WO2018155270A1 - 充電システム、電池パック、及び保護装置 - Google Patents

充電システム、電池パック、及び保護装置 Download PDF

Info

Publication number
WO2018155270A1
WO2018155270A1 PCT/JP2018/004985 JP2018004985W WO2018155270A1 WO 2018155270 A1 WO2018155270 A1 WO 2018155270A1 JP 2018004985 W JP2018004985 W JP 2018004985W WO 2018155270 A1 WO2018155270 A1 WO 2018155270A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery pack
battery
state information
switch
protection device
Prior art date
Application number
PCT/JP2018/004985
Other languages
English (en)
French (fr)
Inventor
佐々木 浩
Original Assignee
Necエナジーデバイス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Necエナジーデバイス株式会社 filed Critical Necエナジーデバイス株式会社
Priority to US16/485,053 priority Critical patent/US20200044462A1/en
Priority to JP2019501245A priority patent/JPWO2018155270A1/ja
Publication of WO2018155270A1 publication Critical patent/WO2018155270A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/46Accumulators structurally combined with charging apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/18Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for batteries; for accumulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0031Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4278Systems for data transfer from batteries, e.g. transfer of battery parameters to a controller, data transferred between battery controller and main controller
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to charging a secondary battery.
  • Some storage batteries are configured by connecting a plurality of secondary batteries in series.
  • this secondary battery is referred to as a battery cell.
  • a storage battery is operated by being housed in a casing together with a mechanism (BMS: “Battery Management” System) for managing the storage battery.
  • BMS Battery Management System
  • a set of a storage battery housed in such a case and a mechanism for managing the storage battery is called a battery pack.
  • Patent Document 1 discloses a technique for controlling charging of a battery pack having a plurality of battery cells in consideration of the voltage balance of each battery cell.
  • a bypass circuit is provided on a wiring through which a current for charging each battery cell flows.
  • the battery pack is provided with a detection circuit that detects the voltage of each battery cell.
  • a microcomputer is housed in the same housing as the charger. The microcomputer acquires the voltage of each battery cell detected by the detection circuit and controls the bypass circuit based on the voltage.
  • the bypass circuit is provided with a switch. When the switch is opened and closed, the charging current flows to the battery cell, and the charging current flows to the bypass circuit (the charging current does not flow to the battery cell). ) And can be switched.
  • Patent Document 2 discloses an overcharge protection device for preventing a battery from being excessively charged.
  • This overcharge protection device is interposed between a charger and a battery charged by the charger. Furthermore, the overcharge protection device has a voltage measuring device. When the overcharge protection device is connected to the charger and the battery, and the battery is charged, the voltage of the battery is measured by the voltage measuring device. Then, when the battery voltage exceeds a predetermined voltage, the overcharge protection device controls a switch provided in the overcharge protection device so that charging current is not supplied from the charger to the battery.
  • the storage battery may be required to be lightweight.
  • a storage battery is mounted on a small mobile body (particularly a flying object), it is required to reduce the weight of the storage battery.
  • An object of the present invention is to provide a new technique for reducing the weight of a storage battery.
  • the charging system of the present invention has a battery pack and a protection device.
  • the battery pack includes 1) a battery cell, 2) a measuring device that measures a physical quantity related to the battery pack, 3) an input terminal to which a charging current is supplied from the protection device, and 4) the measured physical quantity.
  • State information generating means for generating state information; and 5) a communication terminal for outputting the state information to the protection device.
  • the protection device is 1) connected to an input terminal of the battery pack, and an output terminal for supplying the charging current from a power source to the battery pack; and 2) the state information output from the battery pack is input.
  • a communication terminal 3) an input terminal to which a charging current is supplied from the power source, 4) a wiring connecting the input terminal and the output terminal of the protection device, and 5) a switch provided on the wiring. 6) Control means for opening and closing the switch based on the measured physical quantity indicated in the state information.
  • the battery pack and the protection device are provided in different casings.
  • the battery pack of the present invention includes an input to which a charging current is supplied from 1) a battery cell, 2) a measuring instrument that measures a physical quantity representing the state of the battery pack, and 3) a protection device that controls charging of the battery pack.
  • a terminal 4) state information generating means for generating state information indicating the measured physical quantity, 5) a communication terminal for outputting the state information to the protection device, and 6) the input terminal and the battery cell.
  • wiring for connecting The charging current supplied to the input terminal is supplied to the battery cell through the wiring.
  • a switch for cutting off the connection between the input terminal and the battery cell is not provided on the wiring.
  • a new technique for reducing the weight of a storage battery is provided.
  • FIG. 1 is a block diagram illustrating a charging system according to a first embodiment. It is a figure which illustrates a charge system in case a protection apparatus identifies a battery pack. It is a figure which illustrates the output device which a protection device has.
  • 6 is a block diagram illustrating a charging system according to a second embodiment. FIG. It is a flowchart which illustrates the flow of the process performed in a charging system. 6 is a block diagram illustrating a charging system according to a third embodiment. FIG.
  • each block in the block diagram represents a functional unit configuration, not a hardware unit configuration.
  • FIG. 1 is a diagram illustrating a basic functional configuration of the charging system 100.
  • the charging system 100 includes a charging device 1000, a protection device 2000, and a battery pack 3000.
  • a housing for realizing protection device 2000 and a housing for realizing battery pack 3000 are different from each other. Further, the housing for realizing the charging system 100 and the housing for realizing the battery pack 3000 are also different.
  • the charging device 1000 and the protection device 2000 may be realized in the same casing, or may be realized in different casings.
  • the charging device 1000 is a device that supplies a charging current to the battery pack 3000 to be charged.
  • the charging current is supplied from the power source 1020.
  • the power source 1020 may be provided inside the charging apparatus 1000 or may be provided outside the charging apparatus 1000. In the latter case, the charging device 1000 draws current from a power source 1020 (for example, a system power source) provided outside the charging device 1000 and supplies the current to the battery pack 3000.
  • a power source 1020 for example, a system power source
  • the battery pack 3000 is a battery pack in which one or more unit cells (hereinafter referred to as battery cells) of secondary batteries are stored.
  • the battery pack 3000 includes a first input terminal 3020, a battery cell group 3040, a measuring instrument 3060, and a first communication terminal 3080.
  • the first input terminal 3020 is a terminal to which a charging current is input.
  • the battery cell group 3040 includes one or more battery cells 3042 (not shown).
  • the battery cell 3042 is a unit cell of an arbitrary secondary battery (for example, a lithium ion battery).
  • the battery cell group 3040 is charged by a charging current input from the first input terminal 3020.
  • Measuring device 3060 is measuring device 3060 for grasping the state of battery pack 3000.
  • the first communication terminal 3080 is a terminal for outputting information representing the result of measurement by the measuring instrument 3060 to the protection device 2000.
  • the protection device 2000 is interposed between the charging device 1000 and the battery pack 3000, and controls the supply of charging current from the charging device 1000 to the battery pack 3000.
  • the protection device 2000 includes an input terminal 2020, a first output terminal 2040, and a wiring 2060.
  • the input terminal 2020 is a terminal to which a charging current supplied from the charging apparatus 1000 is input.
  • the first output terminal 2040 is a terminal that outputs the charging current to the battery pack 3000.
  • the wiring 2060 is a wiring that connects the input terminal 2020 and the first output terminal 2040.
  • the charging current supplied from the charging device 1000 to the protection device 2000 flows on the wiring 2060 and is output to the battery pack 3000.
  • the protection device 2000 controls the supply of the charging current from the charging device 1000 to the battery pack 3000 based on the state of the battery pack 3000 grasped using the measuring device 3060. Therefore, the protection device 2000 further includes a switch 2080, a first communication terminal 2100, and a control unit 2120.
  • the switch 2080 is a switch provided on the wiring 2060.
  • the switch 2080 is realized using an FET (Field Effect Transistor).
  • FET Field Effect Transistor
  • control for controlling the input terminal 2020 and the first output terminal 2040 to be connected to each other (control for allowing the charging current to flow on the wiring 2060) will be referred to as “closing the switch 2080”.
  • control for making the input terminal 2020 and the first output terminal 2040 not connected to each other (control for preventing the charging current from flowing on the wiring 2060) is referred to as “opening the switch 2080”.
  • the control unit 2120 opens and closes the switch 2080 based on the result of measurement by the measuring instrument 3060.
  • Information representing the result of measurement by the measuring device 3060 is input from the battery pack 3000 to the protection device 2000 via the first communication terminal 2100.
  • the present invention can control charging of the battery pack 3000 in consideration of the state of the battery pack 3000 with such a configuration. Therefore, it is possible to avoid problems caused by charging the battery pack 3000 when the state of the battery pack 3000 is not suitable for charging.
  • the control unit 2120 may be realized by hardware (for example, a hard-wired electronic circuit) or a combination of hardware and software (for example, a combination of an electronic circuit and a program for controlling the same). It may be realized. Hereinafter, a case where the control unit 2120 is realized by a combination of hardware and software will be further described.
  • FIG. 2 is a diagram illustrating a computer 5000 for realizing the control unit 2120.
  • the computer 5000 is an integrated circuit such as a SoC (System on Chip).
  • the computer 5000 may be a dedicated computer designed to realize the control unit 2120 or a general-purpose computer.
  • the computer 5000 includes a bus 5020, a processor 5040, a memory 5060, a storage device 5080, an input / output interface 5100, and a network interface 5120.
  • the bus 5020 is a data transmission path through which the processor 5040, the memory 5060, the storage device 5080, the input / output interface 5100, and the network interface 5120 transmit / receive data to / from each other.
  • the processor 5040 is an arithmetic processing unit such as a CPU (Central Processing Unit) and a GPU (Graphics Processing Unit).
  • the memory 5060 is a memory such as a RAM (Random Access Memory) or a ROM (Read Only Memory).
  • the storage device 5080 is a storage device such as a hard disk, an SSD (Solid State Drive), or a memory card. Further, the storage device 5080 may be a memory such as a RAM or a “ROM”.
  • the input / output interface 5100 is an interface for connecting the computer 5000 to other devices.
  • the network interface 5120 is an interface for connecting the computer 5000 so that it can communicate with an external device.
  • the storage device 5080 stores a program module for realizing the function of the control unit 2120.
  • the processor 5040 implements the function of the control unit 2120 by reading this program module into the memory 5060 and executing it.
  • each program module may be stored in the memory 5060.
  • the computer 5000 may not include the storage device 5080.
  • FIG. 3 is a block diagram illustrating the charging system 100 according to the first embodiment.
  • the charging device 1000 is omitted.
  • a measurement signal representing a measurement result by the measuring instrument 3060 is provided from the battery pack 3000 to the protection device 2000.
  • This measurement signal is an electrical signal representing a physical quantity related to the battery pack 3000.
  • the physical quantity related to the battery pack 3000 is a physical quantity representing the state of the battery pack 3000, such as the voltage of the battery cell group 3040, the current flowing through the battery cell group 3040, or the temperature inside the casing of the battery pack 3000.
  • the measurement signal is a signal output from a measuring device (such as a voltage measuring device, a current measuring device, or a temperature sensor) that measures a physical quantity related to the battery pack 3000, or the signal is amplified by an amplifier or the like.
  • the physical quantity related to the battery pack 3000 is represented by, for example, a value (such as an amplitude peak value or an average value) obtained from the amplitude of the measurement signal.
  • the physical quantity relating to the battery pack 3000 is obtained by multiplying the peak value of the amplitude of the measurement signal by a predetermined value. That is, in this case, the physical quantity related to the battery pack 3000 is a value proportional to the peak value of the amplitude of the measurement signal.
  • Control unit 2120 opens and closes switch 2080 based on the measurement signal.
  • a specific description will be given of what state of the battery pack 3000 the control unit 2120 considers to open and close the switch 2080.
  • the control unit 2120 controls the switch 2080 so that the charging current is not supplied to the battery cell group 3040 when the battery cell group 3040 is in an overvoltage state (when the battery cell group 3040 is in an excessively charged state). Specifically, control unit 2120 determines whether or not the voltage of battery cell group 3040 represents an overvoltage state. When the voltage of the battery cell group 3040 represents an overvoltage state, the control unit 2120 opens the switch 2080.
  • the measuring device 3060 is a voltage measuring device that measures the voltage of the battery cell group 3040.
  • the measurement signal is an electric signal representing the voltage of the battery cell group 3040 depending on the magnitude of the amplitude.
  • the control unit 2120 converts the measurement signal received at the first communication terminal 2100 into the voltage of the battery cell group 3040. Then, the control unit 2120 opens the switch 2080 when the voltage of the battery cell group 3040 is equal to or higher than the threshold value.
  • This threshold value is stored in advance in, for example, the storage device 5080 (the same applies to various threshold values described later used by the control unit 2120).
  • the conversion rule for converting the measurement signal into the voltage of the battery cell group 3040 is determined in advance.
  • this conversion rule is a rule that associates a statistical value (such as a peak value or an average value) obtained from the amplitude of the measurement signal with the voltage of the battery cell group 3040.
  • This conversion rule is stored in the storage device 5080, for example.
  • the control unit 2120 converts the measurement signal into the voltage of the battery cell group 3040 using this conversion rule.
  • control unit 2120 controls the switch 2080 is not limited to the method for performing the above conversion.
  • control unit 2120 opens the switch 2080 when the statistical value obtained from the amplitude of the measurement signal is greater than or equal to the threshold value.
  • Control unit 2120 may determine whether or not each battery cell 3042 included in battery cell group 3040 is in an overvoltage state instead of whether or not battery cell group 3040 is in an overvoltage state. Good. For example, the control unit 2120 opens the switch 2080 when at least one battery cell 3042 is in an overvoltage state. The method for determining whether each battery cell 3042 is in an overdischarged state is the same as the method for determining whether the battery cell group 3040 is in an overdischarged state.
  • the measuring device 3060 When determining each battery cell 3042, the measuring device 3060 measures the voltage of each battery cell 3042. Then, a measurement signal representing the voltage of each battery cell 3042 is transmitted from measuring instrument 3060 to protection device 2000.
  • each of the plurality of measurement signals may be transmitted via different signal lines, or the plurality of measurement signals may be transmitted via one signal line. May be transmitted.
  • a plurality of sets of communication terminals (the first communication terminal 2100 of the protection device 2000 and the first communication terminal 3080 of the battery pack 3000) are provided, and each of the plurality of sets of communication terminals is connected by a signal line.
  • the control unit 2120 distinguishes each measurement signal using a technique such as time division multiplexing.
  • the control unit 2120 controls the switch 2080 so that the charging current is not supplied to the battery cell group 3040 when the battery cell group 3040 is in a deep discharge state. Specifically, control unit 2120 determines whether or not the voltage of battery cell group 3040 represents a deep discharge state. When the voltage of the battery cell group 3040 indicates a deep discharge state, the control unit 2120 opens the switch 2080.
  • the measuring device 3060 is a voltage measuring device that measures the voltage of the battery cell group 3040.
  • the measurement signal is an electrical signal that represents the voltage of the battery cell group 3040 depending on the magnitude of the amplitude.
