WO2010109868A1 - 電池パック - Google Patents

電池パック Download PDF

Info

Publication number
WO2010109868A1
WO2010109868A1 PCT/JP2010/002106 JP2010002106W WO2010109868A1 WO 2010109868 A1 WO2010109868 A1 WO 2010109868A1 JP 2010002106 W JP2010002106 W JP 2010002106W WO 2010109868 A1 WO2010109868 A1 WO 2010109868A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
battery cell
charging
vehicle
voltage
Prior art date
Application number
PCT/JP2010/002106
Other languages
English (en)
French (fr)
Inventor
博章 村瀬
一浩 武藤
Original Assignee
伊藤忠商事株式会社
株式会社日本総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 伊藤忠商事株式会社, 株式会社日本総合研究所 filed Critical 伊藤忠商事株式会社
Publication of WO2010109868A1 publication Critical patent/WO2010109868A1/ja
Priority to US13/239,398 priority Critical patent/US10732229B2/en
Priority to US14/791,271 priority patent/US10451684B2/en
Priority to US16/944,010 priority patent/US11519971B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/16Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to battery ageing, e.g. to the number of charging cycles or the state of health [SoH]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • G01R31/386Arrangements for measuring battery or accumulator variables using test-loads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0404Machines for assembling batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M10/4257Smart batteries, e.g. electronic circuits inside the housing of the cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4278Systems for data transfer from batteries, e.g. transfer of battery parameters to a controller, data transferred between battery controller and main controller
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the present invention relates to a battery pack having a memory.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-17138
  • a battery pack is provided corresponding to each of a plurality of batteries and a plurality of batteries, and deterioration information of each of the plurality of batteries is obtained. And a plurality of memories for recording.
  • the battery and the memory corresponding to the battery may be integrally formed as a battery cell.
  • the battery cell may include a battery including a pair of electrodes and an exterior part that shields the pair of electrodes from the outside, and the memory may be provided inside the exterior part.
  • the battery cell may further include a detection unit that detects at least one of the voltage and current of the battery of the battery cell, and the memory may record deterioration information based on at least one of the detected voltage and current. .
  • the battery cell may further include a deterioration information calculation unit that calculates deterioration information based on at least one of the detected voltage and current.
  • the battery cell may further include an output interface for outputting the deterioration information from the memory to the outside of the battery cell.
  • a detection unit that detects at least one of the voltage and current of each of the plurality of batteries may be further provided, and the memory records deterioration information based on at least one of the detected voltage and current of the battery corresponding to the memory. You can do it.
  • a deterioration information calculation unit that calculates deterioration information of the plurality of batteries based on at least one of the detected voltages and currents of the plurality of batteries may be further provided.
  • the battery cell may further include an input / output interface for inputting deterioration information from the outside of the battery cell to the memory and outputting deterioration information from the memory to the outside of the battery cell.
  • the memory includes, as deterioration information, the number of times the battery is charged / discharged, the battery voltage history, the battery current history, the battery charging start voltage, the battery charging completion voltage, the battery internal resistance value, and the battery temperature. , At least one may be recorded.
  • An example of a structure of a battery pack is shown.
  • the other example of a structure of a battery pack is shown.
  • 1 shows an example of a power supply system 200.
  • An example of the configuration of the power supply apparatus 210 is shown.
  • 2 shows an exemplary configuration of a vehicle 220.
  • An example of the driving environment table 214 is shown.
  • An outline of battery cell repacking is shown.
  • An example of the configuration of the battery assembly apparatus 310 is shown.
  • An example of the charge curve of the three battery cells 301 from which a charge curve differs is shown.
  • the other example of the charging curve of the three battery cells 301 from which a charging curve differs is shown.
  • FIG. 1 shows an example of the configuration of the battery pack 100.
  • the battery pack 100 includes a plurality of batteries 102 and a plurality of memories 106 provided corresponding to each of the plurality of batteries 102 and recording deterioration information of each of the plurality of batteries 102.
  • the battery 102 and the memory 106 corresponding to the battery 102 are integrally formed as the battery cell 101.
  • the battery 102 includes a pair of electrodes.
  • the battery cell 101 includes a battery 102 composed of a pair of electrodes and an exterior part that shields the pair of electrodes from the outside, and the memory 106 is provided inside the exterior part.
  • the battery 102 may be a secondary battery such as a lithium ion battery.
  • the memory 106 records deterioration information of the battery 102 corresponding to the memory 106.
  • each battery cell 101 of the battery pack 100 is detachably connected to another battery cell 101, and the battery pack 100 can be disassembled and taken out without destroying each battery cell 101.
  • the plurality of battery cells 101 may be connected by screws, bolts, nuts, and the like.
  • the plurality of battery cells 101 may be fixed and connected by pressing the plurality of battery cells 101 without using bolts and nuts.
  • a plurality of battery cells 101 may be pressed and connected with a stretchable material such as rubber.
  • the exterior part of the battery pack 100 may hold down and connect the plurality of battery cells 101.
  • the battery cell 101 may include a voltage detection unit 103 that detects the voltage of the battery 102 of the battery cell 101. Further, the battery cell 101 may include a current detection unit 104 that detects the current of the battery 102 of the battery cell 101.
  • the voltage detection unit 103 and the current detection unit 104 are provided inside the exterior of the battery cell 101. In this specification, the voltage detection unit 103 and the current detection unit 104 are collectively referred to as a detection unit.
  • the memory 106 records deterioration information of the battery 102 based on at least one of the voltage of the battery 102 and the current of the battery detected by the detection unit of the battery cell 101 including the memory 106.
  • the battery cell 101 includes a deterioration information calculation unit 105 that calculates deterioration information of the battery 102 included in the battery cell 101 based on at least one of the voltage and current detected by the detection unit included in the battery cell 101. It's okay.
  • the memory 106 records the deterioration information calculated by the deterioration information calculation unit 105 corresponding to the memory 106.
  • the deterioration information calculation unit 105 corresponding to the memory 106 refers to the deterioration information calculation unit 105 included in the battery cell 101 including the memory 106. That is, the memory 106 and the deterioration information calculation unit 105 in the same battery cell 101 are referred to.
  • the deterioration information calculation unit 105 may be realized by an information processing device such as a CPU.
  • the information processing apparatus may include a recording medium in which a predetermined program is recorded, and the information processing apparatus functions as the deterioration information calculation unit 105 according to the predetermined program.
  • the deterioration information calculation unit 105 may be realized by an electric circuit or an electronic circuit. Further, the deterioration information calculation unit 105 includes a clock circuit that measures time.
  • the memory 106 includes, as deterioration information, for example, the number of times the battery 102 is charged / discharged, the voltage history of the battery 102, the current history of the battery 102, the charging start voltage of the battery 102, the charging completion voltage of the battery 102, and the inside of the battery 102. At least one of the resistance value and its change, the charging curve of the battery 102, and the deterioration curve of the battery 102 may be recorded.
  • the number of times of charging / discharging of the battery 102 is counted as one time from charging to discharging. In other words, it may be counted as one time from the charging until the next charging is performed. Charging / discharging can be counted based on voltage history and current history.
  • the deterioration information calculation unit 105 may calculate the number of times of charging / discharging from the voltage history. Further, the deterioration information calculation unit 105 may calculate the number of times of charging / discharging from the current history.
  • the voltage history refers to a change in the voltage of the battery 102 over time. That is, a voltage history can be obtained by recording the voltage detected by the voltage detection unit 103 at predetermined intervals.
  • the deterioration information calculation unit 105 may record the value indicating the voltage detected by the voltage detection unit 103 in the memory 106 as it is every predetermined period.
  • the current history refers to a change in current of the battery 102 over time. That is, a current history can be obtained by recording the current detected by the current detection unit 104 at predetermined intervals.
  • the deterioration information calculation unit 105 may record the value indicating the current detected by the current detection unit 104 in the memory 106 as it is.
  • the charging start voltage of the battery 102 refers to the voltage of the battery 102 when charging of the battery 102 is started.
  • the deterioration information calculation unit 105 may record the value of the voltage at the start of charging detected by the voltage detection unit 103 in the memory 106 as it is.
  • the charging completion voltage of the battery 102 refers to the voltage of the battery 102 when fully charged or the voltage of the battery 102 when charging is finished.
  • the deterioration information calculation unit 105 directly stores the value indicating the voltage at the time of full charge detected by the voltage detection unit 103 or the voltage at the end of charging in the memory 106 as it is. It may be recorded.
  • the internal resistance value of the battery 102 can be calculated from the voltage and current of the battery 102.
  • the deterioration information calculation unit 105 calculates the internal resistance value from the voltage detected by the voltage detection unit 103 and the current detected by the current detection unit 104, and the memory 106 May be recorded. By calculating and recording this internal resistance value at a predetermined cycle, a change in the internal resistance value can be known.
  • the charging curve indicates the relationship between the charging time during charging of the battery 102 and the voltage.
  • the deterioration information calculation unit 105 calculates the charging curve from the value indicating the voltage detected by the voltage detection unit 103 from the start of charging to the end of charging, and records it in the memory 106. May be. Further, the deterioration information calculation unit 105 may record a value indicating the voltage detected from the start of charging to the end of charging in the memory 106 as it is.
  • the deterioration curve shows the deterioration history of the battery 102.
  • the deterioration curve may indicate a transition of the voltage of the battery 102 when fully charged.
  • the deterioration curve may indicate the relationship between the number of times of charging and the voltage of the battery 102 when fully charged. As the number of times the battery 102 is charged increases, the voltage of the battery 102 at the time of full charge decreases. That is, as the deterioration progresses, the voltage of the battery 102 at the time of full charge decreases.
  • the deterioration information calculation unit 105 may record the voltage of the battery 102 at the time of full charge and the current number of times of charging in the memory 106.
  • a deterioration curve may be calculated from the voltage of the battery 102 at each charge count recorded in the memory 106 and recorded in the memory 106. Further, the deterioration curve may be calculated and recorded from the deterioration curve recorded in the memory 106 and the voltage of the fully charged battery 102 detected by new charging.
  • the deterioration curve may be a change in the internal resistance value of the battery 102. As the internal resistance of the battery 102 increases, the battery 102 deteriorates.
  • the deterioration curve may indicate the relationship between the number of times the battery 102 is charged and the internal resistance value. As the number of times the battery 102 is charged increases, the internal resistance of the battery 102 increases.
  • the memory 106 may record the temperature of the battery 102 as deterioration information.
  • the deterioration of the battery 102 changes depending on the temperature of the battery 102.
  • the battery pack 100 includes a temperature sensor that detects the temperature of the battery 102 inside.
  • the temperature sensor may be provided inside the exterior portion of each battery cell 101.
  • the temperature sensor detects the temperature of the corresponding battery 102.
  • the battery 102 corresponding to the temperature sensor refers to the battery 102 included in the battery cell 101 including the temperature sensor. Further, the temperature sensor may be provided inside the battery pack 100 and outside the battery cell 101.
  • the battery cell 101 may include an output interface 107 for outputting the deterioration information from the memory 106 to the outside of the battery cell 101. Thereby, the deterioration information recorded in the memory 106 of each battery cell 101 can be read from an external device.
  • the battery pack 100 has a configuration in which a plurality of battery cells 101 connected in series are connected in parallel. However, this is only an example, and the battery pack 100 may include a plurality of battery cells 101 all connected in series. You may have the some battery cell 101 all connected in parallel.
  • the current detection unit 104 is provided for the parts connected in series. Also good. In this case, the current detection unit 104 may be provided outside the battery cell 101. Further, the current detection unit 104 may be provided in any battery cell 101 and may not be provided in other battery cells 101. In this case, the current detection unit 104 of the battery cell 101 provided with the current detection unit 104 may detect the current of the battery 102 of the battery cell 101 where the current detection unit 104 is not provided.
  • the voltage detection unit 103 may be provided in any one of the battery cells 101, and the voltage detection unit 103 may not be provided in the other battery cells 101.
  • the voltage detection unit 103 of the battery cell 101 that includes the voltage detection unit 103 may detect the voltage of the battery 102 of the battery cell 101 that does not include the voltage detection unit 103.
  • the deterioration information calculation unit 105 may be provided in any one of the battery cells 101, and the other battery cells 101 may not include the deterioration information calculation unit 105.
  • the deterioration information calculation unit 105 of the battery cell 101 that includes the deterioration information calculation unit 105 may calculate the deterioration information of the battery 102 of the battery cell 101 that does not include the deterioration information calculation unit 105, respectively.
  • the battery cell 101 includes the voltage detection unit 103, the current detection unit 104, and the deterioration information calculation unit 105.
  • the battery cell 101 only needs to include the memory 106, and the voltage detection unit 103, At least one of the current detection unit 104 and the deterioration information calculation unit 105 may be outside the battery cell 101.
  • FIG. 2 shows another example of the configuration of the battery pack 100.
  • the same components as those in FIG. 1 are denoted by the same reference numerals.
  • the battery pack 100 includes a plurality of batteries 102 and a plurality of memories 106 provided corresponding to each of the plurality of batteries 102 and recording deterioration information of each of the plurality of batteries 102.
  • the battery 102 and the memory 106 corresponding to the battery 102 are integrally formed as a battery cell 111.
  • the battery 102 includes a pair of electrodes.
  • the battery cell 111 includes a battery 102 including a pair of electrodes, and an exterior portion that shields the pair of electrodes from the outside, and the memory 106 is provided inside the exterior portion.
  • the memory 106 records deterioration information of the battery 102 corresponding to the memory 106. Further, each battery cell 111 of the battery pack 100 is detachably connected to another battery cell 111, and the battery pack 100 can be disassembled and taken out without destroying each battery cell 111.
  • the battery pack 100 may include a voltage detection unit 112 that detects the voltages of the plurality of batteries 102.
  • the voltage detection unit 112 is provided inside the battery pack 100 and is provided outside the battery cell 111.
  • the battery pack 100 may include a plurality of voltage detection units 112.
  • the battery pack 100 may include a current detection unit 113 that detects the currents of the plurality of batteries 102.
  • the current detection unit 113 is provided inside the battery pack 100 and is provided outside the battery cell 111. Further, the battery pack 100 may include a plurality of current detection units 113.
  • the voltage detection unit 112 and the current detection unit 113 are collectively referred to as a detection unit.
  • the memory 106 records deterioration information of the battery 102 based on at least one of the voltage and current of the battery 102 corresponding to the memory 106 detected by the detection unit.
  • the memory 106 includes, as deterioration information, for example, the number of times the battery 102 is charged / discharged, the voltage history of the battery 102, the current history of the battery 102, the charging start voltage of the battery 102, the charging completion voltage of the battery 102, and the inside of the battery 102. At least one of the resistance value and its change, the charging curve of the battery 102, and the deterioration curve of the battery 102 may be recorded. Note that the memory 106 may record the temperature of the battery 102 as deterioration information.
  • the battery pack 100 includes a temperature sensor that detects the temperature of the battery 102 inside. The temperature sensor may be provided inside the battery pack and outside the battery cell 101. Further, the battery pack 100 may include a plurality of temperature sensors that detect the respective batteries 102. Further, the temperature sensor may be provided inside the exterior portion of each battery cell 101.
  • the battery pack 100 may include a deterioration information calculation unit 114 that calculates deterioration information of the plurality of batteries 102 based on at least one of the detected voltages and currents of the plurality of batteries 102.
  • the deterioration information calculation unit 114 is provided inside the battery pack 100 and is provided outside the battery cell 111.
  • the deterioration information calculation unit 114 may be realized by an information processing device such as a CPU, similarly to the deterioration information calculation unit 105, or may be realized by an electric circuit or an electronic circuit.
  • the memory 106 records deterioration information of the battery 102 corresponding to the memory 106. Further, the deterioration information calculation unit 105 includes a clock circuit that measures time.
  • the battery cell 111 may include an input / output interface 115 for inputting deterioration information from the outside to the memory 106 included in the battery cell 111 and outputting deterioration information from the memory 106 to the outside of the battery cell 111.
  • the battery cell 111 has an input interface for inputting deterioration information to the memory 106 provided in the battery cell 111 from the outside, and an output for outputting deterioration information from the memory 106 to the outside of the battery cell 111.
  • the interface may be provided separately.
  • the deterioration information calculation unit 114 records the deterioration information of the plurality of batteries 102 in the plurality of memories 106 via the input / output interfaces 115 of the battery cells 111, respectively.
  • the deterioration information calculation unit 114 records the deterioration information of the battery 102 in the memory 106 corresponding to the battery 102.
  • the voltage detection unit 112, the current detection unit 113, and the deterioration information calculation unit 114 are provided outside the battery cell 111, but at least the voltage detection unit 112, the current detection unit 113, and the deterioration information calculation unit 114 are provided. One may be provided in any of the battery cells 111.
  • the memory 106 provided for each battery cell 101 records the deterioration information of the battery 102, even if the battery pack 100 is disassembled and the battery cells 101 are separated, The deterioration information of the battery 102 of the battery cell 101 can be easily known. That is, even if the battery pack 100 is disassembled for each battery cell 101 unit, the deterioration information of the battery 102 of the battery cell 101 can be easily known.
  • the battery pack 100 described above can be used as a battery mounted on a vehicle.
  • the battery may be composed of one battery pack 100 or a plurality of battery packs 100.
  • a power supply system including a vehicle equipped with a battery and a power supply device that supplies power to the vehicle will be described.
  • FIG. 3 shows an example of the power supply system 200.
  • the power supply system 200 includes a power supply device 210, a vehicle 220, and a cable 230.
  • the vehicle 220 includes a battery 221 and a device 222.
  • Vehicle 220 may be an electric vehicle or a hybrid vehicle. Further, the vehicle 220 only needs to be equipped with a battery 221.
  • the cable 230 connects the power supply device 210 and the vehicle 220.
  • the cable 230 conducts the power supplied from the power supply device 210 to the vehicle 220.
  • the cable 230 may have a dedicated power line and a dedicated signal line.
  • the dedicated power line conducts the power supplied from the power supply device 210 to the vehicle 220.
  • the dedicated communication line conducts a control signal from the power supply device 210 to the vehicle 220.
  • the device 222 adjusts the driving environment of the vehicle 220.
  • the device 222 may be an air conditioner that adjusts the temperature inside the vehicle 220, for example.
  • the air conditioner has a function of adjusting at least one of cooling and heating.
  • the device 222 may be a superheater that heats a hot wire provided in the glass in order to remove fogging of the glass.
  • the device 222 may be a seat heater that warms a seat on which a driver or the like sits.
  • the power supply device 210 may be provided in a building 240 such as a house or a condominium.
  • the power supply device 210 may supply power from the power company to the vehicle 220 via the cable 230.
  • the power supply device 210 may include a fuel cell, a solar cell, a generator, and the like, and may supply the vehicle 220 with power generated by the fuel cell, the solar cell, the generator, and the like.
  • the power supply device 210 may include a storage battery, and may supply the vehicle 220 with the power stored in the storage battery.
  • the power supply device 210 supplies power for charging the battery 221 of the vehicle 220.
  • the power supply device 210 supplies power to the vehicle 220 via the dedicated power line of the cable 230.
  • the power supply device 210 controls the device 222 provided in the vehicle 220 by transmitting a control signal via the cable 230.
  • the power supply apparatus 210 may control the device 222 according to at least one of the inside temperature and the outside temperature of the vehicle 220.
  • the power supply apparatus 210 may control the device 222 based on information for controlling the device 222 registered by the user.
  • the power supply apparatus 210 may control the device 222 based on the operating environment registered by the user. For example, the power supply apparatus 210 may control the device 222 so that the in-vehicle temperature of the vehicle 220 becomes a temperature registered by the user.
  • you may control the apparatus 222 so that the vehicle interior temperature of the vehicle 220 may become the temperature registered by the user at the time registered by the user.
  • the power supply apparatus 210 may generate a control signal that controls the device 222.
  • the power supply apparatus 210 may control the device 222 by transmitting a control signal via the communication dedicated line of the cable 230.
  • the cable 230 may not have a dedicated communication line.
  • the power supply apparatus 210 may control the device 222 by transmitting a control signal through power communication via the cable 230.
  • FIG. 4 shows an example of the configuration of the power supply apparatus 210.
  • the power supply device 210 includes an outside air temperature detection unit 211, a temperature acquisition unit 212, an operation environment registration unit 213, an operation environment table 214, a vehicle control unit 215, a power supply unit 216, and a control unit 217.
  • the outside air temperature detector 211 detects the temperature of the outside air.
  • the outside air temperature detection unit 211 may include a temperature sensor.
  • the temperature acquisition unit 212 acquires the outside air temperature detected by the outside air temperature detection unit 211.
  • the temperature acquisition unit 212 may acquire the temperature detected by the temperature detection unit provided in the vehicle 220.
  • the temperature acquisition unit 212 may acquire at least one of an outside air temperature and an in-vehicle temperature detected by the vehicle 220.
  • the driving environment registration unit 213 receives an input of the driving environment from the user.
  • the driving environment registration unit 213 registers the driving environment input by the user by recording information indicating the driving environment input by the user in the driving environment table 214.
  • the vehicle control unit 215 acquires information indicating the driving environment registered by the user from the driving environment table 214.
  • the vehicle control unit 215 may control the device 222 according to the acquired outside air temperature. Further, when the temperature acquisition unit 212 acquires the in-vehicle temperature from the vehicle 220, the vehicle control unit 215 may control the device 222 according to the acquired in-vehicle temperature. Further, the vehicle control unit 215 may control the device 222 according to the vehicle interior temperature and the outside air temperature.
  • the vehicle control unit 215 may control the device 222 according to the driving environment input by the user. Further, the vehicle control unit 215 may control the device 222 according to the driving environment, the outside air temperature, and / or the inside temperature. The vehicle control unit 215 may generate a control signal that controls the device 222. The vehicle control unit 215 may control the device 222 by transmitting a control signal to the vehicle 220 via the cable 230.
  • the power feeding unit 216 supplies power from the power company to the vehicle 220 via the cable 230.
  • the power feeding unit 216 supplies power to the vehicle 220 through the dedicated power line of the cable 230.
  • the power feeding unit 216 converts the alternating current from the power company into direct current and supplies the vehicle 220 with power.
  • the control unit 217 controls each unit of the power supply device 210. When the control unit 217 detects that the power supply device 210 and the vehicle 220 are connected, the control unit 215 may control the device 222 by the vehicle control unit 215, and the power supply unit 216 may control the power to the vehicle 220. Supply may be performed. Control unit 217 may determine that power supply device 210 and vehicle 220 are connected when a signal from vehicle 220 is received.
  • control unit 217 transmits a communication signal to the vehicle 220 and a response signal is transmitted from the vehicle 220 in response to the communication signal, it may be determined that the connection has been established.
  • the temperature acquisition unit 212, the driving environment registration unit 213, the driving environment table 214, the vehicle control unit 215, and the control unit 217 may be realized by an information processing device such as a CPU.
  • the power supply apparatus may have a recording medium that records a predetermined program, and the information processing apparatus may function as the power supply apparatus 210 by following the predetermined program.
  • FIG. 5 shows an example of the configuration of the vehicle 220.
  • the vehicle 220 includes a battery 221, a device 222, a power switching unit 223, and a device control unit 224.
  • the battery 221 stores electric power for operating an electric system such as a motor and a device 222 provided in the vehicle 220.
  • the battery may be a lithium ion battery or another secondary battery.
  • the device 222 includes at least one of an air conditioner, a heater, and a seat heater.
  • the power switching unit 223 switches the supply destination of power transmitted from the power supply unit 216 via the cable 230 between the battery 221 and the device 222.
  • the power switching unit 223 supplies the transmitted power to the battery 221 until the battery 221 is fully charged. In this case, the battery 221 supplies the accumulated power to the device 222. Further, the power switching unit 223 supplies the transmitted power to the device 222 when the battery 221 is fully charged. In this case, the power stored in the battery 221 is not supplied to the device 222. Whether or not the battery 221 is fully charged can be determined by the voltage of the battery 221 or the like.
  • the power switching unit 223 may supply the power transmitted via the cable 230 to the battery 221 and the device 222 in parallel. That is, the power switching unit 223 may supply power to the battery 221 and the device 222 at the same time.
  • the power switching unit 223 may include a switch and an information processing device, and the information processing device controls the switch to switch power.
  • the device control unit 224 controls the device 222 in accordance with a control signal sent from the vehicle control unit 215 via the cable 230.
  • the device control unit 224 may control the device 222 by transmitting the control signal transmitted from the vehicle control unit 215 to the device 222 as it is. Further, the device control unit 224 may control the device 222 by generating a control signal for controlling the device 222 according to the control signal sent from the vehicle control unit 215.
  • the device control unit 224 may be realized by an information processing device.
  • the vehicle 220 may include a recording medium that records a predetermined program, and the information processing apparatus may function as the device control unit 224 by following the predetermined program.
  • FIG. 6 shows an example of the operating environment table 214.
  • the driving environment table 214 records the time when the user uses the vehicle 220, the type of the device 222 to be controlled, and the driving environment.
  • “2009/2/20, 7:30”, “2009/2/20, 20:00”, “2009/2/21, 13:00”, and the like are recorded as use times.
  • the types of the devices 222 to be controlled include “air conditioner”, “superheater”, and “seat heater”, and the adjustment contents of each device 222 are recorded as the operating environment.
  • the usage time of the vehicle 220 is February 20, 2009, 7:30
  • the operating environment of the registered device 222 is that the temperature inside the vehicle by the air conditioner is 25 degrees, the heater is on, the seat heater is on The temperature is strong.
  • the use time of the vehicle 220 is February 21, 2009, 13:00
  • the operating environment of the registered device 222 is that the temperature inside the vehicle by the air conditioner is 26 degrees, the heater is off, and the seat heater is off It has become.
  • the user can input the use time of the vehicle 220 and the driving environment at that time, and the driving environment registration unit 213 registers the information input by the user by recording the information in the driving environment table 214. be able to.
  • the control unit 217 of the power supply device 210 detects that the power supply device 210 and the vehicle 220 are connected via the cable 230, the control unit 217 causes the power supply unit 216 to supply power to the vehicle 220. .
  • the control unit 217 may not control the power feeding unit 216.
  • the power feeding unit 216 may automatically supply power when the vehicle 220 and the power supply device 210 are connected via the cable 230. For example, when an insertion plug is inserted into a household power outlet, power may be supplied naturally.
  • the power switching unit 223 of the vehicle 220 supplies the power sent from the power feeding unit 216 to the battery 221. Thereby, the battery 221 can be charged.
  • the battery 221 may supply power to the device 222. Further, the power switching unit 223 switches the power supply destination from the battery 221 to the device 222 when the battery 221 is fully charged. In addition, when the battery 221 is fully charged and the device 222 does not require power, the power switching unit 223 does not supply power to both the battery 221 and the device 222. Note that the power switching unit 223 may supply power to both the battery 221 and the device 222 in parallel, instead of supplying power to both.
  • the control unit 217 when the control unit 217 detects that the power supply apparatus 210 and the vehicle 220 are connected via the cable 230, the control unit 217 causes the vehicle control unit 215 to control the device 222 of the vehicle 220.
  • the vehicle control unit 215 acquires the outside air temperature acquired by the temperature acquisition unit 212.
  • the temperature acquisition unit 212 may acquire the outside air temperature detected by the outside air temperature detection unit 211.
  • the outside air temperature may be acquired from the vehicle 220.
  • the vehicle 220 may include a temperature sensor that detects the outside air temperature.
  • the vehicle control unit 215 acquires information indicating the use time of the next vehicle 220 and the registered driving environment at that time from the driving environment table 214.
  • the vehicle control unit 215 generates a control signal for controlling the device 222 from the acquired outside air temperature, use time, and information indicating the driving environment.
  • the vehicle control unit 215 estimates the current inside temperature of the vehicle 220 from the acquired outside air temperature.
  • the vehicle control unit 215 may include a table in which the outside air temperature and the vehicle interior temperature are associated with each other, and the vehicle interior temperature may be estimated based on the table.
  • the vehicle control part 215 controls the apparatus 222 so that it may become a driving
  • the device 222 is controlled according to the estimated in-vehicle temperature. For example, as shown in FIG.
  • a control signal for the air conditioner is generated and transmitted to the vehicle 220 so that the in-vehicle temperature of the vehicle 220 is 27 degrees.
  • the vehicle control part 215 changes the control signal which controls an air conditioner according to the difference of the present vehicle interior temperature and the registered vehicle interior temperature.
  • the contents of the control signal may include a signal for controlling the start time of air conditioning by the air conditioner and the strength of the air conditioning.
  • the strength of the air conditioning may be weaker than when the interval is short. Further, when the difference between the current in-vehicle temperature and the registered in-vehicle temperature is small, the strength of the air conditioning may be weaker than when the difference is large.
  • the strength of this air conditioning refers to the speed at which the current temperature approaches the registered temperature. When the strength of the air conditioning is strong, the time from the current in-vehicle temperature to the registered in-vehicle temperature is shorter than when the air conditioning is weak.
  • the vehicle control unit 215 uses the time of use at 8:00 pm on February 20, 2009. Before a predetermined time, a control signal for starting heating of the hot wire by the superheater is generated and transmitted to the vehicle 220. Thereby, the fog of the glass of the vehicle 220 can be removed at the time of use.
  • the vehicle control unit 215 has “medium”, so that the strength “ A control signal for starting warming of the seat by the seat heater is generated and transmitted to the vehicle 220.
  • the strength of the seat heater indicates the strength of the temperature for warming the seat. Thereby, the seat of the vehicle 220 can be warmed at the time of use.
  • the driving environment of the vehicle 220 can be adjusted at a remote place such as in a building.
  • the vehicle control unit 215 when the temperature acquisition unit 212 acquires the in-vehicle temperature from the vehicle 220, the vehicle control unit 215 generates a control signal for controlling the device 222 from the current in-vehicle temperature, use time, and driving environment at that time. In this case, the in-vehicle temperature of the vehicle 220 may not be estimated. Further, since the vehicle 220 detects the in-vehicle temperature, the vehicle control unit 215 can determine whether or not the detected in-vehicle temperature is the set in-vehicle temperature. Can be controlled.
  • the device control unit 224 of the vehicle 220 controls the device 222 in accordance with a control signal sent from the vehicle control unit 215.
  • the device control unit 224 may control the device 222 by transmitting the control signal transmitted from the vehicle control unit 215 to the device 222 as it is.
  • the vehicle 220 can be controlled even if the user does not bother to go to the vehicle.
  • the apparatus 222 is controlled according to the outside air temperature
  • the driving environment of the vehicle 220 can be adjusted to the driving environment that matches the outside air temperature at that time.
  • the user can arbitrarily adjust the driving environment of the vehicle 220 by registering the driving environment.
  • the battery 221 is charged
  • the driving environment can be adjusted without reducing the power of the battery 221 by driving the device 222.
  • the device 222 is driven by the power from the power company, so that the operating environment can be adjusted without reducing the power of the battery.
  • the vehicle control unit 215 may simply control the device 222 according to the temperature acquired by the temperature acquisition unit 212 without acquiring the driving environment from the driving environment table 214. In this case, you may control the apparatus 222 so that it may become a preset driving environment. For example, when the outside air temperature is lower than the first temperature, the air conditioner may be heated to drive the heater and the seat heater. In addition, when the outside air temperature is higher than the second temperature, the air conditioner may be driven to cool. In this case, the heater and the seat heater are not driven.
  • the first temperature may be equal to or lower than the second temperature.
  • the vehicle control unit 215 may control the device 222 according to the driving environment acquired from the driving environment table 214 regardless of the temperature acquired by the temperature acquisition unit 212.
  • the vehicle control unit 215 may control the device 222 by transmitting information indicating the driving environment acquired from the driving environment table 214 to the device control unit 224. In this case, the device 222 is controlled according to the operating environment acquired by the device control unit 224.
  • an information processing device such as a computer may be provided in the building 240, and the power supply device 210 and the information processing device may be connected.
  • the information processing apparatus provided in the building may register the driving environment input by the user. That is, the information processing apparatus may function as the driving environment registration unit 213 and the driving environment table 214.
  • an information processing device provided in a building may generate a control signal for controlling the device 222 and transmit the control signal to the power supply device 210.
  • the vehicle control unit 215 of the power supply apparatus 210 controls the device 222 by transmitting a control signal transmitted from the information processing apparatus to the vehicle 220 via the cable 230.
  • the power supply device 210 and the vehicle 220 are connected via the cable 230 so that the power supply device 210 supplies power and transmits a control signal.
  • the power supply device 210 does not use the cable 230.
  • power supply and control signal transmission may be performed.
  • the power supply device 210 may supply power to the vehicle 220 by microwave power transmission.
  • the power supply device 210 may transmit a control signal to the vehicle 220 by microwave communication.
  • the battery pack used as the battery 221 of the vehicle 220 described above is collected, and the battery pack is disassembled into battery cells. And a battery cell is reused by repacking a battery cell again.
  • the battery assembly apparatus used for the repacking of a battery cell is demonstrated.
  • FIG. 7 shows an outline of battery cell repacking.
  • a plurality of used battery packs 300 are disassembled for each battery cell 301 unit. That is, the plurality of battery packs 300 are disassembled to separate the battery cells 301 from each other. Then, among a plurality of separated battery cells 301, a group of battery cells 301 having similar charge curves of the battery cells 301 is selected as a battery cell to be incorporated into one battery pack. Then, the selected battery cell group 301 is incorporated into one battery pack, and the battery pack 300 is reformed.
  • the battery cell 301 may be the battery cell 101 shown in FIG. 1 or the battery cell 111 shown in FIG. Further, the battery cell 301 may be a battery cell that does not include the memory 106.
  • FIG. 8 shows an example of the configuration of the battery assembly apparatus 310.
  • the battery assembling apparatus 310 includes a charging curve acquisition unit 311, a selection unit 312, and an application selection unit 313.
  • the charging curve acquisition unit 311 acquires each charging curve of the plurality of battery cells 301.
  • the charging curve acquisition unit 311 includes a charging curve measurement unit 321 and a charging curve reading unit 322.
  • the information processing apparatus may function as the battery assembly apparatus 310 by reading a predetermined program.
  • the information processing apparatus may include a recording medium that records the predetermined program.
  • the charging curve measurement unit 321 measures the charging curves of the plurality of battery cells 301 by charging / discharging the plurality of battery cells 301. Thereby, each charge curve of the some battery cell 301 is acquirable. This charging curve indicates the relationship between the charging time and voltage required for charging from the first voltage to the second voltage higher than the first voltage.
  • the charging curve measurement unit 321 charges the battery cell 301 by discharging the battery cell 301 to the first voltage.
  • the charging curve measurement unit 321 measures the charging curve by measuring the charging time taken until the voltage of the battery cell 301 changes from the first voltage to the second voltage and the voltage at each time of the charging time. can do.
  • the charging curve measurement unit 321 includes a control unit that controls charging / discharging of the battery cell 301.
  • the control unit may be realized by an information processing device. Further, the charging curve measurement unit 321 may supply power from the power company to the battery cell 301. Moreover, the charging curve measurement part 321 may supply electric power to the battery cell 301 by providing a fuel cell, a storage battery, a generator, etc.
  • the second voltage may be a voltage at which the battery cell 301 is fully charged.
  • the charging curve reading unit 322 reads information indicating the charging curves of the plurality of battery cells 301 from the respective memories provided in the plurality of battery cells 301.
  • the battery cell 301 is the battery cell 101 shown in FIG. 1
  • information indicating the charging curve recorded in the memory 106 is read via the output interface 107.
  • the battery cell 301 reads the charging curve recorded in the memory 106 and information indicating the charging curve via the input / output interface 115.
  • the information indicating the charging curve may not be the information of the charging curve itself, but may be any information as long as the charging curve can be understood. For example, it may be a voltage history.
  • the charging curve reading unit 322 may read a voltage history from the memory 106 and calculate a charging curve from the voltage history. Further, the information indicating the charging curve may be a current history and a change in the internal resistance value of the battery 102. In this case, the charging curve reading unit 322 may read the current history and the change in the internal resistance value from the memory 106 and calculate the charging curve from the current history and the change in the internal resistance value.
  • the charging curve reading unit 322 may be realized by an information processing device such as a CPU. Further, it may be realized by an electric circuit or an electronic circuit.
  • the charging curve reading unit 322 reads out the charging curve. Further, even if the battery cell 301 does not have a memory, if there is a recording medium in which information indicating the charging curve of the battery cell 301 is recorded, the charging curve reading unit 322 receives information indicating the charging curve from the recording medium. You may read.
  • the charging curve acquisition unit 311 determines whether the battery cell 301 includes the memory 106 in which information indicating the charging curve is recorded, and the charging curve measurement unit 321 or the charging curve reading unit 322 determines whether the battery cell 301 includes the memory 106. You may make it determine whether a charge curve is acquired.
  • the selection unit 312 selects a plurality of battery cells 301 whose charging curves acquired by the charging curve acquisition unit 311 are similar to each other among the plurality of battery cells 301 as battery cells to be incorporated into one battery pack.
  • the selection unit 312 may not select the battery cells to be incorporated into one battery pack.
  • the selection unit 312 can be incorporated into one battery pack. You may select only the number of cells.
  • the plurality of battery cells 301 whose charging curves are similar to each other means a plurality of battery cells 301 whose trajectories indicated by the charging curves are within a predetermined range. Further, the selection unit 312 may determine that the plurality of battery cells 301 having similar charging times as the plurality of battery cells 301 having similar charging curves. Then, the selection unit 312 may select a plurality of battery cells 301 determined to have similar charging curves as battery cells to be incorporated in one battery pack. The plurality of battery cells 301 having similar charging times may be a plurality of battery cells 301 having the same charging time.
  • the plurality of battery cells 301 whose charging times are similar to each other may be a plurality of battery cells 301 in which the difference in charging time of each battery cell 301 is within a predetermined time range. That is, among the plurality of battery cells selected as the battery cells 301 having similar charging times, the difference in charging time is predetermined between the battery cell 301 having the shortest charging time and the battery cell 301 having the longest charging time. Within the specified time range.
  • the selection unit 312 may determine that the plurality of battery cells 301 having similar charging times and similar voltages of the battery cells 301 at the respective times of charging time are battery cells 301 having similar charging curves. . Then, the selection unit 312 may select a plurality of battery cells 301 determined to have similar charge curves as battery cells to be incorporated into one battery pack. The plurality of battery cells 301 whose voltages at the respective times of the charging time are similar to each other may be the plurality of battery cells 301 with the same voltage at each time of the respective battery cells 301.
  • a plurality of battery cells 301 whose voltages of the battery cells 301 are similar to each other at each time of the charging time are a plurality of voltages whose voltages at the respective times of the respective battery cells 301 are within a predetermined voltage range.
  • the battery cell 301 may be used.
  • the usage selecting unit 313 selects the usage of the battery pack 300 according to the charging curve of the battery cell 301 selected as the battery cell 301 to be incorporated in one battery pack 300.
  • the usage selection unit 313 may include a table in which the charging curve and the usage usage are associated with each other, and the usage usage may be selected using the table. Uses include, for example, emergency power supplies, electric vehicles for light vehicles, and personal computers.
  • FIG. 9 shows an example of charging curves of three battery cells 301 having different charging curves.
  • a charging curve 401 shows a charging curve of the first battery cell 301.
  • a charging curve 402 shows a charging curve of the second battery cell 301.
  • a charging curve 403 shows a charging curve of the third battery cell 301. Looking at this charging curve, the charging time of the first battery cell 301 is the longest, and then the charging time of the second battery cell 301 is long. And the charge time of the 3rd battery cell is the shortest. Thus, since each charging time differs with the battery cell 301, when such a battery cell 301 is integrated in one battery pack, deterioration of the battery cell 301 and the battery pack 300 whole becomes quick.
  • the battery cell 301 having the short charging time is overcharged, and deterioration proceeds. Further, when charging is performed according to the battery cell 301 having the shortest charging time, the voltage of the battery cell 301 having a long charging time is lowered.
  • the selection unit 312 may determine that the battery cells 301 having similar charging times as the battery cells 301 having similar charging curves. Then, the selection unit 312 may select battery cells 301 having similar charging times as battery cells to be incorporated in one battery pack. Then, by incorporating the battery cell 301 selected as the battery cell to be incorporated into one battery pack into one battery pack 300, the life of the battery pack 300 can be extended, and the life of the battery cell 301 can also be extended. Can do.
  • FIG. 10 shows another example of charging curves of three battery cells 301 having different charging curves.
  • a charging curve 411 shows a charging curve of the first battery cell 301.
  • a charging curve 412 shows a charging curve of the second battery cell 301.
  • a charging curve 413 shows a charging curve of the third battery cell 301. Looking at this charging curve, the charging times of the first battery cell 301, the second battery cell 301, and the third battery cell 301 are similar. However, even if the charging time is similar, the voltage of the battery cell at each time of the charging time is different. Therefore, when such a battery cell 301 is incorporated in one battery pack, the entire battery cell 301 and the battery pack 300 are deteriorated. Will progress.
  • the selection unit 312 determines that a plurality of battery cells 301 whose charging times are similar to each other and whose voltages of the battery cells 301 are similar to each other at each time of the charging time are battery cells 301 having similar charging curves. It's okay. Then, the selection unit 312 may select a plurality of battery cells 301 determined to have similar charge curves as battery cells to be incorporated into one battery pack. Then, by incorporating the battery cell 301 selected as the battery cell to be incorporated into one battery pack into one battery pack 300, the life of the battery pack 300 can be extended, and the life of the battery cell 301 can also be extended. Can do.
  • the selection unit 312 may select new battery cells 301 having similar charge curves among the new battery cells 301 as battery cells to be incorporated into one battery pack.
  • the selection unit 312 acquires the charging curve of the battery cell 301.
  • the current degree of deterioration may be the current internal resistance value of the battery cell 301 or the voltage of the battery cell 301 at the time of the current full charge.
  • the battery assembly device 310 may acquire a deterioration curve of the battery cell 301.
  • the battery assembly device 310 may include a deterioration curve acquisition unit that acquires respective deterioration curves of the plurality of battery cells 301.
  • the deterioration curve acquisition unit may acquire each deterioration curve of the plurality of battery cells 301 by acquiring information indicating the deterioration curve from a memory provided inside each battery cell 301. Then, the selection unit 312 is configured as a battery cell that incorporates, into a single battery pack 300, a battery cell 301 having a deterioration degree similar to that of the current battery cell 301 and having a similar deterioration curve among the plurality of battery cells 301. You may choose.
  • the deterioration curve may indicate a voltage transition when the battery cell 301 is fully charged.
  • the plurality of battery cells 301 whose deterioration curves are similar to each other may be a plurality of battery cells 301 in which the voltages at the time of full charge transition are within a predetermined range.
  • the deterioration curve may indicate a transition of the internal resistance value of the battery cell 301.
  • the plurality of battery cells 301 whose deterioration curves are similar to each other may be a plurality of battery cells 301 whose transitioned internal resistance values are within a predetermined range.
  • the usage selecting unit 313 may select the usage of the battery pack 300 according to the deterioration curve of the battery cell 301 selected as the battery cell 301 to be incorporated into one battery pack 300. Since this deterioration curve shows the transition of deterioration of the battery cell 301, the degree of future deterioration of the battery cell 301 can be known to some extent from this deterioration curve. Therefore, a plurality of battery cells 301 having similar deterioration curves can be determined as battery cells 301 having a similar degree of future deterioration and a similar deterioration rate. In this way, by incorporating a plurality of battery cells 301 having similar deterioration curves into one battery pack 300, the lifetimes of the battery cells 301 and the battery pack 300 can be extended.
  • each battery cell 301 of the battery pack 300 differs depending on the arrangement position in the battery pack. For example, in the case of the battery cell 301 that is vulnerable to heat, the battery cell 301 at the center of the battery pack 300 is more likely to have heat than the battery cell 301 at the end of the battery pack 300, so that the deterioration is faster. That is, the battery cell 301 surrounded by the battery cells 301 is deteriorated faster than the battery cells 301 not surrounded by the battery cells 301.
  • the deterioration information of each battery cell 301 may be obtained from the deterioration information at the arrangement position of the battery cell 301, and repacking may be performed so as to change the arrangement position of each battery cell 301.
  • the battery cell 101 that was in the position with the slowest deterioration is arranged at the position with the fastest deterioration, and the battery cell 101 with the position with the fastest deterioration is arranged in the position with the slowest deterioration.
  • This repacking may be performed at a predetermined cycle.
  • the deterioration information of each battery cell 301 may be acquired by reading from the memory.
  • an information processing device such as a CPU calculates a deterioration rate at the arrangement position of each battery cell 101 from the deterioration information of the battery cell 101. Then, the arrangement position of each battery cell 101 may be calculated from the deterioration rate at the arrangement position and the deterioration information of each battery cell 101.
  • 100 battery pack 101 battery cell, 102 battery, 103 voltage detection unit, 104 current detection unit, 105 degradation information calculation unit, 106 memory, 107 output interface, 111 battery cell, 112 voltage detection unit, 113 current detection unit, 114 degradation Information calculation unit, 115 input / output interface, 200 power supply system, 210 power supply device, 211 outdoor temperature detection unit, 212 temperature acquisition unit, 213 operation environment registration unit, 214 operation environment table, 215 vehicle control unit, 216 power supply unit, 217 control unit, 220 vehicle, 221 battery, 222 device, 223 power switching unit, 224 device control unit, 230 cable, 240 building, 300 battery pack, 301 battery cell, 310 battery assembly device, 311 charging curve The resulting unit, 312 selector, 313 purpose selecting unit, 321 charge curve measuring section, 322 charging curve reading section, 401 charging curve, 402 charging curve, 403 charging curve, 411 charging curve, 412 charging curve, 413 charging curve

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Transportation (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

 複数の電池と、複数の電池のそれぞれに対応して設けられ、複数の電池のそれぞれの劣化情報を記録する複数のメモリとを備える。また、電池と当該電池に対応するメモリとは、電池セルとして一体に形成されている。これにより、電池パックを分解した後であっても、電池セルの劣化情報を簡単に知ることができる。

Description

電池パック
 本発明は、メモリを有する電池パックに関する。
 従来、複数の電池セルと、各電池セルの劣化情報等を記録するメモリとを有する電池パックが知られている。
 特許文献1 特開2003-17138号公報
 電池パックの中にメモリを設けているだけなので、電池パックを電池セル単位に分解した後は、メモリに記録されているどの劣化情報がどの電池セルの劣化情報を示しているのか分別がつかなくなる。
 上記課題を解決するために、本発明の第1の態様においては、電池パックであって、複数の電池と、複数の電池のそれぞれに対応して設けられ、複数の電池のそれぞれの劣化情報を記録する複数のメモリとを備える。
 電池と当該電池に対応するメモリとは、電池セルとして一体に形成されてもよい。
 電池セルは、一対の電極からなる電池と、一対の電極を外部からシールドする外装部とを備えてよく、メモリは、外装部の内側に設けられてよい。
 電池セルは、当該電池セルの電池の電圧及び電流のうち少なくとも一方を検出する検出部をさらに備えてよく、メモリは、検出された電圧及び電流のうち少なくとも一方に基づく劣化情報を記録してよい。
 電池セルは、検出された電圧及び電流のうち少なくとも一方の情報に基づいて、劣化情報を算出する劣化情報算出部をさらに備えてよい。
 電池セルは、劣化情報をメモリから当該電池セルの外部に出力する出力インターフェースをさらに備えてよい。
 複数の電池のそれぞれの電圧及び電流のうち少なくとも一方を検出する検出部をさらに備えてよく、メモリは、検出された当該メモリに対応する電池の電圧及び電流のうち少なくとも一方に基づく劣化情報を記録してよい。
 検出された複数の電池の電圧及び電流のうち少なくとも一方の情報に基づいて、複数の電池の劣化情報をそれぞれ算出する劣化情報算出部をさらに備えてよい。
 電池セルは、電池セルの外部からメモリへの劣化情報の入力及びメモリから電池セルの外部への劣化情報の出力を行うための入出力インターフェースをさらに備えてよい。
 メモリは、劣化情報として、電池の充放電の回数、電池の電圧の履歴、電池の電流の履歴、電池の充電開始電圧、電池の充電完了電圧、電池の内部抵抗値、及び電池の温度のうち、少なくとも1つ記録してよい。
 なお、上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。
電池パックの構成の一例を示す。 電池パックの構成の他の例を示す。 電力供給システム200の一例を示す。 電力供給装置210の構成の一例を示す。 車両220の構成の一例を示す。 運転環境テーブル214の一例を示す。 電池セルのリパックの概要を示す。 電池組立装置310の構成の一例を示す。 充電カーブが異なる3つの電池セル301の充電カーブの一例を示す。 充電カーブが異なる3つの電池セル301の充電カーブの他の例を示す。
 以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
 図1は、電池パック100の構成の一例を示す。電池パック100は、複数の電池102と、複数の電池102のそれぞれに対応して設けられ、複数の電池102のそれぞれの劣化情報を記録する複数のメモリ106とを備える。電池102と該電池102に対応するメモリ106とは電池セル101として一体に形成されている。電池102は一対の電極からなる。電池セル101は、一対の電極からなる電池102と、一対の電極を外部からシールドする外装部とを備え、メモリ106は、外装部の内側に設けられている。電池102は、リチウムイオン電池等の2次電池であってよい。
 メモリ106は、該メモリ106に対応する電池102の劣化情報を記録する。また、電池パック100のそれぞれの電池セル101は、着脱可能に他の電池セル101と接続されており、電池パック100を解体して、各電池セル101を破壊することなくそれぞれ取り出すことができる。例えば、複数の電池セル101は、ネジ、ボルト及びナット等により接続されてよい。また、ボルト及びナット等を使用することなく、複数の電池セル101を押さえ込むことで、複数の電池セル101を固定して接続してよい。例えば、ゴムなどの伸縮自在な素材で、複数の電池セル101を押さえ込んで接続してよい。また、電池パック100の外装部が複数の電池セル101を押え込んで接続してよい。
 また、電池セル101は、当該電池セル101の電池102の電圧を検出する電圧検出部103を備えてよい。また、電池セル101は、当該電池セル101の電池102の電流を検出する電流検出部104を備えてよい。電圧検出部103及び電流検出部104は、電池セル101の外装部の内側に設けられている。本明細書では電圧検出部103及び電流検出部104を総称して検出部という。メモリ106は、当該メモリ106を備える電池セル101の検出部が検出した電池102の電圧及び電池の電流のうち少なくとも一方に基づく当該電池102の劣化情報を記録する。
 電池セル101は、当該電池セル101が備える検出部が検出した電圧及び電流のうち少なくとも一方の情報に基づいて、当該電池セル101が備える電池102の劣化情報を算出する劣化情報算出部105を備えてよい。メモリ106は、当該メモリ106に対応する劣化情報算出部105が算出した劣化情報を記録する。メモリ106に対応する劣化情報算出部105とは、当該メモリ106を備える電池セル101が備える劣化情報算出部105のことをいう。つまり、同一の電池セル101内にあるメモリ106と劣化情報算出部105のことをいう。劣化情報算出部105は、CPU等の情報処理装置で実現されてもよい。この場合は、情報処理装置は、所定のプログラムを記録した記録媒体を有してよく、情報処理装置は、該所定のプログラムによって劣化情報算出部105として機能する。劣化情報算出部105は、電気回路又は電子回路によって実現されてもよい。また、劣化情報算出部105は、時刻を計時するクロック回路を有する。
 メモリ106は、劣化情報として、例えば、電池102の充放電の回数、電池102の電圧の履歴、電池102の電流の履歴、電池102の充電開始電圧、電池102の充電完了電圧、電池102の内部抵抗値及びその変化、電池102の充電カーブ、電池102の劣化カーブの少なくとも1つを記録してよい。電池102の充放電の回数は、充電から放電までを1回とカウントする。つまり、充電されてから、次の充電が行われるまでを1回とカウントしてよい。充放電のカウントは、電圧の履歴、電流の履歴によってカウントすることができる。劣化情報算出部105は、電圧の履歴から充放電の回数を算出してよい。また、劣化情報算出部105は、電流の履歴から充放電の回数を算出してよい。
 電圧の履歴とは、時間の経過に伴う電池102の電圧の変化のことをいう。つまり、電圧検出部103が検出した電圧を予め定められた周期毎に記録することで電圧の履歴を得ることができる。劣化情報として電圧の履歴をメモリ106に記録する場合は、劣化情報算出部105は、電圧検出部103が検出した電圧を示す値を予め定められた周期毎にそのままメモリ106に記録してよい。電流の履歴とは、時間の経過に伴う電池102の電流の変化のことをいう。つまり、電流検出部104が検出した電流を予め定められた周期毎に記録することで電流の履歴を得ることができる。劣化情報として電流の履歴をメモリ106に記録する場合は、劣化情報算出部105は、電流検出部104が検出した電流を示す値をそのままメモリ106に記録してよい。
 電池102の充電開始電圧とは、電池102の充電を開始したときの該電池102の電圧のことをいう。劣化情報として充電開始電圧をメモリ106に記録する場合は、劣化情報算出部105は、電圧検出部103が検出した充電を開始したときの電圧の値をそのままメモリ106に記録してよい。電池102の充電完了電圧とは、満充電したときの電池102の電圧、又は、充電を終了したときの電池102の電圧のことをいう。劣化情報として充電完了電圧をメモリ106に記録する場合は、劣化情報算出部105は、電圧検出部103が検出した満充電時の電圧又は充電が終了したときの電圧を示す値をそのままメモリ106に記録してもよい。
 電池102の内部抵抗値は、電池102の電圧と電流とから算出することができる。劣化情報として内部抵抗値をメモリ106に記録する場合は、劣化情報算出部105は、電圧検出部103が検出した電圧及び電流検出部104が検出した電流から内部抵抗値を算出して、メモリ106に記録してよい。この内部抵抗値を予め定められた周期で算出して記録することにより内部抵抗値の変化がわかる。また、充電カーブとは、電池102の充電中における充電時間と、電圧との関係を示す。劣化情報として、充電カーブを記録する場合は、劣化情報算出部105は、電圧検出部103が充電開始から充電終了時までに検出した電圧を示す値から充電カーブを算出してメモリ106に記録してもよい。また、劣化情報算出部105は、充電開始から充電終了までに検出された電圧を示す値をそのままメモリ106に記録してもよい。
 劣化カーブは、電池102の劣化履歴を示す。劣化カーブは、満充電時における電池102の電圧の遷移を示してよい。劣化カーブは、充電回数と満充電時における電池102の電圧との関係を示してよい。電池102の充電回数が増えていくと、満充電時における電池102の電圧が小さくなる。つまり、劣化が進むにつれ、満充電時における電池102の電圧が小さくなる。劣化情報として、劣化カーブを記録する場合は、劣化情報算出部105は、満充電時における電池102の電圧と現在の充電回数をメモリ106に記録していってよい。また、メモリ106に記録した各充電回数における電池102の電圧とから劣化カーブを算出してメモリ106に記録してもよい。また、メモリ106に記録した劣化カーブと、新たな充電によって検出された満充電の電池102の電圧とから劣化カーブを算出して記録してもよい。また、劣化カーブは、電池102の内部抵抗値の変化であってもよい。電池102の内部抵抗が大きくなっていくにつれ、電池102が劣化していく。劣化カーブは、電池102の充電回数と内部抵抗値との関係を示してよい。電池102は、充電回数が増えていくと、電池102の内部抵抗が大きくなっていく。
 なお、メモリ106は、劣化情報として、電池102の温度を記録してもよい。電池102の温度によって該電池102の劣化が変わる。この場合は、電池パック100は、電池102の温度を検出する温度センサを内側に備える。温度センサは、それぞれの電池セル101の外装部の内側に設けられてよい。温度センサは、対応する電池102の温度を検出する。温度センサに対応する電池102とは、該温度センサを備える電池セル101が備える電池102のことをいう。また、温度センサは、電池パック100の内側に設けられ、且つ、電池セル101の外側に設けられてよい。
 電池セル101は、劣化情報をメモリ106から当該電池セル101の外部に出力するための出力インターフェース107を有してよい。これにより、各電池セル101のメモリ106に記録された劣化情報を外部の装置から読み出すことができる。
 なお、電池パック100は、直列接続された複数の電池セル101群を並列接続した構成としているが、これは一例に過ぎず、全て直列に接続された複数の電池セル101を有してよく、全て並列に接続された複数の電池セル101を有してもよい。また、電池セル101を直列接続した場合は、直列接続された電池セル101に流れる電流は同じになるので、直列接続された部分に対しては、電流検出部104を1つだけ設けるようにしてもよい。この場合は、電池セル101の外部に電流検出部104を設けてもよい。また、何れかの電池セル101に電流検出部104を設け、他の電池セル101には設けなくてもよい。この場合は、電流検出部104が設けられた電池セル101の電流検出部104が、電流検出部104が設けられていない電池セル101の電池102の電流を検出してもよい。
 また、何れかの電池セル101の中に電圧検出部103を設け、他の電池セル101には電圧検出部103を備えなくてもよい。この場合は、電圧検出部103を備えた電池セル101の電圧検出部103が、電圧検出部103を備えていない電池セル101の電池102の電圧を検出してもよい。また、何れか電池セル101の中に劣化情報算出部105を設け、他の電池セル101は劣化情報算出部105を備えなくてもよい。この場合は、劣化情報算出部105を備えた電池セル101の劣化情報算出部105が、劣化情報算出部105を備えていない電池セル101の電池102の劣化情報をそれぞれ算出してよい。また、電池セル101の中に電圧検出部103、電流検出部104、及び劣化情報算出部105を備えるようにしたが、電池セル101は、メモリ106を備えていればよく、電圧検出部103、電流検出部104、及び劣化情報算出部105の少なくとも1つは電池セル101の外部にあってもよい。
 図2は、電池パック100の構成の他の例を示す。図1と同様の構成については同じ符号を付している。電池パック100は、複数の電池102と、複数の電池102のそれぞれに対応して設けられ、複数の電池102のそれぞれの劣化情報を記録する複数のメモリ106とを備える。電池102と当該電池102に対応するメモリ106とは電池セル111として一体に形成されている。電池102は一対の電極からなる。電池セル111は、一対の電極からなる電池102と、一対の電極を外部からシールドする外装部とを備え、メモリ106は、外装部の内側に設けられている。メモリ106は、当該メモリ106に対応する電池102の劣化情報を記録する。また、電池パック100のそれぞれの電池セル111は、着脱可能に他の電池セル111と接続されており、電池パック100を解体して、各電池セル111を破壊することなく取り出すことができる。
 電池パック100は、複数の電池102のそれぞれの電圧を検出する電圧検出部112を備えてよい。電圧検出部112は、電池パック100の内側に設けられており、且つ、電池セル111の外部に設けられている。電池パック100は、複数の電圧検出部112を備えてもよい。電池パック100は、複数の電池102のそれぞれの電流を検出する電流検出部113を備えてよい。電流検出部113は、電池パック100の内側に設けられており、且つ、電池セル111の外部に設けられている。また、電池パック100は、複数の電流検出部113を備えてよい。本明細書では電圧検出部112及び電流検出部113を総称して検出部という。メモリ106は、検出部が検出した当該メモリ106に対応する電池102の電圧及び電流の少なくとも一方に基づく当該電池102の劣化情報を記録する。
 メモリ106は、劣化情報として、例えば、電池102の充放電の回数、電池102の電圧の履歴、電池102の電流の履歴、電池102の充電開始電圧、電池102の充電完了電圧、電池102の内部抵抗値及びその変化、電池102の充電カーブ、電池102の劣化カーブの少なくとも1つを記録してよい。なお、メモリ106は、劣化情報として、電池102の温度を記録してもよい。この場合は、電池パック100は、電池102の温度を検出する温度センサを内側に備える。温度センサは、電池パックの内側に設けられ、且つ、電池セル101の外側に設けられてよい。また、電池パック100は、それぞれの電池102を検出する複数の温度センサを備えてよい。また、温度センサは、それぞれの電池セル101の外装部の内側に設けられてよい。
 電池パック100は、検出された複数の電池102の電圧及び電流のうち少なくとも一方の情報に基づいて、複数の電池102の劣化情報をそれぞれ算出する劣化情報算出部114を備えてよい。劣化情報算出部114は、電池パック100の内側に設けられており、且つ、電池セル111の外部に設けられている。劣化情報算出部114は、劣化情報算出部105と同様にCPU等の情報処理装置で実現されてもよく、電気回路又は電子回路によって実現されてもよい。メモリ106は、当該メモリ106に対応する電池102の劣化情報を記録する。また、劣化情報算出部105は、時刻を計時するクロック回路を有する。
 電池セル111は、外部から当該電池セル111が備えるメモリ106への劣化情報の入力及び当該メモリ106から当該電池セル111の外部への劣化情報の出力を行うための入出力インターフェース115を備えてよい。また、電池セル111は、外部から当該電池セル111が備えるメモリ106への劣化情報の入力を行うための入力インターフェースと、メモリ106から電池セル111の外部への劣化情報の出力を行うための出力インターフェースとを別個に設けてよい。
 劣化情報算出部114は、複数の電池102の劣化情報を、電池セル111の入出力インターフェース115を介して複数のメモリ106にそれぞれ記録する。劣化情報算出部114は、電池102の劣化情報を、当該電池102に対応するメモリ106に記録する。
 なお、電圧検出部112、電流検出部113、及び劣化情報算出部114は、電池セル111の外部に設けるようにしたが、電圧検出部112、電流検出部113、及び劣化情報算出部114の少なくとも1つは、何れかの電池セル111の中に設けるようにしてもよい。
 以上のように、各電池セル101毎に設けられたメモリ106が電池102の劣化情報を記録しているので、電池パック100を分解して、それぞれの電池セル101同士がばらばらになっても、該電池セル101の電池102の劣化情報を簡単に知ることができる。つまり、電池パック100を、電池セル101単位毎に分解しても、電池セル101の電池102の劣化情報を簡単に知ることができる。
 また、上述した電池パック100は、車両に搭載されるバッテリとして用いることができる。バッテリは、1つの電池パック100から構成されてもよく、複数の電池パック100から構成されてもよい。以下、バッテリを搭載した車両と車両に電力を供給する電力供給装置とを有する電力供給システムについて説明する。
 図3は、電力供給システム200の一例を示す。電力供給システム200は、電力供給装置210、車両220、及びケーブル230を有する。車両220は、バッテリ221及び機器222を有する。車両220は、電気車両であってもよく、ハイブリッド車両であってもよい。また、車両220は、バッテリ221を搭載しているものであればよい。ケーブル230は、電力供給装置210と車両220とを接続する。ケーブル230は、電力供給装置210が供給する電力を車両220に伝導する。また、ケーブル230は、電力専用線と信号専用線とを有しても良い。電力専用線は、電力供給装置210から供給される電力を車両220に伝導する。また、通信専用線は、電力供給装置210からの制御信号を車両220に伝導する。機器222は、車両220の運転環境を調整する。機器222は、例えば、車両220の車内温度を調整する空調装置であってもよい。空調装置は、冷房及び暖房の少なくとも1つを調整する機能を有する。また、機器222は、ガラスの曇りを除去するためにガラスの中に設けられた熱線を加熱する過熱器であってもよい。また、機器222は、運転者等が座るシートを暖めるシートヒータであってもよい。
 電力供給装置210は、家、マンション等の建物240の中に設けられてよい。電力供給装置210は、ケーブル230を介して電力会社からの電力を車両220に供給してよい。また、電力供給装置210は、燃料電池、太陽電池、発電機等を有してよく、燃料電池、太陽電池、発電機等によって発電された電力を車両220に供給してよい。また、電力供給装置210は、蓄電池を有してよく、該蓄電池に蓄積された電力を車両220に供給してよい。電力供給装置210は、車両220のバッテリ221を充電するための電力を供給する。電力供給装置210は、ケーブル230の電力専用線を介して車両220に電力を供給する。
 また、電力供給装置210は、ケーブル230を介して制御信号を送信することで、車両220に備え付けられた機器222を制御する。電力供給装置210は、車両220の車内温度及び外気温度の少なくとも1つに応じて機器222を制御してよい。電力供給装置210は、ユーザが登録した機器222を制御するための情報に基づいて機器222を制御してよい。電力供給装置210は、ユーザが登録した運転環境に基づいて、機器222を制御してよい。例えば、電力供給装置210は、車両220の車内温度が、ユーザによって登録された温度となるように機器222を制御してよい。また、ユーザによって登録された時刻に、車両220の車内温度が、ユーザによって登録された温度となるように機器222を制御してよい。電力供給装置210は、機器222を制御する制御信号を生成してもよい。電力供給装置210は、ケーブル230の通信専用線を介して制御信号を送信することで、機器222を制御してよい。なお、ケーブル230は、通信専用線を有しなくてもよい。この場合は、電力供給装置210は、ケーブル230を介して電力通信により制御信号を送信することで、機器222を制御してよい。
 図4は、電力供給装置210の構成の一例を示す。電力供給装置210は、外気温度検出部211、温度取得部212、運転環境登録部213、運転環境テーブル214、車両制御部215、給電部216、及び制御部217を有する。
 外気温度検出部211は、外気の温度を検出する。外気温度検出部211は、温度センサを有してよい。温度取得部212は、外気温度検出部211が検出した外気温度を取得する。なお、温度取得部212は、車両220に備え付けられている温度検出部が検出した温度を取得してよい。温度取得部212は、車両220が検出した外気温度及び車内温度の少なくとも1つを取得してもよい。
 運転環境登録部213は、ユーザからの運転環境の入力を受け付ける。運転環境登録部213は、ユーザが入力した運転環境を示す情報を運転環境テーブル214に記録することで、ユーザが入力した運転環境を登録する。車両制御部215は、運転環境テーブル214からユーザが登録した運転環境を示す情報を取得する。車両制御部215は、取得した外気温度に応じて機器222を制御してよい。また、温度取得部212が車両220から車内温度を取得した場合は、車両制御部215は、取得した車内温度に応じて機器222を制御してよい。また、車両制御部215は、車内温度及び外気温度に応じて機器222を制御してよい。また、車両制御部215は、ユーザが入力した運転環境に応じて機器222を制御してよい。また、車両制御部215は、運転環境と、外気温度及び/又は車内温度とに応じて機器222を制御してよい。車両制御部215は、機器222を制御する制御信号を生成してよい。車両制御部215は、ケーブル230を介して制御信号を車両220に送信することで、機器222を制御してよい。
 給電部216は、ケーブル230を介して電力会社からの電力を、車両220に供給する。給電部216は、ケーブル230の電力専用線を介して車両220に電力を供給する。給電部216は、電力会社からの交流の電流を直流に変換して車両220に電力を供給する。制御部217は、電力供給装置210の各部を制御する。制御部217は、電力供給装置210と車両220とが接続されていることを検知した場合に、車両制御部215による機器222の制御を行わせてよく、給電部216による車両220への電力の供給を行わせてよい。制御部217は、車両220からの信号を受け付けた場合に、電力供給装置210と車両220とが接続されたと判断してもよい。例えば、制御部217が車両220に通信信号を送り、車両220から通信信号に応答する応答信号が送られてきた場合は、接続されたと判断してもよい。温度取得部212、運転環境登録部213、運転環境テーブル214、車両制御部215、制御部217は、CPU等の情報処理装置によって実現してもよい。また、電力供給装置は、所定のプログラムを記録した記録媒体を有してよく、情報処理装置が所定のプログラムに従うことで電力供給装置210として機能させてもよい。
 図5は、車両220の構成の一例を示す。車両220は、バッテリ221、機器222、電力切換部223、及び機器制御部224を有する。バッテリ221は、車両220に備え付けられているモータ、機器222等の電気系統を動かすための電力を蓄える。バッテリは、リチウムイオン電池であってもよく、他の2次電池であってもよい。機器222は、空調装置、加熱器、及びシートヒータの少なくとも1つを含む。
 電力切換部223は、給電部216からケーブル230を介して送られてきた電力の供給先を、バッテリ221と機器222とに切り替える。電力切換部223は、バッテリ221が満充電になるまでは、送られてきた電力をバッテリ221に電力を供給する。この場合は、バッテリ221は、蓄積した電力を機器222に供給する。また、電力切換部223は、バッテリ221が満充電になると、送られてきた電力を機器222に供給する。この場合は、バッテリ221に蓄積された電力は機器222に供給されない。バッテリ221が満充電か否かは、バッテリ221の電圧等によって判断することができる。なお、電力切換部223は、ケーブル230を介して送られてきた電力を、バッテリ221及び機器222に並行して供給してもよい。つまり、電力切換部223は、電力をバッテリ221と機器222とに同時に電力を供給してもよい。電力切換部223は、スイッチと、情報処理装置を有してよく、情報処理装置がスイッチを制御することで、電力を切り替える。
 機器制御部224は、車両制御部215からケーブル230を介して送られてきた制御信号にしたがって機器222を制御する。機器制御部224は、車両制御部215から送られてきた制御信号をそのまま機器222に送信することで機器222を制御してよい。また、機器制御部224は、車両制御部215から送られてきた制御信号に従って、機器222を制御する制御信号を生成して機器222を制御してもよい。機器制御部224は、情報処理装置によって実現されてもよい。また、車両220は、所定のプログラムを記録した記録媒体を有してよく、情報処理装置が所定のプログラムに従うことで、機器制御部224として機能させてもよい。
 図6は、運転環境テーブル214の一例を示す。運転環境テーブル214は、ユーザが車両220を使用する時刻、制御する機器222の種類、及び運転環境を記録している。運転環境テーブル214には、使用時刻として、「2009/2/20、7:30」、「2009/2/20、20:00」、「2009/2/21、13:00」等が記録されている。また、制御する機器222の種類として、「空調装置」、「過熱器」、「シートヒータ」があり、運転環境としてそれぞれの機器222の調整内容が記録されている。例えば、車両220の使用時刻が、2009年2月20日、7時30分の場合は、登録した機器222の運転環境は、空調装置による車内温度が25度、加熱器がオン、シートヒータの温度が強となっている。また、車両220の使用時刻が2009年2月21日、13時00分の場合は、登録した機器222の運転環境は、空調装置による車内温度が26度、加熱器がオフ、シートヒータがオフとなっている。このように、ユーザは、車両220の使用時刻、そのときの運転環境を入力することができ、運転環境登録部213は、ユーザが入力した情報を、運転環境テーブル214に記録することで登録することができる。
 次に、電力供給システム200の動作を説明する。電力供給装置210と車両220とがケーブル230を介して接続されていることを電力供給装置210の制御部217が検知すると、制御部217は、給電部216に車両220への電力供給を行わせる。なお、制御部217は、給電部216を制御しなくてもよい。この場合は、給電部216は、車両220と電力供給装置210とがケーブル230を介して接続されると、自動的に電力を供給してもよい。例えば、家庭用の電源コンセントに、差込プラグを挿入すると、自然に電力を供給するような態様であってよい。車両220の電力切換部223は、給電部216から送られてきた電力をバッテリ221に供給する。これにより、バッテリ221を充電することできる。このとき、機器222が電力を必要とする場合は、バッテリ221が電力を機器222に供給してよい。また、電力切換部223は、バッテリ221が満充電になると、電力の供給先をバッテリ221から機器222に切り替える。また、バッテリ221が満充電の場合に、機器222が電力を必要としない場合は、電力切換部223は、バッテリ221及び機器222の両方に電力を供給しない。なお、電力切換部223は、バッテリ221及び機器222のどちらか一方に電力を供給するのではなく、両方に電力を並行して供給してもよい。
 また、電力供給装置210と車両220とがケーブル230を介して接続されていることを制御部217が検知すると、制御部217は、車両制御部215に車両220の機器222の制御を行わせる。車両制御部215は、温度取得部212が取得した外気温度を取得する。温度取得部212は、外気温度検出部211が検出した外気温度を取得してもよい。また、車両220から外気温度を取得してもよい。この場合は、車両220は、外気温度を検出する温度センサを有してよい。また、車両制御部215は、次の車両220の使用時刻、及びそのときの登録した運転環境を示す情報を運転環境テーブル214から取得する。車両制御部215は、取得した外気温度、使用時刻、及び運転環境を示す情報から機器222を制御する制御信号を生成する。
 具体的には、車両制御部215は、取得した外気温度から現在の車両220の車内温度を推測する。車両制御部215は、外気温度と車内温度とを対応付けたテーブルを有してよく、該テーブルに基づいて車内温度を推測してよい。そして、車両制御部215は、使用時刻に、該使用時刻に対応する運転環境となるように機器222を制御する。このとき、推測した車内温度に応じて機器222を制御する。例えば、図6に示すように、取得した使用時刻が2009/2/20 20:00の場合は、登録した車内温度が「27度」となっているので、使用時刻2009年2月20日の午後8時に、車両220の車内温度が27度となっているように空調装置の制御信号を生成して、車両220に送信する。これにより、使用時刻には、車両220の車内温度を設定した車内温度とすることができる。また、車両制御部215は、現在の車内温度と登録した車内温度との差に応じて空調装置を制御する制御信号を異ならせる。制御信号の内容としては、空調装置による空調の開始時刻、また、空調の強さを制御する信号を含んでもよい。空調の開始時刻と使用時刻との間隔が長い場合は、短い場合に比べ空調の強さは弱くてよい。また、現在の車内温度と登録した車内温度との差が小さい場合は、大きい場合に比べ空調の強さは弱くてよい。この空調の強さとは、現在の温度を登録した温度に近づける速さのことをいう。空調の強さが強い場合は、弱い場合に比べ、現在の車内温度から登録した車内温度になるまでの時間が短い。
 また、車両制御部215は、取得した使用時刻が2009/2/20 20:00の場合は、過熱器が「オン」となっているので、使用時刻2009年2月20日の午後8時の予め定められた時間前に、過熱器による熱線の加熱を開始させる制御信号を生成して、車両220に送信する。これにより、使用時刻には、車両220のガラスの曇りを取り除くことができる。また、車両制御部215は、取得した使用時刻が2009/2/20 20:00の場合は、シートヒータが「中」となっているので、使用時刻の予め定められた時間前に、強度「中」にしてシートヒータによるシートを暖めを開始させる制御信号を生成して、車両220に送信する。シートヒータの強度とは、シートを暖める温度の強弱を示す。これにより、使用時刻には、車両220のシートを暖かくすることができる。このように、ユーザはわざわざ車両220に行かなくても、建物の中等の離れた場所で、車両220の運転環境を調整することができる。
 また、温度取得部212が車両220から車内温度を取得する場合は、車両制御部215は、現在の車内温度、使用時刻、及びそのときの運転環境から機器222を制御する制御信号を生成する。この場合は、車両220の車内温度を推定しなくてもよい。また、車両220が車内温度を検出してくれるので、車両制御部215は、検出した車内温度が設定した車内温度になっているか否かを判断することができ、より精度よく車両220の車内温度を制御することができる。
 車両220の機器制御部224は、車両制御部215から送られてきた制御信号にしたがって機器222を制御する。機器制御部224は、車両制御部215から送られてきた制御信号をそのまま機器222に送信することで機器222を制御してもよい。
 以上のように、電力供給装置210から車両220の機器222を制御するので、ユーザがわざわざ車に行かなくても、車両220を制御することができる。また、外気温度に応じて機器222を制御するので、車両220の運転環境を、そのときの外気気温にあった運転環境に調整することができる。また、ユーザが運転環境を登録することで、車両220の運転環境をユーザが任意に調整することができる。また、バッテリ221を充電しているので、機器222の駆動によってバッテリ221の電力が減ることはなく、運転環境を調整することができる。また、バッテリ221が満充電になると、電力会社からの電力で機器222を駆動させるので、バッテリの電力を減らすことなく運転環境を調整することができる。また、運転環境の調整によってバッテリ221の電力が不足して、車両220の運転ができないという弊害も防止することができる。
 なお、車両制御部215は、運転環境テーブル214から運転環境を取得することなく、単に、温度取得部212が取得した温度に応じて機器222を制御してもよい。この場合は、予め設定された運転環境となるように機器222を制御してもよい。例えば、外気温度が第1の温度より低い場合は、空調を暖房にして加熱器、シートヒータを駆動させたりしてよい。また、外気温度が第2の温度より高い場合は、空調を冷房にして駆動させてもよい。この場合は、加熱器及びシートヒータを駆動させない。ここで、第1の温度は、第2の温度以下であってよい。また、車両制御部215は、温度取得部212が取得した温度に関わらず、単に運転環境テーブル214から取得した運転環境に応じて機器222を制御してもよい。また、車両制御部215は、運転環境テーブル214から取得した運転環境を示す情報を機器制御部224に送信することで機器222を制御してよい。この場合は、機器制御部224が取得した運転環境に応じて機器222を制御する。
 また、電力供給装置210を建物240の外側に設ける場合は、建物240の中にコンピュータなどの情報処理装置を設け、電力供給装置210と該情報処理装置とを接続してもよい。この場合は、建物の中に設けられた情報処理装置が、ユーザによって入力された運転環境を登録してもよい。つまり、情報処理装置が、運転環境登録部213、運転環境テーブル214として機能してよい。また、建物の中に設けられた情報処理装置が、機器222を制御する制御信号を生成して、電力供給装置210に送信してもよい。この場合は、電力供給装置210の車両制御部215は、情報処理装置から送られてきた制御信号を、ケーブル230を介して車両220に送信することで、機器222を制御する。
 また、電力供給装置210と車両220とをケーブル230を介して接続して、電力供給装置210が電力供給、制御信号の送信を行うようにしたが、ケーブル230を用いずに、電力供給装置210が、電力供給、制御信号の送信を行うようにしてもよい。例えば、電力供給装置210は、マイクロ波送電により電力を車両220に供給してよい。また、電力供給装置210は、マイクロ波通信により制御信号を車両220に送信してよい。
 上述した車両220のバッテリ221として使用された電池パックを回収して、該電池パックを電池セル単位に分解する。そして、電池セルを再びリパックすることで電池セルを再利用する。以下、電池セルのリパックに用いられる電池組立装置について説明する。
 図7は、電池セルのリパックの概要を示す。使用された複数の電池パック300を電池セル301単位毎に分解する。つまり、複数の電池パック300を分解して、それぞれの電池セル301同士をばらばらにする。そして、ばらばらにした複数の電池セル301のうち、電池セル301の充電カーブが互いに類似する電池セル301群を1つの電池パックに組み込む電池セルとして選択する。そして、選択された電池セル301群を1つの電池パックに組み込んで電池パック300を再形成する。電池セル301は、図1に示す電池セル101であってもよく、図2に示す電池セル111であってもよい。また、電池セル301は、メモリ106を備えない電池セルであってもよい。
 図8は、電池組立装置310の構成の一例を示す。電池組立装置310は、充電カーブ取得部311、選択部312、及び用途選択部313を備える。充電カーブ取得部311は、複数の電池セル301のそれぞれの充電カーブを取得する。充電カーブ取得部311は、充電カーブ測定部321及び充電カーブ読出部322を有する。所定のプログラムを読み込ませることで、情報処理装置を電池組立装置310として機能させてもよい。また、情報処理装置は、該所定のプログラムを記録した記録媒体を有してよい。
 充電カーブ測定部321は、複数の電池セル301を充放電させて、複数の電池セル301のそれぞれの充電カーブを測定する。これにより、複数の電池セル301のそれぞれの充電カーブを取得することができる。この充電カーブとは、第1電圧から、第1電圧より高い第2電圧までの充電にかかる充電時間と電圧との関係を示す。充電カーブ測定部321は、電池セル301を第1電圧まで放電させて、電池セル301を充電する。そして、充電カーブ測定部321は、電池セル301の電圧が第1電圧から第2電圧となるまでにかかった充電時間と、充電時間のそれぞれの時刻における電圧とを測定することにより充電カーブを測定することができる。充電カーブ測定部321は、電池セル301の充放電を制御する制御部を備える。制御部は情報処理装置によって実現してもよい。また、充電カーブ測定部321は、電力会社からの電力を電池セル301に供給してもよい。また、充電カーブ測定部321は、燃料電池、蓄電池、発電機等を備えることで、電力を電池セル301に供給してよい。第2電圧は、電池セル301が満充電となる電圧であってもよい。
 充電カーブ読出部322は、複数の電池セル301に設けられているそれぞれのメモリから、複数の電池セル301の充電カーブを示す情報を読み出す。電池セル301が図1に示す電池セル101の場合は、出力インターフェース107を介してメモリ106に記録された充電カーブを示す情報を読み出す。また、電池セル301は、図2に示す電池セル111の場合は、メモリ106に記録された充電カーブを、入出力インターフェース115を介して充電カーブを示す情報を読み出す。また、充電カーブを示す情報とは、充電カーブそのものの情報でなくてもよく、充電カーブが分かる情報であればよい。例えば、電圧の履歴であってもよい。この場合は、充電カーブ読出部322は、メモリ106から電圧の履歴を読み出して、電圧の履歴から充電カーブを算出してよい。また、充電カーブを示す情報として、電流の履歴と電池102の内部抵抗値の変化であってもよい。この場合は、充電カーブ読出部322は、メモリ106から電流の履歴と内部抵抗値の変化を読み出して、電流の履歴と内部抵抗値の変化とから充電カーブを算出してよい。充電カーブ読出部322は、CPU等の情報処理装置によって実現されてもよい。また、電気回路又は電子回路によって実現されてもよい。
 充電カーブを示す情報を記録したメモリを備えない電池セル301の場合は、充電カーブ測定部321で充電カーブを測定することが好ましい。また、充電カーブを示す情報を記録したメモリを備える電池セル301の場合は、充電カーブ読出部322で充電カーブを読み出すことが好ましい。また、メモリを備えない電池セル301であっても、当該電池セル301の充電カーブを示す情報を記録した記録媒体がある場合は、充電カーブ読出部322が該記録媒体から充電カーブを示す情報を読み出してもよい。また、充電カーブ取得部311は、充電カーブを示す情報が記録されたメモリ106を備える電池セル301であるか否かを判断して、充電カーブ測定部321と充電カーブ読出部322とのどちらで充電カーブを取得するかを決めるようにしてもよい。
 選択部312は、複数の電池セル301のうち、充電カーブ取得部311が取得した充電カーブが互いに類似する複数の電池セル301を1つの電池パックに組み込む電池セルとして選択する。選択部312は、充電カーブが互いに類似する複数の電池セル301の数が、電池パックに組み込むべき電池セルの数より小さい場合は、1つの電池パックに組み込む電池セルとして選択しなくてもよい。また、選択部312は、充電カーブが互いに類似する複数の電池セル301の数が、1つの電池パックに組み込むことができる電池セルの数より大きい場合は、1つの電池パックに組み込むことができる電池セルの数だけ選択してもよい。
 充電カーブが互いに類似する複数の電池セル301とは、充電カーブが示す軌跡が互いに予め定められた範囲内にある複数の電池セル301のことをいう。また、選択部312は、充電時間が互いに類似する複数の電池セル301を、充電カーブが互いに類似する複数の電池セル301と判断してよい。そして、選択部312は、充電カーブが互いに類似すると判断した複数の電池セル301を1つの電池パックに組み込む電池セルとして選択してよい。充電時間が互いに類似する複数の電池セル301とは、充電時間が一致する複数の電池セル301であってもよい。充電時間が互いに類似する複数の電池セル301とは、それぞれの電池セル301の充電時間の差が互いに予め定められた時間の範囲内にある複数の電池セル301であってもよい。つまり、充電時間が互いに類似する電池セル301として選択された複数の電池セルのうち、最も充電時間が短い電池セル301と、最も充電時間が長い電池セル301とは、充電時間の差が予め定められた時間の範囲内にある。
 選択部312は、充電時間が互いに類似し、且つ、充電時間のそれぞれの時刻における電池セル301の電圧が互いに類似する複数の電池セル301を、充電カーブが類似する電池セル301と判断してよい。そして、選択部312は、充電カーブが類似すると判断した複数の電池セル301を1つの電池パックに組み込む電池セルとして選択してよい。充電時間のそれぞれの時刻における電池セル301の電圧が互いに類似する複数の電池セル301とは、それぞれの電池セル301のそれぞれの時刻における電圧が一致する複数の電池セル301であってもよい。また、充電時間のそれぞれの時刻における電池セル301の電圧が互いに類似する複数の電池セル301とは、それぞれの電池セル301のそれぞれの時刻における電圧が互いに予め定められた電圧の範囲内にある複数の電池セル301であってもよい。
 用途選択部313は、1つの電池パック300に組み込む電池セル301として選択された電池セル301の充電カーブに応じて、該電池パック300の使用用途を選択する。用途選択部313は、充電カーブと使用用途とを対応付けたテーブルを備えてよく、該テーブルを用いて使用用途を選択してよい。使用用途としては、例えば、非常用電源、軽自動車の電気車両用、パソコン用などがある。
 図9は、充電カーブが異なる3つの電池セル301の充電カーブの一例を示す。充電カーブ401は、1つ目の電池セル301の充電カーブを示す。充電カーブ402は、2つ目の電池セル301の充電カーブを示す。充電カーブ403は、3つ目の電池セル301の充電カーブを示す。この充電カーブを見ると、1つ目の電池セル301の充電時間が最も長く、次に、2つ目の電池セル301の充電時間が長い。そして、3つ目の電池セルの充電時間が最も短い。このように、電池セル301によってそれぞれの充電時間が異なるので、このような電池セル301を1つの電池パックに組み込むと、電池セル301及び電池パック300全体の劣化が早くなる。つまり、充電時間が最も長い電池セル301に合わせて充電を行うと、充電時間が短い電池セル301は過充電となり、劣化が進む。また、充電時間が最も短い電池セル301に合わせて充電を行うと、充電時間が長い電池セル301の電圧が低くなってしまう。
 そこで、電池セル301及び電池パック300の寿命を延ばすことを目的として、選択部312は、充電時間が互いに類似する電池セル301を、充電カーブが互いに類似する電池セル301と判断してよい。そして、選択部312は、充電時間が互いに類似する電池セル301を1つの電池パックに組み込む電池セルとして選択してよい。そして、1つの電池パックに組み込む電池セルとして選択された電池セル301を、1つの電池パック300に組み込むことで、電池パック300の寿命を延ばすことができ、また、電池セル301の寿命も延ばすことができる。
 図10は、充電カーブが異なる3つの電池セル301の充電カーブの他の例を示す。充電カーブ411は、1つ目の電池セル301の充電カーブを示す。充電カーブ412は、2つ目の電池セル301の充電カーブを示す。充電カーブ413は、3つ目の電池セル301の充電カーブを示す。この充電カーブを見ると、1つ目の電池セル301、2つ目の電池セル301、及び3つ目の電池セル301の充電時間は類似している。しかし、充電時間が類似しても、充電時間のそれぞれの時刻における電池セルの電圧が異なるので、このような電池セル301を1つの電池パックに組み込むと、電池セル301及び電池パック300全体の劣化が進んでしまう。
 したがって、選択部312は、充電時間が互いに類似し、且つ、充電時間のそれぞれの時刻における電池セル301の電圧が互いに類似する複数の電池セル301を、充電カーブが類似する電池セル301と判断してよい。そして、選択部312は、充電カーブが類似すると判断した複数の電池セル301を1つの電池パックに組み込む電池セルとして選択してよい。そして、1つの電池パックに組み込む電池セルとして選択された電池セル301を、1つの電池パック300に組み込むことで、電池パック300の寿命を延ばすことができ、また、電池セル301の寿命も延ばすことができる。
 なお、一度使用された電池セル301を用いてリパックするようにしたが、一度も使用されていない新品の電池セル301を用いてリパックする場合にも適用してよい。新品の電池セル301であっても、電池セル301毎に充電カーブが異なる場合もある。したがって、選択部312は、新品の電池セル301のうち、充電カーブが互いに類似する新品の電池セル301を、1つの電池パックに組み込む電池セルとして選択してもよい。
 また、選択部312は、電池セル301の充電カーブを取得するようにしたが、電池セル301の現在の劣化度合いが互いに類似する電池セルを、1つの電池パックに組み込む電池セルとして選択してもよい。この現在の劣化度合いは、現在の電池セル301の内部抵抗値であってもよく、現在の満充電時における電池セル301の電圧であってもよい。また、電池組立装置310は、電池セル301の劣化カーブを取得するようにしてもよい。電池組立装置310は、複数の電池セル301のそれぞれの劣化カーブを取得する劣化カーブ取得部を備えてよい。劣化カーブ取得部は、それぞれの電池セル301の内側に設けられたメモリから劣化カーブを示す情報を取得することで、複数の電池セル301のそれぞれの劣化カーブを取得してよい。そして、選択部312は、複数の電池セル301のうち、現在の電池セル301の劣化度合いが類似し、且つ、劣化カーブが互いに類似する電池セル301を、1つの電池パック300に組み込む電池セルとして選択してよい。
 劣化カーブは、電池セル301の満充電時における電圧の遷移を示したものであってよい。この場合、劣化カーブが互いに類似する複数の電池セル301とは、遷移したそれぞれの満充電時における電圧が互いに予め定められた範囲内にある複数の電池セル301であってよい。また、劣化カーブは、電池セル301の内部抵抗値の遷移を示したものであってもよい。この場合、劣化カーブが互いに類似する複数の電池セル301とは、遷移したそれぞれの内部抵抗値が互いに予め定められた範囲内にある複数の電池セル301であってもよい。そして、用途選択部313は、1つの電池パック300に組み込む電池セル301として選択された電池セル301の劣化カーブに応じて、該電池パック300の使用用途を選択してよい。この劣化カーブは、電池セル301の劣化の遷移を示しているので、この劣化カーブから、電池セル301の今後の劣化度合いをある程度分かる。したがって、劣化カーブが互いに類似する複数の電池セル301は、今後の劣化の度合い、劣化速度が類似する電池セル301と判断することができる。このように、劣化カーブが互いに類似する複数の電池セル301を1つの電池パック300に組み込むことで、電池セル301及び電池パック300の寿命を延ばすことができる。
 また、図1及び図2の電池パック300のリパック方法として以下のような形態であってもよい。電池パック300のそれぞれの電池セル301は、電池パック内における配置位置によって劣化度合いが異なる。例えば、熱に弱い電池セル301の場合は、電池パック300の端にある電池セル301より、電池パック300の中央にある電池セル301の方が熱を持ちやすいので劣化が早い。つまり、電池セル301に囲まれている電池セル301の方が、電池セル301に囲まれていない電池セル301より劣化が早い。したがって、それぞれの電池セル301の劣化情報をから、電池セル301の配置位置における劣化速度を得て、それぞれの電池セル301の配置位置を変えるようにリパックしてもよい。例えば、一番劣化が早い位置に、一番劣化が遅い位置にあった電池セル101を配置させ、一番劣化が遅い位置に、一番劣化が早い位置にあった電池セル101を配置させる。これにより、電池パック300のそれぞれの電池セル101の劣化を均等にすることができる。このリパックは、予め定められた周期で行ってもよい。それぞれの電池セル301の劣化情報は、電池セル301の中にメモリが設けられている場合は、該メモリから読み出すことにより取得してよい。また、電池セル301の中にメモリが設けられていない場合は、劣化情報を測定することにより劣化情報を取得してよい。この処理は、CPU等の情報処理装置が、電池セル101の劣化情報から、それぞれの電池セル101の配置位置における劣化速度を算出する。そして、配置位置における劣化速度とそれぞれの電池セル101の劣化情報とから、それぞれの電池セル101の配置位置を算出してよい。
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。
 請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。
100 電池パック、101 電池セル、102 電池、103 電圧検出部、104 電流検出部、105 劣化情報算出部、106 メモリ、107 出力インターフェース、111 電池セル、112 電圧検出部、113 電流検出部、114 劣化情報算出部、115 入出力インターフェース、200 電力供給システム、210 電力供給装置、211 外気温度検出部、212 温度取得部、213 運転環境登録部、214 運転環境テーブル、215 車両制御部、216 給電部、217 制御部、220 車両、221 バッテリ、222 機器、223 電力切換部、224 機器制御部、230 ケーブル、240 建物、300 電池パック、301 電池セル、310 電池組立装置、311 充電カーブ取得部、312 選択部、313 用途選択部、321 充電カーブ測定部、322 充電カーブ読出部、401 充電カーブ、402 充電カーブ、403 充電カーブ、411 充電カーブ、412 充電カーブ、413 充電カーブ

Claims (10)

  1.  複数の電池と、
     前記複数の電池のそれぞれに対応して設けられ、前記複数の電池のそれぞれの劣化情報を記録する複数のメモリと
    を備える電池パック。
  2.  前記電池と当該電池に対応するメモリとは、電池セルとして一体に形成されている
    請求項1に記載の電池パック。
  3.  前記電池セルは、
     一対の電極からなる前記電池と、
     前記一対の電極を外部からシールドする外装部と
    を備え、
     前記メモリは、前記外装部の内側に設けられている
    請求項2に記載の電池パック。
  4.  前記電池セルは、当該電池セルの前記電池の電圧及び電流のうち少なくとも一方を検出する検出部をさらに備え、
     前記メモリは、検出された電圧及び電流のうち少なくとも一方に基づく前記劣化情報を記録する請求項2又は3に記載の電池パック。
  5.  前記電池セルは、検出された電圧及び電流のうち少なくとも一方の情報に基づいて、前記劣化情報を算出する劣化情報算出部をさらに備える請求項4に記載の電池パック。
  6.  前記電池セルは、前記劣化情報を前記メモリから当該電池セルの外部に出力する出力インターフェースをさらに備える請求項2から5の何れかに記載の電池パック。
  7.  前記複数の電池のそれぞれの電圧及び電流のうち少なくとも一方を検出する検出部をさらに備え、
     前記メモリは、当該メモリに対応する前記電池から検出された電圧及び電流のうち少なくとも一方に基づく前記劣化情報を記録する請求項2又は3に記載の電池パック。
  8.  検出された前記複数の電池の電圧及び電流のうち少なくとも一方の情報に基づいて、前記複数の電池の劣化情報をそれぞれ算出する劣化情報算出部をさらに備える請求項7に記載の電池パック。
  9.  前記電池セルは、前記電池セルの外部から前記メモリへの前記劣化情報の入力及び前記メモリから前記電池セルの外部への前記劣化情報の出力を行うための入出力インターフェースをさらに備える請求項7又は8に記載の電池パック。
  10.  前記複数のメモリは、前記劣化情報として、前記電池の充放電の回数、前記電池の電圧の履歴、前記電池の電流の履歴、前記電池の充電開始電圧、前記電池の充電完了電圧、前記電池の内部抵抗値、及び前記電池の温度のうち、少なくとも1つ記録する
    請求項1から9の何れかに記載の電池パック。
PCT/JP2010/002106 2009-03-27 2010-03-25 電池パック WO2010109868A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/239,398 US10732229B2 (en) 2009-03-27 2011-09-22 Battery pack
US14/791,271 US10451684B2 (en) 2009-03-27 2015-07-03 Battery pack
US16/944,010 US11519971B2 (en) 2009-03-27 2020-07-30 Battery pack

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009080617A JP5421632B2 (ja) 2009-03-27 2009-03-27 電池パック
JP2009-080617 2009-03-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/239,398 Continuation US10732229B2 (en) 2009-03-27 2011-09-22 Battery pack

Publications (1)

Publication Number Publication Date
WO2010109868A1 true WO2010109868A1 (ja) 2010-09-30

Family

ID=42780564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/002106 WO2010109868A1 (ja) 2009-03-27 2010-03-25 電池パック

Country Status (3)

Country Link
US (3) US10732229B2 (ja)
JP (1) JP5421632B2 (ja)
WO (1) WO2010109868A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012067261A1 (ja) * 2010-11-19 2012-05-24 ソニー株式会社 二次電池セル、電池パック及び電力消費機器

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5342583B2 (ja) * 2011-03-08 2013-11-13 三菱重工業株式会社 電池セル制御装置及び電池セル
JP5870666B2 (ja) * 2011-12-09 2016-03-01 日産自動車株式会社 電池モジュール
CN104661854B (zh) * 2012-10-03 2016-10-26 川崎重工业株式会社 电动车辆以及电池组
ITVE20130055A1 (it) * 2013-10-18 2015-04-19 Benedetto Mauro Stefano Di Motociclo a motore elettrico dotato di opportune caratteristiche di progetto per facilitarne la manutenzione
KR20150054276A (ko) * 2013-11-11 2015-05-20 삼성에스디아이 주식회사 전기 자전거의 주행 제어 장치
JP6344709B2 (ja) 2013-11-12 2018-06-20 パナソニックIpマネジメント株式会社 電池パック、および、この電池パックを備える電気機器
JP6269559B2 (ja) * 2015-04-10 2018-01-31 トヨタ自動車株式会社 車載二次電池の冷却システム
US20170092994A1 (en) * 2015-09-25 2017-03-30 Intel Corporation Smart battery with integrated sensing and electronics
JP2017117526A (ja) * 2015-12-21 2017-06-29 トヨタ自動車株式会社 組電池の製造方法
WO2018155270A1 (ja) * 2017-02-22 2018-08-30 Necエナジーデバイス株式会社 充電システム、電池パック、及び保護装置
JP6345291B1 (ja) * 2017-03-22 2018-06-20 本田技研工業株式会社 情報処理装置、プログラム及び情報処理方法
JP6363754B1 (ja) 2017-03-22 2018-07-25 本田技研工業株式会社 情報処理装置、プログラム及び情報処理方法
JP6874666B2 (ja) * 2017-12-14 2021-05-19 トヨタ自動車株式会社 電池情報処理装置、電池製造支援装置、組電池、電池情報処理方法、及び組電池の製造方法
JP6911747B2 (ja) * 2017-12-25 2021-07-28 トヨタ自動車株式会社 電池情報処理装置、電池製造支援装置、組電池、電池情報処理方法、及び組電池の製造方法
JP7035806B2 (ja) * 2018-05-23 2022-03-15 株式会社デンソー 組電池
KR20210017535A (ko) * 2019-08-08 2021-02-17 주식회사 엘지화학 소화 유닛을 포함한 배터리 팩
KR20220091075A (ko) * 2020-12-23 2022-06-30 현대자동차주식회사 차량 및 그 제어방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003017138A (ja) * 2001-07-04 2003-01-17 Matsushita Electric Ind Co Ltd 電池パック
JP2003059469A (ja) * 2001-08-09 2003-02-28 Nissan Motor Co Ltd 組電池の異常検出装置
JP2008123961A (ja) * 2006-11-15 2008-05-29 Sony Corp 電池パック、電池劣化測定装置及び電池劣化測定方法
JP2009099288A (ja) * 2007-10-12 2009-05-07 Toyota Motor Corp 組電池及び組電池制御システム
JP2010045002A (ja) * 2008-08-18 2010-02-25 Panasonic Ev Energy Co Ltd 二次電池の再利用方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2727149B2 (ja) 1992-09-14 1998-03-11 エムアンドシー 株式会社 バッテリー検査方法
US5955865A (en) * 1996-06-17 1999-09-21 Hino Jidosha Kogyo Kabushiki Kaisha Control system for a vehicle-mounted battery
JP3474850B2 (ja) * 2000-01-12 2003-12-08 松下電器産業株式会社 電池電源装置
US7190171B2 (en) * 2002-10-11 2007-03-13 Canon Kabushiki Kaisha Detecting method and detecting apparatus for detecting internal of rechargeable battery, rechargeable battery pack having said detecting apparatus therein, apparatus having said detecting apparatus therein, program in which said detecting method is incorporated, and medium in which said program is stored
JP3825738B2 (ja) * 2002-10-31 2006-09-27 三洋電機株式会社 パック電池とその製造方法
KR100677106B1 (ko) * 2002-12-10 2007-02-01 삼성전자주식회사 정보저장매체 및 그 기록/재생방법
US7964299B2 (en) 2005-10-18 2011-06-21 Enerdel, Inc. Method of recycling a battery
JP5039980B2 (ja) * 2005-11-14 2012-10-03 日立ビークルエナジー株式会社 二次電池モジュール
DE102006038678A1 (de) * 2006-08-17 2008-02-21 Bayerische Motoren Werke Ag Verfahren zur Vergabe von Adressen an die Speicherzellen eines wiederaufladbaren Energiespeichers
JP4703593B2 (ja) * 2007-03-23 2011-06-15 株式会社豊田中央研究所 二次電池の状態推定装置
KR100855991B1 (ko) * 2007-03-27 2008-09-02 삼성전자주식회사 비휘발성 메모리 소자 및 그 제조 방법
JP5011007B2 (ja) 2007-07-04 2012-08-29 プライムアースEvエナジー株式会社 組電池及びその製造方法
JP5096817B2 (ja) 2007-07-10 2012-12-12 プライムアースEvエナジー株式会社 再構成組電池の製造方法
JP4668306B2 (ja) * 2007-09-07 2011-04-13 パナソニック株式会社 二次電池の寿命推定装置および二次電池の寿命推定方法
US8428816B2 (en) * 2007-10-27 2013-04-23 GM Global Technology Operations LLC Method and apparatus for monitoring software and signal integrity in a distributed control module system for a powertrain system
US7800510B2 (en) * 2007-11-30 2010-09-21 O2Micro, Inc. Battery systems with embedded cell monitors
US7854282B2 (en) * 2007-12-10 2010-12-21 International Humanities Center Hybrid electric vehicle
US20090284225A1 (en) * 2008-03-03 2009-11-19 Panasonic Corporation Information processing equipment and the integrated circuit
US7911080B2 (en) * 2008-10-29 2011-03-22 GM Global Technology Operations LLC Method and system for managing an automotive electrical system
US8407018B2 (en) * 2009-03-24 2013-03-26 American Power Conversion Corporation Battery life estimation
KR20110107070A (ko) * 2010-03-24 2011-09-30 삼성에스디아이 주식회사 배터리 셀의 분류 장치 및 그 분류 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003017138A (ja) * 2001-07-04 2003-01-17 Matsushita Electric Ind Co Ltd 電池パック
JP2003059469A (ja) * 2001-08-09 2003-02-28 Nissan Motor Co Ltd 組電池の異常検出装置
JP2008123961A (ja) * 2006-11-15 2008-05-29 Sony Corp 電池パック、電池劣化測定装置及び電池劣化測定方法
JP2009099288A (ja) * 2007-10-12 2009-05-07 Toyota Motor Corp 組電池及び組電池制御システム
JP2010045002A (ja) * 2008-08-18 2010-02-25 Panasonic Ev Energy Co Ltd 二次電池の再利用方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012067261A1 (ja) * 2010-11-19 2012-05-24 ソニー株式会社 二次電池セル、電池パック及び電力消費機器
CN103201889A (zh) * 2010-11-19 2013-07-10 索尼公司 二次电池单体、电池组以及电力消耗装置
EP2642574A1 (en) * 2010-11-19 2013-09-25 Sony Corporation Secondary battery cell, battery pack, and power consumption equipment
EP2642574A4 (en) * 2010-11-19 2014-12-10 Sony Corp RECHARGEABLE BATTERY ELEMENT, BATTERY PACK AND POWER CONSUMPTION EQUIPMENT
CN103201889B (zh) * 2010-11-19 2016-01-06 索尼公司 二次电池单体、电池组以及电力消耗装置
US9970989B2 (en) 2010-11-19 2018-05-15 Murata Manufacturing Co., Ltd. Secondary battery cell, battery pack, and electricity consumption device

Also Published As

Publication number Publication date
US20150355287A1 (en) 2015-12-10
US11519971B2 (en) 2022-12-06
US10732229B2 (en) 2020-08-04
US10451684B2 (en) 2019-10-22
JP5421632B2 (ja) 2014-02-19
US20120015221A1 (en) 2012-01-19
US20200369177A1 (en) 2020-11-26
JP2010232103A (ja) 2010-10-14

Similar Documents

Publication Publication Date Title
JP5421632B2 (ja) 電池パック
JP5497319B2 (ja) 電池組立装置、及び電池組立方法
CN108432030B (zh) 电池组的温度监视装置和方法
JP5026823B2 (ja) バッテリ冷却装置
US8463563B2 (en) Battery management system and driving method thereof
US9866049B2 (en) Battery warm up system and method for warming up battery using the same
US7768235B2 (en) Battery management system and method for automotive vehicle
JP2011041452A (ja) 組電池装置及び車両
US20110181246A1 (en) Battery management system and driving method thereof
WO2008065910A1 (en) Accumulator failure detecting device, accumulator failure detecting method, accumulator failure detecting program, and computer-readable recording medium containing the accumulator failure detecting program
JP2013009558A (ja) 車載用蓄電池の充電システム
CN105359332A (zh) 用于调节电化学电池温度的系统和方法
US20180261896A1 (en) Heater control apparatus and method for controlling heater for battery
CN109311410B (zh) 用于对电池组进行热调节的方法和系统
JP5379534B2 (ja) 電力供給装置及び方法
KR20150028095A (ko) 배터리 팩의 프리차지 저항 산출 장치 및 방법
JP2011240896A (ja) 電池制御装置および車両
EP2792012B1 (en) System and method for determining charging and discharging power levels for a battery pack
JP5938633B2 (ja) 電池の充電可否判断装置
US20140300365A1 (en) Diagnosis method and diagnosis apparatus for determining a current capacity of a battery cell in a handheld machine tool
JP5195440B2 (ja) 車両用電力制御装置及び組電池の内部抵抗推定方法
JP2019122098A (ja) 電動車両の充電制御装置
JP2023065123A (ja) バッテリシステム
JP2019122200A (ja) 電動車両の充電制御装置
KR20200042343A (ko) 배터리의 온도를 검출하기 위한 장치 및 방법과 상기 장치를 포함하는 배터리 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10755670

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10755670

Country of ref document: EP

Kind code of ref document: A1