CN115417670A - 一种在b位进行高熵化设计的高介电常数陶瓷及其制备方法 - Google Patents

一种在b位进行高熵化设计的高介电常数陶瓷及其制备方法 Download PDF

Info

Publication number
CN115417670A
CN115417670A CN202211187371.6A CN202211187371A CN115417670A CN 115417670 A CN115417670 A CN 115417670A CN 202211187371 A CN202211187371 A CN 202211187371A CN 115417670 A CN115417670 A CN 115417670A
Authority
CN
China
Prior art keywords
ceramic
dielectric constant
entropy
site
ball milling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211187371.6A
Other languages
English (en)
Other versions
CN115417670B (zh
Inventor
孟彬
张涵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN202211187371.6A priority Critical patent/CN115417670B/zh
Publication of CN115417670A publication Critical patent/CN115417670A/zh
Application granted granted Critical
Publication of CN115417670B publication Critical patent/CN115417670B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • C04B35/491Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT
    • C04B35/493Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT containing also other lead compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3296Lead oxides, plumbates or oxide forming salts thereof, e.g. silver plumbate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

本发明公开了一种在B位进行高熵化设计的高介电常数陶瓷及其制备方法,属于高熵陶瓷材料技术领域。本发明所述高熵陶瓷材料的化学式为Pb(Zr0.25Ti0.25Sn0.25Hf0.25)O3,制备过程为按照设计的化学计量比分别称量PbO、TiO2、ZrO2、SnO2、HfO2,之后进行湿法球磨、干燥、研磨、煅烧,对所得煅烧粉末进行二次球磨、干燥、研磨、压制成型,最后在空气中1200~1300℃温度下烧结得到致密的Pb(Zr0.25Ti0.25Sn0.25Hf0.25)O3高熵陶瓷。Pb(Zr0.25Ti0.25Sn0.25Hf0.25)O3高熵陶瓷在1kHz频率测试下,在270℃左右的温度下介电常数高达18500;Pb(Zr0.25Ti0.25Sn0.25Hf0.25)O3高熵陶瓷有望成为高介电常数的陶瓷电容器材料。

Description

一种在B位进行高熵化设计的高介电常数陶瓷及其制备方法
技术领域
本发明涉及一种在B位进行高熵化设计的高介电常数陶瓷及其制备方法,属于高熵陶瓷材料技术领域。
背景技术
锆酸铅是常见的反铁电体陶瓷材料,拥有较高的居里点温度(230oC),在常温下介电常数约为100,在居里点介电常数达到3400左右,拥有较高的介电常数,但是,锆酸铅在高温烧结时铅容易挥发,当温度升高时,锆酸铅容易开裂,纯锆酸铅陶瓷的生产价值很低。所以说要对锆酸铅陶瓷进行改性。
高熵陶瓷材料为五种及其以上元素等比例进行掺杂形成的多主元固溶体陶瓷。近年来随着研究的深入,四主元等比例进行掺杂形成的单相固溶体陶瓷也可以被称为高熵陶瓷。在介电陶瓷领域,锆酸铅具有介电损耗低、居里温度高等优点,有望成为陶瓷电容器的候选材料。目前,还未曾有过对锆酸铅进行高熵化的设计的研究或报道,通过对锆酸铅进行B位高熵化的设计,将适合的四种或者五种元素等摩尔比掺杂到锆酸铅的B位晶格中,从而引起了锆酸铅晶格畸变效应,使其混乱度增加,有望进一步提高介电常数,降低介电损耗,提高居里点温度。
在B位掺杂元素的选择上,Zr、Ti、Sn、Hf四种元素的化学性质和离子半径大小相近,依据晶体化学和离子半径匹配原则,Zr、Ti、Sn、Hf四种元素可以等摩尔比掺杂进入锆酸铅晶格的B位中去;Pb(Zr0.25Ti0.25Sn0.25Hf0.25)O3高熵陶瓷具有介电常数高、损耗低等明显优势,有望成为新一代高介电常数陶瓷电容器材料。
发明内容
本发明的目的在于提供一种在B位进行高熵化设计的高介电常数陶瓷,所述高介电常数陶瓷的化学式为:Pb(Zr0.25Ti0.25Sn0.25Hf0.25)O3
本发明的目的在于提供一种所述B位进行高熵化设计的高介电常数陶瓷的制备方法,具体包括以下步骤:
(1)按照Pb(Zr0.25Ti0.25Sn0.25Hf0.25)O3化学式中的化学计量比称量PbO、TiO2、ZrO2、SnO2、HfO2粉末原料。
(2)将上述粉末放入球磨机中进行湿法球磨混合,之后干燥、煅烧得到高熵陶瓷粉末,再二次球磨、干燥、研磨、压制成型。
(3)将压制的陶瓷生胚放入马弗炉中,在空气中1200~1300 ℃进行烧结。
优选的,本发明步骤(2)中一次球磨和二次球磨的条件为:球磨机的转速为300~400转/分钟,球磨时间为12~24小时,球磨介质为无水乙醇、氧化锆球,球:料:乙醇为5: 1:0.9。
优选的,本发明步骤(2)中干燥条件为:干燥温度为80~100℃,干燥时间为12~24小时。
优选的,本发明步骤(2)中煅烧的条件为:在800~850 ℃煅烧2~3小时。
优选的,本发明步骤(2)中研磨条件为:将干燥后的混合粉末放入研磨罐中进行研磨30~50分钟。
优选的,本发明步骤(2)中压制成型所用的模具直径为10~20mm,单轴压力为150~240MPa,保压时间为10~15分钟。
优选的,本发明步骤(3)烧结过程中:在试样的底部和四周敷设一层与试样成分一致的粉末,以6℃/min的升温速率将温度从室温升温至1200~1300℃,在马弗炉中保温时间为3~4小时,之后随炉冷却至室温。
本发明所述方法中由于Zr、Ti、Sn、Hf四种元素等摩尔比占据在B位晶格中,破坏了之前锆酸铅陶瓷材料的长程有序,并引发了晶格畸变,产生了高熵效应,有望提高锆酸铅陶瓷的介电常数。
本发明的有益效果
(1)本发明制备过程简单,无需气氛烧结,仅需要使用普通的马弗炉进行烧结,具有烧结时间短,工艺简单,制作成本低,效率高等特点。
(2)本发明所制备的Pb(Zr0.25Ti0.25Sn0.25Hf0.25)O3高熵陶瓷不需要添加任何粘结剂和烧结助剂。
(3)本发明所制备的Pb(Zr0.25Ti0.25Sn0.25Hf0.25)O3高熵陶瓷在270℃左右时介电常数达到18500,损耗低于0.03,介电常数高。
附图说明
图1为实例1~3经过马弗炉空气中烧结制备的Pb(Zr0.25Ti0.25Sn0.25Hf0.25)O3高熵陶瓷的XRD图谱。
图2为实例1经过马弗炉空气中烧结制备的Pb(Zr0.25Ti0.25Sn0.25Hf0.25)O3高熵陶瓷的SEM图谱。
图3为实例2经过马弗炉空气中烧结制备的Pb(Zr0.25Ti0.25Sn0.25Hf0.25)O3高熵陶瓷的SEM图谱。
图4为实例3经过马弗炉空气中烧结制备的Pb(Zr0.25Ti0.25Sn0.25Hf0.25)O3高熵陶瓷的SEM图谱。
图5为实例1在30~350℃下1kHz~1000kHz频率下的介电常数和介电损耗图谱。
图6为实例2在30~350 ℃下1kHz~1000kHz频率下的介电常数和介电损耗图谱。
图7为实例3在30~350 ℃下1kHz~1000kHz频率下的介电常数和介电损耗图谱。
具体实施方式
下面结合附图和具体实施例子对本发明作进一步说明。但本发明的保护范围并不限于所述内容。
实施例1
一种B位高熵化设计的高介电常数Pb(Zr0.25Ti0.25Sn0.25Hf0.25)O3陶瓷,烧结温度为1200℃,具体步骤如下:
(1)根据高熵陶瓷Pb(Zr0.25Ti0.25Sn0.25Hf0.25)O3的化学式和化学计量比称量PbO、ZrO2、TiO2、SnO2、HfO2粉末;将上述粉末放入球磨机进行球磨混合,按氧化锆球:无水乙醇:粉体为5: 0.9: 1进行球磨12小时,球磨机转速为300转/分钟,之后将混合浆料放入烘箱,在80℃下进行干燥12小时,之后放入马弗炉中850℃煅烧,保温时间为2小时,之后二次球磨,球磨参数与一次球磨的参数相同;将混合浆料放入烘箱,80℃下进行干燥12小时,将干燥后的粉体放入研磨罐中研磨30分钟。
(2)研磨后,在150MPa的单轴压力下将陶瓷粉末压制为直径为10mm的陶瓷生坯。
(3)将陶瓷生坯放于坩埚内,在陶瓷片底部和四周敷设一层成分相同的陶瓷粉末,之后在升温速率为6℃/mm的升温速率升温至1200℃,在马弗炉中保温时间为3小时,之后随炉冷却至室温,得到高熵陶瓷Pb(Zr0.25Ti0.25Sn0.25Hf0.25)O3
实施例2
一种B位高熵化设计的高介电常数Pb(Zr0.25Ti0.25Sn0.25Hf0.25)O3陶瓷,烧结温度为1250℃。具体步骤如下:
(1)根据高熵陶瓷Pb(Zr0.25Ti0.25Sn0.25Hf0.25)O3的化学式和化学计量比称量PbO、ZrO2、TiO2、SnO2、HfO2粉末。将上述粉末放入球磨机进行湿法球磨混合,按氧化锆球:无水乙醇:粉体为5: 0.9: 1进行球磨12小时,球磨机转速为300转/分钟,之后将混合浆料放入烘箱,在80℃下进行干燥12小时,之后放入马弗炉空气下煅烧800 ℃,保温时间为3小时,之后二次球磨,球磨参数与一次球磨的参数相同;将混合浆料放入烘箱,90℃下进行干燥20小时,将干燥后的粉体放入研磨罐研磨30分钟。
(2)研磨后,在150MPa的单轴压力下将陶瓷粉末压制为直径为10mm的陶瓷生坯。
(3)将陶瓷生坯放于坩埚内,在陶瓷片底部和四周敷设一层成分相同的陶瓷粉末,之后在升温速率为6℃/mm的升温速率升温至1250℃,在马弗炉中保温时间为3小时,之后随炉冷却至室温,得到高熵陶瓷Pb(Zr0.25Ti0.25Sn0.25Hf0.25)O3
实施例3
一种B位高熵化设计的高介电常数Pb(Zr0.25Ti0.25Sn0.25Hf0.25)O3陶瓷,烧结温度为1300 ℃。具体步骤如下:
(1)根据高熵陶瓷Pb(Zr0.25Ti0.25Sn0.25Hf0.25)O3的化学式和化学计量比称量PbO、ZrO2、TiO2、SnO2、HfO2粉末。将上述粉末放入球磨机进行湿法球磨混合;按氧化锆球:无水乙醇:粉体为5: 0.9: 1进行球磨12小时,球磨机转速为300转/分钟,之后将混合浆料放入烘箱,在80下进行干燥12小时,之后放入马弗炉空气下煅烧830 ℃,保温时间为2.5小时;之后二次球磨,球磨参数与一次球磨的参数相同;将混合浆料放入烘箱,100℃下进行干燥24小时,将干燥后的粉体放入研磨罐研磨30分钟。
(2)研磨后,在150MPa的单轴压力下将陶瓷粉末压制为直径为10mm的陶瓷生坯。
(3)将陶瓷生坯放于坩埚内,在陶瓷片底部和四周敷设一层成分相同的陶瓷粉末,之后在升温速率为6℃/mm的升温速率升温至1300 ℃,在马弗炉中保温时间为3小时,之后随炉冷却至室温,得到高熵陶瓷Pb(Zr0.25Ti0.25Sn0.25Hf0.25)O3
图1为实例1~3所制备的Pb(Zr0.25Ti0.25Sn0.25Hf0.25)O3高熵陶瓷的XRD图谱;从图中可以看出该陶瓷为单相的钙钛矿结构,无第二相结构。
图2~图4为所制备的Pb(Zr0.25Ti0.25Sn0.25Hf0.25)O3高熵陶瓷的SEM图谱;由图中可以看出,只有晶粒间分布少量气孔,无明显裂纹,元素分布均匀,无元素偏析。
图5~7为实例1-3所制备的Pb(Zr0.25Ti0.25Sn0.25Hf0.25)O3高熵陶瓷的介电常数和损耗图谱;从图中可以看出,三个实例的介电常数都是先增大后减小,在270℃左右达到最大值,损耗一直低于0.07,实施例1在1200℃下空气烧结3小时的介电常数为15523,实施例2在1250℃下空气烧结3小时的介电常数为14355,实施例3在1300℃下空气烧结3小时的介电常数为18500;在1300 ℃下空气烧结3小时的介电常数最高。与锆酸铅基体相比,居里温度点提高了30℃左右,最大介电常数由基体的3400左右提升至18500;并且Pb(Zr0.25Ti0.25Sn0.25Hf0.25)O3高熵陶瓷没有开裂,气孔很少。

Claims (8)

1.一种在B位进行高熵化设计的高介电常数陶瓷,其特征在于:所述高介电常数陶瓷的化学式为:Pb(Zr0.25Ti0.25Sn0.25Hf0.25)O3
2.权利要求1所述B位进行高熵化设计的高介电常数陶瓷的制备方法,其特征在于,具体包括以下步骤:
(1)按照Pb(Zr0.25Ti0.25Sn0.25Hf0.25)O3化学式中的化学计量比称量PbO、TiO2、ZrO2、SnO2、HfO2粉末原料;
(2)将上述粉末放入球磨机中进行湿法球磨混合,之后干燥、煅烧得到高熵陶瓷粉末,再二次球磨、干燥、研磨、压制成型;
(3)将压制的陶瓷生胚放入马弗炉中,在空气中1200~1300℃进行烧结。
3.根据权利要求2所述B位进行高熵化设计的高介电常数陶瓷的制备方法,其特征在于:步骤(2)中一次球磨和二次球磨的条件为:球磨机的转速为300~400转/分钟,球磨时间为12~24小时,球磨介质为无水乙醇、氧化锆球,球:料:乙醇为5: 1: 0.9。
4.根据权利要求2或3所述B位进行高熵化设计的高介电常数陶瓷的制备方法,其特征在于:步骤(2)中干燥条件为:干燥温度为80~100℃,干燥时间为12~24小时。
5.根据权利要求4所述B位进行高熵化设计的高介电常数陶瓷的制备方法,其特征在于:步骤(2)中煅烧的条件为:在800~850℃煅烧2~3小时。
6.根据权利要求5所述B位进行高熵化设计的高介电常数陶瓷的制备方法,其特征在于:步骤(2)中研磨条件为:将干燥后的混合粉末放入研磨罐中进行研磨30~50分钟。
7.根据权利要求1或6所述B位进行高熵化设计的高介电常数陶瓷的制备方法,其特征在于:步骤(2)中压制成型所用的模具直径为10~20mm,单轴压力为150~240MPa,保压时间为10~15分钟。
8.根据权利要求7所述B位进行高熵化设计的高介电常数陶瓷的制备方法,其特征在于:步骤(3)烧结过程中:在试样的底部和四周敷设一层与试样成分一致的粉末,以6℃/min的升温速率将温度从室温升温至1200~1300 ℃,在马弗炉中保温时间为3~4小时,之后随炉冷却至室温。
CN202211187371.6A 2022-09-28 2022-09-28 一种在b位进行高熵化设计的高介电常数陶瓷及其制备方法 Active CN115417670B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211187371.6A CN115417670B (zh) 2022-09-28 2022-09-28 一种在b位进行高熵化设计的高介电常数陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211187371.6A CN115417670B (zh) 2022-09-28 2022-09-28 一种在b位进行高熵化设计的高介电常数陶瓷及其制备方法

Publications (2)

Publication Number Publication Date
CN115417670A true CN115417670A (zh) 2022-12-02
CN115417670B CN115417670B (zh) 2023-03-10

Family

ID=84206296

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211187371.6A Active CN115417670B (zh) 2022-09-28 2022-09-28 一种在b位进行高熵化设计的高介电常数陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN115417670B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116924796A (zh) * 2023-08-14 2023-10-24 昆明理工大学 一种abo3型低介电损耗陶瓷及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06203631A (ja) * 1992-12-30 1994-07-22 Fuji Elelctrochem Co Ltd 誘電体磁器組成物
JP2012009800A (ja) * 2010-05-24 2012-01-12 Mitsubishi Materials Corp 強誘電体薄膜及び該強誘電体薄膜を用いた薄膜キャパシタ
CN106795059A (zh) * 2014-08-29 2017-05-31 住友电气工业株式会社 烧结材料、包含烧结材料的工具以及烧结材料制造方法
CA3140616A1 (en) * 2019-05-17 2020-11-26 University Of Maryland, College Park High temperature sintering systems and methods
CN112806098A (zh) * 2019-09-12 2021-05-14 开利公司 电热纤维、织物以及包括其的系统
US20210146439A1 (en) * 2019-11-18 2021-05-20 Hrl Laboratories, Llc Functionalized aspherical powder feedstocks and methods of making the same
CN114644523A (zh) * 2022-04-16 2022-06-21 昆明理工大学 一种钙钛矿结构高熵介电陶瓷及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06203631A (ja) * 1992-12-30 1994-07-22 Fuji Elelctrochem Co Ltd 誘電体磁器組成物
JP2012009800A (ja) * 2010-05-24 2012-01-12 Mitsubishi Materials Corp 強誘電体薄膜及び該強誘電体薄膜を用いた薄膜キャパシタ
CN106795059A (zh) * 2014-08-29 2017-05-31 住友电气工业株式会社 烧结材料、包含烧结材料的工具以及烧结材料制造方法
CA3140616A1 (en) * 2019-05-17 2020-11-26 University Of Maryland, College Park High temperature sintering systems and methods
CN112806098A (zh) * 2019-09-12 2021-05-14 开利公司 电热纤维、织物以及包括其的系统
US20210146439A1 (en) * 2019-11-18 2021-05-20 Hrl Laboratories, Llc Functionalized aspherical powder feedstocks and methods of making the same
CN114644523A (zh) * 2022-04-16 2022-06-21 昆明理工大学 一种钙钛矿结构高熵介电陶瓷及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ZHIHAO LOU: ""A novel high-entropy perovskite ceramics Sr0.9La0.1(Zr0.25Sn0.25Ti0.25Hf0.25) O3 with low thermal conductivity and high Seebeck coefficient"" *
刘鹏: ""!\"(#$,%&,’())* 反铁电陶瓷的低温相变 扩散与极化弛豫"" *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116924796A (zh) * 2023-08-14 2023-10-24 昆明理工大学 一种abo3型低介电损耗陶瓷及其制备方法
CN116924796B (zh) * 2023-08-14 2024-05-14 昆明理工大学 一种abo3型低介电损耗陶瓷及其制备方法

Also Published As

Publication number Publication date
CN115417670B (zh) 2023-03-10

Similar Documents

Publication Publication Date Title
CN113929450B (zh) 一种高压电性能的CaBi4Ti4O15陶瓷的制备方法
WO2017181912A1 (zh) 无铅压电陶瓷材料和无铅压电元件
CN114644523A (zh) 一种钙钛矿结构高熵介电陶瓷及其制备方法
CN115417670B (zh) 一种在b位进行高熵化设计的高介电常数陶瓷及其制备方法
CN112552048B (zh) 一种具有高压电性能和高剩余极化强度铌酸钾钠陶瓷的制备方法
CN107840655B (zh) 准同型相界的钛酸铋钾基无铅弛豫铁电陶瓷的制备方法
CN113582667A (zh) 一种可低温共烧的高储能反铁电陶瓷材料及其制备方法和应用
CN114085079A (zh) 一种高储能的非等摩尔比高熵钙钛矿氧化物陶瓷材料及其制备方法
CN109320244B (zh) 一种低温烧结压电陶瓷材料及其制备方法
CN107285760B (zh) 一种低损耗巨介电常数陶瓷材料的制备方法
CN107056290B (zh) 一种调控铁电陶瓷居里温度的方法
CN106518058B (zh) 一种由钛酸铋钾和氧化锌构成的无铅复合铁电陶瓷及制备
CN112062556B (zh) 一种锆酸钙-锆酸锶-锆酸钡固溶体陶瓷材料及其制备方法
CN115385688B (zh) 一种锆钛酸锶钡基介电陶瓷材料及其制备方法
KR101014012B1 (ko) 티탄산바륨의 제조 방법
JP7363966B2 (ja) 圧電セラミックス、セラミックス電子部品、及び、圧電セラミックスの製造方法
CN116924796B (zh) 一种abo3型低介电损耗陶瓷及其制备方法
CN112759390A (zh) 一种具有高kp值的PSN-PZT压电陶瓷及其制备方法
CN115477538A (zh) 一种两步烧结制备铌酸钾钠基压电陶瓷的方法
CN115286386A (zh) 一种非化学计量Nb5+的铌钽锆铁酸钾钠铋陶瓷及其制备方法
CN113548887A (zh) 一种钛酸盐系微波介质陶瓷及其制备方法
CN111892398B (zh) 一种Nd和Er共掺杂CaBi8Ti7O27陶瓷的制备方法及其产品
CN116444266B (zh) 一种Ba0.6Sr0.4(Ti0.7Zr0.3)O3基介电陶瓷的制备方法
CN115010493B (zh) 一种高熵焦绿石介电陶瓷材料及其制备方法与应用
CN115073173B (zh) 一种具备超高压电常数的弛豫铁电体pnn-pht材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant