WO2010108988A1 - Bleizirkonattitanate und verfahren zu deren herstellung - Google Patents

Bleizirkonattitanate und verfahren zu deren herstellung Download PDF

Info

Publication number
WO2010108988A1
WO2010108988A1 PCT/EP2010/053941 EP2010053941W WO2010108988A1 WO 2010108988 A1 WO2010108988 A1 WO 2010108988A1 EP 2010053941 W EP2010053941 W EP 2010053941W WO 2010108988 A1 WO2010108988 A1 WO 2010108988A1
Authority
WO
WIPO (PCT)
Prior art keywords
lead zirconate
zirconate titanate
sintering
zirconium
less
Prior art date
Application number
PCT/EP2010/053941
Other languages
English (en)
French (fr)
Inventor
Michael J. Hoffmann
Hans Kungl
Gunnar Picht
Frank Hipler
Gerhard Auer
Original Assignee
Tronox Pigments Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tronox Pigments Gmbh filed Critical Tronox Pigments Gmbh
Priority to EP10710338A priority Critical patent/EP2411347A1/de
Publication of WO2010108988A1 publication Critical patent/WO2010108988A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • C04B35/491Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/006Compounds containing, besides zirconium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/10Solid density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6587Influencing the atmosphere by vaporising a solid material, e.g. by using a burying of sacrificial powder
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • C04B2235/724Halogenide content
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/79Non-stoichiometric products, e.g. perovskites (ABO3) with an A/B-ratio other than 1

Definitions

  • the invention relates to piezoceramic compositions in the form of lead zirconate titanates (PZT), a process for their preparation using titanium dioxide particles and a finely divided zirconium compound and a lead compound. Furthermore, the invention relates to a piezoelectric component which contains a lead zirconate titanate,
  • PZT Lead zirconate titanate
  • PZT powder is usually made from the raw materials lead oxide, zirconia and titanium dioxide.
  • the composition can be given by formula as Pb (Zr x Ti; ⁇ x ) ⁇ 3 with 0 ⁇ x ⁇ l.
  • doping elements are usually included (generally about 1-3% in total). Typical dopants are lanthanum, neodymium, strontium, potassium, bismuth, tantalum, chromium, cobalt, manganese, iron, gadolinium and niobium.
  • PZT Mischoxidpuiver that are pressed into moldings or processed into coatings or films and then sintered into a ceramic.
  • Lead zirconate titanate manganese oxide powders can be prepared by synthesis methods that proceed via solid-state reactions (mixed oxide processes) and by wet-chemical methods (eg sol-gel process, coprecipitation process or spray-reaction process).
  • the sinterability or sintering temperature of the powder is not only dependent on the composition, but also on the history of the respective material, ie the degree of activation, the particle size and the particle size distribution, the particle shape and the density of the green body (ie after shaping and before sintering ).
  • the corresponding sintering temperatures are about 1100-1250 0 C (oxidic reactants) or ⁇ 1000 ° C ⁇ sol-gel reactants). At temperatures significantly higher than 1000 0 C but merkiiche amounts of lead oxide, which is why precautions to avoid lead loss and thereby disturbing the stoichiometry must be taken evaporate.
  • the livestock piezoelectric actuators consist of stacked ferroelectric ceramic layers with a layer thickness of about 10 to 200 microns. Between each ceramic layer is an approximately 1-3 microns thick metal electrode, which serves to control the actuator. These livestock piezoelectric actuators ideally have relatively high Curie temperatures, so that applications at higher temperatures are possible. In addition, they are characterized by high piezoelectric and electromechanical characteristics and fatigue resistance.
  • compositions are desired which offer a high sintering activity and thus permit the use of low-melting and inexpensive electrode materials by means of a low sintering temperature of the lead zirconate titanates according to the invention.
  • a niobium-containing PZT composition As a low sintering system, a niobium-containing PZT composition is known which often contains a high PbO excess as a sintering aid (WO 2008/068096). Disadvantages of these systems, however, are the interactions that occur with other constituents in the finished component, which leads to a deterioration of the electromechanical properties. For use in multilayer systems, chemical reactions and alloying with the electrode materials (Ag, Ag / Pd, or even Cu) deserve particular mention.
  • WO 2006/063784 discloses high sintering activity PZT compositions which allow low process temperatures for the sintering step.
  • the disadvantage here is the relatively small particle diameter of the PZT, which degrades the technically usable piezoelectric properties of the ceramic.
  • acceptor additives has a favorable effect (WO 03/101946).
  • Acceptors such as Fe 3+ replace Zr 4+ in the solid, which is compensated by the creation of oxygen vacancies ⁇ RW Schwartz et al., Piezoelectric and Electro-optic Ceramics, in Ceramic Materials for Electronics, RC Buchanan (ed.), 3rd edition, publisher Marcel Dekker, 2004).
  • the voids facilitate the diffusion in the solid during the sintering process and thus cause a stronger grain growth.
  • a disadvantage of using the acceptor additives is the limited reorientation of the ferroelectric domains, and thus ceramics so treated exhibit poorly developed hysteresis loops, smaller dielectric constants, higher dielectric loss values.
  • Typical applications are limited to so-called “high-power devices”, sonar applications or ultrasonic generators (RW Schwartz et al.).
  • the present invention is based on the object to produce finely divided, ⁇ interin, easy to process and economically producible lead zirconate titanates, from which PZT ceramics can be produced which compact well while maintaining or improving the electromechanical properties at low sintering temperatures.
  • a process for their preparation using simple titanium-containing substrates is to be provided.
  • the object is achieved on the one hand by a process for the preparation of lead zirconates by reaction of finely divided titanium dioxide particles and finely divided zirconium compounds with a lead compound, wherein the composition contains a complex doping with an effective donor content between 0 mo!% And 5 mol%, in particular 0, 1-lmol%, more preferably 0.15 to 0.5 mol%.
  • the object is further achieved by the provision of lead zirconate titanates which can be prepared by the processes according to the invention.
  • the invention also includes the provision of a piezoelectric component, in particular a PZT multilayer actuator, produced by means of a lead zirconate titanate material according to the invention which has a comparatively high Curie temperature.
  • FIG. 1 Dense sintered lead zirconate titanates (PZT): a) PZT based on zirconium titanium hydrate (ZTH) according to the invention b) PZT conventionally prepared according to the prior art.
  • PZT Dense sintered lead zirconate titanates
  • Figure 2 Occurrence of a liquid phase during sintering for ZTH-based PZT with 4 mol% PbO excess.
  • Figure 3 Typical diffractogram of a 600 ° C / 2h calcined PZT powder on ZTH basis.
  • Figure 4 Observed sintering densities of inventive PZT at different sintering temperature and different doping.
  • Figure 5 Observed sintering densities of inventive PZT and reference PZT (undoped) at different sintering temperature and different doping.
  • Figure 8 Dielectric and eiektromechanische characteristics for inventive lead zirconate titanate with eff. Donor content of 0.125%.
  • Figure 1 shows the sintering densities of different PZT materials.
  • the ZTH-based PZT ceramics show a significant reduction in the sintering temperatures compared to conventionally produced PZT.
  • Ceramics made from the materials according to the invention can thereby be produced at lower sintering temperatures.
  • ceramics with higher densities can be produced at the same sintering temperatures.
  • microstructures of the lead zirconate titanates according to the invention are finer-grained than the microstructures of lead zirconate titanate ceramics produced from the oxides of Pb, Zr and Ti.
  • the microstructures of the ceramics of the bisizirconate titanates according to the invention are coarser than in the absence of the complex doping with an effective donor content between 0% and 1%.
  • doping compounds e.g. Nd, Sr, La, Nb, Gd, Bi, Ta, Cr, Co, Mn, Ca, Na, K, Cu, Ni or Fe salts or the corresponding oxides are added. It is true that the complex doping must have an effective donor content between 0% and 5%.
  • a general description of the dopants is:
  • Donator D * 1 , ..., D £; Acceptor: A ⁇ , ..., A ⁇
  • n and m correspond to the valences of the donor or acceptor ions and a and / or ⁇ to the individual molar fractions.
  • the variables x and y indicate the number of dopants used.
  • a PbO excess in the mol% range preferably ⁇ 2mol%, is added according to the invention.
  • the PbO excess is thus in a range in which no liquid phase sintering is observed.
  • Figure 2 shows a comparison of the sintering rate for two different PbO contents of a ZTH-based PZT ceramic.
  • the sintering of the materials produced on the basis of the powders according to the invention into ceramics with sufficient densities can be carried out at a particularly low temperature.
  • ceramics with relative densities of "% 98 (sintered in air ⁇ can be produced at a sintering temperature of 900 0 C.
  • the sintering of the green body takes place at a temperature of 800-1050 0 C and a hold time of 6 hours in air.
  • the samples are in a closed and with PbO-saturated aluminum umoxtd T zuregel to avoid a large PbO Vertustes during the sintering process.
  • PbO Alfa AESAR, purity 99.99%
  • zirconium titanium hydrate preparation according to WO 2006/063784
  • La 2 O 3 doping element, Alfa AESAR, purity 99.95%
  • Fe 2 O 3 doping element, Fa.
  • the sieved powders are pressed uniaxially into green bodies and subsequently densified in a cold isostatic press.
  • the sintering of the green body takes place at a temperature of 800-1050 0 C and a holding time of 6 h in air.
  • the samples are in a closed and PbO-saturated Aiuminiumoxid crucible to avoid excessive PbO ⁇ / loss during the sintering process.
  • Electromechanical data strain hysteresis, bipolar, unipolar strain