  • the control unit 2120 converts the measurement signal received at the first communication terminal 2100 into the voltage of the battery cell group 3040 using the conversion rule described above. Then, the control unit 2120 determines whether or not the voltage of the battery cell group 3040 is equal to or lower than the threshold value, and opens the switch 2080 when the voltage of the battery cell group 3040 is equal to or lower than the threshold value. On the other hand, when the voltage of the battery cell group 3040 is not below the threshold value, the switch 2080 is closed.
  • the method by which the control unit 2120 controls the switch 2080 is not limited to the method for performing the above conversion.
  • the control unit 2120 determines whether or not a statistical value obtained from the amplitude of the measurement signal is equal to or smaller than a threshold value, and opens the switch 2080 when the statistical value is equal to or smaller than the threshold value. On the other hand, when the statistical value is not less than or equal to the threshold value, the control unit 2120 closes the switch 2080.
  • Control unit 2120 determines whether or not each battery cell 3042 included in battery cell group 3040 is in a deep discharge state, instead of whether or not battery cell group 3040 is in a deep discharge state. May be. For example, the control unit 2120 opens the switch 2080 when at least one battery cell 3042 is in a deep discharge state. The method for determining whether or not each battery cell 3042 is in a deep discharge state is the same as the method for determining whether or not the battery cell group 3040 is in a deep discharge state.
  • control unit 2120 sets the switch 2080 to stop supplying the current to the battery cell group 3040. open. Specifically, control unit 2120 determines whether or not the current flowing into battery cell group 3040 represents an overcurrent. When the current flowing into battery cell group 3040 represents an overcurrent, control unit 2120 opens switch 2080.
  • the measuring device 3060 is a current measuring device that measures the current flowing into the battery cell group 3040.
  • the measurement signal is an electric signal representing the magnitude of the current flowing into the battery cell group 3040 according to the magnitude of the amplitude.
  • control unit 2120 converts the measurement signal received at the first communication terminal 2100 into a current flowing into the battery cell group 3040. Then, the control unit 2120 opens the switch 2080 when the current flowing into the battery cell group 3040 is greater than or equal to the threshold value. On the other hand, when the current flowing into battery cell group 3040 is not equal to or greater than the threshold, control unit 2120 opens switch 2080.
  • the conversion rule for converting the measurement signal into the current flowing into the battery cell group 3040 is determined in advance.
  • this conversion rule is a rule that associates the statistical value obtained from the amplitude of the measurement signal with the current flowing into the battery cell group 3040.
  • This conversion rule is stored in the storage device 5080, for example.
  • the controller 2120 converts the measurement signal into a current flowing into the battery cell group 3040 using this conversion rule.
  • control unit 2120 controls the switch 2080 is not limited to the method for performing the above conversion.
  • the control unit 2120 opens the switch 2080 when the statistical value obtained from the amplitude of the measurement signal is greater than or equal to the threshold value.
  • the control unit 2120 closes the switch 2080 when the statistical value obtained from the amplitude of the measurement signal is not equal to or greater than the threshold value.
  • Control unit 2120 may determine whether or not each battery cell 3042 included in battery cell group 3040 is in an overvoltage state instead of whether or not battery cell group 3040 is in an overvoltage state. Good. For example, the control unit 2120 opens the switch 2080 when at least one battery cell 3042 is in an overvoltage state. The method for determining whether each battery cell 3042 is in an overdischarged state is the same as the method for determining whether the battery cell group 3040 is in an overdischarged state.
  • the measuring device 3060 When determining each battery cell 3042, the measuring device 3060 measures the voltage of each battery cell 3042. Then, a measurement signal representing the voltage of each battery cell 3042 is transmitted from measuring instrument 3060 to protection device 2000.
  • Control unit 2120 opens switch 2080 so that current is not supplied to battery cell group 3040 when temperature abnormality has occurred in battery pack 3000 (when the temperature inside the casing of battery pack 3000 is excessively high). Specifically, control unit 2120 determines whether or not the temperature of battery pack 3000 represents an abnormal temperature state. If the temperature of battery pack 3000 represents a temperature abnormality, control unit 2120 opens switch 2080.
  • the measuring instrument 3060 is a temperature sensor that measures the temperature in the casing of the battery pack 3000.
  • This temperature sensor is preferably provided so as to measure the temperature of the battery cell group 3040 or the temperature around the battery cell group 3040.
  • the measurement signal is an electric signal representing the temperature of the battery pack 3000 depending on the magnitude of the amplitude.
  • control unit 2120 converts the measurement signal received at the first communication terminal 2100 into the temperature of the battery pack 3000.
  • Control unit 2120 opens switch 2080 when the temperature of battery pack 3000 is equal to or higher than the threshold value.
  • control unit 2120 closes switch 2080 when the temperature of battery pack 3000 is equal to or higher than the threshold value.
  • the conversion rule for converting the measurement signal into the temperature of the battery pack 3000 is determined in advance.
  • this conversion rule is a rule that associates a statistical value obtained from the amplitude of the measurement signal with the temperature of the battery pack 3000.
  • This conversion rule is stored in the storage device 5080, for example.
  • the control unit 2120 converts the measurement signal into the temperature of the battery pack 3000 using this conversion rule.
  • control unit 2120 controls the switch 2080 is not limited to the method for performing the above conversion.
  • the control unit 2120 opens the switch 2080 when the statistical value obtained from the amplitude of the measurement signal is greater than or equal to the threshold value.
  • the control unit 2120 closes the switch 2080 when the statistical value obtained from the amplitude of the measurement signal is not equal to or greater than the threshold value.
  • control unit 2120 opens switch 2080 so that current is not supplied to battery cell group 3040.
  • the cell balance abnormality means that the voltage greatly varies between the plurality of battery cells 3042 constituting the battery cell group 3040.
  • the control unit 2120 determines whether or not the voltages of the plurality of battery cells 3042 constituting the battery cell group 3040 indicate a cell balance abnormality state. Then, when the voltage of the battery cell 3042 indicates a cell balance abnormal state, the control unit 2120 opens the switch 2080.
  • Measuring instrument 3060 is a voltage measuring instrument that measures the voltage of each battery cell 3042.
  • the measurement signal is an electric signal representing the voltage of the battery cell 3042 depending on the magnitude of the amplitude.
  • the control unit 2120 converts each measurement signal representing the voltage of the battery cell 3042 into the voltage of the battery cell 3042. Then, the control unit 2120 calculates an index value indicating the voltage variation of the battery cell 3042, and opens the switch 2080 when the index value is equal to or greater than a threshold value. On the other hand, when the index value is not greater than or equal to the threshold value, the control unit 2120 closes the switch 2080.
  • the index value representing the voltage variation of the battery cell 3042 is, for example, the voltage dispersion or standard deviation of the battery cell 3042.
  • control unit 2120 may calculate an index value of the variation in the voltage of the battery cell 3042 from a statistical value obtained from each measurement signal representing the voltage of the battery cell 3042.
  • the control unit 2120 opens the switch 2080 when the index value is equal to or greater than the threshold value, and closes the switch 2080 when the index value is not equal to or greater than the threshold value.
  • the control unit 2120 controls the switch 2080 based on any one or more of the various states (such as overvoltage and deep discharge) of the battery pack 3000 described above.
  • the control unit 2120 says “open switch 2080” in at least one of the above determinations regarding the state of the battery pack 3000. If determined, the switch 2080 is opened. On the other hand, control unit 2120 closes switch 2080 when it is determined that “close switch 2080” in all of the above determinations regarding the state of battery pack 3000.
  • the correspondence relationship between the measurement signal provided from the battery pack 3000 and the physical quantity related to the battery pack 3000 represented by the measurement signal may differ depending on the type of the battery pack 3000.
  • the conversion rule for converting the measurement signal into a physical quantity related to the battery pack 3000 is different for each type of the battery pack 3000.
  • the threshold value compared with the physical quantity regarding the battery pack 3000 or the statistical value obtained from a measurement signal may differ for every kind of battery pack 3000. For example, how much the voltage of the battery cell group 3040 is in an overvoltage or deep discharge state varies depending on the battery pack 3000.
  • the threshold value used for the various determinations described above is different for each of the 3000 types.
  • FIG. 4 is a diagram illustrating the charging system 100 when the protection device 2000 identifies the battery pack 3000.
  • the charging device 1000 is omitted. 4 further includes a measuring instrument 2180 and a second output terminal 2200.
  • the battery pack 3000 further includes a resistance element 3160 and a second input terminal 3180.
  • the measuring instrument 2180 and the resistance element 3160 are connected via a second output terminal 2200 and a second input terminal 3180.
  • the resistance element 3160 is an arbitrary resistance element provided in the battery pack 3000 such that its resistance value varies depending on the type of the battery pack 3000.
  • Measuring instrument 2180 applies a predetermined voltage to resistance element 3160. By doing so, a current flows on the wiring connecting the measuring instrument 2180 and the second output terminal 2200. The measuring instrument 2180 measures this current.
  • the resistance value of the resistance element 3160 varies depending on the type of the battery pack 3000
  • the current measured by the measuring instrument 2180 also varies depending on the type of the battery pack 3000. From this, the type of the battery pack 3000 can be specified by the current measured by the measuring instrument 2180.
  • the control unit 2120 controls the switch 2080 based on the current measured by the measuring instrument 2180. For example, it is assumed that the control unit 2120 converts a statistical value obtained from the measurement signal into a physical quantity of the battery pack 3000 using a predetermined conversion rule. In this case, a conversion rule is determined for each type of battery pack 3000. The control unit 2120 identifies the type of the battery pack 3000 based on the current measured by the measuring instrument 2180, and acquires a conversion rule corresponding to the identified type of the battery pack 3000. Then, the control unit 2120 converts the statistical value obtained from the measurement signal into a physical quantity of the battery pack 3000 using the acquired conversion rule.
  • control unit 2120 controls the switch 2080 by comparing a statistical value obtained from the measurement signal with a threshold value.
  • a threshold value is determined for each type of battery pack 3000.
  • the control unit 2120 identifies the type of the battery pack 3000 based on the current measured by the measuring instrument 2180, and acquires a threshold value corresponding to the identified type of the battery pack 3000. Then, the control unit 2120 controls the switch 2080 by comparing the statistical value obtained from the measurement signal with the acquired threshold value.
  • the protection device 2000 may include an output device for notifying the user.
  • the output device is a device that performs notification using an LED (Light-Emitting-Diode) lamp.
  • FIG. 5 is a diagram illustrating an output device included in the protection device 2000.
  • the housing 200 is a housing of the protection device 2000.
  • the display device 210 is the above-described display device.
  • the display device 210 has a plurality of “LED” lamps.
  • the control unit 2120 lights up the LED lamp corresponding to the cause of opening the switch 2080 to notify the user that the battery pack 3000 is not charged and the cause. If none of the “LED” lamps is lit, it means that the battery pack 3000 is charged. However, a LED lamp indicating that the battery pack 3000 is being charged may be separately provided.
  • the case where the “LED” lamp labeled “temperature” is turned on is a case where the switch 2080 is opened due to a temperature abnormality of the battery pack 3000.
  • the case where the “LED” lamp labeled “charger” is turned on is a case where the charging device 1000 opens the switch 2080.
  • this case is a case where the battery cell group 3040 is in an overvoltage state.
  • the case where the “battery” “LED” lamp is lit is a case where the switch 2080 is opened due to a problem in the battery pack 3000 (excluding temperature abnormality).
  • this case is a case where the battery cell group 3040 is in a deep discharge state or a case where a cell balance abnormality occurs in the battery cell group 3040.
  • the “LED” lamp “device” is turned on in a case where the switch 2080 is opened due to a problem in the protection device 2000 or the battery pack 3000.
  • the protection device 2000 turns on this LED lamp when there is an abnormality in various hardware provided in the protection device 2000 (the computer 5000 that implements the switch 2080 and the control unit 2120).
  • the protection device 2000 turns on the LED lamp.
  • the protection device 2000 with the display device 210, the convenience of the charging system 100 (the convenience of the protection device 2000) is improved for the user of the charging system 100.
  • the method of notifying the user is not limited to the method using the LED lamp.
  • the protection device 2000 may be provided with a display device, and a message may be displayed on the display device to notify the user.
  • the protection device 2000 may be provided with a speaker, and the user may be notified by outputting a voice message or the like to the speaker.
  • ⁇ Effect> There are cases where the battery pack 3000 is required to be small and light.
  • One example is a case where the battery pack 3000 is mounted on a flying object such as a drone.
  • the charge control mechanism is provided in the battery pack 3000, it is difficult to reduce the size and weight of the battery pack 3000.
  • a mechanism for controlling whether or not the battery pack 3000 is charged (hereinafter referred to as a charging control mechanism) is realized by a housing different from both the charging device 1000 and the battery pack 3000. . Therefore, as compared with the case where the battery pack 3000 is provided with a charge control mechanism, the battery pack 3000 can be easily reduced in size and weight.
  • a measurement signal representing the measurement result in the measuring device 3060 is provided to the protection device 2000, and control using the measurement signal is performed in the protection device 2000. Therefore, it is not necessary to provide the battery pack 3000 with a mechanism for processing the measurement result of the measuring instrument 3060.
  • the protection device 2000 is provided with a mechanism (control unit 2120) that interprets whether or not the measurement result of the measuring instrument 3060 represents the state of the battery pack 3000. It is not necessary to provide the battery pack 3000. Therefore, the battery pack 3000 can be further reduced in size and weight.
  • FIG. 6 is a block diagram illustrating a charging system 100 according to the second embodiment.
  • the charging apparatus 1000 is omitted.
  • the battery pack 3000 includes a state information generation unit 3100.
  • the state information generation unit 3100 generates digital data representing the measurement result by the measuring instrument 3060.
  • this digital data is referred to as status information.
  • the state information generation unit 3100 provides state information to the control unit 2120 via the first communication terminal 3080.
  • the measuring device 3060 outputs a measurement signal representing a measurement result.
  • This measurement signal represents a physical quantity related to the battery pack 3000.
  • the state information generation unit 3100 generates state information indicating the physical quantity by converting the measurement signal into a physical quantity represented by the measurement signal.
  • the control unit 2120 acquires state information via the first communication terminal 2100. Then, the control unit 2120 controls the switch 2080 based on the physical quantity related to the battery pack 3000 indicated by the state information.
  • the state information generation unit 3100 generates state information representing a physical quantity related to the battery pack 3000 from the measurement signal output from the measuring device 3060.
  • the specific method is the same as the method for converting the measurement signal into the physical quantity related to the battery pack 3000 based on the conversion rule described in the first embodiment.
  • the measurement signal is an electric signal representing the voltage of the battery cell group 3040 with the amplitude.
  • a conversion rule that associates the statistical value obtained from the amplitude of the measurement signal with the voltage of the battery cell group 3040 is determined in advance.
  • the state information generation unit 3100 converts the statistical value obtained from the amplitude of the measurement signal output from the measuring instrument 3060 into the voltage of the battery cell group 3040 using this conversion rule. And the state information generation part 3100 produces
  • the control unit 2120 according to the second embodiment is similar to the control unit 2120 according to the first embodiment. 1) Whether the battery cell group 3040 is in an overvoltage state, or 2) whether the battery cell group 3040 is in a deep discharge state. 3) Whether the battery cell group 3040 is in an overcurrent state, 4) whether the battery pack 3000 is in an abnormal temperature state, and 5) a cell balance abnormality occurs in the battery cell group 3040.
  • the switch 2080 is controlled in accordance with the result of the determination such as whether or not.
  • the switch 2080 is controlled according to whether or not the battery cell group 3040 is in an overvoltage state.
  • the state information generation unit 3100 generates state information indicating the voltage of the battery cell group 3040.
  • the control unit 2120 opens the switch 2080 when the voltage of the battery cell group 3040 is equal to or higher than the threshold value.
  • the timing at which the measuring instrument 3060 measures the voltage of the battery cell group 3040 is arbitrary.
  • the measuring instrument 3060 measures the voltage of the battery cell group 3040 when the state information generation unit 3100 generates state information.
  • the measuring instrument 3060 periodically measures the voltage of the battery cell group 3040 and stores the measurement result in a storage device included in the battery pack 3000.
  • the state information generation unit 3100 reads the voltage of the battery cell group 3040 from the storage device, and includes the read value in the state information.
  • the switch 2080 is controlled according to whether or not the battery cell group 3040 is in a deep discharge state. Also in this case, the state information generation unit 3100 generates state information indicating the voltage of the battery cell group 3040. Control unit 2120 opens switch 2080 when the voltage of battery cell group 3040 is equal to or lower than the threshold value.
  • the switch 2080 is controlled according to whether or not the battery cell group 3040 is in an overcurrent state.
  • the state information generation unit 3100 generates state information indicating the current flowing into the battery cell group 3040.
  • Control unit 2120 opens switch 2080 when the current flowing into battery cell group 3040 is greater than or equal to the threshold value. Note that the timing at which the measuring instrument 3060 measures the current flowing into the battery cell group 3040 is arbitrary, similar to the timing at which the measuring instrument 3060 measures the voltage of the battery cell group 3040.
  • the switch 2080 is controlled according to whether or not the battery pack 3000 is in a temperature abnormal state.
  • the state information generation unit 3100 generates state information indicating the temperature of the battery pack 3000.
  • Control unit 2120 opens switch 2080 when the temperature of battery pack 3000 is equal to or higher than the threshold value.
  • the switch 2080 is controlled according to whether or not a cell balance abnormality has occurred in the battery cell group 3040.
  • the state information generation unit 3100 generates state information indicating the voltage of each of the plurality of battery cells 3042 constituting the battery cell group 3040.
  • the controller 2120 opens the switch 2080 when the voltage variation of the plurality of battery cells 3042 is large.
  • the protection device 2000 of this embodiment may consider various histories about the battery pack 3000 as the state of the battery pack 3000. For example, when the maximum number of times of charging is determined for the battery cell group 3040, it should be prevented that the charging exceeds the maximum number of times of charging.
  • the battery pack 3000 stores the number of times the battery cell group 3040 has been charged so far (hereinafter, the number of charge cycles) in the storage device.
  • the state information generation unit 3100 includes the number of charging cycles in the state information.
  • Control unit 2120 opens switch 2080 when the number of charge cycles indicated in the acquired state information is greater than a threshold value (maximum charge count). On the other hand, control unit 2120 closes switch 2080 when the number of charge cycles indicated in the acquired state information is equal to or less than the threshold value.
  • the history of the battery pack 3000 includes the charge / discharge history of the battery pack 3000.
  • the charge / discharge history of the battery pack 3000 is, for example, a voltage history of the battery cell group 3040, a history of current flowing into the battery cell group 3040, a temperature history of the battery pack 3000, and the like.
  • the battery pack 3000 stores the charge / discharge history of the battery pack 3000 in the storage device.
  • the state information generation unit 3100 includes the charge / discharge history in the state information.
  • Control unit 2120 opens switch 2080 when the charge / discharge history of battery pack 3000 shown in the acquired state information indicates an abnormal history.
  • control unit 2120 closes switch 2080 when the charge / discharge history of battery pack 3000 shown in the acquired state information indicates a normal history.
  • an existing technique can be used as a technique for determining whether or not the history such as the voltage, current, and temperature of the battery pack 3000 is abnormal.
  • the battery pack 3000 can be charged more safely.
  • the protection device 2000 preferably identifies the type of the battery pack 3000 and performs control according to the identified type of the battery pack 3000.
  • the protection device 2000 according to the second embodiment controls the switch 2080 based on the current flowing through the resistance element 3160 in the same manner as the protection device 2000 according to the first embodiment.
  • an identifier indicating the type of the battery pack 3000 may be included in the state information provided from the state information generation unit 3100.
  • the state information generation unit 3100 generates state information including the type identifier of the battery pack 3000.
  • the type identifier of the battery pack 3000 is stored in advance in a storage device included in the battery pack 3000, for example.
  • the control unit 2120 controls the switch 2080 using the type identifier included in the state information.
  • a conversion rule for converting the measurement signal into a physical quantity related to the battery pack 3000 in association with the type identifier of each battery pack 3000 is stored in the storage device 5080 or the like.
  • the control unit 2120 acquires a conversion rule corresponding to the type identifier included in the state information, and controls the switch 2080 using the conversion rule.
  • the above-described various threshold values are stored in the storage device 5080 or the like in association with the type identifier of each battery pack 3000.
  • the control unit 2120 acquires a threshold corresponding to the type identifier included in the state information, and controls the switch 2080 using the threshold.
  • control unit 2120 may acquire the above-described conversion rule and threshold using the identifier of the battery cell group 3040 and the identifier of each battery cell 3042.
  • the conversion rule and the threshold value are associated with the identifier of the battery cell group 3040 and the identifier of the battery cell 3042.
  • the state information generation unit 3100 may be realized by hardware (for example, a hard-wired electronic circuit) or a combination of hardware and software (for example, a combination of an electronic circuit and a program for controlling the same). ).
  • the state information generation unit 3100 is realized by a combination of hardware and software
  • the state information generation unit 3100 is realized by a computer similar to the computer 5000 (see FIG. 2) that implements the control unit 2120.
  • the battery pack may have a built-in computer for controlling the battery pack.
  • This computer is called BMS (Battery Management System). Therefore, the state information generation unit 3100 may be realized as a function of the BMS IV.
  • the computer realizing the state information generation unit 3100 is activated only when the battery pack 3000 is used.
  • a battery switch 3000 is provided with a power switch, and the computer is activated only when the power switch is in an ON state.
  • FIG. 7 is a flowchart illustrating the flow of processing performed in the charging system 100.
  • various initializations of the charging system 100 are performed (S102).
  • the control unit 2120 opens the switch 2080.
  • the state information generation unit 3100 generates and transmits state information.
  • the state information generated here includes a type identifier of the battery pack 3000 and various histories related to the battery pack 3000 (number of charge cycles, charge / discharge history, and temperature history).
  • the control unit 2120 checks whether or not the acquired state information is damaged (S104). If the state information is damaged (S104: NG), the processing in FIG. 7 ends.
  • the control unit 2120 checks the type identifier of the battery pack 3000 (S106). By performing the identifier check, it is possible to prevent a battery pack (for example, non-genuine product) that cannot be handled by the control unit 2120 from being erroneously charged.
  • a battery pack for example, non-genuine product
  • a list of type identifiers of the battery pack 3000 that can be handled by the control unit 2120 is stored in the storage device in advance. Then, the control unit 2120 determines whether or not the type identifier indicated in the state information is included in this list. If the type identifier is not included in the list, the result of the identifier check is NG. If the result of the identifier check is NG (S106: NG), the process in FIG. 7 ends.
  • the control unit 2120 checks whether there is any abnormality in the BMS IV (S108).
  • the checks performed in S108 are, for example, 1) Check whether or not the reference voltage generated from the power supply circuit block in the BMS box is a normal value, and 2) Analog measurement elements (such as a multiplexer circuit) of the measuring instrument 3060 are normal. 3) Check whether or not an element (A / D converter circuit or the like) that converts an analog measurement value obtained by the measuring instrument 3060 into a digital value is operating normally. .
  • the control unit 2120 performs a history check (S110). Specifically, 1) Check the number of charge cycles, 2) Check the voltage history of the battery cell group 3040, 3) Check the history of current flowing into the battery cell group 3040, and 4) Check the temperature of the battery pack 3000. A history check is performed. When the number of charge cycles is larger than the maximum number of charges, the result of the history check is NG. In addition, when any of the voltage history of the battery cell group 3040, the current history of the current flowing into the battery cell group 3040, and the temperature history of the battery pack 3000 indicates an abnormal history, the result of the history check is NG. . When the result of the history check is NG (S110: NG), the processing in FIG. 7 ends.
  • NG S110: NG
  • the number of charge cycles is equal to or less than the maximum number of charges
  • the voltage history of battery cell group 3040, the history of current flowing into battery cell group 3040, and the temperature history of battery pack 3000 are all normal.
  • the result of the history check is OK.
  • the control unit 2120 starts charging the battery pack 3000 (S114). Specifically, control unit 2120 closes switch 2080 to supply the charging current supplied from charging apparatus 1000 to battery pack 3000.
  • the control unit 2120 During charging of the battery pack 3000, the control unit 2120 repeatedly checks the state of the battery pack 3000 (S116). For this purpose, the state information generation unit 3100 periodically generates state information and provides it to the control unit 2120.
  • This state information includes the voltage of the battery cell group 3040, the current flowing into the battery cell group 3040, the temperature of the battery pack 3000, and the like.
  • the control unit 2120 determines various states of the battery pack 3000 in response to the acquisition of the state information. When it is determined that the battery pack 3000 is in an abnormal state (S116: NG), the switch 2080 is opened to end the charging of the battery pack 3000 (S118).
  • control unit 2120 opens the switch 2080 and ends the charging process of the battery pack 3000 (S120).
  • a charging control mechanism is realized by a housing different from both the charging device 1000 and the battery pack 3000, as in the charging system 100 of the first embodiment. Therefore, as compared with the case where the battery pack 3000 is provided with a charge control mechanism, the battery pack 3000 can be easily reduced in size and weight.
  • digital data representing a physical quantity related to the battery pack 3000 is generated from the measurement result of the measuring instrument 3060. This digital data is then provided to the protection device 2000.
  • digital data is more resistant to noise than analog data (eg, measurement signals). Therefore, according to the charging system 100 of this embodiment, a physical quantity serving as an index representing the state of the battery pack 3000 can be accurately transmitted to the protection device 2000. Therefore, the charging control in the charging system 100 can be performed with higher accuracy.
  • FIG. 8 is a block diagram illustrating a charging system 100 according to the third embodiment.
  • the charging device 1000 is omitted.
  • the charging system 100 according to the third embodiment has the same functions as those of the charging system 100 according to the first embodiment or the charging system 100 according to the second embodiment, except as described below.
  • the battery pack 3000 of Embodiment 3 has a cell balance circuit 3120.
  • the cell balance circuit 3120 is a circuit that corrects the voltage balance (cell balance) of the plurality of battery cells 3042 constituting the battery cell group 3040.
  • An existing technique can be used as the technique itself for correcting the cell balance of a plurality of battery cells.
  • the protection device 2000 includes an instruction unit 2140.
  • Instructing unit 2140 determines whether or not a cell balance abnormality has occurred in battery cell group 3040.
  • the instruction unit 2140 performs a process of correcting the cell balance of the battery cell group 3040 on the cell balance circuit 3120 via the second communication terminal 2160.
  • a signal (hereinafter referred to as an instruction signal) is transmitted.
  • the cell balance circuit 3120 receives the instruction signal via the second communication terminal 3140. Then, the cell balance circuit 3120 corrects the cell balance of the battery cell group 3040 in response to receiving the instruction signal.
  • the instruction signal is a pulse wave whose amplitude changes from low to high.
  • the cell balance circuit 3120 corrects the cell balance of the battery cell group 3040 in response to receiving a pulse wave whose amplitude changes from low to high.
  • the instruction signal may be input to this computer.
  • the computer that has received the instruction signal controls the cell balance circuit 3120 to cause the cell balance circuit 3120 to correct the cell balance of the battery cell group 3040.
  • the method for determining whether or not a cell balance abnormality has occurred in the battery cell group 3040 is the same as the method for determining the cell balance abnormality performed by the control unit 2120 of the first embodiment or the control unit 2120 of the second embodiment.
  • the instruction unit 2140 determines whether a cell balance abnormality has occurred in the battery cell group 3040 using the measurement signal.
  • the state information is provided to the protection device 2000 as in the second embodiment, the instruction unit 2140 determines whether or not a cell balance abnormality has occurred in the battery cell group 3040 using the state information. To do.
  • the instruction unit 2140 may transmit an instruction signal based on the result of determination by the control unit 2120.
  • the control unit 2120 determines whether or not a cell balance abnormality has occurred in the battery cell group 3040. When it is determined that a cell balance abnormality has occurred, the control unit 2120 notifies the instruction unit 2140 of this.
  • the instruction unit 2140 transmits an instruction signal in response to receiving this notification.
  • the control unit 2120 may have a function of grasping that the correction of the cell balance by the cell balance circuit 3120 has been completed. In this case, the control unit 2120 closes the switch 2080 in response to the completion of the cell balance correction. By doing so, the battery pack 3000 is not charged while the cell balance abnormality is occurring in the battery cell group 3040, and the battery pack 3000 is charged when the cell balance becomes normal in the battery cell group 3040. Can be done. According to such control, the convenience of the charging system 100 is improved as compared with the case where charging of the battery pack 3000 is stopped if a cell balance abnormality occurs in the battery cell group 3040.
  • control unit 2120 grasps that the correction of the cell balance by the cell balance circuit 3120 has been completed.
  • the state information is provided from the battery pack 3000 as in the second embodiment
  • information indicating that the correction of the cell balance has been completed may be included in the state information.
  • the state information generation unit 3100 in response to completion of the operation of the cell balance circuit 3120, the state information generation unit 3100 generates state information indicating that the correction of the cell balance is completed. Then, the state information generation unit 3100 transmits this state information to the protection device 2000.
  • a wiring for transmitting a signal indicating that the correction of the cell balance is completed may be provided between the protection device 2000 and the battery pack 3000.
  • the cell balance circuit 3120 transmits a predetermined signal to the protection device 2000 via this wiring.
  • control unit 2120 may repeatedly determine whether or not the cell balance of the battery pack 3000 is normal. In this case, while it is determined that “the battery balance of the battery pack 3000 is abnormal”, the control unit 2120 keeps the switch 2080 open. When it is determined that “the cell balance of the battery pack 3000 is normal”, the control unit 2120 closes the switch 2080.
  • the storage device 5080 of the computer 5000 includes a program module for realizing the instruction unit 2140 in addition to a program module for realizing the control unit 2120.

Abstract

電池パックは、電池セル、電池パックに関する物理量を測定する測定器、保護装置から充電電流が供給される第1入力端子、測定された物理量を示す状態情報を生成する状態情報生成部、及び状態情報が保護装置へ出力される第1通信端子を有する。保護装置は、第1入力端子に接続され、電源から電池パックへの充電電流を供給する第1出力端子、電池パックから出力される状態情報が入力される第1通信端子、充電電流が供給される入力端子、入力端子と第1出力端子との間を接続する配線、配線上に設けられたスイッチ、及び状態情報に示される物理量に基づいてスイッチの開閉を行う制御部を有する。電池パックと保護装置は、互いに異なる筐体に設けられる。

Description

充電システム、電池パック、及び保護装置
 本発明は二次電池の充電に関する。
 蓄電池には、複数の二次電池を直列に接続することで構成されるものがある。以下、この二次電池を電池セルと呼ぶ。一般に、蓄電池は、その蓄電池を管理するための機構(BMS: Battery Management System)などと一緒の筐体に納められて運用される。このような筐体に納められた蓄電池及びその蓄電池を管理する機構のセットは、電池パックと呼ばれる。
 蓄電池の充電に関し、その充電を制御するための技術が開発されている。特許文献1は、複数の電池セルを有する電池パックについて、各電池セルの電圧のバランスを考慮して充電を制御する技術を開示している。この電池パックには、各電池セルを充電する電流が流れる配線上に、バイパス回路を設けられている。さらに、この電池パックには、各電池セルの電圧を検出する検出回路が設けられている。また、充電器と同じ筐体に、マイコンが納められている。このマイコンは、上記検出回路で検出された各電池セルの電圧を取得し、その電圧に基づいてバイパス回路を制御する。バイパス回路にはスイッチが設けられており、このスイッチの開閉により、電池セルに対して充電電流が流れる状態と、バイパス回路に充電電流が流れる状態(電池セルに対しては充電電流が流れない状態)とを切り替えることができる。
 特許文献2は、バッテリが過度に充電されることを防ぐための過充電保護装置を開示している。この過充電保護装置は、充電器と、その充電器によって充電されるバッテリとの間に介在する。さらに過充電保護装置は、電圧測定器を有する。過充電保護装置が充電器及びバッテリと接続され、バッテリの充電が行われると、この電圧測定器によってバッテリの電圧が測定される。そして、過充電保護装置は、バッテリの電圧が所定の電圧を超えた場合に、過充電保護装置に設けられているスイッチを制御して、充電器からバッテリへ充電電流が供給されないようにする。
特開平9-306550号公報 特開2007-295728号公報
 用途によっては、蓄電池に軽量化が求められることがある。例えば、小型の移動体(特に飛行物体)に蓄電池を搭載する際には、蓄電池の軽量化が求められる。本発明は、蓄電池を軽量化する新たな技術を提供することを目的の一つとする。
 本発明の充電システムは、電池パックと保護装置を有する。
 前記電池パックは、1)電池セルと、2)当該電池パックに関する物理量を測定する測定器と、3)前記保護装置から充電電流が供給される入力端子と、4)前記測定された物理量を示す状態情報を生成する状態情報生成手段と、5)前記状態情報が前記保護装置へ出力される通信端子と、を有する。
 前記保護装置は、1)前記電池パックの入力端子に接続され、電源から前記電池パックへの前記充電電流を供給する出力端子と、2)前記電池パックから出力される前記状態情報が入力される通信端子と、3)前記電源から充電電流が供給される入力端子と、4)前記保護装置の入力端子と出力端子との間を接続する配線と、5)前記配線上に設けられたスイッチと、6)前記状態情報に示される前記測定された物理量に基づいて、前記スイッチの開閉を行う制御手段と、を有する。
 前記電池パックと前記保護装置は互いに異なる筐体に設けられる。
 本発明の電池パックは、1)電池セルと、2)当該電池パックの状態を表す物理量を測定する測定器と、3)当該電池パックの充電を制御する保護装置から充電電流が供給される入力端子と、4)前記測定された物理量を示す状態情報を生成する状態情報生成手段と、5)前記状態情報が前記保護装置へ出力される通信端子と、6)前記入力端子と前記電池セルとを接続する配線と、を有する。
 前記入力端子へ供給された充電電流は、前記配線を介して前記電池セルへ供給される。前記配線上に、前記入力端子と前記電池セルとの間の接続を遮断するスイッチが設けられていない。
 本発明によれば、蓄電池を軽量化する新たな技術が提供される。
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
充電システムの基本的な機能構成を例示する図である。 制御部を実現するための計算機を例示する図である。 実施形態1に係る充電システムを例示するブロック図である。 保護装置が電池パックの識別を行う場合の充電システムを例示する図である。 保護装置が有する出力装置を例示する図である。 実施形態2に係る充電システムを例示するブロック図である。 充電システムにおいて行われる処理の流れを例示するフローチャートである。 実施形態3に係る充電システムを例示するブロック図である。
 以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。また、特に説明する場合を除き、ブロック図における各ブロックは、ハードウエア単位の構成ではなく、機能単位の構成を表している。
[基本構成]
<機能構成の概要>
 まず、本発明に係る充電システムの各実施形態に共通する基本構成について説明する。図1は、充電システム100の基本的な機能構成を例示する図である。充電システム100は、充電装置1000、保護装置2000、及び電池パック3000を有する。充電システム100において、少なくとも保護装置2000を実現するための筐体と、電池パック3000を実現するための筐体とは互いに異なる。また、充電システム100を実現するための筐体と、電池パック3000を実現するための筐体も異なる。充電装置1000と保護装置2000は、同じ筐体で実現されてもよいし、互いに異なる筐体で実現されてもよい。
 充電装置1000は、充電対象の電池パック3000へ充電電流を供給する装置である。充電電流は、電源1020から供給される。なお、電源1020は充電装置1000の内部に設けられていてもよいし、充電装置1000の外部に設けられていてもよい。後者の場合、充電装置1000は、充電装置1000の外部に設けられている電源1020(例えば系統電源)から電流を引き込み、その電流を電池パック3000へ供給する。
 電池パック3000は、二次電池の単位セル(以下、電池セル)が1つ以上納められた電池パックである。電池パック3000は、第1入力端子3020、電池セル群3040、測定器3060、及び第1通信端子3080を有する。第1入力端子3020は、充電電流が入力される端子である。電池セル群3040は、1つ以上の電池セル3042を含む(図示せず)。電池セル3042は、任意の二次電池(例えばリチウムイオン電池)の単位セルである。電池セル群3040は、第1入力端子3020から入力される充電電流によって充電される。測定器3060は、電池パック3000の状態を把握するための測定器3060である。第1通信端子3080は、測定器3060による測定の結果を表す情報を保護装置2000へ出力するための端子である。
 保護装置2000は、充電装置1000と電池パック3000との間に介在し、充電装置1000から電池パック3000への充電電流の供給を制御する装置である。保護装置2000は、入力端子2020、第1出力端子2040、及び配線2060を有する。入力端子2020は、充電装置1000から供給される充電電流が入力される端子である。第1出力端子2040は、その充電電流を電池パック3000へ出力する端子である。配線2060は、入力端子2020と第1出力端子2040とを接続する配線である。充電装置1000から保護装置2000へ供給される充電電流は、配線2060上を流れて、電池パック3000へ出力される。
 保護装置2000は、測定器3060を利用して把握される電池パック3000の状態に基づいて、充電装置1000から電池パック3000への充電電流の供給を制御する。そのために保護装置2000は、スイッチ2080、第1通信端子2100、及び制御部2120をさらに有する。
 スイッチ2080は、配線2060上に設けられているスイッチである。例えばスイッチ2080は、FET(Field Effect Transistor)を用いて実現される。スイッチ2080を制御することにより、入力端子2020と第1出力端子2040が互いに接続された状態と、これらが互いに接続されていない状態とを切り替えることができる。入力端子2020と第1出力端子2040が互いに接続された状態にすると、充電電流が配線2060を流れるため、充電装置1000から電池パック3000へ充電電流が供給できるようになる。一方、入力端子2020と第1出力端子2040が互いに接続されていない状態にすると、充電電流が配線2060を流れないため、充電装置1000から電池パック3000へ充電電流が供給できないようになる。
 ここで、入力端子2020と第1出力端子2040が互いに接続された状態にする制御(配線2060上を充電電流が流れるようにする制御)を、「スイッチ2080を閉じる」と呼ぶことにする。一方、入力端子2020と第1出力端子2040が互いに接続されていない状態にする制御(配線2060上を充電電流が流れないようにする制御)を、「スイッチ2080を開く」と呼ぶことにする。
 制御部2120は、測定器3060による測定の結果に基づいて、スイッチ2080の開閉を行う。測定器3060による測定の結果を表す情報は、第1通信端子2100を介して、電池パック3000から保護装置2000へ入力される。
 本発明は、このような構成により、電池パック3000の状態を考慮して、電池パック3000の充電の制御を行うことができる。よって、電池パック3000の状態が充電に適さない場合に電池パック3000を充電してしまうことによって問題が生じてしまうことを回避することできる。
<ハードウエア構成の概要>
 制御部2120は、ハードウエア(例:ハードワイヤードされた電子回路など)で実現されてもよいし、ハードウエアとソフトウエアとの組み合わせ(例:電子回路とそれを制御するプログラムの組み合わせなど)で実現されてもよい。以下、制御部2120がハードウエアとソフトウエアとの組み合わせで実現される場合について、さらに説明する。
 図2は、制御部2120を実現するための計算機5000を例示する図である。例えば計算機5000は、SoC(System on Chip)などの集積回路である。計算機5000は、制御部2120を実現するために設計された専用の計算機であってもよいし、汎用の計算機であってもよい。
 計算機5000は、バス5020、プロセッサ5040、メモリ5060、ストレージデバイス5080、入出力インタフェース5100、及びネットワークインタフェース5120を有する。バス5020は、プロセッサ5040、メモリ5060、ストレージデバイス5080、入出力インタフェース5100、及びネットワークインタフェース5120が、相互にデータを送受信するためのデータ伝送路である。ただし、プロセッサ5040などを互いに接続する方法は、バス接続に限定されない。プロセッサ5040は、CPU (Central Processing Unit) や GPU (Graphics Processing Unit) などの演算処理装置である。メモリ5060は、RAM (Random Access Memory) や ROM (Read Only Memory) などのメモリである。ストレージデバイス5080は、ハードディスク、SSD (Solid State Drive)、又はメモリカードなどの記憶装置である。また、ストレージデバイス5080は、RAM や ROM などのメモリであってもよい。
 入出力インタフェース5100は、計算機5000と他のデバイスとを接続するためのインタフェースである。ネットワークインタフェース5120は、計算機5000を外部の装置と通信可能に接続するためのインタフェースである。
 ストレージデバイス5080は、制御部2120の機能を実現するためのプログラムモジュールを記憶している。プロセッサ5040は、このプログラムモジュールをメモリ5060に読み出して実行することで、制御部2120の機能を実現する。
 計算機5000のハードウエア構成は図2に示した構成に限定されない。例えば、各プログラムモジュールはメモリ5060に格納されてもよい。この場合、計算機5000は、ストレージデバイス5080を備えていなくてもよい。
 以下、上述した充電システム100の具体的な実施形態について説明する。
[実施形態1]
 図3は、実施形態1に係る充電システム100を例示するブロック図である。図3において、充電装置1000は省略されている。本実施形態では、測定器3060による測定結果を表す測定信号が、電池パック3000から保護装置2000へ提供される。この測定信号は、電池パック3000に関する物理量を表す電気信号である。電池パック3000に関する物理量とは、例えば、電池セル群3040の電圧、電池セル群3040を流れる電流、又は電池パック3000の筐体内の温度など、電池パック3000の状態を表す物理量である。
 例えば測定信号は、電池パック3000に関する物理量を測定する測定器(電圧測定器、電流測定器、又は温度センサなど)から出力される信号、又はその信号がアンプなどによって増幅されたものである。電池パック3000に関する物理量は、例えば測定信号の振幅から得られる値(振幅のピーク値や平均値など)によって表される。例えば電池パック3000に関する物理量は、測定信号の振幅のピーク値に所定の値を乗算することで得られる。つまりこの場合、電池パック3000に関する物理量が、測定信号の振幅のピーク値に比例する値となる。
 制御部2120は、上記測定信号に基づいて、スイッチ2080の開閉を行う。以下、制御部2120が電池パック3000のどのような状態を考慮してスイッチ2080の開閉を行うのかについて、具体的に説明する。
<過電圧>
 制御部2120は、電池セル群3040が過電圧の状態にある場合(過度に充電されている状態にある場合)、電池セル群3040に対して充電電流が供給されないようにスイッチ2080を制御する。具体的には、制御部2120は、電池セル群3040の電圧が過電圧の状態を表すか否かを判定する。そして、電池セル群3040の電圧が過電圧の状態を表す場合、制御部2120は、スイッチ2080を開く。
 この場合、測定器3060は、電池セル群3040の電圧を測定する電圧測定器である。そして、例えば測定信号は、その振幅の大きさによって、電池セル群3040の電圧を表す電気信号である。
 電池セル群3040の電圧が過電圧の状態を表すか否かによってスイッチ2080を制御する具体的な方法は様々である。例えば制御部2120は、第1通信端子2100で受信した測定信号を、電池セル群3040の電圧に変換する。そして制御部2120は、電池セル群3040の電圧が閾値以上である場合に、スイッチ2080を開く。この閾値は、例えばストレージデバイス5080に予め記憶させておく(制御部2120が利用する後述の種々の閾値についても同様)。
 測定信号を電池セル群3040の電圧に変換する変換規則は、予め定めておく。例えばこの変換規則は、測定信号の振幅から得られる統計値(ピーク値や平均値など)と、電池セル群3040の電圧とを対応づける規則である。この変換規則は、例えばストレージデバイス5080に記憶させておく。制御部2120は、この変換規則を利用して、測定信号を電池セル群3040の電圧に変換する。
 制御部2120がスイッチ2080を制御する方法は、上記の変換を行う方法に限定されない。例えば制御部2120は、測定信号の振幅から得られる統計値が閾値以上である場合に、スイッチ2080を開く。
 なお、制御部2120は、電池セル群3040が過電圧の状態にあるか否かの代わりに、電池セル群3040に含まれる個々の電池セル3042が過電圧の状態にあるか否かを判定してもよい。例えば制御部2120は、少なくとも1つの電池セル3042が過電圧の状態にある場合、スイッチ2080を開く。各電池セル3042が過放電の状態にあるか否かを判定する方法は、電池セル群3040が過放電の状態にあるか否かを判定する方法と同様である。
 各電池セル3042について判定を行う場合、測定器3060は、各電池セル3042の電圧を測定する。そして、測定器3060から保護装置2000へ、各電池セル3042の電圧を表す測定信号が送信される。
 このように保護装置2000へ提供すべき測定信号が複数ある場合、複数の測定信号それぞれが異なる信号線を介して送信されるようにしてもよいし、複数の測定信号が1つの信号線を介して送信されるようにしてもよい。前者の場合、通信端子の組(保護装置2000の第1通信端子2100と電池パック3000の第1通信端子3080)を複数設け、通信端子の複数の組それぞれを信号線で接続しておく。一方、複数の測定信号が1つの信号線を介して送信される場合、例えば制御部2120は、時分割多重などの手法を用いて、各測定信号を区別する。
<深放電>
 制御部2120は、電池セル群3040が深放電の状態である場合、電池セル群3040に対して充電電流が供給されないようにスイッチ2080を制御する。具体的には、制御部2120は、電池セル群3040の電圧が深放電の状態を表すか否かを判定する。そして、電池セル群3040の電圧が深放電の状態を表す場合、制御部2120はスイッチ2080を開く。
 この場合も、測定器3060は、電池セル群3040の電圧を測定する電圧測定器である。また、例えば測定信号は、その振幅の大きさによって、電池セル群3040の電圧を表す電気信号である。
 電池セル群3040の電圧が深放電の状態を表すか否かによってスイッチ2080を制御する具体的な方法は様々である。例えば制御部2120は、前述した変換規則を用いて、第1通信端子2100で受信した測定信号を電池セル群3040の電圧に変換する。そして制御部2120は、電池セル群3040の電圧が閾値以下であるか否かを判定し、電池セル群3040の電圧が閾値以下である場合にスイッチ2080を開く。一方、電池セル群3040の電圧が閾値以下でない場合、スイッチ2080を閉じる。
 制御部2120がスイッチ2080を制御する方法は、上記の変換を行う方法に限定されない。例えば制御部2120は、測定信号の振幅から得られる統計値が閾値以下であるか否かを判定し、その統計値が閾値以下である場合にスイッチ2080を開く。一方、その統計値が閾値以下でない場合、制御部2120はスイッチ2080を閉じる。
 なお、制御部2120は、電池セル群3040が深放電の状態にあるか否かの代わりに、電池セル群3040に含まれる個々の電池セル3042が深放電の状態にあるか否かを判定してもよい。例えば制御部2120は、少なくとも1つの電池セル3042が深放電の状態にある場合、スイッチ2080を開く。各電池セル3042が深放電の状態にあるか否かを判定する方法は、電池セル群3040が深放電の状態にあるか否かを判定する方法と同様である。
<過電流>
 制御部2120は、電池セル群3040が過電流の状態(電池セル群3040に流入する電流が過剰に多い状態)にある場合、電池セル群3040への電流の供給をやめるように、スイッチ2080を開く。具体的には、制御部2120は、電池セル群3040に流入する電流が過電流を表すか否かを判定する。そして、電池セル群3040に流入する電流が過電流を表す場合、制御部2120はスイッチ2080を開く。
 この場合、測定器3060は、電池セル群3040に流入する電流を測定する電流測定器である。そして、例えば測定信号は、その振幅の大きさによって電池セル群3040に流入する電流の大きさを表す電気信号である。
 電池セル群3040の電流が過電流の状態を表すか否かによってスイッチ2080を制御する具体的な方法は様々である。例えば制御部2120は、第1通信端子2100で受信した測定信号を、電池セル群3040に流入する電流に変換する。そして制御部2120は、電池セル群3040に流入する電流が閾値以上である場合に、スイッチ2080を開く。一方、電池セル群3040に流入する電流が閾値以上でない場合、制御部2120はスイッチ2080を開く。
 測定信号を電池セル群3040に流入する電流に変換する変換規則は、予め定めておく。例えばこの変換規則は、測定信号の振幅から得られる統計値と、電池セル群3040に流入する電流とを対応づける規則である。この変換規則は、例えばストレージデバイス5080に記憶させておく。制御部2120は、この変換規則を利用して、測定信号を電池セル群3040に流入する電流に変換する。
 制御部2120がスイッチ2080を制御する方法は、上記の変換を行う方法に限定されない。例えば制御部2120は、測定信号の振幅から得られる統計値が閾値以上である場合に、スイッチ2080を開く。一方、測定信号の振幅から得られる統計値が閾値以上でない場合、制御部2120はスイッチ2080を閉じる。
 なお、制御部2120は、電池セル群3040が過電圧の状態にあるか否かの代わりに、電池セル群3040に含まれる個々の電池セル3042が過電圧の状態にあるか否かを判定してもよい。例えば制御部2120は、少なくとも1つの電池セル3042が過電圧の状態にある場合、スイッチ2080を開く。各電池セル3042が過放電の状態にあるか否かを判定する方法は、電池セル群3040が過放電の状態にあるか否かを判定する方法と同様である。
 各電池セル3042について判定を行う場合、測定器3060は、各電池セル3042の電圧を測定する。そして、測定器3060から保護装置2000へ、各電池セル3042の電圧を表す測定信号が送信される。
<温度異常>
 制御部2120は、電池パック3000において温度異常が発生している場合(電池パック3000の筐体内の温度が過剰に高い場合)、電池セル群3040へ電流が供給されないように、スイッチ2080を開く。具体的には、制御部2120は、電池パック3000の温度が温度異常の状態を表すか否かを判定する。そして、電池パック3000の温度が温度異常を表す場合、制御部2120はスイッチ2080を開く。
 この場合、測定器3060は、電池パック3000の筐体内の温度を測定する温度センサである。この温度センサは、電池セル群3040の温度又は電池セル群3040の周辺の温度を測定するように設けられていることが好適である。例えば測定信号は、その振幅の大きさによって電池パック3000の温度を表す電気信号である。
 電池パック3000の温度が温度異常の状態を表すか否かによってスイッチ2080を制御する具体的な方法は様々である。例えば制御部2120は、第1通信端子2100で受信した測定信号を、電池パック3000の温度に変換する。そして制御部2120は、電池パック3000の温度が閾値以上である場合に、スイッチ2080を開く。一方、電池パック3000の温度が閾値以上でない場合、制御部2120はスイッチ2080を閉じる。
 測定信号を電池パック3000の温度に変換する変換規則は、予め定めておく。例えばこの変換規則は、測定信号の振幅から得られる統計値と、電池パック3000の温度とを対応づける規則である。この変換規則は、例えばストレージデバイス5080に記憶させておく。制御部2120は、この変換規則を利用して、測定信号を、電池パック3000の温度に変換する。
 制御部2120がスイッチ2080を制御する方法は、上記の変換を行う方法に限定されない。例えば制御部2120は、測定信号の振幅から得られる統計値が閾値以上である場合に、スイッチ2080を開く。一方、測定信号の振幅から得られる統計値が閾値以上でない場合、制御部2120はスイッチ2080を閉じる。
<セルバランスの異常>
 制御部2120は、電池セル群3040においてセルバランス異常が発生している場合、電池セル群3040へ電流が供給されないように、スイッチ2080を開く。ここで、セルバランス異常とは、電池セル群3040を構成する複数の電池セル3042の間で、電圧が大きくばらついていることを意味する。制御部2120は、電池セル群3040を構成する複数の電池セル3042の電圧がセルバランス異常の状態を表すか否かを判定する。そして、電池セル3042の電圧がセルバランス異常の状態を表す場合、制御部2120はスイッチ2080を開く。
 測定器3060は、各電池セル3042の電圧を測定する電圧測定器である。例えば測定信号は、その振幅の大きさによって電池セル3042の電圧を表す電気信号である。
 電池セル3042の電圧がセルバランス異常の状態を表すか否かによってスイッチ2080を制御する具体的な方法は様々である。例えば制御部2120は、電池セル3042の電圧を表す各測定信号を、電池セル3042の電圧に変換する。そして、制御部2120は、電池セル3042の電圧のばらつきを表す指標値を算出し、この指標値が閾値以上である場合に、スイッチ2080を開く。一方、この指標値が閾値以上でない場合、制御部2120はスイッチ2080を閉じる。電池セル3042の電圧のばらつきを表す指標値は、例えば電池セル3042の電圧の分散や標準偏差である。
 その他にも例えば、制御部2120は、電池セル3042の電圧を表す各測定信号から得られる統計値から、電池セル3042の電圧のばらつきの指標値を算出してもよい。そして制御部2120は、その指標値が閾値以上である場合にスイッチ2080を開き、その指標値が閾値以上でない場合にスイッチ2080を閉じる。
<複数の状態を考慮するケース>
 制御部2120は、前述した電池パック3000の種々の状態(過電圧や深放電など)のいずれか1つ以上に基づいてスイッチ2080を制御する。制御部2120が電池パック3000の複数の状態を考慮してスイッチ2080を制御する場合、例えば制御部2120は、電池パック3000の状態に関する上述の各判定の少なくとも1つにおいて「スイッチ2080を開く」と判定した場合、スイッチ2080を開く。一方、制御部2120は、電池パック3000の状態に関する上述の各判定の全てにおいて「スイッチ2080を閉じる」と判定した場合にスイッチ2080を閉じる。
<電池パック3000の識別方法>
 電池パック3000から提供される測定信号と、その測定信号によって表される電池パック3000に関する物理量との対応関係は、電池パック3000の種類によって異なることがある。この場合、測定信号を電池パック3000に関する物理量に変換する変換規則は、電池パック3000の種類ごとに異なる。また、電池パック3000に関する物理量や測定信号から得られる統計値と比較する閾値も、電池パック3000の種類ごとに異なることがある。例えば、電池セル群3040の電圧がどの程度であれば過電圧や深放電の状態であるかは、電池パック3000によって異なる。この場合、上述した種々の判定に利用する閾値が、3000の種類ごとに異なることとなる。
 そこで保護装置2000は、電池パック3000の種類を識別し、識別した電池パック3000の種類に応じた制御を行うことが好適である。図4は、保護装置2000が電池パック3000の識別を行う場合の充電システム100を例示する図である。図4において、充電装置1000は省略されている。図4の保護装置2000は、測定器2180及び第2出力端子2200をさらに有する。また、電池パック3000は、抵抗素子3160と第2入力端子3180をさらに有する。測定器2180と抵抗素子3160は、第2出力端子2200及び第2入力端子3180を介して接続されている。
 抵抗素子3160は、その抵抗値が電池パック3000の種類ごとに異なるように、電池パック3000に設けられる任意の抵抗素子である。測定器2180は、抵抗素子3160に所定の電圧を印加する。こうすることで、測定器2180と第2出力端子2200とを接続する配線上に電流が流れる。そして測定器2180はこの電流を測定する。
 ここで、抵抗素子3160の抵抗値が電池パック3000の種類によって異なるため、測定器2180によって測定される電流も、電池パック3000の種類によって異なる。このことから、測定器2180によって測定される電流により、電池パック3000の種類を特定することができる。
 そこで制御部2120は、測定器2180によって測定される電流に基づいて、スイッチ2080の制御を行う。例えば、制御部2120が、所定の変換規則を用いて、測定信号から得られる統計値を電池パック3000の物理量に変換するとする。この場合、電池パック3000の種類ごとに変換規則を定めておく。制御部2120は、測定器2180によって測定される電流によって電池パック3000の種類を特定し、特定された電池パック3000の種類に対応する変換規則を取得する。そして制御部2120は、取得した変換規則を利用して、測定信号から得られる統計値を電池パック3000の物理量に変換する。
 その他にも例えば、制御部2120が、測定信号から得られる統計値を閾値と比較することで、スイッチ2080の制御を行うとする。この場合、電池パック3000の種類ごとに閾値を定めておく。制御部2120は、測定器2180によって測定される電流によって電池パック3000の種類を特定し、特定された電池パック3000の種類に対応する閾値を取得する。そして制御部2120は、測定信号から得られる統計値を、取得した閾値と比較することで、スイッチ2080の制御を行う。
<電池パック3000の状態の提示>
 制御部2120が電池パック3000の状態に応じてスイッチ2080を開く制御を行った場合、電池パック3000に対して充電電流が供給されない。つまり、電池パック3000の充電が行われない。この場合、電池パック3000の充電が行われないこと及びその原因を、充電システム100のユーザが把握できることが好適である。
 そこで保護装置2000は、ユーザに対して通知を行うための出力装置を備えていてもよい。例えば出力装置は、LED(Light Emitting Diode)ランプによって通知を行う装置である。図5は、保護装置2000が有する出力装置を例示する図である。筐体200は、保護装置2000の筐体である。表示装置210は、上述の表示装置である。
 表示装置210は、複数の LED ランプを有する。制御部2120は、スイッチ2080を開いた原因に対応する LED ランプを点灯させることにより、電池パック3000の充電が行われないこと及びその原因をユーザに通知する。いずれの LED ランプも点灯しない場合、電池パック3000の充電が行われることを意味する。ただし、電池パック3000の充電が行われていることを示す LED ランプを別途設けてもよい。
 「温度」というラベルの LED ランプを点灯させるケースは、電池パック3000の温度異常が原因でスイッチ2080を開くケースである。
 「充電器」というラベルの LED ランプを点灯させるケースは、充電装置1000が原因でスイッチ2080を開くケースである。例えばこのケースに当てはまるのは、電池セル群3040が過電圧の状態にあるケースである。
 「電池」という LED ランプを点灯させるケースは、電池パック3000に問題があること(温度異常を除く)が原因でスイッチ2080を開くケースである。例えばこのケースは、電池セル群3040が深放電の状態にあるケースや、電池セル群3040においてセルバランス異常が発生しているケースである。
 「デバイス」という LED ランプを点灯させるのは、保護装置2000や電池パック3000に問題があることが原因でスイッチ2080を開くケースである。例えば、保護装置2000は、保護装置2000に設けられている種々のハードウエア(スイッチ2080、制御部2120を実現する計算機5000)に異常がある場合に、この LED ランプを点灯させる。その他にも例えば、保護装置2000は、電池パック3000から測定信号を受信できない場合に、この LED ランプを点灯させる。
 このように表示装置210を保護装置2000に持たせることにより、充電システム100のユーザにとって、充電システム100の利便性(保護装置2000の利便性)が向上する。
 なお、ユーザに対する通知の方法は、LED ランプを利用する方法に限定されない。例えば保護装置2000にディスプレイ装置を設け、そのディスプレイ装置にメッセージなどを表示させることで、ユーザに対する通知を行ってもよい。また、保護装置2000にスピーカを設け、そのスピーカに音声メッセージなどを出力させることで、ユーザに対する通知を行ってもよい。
<作用効果>
 電池パック3000を、小型かつ軽量にすることが求められるケースがある。その一例は、ドローンなどの飛行物体に電池パック3000を搭載するケースである。この点、充電制御機構が電池パック3000に設けられると、電池パック3000の小型化・軽量化が難しい。
 本実施形態の充電システム100によれば、電池パック3000を充電するか否かを制御する機構(以下、充電制御機構)が、充電装置1000及び電池パック3000のいずれとも異なる筐体で実現される。よって、電池パック3000に充電制御機構を設けるケースと比較し、電池パック3000の小型化・軽量化が容易になる。
 また、本実施形態の充電システム100では、測定器3060における測定の結果を表す測定信号が保護装置2000に提供され、その測定信号を用いた制御が保護装置2000において行われる。よって、測定器3060の測定結果を処理する機構を電池パック3000に設ける必要がない。具体的には、保護装置2000に、測定器3060の測定結果が電池パック3000のどのような状態を表すか否かを解釈する機構(制御部2120)が設けられており、そのような機構を電池パック3000に設ける必要がない。そのため、電池パック3000をより小型化・軽量化することができる。
[実施形態2]
 図6は、実施形態2に係る充電システム100を例示するブロック図である。図6において、充電装置1000は省略されている。本実施形態において、電池パック3000は状態情報生成部3100を有する。状態情報生成部3100は、測定器3060による測定結果を表すデジタルデータを生成する。以下、このデジタルデータを状態情報と呼ぶ。さらに状態情報生成部3100は、第1通信端子3080を介して、状態情報を制御部2120へ提供する。
 実施形態1で説明したように、測定器3060は、測定結果を表す測定信号を出力する。この測定信号は、電池パック3000に関する物理量を表す。状態情報生成部3100は、この測定信号を、その測定信号によって表される物理量に変換することにより、その物理量を示す状態情報を生成する。
 制御部2120は、第1通信端子2100を介して状態情報を取得する。そして制御部2120は、状態情報が示す電池パック3000に関する物理量に基づいて、スイッチ2080を制御する。
<状態情報の生成方法>
 前述したように、状態情報生成部3100は、測定器3060から出力される測定信号から、電池パック3000に関する物理量を表す状態情報を生成する。その具体的な方法は、実施形態1で説明した、変換規則に基づいて測定信号を電池パック3000に関する物理量に変換する方法と同様である。
 例えば測定信号が、その振幅の大きさで電池セル群3040の電圧を表す電気信号であるとする。この場合、測定信号の振幅から得られる統計値と、電池セル群3040の電圧とを対応づける変換規則を予め定めておく。状態情報生成部3100は、この変換規則を用いて、測定器3060から出力された測定信号の振幅から得られる統計値を、電池セル群3040の電圧に変換する。そして状態情報生成部3100は、この変換で得られた電池セル群3040の電圧を示す状態情報を生成する。測定信号が電池セル群3040に流入する電流や電池パック3000の温度を表す場合についても同様である。
<スイッチ2080の制御方法>
 実施形態2の制御部2120は、実施形態1の制御部2120と同様に、1)電池セル群3040が過電圧の状態にあるか否か、2)電池セル群3040が深放電の状態にあるか否か、3)電池セル群3040が過電流の状態にあるか否か、4)電池パック3000が温度異常の状態にあるか否か、及び5)電池セル群3040においてセルバランス異常が発生しているか否かなどの判定の結果に応じて、スイッチ2080を制御する。
 電池セル群3040が過電圧の状態にあるか否かに応じてスイッチ2080が制御されるとする。この場合、例えば状態情報生成部3100は、電池セル群3040の電圧を示す状態情報を生成する。制御部2120は、電池セル群3040の電圧が閾値以上である場合に、スイッチ2080を開く。
 ここで、測定器3060が電池セル群3040の電圧を測定するタイミングは任意である。例えば測定器3060は、状態情報生成部3100が状態情報を生成する際に、電池セル群3040の電圧を測定する。その他にも例えば、測定器3060は、定期的に電池セル群3040の電圧を測定し、その測定結果を電池パック3000が持つ記憶装置に記憶させておく。後者の場合、状態情報生成部3100は、記憶装置から電池セル群3040の電圧を読み出し、その読み出した値を状態情報に含める。
 電池セル群3040が深放電の状態にあるか否かに応じてスイッチ2080が制御されるとする。この場合も、状態情報生成部3100は、電池セル群3040の電圧を示す状態情報を生成する。制御部2120は、電池セル群3040の電圧が閾値以下である場合に、スイッチ2080を開く。
 電池セル群3040が過電流の状態にあるか否かに応じてスイッチ2080が制御されるとする。この場合、状態情報生成部3100は、電池セル群3040に流入する電流を示す状態情報を生成する。制御部2120は、電池セル群3040に流入する電流が閾値以上である場合に、スイッチ2080を開く。なお、測定器3060が電池セル群3040に流入する電流を測定するタイミングは、測定器3060が電池セル群3040の電圧を測定するタイミングと同様に、任意である。
 電池パック3000が温度異常の状態にあるか否かに応じてスイッチ2080が制御されるとする。この場合、状態情報生成部3100は、電池パック3000の温度を示す状態情報を生成する。制御部2120は、電池パック3000の温度が閾値以上である場合に、スイッチ2080を開く。
 電池セル群3040においてセルバランス異常が発生しているか否かに応じてスイッチ2080が制御されるとする。この場合、状態情報生成部3100は、電池セル群3040を構成する複数の電池セル3042それぞれの電圧を示す状態情報を生成する。制御部2120は、複数の電池セル3042の電圧のばらつきが大きい場合、スイッチ2080を開く。
<電池パック3000の履歴を考慮した制御>
 本実施形態の保護装置2000は、電池パック3000の状態として、電池パック3000についての種々の履歴を考慮してもよい。例えば電池セル群3040に最大充電回数が定められている場合、最大充電回数を超えた回数の充電が行われないようにすべきである。
 この場合、電池パック3000は、これまでに電池セル群3040が充電された回数(以下、充電サイクル数)を記憶装置に記憶させておく。状態情報生成部3100は、その充電サイクル数を状態情報に含める。制御部2120は、取得した状態情報に示される充電サイクル数が閾値(最大充電回数)より大きい場合、スイッチ2080を開く。一方、制御部2120は、取得した状態情報に示される充電サイクル数が閾値以下である場合、スイッチ2080を閉じる。
 その他にも例えば、電池パック3000についての履歴は、電池パック3000の充放電の履歴を含む。電池パック3000の充放電の履歴は、例えば、電池セル群3040の電圧の履歴、電池セル群3040に流入する電流の履歴、及び電池パック3000の温度の履歴などである。
 この場合、電池パック3000は、電池パック3000の充放電の履歴を記憶装置に記憶させておく。状態情報生成部3100は、その充放電の履歴を状態情報に含める。制御部2120は、取得した状態情報に示される電池パック3000の充放電の履歴が異常な履歴を示す場合、スイッチ2080を開く。一方、制御部2120は、取得した状態情報に示される電池パック3000の充放電の履歴が正常な履歴を示す場合、スイッチ2080を閉じる。ここで、電池パック3000の電圧、電流、及び温度などの履歴が異常であるか否かを判定する技術には、既存の技術を利用することができる。
 このように電池パック3000に関する履歴を考慮して電池パック3000の充電を制御することにより、より安全に電池パック3000の充電を行うことができる。
<電池パック3000の識別方法>
 実施形態1で説明した通り、保護装置2000は、電池パック3000の種類を識別し、識別した電池パック3000の種類に応じた制御を行うことが好適である。例えば実施形態2の保護装置2000は、実施形態1の保護装置2000と同様の方法に、抵抗素子3160を流れる電流に基づいて、スイッチ2080の制御を行う。
 その他にも例えば、実施形態2の充電システム100では、状態情報生成部3100から提供される状態情報に、電池パック3000の種類を表す識別子(以下、種類識別子)を含めるようにしてもよい。この場合、状態情報生成部3100は、電池パック3000の種類識別子を含む状態情報を生成する。電池パック3000の種類識別子は、例えば電池パック3000が有する記憶装置に予め記憶させておく。
 制御部2120は、状態情報に含まれる種類識別子を利用して、スイッチ2080の制御を行う。例えば、各電池パック3000の種類識別子と対応づけて、測定信号を電池パック3000に関する物理量に変換する変換規則を、ストレージデバイス5080などに記憶させておく。この場合、制御部2120は、状態情報に含まれる種類識別子に対応する変換規則を取得し、その変換規則を利用してスイッチ2080の制御を行う。
 その他にも例えば、各電池パック3000の種類識別子と対応づけて、前述した種々の閾値を、ストレージデバイス5080などに記憶させておく。この場合、制御部2120は、状態情報に含まれる種類識別子に対応する閾値を取得し、その閾値を利用してスイッチ2080の制御を行う。
 なお、制御部2120は、電池セル群3040の識別子や、各電池セル3042の識別子を用いて上述の変換規則や閾値を取得してもよい。この場合、変換規則や閾値を、電池セル群3040の識別子や電池セル3042の識別子に対応づけておく。
<ハードウエア構成の例>
 状態情報生成部3100は、ハードウエア(例:ハードワイヤードされた電子回路など)で実現されてもよいし、ハードウエアとソフトウエアとの組み合わせ(例:電子回路とそれを制御するプログラムの組み合わせなど)で実現されてもよい。状態情報生成部3100がハードウエアとソフトウエアとの組み合わせで実現される場合、状態情報生成部3100は、制御部2120を実現する計算機5000(図2参照)と同様の計算機で実現される。
 ここで、電池パックには、電池パックを制御するための計算機が内蔵されることがある。この計算機は、BMS(Battery Management System)などと呼ばれる。そこで状態情報生成部3100は、BMS の一機能として実現されてもよい。
 なお、電池パック3000による電力の浪費を抑制するため、状態情報生成部3100を実現する計算機は、電池パック3000の使用時にのみ起動されるのが好ましい。例えば、電池パック3000に電源スイッチを設けておき、この電源スイッチがONの状態になっている時のみ、上記計算機が起動するようにする。
<充電システム100が行う処理の流れの具体例>
 ここで、実施形態2の充電システム100において行われる処理の一連の流れについて、具体例を挙げて説明する。以下で説明する流れはあくまで一例である。
 図7は、充電システム100において行われる処理の流れを例示するフローチャートである。まず、充電システム100の種々の初期化を行う(S102)。例えば保護装置2000において、制御部2120がスイッチ2080を開く。また、状態情報生成部3100が状態情報の生成・送信を行う。ここで生成される状態情報には、電池パック3000の種類識別子及び電池パック3000に関する種々の履歴(充電サイクル数、充放電の履歴、及び温度の履歴)が含まれる。
 制御部2120は、取得した状態情報が破損していないかどうかをチェックする(S104)。状態情報が破損している場合(S104:NG)、図7の処理は終了する。
 状態情報が破損していない場合(S104:OK)、制御部2120は電池パック3000の種類識別子のチェックを行う(S106)。識別子チェックをすることにより、制御部2120が扱えない電池パック(例えば、非正規品)を誤って充電対象としてしまうことを防ぐことができる。
 例えば、制御部2120が扱える電池パック3000の種類識別子のリストを予め記憶装置に記憶させておく。そして、制御部2120は、状態情報に示される種類識別子がこのリストに含まれるか否かを判定する。種類識別子がリストに含まれない場合、識別子チェックの結果はNGとなる。識別子チェックの結果がNGである場合(S106:NG)、図7の処理は終了する。
 一方、種類識別子がリストに含まれる場合、識別子チェックの結果はOKとなる。識別子チェックの結果がOKである場合(S106:OK)、制御部2120は、BMS に異常がないかどうかをチェックする(S108)。S108で行われるチェックは、例えば、1)BMS 内の電源回路ブロックから発生される基準電圧が正常値であるか否かのチェック、2)測定器3060のアナログ計測要素(マルチプレクサ回路など)が正常に動作しているか否かのチェック、又は3)測定器3060でのアナログ計測値をデジタル値に変換する要素(A/D コンバータ回路など)が正常に動作しているか否かのチェックなどである。
 BMS 判定チェックがOKの場合(S108:OK)、制御部2120は履歴チェックを行う(S110)。具体的には、1)充電サイクル数のチェック、2)電池セル群3040の電圧の履歴のチェック、3)電池セル群3040に流入する電流の履歴のチェック、及び4)電池パック3000の温度の履歴のチェックが行われる。充電サイクル数が最大充電回数より大きい場合、履歴チェックの結果はNGとなる。また、電池セル群3040の電圧の履歴、電池セル群3040に流入する電流の履歴、及び電池パック3000の温度の履歴のいずれかが異常な履歴を示す場合も、履歴チェックの結果はNGとなる。履歴チェックの結果がNGである場合(S110:NG)、図7の処理は終了する。
 一方、充電サイクル数が最大充電回数以下であり、なおかつ電池セル群3040の電圧の履歴、電池セル群3040に流入する電流の履歴、及び電池パック3000の温度の履歴のいずれもが正常な履歴を示す場合、履歴チェックの結果はOKとなる。履歴チェックの結果がOKである場合(S110:OK)、制御部2120は、電池パック3000の充電を開始する(S114)。具体的には、制御部2120は、スイッチ2080を閉じることで、充電装置1000から供給される充電電流を、電池パック3000へ供給する。
 電池パック3000の充電中、制御部2120は、電池パック3000の状態を繰り返しチェックする(S116)。そのために状態情報生成部3100は、定期的に状態情報を生成し、制御部2120へ提供する。この状態情報には、電池セル群3040の電圧、電池セル群3040に流入する電流、及び電池パック3000の温度などが含まれる。
 制御部2120は、状態情報を取得したことに応じ、電池パック3000の種々の状態について判定を行う。そして、電池パック3000が異常な状態にあると判定した場合(S116:NG)、スイッチ2080を開いて電池パック3000の充電を終了させる(S118)。
 電池パック3000の状態が異常な状態になることなく、電池パック3000の充電が完了した場合、制御部2120はスイッチ2080を開いて電池パック3000の充電処理を終了する(S120)。
 なお、上記の種々のチェックの結果は、実施形態1で説明した表示装置210などを利用してユーザに通知することが好ましい。
<作用効果>
 本実施形態の充電システム100においても、実施形態1の充電システム100と同様に、充電装置1000及び電池パック3000のいずれとも異なる筐体で充電制御機構が実現される。よって、電池パック3000に充電制御機構を設けるケースと比較し、電池パック3000の小型化・軽量化が容易になる。
 さらに本実施形態の充電システム100では、電池パック3000において、測定器3060の測定結果から、電池パック3000に関する物理量を表すデジタルデータ(状態情報)が生成される。そして、このデジタルデータが保護装置2000に対して提供される。一般に、デジタルデータは、アナログデータ(例えば測定信号など)よりも雑音への耐性が高い。そのため、本実施形態の充電システム100によれば、電池パック3000の状態を表す指標となる物理量を、保護装置2000に対して正確に伝達することができる。よって、充電システム100における充電の制御をより高い精度で行うことができる。
[実施形態3]
 図8は、実施形態3に係る充電システム100を例示するブロック図である。図8において、充電装置1000は省略されている。実施形態3の充電システム100は、後述する点を除き、実施形態1の充電システム100又は実施形態2の充電システム100と同様の機能を持つ。
 実施形態3の電池パック3000は、セルバランス回路3120を有する。セルバランス回路3120は、電池セル群3040を構成する複数の電池セル3042の電圧のバランス(セルバランス)を補正する回路である。複数の電池セルのセルバランスを補正する技術自体には、既存の技術を利用することができる。
 実施形態3の保護装置2000は、指示部2140を有する。指示部2140は、電池セル群3040においてセルバランス異常が発生しているか否かを判定する。電池セル群3040にセルバランス異常が発生している場合、指示部2140は、第2通信端子2160を介し、セルバランス回路3120に対して、電池セル群3040のセルバランスを補正する処理を実行するように指示する信号(以下、指示信号)を送信する。
 セルバランス回路3120は、第2通信端子3140を介し、指示信号を受信する。そしてセルバランス回路3120は、指示信号を受信したことに応じて、電池セル群3040のセルバランスの補正を行う。
 例えば指示信号は、その振幅がローからハイに変化するパルス波である。この場合、セルバランス回路3120は、振幅がローからハイに変化するパルス波を受信したことに応じて、電池セル群3040のセルバランスの補正を行う。
 なお、電池パック3000を制御するための計算機(例えば BMS)が電池パック3000に設けられている場合、指示信号は、この計算機に対して入力されてもよい。この場合、指示信号を受信した計算機がセルバランス回路3120を制御することで、セルバランス回路3120に電池セル群3040のセルバランスを補正させる。
 電池セル群3040においてセルバランス異常が発生しているか否かを判定する方法は、実施形態1の制御部2120や実施形態2の制御部2120が行うセルバランス異常の判定の方法と同様である。実施形態1のように保護装置2000に対して測定信号が提供される場合、指示部2140は、測定信号を用いて、電池セル群3040においてセルバランス異常が発生しているか否かを判定する。一方、実施形態2のように保護装置2000に対して状態情報が提供される場合、指示部2140は、状態情報を用いて、電池セル群3040においてセルバランス異常が発生しているか否かを判定する。
 また、指示部2140は、制御部2120による判定の結果に基づいて、指示信号の送信を行ってもよい。この場合、電池セル群3040においてセルバランス異常が発生しているか否かの判定は、制御部2120によって行われる。制御部2120は、セルバランス異常が発生していると判定した場合、そのことを指示部2140に通知する。指示部2140は、この通知を受けたことに応じて、指示信号の送信を行う。
<セルバランスの補正が完了した後の処理>
 制御部2120は、セルバランス回路3120によるセルバランスの補正が完了したことを把握する機能を有していてもよい。この場合、制御部2120は、セルバランスの補正が完了したことに応じて、スイッチ2080を閉じる。こうすることで、電池セル群3040においてセルバランス異常が発生している間は電池パック3000の充電が行われないようにし、なおかつ電池セル群3040においてセルバランスが正常になったら電池パック3000の充電が行われるようにすることができる。このような制御によれば、電池セル群3040においてセルバランス異常が発生していたら電池パック3000の充電をやめてしまう場合と比較し、充電システム100の利便性が向上する。
 セルバランス回路3120によるセルバランスの補正が完了したことを制御部2120が把握する方法は様々である。例えば実施形態2のように電池パック3000から状態情報が提供される場合、セルバランスの補正が完了したことを示す情報を状態情報に含めるようにしてもよい。この場合、セルバランス回路3120の動作が完了したことを受けて、状態情報生成部3100が、セルバランスの補正が完了したことを示す状態情報を生成する。そして、状態情報生成部3100は、この状態情報を保護装置2000へ送信する。
 その他にも例えば、保護装置2000と電池パック3000との間に、セルバランスの補正が完了したことを示す信号を送信するための配線を設けてもよい。この場合、セルバランス回路3120は、セルバランスの補正が完了したら、この配線を介して、保護装置2000に対して所定の信号を送信する。
 その他にも例えば、制御部2120は、電池パック3000のセルバランスに異常がないかどうかを繰り返し判定してもよい。この場合、「電池パック3000のセルバランスに異常がある」と判定される間、制御部2120は、スイッチ2080を開いたままにする。そして制御部2120は、「電池パック3000のセルバランスに異常がない」と判定されたら、スイッチ2080を閉じる。
<ハードウエア構成について>
 実施形態3の充電システム100において、計算機5000のストレージデバイス5080には、制御部2120を実現するためのプログラムモジュールに加え、指示部2140を実現するためのプログラムモジュールが含まれる。
 以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。
 この出願は、2017年2月22日に出願された日本出願特願2017-030990号を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (9)

  1.  電池パックと保護装置を有する充電システムであって、
     前記電池パックは、
      電池セルと、
      当該電池パックの状態を表す物理量を測定する測定器と、
      前記保護装置から充電電流が供給される入力端子と、
      前記測定された物理量を示す状態情報を生成する状態情報生成手段と、
      前記状態情報が前記保護装置へ出力される通信端子と、を有し、
     前記保護装置は、
      前記電池パックの入力端子に接続され、電源から前記電池パックへの前記充電電流を供給する出力端子と、
      前記電池パックから出力される前記状態情報が入力される通信端子と、
      前記電源から充電電流が供給される入力端子と、
      当該保護装置の前記入力端子と前記出力端子との間を接続する配線と、
      前記配線上に設けられたスイッチと、
      前記状態情報に示される前記測定された物理量に基づいて、前記スイッチの開閉を行う制御手段と、を有し、
     前記電池パックと前記保護装置は互いに異なる筐体に設けられる充電システム。
  2.  前記状態情報に示される物理量は、前記電池セルの電圧、前記電池セルに流入する電流、及び前記電池パックの温度のいずれか1つ以上である、請求項1に記載の充電システム。
  3.  前記制御手段は、前記状態情報に示される前記測定された物理量に基づいて、前記電池パックが過電圧の状態にあるか否か、前記電池パックが深放電の状態にあるか否か、前記電池パックが過電流の状態にあるか否か、前記電池パックにおいてセルバランスの異常が発生しているか否か、及び前記電池パックにおいて温度異常が発生しているか否かのいずれか一つ以上を判定し、その判定結果に基づいて前記スイッチの開閉を行う、請求項1又は2に記載の充電システム。
  4.  前記状態情報は、前記電池パックにおける充電の履歴に関する情報をさらに含み、
     前記制御手段は、前記電池パックにおける充電の履歴に異常があるか否かを判定し、前記電池パックにおける充電の履歴に異常がある場合に前記スイッチを開く、請求項1乃至3いずれか一項に記載の充電システム。
  5.  前記電池パックは、複数の前記電池セルの間のセルバランスを補正するセルバランス回路を有し、
     前記保護装置は、前記状態情報を用いて、前記電池パックにおいてセルバランスの異常が発生しているか否かを判定し、セルバランスの異常が発生している場合に、前記電池パックに設けられているセルバランス回路を動作させる信号を送信する指示手段を有する、請求項1乃至4いずれか一項に記載の充電システム。
  6.  前記制御手段は、前記指示手段が動作した後、前記電池パックにおけるセルバランスが正常になった場合に前記スイッチを閉じる、請求項5に記載の充電システム。
  7.  請求項1乃至5いずれか一項に記載の充電システムが有する電池パック。
  8.  請求項1乃至5いずれか一項に記載の充電システムが有する保護装置。
  9.  電池パックであって、
     電池セルと、
     当該電池パックの状態を表す物理量を測定する測定器と、
     当該電池パックの充電を制御する保護装置から充電電流が供給される入力端子と、
     前記測定された物理量を示す状態情報を生成する状態情報生成手段と、
     前記状態情報が前記保護装置へ出力される通信端子と、
     前記入力端子と前記電池セルとを接続する配線と、を有し、
     前記入力端子へ供給された充電電流は、前記配線を介して前記電池セルへ供給され、
     前記配線上に、前記入力端子と前記電池セルとの間の接続を遮断するスイッチが設けられていない、電池パック。
PCT/JP2018/004985 2017-02-22 2018-02-14 充電システム、電池パック、及び保護装置 WO2018155270A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/485,053 US20200044462A1 (en) 2017-02-22 2018-02-14 Charge system, battery pack, and protection apparatus
JP2019501245A JPWO2018155270A1 (ja) 2017-02-22 2018-02-14 充電システム、電池パック、及び保護装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-030990 2017-02-22
JP2017030990 2017-02-22

Publications (1)

Publication Number Publication Date
WO2018155270A1 true WO2018155270A1 (ja) 2018-08-30

Family

ID=63253713

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/004985 WO2018155270A1 (ja) 2017-02-22 2018-02-14 充電システム、電池パック、及び保護装置

Country Status (3)

Country Link
US (1) US20200044462A1 (ja)
JP (1) JPWO2018155270A1 (ja)
WO (1) WO2018155270A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021065929A1 (ja) * 2019-10-04 2021-04-08 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 充電ステーション、電池管理システム、及び、充電方法
KR20210126317A (ko) * 2020-04-10 2021-10-20 장형철 온도정보를 이용한 배터리 관리 시스템

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11462777B2 (en) * 2017-10-04 2022-10-04 Envision Aesc Japan Ltd. Battery pack inspection method and inspection device for anomaly detection via voltage comparison over time
CN112848966A (zh) * 2020-12-24 2021-05-28 南京能晶电子科技有限公司 一种锂电池模块连接电路稳定性检测设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001283934A (ja) * 2000-03-29 2001-10-12 Canon Inc 電池パック識別装置及び電池パック
JP2007295728A (ja) * 2006-04-25 2007-11-08 Okudaya Giken:Kk 過充電保護装置
JP2010232103A (ja) * 2009-03-27 2010-10-14 Itochu Corp 電池パック
JP2012010525A (ja) * 2010-06-25 2012-01-12 Hitachi Maxell Energy Ltd 出力停止スイッチ付き電池パック
WO2012026537A1 (ja) * 2010-08-27 2012-03-01 三洋電機株式会社 電源装置
JP2016127698A (ja) * 2014-12-26 2016-07-11 キヤノン株式会社 充電装置及び制御方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004166364A (ja) * 2002-11-12 2004-06-10 Ngk Spark Plug Co Ltd 充電器および充電方法
JP5090763B2 (ja) * 2007-03-22 2012-12-05 ヤマハ発動機株式会社 二次電池の充電装置
JP5400333B2 (ja) * 2008-09-24 2014-01-29 パナソニック株式会社 充電器
JP6205254B2 (ja) * 2013-11-29 2017-09-27 株式会社マキタ 充電制御装置
CN107742915B (zh) * 2013-12-06 2021-02-19 深圳市大疆创新科技有限公司 电池以及具有该电池的飞行器
CN105981258A (zh) * 2014-08-08 2016-09-28 深圳市大疆创新科技有限公司 用于无人飞行器电池能源备用的系统及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001283934A (ja) * 2000-03-29 2001-10-12 Canon Inc 電池パック識別装置及び電池パック
JP2007295728A (ja) * 2006-04-25 2007-11-08 Okudaya Giken:Kk 過充電保護装置
JP2010232103A (ja) * 2009-03-27 2010-10-14 Itochu Corp 電池パック
JP2012010525A (ja) * 2010-06-25 2012-01-12 Hitachi Maxell Energy Ltd 出力停止スイッチ付き電池パック
WO2012026537A1 (ja) * 2010-08-27 2012-03-01 三洋電機株式会社 電源装置
JP2016127698A (ja) * 2014-12-26 2016-07-11 キヤノン株式会社 充電装置及び制御方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021065929A1 (ja) * 2019-10-04 2021-04-08 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 充電ステーション、電池管理システム、及び、充電方法
KR20210126317A (ko) * 2020-04-10 2021-10-20 장형철 온도정보를 이용한 배터리 관리 시스템
KR102346874B1 (ko) * 2020-04-10 2022-01-03 장형철 온도정보를 이용한 배터리 관리 시스템

Also Published As

Publication number Publication date
US20200044462A1 (en) 2020-02-06
JPWO2018155270A1 (ja) 2019-12-12

Similar Documents

Publication Publication Date Title
US9595847B2 (en) Uninterrupted lithium battery power supply system
WO2018155270A1 (ja) 充電システム、電池パック、及び保護装置
JP6228666B2 (ja) 電池システム
EP3599697B1 (en) Multi-string battery pack management system
JP5048963B2 (ja) 電池システム
US10720672B2 (en) Series-multiple battery pack management system
US8716980B2 (en) Charge and discharge system of secondary battery and method of controlling charge and discharge of secondary battery
US8659265B2 (en) Battery pack and method of sensing voltage of battery pack
CN110546849A (zh) 无线电池管理系统和使用其保护电池组的方法
US20100190041A1 (en) System and method for balancing battery cells
US20190067758A1 (en) Secondary battery deterioration assessment device
KR101732854B1 (ko) 축전지 장치 및 축전지 시스템
KR20210031172A (ko) 배터리 이상 상태를 진단하기 위한 방법, 이를 위한 전자 장치 및 저장 매체
KR102390394B1 (ko) 메인 배터리와 서브 배터리를 제어하기 위한 장치 및 방법
CN107689648B (zh) 移动x射线装置以及操作移动x射线装置的方法
US10820398B2 (en) Mobile X-ray apparatus and method of controlling power in mobile X-ray apparatus
JP2010080141A (ja) 多直列多並列電池パック
JP2012018037A (ja) 電圧測定回路及び方法
EP3475714B1 (en) Systems, methods and devices for battery charge state detection
TW201308823A (zh) 電池電源管理系統與方法
JP2018137905A (ja) 保護装置、充電システム、及び電池パック
JP2018169238A (ja) 蓄電制御装置、蓄電制御システム、サーバ、蓄電制御方法及びプログラム
Hsu et al. On the implemenation of CAN buses to battery management systems
WO2019112257A1 (ko) 배터리 교정을 위한 전자 장치 및 그 동작 방법
JP2012095429A (ja) 電池状態監視装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18757806

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019501245

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18757806

Country of ref document: EP

Kind code of ref document: A1