered.
  • This sintering is performed at a temperature of 1700 to 2000 ° C. in a non-oxidizing atmosphere such as nitrogen or argon.
  • the moisture contained in the atmospheric gas such as nitrogen used at this time is preferably -30 ° C. or less in terms of dew point.
  • AlN reacts with moisture in the atmospheric gas during sintering to form oxynitrides, which may reduce the thermal conductivity.
  • the amount of oxygen in the atmospheric gas is preferably 0.001% by volume or less. If the amount of oxygen exceeds this value, the surface of AlN may oxidize and the thermal conductivity may decrease.
  • a boron nitride (BN) molded body is suitable as a jig used for placing the molded body during sintering.
  • This BN compact has sufficient heat resistance with respect to the sintering temperature, and its surface has solid lubricity, so that the friction between the jig and the compact when the compact shrinks during sintering.
  • an AlN sintered body with less distortion can be obtained.
  • the obtained AlN sintered body is subjected to machining such as surface polishing as necessary.
  • the surface roughness of the sintered body is preferably 5 ⁇ m or less in terms of Ra. If the thickness exceeds 5 ⁇ m, defects such as pattern bleeding and pinholes are likely to occur when a circuit is formed by screen printing. More preferably, the surface roughness is 1 ⁇ m or less in terms of Ra.
  • the parallelism of both processed surfaces is preferably 0.5 mm or less. If the parallelism exceeds 0.5 mm, the thickness of the conductive paste may vary greatly during screen printing.
  • the parallelism is particularly preferably 0.1 mm or less.
  • the flatness of the screen printing surface is preferably 0.5 mm or less. This is because even when the flatness exceeds 0.5 mm, the variation in the thickness of the conductive paste may increase.
  • the flatness is particularly preferably 0.1 mm or less.
  • a conductive paste is applied to the polished AlN sintered body by screen printing to form an electric circuit pattern.
  • the conductive paste can be obtained by mixing a metal powder with a binder and a solvent.
  • tungsten, molybdenum or tantalum is preferable from the viewpoint of matching the thermal expansion coefficient with ceramics.
  • an oxide powder may be added to the conductive paste.
  • the oxide powder is preferably a group 3A element, a group 3A element oxide, Al 2 O 3 , SiO 2 or the like.
  • yttrium oxide is preferable because it has very good wettability to AlN.
  • the amount of these oxide powders added is preferably 0.1 to 30% by weight. If it is less than 0.1% by weight, the adhesion strength between the metal layer, which is the formed electric circuit, and AlN is lowered. Conversely, if it exceeds 30% by weight, the electrical resistance value of the metal layer, which is an electrical circuit, becomes high.
  • the thickness of the conductive paste is preferably 5 ⁇ m or more and 100 ⁇ m or less after drying.
  • the thickness is less than 5 ⁇ m, not only the electric resistance value becomes too high, but also the adhesion strength decreases. Moreover, when thickness exceeds 100 micrometers, adhesion strength falls.
  • the circuit pattern to be formed is a resistance heating element circuit
  • the pattern interval is preferably 0.1 mm or more. If the interval is less than 0.1 mm, when a current is passed through the resistance heating element, a leakage current may occur depending on the applied voltage and temperature, causing a short circuit.
  • the pattern interval is preferably 1 mm or more, more preferably 3 mm or more.
  • the conductive paste is degreased and fired.
  • Degreasing is performed in a non-oxidizing atmosphere such as nitrogen or argon.
  • the degreasing temperature is preferably 500 ° C. or higher. When the degreasing temperature is less than 500 ° C., removal of the binder in the conductive paste is insufficient, carbon remains in the metal layer, and metal carbide is formed when fired, so that the electric resistance value of the metal layer is increased.
  • Calcination of the conductive paste after degreasing is preferably performed at a temperature of 1500 ° C. or higher in a non-oxidizing atmosphere such as nitrogen or argon.
  • a non-oxidizing atmosphere such as nitrogen or argon.
  • the firing temperature should not exceed the sintering temperature of the ceramic.
  • the conductive paste is fired at a temperature exceeding the sintering temperature of the ceramic, the sintering aid contained in the ceramic begins to evaporate, and further, the grain growth of the metal powder in the conductive paste is promoted, and the ceramic and the metal layer. This is because the adhesion strength to the lowers.
  • an insulating coat can be formed on the metal layer.
  • the material of the insulating coating is not particularly limited as long as it has a low reactivity with the metal layer and the difference in thermal expansion coefficient from AlN is 5.0 ⁇ 10 ⁇ 6 / K or less.
  • crystallized glass or AlN can be used.
  • the amount of sintering aid added to the paste is preferably 0.01% by weight or more. If it is less than 0.01% by weight, the insulating coating is not densified, and it is difficult to ensure the insulating properties of the metal layer. Moreover, it is preferable that the amount of sintering aid does not exceed 20% by weight. If it exceeds 20% by weight, an excessive sintering aid penetrates into the metal layer, so that the electrical resistance value of the metal layer may change.
  • coats a paste It is preferable that it is 5 micrometers or more. This is because if it is less than 5 ⁇ m, it is difficult to ensure insulation.
  • a metal oxide to these metal powders.
  • a metal oxide aluminum oxide, silicon oxide, copper oxide, boron oxide, zinc oxide, lead oxide, rare earth oxide, transition metal element oxide, alkaline earth metal oxide, or the like can be added.
  • the addition amount is preferably 0.1% by weight or more and 50% by weight or less. If the content is less than this, the adhesion with aluminum nitride is lowered, which is not preferable. Further, if the content is higher than this, sintering of metal components such as silver is inhibited, which is not preferable.
  • the above metal powder and metal oxide powder are mixed, an organic solvent and a binder are further added to form a paste, and then a circuit pattern is formed by screen printing in the same manner as described above.
  • the formed circuit pattern is baked in a temperature range of 700 ° C. to 1000 ° C. in an inert gas atmosphere such as nitrogen or in the air.
  • an insulating layer can be formed by applying crystallized glass, glaze glass, organic resin, or the like and firing or curing in order to ensure insulation between circuits.
  • glass borosilicate glass, lead oxide, zinc oxide, aluminum oxide, silicon oxide and the like can be used.
  • An organic solvent and a binder are added to these powders to form a paste, which is applied by screen printing.
  • the firing temperature is preferably lower than the temperature at which the circuit is formed. Baking at a higher temperature than the circuit baking is not preferable because the resistance value of the circuit pattern changes greatly.
  • a ceramic substrate is further laminated.
  • Lamination of the ceramic substrate is preferably performed via a bonding agent.
  • a bonding agent a paste obtained by adding a group 2A element compound or a group 3A element compound, a binder or a solvent to aluminum oxide powder or aluminum nitride powder, and applying the paste onto the bonding surface by a method such as screen printing.
  • a bonding agent it is preferable that it is 5 micrometers or more. When the thickness is less than 5 ⁇ m, bonding defects such as pinholes and bonding unevenness easily occur in the bonding layer.
  • the ceramic substrate coated with the bonding agent is degreased at a temperature of 500 ° C. or higher in a non-oxidizing atmosphere. Thereafter, the ceramic substrates to be stacked are superposed, a predetermined load is applied, and the ceramic substrates are bonded together by heating in a non-oxidizing atmosphere.
  • the applied load is preferably 5 kPa or more. When the load is less than 5 kPa, sufficient bonding strength cannot be obtained or bonding defects are likely to occur.
  • the heating temperature at the time of bonding is not particularly limited as long as the ceramic substrates are sufficiently adhered to each other through the bonding layer, but is preferably 1500 ° C. or higher. If it is less than 1500 degreeC, sufficient joint strength is hard to be obtained and it will be easy to produce a joint defect. Nitrogen, argon, or the like is preferably used for the non-oxidizing atmosphere during the degreasing and bonding.
  • a ceramic laminated sintered body serving as a wafer holder of the wafer holder can be obtained.
  • a resistance heating element circuit for example, a molybdenum wire (coil), an electrostatic chuck electrode circuit, a high-frequency electrode circuit, etc. It is also possible to use a mesh (net-like body).
  • the molybdenum coil or mesh is incorporated in the AlN raw material powder, and can be produced by a hot press method.
  • the hot press temperature and atmosphere may be the same as the sintering temperature and atmosphere of AlN, but the hot press pressure is preferably 1.0 MPa or more. When the hot press pressure is less than 1.0 MPa, a gap may be formed between the molybdenum coil or mesh and AlN, and the performance as a heater may not be achieved.
  • the raw material slurry described above is formed into a sheet by a doctor blade method.
  • molding It is preferable that the thickness of a sheet
  • An electric circuit pattern having a predetermined shape is formed on the obtained sheet by applying a conductive paste by a method such as screen printing. The same conductive paste as that described in the post metallization method can be used. However, in the cofire method, there is no problem even if the oxide powder is not added to the conductive paste.
  • each sheet is set at a predetermined position and overlapped. At this time, a solvent is applied between the sheets as necessary. In the state of being overlaid, heat as necessary. When heating, it is preferable that heating temperature is 150 degrees C or less. When the sheet is heated to a temperature exceeding 150 ° C., the laminated sheet is greatly deformed. Then, the stacked sheets are integrated by applying pressure.
  • the applied pressure is preferably in the range of 1 to 100 MPa. If the pressure is less than 1 MPa, the sheets may not be sufficiently integrated and may peel during the subsequent steps. Further, when a pressure exceeding 100 MPa is applied, the deformation amount of the sheet becomes too large.
  • This laminate is degreased and sintered in the same manner as the above-mentioned post metallization method.
  • the temperature of degreasing and sintering, the amount of carbon, and the like are the same as in the post metallization method.
  • a resistance heating element circuit, a high-frequency electrode circuit, an electrostatic chuck electrode circuit, etc. are printed on a plurality of sheets, respectively, and these are stacked to have a plurality of electric circuits. It is also possible to easily produce an energization heating heater. In this way, a ceramic laminated sintered body serving as a wafer holding portion of the wafer holder can be obtained.
  • an electrical circuit such as a resistance heating element circuit
  • An insulating coating can be formed on the electrical circuit.
  • the obtained ceramic laminated sintered body is processed as necessary. This is because the accuracy usually required by a semiconductor manufacturing apparatus is often not satisfied in the sintered state.
  • the contact portion of the ring-shaped convex portion or the embossed wafer with the wafer is 0.1 mm or less. If this flatness exceeds 0.5 mm, a gap is likely to be formed between the wafer to be processed and the wafer holder, and the heat of the wafer holder is not uniformly transferred to the workpiece. Temperature unevenness is likely to occur.
  • the surface roughness of the wafer mounting surface is preferably 5 ⁇ m or less in terms of Ra.
  • Ra exceeds 5 ⁇ m, AlN degranulation may increase due to friction between the wafer holder and the wafer. At this time, the shed particles become particles, which adversely affects processing such as film formation and etching on the wafer.
  • the surface roughness is more preferably 1 ⁇ m or less in terms of Ra. As described above, the wafer holding portion of the susceptor in the wafer holder can be manufactured.
  • a support member is attached to the wafer holding part thus manufactured.
  • the material of the supporting member is not particularly limited as long as it has a thermal expansion coefficient that is not significantly different from the thermal expansion coefficient of the ceramic of the wafer holding part, but the difference in thermal expansion coefficient from the wafer holding part is 5 ⁇ 10 ⁇ 6. / K or less is preferable. When the difference in thermal expansion coefficient exceeds 5 ⁇ 10 ⁇ 6 / K, cracks are likely to occur near the mounting part of the wafer holding part and the support member during chemical joining, especially during joining. Even if it is not, a thermal cycle is applied to the joint portion during repeated use, and cracks and cracks may occur.
  • the material of the support member is most preferably AlN, but silicon nitride, silicon carbide, mullite, or the like can also be used.
  • the support member can be chemically bonded via a bonding layer.
  • the components of the bonding layer in the case of chemical bonding are preferably composed of AlN, Al 2 O 3 and a rare earth oxide. These components are preferable because they have a good wettability with ceramics such as AlN which is a material of the wafer holding part and the support member, so that the bonding strength is relatively high and the airtightness of the bonding surface is easily obtained.
  • the flatness of each bonding surface of the supporting member and the wafer holding part to be bonded is 0.5 mm or less. Beyond this, a gap is likely to occur on the joint surface, making it difficult to obtain a joint with sufficient airtightness.
  • the flatness is more preferably 0.1 mm or less. It is more preferable that the flatness of the bonding surface of the wafer holding unit is 0.02 mm or less.
  • the surface roughness of each joint surface is preferably 5 ⁇ m or less in terms of Ra. In the case of surface roughness exceeding this, a gap is easily generated on the joint surface.
  • the surface roughness of the joint surface is more preferably 1 ⁇ m or less in terms of Ra.
  • the support member can be attached by a physical (mechanical) method such as screwing.
  • a physical (mechanical) method such as screwing.
  • the support member can be attached to the wafer holding portion by screwing a male screw formed of a material having a coefficient of thermal expansion relatively close to that of the wafer holding portion or the support member. In this attachment method, it can be fixed inside or outside the support member as described above depending on the application, but in order to reduce the stress acting on the wafer holding part, it is preferable to fix it inside the support member. .
  • the wafer holder of the present invention has been described based on the embodiments.
  • the present invention is not limited to such embodiments, and can be implemented in various modes without departing from the gist of the present invention. That is, the technical scope of the present invention extends to the claims and their equivalents.
  • Example 1 A slurry was prepared by adding 0.5 parts by weight of yttrium oxide as a sintering aid to 99.5 parts by weight of the aluminum nitride powder, adding a binder and an organic solvent, and mixing them with a ball mill. The obtained slurry was spray-dried to produce granules, which were press-molded to produce a compact. Next, this molded body was degreased at 700 ° C. in a nitrogen atmosphere and then sintered at 1850 ° C. in a nitrogen atmosphere to obtain an aluminum nitride sintered body. The obtained sintered body was processed into a diameter of 330 mm and a thickness of 10 mm. At this time, the surface roughness Ra was 0.8 ⁇ m, and the flatness was 50 ⁇ m.
  • a W paste is applied by screen printing, degreased at 700 ° C. in a nitrogen atmosphere, and then fired at 1830 ° C. in a nitrogen atmosphere, whereby a resistance heating element circuit is formed on one surface.
  • a high frequency electrode circuit was formed on the other surface.
  • an aluminum nitride substrate having a thickness of 1 mm on the high-frequency electrode circuit side and a thickness of 9 mm on the resistance heating element circuit side was disposed, and a necessary degreasing firing process was performed through a material mainly composed of aluminum nitride necessary for adhesion. Thereafter, bonding was performed to prepare a wafer holding substrate.
  • a counterbore hole reaching the resistance heating element circuit was formed on the wafer holding substrate, and a W electrode part plated with Ni for supplying power to the resistance heating element circuit was brought into contact with it to secure a feeding electrode line. .
  • a high-frequency electrode line was secured by contacting a high-frequency electrode circuit as a base circuit for high-frequency application with a W-made electrode part plated with Ni.
  • These electrode parts have a vertically downward M3 bolt terminal structure, and a 4 mm diameter Ni conductive connection part having an M3 female screw structure is screwed in and connected thereto.
  • an M6 bottomed female screw hole for loading a metal bolt for fixing a ceramic pipe-like support member is formed on the surface opposite to the surface to be processed of the wafer holding substrate.
  • a metal bolt is inserted into a through hole provided in advance in a flange portion of a ceramic pipe-like support member with respect to the wafer holding portion in which the metal bolt thus fabricated is embedded, and a metal nut is used.
  • a ceramic support member was fixed to the wafer support.
  • the other end of the pipe-like support member was attached with an aluminum grounding part for connection to the chamber.
  • This grounding part has a hole in the vertical direction, and two conductive connecting parts for feeding are electrically taken out of the chamber system through an airtight connector terminal attached to this hole.
  • the conductive connection parts from the high-frequency electrode circuit are structured to be electrically connected to the ground parts.
  • the 4 mm diameter conductive connection part from the high frequency electrode circuit has a vertically downward M3 bolt structure.
  • a plate-shaped Ni metal lead having a length of 35 mm, a width of 6 mm, and a thickness of 0.5 mm was prepared for high-frequency line connection, and two 3.2 mm diameter holes were drilled in this.
  • the M3 bolt portion of the conductive connecting part was inserted into one of these 3.2 mm diameter holes drilled in the metal lead, and fixed using an M3 nut.
  • FIG. 3A Another M3 bolt was inserted into the other 3.2 mm diameter hole drilled in the horizontally extending flat plate-shaped current lead and connected to the grounding part.
  • This wafer holder has a structure in which the conductive line for the high-frequency electrode circuit is connected to a flat metal lead extending in the horizontal direction from the lower part of the conductive connection component.
  • the conductive connecting component is thermally expanded, the flat metal lead is bent and the thermal expansion can be absorbed.
  • the flat metal lead can be easily bent to easily absorb thermal expansion.
  • the wafer holder having the above structure When the wafer holder having the above structure is used as a parallel plate type high-power plasma CVD susceptor, plasma is formed in a state where power is supplied to the electrode line of the resistance heating element circuit and heated to 550 ° C.
  • the high-frequency electrode circuit embedded in layers in the wafer holding portion is used as a parallel plate lower electrode, and the lower electrode in which the high-frequency electrode line is grounded via a ground component, and the shower head of the upper electrode
  • a high frequency of 13.56 MHz, 100 V, and 2 kW between them and flowing a reaction gas plasma can be formed and a desired film can be deposited on the wafer.
  • Example 2 As a conductive connection part for a high-frequency electrode circuit, a stainless steel foil having a width of 8 mm and a thickness of 0.3 mm is prepared instead of the flat metal lead of Example 1, and a rod-shaped jig having an outer diameter of 5 mm is used as a core material. As above, after winding in advance so that the stainless steel foils do not overlap each other, the jig is removed so that it follows the inner wall of the electrode protecting ceramic pipe having an outer diameter of 10 mm and an inner diameter of 6 mm having an opening on the lower side.
  • Example 3 As a conductive connection part for a high-frequency electrode circuit, instead of the flat metal lead of Example 1, a stainless steel flat plate having a width of 8 mm and a thickness of 1 mm is bent entirely except for both ends to form a leaf spring.
  • a wafer holder having a structure as shown in FIG. 4 was fabricated by extending one end of the substrate in the vertical direction and connecting one end to an electrode part and directly screwing the other end to an earth part serving as an earth part. This was subjected to the same long-term reliability test as in Example 1. As a result, it was possible to continuously apply 100,000 shots of plasma stably.
  • Example 4 A wafer holder was produced in the same manner as in Example 1 except that the flat metal leads were made of various materials and sizes shown in Table 1 below. These samples 1 to 11 were subjected to plasma application 100 times under the same plasma application conditions as in Example 1 and observed for problems. As a result, the observation results shown in Table 1 below were obtained.
  • Example 1 A wafer holder was produced in the same manner as in Example 1 except that the metal rod 57 was directly fixed to the grounding component 3 as shown in FIG. When plasma was applied to this wafer holder under the same plasma application conditions as in Example 1, the metal rod 57 pushed up the wafer holder 1 when the 32nd wafer was processed. There was a problem that the wafer holder 1 was damaged.
  • the metal rod 57 which is a conductive connecting part for a high-frequency electrode circuit, undergoes thermal expansion in a high temperature state, and the wafer holding unit 1 is lowered to eliminate the stress caused by the thermal expansion difference from the wafer support unit 1. It is considered that the stress that pushes up from the wafer works, and that the wafer holding unit 1 has been damaged by repeated application of high-power plasma.
  • a slit is provided in the lower portion of the metal rod 67, and a contact 67a called a coil-shaped spring contact is interposed to electrically and mechanically contact the grounding part 3.
  • a wafer holder was produced.
  • two types of materials were used, a beryllium copper type capable of supplying high power and a stainless steel type having a strong repulsive force. Plasma was applied to these wafer holders.
  • the difference between the beryllium copper type and the stainless steel type is that the beryllium copper type was worn early but it was shunted to other coil windings because of its low electrical resistance. However, it seems that the plasma flickering phenomenon was observed when the contact portion was incomplete. In the case of stainless steel type, wear is less likely to occur compared to beryllium copper, but once wear begins, it cannot be shunted to other coil windings due to the high electrical resistance, causing an avalanche phenomenon and the entire spring coil It seems that the plasma could not be applied due to burning.
  • Example 3 A wafer holder was produced in the same manner as in Example 1 except that a twisted wire 77 having crimp terminals attached to both ends as shown in FIG. The wafer holder was subjected to plasma application 100 times under the same plasma application conditions as in Example 1 and observed for problems. As a result, when 2 kW of plasma was applied, flicker was observed about three times in 100 shots, and stable plasma application was not possible. This is considered to occur because the structure of the stranded wire 77 has many portions having only point contacts in the main current path.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

 本発明は、異常過熱やパーティクルの発生のない信頼性の高い高周波電極回路を有するウエハ保持体及びそれを搭載した半導体製造装置を提供する。  本発明は、チャンバー内に設置され、高周波電極回路5が埋設されたウエハ保持部1と、ウエハ保持部1をそのウエハ載置面1aの反対側の面1bから支持する支持部材2と、支持部材2に関してウエハ保持部1の反対側に設けられたアース部品3と、支持部材2の内部に挿通され、高周波電極回路5とアース部品3とを電気的に接続する導電性接続部品7とを有するウエハ保持体10であって、導電性接続部品7は鉛直方向に変形能を有し、かつ、導電性接続部品7の主たる電流パスを担う接続部分が面接触で固着している。

Description

高周波電極の接続方法を改善したウエハ保持体及びそれを搭載した半導体製造装置
 本発明は、半導体製造プロセスにおいて、ウエハを保持して加熱処理するために使用するウエハ保持体、特にウエハに対してCVDなどによる成膜やエッチング、又はレジストなどを熱処理するために用いるウエハ保持体及びそれを搭載した半導体製造装置に関する。
 従来から、半導体製造プロセスにおいては、ウエハ載置面にウエハを保持して加熱処理するため、抵抗発熱体回路や高周波電極回路などの電気回路を備えた各種のウエハ保持体が使用されている。このウエハ保持体のウエハ保持部上にウエハを保持して加熱処理する場合、ウエハ保持部が変形又は破損しないことが重要である。そのため、ウエハ保持部の面内温度分布や、ウエハ保持部を支持するためのパイプ状支持部材の機械的固定方法や接合方法等に多くの工夫がなされている。
 また、ウエハ保持部には抵抗発熱体回路や高周波電極回路、更には必要に応じて静電チャック用の電極が埋設されており、これらの電極端子はウエハ載置面の反対面より取り出されている。これら電極端子には、それぞれ導通ラインとして、導電性の接続部品が接続されている。この導電性接続部品を含む導通ラインは、パイプ状支持部材の内部及びそのチャンバー接続用の金属又はセラミックスフランジを経て反応容器の系外に取り出され、必要に応じて電源系に接続される。
 このようなウエハ保持体のポピュラーな使用方法として、平行平板型のプラズマCVD装置がある。これは、反応容器上部にプラズマ上部電極を設置し、ウエハ保持部の内部にプラズマ下部電極を設置することで、それらの間でプラズマを発生させる。このプラズマにより反応をアシストし、ウエハ上に必要な膜を堆積・生成させることが行われている。下部電極は静電チャック機能を兼ね備えているため、ウエハ吸着のために下部電極にバイアス電圧をかけても良いが、一般的にはアース部品に接続し、アース部品はチャンバーに固定させることでゼロ電位に保つことが多い。
 この高周波電極回路には、最大数kWの大電力を印加するケースがあるため、電気的な接続を強固にしておかないと接続部分で焼損が発生することがある。しかしながら、プラズマCVD用途のウエハ保持体は、一般的に300~600℃、場合によっては700℃以上の温度で用いられるため、ウエハ保持体全体に熱膨張が発生する。このとき、パイプ状支持部材がセラミックス製の場合は、このパイプ状支持部材と、ウエハ保持部の裏面から取り出された電極端子及びそれに接続される金属製の導電性接続部品との間の熱膨張差により、応力集中が発生することがある。
 例えば、導電性接続部品の熱膨張量がセラミックス製のパイプ状支持部材より大きく、パイプ状支持部材の下部で導電性接続部品がリジッドに固定されている場合は、熱膨張差によって当該導電性接続部品がウエハ保持部をウエハ載置面の反対側の面から突き上げることとなり、最悪の場合、ウエハ保持体の変形や破損に至ることがあった。
 また、高周波電極回路の導通ラインにおいては、導電性接続部品の熱膨張によって生じる応力を緩和するため、導電性接続部品とアース部品又はチャンバーのアース部分との接続部分を摺動可能な構造にすることがある。例えば、特許文献1には、コイル状のスプリングコンタクトを用いて、金属フランジ部分と導電性接続部品との接続を摺動自在にしたコネクタ内部のカプラ構造が提案されている。
 しかしながら、このような従来のカプラ構造は、導電性接続部品とアース部品の接続点が、熱膨張による応力緩和のための摺動と電気的接続とを兼ねているため、高周波電極回路をアース部品を介してグラウンドに接続する際に、どうしても強固で信頼性の高い電気的接続を得ることができず、熱膨張時の摺動による擦れがパーティクルを発生させたり、摺動により接続が不完全となって電気的なパスが限られることにより、その部分に偏流が流れて異常過熱や焼損を起こしたりするトラブルが発生することがあった。
特開2002-141403号公報
 本発明は、このような従来の事情に鑑み、摺動部分のない電気的に強固な接続方法で高周波電極回路をアース部品を介してグラウンドに接続することによって、接続部分での異常過熱やパーティクルの発生を防止することが可能な、信頼性の高い高周波電極回路を有するウエハ保持体、及びそのウエハ保持体を搭載した半導体製造装置を提供することを目的とする。
 上記目的を達成するため、本発明が提供するウエハ保持体は、チャンバー内に設置され、高周波電極回路が埋設されたウエハ保持部と、該ウエハ保持部をそのウエハ載置面の反対側の面から支持する支持部材と、該支持部材に関してウエハ保持部の反対側に設けられたアース部品と、該支持部材の内部に挿通され、該高周波電極回路と該アース部品とを電気的に接続する導電性接続部品とを有するものであって、該導電性接続部品は鉛直方向に変形能を有し、かつ、該導電性接続部品の主たる電流パスを担う接続部分が面接触で固着している。
 上記本発明が提供するウエハ保持体においては、導電性接続部品が、高周波電極回路に接続する鉛直方向下向きに延在する金属製の剛性部材と、該剛性部材に接続する可とう性部材とを有していることが好ましい。この可とう性部材は、鉛直方向下向きに延在するらせん状部材若しくは板バネ状部材、又は水平方向に延在する平板状部材で構成することができる。
 また、上記本発明が提供するウエハ保持体においては、導電性接続部品とアース部品との接続部分が、支持部材とアース部品との接続と同時又はその後に接続可能な構造であることが好ましい。本発明は、更にこれらの特徴を有するウエハ保持体が搭載されている半導体製造装置を提供するものである。
 本発明によれば、ウエハ保持体の高周波電極回路とアース部品との電気的な接続部分を、摺動部分のない強固で信頼性の高いものにすることができるため、当該接続部分における異常過熱やパーティクルの発生を防止できる。よって、信頼性の高い高周波電極回路を備えたウエハ保持体、及びそのウエハ保持体を搭載した半導体製造装置を提供することができる。
本発明のウエハ保持体の一具体例を示す断面図である。 本発明のウエハ保持体が具備する導電性接続部品の取り付け方法の一具体例を示す断面図である。 本発明のウエハ保持体が具備する導電性接続部品の具体例を示す部分断面図である。 本発明のウエハ保持体が具備する導電性接続部品の具体例を示す部分断面図である。 本発明のウエハ保持体が具備する導電性接続部品の他の具体例を示す部分断面図である。 本発明のウエハ保持体が具備する導電性接続部品の更に他の具体例を示す部分断面図である。 比較例1のウエハ保持体が具備する導電性接続部品を示す部分断面図である。 比較例2のウエハ保持体が具備する導電性接続部品を示す部分断面図である。 比較例3のウエハ保持体が具備する導電性接続部品を示す部分断面図である。
 以下、本発明のウエハ保持体の一具体例を図1を参照しながら説明する。図1に示すウエハ保持体10は、図示しないプラズマCVD装置等の半導体製造装置のチャンバー内に搭載されるものであって、半導体ウエハを載置する円盤状のウエハ保持部1と、このウエハ保持部1をそのウエハ載置面1aの反対側の面(以降、裏面1bとも称する)から支持するセラミックス製の好適にはパイプ形状を有する支持部材2と、この支持部材2に関してウエハ保持部1の反対側に設けられたアース部品3とを有している。
 ウエハ保持部1には、抵抗発熱体回路4と、高周波電極回路5とが埋設されている。抵抗発熱体回路4は1対の電極端子(図示せず)を有しており、ここに後述する導電性接続部品が接続可能となるように、各々一端部がウエハ保持部1の裏面1bから露出している。高周波電極回路5も、同様に、その電極端子(図示せず)の一端部がウエハ保持部1の裏面1bから露出している。尚、ウエハ保持部1が具備しているこれら電極端子には、タングステンにNiめっきを施したものを使用することができる。
 上記ウエハ保持部1の裏面1bから露出している抵抗発熱体回路4の電極端子の一端部には、予めねじ部が設けられている。このねじ部に螺合するように、抵抗発熱体回路4用の導電性接続部品6にも予めねじ部が設けられている。これにより、抵抗発熱体回路4用の導電性接続部品6が、抵抗発熱体回路4に電気的に接続している。高周波電極回路5用の導電性接続部品7も、同様に互いに螺合するねじ部を介して高周波電極回路5に電気的に接続している。
 抵抗発熱体回路4用の導電性接続部品6の構造は、特に限定するものでなく、支持部材2の内部及びアース部品3に設けられた貫通孔3aを経てチャンバー系外の電源系(図示せず)に接続される。一方、高周波電極回路5用の導電性接続部品7は、例えば特開2007-281161号公報に示されているような中空のパイプ状電極構造を一部に具備しても良い。この高周波電極回路5用の導電性接続部品7は、他の電極回路、例えば、抵抗発熱体回路4の導電性接続部品6との電気的な干渉を避けるため、セラミックス等の絶縁材料からなる絶縁管(図示せず)に包囲されていることが望ましい。
 高周波電極回路5用の導電性接続部品7の下部は、アース部品3を介してグラウンドに接続される。その際、導電性接続部品7を変形能のない状態のまま、即ちリジット(剛性)な状態のまま鉛直方向下部に設けられているアース部品3にダイレクトに固定すると、ウエハ保持部1が加熱された際に導電性接続部品7が熱膨張し、ウエハ保持部1を裏面から突き上げることになる。これを避けるため、本具体例では導電性接続部品7に鉛直方向の変形能を持たせ、かつ、その一端をアース部品3に面接触で固着している。
 ここで、面接触とは、導電性接続部品7とアース部品3との接続部分が点や線ではなく面同士で接触していることをいい、固着とは、これら面同士の接触部分が摺動することなく互いに強固に固定していることをいう。このように面接触で固着する方法としては、具体的には、ねじ止め、ろう付け、溶接等を挙げることができる。
 導電性接続部品7に変形能を持たせるためには、電極端子との接続部から鉛直方向下向きに延びる金属製の剛性部材と、これに電気的に接続する金属製の可とう性部材とからなる2つの部材で導電性接続部品7を構成することで可能となる。例えば、図1に示す導電性接続部品7は、鉛直方向下向きに延びる金属ロッド7aと、この金属ロッド7aの下部に取り付けられた水平方向に延在する可とう性を有する平板状の金属リード7bとで導電性接続部品7を構成している。
 金属ロッド7aの下部に金属リード7bを取り付ける方法としては、金属ロッド7aの下端部を、おねじ又はめねじが螺刻された構造にしておき、この金属ロッド7aの下端部に、予め両端部に穴を開けておいた金属リード7bの一方の穴をあわせて、ナット又はボルトで固定する方法が好ましい。また、金属リード7bの他方の穴は、支持部材2の下部に設けられているアース部品3にねじ止めするのが好ましく、これにより、当該他方の穴が設けられている金属リード7bの端部とアース部品3の上面とが面接触状態を維持する。
 金属リード7bは水平方向に延在するように取り付けられることが好ましく、これにより高周波電極回路5用の導電性接続部品7の鉛直方向の熱膨張や熱収縮に対応して、鉛直方向に自在に撓むことができる。よって、導電性接続部品7の接続部分に摺動部分を設ける必要がなくなり、電気的なパス(導通経路)に強固な固定状態を維持することができ、長期に亘って高い信頼性を維持できる構造を提供することができる。
 尚、導電性接続部品7の接続部分における面接触は、平面同士の面接触でも構わないし、略同一形状をした部分を有する曲面同士の面接触でも構わない。例えば、導電性接続部品7の接続部分を円柱形のロッドで構成し、これと略同一の内径を持つ環状部材を半割れにしたもので該円柱形のロッドを挟みこんで面接触を確保する方法でも構わない。
 上記平板状の金属リード7bをアース部品3に固定する際は、手順として、支持部材2をアース部品3に接続する時と同時に、あるいはその後に、支持部材2の外側から接続できることが好ましい。そのようにしないと、支持部材2にアース部品3を取り付ける前に金属リード7bをアース部品3に固定するのは、実質的に困難であるか、又は非常に複雑な作業になることが想定されるからである。
 具体的な取り付け方法としては、特に限定するものではないが、例えば図2に示すように、金属リード7bの端部に設けられている穴を支持部材2のフランジ部の穴と合わせながら、当該フランジ部とアース部品3とで金属リード7bの当該端部を挟み込み、支持部材2とアース部品3とを接続するボルト8で金属リード7bの端部をアース部品3に接続する方法を挙げることができる。
 上記平板状の金属リード7bは鉛直方向に撓む必要があるため、図1の紙面に平行な断面のアスペクト比は、水平方向/鉛直方向で3以上あることが好ましく、更に5以上であることがより好ましい。平板状の金属リード7bの厚みは、薄すぎると熱膨張、熱収縮により破断してしまう可能性があり、厚すぎると撓みにくくなるため、0.3mm以上、1.5mm以下が好ましい。
 近年、プラズマなどに使用する高周波の周波数は益々高くなってきており、例えば13.56MHz以上の周波数が使用されている。このため、特に周波数の高い分野においては、高周波ラインが発熱することなく使用できるように、表面積を大きくすることが好ましい。高周波電極回路の場合、電極を流れる高周波は電極表面付近のみを流れるため、同じ断面積で表面積を大きくとるためには扁平な方が好ましいことからも、平板の優位性があると考えられる。
 また、上記金属リード7bは、ほぼ完全なフラットでも構わないし、途中で屈曲部や湾曲部を持っていても構わない。また、高周波電極回路5用の導電性接続部品7の熱膨張・熱収縮時に、金属リード7bが鉛直方向に容易に撓むことが可能なように、アース部品3を構成する金属フランジ部との接続部分を除いて、金属リード7bの上下に空間が確保されていることが好ましい。
 例えば、図3Aに示すように、アース部品3に金属ロッド7aの下端部が嵌まる有底の孔3bを設け、更に、アース部品3の上面のうち、金属リード7bとアース部品3とが対向する領域に、金属リード7bとアース部品3との接続部を除いて、当該孔3bに向かって徐々に深くなる傾斜溝3cを形成するのが好ましい。あるいは、図3Bに示すように、金属ロッド7aの下端部及び水平方向に延在する金属リード7b全体が嵌まる有底の孔3dをアース部品3に設け、金属リード7bの上面がアース部品3に面接触するように接続しても良い。この場合は、アース部品3の金属リード7bとの接続部分をオーバーハング状に形成するのが好ましい。
 上記具体例では、金属リード7bに平板状の部材を使用したが、かかる部材に限定されるものではなく、鉛直方向に変形可能であれば他の形状の部材を使用しても良い。例えば、図4に示すように、導電性接続部品7を鉛直方向下向きに延在する金属ロッド17aと、両端部を除いて全体的に湾曲した、鉛直方向に延在する板バネ状の金属リード17bとを含むようにしても良い。
 高周波電極回路5用の導電性接続部品7に変形能を持たせるための更に別の方法として、導電性接続部品7の一部分又は全体を、らせん状にしても良い。例えば、図5に示すように、導電性接続部品7を鉛直方向下向きに延在する金属ロッド27aと、アース部品3との接続部分を除いてらせん状に形成された金属リード27bとを含むようにしても良い。
 このように、ウエハ保持部1に埋設された高周波電極回路5から導電性接続部品7としてらせん状の高周波ラインを引き出すことによって、鉛直方向の熱膨張を吸収することができる。この場合、らせん部分が鉛直方向に対して横方向に伸びきらないようにするため、例えば図5に示すように、らせん状部分をセラミックス製のパイプ状支持管9の内部に収納したり、棒状部材に沿わせてらせん状部分を巻きつけたりすることが好ましい。尚、らせん状部分の断面は丸状や平角状等の任意の形状であっても良いが、最もコンパクトな構造とするには、薄い金属箔を用いて平角状のリードを作り、これをらせん状に巻くことが望ましい。
 金属リードの材質は、繰り返し疲労に強く、パーティクルの出にくいものであることが好ましく、例えば、ニッケル、インコネル、ステンレス、コバール、鉄-ニッケル合金が好ましい。この中でコバール、鉄-ニッケル合金に関しては、予めニッケルめっきを行っておくことが好ましい。尚、銅はCVDサセプタとしては、金属汚染として忌み嫌われる材料であるため好ましくない。一方、アース部品3の材質は、パーティクルの発生を避けるため、一般にアルミニウム合金又はステンレスを用いるが、軽量化のためにはアルミニウム合金が好ましい。
 このように、本発明のウエハ保持体10においては、埋設された高周波電極回路5から導電性接続部品7を介してアース部品3までの主たる電流パスが面接触により接続されていることを特徴としている。更に、上記高周波ラインとして主たる電流パスを担う導通ルートは、点接触部分や摺動部分を有していないことを特徴としている。これにより、当該接続部分における異常過熱やパーティクルの発生を防止することができ、高周波電極回路5の信頼性を高めることができる。尚、面接触による導通ルートを確保すべく上記電流パスから分岐した導通ルートを別途設けても良い。
 ところで、加熱用ヒータとしての抵抗発熱体回路4の通電を行うための電流リードとしては、断面積が比較的大きく、かつ可とう性を有する構造である撚り線を選択することができる。一方、ウエハ保持部1に埋設されている高周波電極回路5からアース部品3まで高周波電流を流す場合は、導電性接続部品7の表面に集中的に高周波電流が流れるため、かかる撚り線構造では、点接触部分を多く抱えているため、各断面での別の素線への電流の分流が容易でないため、一部の素線で異常発熱等が発生し、長期的に高周波通電を継続させることができない。
 また、高周波電極回路5においては、高周波の系全体のL成分、C成分、R成分のバランスが重要であり、マッチングボックスを用いて、インピーダンス整合を取る必要があるため、時間の経過に伴って又は装置への乗せ換え毎に、支持部材2の内部で高周波の導通ラインが物理的に動いてしまうと、プラズマ印加時にエラーモードが発生してしまうことがある。従って、単に可とう性を有しているというだけの理由で撚り線等の可とう性の電線を用いて接続することは、再現性の観点から好ましくない。即ち、長期的に一定の特性を維持できる構造にする必要がある。
 これらのことを考慮しながら高周波電極回路用の導電性接続部品の熱膨張・熱収縮の問題を解決するため、従来から多くの方策が検討されてきたが、それらの方策は主に鉛直方向のみに対策を施したものが多く、しかも接続部分では摺動によりパーティクルが発生したり、接続状態が不安定になったりするという問題を常に抱えていた。これに対して上記にて説明した本発明の構造は、このような従来の方策に捉われることなくこれらの問題を解決したものである。
 一例として、本発明の構造は、導電性接続部品7とアース部品3との固定点を導電性接続部品7の熱膨張・熱収縮の方向に対して水平方向にずらせて可とう性部材を介して固定するといった新規な考え方に基づくものであり、更に実際的な固定方法に関しても、我々の英知を集めてアース部品3にパイプ状の支持部材2を固定する時と同時に又はその後に、導電性接続部品7とアース部品3とをねじで締めるといった独創性に優れた構造となっている。
 また、本発明のウエハ保持体10においては、支持部材2の内部に不活性ガスを供給しても良い。これにより、特に高温部における電極部分の劣化を防ぐことができる。また、ウエハ保持部1を支持する支持部材2は、形状に関して特に制約はなく、任意の形状を採用することができるが、簡易な構造である上、高い機械的強度を有している点からパイプ状がより望ましい。
 この支持部材2はウエハ保持部1に物理的に固定されていてもよいし、化学的に接合されていてもよい。ウエハ保持部1に働く応力を低減する場合には、支持部材2をロウ材やガラスなどを用いて化学的に接合するのではなく、例えばネジ止めなどの方法で物理的に固定することが好ましい。一般的に、支持部材2はウエハ保持部1付近で温度が高く、逆にその反対側では温度が低いため、この温度差によって支持部材2が変形しやすい。このときの支持部材2がウエハ保持部1に化学的に接合されていると、支持部材2の変形がウエハ保持部1に影響を及ぼし、ウエハ保持部1に働く応力が大きくなるため好ましくない。
 これに対して、ネジ止めなどの物理的な固定方法の場合には、ウエハ保持部1と支持部材2との間に若干の寸法上の「あそび」が生じ、逆に寸法上の「あそび」がなければ固定することはできない。このため、ウエハ保持部1と支持部材2との間に発生する応力は、この「あそび」が少なからず吸収するため、化学的に接合した場合に比較して、応力を相対的に小さくできるので好ましい。
 ウエハ保持部1並びに支持部材2に使用する材料としては、特に制約はないが、アルミナ、窒化アルミニウム、窒化ケイ素、炭化ケイ素などのセラミックス材料、あるいはその複合体を使用することができる。これらの材料の選定は、使用温度やコスト、耐食性などを考慮して適宜決めればよい。これらの材料の中では、特に窒化アルミニウムが好ましい。
 次に、本発明のウエハ保持体10の製造方法について、窒化アルミニウム(AlN)のサセプタを例にとって説明する。使用するAlNの原料粉末は、比表面積が2.0~10.0m/gのものが好ましい。比表面積が2.0m/g未満の場合は窒化アルミニウムの焼結性が低下し、また10.0m/gを超える場合には粉末の凝集が非常に強くなるので取り扱いが困難になる。また、原料粉末に含まれる酸素量は、2重量%以下が好ましい。酸素量が2重量%を超えると、焼結体の熱伝導率が低下する。
 更に、原料粉末に含まれるアルミニウム以外の金属不純物量は、合計で2000ppm以下が好ましい。金属不純物量が上記範囲を超えると、焼結体の熱伝導率が低下する。特に、金属不純物としてSiなどの4族元素や、Feなどの鉄族元素は、焼結体の熱伝導率を低下させる作用が高いので、含有量はそれぞれ1000ppm以下であることが好ましい。
 AlNは難焼結性材料であるので、AlN原料粉末に焼結助剤を添加することが好ましい。添加する焼結助剤としては、希土類元素化合物やアルカリ土類金属化合物が好ましい。これらの化合物は、焼結中に窒化アルミニウム粉末粒子の表面に存在するアルミニウム酸化物あるいはアルミニウム酸窒化物と反応して、窒化アルミニウムの緻密化を促進すると共に、窒化アルミニウム焼結体の熱伝導率を低下させる原因となる酸素を除去する働きもあるので、窒化アルミニウム焼結体の熱伝導率を向上させることができる。
 焼結助剤の添加量は、0.01~5重量%の範囲が好ましい。添加量が0.01重量%未満では、緻密な焼結体を得ることが困難であると共に、焼結体の熱伝導率が低下する。また、添加量が5重量%を超えると、窒化アルミニウム焼結体の粒界に焼結助剤が存在することになるので、腐食性雰囲気で使用する場合この粒界に存在する焼結助剤がエッチングされ、脱粒やパーティクル発生の原因となる。更に好ましくは、焼結助剤の添加量は1重量%以下である。添加量が1重量%以下であれば、粒界の3重点にも焼結助剤が存在しなくなるので、焼結体の耐食性が一層向上する。
 上記の焼結助剤のなかでは、希土類元素化合物が好ましく、特に酸素を除去する働きが顕著であるイットリウム化合物が好ましい。また、希土類元素化合物としては、酸化物、窒化物、フッ化物、ステアリン酸化合物などが使用できる。この中では、酸化物は安価で入手が容易である点で好ましい。また、ステアリン酸化合物は、有機溶剤との親和性が高いので、AlN原料粉末と焼結助剤などを有機溶剤で混合する場合には、混合性が高くなるため好適である。
 これらAlN原料粉末と焼結助剤粉末に、所定量の溶剤、バインダー、更には必要に応じて分散剤や邂逅剤を添加して混合する。混合方法には特に制約はないが、ボールミル混合や超音波による混合等が可能である。このような混合によって、原料スラリーを得ることができる。得られた原料スラリーを成形し、焼結することによって、ウエハ保持部となるAlN焼結体を得ることができる。その方法には、コファイヤー法とポストメタライズ法の2種類の方法が可能である。
 まず、ポストメタライズ法について説明する。前記原料スラリーからスプレードライヤー等の手法によって、顆粒を作製する。この顆粒を所定の金型に充填し、プレス成形を施す。このとき、プレス圧力は、9.8MPa以上であることが望ましい。9.8MPa未満の圧力では、成形体の強度が充分に得られないことが多く、ハンドリングなどで破損し易くなる。
 また、成形体の密度は、バインダーの含有量や焼結助剤の添加量によって異なるが、1.5g/cm以上であることが好ましい。1.5g/cm未満であると、原料粉末粒子間の距離が相対的に大きくなるので、焼結が進行し難くなる。また、成形体密度は2.5g/cm以下であることが好ましい。2.5g/cmを超えると次工程の脱脂処理で成形体内のバインダーを充分除去することが困難となるため、前述のように緻密な焼結体を得ることが困難となる。
 得られた成形体は、窒素やアルゴン等の非酸化性雰囲気中で加熱して脱脂処理を行う。大気等の酸化性雰囲気中で脱脂処理を行うと、AlN粉末の表面が酸化されるので、焼結体の熱伝導率が低下する。脱脂処理の加熱温度は、500~1000℃が好ましい。500℃未満の温度では、バインダーを充分除去することができず、脱脂処理後の成形体中にカーボンが過剰に残存するので、その後の焼結工程での焼結を阻害する。
 また、1000℃を超える温度では、残存するカーボンの量が少なくなり過ぎるので、AlN粉末表面に存在する酸化被膜の酸素を除去する能力が低下し、焼結体の熱伝導率が低下する。脱脂処理後の成形体中に残存する炭素量は、1.0重量%以下であることが好ましい。1.0重量%を超える炭素が残存していると、焼結が阻害されるため、緻密なAlN焼結体を得ることができない。
 脱脂後の成形体に対して、次に焼結を行う。この焼結は、窒素やアルゴン等の非酸化性雰囲気中で、1700~2000℃の温度で行う。このとき使用する窒素などの雰囲気ガスに含有される水分は、露点で-30℃以下であることが好ましい。これより多い水分を含有する場合、焼結時にAlNが雰囲気ガス中の水分と反応して酸窒化物が形成されるので、熱伝導率が低下する可能性がある。また、雰囲気ガス中の酸素量は、0.001体積%以下であることが好ましい。これを超える酸素量では、AlNの表面が酸化して、熱伝導率が低下する可能性がある。
 更に、焼結時に成形体を載せるために用いる治具は、窒化ホウ素(BN)成形体が好適である。このBN成形体は、上記焼結温度に対して充分な耐熱性を有すると共に、その表面に固体潤滑性があるため、焼結時に成形体が収縮する際の治具と成形体の間の摩擦を小さくすることができ、歪みの少ないAlN焼結体を得ることができる。
 得られたAlN焼結体は、必要に応じて表面の研磨加工など機械加工を施す。次工程で導電ペーストをスクリーン印刷する場合、焼結体の表面粗さはRaで5μm以下であることが好ましい。5μmを超えるとスクリーン印刷により回路形成した際に、パターンのにじみやピンホールなどの欠陥が発生しやすくなる。更に好適には、表面粗さはRaで1μm以下である。
 上記表面粗さまで研磨加工する際には、焼結体の両面にスクリーン印刷する場合は当然であるが、片面のみにスクリーン印刷を施す場合でも、スクリーン印刷する面と反対側の面も研磨加工を施す方がよい。スクリーン印刷する面のみを研磨加工した場合、スクリーン印刷時には、研磨加工していない面で焼結体を支持することになる。その時、研磨加工していない面には突起や異物が存在することがあるので、焼結体の固定が不安定になり、スクリーン印刷で回路パターンが正確に描けないことがあるからである。
 また、この研磨加工において、両加工面の平行度は0.5mm以下であることが好ましい。平行度が0.5mmを超えると、スクリーン印刷時に導電ペーストの厚みのバラツキが大きくなることがある。平行度については0.1mm以下であれば特に好適である。更に、スクリーン印刷する面の平面度は、0.5mm以下であることが好ましい。0.5mmを超える平面度の場合にも、導電ペーストの厚みのバラツキが大きくなることがあるからである。この平面度についても0.1mm以下であれば特に好適である。
 研磨加工を施したAlN焼結体には、スクリーン印刷により導電ペーストを塗布し、電気回路パターンの形成を行う。導電ペーストは、金属粉末に、バインダー及び溶剤を混合することにより得られる。金属粉末としては、セラミックスとの熱膨張係数のマッチングから、タングステンやモリブデンあるいはタンタルが好ましい。
 また、AlNとの密着強度を高めるために、上記導電ペーストに酸化物粉末を添加することもできる。酸化物粉末としては、3A族元素や3A族元素の酸化物、Al、SiOなどが好ましい。特に、酸化イットリウムは、AlNに対する濡れ性が非常に良好であるので好ましい。これらの酸化物粉末の添加量は、0.1~30重量%が好ましい。0.1重量%未満の場合、形成した電気回路である金属層とAlNとの密着強度が低下する。逆に30重量%を超えると、電気回路である金属層の電気抵抗値が高くなる。
 導電ペーストの厚みは、乾燥後の厚みで5μm以上、100μm以下であることが好ましい。厚みが5μm未満の場合は、電気抵抗値が高くなり過ぎるだけでなく、密着強度も低下する。また、厚みが100μmを超える場合は、密着強度が低下する。また、形成する回路パターンが抵抗発熱体回路の場合には、パターンの間隔は0.1mm以上とすることが好ましい。0.1mm未満の間隔では、抵抗発熱体に電流を流したときに、印加電圧及び温度によっては漏れ電流が発生し、ショートする危険がある。特に、500℃以上の温度で使用する場合には、パターン間隔は1mm以上とすることが好ましく、3mm以上であれば更に好ましい。
 次に、導電ペーストを脱脂した後、焼成する。脱脂は、窒素やアルゴン等の非酸化性雰囲気中で行う。脱脂温度は500℃以上が好ましい。脱脂温度が500℃未満では、導電ペースト中のバインダーの除去が不十分で金属層内にカーボンが残留し、焼成したときに金属の炭化物を形成するので、金属層の電気抵抗値が高くなる。
 脱脂後の導電ペーストの焼成は、窒素やアルゴンなどの非酸化性雰囲気中にて、1500℃以上の温度で行うのが好適である。1500℃未満の温度では、導電ペースト中の金属粉末の粒成長が進行しないので、焼成後の金属層の電気抵抗値が高くなり過ぎる。また、焼成温度はセラミックスの焼結温度を超えない方がよい。セラミックスの焼結温度を超える温度で導電ペーストを焼成すると、セラミックス中に含有される焼結助剤などが揮散しはじめ、更には導電ペースト中の金属粉末の粒成長が促進されてセラミックスと金属層との密着強度が低下するからである。
 形成した電気回路である金属層の絶縁性を確保するために、金属層の上に絶縁性コートを形成することができる。絶縁性コートの材質は、金属層との反応性が小さく、AlNとの熱膨張係数差が5.0×10-6/K以下であれば特に制約はなく、例えば結晶化ガラスやAlN等を使用することができる。これらの材料を例えばペースト状にして所定の厚みのスクリーン印刷を行い、必要に応じて脱脂を行った後、所定の温度で焼成することにより、絶縁性コートを形成することができる。
 この時、ペーストに添加する焼結助剤量は、0.01重量%以上であることが好ましい。0.01重量%未満では、絶縁性コートが緻密化せず、金属層の絶縁性を確保することが困難となる。また、焼結助剤量は20重量%を超えないことが好ましい。20重量%を超えると、過剰の焼結助剤が金属層中に浸透するので、金属層の電気抵抗値が変化してしまうことがある。ペーストを塗布する厚みには特に制限はないが、5μm以上であることが好ましい。5μm未満では、絶縁性を確保することが困難となるからである。
 また、上記した導電ペーストとして、銀、パラジウム、白金などの混合物や合金を使用することも可能である。これらの金属は、銀の含有量に対してパラジウムや白金を添加することによって、導体の体積抵抗率が増加するため、回路パターンに応じてその添加量を調整すればよい。また、これらの添加物は、回路パターン間のマイグレーションを防止する効果があるため、銀100重量部に対して0.1重量部以上添加することが好ましい。
 これらの金属粉末には、AlNとの密着性を確保するために、金属酸化物を添加することが好ましい。例えば、酸化アルミニウム、酸化ケイ素、酸化銅、酸化ホウ素、酸化亜鉛、酸化鉛、希土類酸化物、遷移金属元素酸化物、アルカリ土類金属酸化物などを添加することができる。添加量としては、0.1重量%以上50重量%以下が好ましい。含有量がこれより少ないと、窒化アルミニウムとの密着性が低下するため好ましくない。また、含有量がこれより多いと、銀等の金属成分の焼結が阻害されるため好ましくない。
 上記金属粉末と金属酸化物粉末を混合し、更に有機溶剤やバインダーを添加し、ペースト状にした後、上記と同様にスクリーン印刷により回路パターンを形成する。この場合、形成した回路パターンに対して、窒素などの不活性ガス雰囲気中若しくは大気中にて、700℃から1000℃の温度範囲で焼成する。
 この場合、回路間の絶縁を確保するために、結晶化ガラスやグレーズガラス、有機樹脂などを塗布し、焼成若しくは硬化させることで、絶縁層を形成することができる。ガラスの種類としては硼珪酸ガラス、酸化鉛、酸化亜鉛、酸化アルミニウム、酸化ケイ素などが使用できる。これら粉末に有機溶剤やバインダーを添加し、ペースト状にし、スクリーン印刷により塗布する。
 塗布する厚みに特に制限はないが、5μm以上であることが好ましい。5μm未満では、絶縁性を確保することが困難となるからである。また、焼成温度としては、上記回路形成時の温度より低温であることが好ましい。上記回路焼成時よりも高い温度で焼成すると、回路パターンの抵抗値が大きく変化するため好ましくない。
 次に、必要に応じて、更にセラミックス基板を積層する。セラミックス基板の積層は、接合剤を介して行うのがよい。接合剤としては、酸化アルミニウム粉末や窒化アルミニウム粉末に、2A族元素化合物や3A族元素化合物と、バインダーや溶剤とを加え、ペースト化したものを用い、接合面にスクリーン印刷等の手法で塗布する。塗布する接合剤の厚みに特に制約はないが、5μm以上であることが好ましい。5μm未満の厚みでは、接合層にピンホールや接合ムラ等の接合欠陥が生じやすくなる。
 接合剤を塗布したセラミックス基板は、非酸化性雰囲気中において500℃以上の温度で脱脂する。その後、積層するセラミックス基板を重ね合わせ、所定の荷重を加え、非酸化性雰囲気中で加熱することにより、セラミックス基板同士を接合する。加える荷重は、5kPa以上であることが好ましい。5kPa未満の荷重では、充分な接合強度が得られないか、接合欠陥が生じやすい。
 接合時の加熱温度は、セラミックス基板同士が接合層を介して十分密着する温度であれば特に制約はないが、1500℃以上であることが好ましい。1500℃未満では、十分な接合強度が得られにくく、接合欠陥を生じやすい。前記脱脂並びに接合時の非酸化性雰囲気は、窒素やアルゴンなどを用いることが好ましい。
 以上のようにして、ウエハ保持体のウエハ保持部となるセラミックス積層焼結体を得ることができる。なお、上記した電気回路として、導電ペーストを用いずに、例えば、抵抗発熱体回路であればモリブデン線(コイル)、静電チャック用電極回路や高周波電極回路などの場合には、モリブデンやタングステンのメッシュ(網状体)を用いることも可能である。
 この場合、AlN原料粉末中に上記モリブデンコイルやメッシュを内蔵させ、ホットプレス法により作製することができる。ホットプレスの温度や雰囲気は、AlNの焼結温度や雰囲気に準ずればよいが、ホットプレス圧力は1.0MPa以上加えることが望ましい。1.0MPa未満のホットプレス圧力では、モリブデンコイルやメッシュとAlNの間に隙間が生じることがあるので、ヒータとしての性能が出なくなることがある。
 次に、コファイヤー法について説明する。前述した原料スラリーを、ドクターブレード法によりシート成形する。シート成形に関して特に制約はないが、シートの厚みは、乾燥後で3mm以下であることが好ましい。シートの厚みが3mmを超えると、スラリーの乾燥収縮量が大きくなるので、シートに亀裂が発生する確率が高くなる。得られたシート上に、導体ペーストをスクリーン印刷などの手法で塗布することにより、所定形状の電気回路パターンを形成する。導電ペーストは、上記ポストメタライズ法で説明したものと同じものを用いることができる。ただし、コファイヤー法では、導電ペーストに酸化物粉末を添加しなくても支障はない。
 上記回路パターンの形成を行ったシートと、回路形成をしていないシートを積層する。積層の方法は、各シートを所定の位置にセットし、重ね合わせる。この時、必要に応じて各シート間に溶剤を塗布しておく。重ね合わせた状態で、必要に応じて加熱する。加熱する場合、加熱温度は150℃以下であることが好ましい。150℃を超える温度にシートを加熱すると、積層したシートが大きく変形する。そして、重ね合わせたシートに圧力を加えて一体化する。加える圧力は、1~100MPaの範囲が好ましい。1MPa未満の圧力では、シートが充分に一体化せず、その後の工程中に剥離することがある。また、100MPaを超える圧力を加えると、シートの変形量が大きくなりすぎる。
 この積層体を、前述のポストメタライズ法と同様に、脱脂処理並びに焼結を行う。脱脂処理及び焼結の温度や、炭素量等はポストメタライズ法の場合と同じである。前述した導電ペーストをシートに印刷する際に、複数のシートにそれぞれ抵抗発熱体回路や高周波電極回路、静電チャック用電極回路等を印刷し、それらを積層することによって、複数の電気回路を有する通電発熱ヒータを容易に作製することも可能である。このようにして、ウエハ保持体のウエハ保持部となるセラミックス積層焼結体を得ることができる。
 尚、抵抗発熱体回路などの電気回路が、セラミックス積層体の最外層に形成されている場合は、電気回路の保護と絶縁性の確保のために、前述のポストメタライズ法の場合と同様に、電気回路の上に絶縁性コートを形成することができる。得られたセラミックス積層焼結体は、必要に応じて加工を施す。通常、焼結した状態では、半導体製造装置で要求される精度に入らないことが多いからである。
 加工精度は、例えば、ウエハ載置面の平面度では、リング状凸部やエンボスのウエハとの接触部が0.1mm以下であることが好ましい。この平面度が0.5mmを超えると、被処理物であるウエハとウエハ保持部との間に隙間が生じやすくなり、ウエハ保持部の熱が被処理物に均一に伝わらなくなるため、被処理物の温度ムラが発生しやすくなる。
 また、ウエハ載置面の面粗さは、Raで5μm以下が好ましい。Raで5μmを超えると、ウエハ保持部とウエハとの摩擦によって、AlNの脱粒が多くなることがある。この時、脱粒した粒子はパーティクルとなり、ウエハ上への成膜やエッチングなどの処理に対して悪影響を与えることになる。更に、表面粗さはRaで1μm以下であれば更に好ましい。以上のようにして、ウエハ保持体におけるサセプタのウエハ保持部を作製することができる。
 このようにして作製したウエハ保持部に、支持部材を取り付ける。支持部材の材質としては、ウエハ保持部のセラミックスの熱膨張係数と大きく違わない熱膨張係数のものであれば特に制約はないが、ウエハ保持部との熱膨張係数の差が5×10-6/K以下であることが好ましい。熱膨張係数の差が5×10-6/Kを超えると、特に化学的に接合する場合の接合時にウエハ保持部と支持部材の取付部付近にクラックなどが発生しやすく、接合時にクラックが発生しなくても、繰り返し使用しているうちに接合部に熱サイクルが加わり、割れやクラックが発生することがある。例えば、ウエハ保持部がAlNの場合、支持部材の材質はAlNが最も好適であるが、窒化ケイ素や炭化ケイ素あるいはムライト等も使用することができる。
 上記支持部材は、接合層を介して化学的に接合することができる。化学的に接合する場合の接合層の成分は、AlN及びAl並びに希土類酸化物からなることが好ましい。これらの成分は、ウエハ保持部や支持部材の材質であるAlNなどのセラミックスと濡れ性が良好なため、接合強度が比較的高くなり、また接合面の気密性も得られやすいので好ましい。
 接合する支持部材及びウエハ保持部のそれぞれの接合面の平面度は、0.5mm以下であることが好ましい。これを超えると接合面に隙間が生じやすくなり、十分な気密性を持つ接合を得ることが困難となる。平面度は0.1mm以下が更に好適である。尚、ウエハ保持部の接合面の平面度は、0.02mm以下であれば更に好適である。また、それぞれの接合面の面粗さは、Raで5μm以下であることが好ましい。これを超える面粗さの場合、やはり接合面に隙間が生じやすくなる。接合面の面粗さはRaで1μm以下が更に好適である。
 また、上記支持部材は、ネジ止めなどの物理的(機械的)手法によって取り付けることもできる。例えば、支持部材が筒形状である場合、支持部材の内側若しくは外側にフランジ部を形成し、複数の、できれば3箇所以上の貫通孔又はネジ孔を形成し、ウエハ保持部側にもネジ孔を形成する。ここにウエハ保持部や支持部材と熱膨張係数が比較的近い材質によって形成された雄ネジをネジ込むことで、ウエハ保持部に支持部材を取り付けることができる。この取り付け方法においては、その用途によって支持部材の内側ないしは外側で上記のように固定することができるが、ウエハ保持部に働く応力を小さくするためには、支持部材の内側で固定する方が好ましい。
 以上、本発明のウエハ保持体を実施形態に基づいて説明したが、本発明は係る実施形態に限定されるものではなく、本発明の主旨から逸脱しない範囲の種々の態様で実施可能である。すなわち、本発明の技術的範囲は、特許請求の範囲及びその均等物に及ぶものである。
 [実施例1]
 窒化アルミニウム粉末99.5重量部に焼結助剤として酸化イットリウム0.5重量部を加え、更にバインダー、有機溶剤を加えてボールミル混合することによってスラリーを作製した。得られたスラリーをスプレードライすることにより顆粒を作製し、これをプレス成形して成形体を作製した。次に、この成形体を窒素雰囲気中にて700℃の条件で脱脂した後、窒素雰囲気中において1850℃で焼結して窒化アルミニウム焼結体を得た。得られた焼結体を、直径330mm、厚み10mmに加工した。このときの表面粗さはRaで0.8μm、平面度は50μmであった。
 この窒化アルミニウム焼結体上にWペーストをスクリーン印刷により塗布し、窒素雰囲気中にて700℃で脱脂した後、窒素雰囲気中にて1830℃で焼成することにより、一方の面に抵抗発熱体回路及び他方の面に高周波電極回路を形成した。更に、高周波電極回路側に厚み1mm、抵抗発熱体回路側に厚み9mmの窒化アルミニウム基板をそれぞれ配置し、接着に必要な窒化アルミニウムを主成分とする材料を介し、必要な脱脂焼成プロセスを行ったのち、接合を行い、ウエハ保持基板を作成した。
 このウエハ保持基板に対して、抵抗発熱体回路にまで達するザグリ穴を形成し、抵抗発熱体回路に給電するためのNiめっきを施したW製の電極部品を接触させ、給電電極ラインを確保した。また同様に、高周波印加を目的としたベース回路としての高周波電極回路にNiめっきを施したW製の電極部品を接触させ、高周波電極ラインを確保した。これらの電極部品は、鉛直方向下向きのM3のボルト端子構造となっており、これにM3めねじ構造を持つ4mm径のNi製の導電性接続部品をねじこんで接続した。
 また、このウエハ保持基板の被処理面の反対面に特願2008-018874号公報に示すように、セラミックス製のパイプ状支持部材固定のための金属ボルト装填用のM6有底めねじ穴を開け、Niめっきを施したW製のフランジ付金属ボルトをねじ込んだ後、金属ボルトの回り止め防止のために、窒化アルミニウム製の固定用部品を用いて金属ボルトのフランジを押さえ込み、ガラスプリフォームを用いて固定用部品とウエハ保持基板とを接合させた。
 このようにして作製された金属ボルトが埋設されたウエハ保持部に対して、セラミックス製のパイプ状支持部材のフランジ部に予め設けられている貫通穴に金属ボルトを挿通し、金属ナットを用いてセラミックス製の支持部材をウエハ支持部に固定した。
 パイプ状支持部材のもう一端には、チャンバーに接続するためのアルミニウム製のアース部品を取り付けた。このアース部品は鉛直方向に穴が開いており、給電用の導電性接続部品2本は、この穴に取り付けられた気密用コネクタ端子を通じて電気的にチャンバー系外に取り出されている。また高周波電極回路からの導電性接続部品は、このアース部品と電気的に繋がった構造とした。
 ここで高周波電極回路からの4mm径の導電性接続部品は、鉛直方向下向きのM3のボルト構造とした。一方、高周波ライン接続用として、長さ35mm、幅6mm、厚さ0.5mmの平板状のNi製の金属リードを準備し、これに3.2mm径の穴を2つ穿孔した。金属リードに穿孔したこれら3.2mm径の穴の一方に上記導電性接続部品のM3ボルト部分を挿通し、M3ナットを用いて挟み込むようにして固定した。
 この水平方向に張り出す平板状の電流リードに穿孔されている他方の3.2mm径の穴に、別のM3ボルトを挿通して上記アース部品に接続した。このようにして、図3Aに示すようなウエハ保持体を作製した。このウエハ保持体は、高周波電極回路用の導通ラインが、導電性接続部品の下部から水平方向に延在している平板状の金属リードに接続される構造をしているため、高周波電極ラインの導電性接続部品が熱膨張した場合に平板状の金属リードがたわみ、熱膨張を吸収することができる。穿孔された穴に、図中3cのように傾斜溝を設けることで、平板状の金属リードをたわみ易くすることにより、熱膨張を吸収し易くすることができる。
 上記構造のウエハ保持体を平行平板型の高出力プラズマCVDサセプタとして使用する場合、前述した抵抗発熱体回路の電極ラインに電力を供給し550℃まで加温させた状態でプラズマを形成する。具体的には、ウエハ保持部に層状に埋設されている高周波電極回路を平行平板の下部電極とし、高周波電極ラインがアース部品を介してアース接続されているこの下部電極と、上部電極のシャワーヘッドとの間で13.56MHz、100V、2kWの高周波を印加すると共に反応ガスを流すことでプラズマを形成し、ウエハ上に所望の成膜を堆積させることができる。
 このプラズマ印加条件はCVDプロセスによるが、下記の長期信頼性試験では、プラズマ印加時間を1ウエハ処理当たり1分間とした。また、長期信頼性試験においては堆積させる必要はないので、反応ガスの代わりにNを用いてプラズマ印加のみとした。
 上記条件において長期信頼性試験を行ったところ、高周波電極ラインを構成する鉛直方向の導電性接続部品は、その上部がウエハ保持部に接続しているので熱膨張が発生し、セラミックス製のパイプ状支持部材に比べてより多く熱膨張した。このような状況下にあっても、導電性接続部品の熱膨張に応じて、水平方向に張り出した平板状の金属リードが撓んだため、100,000ショットまで実験を行っても、高出力プラズマを安定的に印加し続けることが可能であった。
 [実施例2]
 高周波電極回路用の導電性接続部品として、実施例1の平板状の金属リードに代えて、幅8mm、厚さ0.3mmのステンレス箔を準備し、棒状の外径5mmの治具を芯材として、その周りにステンレス箔同士が互いにオーバーラップしないように予め巻きつけた後、治具を取り除き、下側に開口部を有する外径10mm、内径6mmの電極保護用セラミックスパイプの内壁に沿うように装てんし、その下部開口部からステンレス箔の端部を取り出してそこに穴を開け、アース部となるアース部品に直接ねじ止めを行って図5に示すような構造のウエハ保持体を作製した。これに上記実施例1と同様の長期信頼性試験を行った。その結果、100,000ショットのプラズマを安定して印加し続けることが可能であった。
 [実施例3]
 高周波電極回路用の導電性接続部品として、実施例1の平板状の金属リードに代えて、幅8mm、厚さ1mmのステンレス平板を両端部を除いて全体的に湾曲させて板バネとし、これを鉛直方向に延在して一端部を電極部品に接続すると共に、他端部をアース部となるアース部品に直接ねじ止めを行って図4に示すような構造のウエハ保持体を作製した。これに実施例1と同様の長期信頼性試験を行った。その結果、100,000ショットのプラズマを安定して印加し続けることが可能であった。
 [実施例4]
 平板状の金属リードを、下記表1に示す種々の材料及びサイズにした以外は実施例1と同様にしてウエハ保持体を作製した。これら試料1~11に対して、実施例1と同様のプラズマ印加条件で100回のプラズマ印加を行い、問題が生じないか観察した。その結果、下記表1に示す観察結果が得られた。
Figure JPOXMLDOC01-appb-T000001
 [比較例1]
 図6に示すような、金属ロッド57をアース部品3に直接固定した以外は実施例1と同様にしてウエハ保持体を作製した。このウエハ保持体に対して、実施例1と同様のプラズマ印加条件でプラズマ印加を行なったところ、32枚目のウエハ処理を行った段階で、金属ロッド57がウエハ保持部1を突き上げてしまい、ウエハ保持部1が破損してしまうトラブルが発生した。
 これは、高温状態において、高周波電極回路用の導電性接続部品である金属ロッド57が熱膨張を起こし、ウエハ支持部1との熱膨張差分によって生じる応力を解消すべく、ウエハ保持部1を下から突き上げる応力が働き、更に高出力プラズマ印加の繰り返しにより、ウエハ保持部1を破損まで至らせたものと考えられる。
 [比較例2]
 図7に示すような、金属ロッド67の下部にスリットを設け、コイル状のスプリングコンタクトと呼ばれる接触子67aを介在させてアース部品3に電気的、機械的に接触させた以外は実施例1と同様にしてウエハ保持体を作製した。その際、材質として高電力通電可能なベリリウム銅タイプと、強度的に反発力のあるステンレスタイプの2種を使用した。これらウエハ保持体に対して、プラズマ印加を行なった。
 いずれの場合も、500W程度のプラズマ印加では断線することがなかったが、2kWのプラズマ印加にすると、それぞれ37,510ショット目、69,399ショット目で安定したプラズマ印加ができなくなった。分解して内部観察を行うと、ベリリウム銅タイプはスプリングコイルが磨耗して一部のコイルで断線を生じプラズマがちらつく現象が発生していた。一方、ステンレスタイプは、スプリングコイルが焼損してプラズマが発生できなくなったものと推測される。いずれの場合も長時間のプラズマ印加により、スプリングコイル部分で期待していた熱膨張による摺動と高出力通電の両立が困難になったためと考えられる。
 ベリリウム銅タイプとステンレスタイプの違いは、ベリリウム銅タイプは、磨耗は早く発生したものの、電気抵抗が低いので他のコイル巻部分に分流されたものと思われる。但し、接触部分が不完全となる際にプラズマのちらつき現象が見られたものと思われる。ステンレスタイプの場合、磨耗はベリリウム銅と比べ発生しにくいが、一旦磨耗が始まると電気抵抗が高い分、他のコイル巻部分に分流することができず、なだれ現象が発生し、スプリングコイル全体が焼損してしまいプラズマ印加ができなくなったものと思われる。
 [比較例3]
 図8に示すような、両端に圧着端子を取り付けた撚り線77を用い、直接アース部品3にねじ止め固定を行った以外は実施例1と同様にしてウエハ保持体を作製した。このウエハ保持体に対して、実施例1と同様のプラズマ印加条件で100回のプラズマ印加を行い、問題が生じないか観察した。その結果、2kWのプラズマ印加にすると、100ショットに3回程度ちらつきが見られ、安定したプラズマ印加ができなくなった。これは、撚り線77の構造が、主たる電流パスの中に点接触しかない部分を多く抱えたものであるために発生しているものと思われる。
 1  ウエハ保持部
 2  支持部材
 3  アース部品
 4  抵抗発熱体回路
 5  高周波電極回路
 6  抵抗発熱体回路用の導電性接続部品
 7  高周波電極回路用の導電性接続部品
 7a、17a、27a 金属ロッド
 7b、17b、27b 金属リード
 10 ウエハ保持体

Claims (5)

  1.  チャンバー内に設置され、高周波電極回路が埋設されたウエハ保持部と、該ウエハ保持部をそのウエハ載置面の反対側の面から支持する支持部材と、該支持部材に関してウエハ保持部の反対側に設けられたアース部品と、該支持部材の内部に挿通され、該高周波電極回路と該アース部品とを電気的に接続する導電性接続部品とを有するウエハ保持体であって、該導電性接続部品は鉛直方向に変形能を有し、かつ、導電性接続部品の主たる電流パスを担う接続部分が面接触で固着していることを特徴とするウエハ保持体。
  2.  前記導電性接続部品は、前記高周波電極回路に接続する鉛直方向下向きに延在する金属製の剛性部材と、該剛性部材に接続する可とう性部材とを有することを特徴とする、請求項1に記載のウエハ保持体。
  3.  前記可とう性部材は、鉛直方向下向きに延在するらせん状部材若しくは板バネ状部材、又は水平方向に延在する平板状部材であることを特徴とする、請求項2に記載のウエハ保持体。
  4.  前記導電性接続部品と前記アース部品との接続部分が、前記支持部材と前記アース部品との接続と同時又はその後に接続可能な構造であることを特徴とする、請求項1~3のいずれかに記載のウエハ保持体。
  5.  請求項1~4のいずれかに記載のウエハ保持体を搭載していることを特徴とする半導体製造装置。
PCT/JP2010/054506 2009-03-27 2010-03-17 高周波電極の接続方法を改善したウエハ保持体及びそれを搭載した半導体製造装置 WO2010110137A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010800016762A CN102047383A (zh) 2009-03-27 2010-03-17 改善高频电极的连接方法的晶片保持体及搭载该晶片保持体的半导体制造装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009080166A JP2010232532A (ja) 2009-03-27 2009-03-27 高周波電極の接続方法を改善したウエハ保持体及びそれを搭載した半導体製造装置
JP2009-080166 2009-03-27

Publications (1)

Publication Number Publication Date
WO2010110137A1 true WO2010110137A1 (ja) 2010-09-30

Family

ID=42780829

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/054506 WO2010110137A1 (ja) 2009-03-27 2010-03-17 高周波電極の接続方法を改善したウエハ保持体及びそれを搭載した半導体製造装置

Country Status (5)

Country Link
JP (1) JP2010232532A (ja)
KR (1) KR20110128722A (ja)
CN (1) CN102047383A (ja)
TW (1) TWI480972B (ja)
WO (1) WO2010110137A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017216287A (ja) * 2016-05-30 2017-12-07 日本特殊陶業株式会社 基板支持部材及び給電端子

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5891953B2 (ja) * 2012-05-31 2016-03-23 新東工業株式会社 支持部材、加熱プレート支持装置及び加熱装置
US9088085B2 (en) * 2012-09-21 2015-07-21 Novellus Systems, Inc. High temperature electrode connections
JP6093010B2 (ja) * 2013-04-26 2017-03-08 京セラ株式会社 試料保持具
WO2016117424A1 (ja) * 2015-01-20 2016-07-28 日本碍子株式会社 シャフト端部取付構造
KR102099382B1 (ko) * 2015-10-07 2020-04-13 주식회사 원익아이피에스 기판처리장치
JP7038496B2 (ja) * 2017-07-06 2022-03-18 日本特殊陶業株式会社 半導体製造装置用部品、および、半導体製造装置用部品の製造方法
JP6609735B2 (ja) * 2017-08-28 2019-11-27 株式会社クリエイティブテクノロジー 静電式ワーク保持方法,静電式ワーク保持システム及びワーク保持装置
JP2020092195A (ja) * 2018-12-06 2020-06-11 東京エレクトロン株式会社 プラズマ処理装置及びプラズマ処理方法
CN113402281A (zh) * 2021-08-03 2021-09-17 合肥商德应用材料有限公司 发热体及其制备方法和应用
KR102595913B1 (ko) 2022-08-01 2023-10-31 주식회사 미코세라믹스 세라믹 서셉터

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002356382A (ja) * 2001-05-31 2002-12-13 Kyocera Corp 窒化アルミニウム質焼結体とFe−Ni−Co合金とのロウ付け接合体及びウエハ支持部材
WO2006090730A1 (ja) * 2005-02-23 2006-08-31 Kyocera Corporation 接合体とウェハ保持部材及びその取付構造並びにウェハの処理方法
JP2008270400A (ja) * 2007-04-18 2008-11-06 Sumitomo Electric Ind Ltd 半導体製造装置用ウエハ保持体及びそれを搭載した半導体製造装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0774234A (ja) * 1993-06-28 1995-03-17 Tokyo Electron Ltd 静電チャックの電極構造、この組み立て方法、この組み立て治具及び処理装置
TW556283B (en) * 2000-05-26 2003-10-01 Nisshin Spinning Silicon/graphite composite ring for supporting silicon wafer, and dry etching apparatus equipped with the same
JP2003086519A (ja) * 2001-09-11 2003-03-20 Sumitomo Electric Ind Ltd 被処理物保持体およびその製造方法ならびに処理装置
JP4089820B2 (ja) * 2003-04-02 2008-05-28 日本発条株式会社 静電チャック
US7354288B2 (en) * 2005-06-03 2008-04-08 Applied Materials, Inc. Substrate support with clamping electrical connector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002356382A (ja) * 2001-05-31 2002-12-13 Kyocera Corp 窒化アルミニウム質焼結体とFe−Ni−Co合金とのロウ付け接合体及びウエハ支持部材
WO2006090730A1 (ja) * 2005-02-23 2006-08-31 Kyocera Corporation 接合体とウェハ保持部材及びその取付構造並びにウェハの処理方法
JP2008270400A (ja) * 2007-04-18 2008-11-06 Sumitomo Electric Ind Ltd 半導体製造装置用ウエハ保持体及びそれを搭載した半導体製造装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017216287A (ja) * 2016-05-30 2017-12-07 日本特殊陶業株式会社 基板支持部材及び給電端子

Also Published As

Publication number Publication date
JP2010232532A (ja) 2010-10-14
KR20110128722A (ko) 2011-11-30
TWI480972B (zh) 2015-04-11
CN102047383A (zh) 2011-05-04
TW201036103A (en) 2010-10-01

Similar Documents

Publication Publication Date Title
WO2010110137A1 (ja) 高周波電極の接続方法を改善したウエハ保持体及びそれを搭載した半導体製造装置
KR20020092967A (ko) 세라믹 기판 및 그 제조 방법
JP2004260039A (ja) 半導体あるいは液晶製造装置用保持体およびそれを搭載した半導体あるいは液晶製造装置
WO2002042241A1 (fr) Corps fritte de nitrure d'aluminium, procede de production d'un corps fritte de nitrure d'aluminium, substrat ceramique et procede de production d'un substrat ceramique
JP2007281161A (ja) 半導体製造装置用ウエハ保持体及び半導体製造装置
JP2006332068A (ja) セラミックスヒータおよびそれを搭載した半導体あるいは液晶製造装置
JP4686996B2 (ja) 加熱装置
US20050028739A1 (en) Semiconductor Manufacturing Apparatus
JP4258309B2 (ja) 半導体製造装置用サセプタおよびそれを搭載した半導体製造装置
JP3966201B2 (ja) 半導体製造装置用ウェハ保持体およびそれを搭載した半導体製造装置
JP5644161B2 (ja) 半導体保持用の静電チャックおよびその製造方法
JP2009043589A (ja) 半導体又はフラットパネルディスプレイ製造・検査装置用のヒータユニット及びそれを備えた装置
JP2005267931A (ja) ヒータユニット
JP4111013B2 (ja) 半導体製造装置用ウェハ保持体およびそれを搭載した半導体製造装置
JP2005197393A (ja) プラズマ発生装置用電極埋設部材
JP2005116608A (ja) プラズマ発生装置用電極埋設部材
JP4059158B2 (ja) 半導体製造装置
JP2004247387A (ja) 半導体製造装置用ウェハ保持体およびそれを搭載した半導体製造装置
JP2005332837A (ja) ウェハ保持体
JP2004289137A (ja) 半導体製造装置用ウェハ保持体及びそれを搭載した半導体製造装置
JP2004266104A (ja) 半導体製造装置用ウェハ保持体およびそれを搭載した半導体製造装置
JP2006186350A (ja) 基板加熱構造体および基板処理装置
JP2007186382A (ja) 窒化アルミニウム焼結体
JP2007201128A (ja) 半導体製造装置用ウエハ保持体及び半導体製造装置
JP2006312755A (ja) ウェハ保持体およびそれを搭載した半導体製造装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080001676.2

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20107024455

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10755935

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10755935

Country of ref document: EP

Kind code of ref document: A1