Abstract

Die Erfindung betrifft piezokeramische Zusammensetzungen in Form von Bleizirkonattitanaten (PZT), ein Verfahren zu deren Herstellung unter Verwendung von feinteiligen Titandioxidpartikeln und einer feinteiligen Zirkoniumverbindung sowie einer Bleiverbindung. Weiterhin betrifft die Erfindung ein piezoelektrisches Bauelement, welches ein Bleizirkonattitanat enthält.

Description

Bieizirkonattitanate und Verfahren zu deren Herstellung
Die Erfindung betrifft piezokeramische Zusammensetzungen in Form von Bleizirkonat- titanaten (PZT), ein Verfahren zu deren Herstellung unter Verwendung von Titandioxidpartikeln und einer feinteiligen Zirkoniumverbindung sowie einer Bleiverbindung. Weiterhin betrifft die Erfindung ein piezoelektrisches Bauelement welches ein Bleizirkonattitanat enthält,
Stand der Technik:
Bleizirkonattitanat (PZT) zeigt ein ferroelektrisches Materialverhaiten. PZT-Keramiken werden deshalb vielfach in elektromechanischen Bauteilen eingesetzt, beispielsweise in sogenannten Sensoren zur Messung oder Registrierung von mechanischen Kräften bzw. Schwingungen oder als Aktuator zur Erzeugung von mechanischen Wirkungen durch elektrische Ansteuerung.
PZT-Pulver wird in der Regel aus den Rohmaterialien Bleioxid, Zirkoniumdioxid und Titandioxid hergestellt. Für gängige PZT-Keramikmateräaiien lässt sich die Zusammensetzung formelmäßig als Pb(ZrxTi;μx)θ3 mit 0<x<l angeben. Weiterhin sind üblicherweise gewisse Mengen an Dotierelementen enthalten (insgesamt meist ca. 1-3%). Typische Dotierelemente sind Lanthan, Neodym, Strontium, Kalium, Bismut, Tantal, Chrom, Cobalt, Mangan, Eisen, Gadolinium und Niob.
Ausgangsmateriai für derartige PZT-Keramiken sind kalzinierte PZT-Mischoxidpuiver, die zu Formkörpern verpresst oder zu Beschichtungen oder Folien verarbeitet und dann zu einer Keramik gesintert werden. Bleizirkonattitanat-Mäschoxidpulver können durch Synthe≤emethoden, die über Festkörperreaktionen (Mischoxid-Verfahren) ablaufen, und durch na≤schernische Methoden {z.B. Sol-Gel~Prozess, Kopräzipitationsverfahren oder Sprühreaktionsverfahren) hergestellt werden. Die Sinterfähigkeit bzw. Sintertemperatur der Pulver ist nicht nur abhängig von der Zusammensetzung, sondern auch von der Vorgeschichte des jeweiligen Materials, also vom Aktivierungsgrad, von der Partikelgröße und der Partikelgrößenverteilung, der Partikelform sowie der Dichte der Grünkörper (d.h. nach Formgebung und vor der Sinterung). Die KaSzinierung der Ausgangspulver (Mischkristailbildung) wird bei den nach den herkömmlichen Verfahren hergestellten Pulvern bei relativ hohen Reaktionstemperaturen durchgeführt, um nahezu phasenreine PZT-Mischkristalle zu erhalten. Die hohen Kalzinierungstemperaturen verringern jedoch die Sinteraktivität der PZT-Mischkristalle. Zur Herstellung einer PZT-Keramik mit einer relativen Dichte oberhalb von ca. 97-98% aus diesen Pulvern müssen deshalb häufig relativ hohe Sintertemperaturen eingesetzt werden. Die Reaktionstemperaturen (Kalzinierungstemperaturen) Stegen bei Verwendung oxidischer Reaktanden bei etwa 800-9000C, bei Verwendung von Reaktanden, welche nach dem SoI- Gel~Verfahren hergestellt werden im Bereich von 450 bis 7000C. Die entsprechenden Sintertemperaturen betragen etwa 1100-12500C (oxidische Reaktanden) bzw. <1000°C {Reaktanden aus Sol-Gel-Verfahren). Bei Temperaturen von deutlich über 10000C verdampfen jedoch merkiiche Mengen an Bleioxid, weshalb Vorkehrungen zur Vermeidung von Bleiverlusten und damit der Störung der Stöchiometrie getroffen werden müssen. Des Weiteren verwendet man als Elektrodenmateriai für ferroelektrische Keramiken, wie z.B. Vieischicht-Piezoaktoren, üblicherweise Ag/Pd (70/30), so dass die Ssntertemperatur durch den Schmelzpunkt dieser Legierung begrenzt ist (Ts=IlSS0C). Höhere Sintertemperaturen ais 11500C erfordern daher einen entsprechend höheren Anteil des höherschmelzenden, aber kostenäntensiveren Palladiums. Die Vieischicht-Piezoaktoren bestehen aus stapelweise angeordneten ferroelektrischen Keramikschichten mit einer Schichtdicke von ca. 10 bis 200 μm. Zwischen jeder Keramikschicht befindet sich eine ca. 1-3 μm dicke Metallelektrode, die zur Ansteuerung des Aktors dient. Diese Vieischicht-Piezoaktoren besitzen ideaierweise relativ hohe Curietemperaturen, so dass auch Anwendungen bei höheren Temperaturen möglich sind. Außerdem zeichnen sie sich durch hohe piezoelektrische und elektromechanische Kennwerte und Ermüdungsbeständigkeit aus.
Vor allem aus wirtschaftlichen Gründen ist es wünschenswert, in den beschriebenen Vielschichtsystemen Elektroden aus einer Ag/Pd Legierung mit einem höheren Ag-Anteil als üblich zu verwenden. Generell sind daher Zusammensetzungen gewünscht, die eine hohe Sinteraktivität bieten und somit durch eine niedrige Sintertemperatur der erfindungsgemäßen Bleizirkonattitanate die Verwendung von niedrigschmelzendem und kostengünstigen Elektrodenmateriai erlauben. Bei Sintertemperaturen unterhalb von 950°C ist es daher möglich, reine Ag-Elektroden oder Cu-Eiektroden (Ts=1083 0C) zu verwenden.
Als ein niedrig sinterndes System ist eine niobhaltige PZT-Zusammensetzung bekannt, die oftmals einen hohen PbO-Überschuss als Sinterhilfsmittel enthält (WO 2008/068096). Nachteilig sind bei diesen Systemen jedoch die auftretenden Wechselwirkungen mit anderen Bestandteilen im fertigen Bauelement, die zu einer Verschlechterung der elektromechanischen Eigenschaften führt. Zu nennen sind für die Anwendung in Vielschichtsystemen vor allem chemische Reaktionen und Legierungsbildung mit den Elektrodenmateriaiien (Ag, Ag/Pd, oder auch Cu).
Der Einsatz alternativer Sinterhiifsmittei wie etwa bismut-, kupfer- oder vanadiumhaltiger Systeme, Bariumkupferwolframoxide oder borhaltiger Gläser ist ebenso bekannt (WO 2008/068096), jedoch verbunden mit einer Verschlechterung der elektromechanischen Daten.
Aus WO 2006/063784 sind PZT-Zusammensetzungen mit hoher Sinteraktivität bekannt, weiche niedrige Prozesstemperaturen für den Sinterschritt erlauben. Nachteilig ist hierbei jedoch der relativ geringe Korndurchmesser der PZT, der die technisch nutzbaren piezoelektrischen Eigenschaften der Keramik verschlechtert.
Im Hinblick auf die positive Beeinflussung des Kornwachstums ist bekannt, dass sich die Zugabe von Akzeptor-Additiven günstig auswirkt (WO 03/101946). Akzeptoren wie etwa Fe3+ ersetzen Zr4+ im Festkörper, was durch die Schaffung von Sauerstoff- Leerstellen kompensiert wird {R. W. Schwartz et al., Piezoelectric and Electro-optic Ceramics, in Ceramic Materials for Electronics, R. C. Buchanan (Hrsg.), 3. Aufl, Verlag Marcel Dekker, 2004). Die Leerstellen erleichtern während des Sintervorganges die Diffusion im Festkörper und bewirken somit ein stärkeres Kornwachstum. Nachteilig ist bei der Verwendung der Akzeptor-Additive die beschränkte Reorientierung der ferroeJektrischen Domänen, und so zeigen derartig behandelte Keramiken schwach entwickelte Hystereseschleifen, kleinere Dielektrizitätskonstanten, höhere dielektrische Verlustwerte. Typische Anwendung sind beschränkt auf sogenannte "high-power devices", Sonaranwendungen oder Ultraschaligeber (R. W. Schwartz et al.).
Zusammenfassung der Erfindung:
Der vorliegenden Erfindung liegt die Aufgabe zu Grunde, feinteilige, ≤interaktive, gut verarbeitbare und wirtschaftlich hersteilbare Bleizirkonattitanate herzustellen, aus denen PZT-Keramiken hergestellt werden können, die unter Beibehaltung oder Verbesserung der elektromechanischen Eigenschaften bei niedrigen Sintertemperaturen gut verdichten. Außerdem soll ein Verfahren zu deren Herstellung unter Verwendung einfacher titanhaltiger Substrate bereitgestellt werden.
Die Aufgabe wird erfindungsgemäß zum einen gelöst durch ein Verfahren zur Herstellung von Bleizirkonattstanaten durch Umsetzung von feinteiligen Titandioxidpartikeln und feinteiligen Zirkoniumverbindungen mit einer Bleiverbindung, wobei die Zusammensetzung eine komplexe Dotierung mit einem effektiven Donatorgehalt zwischen 0 mo!% und 5 mol% enthält, insbesondere 0,1 - lmol%, besonders bevorzugt 0,15 bis 0,5 mol%.
Die Aufgabe wird ferner gelöst durch die Bereitstellung Bleizirkonattitanaten, weiche durch die erfindungsgemäßen Verfahren herstellbar sind. Die Erfindung umfasst zudem die Bereitsteilung eines piezoelektrischen Bauelementes, insbesondere eines PZT-Vielschicht-Aktors, hergestellt mit Hilfe eines erfindungsgemäßen Bleizirkonattitanat-Materials, welches eine vergleichsweise hohe Curietemperatur besitzt.
Abbildungen:
Abbildung 1: Dichten gesinterter Bleizirkonattitanate (PZT): a) Erfindungsgemäßes PZT basierend auf Zirkoniumtitanhydrat (ZTH) b) konventionell nach dem Stand der Technik hergestelltes PZT.
Abbildung 2: Auftreten einer Fiüssigphase während der Sinterung für PZT auf ZTH-Basis mit 4 mol% PbO-Überschuss.
Abbildung 3: Typisches Diffraktogramm eines bei 600°C/2h calcinierten PZT-Pulver≤ auf ZTH- Basis.
Abbildung 4: Beobachtete Sinterdichten von erfindungsgemäßem PZT bei unterschiedlicher Sintertemperatur und unterschiedlicher Dotierung.
Abbildung 5: Beobachtete Sinterdichten von erfindungsgemäßem PZT und Referenz-PZT (undotiert} bei unterschiedlicher Sintertemperatur und unterschiedlicher Dotierung.
Abbildung 6: Beobachtete PZT-Korngröße bei verschiedenen Sintertemperaturen und unterschiedlicher Dotierung (effektiver Donatorgehait).
Abblildung 7: Unipolare Dehnung von PZT bei unterschiedlicher Korngröße und unterschiedlicher Dotierung (eff. Donatorgehalt),
Abbildung 8: Dielektrische und eiektromechanische Kenndaten für erfindungsgemäßes Bleizirkonattitanat mit eff. Donatorgehalt von 0,125 %.
Genaue Beschreibung der Erfindung:
Es wurde überraschend gefunden, dass bei Sinterung der erfindungsgemäßen Bleizirkonattitanate mit einem effektivem Donatorgehalt zwischen 0 mo!% und 5 mol%, bevorzugt zwischen 0,1 mol% und 1 mol%, insbesondere bevorzugt zwischen 0,15 mol% und 0,5 mo!%, eine Verdichtung bereits bei besonders niedrigeren Temperaturen eintritt. PZT- Keramiken basierend auf der erfindungsgemäßen Zusammensetzung zeigen eine deutliche Absenkung der Sintertemperaturen gegenüber konventionell nach dem Stand der Technik hergestellten PZT-Keramiken.
Abbildung 1 zeigt die Sinterdichten verschiedener PZT-Materialien. Aufgeführt sind Daten für Bleizirkonattitanate basierend auf der erfindungsgemäßen Zusammensetzung (PZT auf ZTH- Basis, ZTH = Zirkoniumtitanhydrat, vgl. Abschnitt Beispiele) sowie für konventioneil nach dem Stand der Technik hergestellte Bleizirkonattitanate. Gezeigt sind Sinterdichten für jeweils gleiche Dotierung, also gleiche effektive Donatorgehalte. Aus Abbildung 1 geht hervor, dass durch die komplexe Dotierung mit einem effektiven Donatorgehait von 0,25 mol% eine signifikante Verbesserung der Sinterdichten im Vergleich zu einer einfachen Donatordotierung mit lmoi% erreicht werden. Zudem zeigen die PZT-Keramiken auf ZTH- Basis eine deutliche Absenkung der Sintertemperaturen gegenüber konventionell hergestelltem PZT.
Keramiken aus den erfindungsgemäßen Materialien können dadurch bei niedrigeren Sintertemperaturen hergestellt werden. Darüber hinaus können durch das gegenüber einem herkömmlichen Pulver verbesserte Verdichtungsverhalten bei gleichen Sintertemperaturen Keramiken mit höheren Dichten hergestellt werden.
Die Gefüge der Keramiken aus den erfindungsgemäßen Bleizirkonattitanaten sind feinkörniger als die Gefüge der Keramiken aus Bleizirkonattitanaten, die aus den Oxiden von Pb, Zr und Ti hergestellt wurden. Jedoch sind die Gefüge der Keramiken aus den erfindungsgemäßen Bieizirkonattitanaten gröber als in Abwesenheit der komplexen Dotierung mit einem effektiven Donatorgehalt zwischen 0% und 1%.
Als Dotierungsverbindungen können z.B. Nd-, Sr-, La-, Nb-, Gd-, Bi-, Ta-, Cr-, Co-, Mn-, Ca-, Na-, K-, Cu-, Ni- oder Fe-Salze bzw. die entsprechenden Oxide zugegeben werden. Dabei gilt, dass die komplexe Dotierung einen effektiven Donatorgehalt zwischen 0% und 5% aufweisen muss. Eine allgemeine Beschreibung der Dotanten lautet:
Donator: D*1 , ... , D £ ; Akzeptor: A^ , ... , A^
wobei n und m den Wertigkeiten der Donator- bzw. Akzeptorionen entsprechen und a bzw. ß den einzelnen molaren Anteilen. Die Variablen x und y geben die Anzahl der verwendeten Dotanten an.
Der effektive Donatorgehalt eDOnor [mol%] ergibt somit zu:
Figure imgf000008_0001
wobei eDonor > 0 mol%.
Um ein PbO-Defizit der Keramik als Resultat der Sinterung vorzubeugen, wird erfindungsgemäß ein PbO-Überschuss im mol% Bereich, vorzugsweise < 2mol%, hinzugefügt. Insbesondere liegt der PbO-Überschuss damit in einem Bereich, in dem keine Flüssigphasensinterung beobachtet wird. Abbildung 2 enthält einen Vergleich der Sinterrate für zwei verschiedene PbO-Gehalte einer PZT-Keramik auf ZTH-Basis. Eine mit 4mo!% PbO- Überschuss versehene Keramik zeigt ein erstes Schwindungsmaximum bei einer Temperatur von = 7800C, was dem Auftreten einer flüssigen Phase zuzuordnen ist.
Die Sinterung der auf Grundlage der erfindungsgemäßen Pulver hergestellten Materialien zu Keramiken mit hinreichenden Dichten kann bei besonders niedriger Temperatur erfolgen. Ausgehend von nicht aufgemahlenem, kalziniertem PZT Pulver (mit einem Zr/Ti Verhältnis von 53/47) können bei einer Sintertemperatur von 9000C, Keramiken mit relativen Dichten von «98% (gesintert an Luft} hergestellt werden.
Beispiele
Die Erfindung wird im Folgenden anhand einiger ausgewählter Beispiele näher erläutert, wobei die Erfindung keineswegs auf diese Beispiele beschränkt ist.
Beispiel 1:
Eine in einem Attritor gemahlene und getrocknete Pulvermischung bestehend aus PbO (Alfa AESAR, Reinheit 99,99%), Zirkoniumtitanhydrat (Herstellung entsprechend WO 2006/063784) und L32O3 {Dotierungselement, Fa. Alfa AESAR, Reinheit 99,95%) entsprechend der späteren stöchϊometrischen Zusammensetzung PbQ 97 La0,02Zr0,53Ti0,47°3 P|us Zugabe von 2 Mol% PbO, wird gesiebt und anschließend bei einer Temperatur von T = 600 "C in einem Ofen an Luft für 2 h in mit PbO gesättigten Aiuminäumoxidtiegein kalziniert. Dabei wird bei der Einwaage des Zr/Ti-Hydrat-Pulvers dessen Feuchtigkeitsanteil berücksichtigt. Im Röntgendiffraktogramm wird nach der Kalzinierung vorrangig Bleizirkonat-Titanat (PZT) nachgewiesen. Die gesiebten Pulver werden uniaxial zu Grünkörpern verpresst und anschließend in einer kaltisostatischen Presse nachverdichtet. Die Sinterung der Grünkörper erfolgt bei einer Temperatur von 800-1050 0C und einer Haltezeit von 6 h an Luft. Die Proben befinden sich zur Vermeidung eines zu großen PbO-Vertustes während des Sintervorgangs in einem geschlossenen und mit PbO- gesättigten Alumini umoxtd-Tϊegel.
Dabei werden folgende relative Dichten erreicht:
Figure imgf000009_0001
Beispiel 2 (Vergleichsbeispiel):
Eine in einem Attritor gemahlene und getrocknete Pulvermischung wie in Beispiel 1 jedoch ohne den zusä'tziichen Überschuss an PbO bestehend aus PbO (Alfa AESAR, Reinheit 99,99%), Zirkoniumtitanhydrat (aus Beispiel 1), La2θ3 (Dotierungselement, Fa. Alfa AESAR, Reinheit 99,95%) und Fe2O3 (Dotierungselement, Fa. Merck, Reinheit 99,95%) entsprechend der späteren stöchiometrischen Zusammensetzung Pbg 935 Lag oi^rO 53^0 47Ϊ0 995 Feg 005O3 w'fd analog zu Beispiel 2 zu einer PZT-Keramik verarbeitet.
Dabei werden folgende relative Dichten erreicht:
Sintertemperatur 0C] rel. Dichte [%]
900 63 4
1000 93 ,6
1050 95 ,5
Beispiel 3 (Einfiuss der Donator/Akzeptordotierung):
Eine in einem Attritor gemahlene und getrocknete Pulvermischung bestehend aus PbO (Alfa AESAR, Reinheit 99,99%), Zirkoniumtitanhydrat (Herstellung entsprechend WO 2006/063784), La2θ3 (Dotierungselement, Fa. Alfa AESAR, Reinheit 99,95%) und Fe2O3 (Dotierungselement, Fa. Merck, Reinheit 99,95%) entsprechend der späteren stöchiometrischen Zusammensetzung PbO/985 LaO,Ol(ZrO,53τiO,4753)θ,995 FeO,OO5°3 PSus Zugabe von 2 Mol% PbO, wird gesiebt und anschließend bei einer Temperatur von T = 600 °C in einem Ofen an Luft für 2 h in mit PbO gesättigten Aluminiumoxidtiegeln kalziniert. Dabei wird bei der Einwaage des Zr/Ti-Hydrat-Pulvers dessen Feuchtigkeitsanteil berücksichtigt, im Röntgendiffraktogramm wird nach der Kalzinierung vorrangig Bleizirkonat-Titanat (PZT) nachgewiesen. Die gesiebten Pulver werden uniaxial zu Grünkörpern verpresst und anschließend in einer kaltisostatischen Presse nachverdichtet. Die Sinterung der Grünkörper erfolgt bei einer Temperatur von 800-1050 0C und einer Haltezeit von 6 h an Luft. Die Proben befinden sich zur Vermeidung eines zu großen PbOΛ/erlustes während des Sintervorgangs in einem geschlossenen und mit PbO-gesättigten Aiuminiumoxid-Tiegel.
Dabei werden folgende relative Dichten erreicht:
Sintertemperatur [0C] rel. Dichte [%]
800 91,8
825 96,5
850 98,5
875 99,4
900 99,6
925 99,5
950 99,5
1000 99,1
1050 99,0
Elektromechanische Daten (Dehnungshysterese, bipolar; unipolare Dehnung):
Großsignal d*33-Wert für ausgewählte eff. Donatorgehaite bei einer Sintertemperatur von 900°C und einer Haltezeit von 6h:
Figure imgf000010_0001

Claims

Patentansprüche
1. Verfahren zur Herstellung von Bleizirkonattitanaten, wobei feinteϊlige Zirkoniumverbindungen mit einer BET-Oberfläche von mehr als 50 rn^/g mit Titandioxidverbindungen und Bietverbindungen umgesetzt werden, dadurch gekennzeichnet, dass ein effektiver Donatorgehalt zwischen 0,05% und 5,0%, bevorzugt 0,1% bis 1,0%, besonders bevorzugt 0,15% bis 0,5%, eingestellt wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass eine Kalziniertemperatur von weniger als 7000C, bevorzugt weniger als 6500C, verwendet wird.
3. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine Sintertemperatur von weniger als 1000°C, bevorzugt weniger a!s 9500C, besonders bevorzugt weniger als 900"Cj verwendet wird.
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die verwendete Menge an Bieiverbindung so gewählt wird, dass ein nomineller Bleiüberschuss entsteht und zwar dergestalt, dass im DMatometer kein Flüssigphasensintern erkennbar ist.
5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass 0,5 bis 3,5Mol-% Pb, bevorzugt 1,0 bis 3,0 MoI-%, besonders bevorzugt 1,5 bis 2,5 Mol- %, über der stöchiometrisch benötigten Menge Blei verwendet wird.
6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die verwendete Titandioxidverbändung eine BET-Oberfläche von mehr als 50 m2/g, bevorzugt mehr als 100 m2/g, besonders bevorzugt mehr als 250 m2/g, aufweist.
7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Titandioxidpartikel zu mindestens 90% in der Anatas-Kristailstruktur vorliegen.
8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Zirkoniumverbindungen in Form eines Fällungsprodukts mit einer BET-Oberfläche von mehr als 20 m^/g, bevorzugt mehr als 50 m^/g, besonders bevorzugt mehr als 100 m2/g, verwendet werden, das durch Neutralisation einer wässrigen Zirkoniumsalziösung ohne anschließende Kalzinierung erhalten wird.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass das durch Neutralisation einer wässrigen Zirkoniumsalzlösung erhaltene Fällungsprodukt eine oder mehrere der Verbindungen Zirkoniumhydroxid, Zirkoniumoxyhydroxid oder Zirkoniumoxid enthält.
10. Verfahren nach einem der Ansprüche 8 oder 9, dadurch gekennzeichnet, dass das durch Neutralisation einer wässrigen Zirkoniumsalziösung erhaltene Fäliungsprodukt auf die Titandioxidpartikel aufgefällt ist.
11. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die verwendete Zirkonium-Titandioxidverbindung eine BET-Oberfiäche von mehr als 50 m^/g, bevorzugt mehr als 100 m2/g, besonders bevorzugt mehr als 150 m2/g, und Anatas als kristalline Phase aufweist.
12. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die BET-Oberfläche der Titandioxidpartikel 200 bis 380 m2/g beträgt.
13. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass nach der KaSzinierung die Weiterverarbeitung ohne einen dazwischenliegenden Mahlungsschritt erfolgt,
14. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass Kalzinierung und Sinterung in einem einzigen Schritt in Form eines "Reaktionssinterns" erfolgt.
15. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das exakte gewünschte Zr/Ti-Verhältnis durch Mischen zweier homogener Zirkontitanhydrat-Edukte mit unterschiedlichem Zr/Ti-Verhältnis eingestellt wird und die Bieiverbindung und die Dotierungskomponenten dieser Mischung ebenfalls zugegeben werden.
16. Bleizirkonattitanat-Puiver, dadurch gekennzeichnet, dass der effektive Donatorgehalt zwischen 0,05% und 1,0%, bevorzugt 0,1% bis 0,5%, besonders bevorzugt 0,15% bis 0,4%, liegt und die BET-Oberfläche des Bleizirkonattitanat-Pulvers >5 m2/g, bevorzugt >7 m2/g, beträgt.
17. Bleizirkonattitanat-Puiver oder Bleizirkonattitanat-Keramik, welche durch ein Verfahren nach einem oder mehreren der Ansprüche 1 bis 15 herstellbar ist.
18. Bieizirkonattitanat-Pulver oder Bleizirkonattitanat-Keramik nach Anspruch 17, dadurch gekennzeichnet, dass der Chloridgehalt weniger ais 100 ppm, bevorzugt weniger als 10 ppm, und der Niob-Gehalt 1 bis 300 ppm, bevorzugt weniger als 10 bis 300 ppm, aufweist.
19. Verwendung eines Bleizirkonattitanat-Pulvers oder Bleizirkonattitanat-Keramik nach einem oder mehreren der Ansprüche 16 oder 17 zur Herstellung eines mikroelektroni≤chen Bauelements.
20. Mikroeiektrontsches Bauelement enthaltend eine Bleizirkonattitanat-Keramik nach einem oder mehreren der Ansprüche 16 bis 18, wobei das Elektrodenmaterial zwischen den keramischen Schichten zu mindestens 90% aus Silber besteht,
21. Mikroelektronisches Bauelement nach Anspruch 20, wobei die Bleizirkonattitanat- Keramik in Form einer Schicht mit einer Dicke von weniger als 100 μm, bevorzugt weniger als 20 μm, vorliegt.
PCT/EP2010/053941 2009-03-25 2010-03-25 Bleizirkonattitanate und verfahren zu deren herstellung WO2010108988A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP10710338A EP2411347A1 (de) 2009-03-25 2010-03-25 Bleizirkonattitanate und verfahren zu deren herstellung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009001857 2009-03-25
DE102009001857.3 2009-03-25

Publications (1)

Publication Number Publication Date
WO2010108988A1 true WO2010108988A1 (de) 2010-09-30

Family

ID=42097346

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/053941 WO2010108988A1 (de) 2009-03-25 2010-03-25 Bleizirkonattitanate und verfahren zu deren herstellung

Country Status (2)

Country Link
EP (1) EP2411347A1 (de)
WO (1) WO2010108988A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013152887A1 (de) * 2012-04-10 2013-10-17 Epcos Ag Keramisches material und kondensator umfassend das keramische material
CN112279642A (zh) * 2020-10-22 2021-01-29 江西欧迈斯微电子有限公司 压电纤维及其制备方法
CN112960981A (zh) * 2021-05-07 2021-06-15 重庆文理学院 一种镧、锡掺杂的锆钛酸铅陶瓷材料的制备方法
CN115403375A (zh) * 2022-08-31 2022-11-29 山东国瓷功能材料股份有限公司 一种锆钛酸铅压电陶瓷材料及其制备方法
CN116924796A (zh) * 2023-08-14 2023-10-24 昆明理工大学 一种abo3型低介电损耗陶瓷及其制备方法
CN116924796B (zh) * 2023-08-14 2024-05-14 昆明理工大学 一种abo3型低介电损耗陶瓷及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0444204A1 (de) * 1989-09-18 1991-09-04 Mitsubishi Chemical Corporation Piezoelektrische keramische zusammensetzung für betätiger
JPH06316414A (ja) * 1993-05-06 1994-11-15 Ishihara Sangyo Kaisha Ltd ペロブスカイト型化合物粉末の製造方法
US20030096696A1 (en) * 2001-02-08 2003-05-22 Kenichi Nada Method of making lead zirconate titanate-based ceramic powder, piezoelectric ceramic and method for making same, and piezoelectric ceramic element
EP1367036A2 (de) * 2002-05-30 2003-12-03 TDK Corporation Herstellungsverfahren für piezoelektrische Keramik und piezoelektrisches Bauelement
WO2003101946A2 (de) 2002-05-29 2003-12-11 Siemens Aktiengesellschaft Piezokeramische zusammensetzung, piezokeramischer körper mit der zusammensetzung und verfahren zum herstellen der zusammensetzung und des körpers
WO2006063784A1 (de) 2004-12-13 2006-06-22 Tronox Pigments Gmbh Feinteilige bleizirkonattitanate, zirkontitanhydrate und zirkoniumtitanate und verfahren zu deren herstellung
WO2008068096A1 (de) 2006-12-07 2008-06-12 Robert Bosch Gmbh Niedrig sinterndes, piezoelektrisches material auf blei-zirkonat-titanat-mischkristall-basis, verfahren zu dessen herstellung sowie ein dieses material umfassendes piezoelektrisches bauelement

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070125977A1 (en) * 2003-11-26 2007-06-07 Tomohiro Kawamoto Piezoelectric ceramic and laminated piezoelectric element

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0444204A1 (de) * 1989-09-18 1991-09-04 Mitsubishi Chemical Corporation Piezoelektrische keramische zusammensetzung für betätiger
JPH06316414A (ja) * 1993-05-06 1994-11-15 Ishihara Sangyo Kaisha Ltd ペロブスカイト型化合物粉末の製造方法
US20030096696A1 (en) * 2001-02-08 2003-05-22 Kenichi Nada Method of making lead zirconate titanate-based ceramic powder, piezoelectric ceramic and method for making same, and piezoelectric ceramic element
WO2003101946A2 (de) 2002-05-29 2003-12-11 Siemens Aktiengesellschaft Piezokeramische zusammensetzung, piezokeramischer körper mit der zusammensetzung und verfahren zum herstellen der zusammensetzung und des körpers
EP1367036A2 (de) * 2002-05-30 2003-12-03 TDK Corporation Herstellungsverfahren für piezoelektrische Keramik und piezoelektrisches Bauelement
WO2006063784A1 (de) 2004-12-13 2006-06-22 Tronox Pigments Gmbh Feinteilige bleizirkonattitanate, zirkontitanhydrate und zirkoniumtitanate und verfahren zu deren herstellung
WO2008068096A1 (de) 2006-12-07 2008-06-12 Robert Bosch Gmbh Niedrig sinterndes, piezoelektrisches material auf blei-zirkonat-titanat-mischkristall-basis, verfahren zu dessen herstellung sowie ein dieses material umfassendes piezoelektrisches bauelement

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
R. W. SCHWARTZ ET AL.: "Ceramic Materials for Electronics", 2004, VERLAG MARCEL DEKKER, article "Piezoelectric and Electro-optic Ceramics"
See also references of EP2411347A1

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013152887A1 (de) * 2012-04-10 2013-10-17 Epcos Ag Keramisches material und kondensator umfassend das keramische material
CN104221175A (zh) * 2012-04-10 2014-12-17 爱普科斯公司 陶瓷材料和包括陶瓷材料的电容器
EP2942338A1 (de) * 2012-04-10 2015-11-11 Epcos AG Keramisches material und kondensator umfassend das keramische material
US9293256B2 (en) 2012-04-10 2016-03-22 Epcos Ag Ceramic material and capacitor comprising the ceramic material
CN104221175B (zh) * 2012-04-10 2017-05-10 爱普科斯公司 陶瓷材料和包括陶瓷材料的电容器
US10217566B2 (en) 2012-04-10 2019-02-26 Epcos Ag Ceramic material and capacitor comprising the ceramic material
CN112279642A (zh) * 2020-10-22 2021-01-29 江西欧迈斯微电子有限公司 压电纤维及其制备方法
CN112279642B (zh) * 2020-10-22 2022-08-05 江西欧迈斯微电子有限公司 压电纤维及其制备方法
CN112960981A (zh) * 2021-05-07 2021-06-15 重庆文理学院 一种镧、锡掺杂的锆钛酸铅陶瓷材料的制备方法
CN115403375A (zh) * 2022-08-31 2022-11-29 山东国瓷功能材料股份有限公司 一种锆钛酸铅压电陶瓷材料及其制备方法
CN115403375B (zh) * 2022-08-31 2023-07-14 山东国瓷功能材料股份有限公司 一种锆钛酸铅压电陶瓷材料及其制备方法
CN116924796A (zh) * 2023-08-14 2023-10-24 昆明理工大学 一种abo3型低介电损耗陶瓷及其制备方法
CN116924796B (zh) * 2023-08-14 2024-05-14 昆明理工大学 一种abo3型低介电损耗陶瓷及其制备方法

Also Published As

Publication number Publication date
EP2411347A1 (de) 2012-02-01

Similar Documents

Publication Publication Date Title
EP1831107B1 (de) Feinteilige bleizirkonattitanate und zirkoniumtitanate und verfahren zu deren herstellung unter verwendung von titanoxidhydratpartikeln
DE60224748T2 (de) Kornorientierte Keramik und Verfahren zu ihrer Herstellung, sowie anisotrop geformtes Pulver und Verfahren zu seiner Herstellung
EP2459497B1 (de) Piezoelektrische keramikzusammensetzung, verfahren zur herstellung der zusammensetzung und elektrisches bauelement, umfassend die zusammensetzung
DE102007016854B4 (de) Piezoelektrische, bleifreie keramische Zusammensetzung, Verfahren zu deren Herstellung sowie ein dieses Material unfassendes piezoelektrisches Bauelement
DE102005027928A1 (de) Kornorientierte Keramiken und Herstellungsverfahren dafür
EP1362020B1 (de) Piezoelektrisches keramisches material, verfahren zu dessen herstellung und elektrokeramisches mehrlagenbauteil
WO2008107353A1 (de) Piezoelektrisches material, vielschicht-aktuator und verfahren zur herstellung eines piezoelektrischen bauelements
EP2200951B1 (de) Keramikmaterial, verfahren zur herstellung desselben und elektrokeramisches bauelement umfassend das keramikmaterial
DE102017211348B3 (de) Verfahren zum Herstellen einer texturierten Perowskit-Keramik sowie in dieser Weise hergestellte Perowskit-Keramiken und Verwendungen
DE60124182T2 (de) Piezoelektrisches keramisches Material
WO2011103935A1 (de) Bleifreier, mehrphasiger keramischer werkstoff mit texturierung, verfahren zum herstellen des werkstoffs und verwendung des werkstoffs
DE102010031004A1 (de) Keramikmaterial und elektronische Vorrichtung
DE102008042955A1 (de) Verfahren zum Herstellen einer Keramik mit Kristallorientierung
DE102015104869B4 (de) Piezoelektrische Zusammensetzung und piezoelektrisches Element
DE69923635T2 (de) Piezoelektrische Keramiken
EP2411347A1 (de) Bleizirkonattitanate und verfahren zu deren herstellung
DE102005061528B4 (de) Piezokeramisches Bauteil mit Bleizirkonattitanat mit Eisen-Wolfram-Dotierung, Verfahren zum Herstellen des piezokeramischen Bauteils und seine Verwendung
WO2008068096A1 (de) Niedrig sinterndes, piezoelektrisches material auf blei-zirkonat-titanat-mischkristall-basis, verfahren zu dessen herstellung sowie ein dieses material umfassendes piezoelektrisches bauelement
EP2751854B1 (de) Verfahren zur herstellung eines piezoelektrischen bauelements
WO2008155222A1 (de) Blei-zirkonat-titanat-keramik mit texturierung, verfahren zum herstellen der keramik und verwendung der keramik
DE102007029601A1 (de) Bleizirkonattitanat mit Eisen-Niob-Wolfram-Dotierung, Verfahren zum Herstellen eines piezokeramischen Bauteils unter Verwendung des Bleizirkonattitanats und Verwendung des piezokeramischen Bauteils
DE10237915A1 (de) Hochdichte Keramiken sowie Verfahren zur Herstellung derselben
DE10002232B4 (de) Verfahren zur Herstellung eines multinären keramischen Mischoxids
DE102022119505A1 (de) Piezoelektrischer dünnfilm, piezoelektrisches dünnfilmelement und piezoelektrischer wandler
DE102022104926A1 (de) Piezoelektrischer Dünnfilm, piezoelektrisches Dünnfilm-Element und piezoelektrischer Wandler

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10710338

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010710338

Country of ref document: EP