CN116924796A - 一种abo3型低介电损耗陶瓷及其制备方法 - Google Patents

一种abo3型低介电损耗陶瓷及其制备方法 Download PDF

Info

Publication number
CN116924796A
CN116924796A CN202311016760.7A CN202311016760A CN116924796A CN 116924796 A CN116924796 A CN 116924796A CN 202311016760 A CN202311016760 A CN 202311016760A CN 116924796 A CN116924796 A CN 116924796A
Authority
CN
China
Prior art keywords
dielectric loss
ceramic
low dielectric
abo
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202311016760.7A
Other languages
English (en)
Other versions
CN116924796B (zh
Inventor
孟彬
张涵
房聪聪
林武
魏子程
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN202311016760.7A priority Critical patent/CN116924796B/zh
Publication of CN116924796A publication Critical patent/CN116924796A/zh
Application granted granted Critical
Publication of CN116924796B publication Critical patent/CN116924796B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • C04B35/491Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT
    • C04B35/493Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT containing also other lead compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

本发明公开一种ABO3型低介电损耗陶瓷及其制备方法,属于高熵陶瓷材料技术领域。本发明所述高熵陶瓷材料的化学式为(Pb(1‑1.5x)Lax)(Zr0.25Ti0.25Sn0.25Hf0.25)O3(x=0~0.04,且x≠0);制备过程为按照设计的化学计量比分别称量PbO、TiO2、ZrO2、SnO2、HfO2、La2O3粉末,之后进行湿法球磨、干燥、研磨、煅烧,对所得煅烧粉末进行二次球磨、干燥、研磨、压制成型,最后经空气中烧结得到;高熵陶瓷在1kHz测试频率下,在193℃左右的温度下介电常数高达24920;其中,(Pb0.97La0.02)(Zr0.25Ti0.25Sn0.25Hf0.25)O3在测试温度为250~350℃、在1kHz和10kHz和100kHz测试频率下,介电损耗均低于0.001;(Pb0.97La0.02)(Zr0.25Ti0.25Sn0.25Hf0.25)O3高熵陶瓷有望成为高介电常数、低介电损耗的陶瓷电容器的候选材料。

Description

一种ABO3型低介电损耗陶瓷及其制备方法
技术领域
本发明涉及一种ABO3型低介电损耗陶瓷及其制备方法,属于高熵陶瓷材料技术领域。
背景技术
锆酸铅(PbZrO3)是一种常见的ABO3型反铁电体陶瓷材料,它具有较高的居里点温度(230℃),在常温下介电常数约为100,在居里点介电常数达到3400左右,拥有较高的介电常数。但是,锆酸铅在高温烧结时铅元素容易挥发,随烧结温度升高,锆酸铅陶瓷容易开裂。因此需要对锆酸铅陶瓷进行成分改性和烧结方法的改进。
高熵陶瓷材料为五种及其以上元素等比例进行掺杂形成的多主元固溶体陶瓷。近年来随着研究的深入,四主元等比例进行掺杂形成的单相固溶体陶瓷也被称为高熵陶瓷。之前有关锆酸铅基高熵陶瓷的发明中,发现仅仅在B位进行高熵化设计的Pb(Zr0.25Ti0.25Sn0.25Hf0.25)O3高熵陶瓷虽然相比基体锆酸铅的介电常数有所提高,但仍然达不到目前市场的需求,需要继续在提高其介电常数的同时降低介电损耗。
本发明采取了在锆酸铅的B位进行高熵化设计的同时,也在A位进行元素掺杂的策略,即在锆酸铅的A位晶格中掺杂高价态的La3+离子,La3+的价态高于Pb2+,可以使晶格产生铅缺位,从而引起锆酸铅晶格产生畸变效应,增加其混乱度;在B位掺杂元素的选择上,由于Zr、Ti、Sn、Hf四种元素的化学性质和离子半径大小相近,依据晶体化学和离子半径匹配原则,将Zr、Ti、Sn、Hf四种元素等摩尔比地掺杂进入锆酸铅晶格的B位;最终我们设计了成分为(Pb(1-1.5x)Lax)(Zr0.25Ti0.25Sn0.25Hf0.25)O3(x=0,0.02,0.04)的高熵陶瓷,希望借助高熵效应和元素掺杂进一步提高锆酸铅的介电常数,降低其介电损耗低。
发明内容
本发明的目的在于提供一种ABO3型低介电损耗高熵陶瓷,所述介电损耗陶瓷在A位进行元素掺杂、在B位进行高熵化设计,所述低介电损耗陶瓷的化学式为:(Pb(1-1.5x)Lax)(Zr0.25Ti0.25Sn0.25Hf0.25)O3,x=0~0.04,且x≠0。
本发明的另一目的在于提供所述ABO3型低介电损耗陶瓷的制备方法,具体包括以下步骤:
(1)按照(Pb(1-1.5x)Lax)(Zr0.25Ti0.25Sn0.25Hf0.25)O3(x=0,0.02,0.04)化学式中的化学计量比称量PbO、TiO2、ZrO2、SnO2、HfO2、La2O3粉末。
(2)将上述粉末放入行星式球磨机中进行一次球磨,之后干燥、煅烧得到高熵陶瓷粉末,之后再二次球磨、干燥、研磨、压制成型。
(3)将压制的陶瓷生胚放入马弗炉中,在空气中进行烧结。
优选的,本发明步骤(2)中一次球磨和二次球磨的条件均为:球磨机的转速为300~400转/分钟,球磨时间为12~24小时,球磨介质为无水乙醇、氧化锆球,球:料:乙醇为5:1:0.9。
优选的,本发明步骤(2)中干燥条件为:干燥温度为80~100℃,干燥时间为12~24小时。
优选的,本发明步骤(2)中煅烧的条件为:在800~850℃煅烧2~3小时。
优选的,本发明步骤(2)中研磨条件为:将干燥后的混合粉末放入研磨罐中进行研磨30~50分钟。
优选的,本发明步骤(2)中压制成型所用的模具直径为10~20mm,单轴压力为150~240MPa,保压时间为10~15分钟。
优选的,本发明步骤(3)烧结过程中:在试样的底部和四周敷设一层与试样成分一致的粉末,以6℃/min的升温速率将温度从室温升温至1250~1300℃,在马弗炉中保温时间为3小时,之后随炉冷却至室温。
本发明所述方法中由于Zr、Ti、Sn、Hf四种元素等摩尔比地占据B位晶格,破坏了之前锆酸铅陶瓷材料的长程有序,引发晶格畸变,产生高熵效应;在A位掺杂La元素,通过高熵、取代双重效应,有望继续提高Pb(Zr0.25Ti0.25Sn0.25Hf0.25)O3陶瓷的介电常数,降低介电损耗。
本发明的有益效果
(1)本发明制备过程简单,无需气氛保护,仅需要使用普通的马弗炉进行烧结,具有烧结时间短,工艺简单,制作成本低,效率高等特点。
(2)本发明所制备的(Pb(1-1.5x)Lax)(Zr0.25Ti0.25Sn0.25Hf0.25)O3(x=0,0.02,0.04)高熵陶瓷不需要添加任何粘结剂和烧结助剂。
(3)本发明所制备的(Pb0.97La0.02)(Zr0.25Ti0.25Sn0.25Hf0.25)O3高熵陶瓷在1kHz频率测试下,在193℃左右的温度下介电常数高达24920;(Pb0.97La0.02)(Zr0.25Ti0.25Sn0.25Hf0.25)O3在测试温度为250~350℃下在1kHz和10kHz和100kHz测试频率下,介电损耗均低于0.001。
附图说明
图1为实施例1~3经过马弗炉空气中烧结制备的(Pb(1-1.5x)Lax)(Zr0.25Ti0.25Sn0.25Hf0.25)O3(x=0,0.02,0.04)高熵陶瓷的XRD图谱。
图2为实施例1-3经过马弗炉空气中烧结制备的(Pb(1-1.5x)Lax)(Zr0.25Ti0.25Sn0.25Hf0.25)O3(x=0,0.02,0.04)高熵陶瓷的SEM图谱。
图3为实施例1在30~350℃下1kHz~1MHz频率下的介电常数和介电损耗图谱。
图4为实施例2在30~350℃下1kHz~1MHz频率下的介电常数和介电损耗图谱。
图5为实施例3在30~350℃下1kHz~1MHz频率下的介电常数和介电损耗图谱。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明。但本发明的保护范围并不限于所述内容。
实施例1(作为对比,X为0)
一种在A位进行元素掺杂、且在B位进行高熵化设计的ABO3型低介电损耗Pb(Zr0.25Ti0.25Sn0.25Hf0.25)O3陶瓷,其烧结温度为1250℃,具体步骤如下:
(1)根据高熵陶瓷Pb(Zr0.25Ti0.25Sn0.25Hf0.25)O3的化学式和化学计量比称量PbO、ZrO2、TiO2、SnO2、HfO2粉末;将上述粉末放入球磨机进行球磨混合,按氧化锆球:无水乙醇:粉体为5:0.9:1进行球磨12小时,球磨机转速为300转/分钟,之后将混合浆料放入烘箱,在80℃下进行干燥12小时,之后放入马弗炉中850℃煅烧,保温时间为2小时;之后二次球磨,球磨参数与一次球磨的参数相同;将混合浆料放入烘箱,80℃下进行干燥12小时,将干燥后的粉体放入研磨罐中研磨30分钟。
(2)研磨后,在150MPa的单轴压力下将陶瓷粉末压制为直径为10mm的陶瓷生坯。
(3)将陶瓷生坯放于坩埚内,在陶瓷片底部和四周敷设一层成分相同的陶瓷粉末,之后在升温速率为6℃/mm的升温速率升温至1250℃,在马弗炉中保温时间为3小时,之后随炉冷却至室温,得到高熵陶瓷Pb(Zr0.25Ti0.25Sn0.25Hf0.25)O3
实施例2
一种在A位进行元素掺杂、且在B位进行高熵化设计的ABO3型低介电损耗Pb(Zr0.25Ti0.25Sn0.25Hf0.25)O3陶瓷,其烧结温度为1250℃。具体步骤如下:
(1)根据高熵陶瓷(Pb0.97La0.02)(Zr0.25Ti0.25Sn0.25Hf0.25)O3的化学式和化学计量比称量PbO、ZrO2、TiO2、SnO2、HfO2、La2O3粉末。将上述粉末放入球磨机进行湿法球磨混合,按氧化锆球:无水乙醇:粉体为5:0.9:1进行球磨12小时,球磨机转速为300转/分钟,之后将混合浆料放入烘箱,在80℃下进行干燥12小时,之后放入马弗炉空气下煅烧800℃,保温时间为3小时;之后二次球磨,球磨参数与一次球磨的参数相同。将混合浆料放入烘箱,90℃下进行干燥20小时,将干燥后的粉体放入研磨罐研磨30分钟。
(2)研磨后,在150MPa的单轴压力下将陶瓷粉末压制为直径为10mm的陶瓷生坯。
(3)将陶瓷生坯放于坩埚内,在陶瓷片底部和四周敷设一层成分相同的陶瓷粉末,之后在升温速率为6℃/mm的升温速率升温至1250℃,在马弗炉中保温时间为3小时,之后随炉冷却至室温,得到(Pb0.97La0.02)(Zr0.25Ti0.25Sn0.25Hf0.25)O3高熵陶瓷。
实施例3
一种在A位进行元素掺杂、且在B位进行高熵化设计的ABO3型低介电损耗Pb(Zr0.25Ti0.25Sn0.25Hf0.25)O3陶瓷,其烧结温度为1250℃;具体步骤如下:
(1)根据高熵陶瓷(Pb0.94La0.04)(Zr0.25Ti0.25Sn0.25Hf0.25)O3的化学式和化学计量比称量PbO、ZrO2、TiO2、SnO2、HfO2、La2O3粉末;将上述粉末放入球磨机进行湿法球磨混合;按氧化锆球:无水乙醇:粉体为5:0.9:1进行球磨12小时,球磨机转速为300转/分钟,之后将混合浆料放入烘箱,在80℃下进行干燥12小时。之后放入马弗炉空气下煅烧830℃,保温时间为2.5小时;之后二次球磨,球磨参数与一次球磨的参数相同;将混合浆料放入烘箱,100℃下进行干燥24小时,将干燥后的粉体放入研磨罐研磨30分钟。
(2)研磨后,在150MPa的单轴压力下将陶瓷粉末压制为直径为10mm的陶瓷生坯。
(3)将陶瓷生坯放于坩埚内,在陶瓷片底部和四周敷设一层成分相同的陶瓷粉末,之后在升温速率为6℃/mm的升温速率升温至1250℃,在马弗炉中保温时间为3小时,之后随炉冷却至室温,得到高熵陶瓷(Pb0.94La0.04)(Zr0.25Ti0.25Sn0.25Hf0.25)O3
图1为实施例1~3所制备的(Pb(1-1.5x)Lax)(Zr0.25Ti0.25Sn0.25Hf0.25)O3(x=0,0.02,0.04)高熵陶瓷的XRD图谱;从图中可以看出该陶瓷为单相的钙钛矿结构,随着掺杂La3+量的增多,衍射峰右移,且无第二相出现。
图2(a-c)为所制备的(Pb(1-1.5x)Lax)(Zr0.25Ti0.25Sn0.25Hf0.25)O3(x=0,0.02,0.04)高熵陶瓷的SEM图谱;由图中可以看出,只有晶粒间分布少量气孔,无明显裂纹,元素分布均匀,无元素偏析。
图3~5为实施例1-3所制备的(Pb(1-1.5x)Lax)(Zr0.25Ti0.25Sn0.25Hf0.25)O3(x=0,0.02,0.04)高熵陶瓷的介电常数和损耗图谱;从图中可以看出,三个实施例的介电常数都是先增大后减小。
实施例1Pb(Zr0.25Ti0.25Sn0.25Hf0.25)O3介电常数为14355,实施例2(Pb0.97La0.02)(Zr0.25Ti0.25Sn0.25Hf0.25)O3的介电常数为24920,实施例3(Pb0.94La0.04)(Zr0.25Ti0.25Sn0.25Hf0.25)O3的介电常数为8728;(Pb0.97La0.02)(Zr0.25Ti0.25Sn0.25Hf0.25)O3的介电常数最高;与锆酸铅基体相比,最大介电常数由基体的3400左右提升至24920;(Pb0.97La0.02)(Zr0.25Ti0.25Sn0.25Hf0.25)O3在测试温度为250~350℃下在1kHz和10kHz和100kHz测试频率下,介电损耗均低于0.001。介电损耗在250~350℃较高温度仍然保持很低的介电损耗。(Pb0.97La0.02)(Zr0.25Ti0.25Sn0.25Hf0.25)O3高熵陶瓷有望成为高介电常数、低介电损耗的陶瓷电容器的候选材料。

Claims (8)

1.一种ABO3型低介电损耗陶瓷,其特征在于,所述介电损耗陶瓷在A位进行元素掺杂、在B位进行高熵化设计,所述低介电损耗陶瓷的化学式为:(Pb(1-1.5x)Lax)(Zr0.25Ti0.25Sn0.25Hf0.25)O3,x=0~0.04,且x≠0。
2.权利要求1所述ABO3型低介电损耗陶瓷的制备方法,其特征在于:具体包括以下步骤:
(1)按照(Pb(1-1.5x)Lax)(Zr0.25Ti0.25Sn0.25Hf0.25)O3(x=0,0.02,0.04)化学式中的化学计量比称量PbO、TiO2、ZrO2、SnO2、HfO2、La2O3粉末;
(2)将上述粉末放入行星式球磨机中进行一次球磨,之后干燥、煅烧得到高熵陶瓷粉末,之后再二次球磨、干燥、研磨、压制成型;
(3)将压制的陶瓷生胚放入马弗炉中,在空气中1250℃进行烧结。
3.根据权利要求2所述ABO3型低介电损耗陶瓷的制备方法,其特征在于:步骤(2)中一次球磨和二次球磨的条件均为:球磨机的转速为300~400转/分钟,球磨时间为12~24小时,球磨介质为无水乙醇、氧化锆球,球:料:乙醇为5:1:0.9。
4.根据权利要求2所述ABO3型低介电损耗陶瓷的制备方法,其特征在于:步骤(2)中干燥条件为:干燥温度为80~100℃,干燥时间为12~24小时。
5.根据权利要求2所述ABO3型低介电损耗陶瓷的制备方法,其特征在于:步骤(2)中煅烧的条件为:在800~850℃煅烧2~3小时。
6.根据权利要求2所述ABO3型低介电损耗陶瓷的制备方法,其特征在于:步骤(2)中研磨条件为:将干燥后的混合粉末放入研磨罐中进行研磨30~50分钟。
7.根据权利要求2所述ABO3型低介电损耗陶瓷的制备方法,其特征在于:步骤(2)中压制成型所用的模具直径为10~20mm,单轴压力为150~240MPa,保压时间为10~15分钟。
8.根据权利要求2所述ABO3型低介电损耗陶瓷的制备方法,其特征在于:步骤(3)烧结过程中:在试样的底部和四周敷设一层与试样成分一致的粉末,以6℃/min的升温速率将温度从室温升温至1250~1300℃,在马弗炉中保温时间为3小时,之后随炉冷却至室温。
CN202311016760.7A 2023-08-14 2023-08-14 一种abo3型低介电损耗陶瓷及其制备方法 Active CN116924796B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311016760.7A CN116924796B (zh) 2023-08-14 2023-08-14 一种abo3型低介电损耗陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311016760.7A CN116924796B (zh) 2023-08-14 2023-08-14 一种abo3型低介电损耗陶瓷及其制备方法

Publications (2)

Publication Number Publication Date
CN116924796A true CN116924796A (zh) 2023-10-24
CN116924796B CN116924796B (zh) 2024-05-14

Family

ID=88392478

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311016760.7A Active CN116924796B (zh) 2023-08-14 2023-08-14 一种abo3型低介电损耗陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN116924796B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4219866A (en) * 1979-01-12 1980-08-26 Sprague Electric Company Ceramic capacitor having a dielectric of (Pb,La) (Zr,Ti)O3 and BaTiO3
US5595677A (en) * 1995-05-30 1997-01-21 Rockwell International Corporation Nb-doped PLZT piezoelectric ceramics
CN101422735A (zh) * 2007-11-01 2009-05-06 中国石油天然气股份有限公司 一种高效乙苯脱氢制苯乙烯的催化剂及其制备方法
WO2010108988A1 (de) * 2009-03-25 2010-09-30 Tronox Pigments Gmbh Bleizirkonattitanate und verfahren zu deren herstellung
US20110204754A1 (en) * 2008-10-28 2011-08-25 Murata Manufacturing Co., Ltd. Piezoeletric ceramic composition and piezoelectric ceramic electronic component
JP2012009800A (ja) * 2010-05-24 2012-01-12 Mitsubishi Materials Corp 強誘電体薄膜及び該強誘電体薄膜を用いた薄膜キャパシタ
US20220127197A1 (en) * 2020-03-20 2022-04-28 Guangdong Fenghua Advanced Technology Holding Co., Ltd. Multiphase ceramic material with giant dielectric constant, and preparation method thereof
CN114644523A (zh) * 2022-04-16 2022-06-21 昆明理工大学 一种钙钛矿结构高熵介电陶瓷及其制备方法
CN115417670A (zh) * 2022-09-28 2022-12-02 昆明理工大学 一种在b位进行高熵化设计的高介电常数陶瓷及其制备方法
WO2023005008A1 (zh) * 2021-07-26 2023-02-02 西安交通大学 一种低介电常数高熵薄膜及其制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4219866A (en) * 1979-01-12 1980-08-26 Sprague Electric Company Ceramic capacitor having a dielectric of (Pb,La) (Zr,Ti)O3 and BaTiO3
US5595677A (en) * 1995-05-30 1997-01-21 Rockwell International Corporation Nb-doped PLZT piezoelectric ceramics
CN101422735A (zh) * 2007-11-01 2009-05-06 中国石油天然气股份有限公司 一种高效乙苯脱氢制苯乙烯的催化剂及其制备方法
US20110204754A1 (en) * 2008-10-28 2011-08-25 Murata Manufacturing Co., Ltd. Piezoeletric ceramic composition and piezoelectric ceramic electronic component
WO2010108988A1 (de) * 2009-03-25 2010-09-30 Tronox Pigments Gmbh Bleizirkonattitanate und verfahren zu deren herstellung
JP2012009800A (ja) * 2010-05-24 2012-01-12 Mitsubishi Materials Corp 強誘電体薄膜及び該強誘電体薄膜を用いた薄膜キャパシタ
US20220127197A1 (en) * 2020-03-20 2022-04-28 Guangdong Fenghua Advanced Technology Holding Co., Ltd. Multiphase ceramic material with giant dielectric constant, and preparation method thereof
WO2023005008A1 (zh) * 2021-07-26 2023-02-02 西安交通大学 一种低介电常数高熵薄膜及其制备方法
CN114644523A (zh) * 2022-04-16 2022-06-21 昆明理工大学 一种钙钛矿结构高熵介电陶瓷及其制备方法
CN115417670A (zh) * 2022-09-28 2022-12-02 昆明理工大学 一种在b位进行高熵化设计的高介电常数陶瓷及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HAN ZHANG等: "Microstructure and dielectric properties of perovskite-structured high-entropy ceramics of Pb(Zr0.25Ti0.25Sn0.25Hf0.25)O3", CERAMICS INTERNATIONAL, 17 March 2023 (2023-03-17), pages 20398 - 20405 *
S.S.N. BHARADWAJA等: "Study of La-modified antiferroelectric PbZrO3 thin films", THIN SOLID FILMS, pages 88 - 96 *

Also Published As

Publication number Publication date
CN116924796B (zh) 2024-05-14

Similar Documents

Publication Publication Date Title
CN113929450B (zh) 一种高压电性能的CaBi4Ti4O15陶瓷的制备方法
CN106588006B (zh) 一种高介电性能钛酸锶钡、其制备方法及采用其制备的介电陶瓷
CN108546125B (zh) 一种面向高温环境应用的压电陶瓷材料及其制备方法
CN114644523A (zh) 一种钙钛矿结构高熵介电陶瓷及其制备方法
CN113582667A (zh) 一种可低温共烧的高储能反铁电陶瓷材料及其制备方法和应用
CN107840655B (zh) 准同型相界的钛酸铋钾基无铅弛豫铁电陶瓷的制备方法
CN112552048A (zh) 一种具有高压电性能和高剩余极化强度铌酸钾钠陶瓷的制备方法
CN115417670B (zh) 一种在b位进行高熵化设计的高介电常数陶瓷及其制备方法
CN107778004B (zh) 一种锆钛酸锶钡陶瓷及其制备方法和应用
CN114085079A (zh) 一种高储能的非等摩尔比高熵钙钛矿氧化物陶瓷材料及其制备方法
CN115385688B (zh) 一种锆钛酸锶钡基介电陶瓷材料及其制备方法
KR101014012B1 (ko) 티탄산바륨의 제조 방법
CN115286386B (zh) 一种非化学计量Nb5+的铌钽锆铁酸钾钠铋陶瓷及其制备方法
CN116924796B (zh) 一种abo3型低介电损耗陶瓷及其制备方法
CN106518058A (zh) 一种由钛酸铋钾和氧化锌构成的无铅复合铁电陶瓷及制备
CN112062556A (zh) 一种锆酸钙-锆酸锶-锆酸钡固溶体陶瓷材料及其制备方法
Wang et al. Fabrication of High‐Curie‐Point Barium‐Lead Titanate PTCR Ceramics
CN113248247A (zh) 一种三元压电陶瓷及其制备方法和应用
CN116477938B (zh) 钛酸钡基无铅压电陶瓷及其制备方法
CN116444266B (zh) 一种Ba0.6Sr0.4(Ti0.7Zr0.3)O3基介电陶瓷的制备方法
CN116813330B (zh) 一种基于a位缺陷的低损耗高能量转换效率的钛酸钡基无铅储能陶瓷材料及其制备方法
CN114507070B (zh) 一种掺杂改性的铌酸铋钙基陶瓷材料及其制备方法
CN116813335B (zh) 具有宽温区高电卡效应的钛酸铋钠基弛豫铁电陶瓷材料及其制备方法和应用
CN115159977B (zh) 一种宽温低损耗介质陶瓷材料及其制备方法
CN111892398B (zh) 一种Nd和Er共掺杂CaBi8Ti7O27陶瓷的制备方法及其产品

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant