WO2010110022A1 - バックライト構造 - Google Patents

バックライト構造 Download PDF

Info

Publication number
WO2010110022A1
WO2010110022A1 PCT/JP2010/053512 JP2010053512W WO2010110022A1 WO 2010110022 A1 WO2010110022 A1 WO 2010110022A1 JP 2010053512 W JP2010053512 W JP 2010053512W WO 2010110022 A1 WO2010110022 A1 WO 2010110022A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
backlight structure
fan
plate
cooling
Prior art date
Application number
PCT/JP2010/053512
Other languages
English (en)
French (fr)
Inventor
啓文 宮本
濱田 哲也
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US13/257,404 priority Critical patent/US20120020114A1/en
Priority to CN2010800124771A priority patent/CN102356347A/zh
Publication of WO2010110022A1 publication Critical patent/WO2010110022A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0081Mechanical or electrical aspects of the light guide and light source in the lighting device peculiar to the adaptation to planar light guides, e.g. concerning packaging
    • G02B6/0085Means for removing heat created by the light source from the package
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/74Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades
    • F21V29/76Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades with essentially identical parallel planar fins or blades, e.g. with comb-like cross-section
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133628Illuminating devices with cooling means
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/36Airflow channels, e.g. constructional arrangements facilitating the flow of air

Definitions

  • the present invention relates to a backlight structure used in, for example, a liquid crystal display device, and more particularly to a backlight structure having a forced cooling function.
  • a backlight structure used in a liquid crystal display device a side provided with an LED module having a plurality of LED (light emitting diode) chips and a light guide plate that receives light from the LED module at its end face and emits it from the front face.
  • LED light emitting diode
  • a light-type backlight structure In this conventional backlight structure, heat radiation fins are attached to the outside of the back plate that houses the LED module and the light guide plate. Then, the heat generated with the light emission of the LED chip is transmitted to the heat radiating fin through the fixing member for fixing the LED module, the heat conductive sheet, and the heat conductive member, and is released into the air by the heat radiating fin. Cooling is performed (for example, refer to Patent Document 1).
  • LEDs have been used in small electronic devices such as PDAs (personal personal digital assistants) and mobile phone devices because the amount of light from the LEDs is relatively small.
  • PDAs personal personal digital assistants
  • mobile phone devices because the amount of light from the LEDs is relatively small.
  • a cold cathode tube having a relatively large amount of light has been used as a light source.
  • LEDs have begun to be used as light sources in the backlight structure of large electronic devices.
  • the high-intensity LED generates a large amount of heat
  • the use of the high-intensity LED as a light source having a conventional backlight structure has a problem that cooling of the light source becomes insufficient.
  • Measures generally known for improving the cooling capacity with respect to the conventional backlight structure include increasing the size of the radiating fins and installing a cooling fan.
  • a cooling fan since there is a limit to the increase in cooling capacity only by increasing the size of the radiation fins, it is necessary to install a cooling fan in conjunction with the increase in size of the radiation fins.
  • FIG. 16 shows a conventional backlight structure provided with heat radiation fins and cooling fans.
  • This backlight structure is a side light type, and includes a pair of light source modules 1 disposed in the vicinity of both upper and lower edges of the liquid crystal display device, a light guide plate 2 disposed between the light source modules 1, the light source module 1, and A metal back plate 3 arranged on the back side of the light guide plate 2, a plurality of heat radiation fins 130 attached to the flat surface 3b of the back plate 3, and a plurality of plates arranged at predetermined intervals on the back side.
  • a cooling fan 5 is provided.
  • the conventional backlight structure transmits the heat of the LED chip to the heat radiating fins through a plurality of components such as a fixing member, a heat conductive sheet, and a heat conductive member. There is a problem that the efficiency is low and it is difficult to improve the cooling capacity.
  • the backlight structure is arranged on the back side of the light source module and the light guide plate. Protrusion is provided at the part of the back plate facing the light source module, and the fan mounting plate for fixing the cooling fan is arranged to form a gap between the back plate and the gap between the back plate and the fan mounting plate.
  • a backlight structure in which a first ventilation path for discharging air from the cooling fan through the surface of the protruding portion of the back plate is formed.
  • the heat of the light source module is collected in the protruding portion of the back plate, and the air from the cooling fan is blown to the protruding portion in the first ventilation path formed between the back plate and the fan mounting plate. Since the heat is guided and radiated, the cooling efficiency can be effectively improved.
  • the wind from the cooling fan hits only a part of the surface of the protrusion (vertical surface facing the first ventilation path), and the wind hitting the protrusion is immediately attached to the fan. Since it diffuses to the back side of the plate, further improvement in cooling efficiency has been an issue.
  • an object of the present invention is to provide a thin backlight structure capable of efficiently cooling a light source by guiding a large amount of air flow to the surface of the back plate near the light source module.
  • a backlight structure of the present invention includes a light source module having a plurality of light sources, a light guide plate that emits light incident on an end surface from the light source of the light source module and guides it to a display panel, and A back plate disposed on the back side of the light guide plate and the light source module and formed with a protruding portion protruding backward on a back side portion of the light source module; and on the back side of the back plate, other than the protruding portion A cooling fan disposed so as to oppose the portion, and the cooling fan is mounted and disposed so as to form a gap between the back plate and a bent portion along the shape of the protruding portion.
  • a fan mounting plate is formed, and is formed in a gap between the fan mounting plate and the back plate, and an air flow generated by the cooling fan passes through while contacting at least a part of the surface of the protrusion. It is characterized in that it comprises a ventilation passage.
  • the heat generated by the light source of the light source module is transferred to the protruding portion of the back plate disposed on the back side of the light source module, and the air flow passing through the first ventilation path contacts the surface of the protruding portion. Is released to the outside. Then, by forming the bent portion along the shape of the protruding portion on the fan mounting plate constituting the first ventilation path, the area where the air flow contacts on the surface of the protruding portion is increased, so that the cooling efficiency is effective. Can be improved.
  • the air flow can be reliably brought into contact with the surface of the protruding portion. Therefore, the air flow generated by the cooling fan is reduced by narrowing the gap between the back plate and the fan mounting plate. Can be efficiently guided to the protruding portion, and an area where the airflow contacts on the surface of the protruding portion can be secured. Therefore, for example, even when a high-brightness LED is used as a light source, the light source can be efficiently cooled with a simple structure, and as a result, a thin and low-cost sidelight-type back that is suitably used for large electronic devices. A light structure is obtained.
  • the protruding portion is formed by bending the back plate, and a part of the light source module is accommodated inside the protruding portion.
  • the light source of the light source module since the heat generated by the light source of the light source module is efficiently transmitted to the protruding portion of the back plate, the light source can be efficiently cooled. Moreover, even if the dimension in the thickness direction of the backlight structure of the light source module is large, a part of the light source module is accommodated inside the protruding portion of the back plate, so that the backlight structure can be thinned.
  • the light source module includes a plurality of light sources and a mounting substrate on which the light sources are mounted, and the protruding portion penetrates the back plate and the first ventilation path. It is a part of the mounting substrate protruding inward.
  • the air flow in the first ventilation path can be brought into direct contact with the mounting substrate of the light source module, so that the cooling efficiency is further improved.
  • the mounting board is formed with a plurality of protruding pieces that protrude to the back side at positions corresponding to the respective light sources arranged on the mounting board.
  • the protruding piece protrudes into the first ventilation path to constitute the protruding portion.
  • the heat generated from each light source is concentrated and stored in the corresponding protruding piece, and is efficiently radiated by the airflow flowing through the first ventilation path.
  • the bent portion is formed so as to surround the protruding portion.
  • the air flow in the first ventilation path can come into contact with the entire surface of the protruding portion, so that the cooling efficiency can be further improved.
  • the cooling fan is an intake fan
  • the protrusion of the back plate is located in the vicinity of the outlet of the first ventilation path.
  • the external cold air flow guided to the first ventilation path by the intake fan is applied to the protrusion and discharged from the discharge port, thereby effectively improving the heat dissipation efficiency from the protrusion.
  • the backlight structure of one embodiment of the present invention includes a partition plate that defines the first ventilation path between the back plate and the fan mounting plate.
  • the partition plate between the back plate and the fan mounting plate, the shape and route of the first ventilation path that efficiently guides the air flow to the protruding portion can be easily determined.
  • At least one of the light source module drive circuit and the display panel drive circuit is mounted on the fan mounting plate.
  • the fan mounting plate can be used as at least one mounting space among the drive circuit of the light source module and the drive circuit of the display panel, and the backlight structure can be downsized.
  • an air flow by the cooling fan passes through a gap between the back plate and the fan mounting plate while contacting a surface other than the protruding portion of the back plate.
  • a second ventilation path is provided.
  • the second ventilation path apart from the air flow guided by the first ventilation path and cooling the light source, the second ventilation path allows the part other than the protruding part of the back plate and the part other than the bent part of the fan mounting plate. It is possible to cool the air flow at a stable temperature.
  • the backlight structure includes a partition plate that partitions the first ventilation path and the second ventilation path between the back plate and the fan mounting plate.
  • the first ventilation path and the second ventilation path can be formed with a simple configuration.
  • At least one of the drive circuit of the light source module and the drive circuit of the display panel is mounted at the position where the second ventilation path of the fan mounting plate is provided. Has been.
  • At least one of the drive circuit of the light source module and the drive circuit of the display panel can be cooled without being affected by the operation or heat generation of the light source by the air flow flowing through the second ventilation path. it can.
  • the light source of the light source module is an LED.
  • the heat generated along with the light emission of the LED can be efficiently released from the protruding portion of the back plate. Therefore, by using a high-brightness LED that generates a large amount of heat, a backlight structure for a large electronic device can be obtained without causing an increase in size and cost.
  • the cooling fan is an axial fan or a sirocco fan.
  • an axial fan is used when arranged on the back side of the fan mounting plate, while a sirocco fan is used when arranged between the back plate and the fan mounting plate.
  • a thin back that can effectively cool the light source by efficiently guiding the air flow from the cooling fan to the surface of the protruding portion formed to protrude rearward on the back plate in the vicinity of the light source module.
  • Light structure can be provided.
  • Sectional drawing which shows the liquid crystal display device which has the backlight structure of 1st Embodiment of this invention.
  • the rear view which shows the liquid crystal display device which has a backlight structure of 1st Embodiment.
  • the front view which shows the liquid crystal display device which has a backlight structure of 1st Embodiment.
  • Sectional drawing which shows the backlight structure of the modification of 1st Embodiment.
  • Sectional drawing which shows the liquid crystal display device which has the backlight structure of 2nd Embodiment of this invention. Partial sectional view of the vicinity of the light source module in the liquid crystal display device of the second embodiment.
  • Sectional drawing which shows the liquid crystal display device which has the backlight structure of 3rd Embodiment of this invention.
  • the top view of the light source module used for the backlight structure of 4th Embodiment The rear view of the liquid crystal display device which has the backlight structure of 5th Embodiment of this invention.
  • the rear view of the liquid crystal display device which has the backlight structure of 7th Embodiment of this invention Sectional drawing which shows the liquid crystal display device which has the backlight structure of 8th Embodiment of this invention.
  • the rear view which shows the liquid crystal display device which has a backlight structure of 8th Embodiment Sectional drawing which shows the liquid crystal display device which has the conventional sidelight type backlight structure
  • FIG. 1 is a cross-sectional view schematically showing a liquid crystal display device having a backlight structure according to a first embodiment of the present invention
  • FIG. 2 is a rear view of the liquid crystal display device of FIG. 1
  • FIG. 3 is a liquid crystal display of FIG.
  • FIG. 4 is an enlarged view of the vicinity of the light source module in the liquid crystal display device of FIG.
  • This backlight structure is a side light type, and a pair of light source modules 1 disposed in the vicinity of the upper and lower end edges of the liquid crystal display device 100, a light guide plate 2 disposed between the light source modules 1, and the light source module 1.
  • the metal back plate 3 disposed on the back side of the light guide plate 2, the fan mounting plate 4 disposed at a predetermined interval on the back side of the back plate 3, and the fan mounting plate 4.
  • a cooling fan 5 a cooling fan 5.
  • the light source module 1 includes a mounting substrate 1a elongated extending in the width direction of the liquid crystal display device 100, a plurality of light sources arranged in a straight line on the surface on the side end surface facing the light guide plate 2 of the mounting board 1a LED chip 1b.
  • the light guide plate 2 is formed so that light incident on the upper and lower end faces from the LED chip 1b of the light source module 1 is emitted from the front surface.
  • a liquid crystal display panel 7 is disposed on the front side of the light guide plate 2.
  • a reflection sheet 8 is disposed on the back side of the light guide plate 2.
  • the rear plate 3 is formed so as to surround at least the upper and lower side surfaces of the light source module 1 and to cover the rear surfaces of the light source module 1 and the light guide plate 2.
  • the back plate 3 has a protruding portion 3a in which portions located on the back side of the light source module 1 at both upper and lower edges protrude backward.
  • a flat surface 3b close to the back surface of the light guide plate 2 is formed between the upper and lower protrusions 3a.
  • the protruding portion 3a is formed by bending the back plate 3 along the upper and lower end edges into a substantially U-shaped cross section corresponding to the arrangement position of the light source module 1.
  • the fan mounting plate 4 has substantially the same dimensions in the width direction and the height direction as the back plate 3, and is arranged at substantially the same position as the rear end of the protruding portion 3a of the back plate 3 in the front-rear direction.
  • a cooling air passage 11 as a first air passage is formed between the fan mounting plate 4 and the back plate 3, and the upper and lower end edges of the fan mounting plate 4 are arranged in accordance with the shape of the protruding portion 3 a.
  • a character-like bent portion 4a is formed.
  • a discharge port 11 a of the cooling air passage 11 is formed between the protruding portions 3 a on the upper and lower sides of the back plate 3 and the bent portion 4 a of the fan mounting plate 4.
  • the cooling fan 5 is formed of an axial fan, and sucks air from a suction port 5a provided on the back surface, and blows out air into the cooling air passage 11 from a blower port 5b provided on the front surface. .
  • the backlight structure formed by attaching the respective components to the back plate 3 is connected to the plastic frame 9 that supports the liquid crystal display panel 7 to constitute the liquid crystal display device 100.
  • the liquid crystal display device 100 having the backlight structure configured as described above operates as follows. That is, when the power switch of the liquid crystal display device 100 receives an ON input, a power circuit (not shown) is activated to supply power to the light source module 1, whereby the plurality of LED chips 1 b of the light source module 1 emit light. Light emitted from the LED chip 1b enters from the upper and lower end surfaces of the light guide plate 2, is transmitted through the light guide plate 2, and is emitted from the front surface. The light emitted from the front surface of the light guide plate 2 enters the liquid crystal display panel 7, and the light transmittance is controlled in accordance with the control signal and the image signal input to the liquid crystal display panel 7, and a predetermined image is displayed on the screen. Is displayed.
  • the cooling fan 5 operates, and an air flow as indicated by an arrow W1 is generated through the cooling air passage 11.
  • the heat generated along with the light emission of the LED chip 1 b is transmitted to the mounting substrate 1 a and concentrated on the protruding portion 3 a of the back plate 3.
  • the heat concentrated on the protrusion 3a is received by the air flow passing through the cooling air passage 11 and discharged from the discharge port 11a.
  • the protrusion 3a Since the protrusion 3a is located on the back side of the light source module 1, the heat of the LED chip 1b can be collected efficiently. Moreover, since it has a protruding shape, the surface area becomes large, and furthermore, since the air flow guided by the cooling air passage 11 comes into contact, the heat of the LED chip 1b can be efficiently released to effectively cool the LED chip 1b. Can do. And since the protrusion part 3a which thermally radiates is integrally formed by the same member as the flat part 3b which forms the cooling air path 11, high cooling efficiency is obtained and the number of parts can be reduced. As a result, heat is transferred from the LED chip 1b to the protruding portion 3a with a smaller number of parts than in the past, so that heat transfer efficiency and cooling efficiency can also be improved.
  • the fan 5 is attached to the fan mounting plate 4 located on the back side of the flat surface 3 b of the back plate 3, and a cooling air passage 11 is formed between the flat surface 3 b of the back plate 3 and the fan mounting plate 4. Therefore, despite the forced cooling using the fan 5, a backlight structure having a small thickness can be obtained.
  • the cooling unevenness can be reduced as compared with the configuration in which the heat radiation fins are attached to send the air from the cooling fan. Therefore, it is not necessary to increase the number of cooling fans or use a large-capacity fan in order to prevent uneven cooling, so that the cooling performance can be improved without increasing the number of parts and the cost.
  • the heat generated due to the light emission of the LED chip 1b is concentrated on the inner side surface 13 and the front end surface 15 of the protrusion 3a close to the LED chip 1b shown in FIG. Becomes higher. Therefore, in the present embodiment, the bent portion 4a is provided in accordance with the shape of the protruding portion 3a.
  • the air flow W1 flowing through the cooling air passage 11 is discharged from the discharge port 11a after contacting the inner side surface 13 and the front end surface 15.
  • the cooling efficiency of the protrusion 3a can be further increased.
  • the air flow W1 can be reliably brought into contact with the inner side surface 13 and the front end surface 15. Therefore, the gap between the back plate 3 and the fan mounting plate 4 is narrowed and thinned. Even when the backlight structure is adopted, the cooling efficiency of the protruding portion 3a can be maintained.
  • the backlight structure of the present embodiment can be made thin with a simple configuration with a small number of parts and can have a good cooling performance. Therefore, a high-luminance LED having a large calorific value can be used as a light source. it can. Therefore, it is possible to realize a backlight structure that can be mounted on a large-sized electronic device such as a large-screen television using high-luminance LEDs as a light source.
  • FIG. 5 is a cross-sectional view showing a backlight structure according to a modification of the first embodiment.
  • the dimension of the mounting substrate 1a in the width direction (front and rear direction of the backlight structure) of the light source module 1 is larger than that in FIG. 1, and the back surface portion of the mounting substrate 1a is disposed inside the protruding portion 3a.
  • a thin backlight structure can be obtained without increasing the size in the front-rear direction of the back plate 3.
  • the cooling efficiency of the LED chip 1b that is a light source can be further improved.
  • FIG. 6 is a cross-sectional view schematically showing a liquid crystal display device having a backlight structure according to the second embodiment of the present invention
  • FIG. 7 is an enlarged view of the vicinity of a protrusion in the liquid crystal display device of FIG.
  • a bent portion 4a having a substantially U-shaped cross section is formed at both upper and lower edges of the fan mounting plate 4 so as to surround the protruding portion 3a. Since the configuration of other parts is the same as that of the first embodiment, the description thereof is omitted.
  • the airflow W1 flowing through the cooling air passage 11 is discharged from the discharge port 11a after contacting the outer surface 17 as well as the inner surface 13 and the tip surface 15 of the protrusion 3a.
  • the area where the airflow contacts on the surface of the protrusion 3a is further increased as compared with the first embodiment, so that the cooling efficiency of the protrusion 3a can be further increased.
  • FIG. 8 is a cross-sectional view schematically showing a liquid crystal display device having a backlight structure according to the third embodiment of the present invention.
  • the backlight structure of the present embodiment has the same structure as that of the second embodiment except that the protruding portion 3a is not integrally formed on the back plate 3 and a protruding member 31 having an L-shaped cross section is provided.
  • the heat of the LED chip 1b is transmitted to separate projecting members 31 attached to the upper and lower edges of the back surface of the back plate 3, and the air flow from the cooling fan 5 is brought into contact with the projecting members 31. Dissipates heat.
  • bent portions 4a having a substantially U-shaped cross section are formed at both upper and lower edges of the fan mounting plate 4 so as to surround the protruding portions 3a, as in the second embodiment.
  • the airflow which flows through the cooling air path 11 can contact both the inner surface and the outer surface of the protruding member 31, and the cooling efficiency of the protruding member 31 can be improved.
  • the heat conduction efficiency is lower than that of the second embodiment, and the protruding member 31 is plate-shaped.
  • the heat radiation area is smaller than in the embodiment, and the heat radiation efficiency is low. Therefore, the cooling efficiency of the light source is lower than in the second embodiment.
  • heat is radiated by the protrusion 3a integrally formed on a part of the back plate 3, so that heat is efficiently transmitted from the light source module 1 to the protrusion 3a. It is more preferable because a large heat radiation area can efficiently release heat and the number of parts can be reduced.
  • FIG. 9 is an enlarged view of the vicinity of the light source module in the backlight structure of the fourth embodiment of the present invention
  • FIG. 10 is a plan view of the light source module used in the backlight structure of the fourth embodiment (left of FIG. 9). Figure viewed from the direction).
  • the backlight structure of this embodiment corresponds to each LED chip 1b arranged on the mounting substrate 1a of the light source module 1 without the protrusion 3a being integrally formed on the back plate 3 as in the third embodiment.
  • a plurality of projecting pieces 20 projecting to the back side are formed at the position, and the projecting pieces 20 penetrate the back plate 3 and project into the cooling air passage 11. That is, instead of the projecting member 31, the air flow W1 from the cooling fan 5 is brought into contact with the projecting piece 20 to radiate heat. Since the configuration of other parts is the same as that of the first embodiment, the description thereof is omitted.
  • the protruding piece 20 which is a part of the mounting substrate 1a protrudes into the cooling air passage 11, so that the air flow directly contacts the mounting substrate 1a. Therefore, the heat generated from the light source module 1 can be radiated more efficiently than in the first to third embodiments.
  • the bent portion 4a is formed by bending the upper and lower end edges of the fan mounting plate 4 into an L shape in accordance with the protruding piece 20, the airflow flowing through the cooling air passage 11 is the protruding piece.
  • the entire inner surface 20a of 20 can be contacted. Therefore, the area where the air flow contacts on the surface of the protruding piece 20 is widened, and the cooling efficiency can be further increased. Furthermore, even if the width of the cooling air passage 11 is narrowed, the air flow can be reliably brought into contact with the entire protruding piece 20, so that the backlight structure can be thinned.
  • each protruding piece 20 is formed at a position corresponding to each LED chip 1b in the longitudinal direction of the mounting substrate 1a, so that heat generated from the LED chip 1b is applied to the corresponding protruding piece 20. The heat is concentrated and accumulated and is efficiently radiated by the airflow flowing through the cooling air passage 11.
  • the protruding portion 3a is integrally formed on the back plate 3, and the protruding piece 20 is protruded into the cooling air passage 11 from the front end surface 15 (see FIG. 4) of the protruding portion 3a. May be. According to this configuration, a synergistic effect between the effect of cooling the protrusion 3a where the heat of the LED chip 1b concentrates and the effect of directly cooling the mounting substrate 1a via the protrusion piece 20 can be expected.
  • FIG. 11 is a rear view of a liquid crystal display device having a backlight structure according to the fifth embodiment of the present invention.
  • the backlight structure of the present embodiment has the same configuration as that of the first embodiment except that the partition plates 21a to 21d and the rectifying plate 23 are provided between the back plate 3 and the fan mounting plate 4. Portions common to FIG. 2 of the first embodiment are denoted by the same reference numerals and description thereof is omitted.
  • partition plates 21a to 21d that define the cooling air passage 11 are provided between the flat surface 3b of the back plate and the inner surface of the fan mounting plate 4 facing the flat surface 3b. It is fixed. As shown in FIG. 11, two partition plates 21a, 21b, and 21c, 21d extend from both sides of the cooling fan 5 toward both ends of the protrusion 3a of the back plate 3, and the partition plates 21a, Two cooling air passages 11 are defined between the upper side and the lower side of the cooling fan 5 between 21b and between the partition plates 21c and 21d.
  • Two rectifying plates 23 are provided in each of the two cooling air passages 11 defined by the partition plates 21a and 21b and the partition plates 21c and 21d.
  • the rectifying plate 23 is fixed between the flat surface 3b of the back plate 3 and the inner surface of the fan mounting plate 4 like the partition plates 21a to 21d.
  • the two rectifying plates 23 are arranged substantially symmetrically on the left and right in each cooling air passage 11 and are formed so that the distance between them increases from the cooling fan 5 toward the protruding portion 3a of the back plate.
  • the air flow from the cooling fan 5 is guided to the protruding portion 3a of the back plate 3 by the two cooling air passages 11 partitioned by the two partition plates 21a, 21b, and 21c, 21d, and the rectifying plate 23.
  • FIG. 12 is a rear view of a liquid crystal display device having a backlight structure according to the sixth embodiment of the present invention.
  • the backlight structure of the present embodiment has the same configuration as that of the fifth embodiment except that the shapes of the partition plates 21a to 21d are different. Portions common to FIG. 11 of the fifth embodiment are denoted by the same reference numerals and description thereof is omitted.
  • the four partition plates 21a to 21d that define the cooling air passage 11 are located away from the cooling fan 5 toward the four corners of the fan mounting plate 4. It is formed radially.
  • the bypass air path 25 as a 2nd ventilation path is each formed in the area
  • the air flow by the cooling fan 5 is guided to the protrusions 3 a on the upper and lower sides of the back plate 3 by the cooling air passage 11, and is also guided to the left and right edges of the back plate 3 by the bypass air passage 25. . Therefore, the cooling fan 5 can cool the projecting portion 3 a and can cool the flat surface 3 b of the back plate 3 and the left and right portions of the fan mounting plate 4.
  • FIG. 13 is a rear view of a liquid crystal display device having a backlight structure according to the seventh embodiment of the present invention.
  • the rectifying plate 23 is not provided in the cooling air passage 11, and the liquid crystal panel drive circuit 27 and the LED drive power supply circuit 29 are attached in the bypass air passage 25.
  • the bypass air passage 25 Has the same configuration as the sixth embodiment. Portions common to FIG. 12 of the sixth embodiment are denoted by the same reference numerals and description thereof is omitted.
  • a liquid crystal panel drive circuit 27 and an LED drive power supply circuit 29 are arranged in the middle of two bypass air passages 25, respectively.
  • the air flow from the cooling fan 5 is guided to the cooling air passage 11 to cool the LEDs, and the air flow from the cooling fan 5 is guided to the bypass air passage 25 to cool the liquid crystal panel drive circuit 27 and the LED drive power supply circuit 29.
  • the liquid crystal panel drive circuit 27 and the LED drive power supply circuit 29 are arranged in the bypass air passage 25 to directly cool the air flow. Then, at least one of the liquid crystal panel drive circuit 27 and the LED drive power supply circuit 29 may be disposed at a position on the back side of the bypass air passage 25 and cooling may be performed via the fan mounting plate 4.
  • FIG. 14 is a cross-sectional view schematically showing a liquid crystal display device having a backlight structure according to the eighth embodiment of the present invention
  • FIG. 15 is a rear view of the liquid crystal display device of FIG.
  • Portions common to FIGS. 1 and 2 of the first embodiment are denoted by the same reference numerals and description thereof is omitted.
  • two cooling fans 5 that are sirocco fans are mounted on the surface of the fan mounting plate 4 on the back plate 3 side, and the wind from the two cooling fans 5 is converted into two cooling winds.
  • the path 11 leads separately to the protrusion 3 a of the back plate 3.
  • the two cooling fans 5 are mounted in the vicinity of the left and right side edges of the fan mounting plate 4 and at substantially the center in the vertical direction.
  • Two partition plates 21a and 21b and partition plates 21c and 21d are provided from the left and right ends of the air outlet 5a of each cooling fan 5 toward the left and right ends of the protrusion 3a of the back plate.
  • Two cooling air passages 11 are formed between the partition plates 21a and 21b and between the partition plates 21c and 21d, and two rectifying plates 23 are disposed in each cooling air passage 11, respectively.
  • the cooling fan 5 is accommodated in the gap between the back plate 3 and the fan mounting plate 4 so that the back surface of the back plate 3 can be flattened and improved in appearance, and the overall thickness is further reduced. it can. Further, by using a sirocco fan as the cooling fan 5, it is possible to reduce the size of the cooling fan 5 while ensuring the air volume. Therefore, the backlight structure can be further thinned without sacrificing the cooling performance of the light source.
  • an intake fan that guides external air into the apparatus is used as the cooling fan 5.
  • the cooling air is not supplied to the protruding portion 3 a, the protruding member 31, or the protruding piece 20. Since the area where the air flow in the passage 11 contacts increases, an exhaust fan that exhausts the air inside the apparatus to the outside can also be used as the cooling fan 5. However, since it is possible to further improve the cooling efficiency when external cold air is brought into contact with the protrusion 3a or the like, it is preferable to use an intake fan.
  • the backlight structure of the present invention is used for a liquid crystal display panel to configure a liquid crystal display device.
  • the backlight structure of the present invention may be used for illumination of other image display apparatuses.
  • the light source used for the light source module is not limited to the LED, and other light emitting elements may be used.
  • the present invention can be used for a backlight used for illumination of a liquid crystal display device or the like, and by introducing a large air flow to the surface of a protruding portion provided in the vicinity of a light source module on a back plate, Is efficiently released through the protruding portion, and a backlight structure capable of reducing the thickness of the backlight is provided.
  • the backlight structure of the present invention it is possible to provide a liquid crystal display device such as a thin liquid crystal television and a liquid crystal monitor excellent in manufacturability and durability, and to contribute to the thinning and weight reduction of the liquid crystal display device. .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Liquid Crystal (AREA)
  • Planar Illumination Modules (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

 液晶表示装置100は、上下の縁部に配置された光源モジュール1と、光源モジュール1の間に配置された導光板2と、光源モジュール1及び導光板2の背面側に配置された背面板3と、背面板3の背面側に配置されたファン取付板4と、ファン取付板4に取り付けられた冷却ファン5とを備える。背面板3には光源モジュール1の背面側に突出する突出部3aが形成されており、ファン取付板4と背面板3との間には冷却風路11が形成されている。ファン取付板4の上下両端縁には、突出部3aの形状に合わせてL字状の折曲部4aが形成されており、突出部3aの表面において空気流が接触する面積を広くして突出部3aの冷却効率を向上させる。

Description

バックライト構造
 本発明は、例えば液晶表示装置に用いられるバックライト構造に関し、特に、強制冷却機能を有するバックライト構造に関する。
 従来、液晶表示装置に用いられるバックライト構造としては、複数のLED(発光ダイオード)チップを有するLEDモジュールと、このLEDモジュールからの光を端面に受けて前面から出射する導光板とを備えたサイドライト型のバックライト構造がある。この従来のバックライト構造では、LEDモジュールと導光板を収容する背面板の外側に、放熱フィンを取り付けている。そして、LEDチップの発光に伴って生じる熱を、LEDモジュールを固定する固定部材と、熱伝導シートと、熱伝導部材とを介して放熱フィンに伝達し、この放熱フィンによって空気中に放出する自然冷却を行っている(例えば特許文献1参照)。
 従来、LEDを光源に用いたバックライト構造は、LEDの光量が比較的小さいことから、PDA(個人用携帯情報端末)や携帯電話機器等のような小型電子装置に用いられており、モニター装置等の大型電子装置のバックライト構造では、光量が比較的大きい冷陰極管が光源に用いられていた。しかし、近年の高輝度LEDの開発に伴い、大型電子装置のバックライト構造にもLEDが光源に用いられ始めている。
 しかしながら、高輝度LEDは発熱量が大きいので、従来のバックライト構造の光源に高輝度LEDを用いると、光源の冷却が不十分になるという問題がある。
 従来のバックライト構造に対して、冷却能力を向上するために一般的に知られている対策としては、放熱フィンの大型化や冷却ファンを設置すること等がある。ここで、放熱フィンの大型化のみでは冷却能力の増大に限界があることから、放熱フィンの大型化と併せて冷却ファンを設置する必要がある。
 放熱フィン及び冷却ファンを備えた従来のバックライト構造を図16に示す。このバックライト構造はサイドライト型であり、液晶表示装置の上下両端縁の近傍に配置された一対の光源モジュール1と、この光源モジュール1の間に配置された導光板2と、光源モジュール1及び導光板2の背面側に配置された金属製の背面板3と、この背面板3の平坦面3bに取り付けられた複数の放熱フィン130と、背面側に所定間隔をおいて配置された複数の冷却ファン5を備える。
 しかしながら、これらの対策は、バックライト構造の大型化やコストアップを招く不都合がある。詳しくは、従来のバックライト構造に冷却ファンを設置すると、図16のように放熱フィン130の背面側に所定距離を置いて冷却ファン5を取り付けることとなり、バックライト構造の厚みが増大して大型化する。また、放熱フィン130を大型化すると、大型の放熱フィン130に満遍なく送風するために複数の冷却ファン5が必要になる。
 ここで、冷却ファンの数が不足すると、放熱フィンの冷却ムラが生じやすく、その結果、LEDモジュールの放熱にムラが生じ、複数のLEDチップの光量にバラつきが生じて、液晶表示パネルの映像に輝度ムラや色ムラを招く虞があるので、大型の放熱フィンを用いた場合は多数の冷却ファンが必要となる。このように多数の冷却ファンを用いると、風の干渉が生じやすくて冷却効率の低下が生じやすいので強力な冷却ファンが必要になり、大幅なコストアップを招いてしまう。また、多数の冷却ファンを用いると、バックライト構造の複雑化や騒音の増大を招いてしまう。
 また、従来のバックライト構造は、LEDチップの熱を、固定部材、熱伝導シート、熱伝導部材等の複数の部品を介して放熱フィンに伝達するので、LEDチップから放熱フィンへの熱の伝達効率が低く、冷却能力を向上し難いという問題がある。
 そこで、大型化やコストアップを招くことなく、簡易な構造で効率良く光源を冷却できるバックライト構造が提案されており、例えば特許文献2には、光源モジュール及び導光板の背面側に配置される背面板の光源モジュールが対向する部分に突出部を設け、冷却ファンを固定するファン取付板を背面板との間に隙間を形成するように配置するとともに、背面板とファン取付板との隙間に冷却ファンからの風を背面板の突出部の表面を通って排出させる第1通風路が形成されたバックライト構造が開示されている。
特開2006-156324号公報 国際公開第2008/090642号
 特許文献2のバックライト構造では、光源モジュールの熱を背面板の突出部に集め、この突出部に、背面板とファン取付板との間に形成した第1通風路で冷却ファンからの風を導いて放熱するので、冷却効率を効果的に向上できる。しかしながら、特許文献2の構成では冷却ファンからの風が突出部の表面の一部(第1通風路に面している垂直面)にしか当たらず、突出部に当たった風はすぐにファン取付板の背面側へ拡散してしまうため、冷却効率の更なる改善が課題となっていた。
 また、ファン取付板を突出部方向に延長して突出部の背面を覆うように配置する方法も考えられるが、この構成では背面板とファン取付板との間に形成される第1通風路の幅が広がってしまう。そのため、冷却ファンからの風が第1通風路内を効率良く流れなくなるとともに、バックライトの厚みが増加するという不都合が生じる。
 本発明は、上記問題点に鑑み、光源モジュール近傍の背面板表面に多くの空気流を導くことにより、効率良く光源を冷却できる薄型のバックライト構造を提供することを目的としている。
 上記課題を解決するため、本発明のバックライト構造は、複数の光源を有する光源モジュールと、該光源モジュールの光源から端面に入射した光を前面から出射して表示パネルに導く導光板と、該導光板及び前記光源モジュールの背面側に配置され、前記光源モジュールの背面側の部分に後方に突出した突出部が形成される背面板と、該背面板の背面側であって、前記突出部以外の部分に対向するように配置される冷却ファンと、該冷却ファンが取り付けられ、前記背面板との間に隙間を形成するように配置されるとともに前記突出部の形状に沿って折曲部が形成されるファン取付板と、該ファン取付板と前記背面板との隙間に形成され、前記冷却ファンにより生じた空気流が前記突出部の表面の少なくとも一部に接触しながら通過する第1通風路とを備えることを特徴としている。
 上記構成によれば、光源モジュールの光源で生じた熱は、この光源モジュールの背面側に配置された背面板の突出部に伝わり、第1通風路を通過する空気流が突出部の表面に接触することによって外部に放出される。そして、第1通風路を構成するファン取付板に突出部の形状に沿って折曲部を形成することにより、突出部の表面において空気流が接触する面積が大きくなるため、冷却効率を効果的に向上させることができる。
 また、第1通風路の幅を狭くしても突出部の表面に空気流を確実に接触させることができるため、背面板とファン取付板との隙間を狭くして冷却ファンにより生じた空気流を突出部に効率良く導くとともに突出部の表面において空気流が接触する面積を確保することができる。したがって、例えば高輝度LEDを光源に用いた場合においても、簡単な構造で効率良く光源を冷却することができ、その結果、大型電子機器に好適に用いられる薄型かつ低コストのサイドライト型のバックライト構造が得られる。
 また、本発明の一実施形態のバックライト構造は、前記突出部が前記背面板を折り曲げて形成されており、前記突出部の内側に前記光源モジュールの一部が収容されている。
 上記実施形態によれば、光源モジュールの光源で生じた熱が効率良く背面板の突出部に伝達されるので、光源を効率良く冷却することができる。また、光源モジュールのバックライト構造の厚み方向における寸法が大きくても、光源モジュールの一部が背面板の突出部の内側に収容されるので、バックライト構造の薄型化を図ることができる。
 また、本発明の一実施形態のバックライト構造は、前記光源モジュールが複数の光源及び該光源を実装する実装基板から構成され、前記突出部は、前記背面板を貫通して前記第1通風路内に突出する前記実装基板の一部である。
 上記実施形態によれば、光源モジュールの実装基板に第1通風路内の空気流を直接接触させることができるため、冷却効率がより一層向上する。
 また、本発明の一実施形態のバックライト構造は、前記実装基板には、該実装基板上に配置された各光源に対応する位置において背面側に突出する複数の突出片が形成されており、該突出片が前記第1通風路内に突出して前記突出部を構成する。
 上記実施形態によれば、各光源から発生する熱は対応する突出片に集中して蓄積され、第1通風路を流れる空気流によって効率良く放熱される。
 また、本発明の一実施形態のバックライト構造は、前記折曲部は、前記突出部を囲むように形成される。
 上記実施形態によれば、第1通風路内の空気流が突出部の全面に接触可能となるため、冷却効率をより一層向上させることができる。
 また、本発明の一実施形態のバックライト構造は、前記冷却ファンが吸気ファンであり、前記背面板の突出部が、前記第1通風路の排出口の近傍に位置している。
 上記実施形態によれば、吸気ファンによって第1通風路に導かれた外部の冷たい空気流を突出部に当てて排出口から排出することにより、突出部からの放熱効率を効果的に向上することができる。
 また、本発明の一実施形態のバックライト構造は、前記背面板と前記ファン取付板との間に、前記第1通風路を定める仕切板を備える。
 上記実施形態によれば、背面板とファン取付板との間に仕切板を配置することにより、突出部へ効率的に空気流を導く第1通風路の形状や経路を容易に定めることができる。
 また、本発明の一実施形態のバックライト構造は、前記ファン取付板に、前記光源モジュールの駆動回路及び前記表示パネルの駆動回路のうち少なくとも1つが実装されている。
 上記実施形態によれば、ファン取付板を光源モジュールの駆動回路及び表示パネルの駆動回路のうち少なくとも1つの実装スペースとして用いることができ、バックライト構造の小型化を図ることができる。
 また、本発明の一実施形態のバックライト構造は、前記背面板と前記ファン取付板との隙間に、前記冷却ファンによる空気流が前記背面板の前記突出部以外の表面に接触しながら通過する第2通風路を備える。
 上記実施形態によれば、第1通風路で導かれて光源を冷却する空気流とは別個に、第2通風路によって背面板の突出部以外の部分やファン取付板の折曲部以外の部分に安定した温度の空気流を導いて冷却することができる。
 また、本発明の一実施形態のバックライト構造は、前記背面板と前記ファン取付板との間に、前記第1通風路と前記第2通風路とを区画する仕切板を備える。
 上記実施形態によれば、簡易な構成によって第1通風路と第2通風路を形成することができる。
 また、本発明の一実施形態のバックライト構造は、前記ファン取付板の前記第2通風路が設けられた位置に、前記光源モジュールの駆動回路及び前記表示パネルの駆動回路のうち少なくとも1つが実装されている。
 上記実施形態によれば、第2通風路を流れる空気流によって、光源の動作や発熱に影響を受けることなく、光源モジュールの駆動回路及び表示パネルの駆動回路のうち少なくとも1つを冷却することができる。
 また、本発明の一実施形態のバックライト構造は、前記光源モジュールの光源は、LEDである。
 上記実施形態によれば、LEDの発光に伴って生じる熱を背面板の突出部から効率良く放出できる。従って、発熱量が大きい高輝度LEDを用いることにより、大型化やコストアップを招くことなく、大型電子機器用のバックライト構造が得られる。
 また、本発明の一実施形態のバックライト構造は、前記冷却ファンは、軸流ファン又はシロッコファンである。
 上記実施形態によれば、例えばファン取付板の背面側に配置するときは軸流ファンを用いる一方、背面板とファン取付板との間に配置するときはシロッコファンを用いる等のように、配置位置に応じて適切な形式の冷却ファンを選択することにより、バックライト構造の薄型化やコスト削減を図ることができる。
 本発明によれば、光源モジュール近傍の背面板に後方に突出するように形成された突出部の表面に冷却ファンからの空気流を効率良く導くことにより、光源を効果的に冷却できる薄型のバックライト構造を提供することができる。
本発明の第1実施形態のバックライト構造を有する液晶表示装置を示す断面図 第1実施形態のバックライト構造を有する液晶表示装置を示す背面図 第1実施形態のバックライト構造を有する液晶表示装置を示す正面図 第1実施形態の液晶表示装置における光源モジュール付近の部分断面図 第1実施形態の変形例のバックライト構造を示す断面図 本発明の第2実施形態のバックライト構造を有する液晶表示装置を示す断面図 第2実施形態の液晶表示装置における光源モジュール付近の部分断面図 本発明の第3実施形態のバックライト構造を有する液晶表示装置を示す断面図 本発明の第4実施形態のバックライト構造における光源モジュール付近の拡大図 第4実施形態のバックライト構造に用いられる光源モジュールの平面図 本発明の第5実施形態のバックライト構造を有する液晶表示装置の背面図 本発明の第6実施形態のバックライト構造を有する液晶表示装置の背面図 本発明の第7実施形態のバックライト構造を有する液晶表示装置の背面図 本発明の第8実施形態のバックライト構造を有する液晶表示装置を示す断面図 第8実施形態のバックライト構造を有する液晶表示装置を示す背面図 従来のサイドライト型のバックライト構造を有する液晶表示装置を示す断面図
 以下、図面を参照しながら本発明の実施形態について説明する。図1は、本発明の第1実施形態のバックライト構造を有する液晶表示装置を模式的に示す断面図、図2は、図1の液晶表示装置の背面図、図3は図1の液晶表示装置の正面図、図4は、図1の液晶表示装置における光源モジュール付近の拡大図である。
 このバックライト構造はサイドライト型であり、液晶表示装置100の上下両端縁の近傍に配置された一対の光源モジュール1と、この光源モジュール1の間に配置された導光板2と、光源モジュール1及び導光板2の背面側に配置された金属製の背面板3と、この背面板3の背面側に所定間隔をおいて配置されたファン取付板4と、このファン取付板4に取り付けられた冷却ファン5とを備える。
 光源モジュール1は、液晶表示装置100の幅方向に延在する細長の実装基板1aと、この実装基板1aの導光板2の端面と対向する側の表面に直線に配列された複数の光源としてのLEDチップ1bを有する。
 導光板2は、光源モジュール1のLEDチップ1bから上下両端面に入射した光を前面から出射するように形成されている。この導光板2の前面側に、液晶表示パネル7が配置されている。また、導光板2の背面側には反射シート8が配置されている。
 背面板3は、少なくとも、光源モジュール1の上下両側面を取り囲むと共に光源モジュール1及び導光板2の背面を覆うように形成されている。この背面板3は、上下両端縁の光源モジュール1の背面側に位置する部分が後方に突出した突出部3aを有している。また、上下の突出部3aの間には、導光板2の背面に近接した平坦面3bが形成されている。突出部3aは、光源モジュール1の配置位置に対応して、背面板3を上下両端縁に沿って断面略コ字状に折り曲げて形成されている。
 ファン取付板4は、幅方向及び高さ方向の寸法が背面板3と概ね同じであり、前後方向において背面板3の突出部3aの後方端と略同じ位置に配置されている。このファン取付板4と背面板3との間に、第1通風路としての冷却風路11が形成されており、ファン取付板4の上下両端縁には、突出部3aの形状に合わせてL字状の折曲部4aが形成されている。そして、背面板3の上下両側の突出部3aとファン取付板4の折曲部4aとの間に冷却風路11の排出口11aが形成されている。
 冷却ファン5は軸流ファンによって形成されており、背面に設けられた吸入口5aから空気を吸い込んで、前面に設けられた吹出口5bから冷却風路11内に風を吹き出すようになっている。
 このように、背面板3に各構成部分が取り付けられて形成されたバックライト構造が、液晶表示パネル7を支持するプラスチックフレーム9と連結されて、液晶表示装置100を構成している。
 上記構成のバックライト構造を有する液晶表示装置100は、以下のように動作する。すなわち、液晶表示装置100の電源スイッチがオン入力を受けると、図示しない電源回路が起動して光源モジュール1に電力を供給し、これにより光源モジュール1の複数のLEDチップ1bが発光する。LEDチップ1bからの出射光は導光板2の上下端面から入射し、この導光板2内を伝達されて前面から出射される。導光板2の前面から出射した光は液晶表示パネル7に入射し、この液晶表示パネル7に入力される制御信号及び画像信号に対応して光の透過率が制御されて、画面に所定の画像が表示される。
 一方、液晶表示装置100の起動に伴って冷却ファン5が動作し、冷却風路11を通して矢印W1で示すような空気流が生成される。ここで、LEDチップ1bの発光に伴って生じた熱が実装基板1aを伝わって背面板3の突出部3aに集中する。突出部3aに集中した熱は、冷却風路11を通過する空気流に受け取られて排出口11aから排出される。
 突出部3aは、光源モジュール1の背面側に位置するのでLEDチップ1bの熱を効率良く集めることができる。また、突出形状を有するため表面積が大きくなり、さらに、冷却風路11によって導かれた空気流が接触するので、LEDチップ1bの熱を効率良く放出してLEDチップ1bを効果的に冷却することができる。そして、放熱を行う突出部3aが、冷却風路11を形成する平坦部3bと同一の部材で一体形成されているので、高い冷却効率が得られると共に、部品点数を少なくできる。その結果、従来に比べて少ない部品点数によってLEDチップ1bから突出部3aに熱が伝達されるため、熱伝達効率及び冷却効率も向上できる。
 また、背面板3の平坦面3bの背面側に位置するファン取付板4にファン5を取り付けると共に、背面板3の平坦面3bとファン取付板4との間に冷却風路11を形成しているので、ファン5を用いた強制冷却を行うにもかかわらず、厚みの小さいバックライト構造が得られる。
 また、冷却風路11内を流れる空気流により突出部3aを冷却するので、放熱フィンを取り付けて冷却ファンからの風を送る構成に比べて冷却のムラを少なくできる。従って、冷却ムラを防止するために冷却ファンの数を増やしたり大容量のファンを用いたりする必要が無いので、部品点数とコストを増大することなく、冷却性能の向上を図ることができる。
 ここで、LEDチップ1bの発光に伴って生じた熱は、図4に示すLEDチップ1bに近い突出部3aの内側面13及び先端面15に集中するため、内側面13及び先端面15の温度が高くなる。そこで、本実施形態では突出部3aの形状に合わせて折曲部4aを設けることとした。
 この構成により、冷却風路11を流れる空気流W1は内側面13及び先端面15に接触した後に排出口11aより排出される。その結果、突出部3aの表面において空気流が接触する面積が大きくなるため、突出部3aの冷却効率をより高めることができる。また、冷却風路11の幅を狭くしても内側面13及び先端面15に空気流W1を確実に接触させることができるため、背面板3とファン取付板4との隙間を狭くして薄型のバックライト構造とした場合であっても突出部3aの冷却効率を維持することができる。
 このように、本実施形態のバックライト構造は、部品点数が少ない簡易な構成によって、薄型にでき、かつ、良好な冷却性能が得られるので、発熱量の大きい高輝度LEDを光源に用いることができる。従って、高輝度LEDを光源に用いた大画面テレビ等の大型電子装置に搭載可能なバックライト構造を実現できる。
 第1実施形態のバックライト構造において、背面板3の突出部3aは、放熱を行うと共に、他の構成部品を収容してもよい。図5は、第1実施形態の変形例のバックライト構造を示す断面図である。図5においては、光源モジュール1の実装基板1aの幅方向(バックライト構造の前後方向)の寸法が図1よりも大きく、この実装基板1aの背面部分を、突出部3aの内側に配置している。このように、幅方向の寸法の大きい光源モジュール1を用いても、背面板3の前後方向の寸法を大きくすることなく、薄型のバックライト構造が得られる。また、冷却ファン5による空気流を受ける突出部3aの内側に光源モジュール1の一部を収容することにより、光源であるLEDチップ1bの冷却効率を更に向上することができる。
 図6は、本発明の第2実施形態のバックライト構造を有する液晶表示装置を模式的に示す断面図であり、図7は、図6の液晶表示装置における突出部付近の拡大図である。本実施形態のバックライト構造は、ファン取付板4の上下両端縁に、突出部3aを囲むように断面略コ字状の折曲部4aが形成されている。その他の部分の構成は第1実施形態と同様であるため説明を省略する。
 この構成によれば、冷却風路11を流れる空気流W1は突出部3aの内側面13及び先端面15だけでなく、外側面17にも接触した後に排出口11aより排出される。その結果、突出部3aの表面において空気流が接触する面積が第1実施形態に比べて更に大きくなるため、突出部3aの冷却効率を一層高めることができる。
 図8は、本発明の第3実施形態のバックライト構造を有する液晶表示装置を模式的に示す断面図である。本実施形態のバックライト構造は、背面板3に突出部3aが一体形成されておらず、断面L字型の突出部材31が設けられている以外は、第2実施形態と同一の構造を有する。本実施形態では、LEDチップ1bの熱を、背面板3の背面の上下両端縁に取り付けられた別体の突出部材31に伝達し、この突出部材31に冷却ファン5による空気流を接触させて放熱を行っている。
 本実施形態のバックライト構造においても、第2実施形態と同様にファン取付板4の上下両端縁に、突出部3aを囲むように断面略コ字状の折曲部4aが形成されている。これにより、冷却風路11を流れる空気流が突出部材31の内側面及び外側面の両方に接触可能となり、突出部材31の冷却効率を高めることができる。
 なお、第3実施形態のバックライト構造では、突出部材31が背面板3と別体であるので第2実施形態よりも熱伝導効率が低く、また、突出部材31が板状であるので第2実施形態よりも放熱面積が少なく放熱効率が低い。従って、第2実施形態よりも光源の冷却効率が低くなってしまう。これに対し、第2実施形態のバックライト構造は、背面板3の一部に一体形成された突出部3aによって放熱を行うので、光源モジュール1から効率良く熱を突出部3aに伝達し、また、広い放熱面積によって効率良く熱を放出することができ、さらに部品点数も削減できるため、より好ましい。
 図9は、本発明の第4実施形態のバックライト構造における光源モジュール付近の拡大図であり、図10は、第4実施形態のバックライト構造に用いられる光源モジュールの平面図(図9の左方向から見た図)である。本実施形態のバックライト構造は、第3実施形態と同様に背面板3に突出部3aが一体形成されておらず、光源モジュール1の実装基板1a上に配置された各LEDチップ1bに対応する位置において背面側(図9では下側)に突出する複数の突出片20が形成されており、突出片20が背面板3を貫通して冷却風路11内に突出している。即ち、突出部材31に代えて突出片20に冷却ファン5による空気流W1を接触させて放熱を行っている。その他の部分の構成は第1実施形態と同様であるため説明を省略する。
 この構成により、実装基板1aの一部である突出片20が冷却風路11内に突出するため、実装基板1aに空気流が直接接触することになる。従って、第1~第3実施形態に比べて光源モジュール1からの発熱をより効率良く放熱することができる。
 また、第1実施形態と同様にファン取付板4の上下両端縁を突出片20に合わせてL字状に折り曲げた折曲部4aを形成したので、冷却風路11を流れる空気流が突出片20の内側面20a全体に接触可能となる。従って、突出片20の表面において空気流の接触する面積が広くなり、冷却効率をさらに高めることができる。さらに、冷却風路11の幅を狭くしても突出片20全体に空気流を確実に接触させることができるため、バックライト構造の薄型化も可能となる。
 また、図10に示すように、各突出片20は実装基板1aの長手方向において各LEDチップ1bに対応する位置に形成されているため、LEDチップ1bから発生する熱は対応する突出片20に集中して蓄積され、冷却風路11を流れる空気流によって効率良く放熱される。
 なお、第2及び第3実施形態と同様に、突出片20を囲む断面略コ字状の折曲部4aを形成しておけば、突出片20の内側面及び外側面の両方に空気流を接触させることができるため、冷却効率がさらに向上する。また、第1及び第2実施形態と同様に、背面板3に突出部3aを一体形成し、突出部3aの先端面15(図4参照)から冷却風路11内に突出片20を突出させても良い。この構成によれば、LEDチップ1bの熱が集中する突出部3aを冷却する効果と、突出片20を介して実装基板1aを直接冷却する効果との相乗効果が期待できる。
 図11は、本発明の第5実施形態のバックライト構造を有する液晶表示装置の背面図である。本実施形態のバックライト構造は、背面板3とファン取付板4との間に仕切板21a~21dと整流板23とを備える以外は、第1実施形態と同一の構成を有する。第1実施形態の図2と共通する部分には同一の符号を付して説明を省略する。
 本実施形態のバックライト構造では、背面板の平坦面3bと、この平坦面3bに向かい合うファン取付板4の内側面との間に、冷却風路11を定める4枚の仕切板21a~21dが固定されている。図11に示すように、冷却ファン5の両側から背面板3の突出部3aの両端に向かって2枚の仕切板21a、21b、及び21c、21dが湾曲して延在し、仕切板21a、21bの間、及び仕切板21c、21dの間に冷却ファン5の上側と下側とで2つの冷却風路11を画定している。
仕切板21a、21b、及び仕切板21c、21dによって画定された2つの冷却風路11内には、それぞれ2枚の整流板23が設けられている。整流板23は、仕切板21a~21dと同様に、背面板3の平坦面3bとファン取付板4の内側面との間に固定されている。2枚の整流板23は、各冷却風路11内の左右に略対称に配置され、冷却ファン5から背面板の突出部3aに向うにつれて、互いの間隔が広がるように形成されている。
 この構成により、冷却ファン5による空気流を、2枚の仕切板21a、21b、及び21c、21dで仕切られた2つの冷却風路11によって背面板3の突出部3aに導くと共に、整流板23によって空気流を整えて流れの損失を低減することができる。従って、冷却ファン5による空気流を効率良く突出部3aに導いて放熱を行うことができ、光源の冷却効率を高めることができる。
 図12は、本発明の第6実施形態のバックライト構造を有する液晶表示装置の背面図である。本実施形態のバックライト構造は、仕切板21a~21dの形状が異なる以外は、第5実施形態と同一の構成を有する。第5実施形態の図11と共通する部分には同一の符号を付して説明を省略する。
 第6実施形態のバックライト構造は、図12に示すように、冷却風路11を定める4枚の仕切板21a~21dが、冷却ファン5と離れた位置からファン取付板4の四隅に向かって放射状に形成されている。そして、冷却ファン5の左右両側に位置する上下の仕切板21a、21cによって挟まれた領域、及び21b、21dによって挟まれた領域に、それぞれ第2通風路としてのバイパス風路25が形成されている。
 この構成により、冷却ファン5による空気流は、冷却風路11によって背面板3の上下両側の突出部3aに導かれるとともに、バイパス風路25によって背面板3の左右両側の縁部にも導かれる。従って、冷却ファン5によって突出部3aの冷却を行うと共に、背面板3の平坦面3bやファン取付板4の左右部分の冷却を行うことができる。
 図13は、本発明の第7実施形態のバックライト構造を有する液晶表示装置の背面図である。本実施形態のバックライト構造は、冷却風路11内に整流板23が設けられておらず、かつ、バイパス風路25内に液晶パネル駆動回路27とLED駆動電源回路29が取り付けられている以外は、第6実施形態と同一の構成を有する。第6実施形態の図12と共通する部分には同一の符号を付して説明を省略する。
 本実施形態のバックライト構造では、図13に示すように、2つのバイパス風路25の途中に、液晶パネル駆動回路27とLED駆動電源回路29をそれぞれ配置している。この構成により、冷却ファン5による空気流を、冷却風路11に導いてLEDの冷却を行うと共に、バイパス風路25に導いて液晶パネル駆動回路27とLED駆動電源回路29の冷却を行うことができる。なお、本実施形態は、液晶パネル駆動回路27とLED駆動電源回路29をバイパス風路25内に配置して空気流を直接当てて冷却を行うものであるが、ファン取付板4の背面であってバイパス風路25の背面側の位置に液晶パネル駆動回路27及びLED駆動電源回路29の少なくとも一つを配置して、ファン取付板4を介して冷却を行ってもよい。
 図14は、本発明の第8実施形態のバックライト構造を有する液晶表示装置を模式的に示す断面図であり、図15は、図14の液晶表示装置の背面図である。第1実施形態の図1及び図2と共通する部分には同一の符号を付して説明を省略する。本実施形態のバックライト構造は、シロッコファンである2つの冷却ファン5を、ファン取付板4の背面板3側の面に取り付けているとともに、2つの冷却ファン5からの風を2つの冷却風路11によって別個に背面板3の突出部3aに導いている。
 図15に示すように、2つの冷却ファン5は、ファン取付板4の左右両側縁の近傍、かつ、上下方向の略中央に取り付けられている。各冷却ファン5の吹出口5aの左右両端から、背面板の突出部3aの左右両端に向かって2枚の仕切板21a、21b及び仕切板21c、21dが設けられている。この仕切板21a、21bの間、及び仕切板21c、21dの間に2つの冷却風路11を形成し、各冷却風路11中に2枚の整流板23をそれぞれ配置している。
 本実施形態のバックライト構造では、冷却ファン5を背面板3とファン取付板4との隙間に収容することにより、背面板3の背面を平坦にして見栄え良くできると共に、全体の厚みを更に削減できる。また、冷却ファン5にシロッコファンを用いることにより、風量を確保しつつ冷却ファン5の小型化を行うことができる。従って、光源の冷却性能を犠牲にすることなく、バックライト構造の更なる薄型化を行うことができる。
 なお、上記各実施形態では、冷却ファン5として外部の空気を装置内部に導く吸気ファンを用いているが、本発明のバックライト構造では突出部3a、突出部材31、或いは突出片20に冷却風路11内の空気流が接触する面積が増加するため、冷却ファン5として装置内部の空気を外部に排出する排気ファンを用いることもできる。しかし、外部の冷たい空気を突出部3a等に接触させる方が冷却効率をより向上できるため、吸気ファンを用いる方が好ましい。
 その他、本発明は上記各実施形態に限定されず、本発明の趣旨を逸脱しない範囲で種々の変更が可能である。即ち、用途及び目的に応じて各実施形態を適宜組み合わせて使用できるのはもちろんである。
 また、上記各実施形態において、本発明のバックライト構造を液晶表示パネルに用いて液晶表示装置を構成したが、本発明のバックライト構造は、他の画像表示装置の照明に用いてもよい。また、光源モジュールに用いる光源はLEDに限られず、他の発光素子を用いてもよい。
 本発明は、液晶表示装置等の照明に用いられるバックライトに利用することができ、背面板の光源モジュール近傍に設けられた突出部の表面に多くの空気流を導くことにより、光源からの熱を突出部を介して効率良く放出するとともに、バックライトの薄型化も可能なバックライト構造を提供する。
 また、本発明のバックライト構造を用いることにより、製造性、耐久性に優れた薄型液晶テレビや液晶モニター等の液晶表示装置を提供するとともに、液晶表示装置の薄型化、軽量化にも貢献できる。
 1       光源モジュール
 1a      実装基板
 1b      LEDチップ
 2       導光板
 3       背面板
 3a      突出部
 3b      平坦面
 4       ファン取付板
 4a      折曲部
 5       冷却ファン
 11      冷却風路(第1通風路)
 13      (突出部の)内側面
 15      (突出部の)先端面
 17      (突出部の)外側面
 20      突出片
 21a~21d 仕切板
 23      整流板
 25      バイパス風路(第2通風路)
 27      液晶パネル駆動回路
 29      LED駆動電源回路
 31      突出部材
 100     液晶表示装置

Claims (13)

  1.  複数の光源を有する光源モジュールと、
     該光源モジュールの光源から端面に入射した光を前面から出射して表示パネルに導く導光板と、
     該導光板及び前記光源モジュールの背面側に配置され、前記光源モジュールの背面側の部分に後方に突出した突出部が形成される背面板と、
     該背面板の背面側であって、前記突出部以外の部分に対向するように配置される冷却ファンと、
     該冷却ファンが取り付けられ、前記背面板との間に隙間を形成するように配置されるとともに前記突出部の形状に沿って折曲部が形成されるファン取付板と、
     該ファン取付板と前記背面板との隙間に形成され、前記冷却ファンにより生じた空気流が前記突出部の表面の少なくとも一部に接触しながら通過する第1通風路と、
    を備えることを特徴とするバックライト構造。
  2.  請求項1に記載のバックライト構造において、
     前記突出部は前記背面板を折り曲げて形成されており、前記突出部の内側に前記光源モジュールの一部が収容される。
  3.  請求項1に記載のバックライト構造において、
     前記光源モジュールは、複数の光源及び該光源を実装する実装基板から構成され、前記突出部は、前記背面板を貫通して前記第1通風路内に突出する前記実装基板の一部である。
  4.  請求項3に記載のバックライト構造において、
     前記実装基板には、該実装基板上に配置された各光源に対応する位置において背面側に突出する複数の突出片が形成されており、該突出片が前記第1通風路内に突出して前記突出部を構成する。
  5.  請求項1に記載のバックライト構造において、
     前記折曲部は、前記突出部を囲むように形成される。
  6.  請求項1に記載のバックライト構造において、
     前記冷却ファンが吸気ファンであり、前記突出部が、前記第1通風路の排出口の近傍に位置している。
  7.  請求項1に記載のバックライト構造において、
     前記背面板と前記ファン取付板との間に、前記第1通風路を定める仕切板を備える。
  8.  請求項1に記載のバックライト構造において、
     前記ファン取付板に、前記光源モジュールの駆動回路及び前記表示パネルの駆動回路のうち少なくとも1つが実装されていることを特徴とする。
  9.  請求項1に記載のバックライト構造において、
     前記背面板と前記ファン取付板との間に、前記冷却ファンによる空気流が前記背面板の前記突出部以外の表面に接触しながら通過する第2通風路を備える。
  10.  請求項9に記載のバックライト構造において、
     前記背面板と前記ファン取付板との間に、前記第1通風路と前記第2通風路とを区画する仕切板を備える。
  11.  請求項9に記載のバックライト構造において、
     前記ファン取付板の前記第2通風路が設けられた位置に、前記光源モジュールの駆動回路及び前記表示パネルの駆動回路のうち少なくとも1つが実装されている。
  12.  請求項1乃至請求項11のいずれかに記載のバックライト構造において、
     前記光源モジュールの光源は、LEDである。
  13.  請求項1乃至請求項11のいずれかに記載のバックライト構造において、
     前記冷却ファンは、軸流ファン又はシロッコファンである。
PCT/JP2010/053512 2009-03-25 2010-03-04 バックライト構造 WO2010110022A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/257,404 US20120020114A1 (en) 2009-03-25 2010-03-04 Backlight structure
CN2010800124771A CN102356347A (zh) 2009-03-25 2010-03-04 背光源结构

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-073138 2009-03-25
JP2009073138 2009-03-25

Publications (1)

Publication Number Publication Date
WO2010110022A1 true WO2010110022A1 (ja) 2010-09-30

Family

ID=42780715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/053512 WO2010110022A1 (ja) 2009-03-25 2010-03-04 バックライト構造

Country Status (3)

Country Link
US (1) US20120020114A1 (ja)
CN (1) CN102356347A (ja)
WO (1) WO2010110022A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012128064A1 (ja) * 2011-03-18 2012-09-27 シャープ株式会社 照明装置、表示装置、及びテレビ受信装置
WO2013115085A1 (ja) * 2012-02-03 2013-08-08 シャープ株式会社 照明装置、表示装置、及びテレビ受信装置
WO2014030584A1 (ja) * 2012-08-21 2014-02-27 シャープ株式会社 照明装置、表示装置、及びテレビ受信装置

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8854595B2 (en) 2008-03-03 2014-10-07 Manufacturing Resources International, Inc. Constricted convection cooling system for an electronic display
US8497972B2 (en) 2009-11-13 2013-07-30 Manufacturing Resources International, Inc. Thermal plate with optional cooling loop in electronic display
US8773633B2 (en) 2008-03-03 2014-07-08 Manufacturing Resources International, Inc. Expanded heat sink for electronic displays
US8654302B2 (en) 2008-03-03 2014-02-18 Manufacturing Resources International, Inc. Heat exchanger for an electronic display
US10827656B2 (en) 2008-12-18 2020-11-03 Manufacturing Resources International, Inc. System for cooling an electronic image assembly with circulating gas and ambient gas
US8749749B2 (en) 2008-12-18 2014-06-10 Manufacturing Resources International, Inc. System for cooling an electronic image assembly with manifolds and ambient gas
WO2011104953A1 (ja) * 2010-02-25 2011-09-01 シャープ株式会社 液晶表示装置およびledバックライトユニット
WO2012157548A1 (ja) * 2011-05-18 2012-11-22 シャープ株式会社 照明装置及び表示装置
TR201808875T4 (tr) * 2011-06-30 2018-07-23 Ericsson Telefon Ab L M Bir iletişim ağında baz dizilerin işlenmesi için usul ve cihaz.
TW201317676A (zh) * 2011-10-20 2013-05-01 Wistron Corp 具有散熱鰭片的顯示裝置及其電子裝置
US10660245B2 (en) 2012-10-16 2020-05-19 Manufacturing Resources International, Inc. Back pan cooling assembly for electronic display
US10048434B2 (en) * 2012-11-08 2018-08-14 Sharp Kabushiki Kaisha Backlight device and liquid-crystal display device
US10524384B2 (en) 2013-03-15 2019-12-31 Manufacturing Resources International, Inc. Cooling assembly for an electronic display
US9648790B2 (en) 2013-03-15 2017-05-09 Manufacturing Resources International, Inc. Heat exchanger assembly for an electronic display
WO2015006335A2 (en) 2013-07-08 2015-01-15 Manufacturing Resources International, Inc. Figure eight closed loop cooling system for electronic display
CN103792712A (zh) * 2014-01-20 2014-05-14 深圳市华星光电技术有限公司 一种液晶模组的散热结构
US9655289B2 (en) 2014-03-11 2017-05-16 Manufacturing Resources International, Inc. Hybrid rear cover and mounting bracket for electronic display
EP3138372B1 (en) 2014-04-30 2019-05-08 Manufacturing Resources International, INC. Back to back electronic display assembly
US9723765B2 (en) 2015-02-17 2017-08-01 Manufacturing Resources International, Inc. Perimeter ventilation system for electronic display
KR102305840B1 (ko) * 2015-03-13 2021-09-28 삼성전자주식회사 디스플레이장치
FR3037399B1 (fr) * 2015-06-12 2019-06-14 Commissariat A L'energie Atomique Et Aux Energies Alternatives Dispositif d'imagerie sans lentille
US10820445B2 (en) 2016-03-04 2020-10-27 Manufacturing Resources International, Inc. Cooling system for double sided display assembly
CN105607345B (zh) * 2016-03-25 2018-09-25 京东方科技集团股份有限公司 侧入式背光源及显示设备
KR102258444B1 (ko) * 2017-03-13 2021-05-31 엘지전자 주식회사 디스플레이 장치
US10485113B2 (en) 2017-04-27 2019-11-19 Manufacturing Resources International, Inc. Field serviceable and replaceable display
AU2018258497B2 (en) 2017-04-27 2020-10-15 Manufacturing Resources International, Inc. System and method for preventing display bowing
CN107027271B (zh) * 2017-04-28 2019-04-30 深圳市华星光电技术有限公司 液晶电视用散热系统及液晶电视
US10559965B2 (en) 2017-09-21 2020-02-11 Manufacturing Resources International, Inc. Display assembly having multiple charging ports
US10502890B2 (en) * 2017-12-29 2019-12-10 Huizhou China Star Optoelectronics Technology Co., Ltd. Display device and wall-mounted heat dissipation mechanism thereof
JP2019191309A (ja) * 2018-04-23 2019-10-31 シャープ株式会社 液晶表示装置
US10602626B2 (en) 2018-07-30 2020-03-24 Manufacturing Resources International, Inc. Housing assembly for an integrated display unit
US11096317B2 (en) 2019-02-26 2021-08-17 Manufacturing Resources International, Inc. Display assembly with loopback cooling
US10795413B1 (en) 2019-04-03 2020-10-06 Manufacturing Resources International, Inc. Electronic display assembly with a channel for ambient air in an access panel
CN110806651A (zh) * 2019-12-17 2020-02-18 深圳市旺其鑫科技有限公司 一种led背光板
US11477923B2 (en) 2020-10-02 2022-10-18 Manufacturing Resources International, Inc. Field customizable airflow system for a communications box
US11470749B2 (en) 2020-10-23 2022-10-11 Manufacturing Resources International, Inc. Forced air cooling for display assemblies using centrifugal fans
US11778757B2 (en) 2020-10-23 2023-10-03 Manufacturing Resources International, Inc. Display assemblies incorporating electric vehicle charging equipment
US11966263B2 (en) 2021-07-28 2024-04-23 Manufacturing Resources International, Inc. Display assemblies for providing compressive forces at electronic display layers
US11762231B2 (en) 2021-08-23 2023-09-19 Manufacturing Resources International, Inc. Display assemblies inducing turbulent flow
US11919393B2 (en) 2021-08-23 2024-03-05 Manufacturing Resources International, Inc. Display assemblies inducing relatively turbulent flow and integrating electric vehicle charging equipment
US11744054B2 (en) 2021-08-23 2023-08-29 Manufacturing Resources International, Inc. Fan unit for providing improved airflow within display assemblies
US11968813B2 (en) 2021-11-23 2024-04-23 Manufacturing Resources International, Inc. Display assembly with divided interior space
US12010813B2 (en) 2022-07-22 2024-06-11 Manufacturing Resources International, Inc. Self-contained electronic display assembly, mounting structure and methods for the same
US12072561B2 (en) 2022-07-22 2024-08-27 Manufacturing Resources International, Inc. Self-contained electronic display assembly, mounting structure and methods for the same
US12035486B1 (en) 2022-07-25 2024-07-09 Manufacturing Resources International, Inc. Electronic display assembly with fabric panel communications box
CN115574303B (zh) * 2022-09-26 2023-06-16 深圳市瀚达美电子有限公司 一种具有高散热性的大尺寸led背光源

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004045680A (ja) * 2002-07-11 2004-02-12 Sony Corp 液晶表示装置及びプロジェクタ
JP2008123756A (ja) * 2006-11-09 2008-05-29 Stanley Electric Co Ltd 車両用灯具
WO2008090642A1 (ja) * 2007-01-24 2008-07-31 Sharp Kabushiki Kaisha バックライト構造

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6642974B2 (en) * 2001-05-29 2003-11-04 Chun-Chi Liao Assembly of backlight mask
TWI257509B (en) * 2003-08-27 2006-07-01 Au Optronics Corp Direct backlight module
JP4706206B2 (ja) * 2004-08-18 2011-06-22 ソニー株式会社 放熱装置及び表示装置
KR20060070176A (ko) * 2004-12-20 2006-06-23 삼성전자주식회사 냉각장치와 이를 포함하는 액정표시장치
US20060245214A1 (en) * 2005-04-29 2006-11-02 Kim Won-Nyun Liquid crystal display having heat dissipation device
JP2007163620A (ja) * 2005-12-12 2007-06-28 Hitachi Displays Ltd 液晶表示装置及びバックライト装置
KR101418585B1 (ko) * 2007-12-10 2014-07-16 삼성디스플레이 주식회사 백라이트 어셈블리, 이를 포함하는 표시 장치 및 이의 조립방법
CN101307895B (zh) * 2008-07-10 2010-06-02 友达光电股份有限公司 背光模块

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004045680A (ja) * 2002-07-11 2004-02-12 Sony Corp 液晶表示装置及びプロジェクタ
JP2008123756A (ja) * 2006-11-09 2008-05-29 Stanley Electric Co Ltd 車両用灯具
WO2008090642A1 (ja) * 2007-01-24 2008-07-31 Sharp Kabushiki Kaisha バックライト構造

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012128064A1 (ja) * 2011-03-18 2012-09-27 シャープ株式会社 照明装置、表示装置、及びテレビ受信装置
WO2013115085A1 (ja) * 2012-02-03 2013-08-08 シャープ株式会社 照明装置、表示装置、及びテレビ受信装置
WO2014030584A1 (ja) * 2012-08-21 2014-02-27 シャープ株式会社 照明装置、表示装置、及びテレビ受信装置

Also Published As

Publication number Publication date
US20120020114A1 (en) 2012-01-26
CN102356347A (zh) 2012-02-15

Similar Documents

Publication Publication Date Title
WO2010110022A1 (ja) バックライト構造
KR100939382B1 (ko) 엘이디 모듈 기판과 섀시의 결합장치 및 이를 이용한 백라이트
JP4656418B2 (ja) 照明装置及び画像表示機器
JP4516582B2 (ja) 液晶表示装置
US8104932B2 (en) Backlight structure
JP5693624B2 (ja) 表示装置
JP4968666B2 (ja) バックライト装置及び液晶表示装置
US20120300492A1 (en) Display Device and Backlight Module Thereof
US20210033916A1 (en) Display apparatus
WO2012001998A1 (ja) 照明装置及びそれを備えた画像表示装置
JP5555084B2 (ja) 光源装置
JP2008165101A (ja) Led照明装置及びこれを用いた液晶表示装置
JP2008010361A (ja) バックライト装置
JP4777469B1 (ja) 照明装置及びそれを備えた画像表示装置
WO2012063666A1 (ja) 液晶表示装置
JP6101518B2 (ja) 表示装置
JP2009244861A (ja) 画像表示装置
JP2005340065A (ja) 発光ダイオードバックライト装置
KR101218797B1 (ko) 디스플레이 장치용 백라이트 유닛의 광원장치
JP2007052950A (ja) 発光ダイオード照明装置及び画像表示機器
JP5862473B2 (ja) 液晶表示装置
JP5056292B2 (ja) 面光源装置及び液晶表示装置
JP2009231193A (ja) 照明装置及び液晶表示装置
KR100971622B1 (ko) 액정표시장치의 결합프레임
WO2019163555A1 (ja) 画像表示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080012477.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10755823

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13257404

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10755823

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP