CN113548887A - 一种钛酸盐系微波介质陶瓷及其制备方法 - Google Patents

一种钛酸盐系微波介质陶瓷及其制备方法 Download PDF

Info

Publication number
CN113548887A
CN113548887A CN202110895741.0A CN202110895741A CN113548887A CN 113548887 A CN113548887 A CN 113548887A CN 202110895741 A CN202110895741 A CN 202110895741A CN 113548887 A CN113548887 A CN 113548887A
Authority
CN
China
Prior art keywords
tio
sio
mgtio
microwave dielectric
dielectric ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202110895741.0A
Other languages
English (en)
Inventor
李景慧
徐越
李长青
张世栋
赵萍
杨龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qilu University of Technology
Original Assignee
Qilu University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qilu University of Technology filed Critical Qilu University of Technology
Priority to CN202110895741.0A priority Critical patent/CN113548887A/zh
Publication of CN113548887A publication Critical patent/CN113548887A/zh
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/20Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in magnesium oxide, e.g. forsterite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • C04B2235/3236Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3436Alkaline earth metal silicates, e.g. barium silicate
    • C04B2235/3445Magnesium silicates, e.g. forsterite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及一种钛酸盐系微波介质陶瓷及其制备方法,具体涉及一种具有低介电常数和高品质因数的微波介质陶瓷材料(0.85–x)MgTiO3–xMg2.05SiO4.05–0.15Ca0.61Nd0.26TiO3(x=0.25,0.35,0.45,0.55)及其制备方法,属于微波介质陶瓷技术领域。其制备方法包括配料、混料、烘干、预烧、球磨、再烘干、造粒、排胶和烧结9个步骤,本发明获得钛酸盐系微波介质陶瓷的介电常数εr范围为9.74~17.82,品质因数Q×f的范围为36992GHz~63899GHz,本发明制备工艺简单,过程无污染,生产成本较低,能显著提升其微波介电性能,具有广泛应用前景。

Description

一种钛酸盐系微波介质陶瓷及其制备方法
技术领域
本发明涉及一种钛酸盐系微波介质陶瓷及其制备方法,具体涉及一种具有低介电常数和高品质因数的微波介质陶瓷材料(0.85–x)MgTiO3–xMg2.05SiO4.05–0.15Ca0.61Nd0.26TiO3(x=0.25,0.35,0.45,0.55)及其制备方法,属于微波介质陶瓷技术领域。
背景技术
由于微波无线通信工作频率范围的扩大,例如波段20–30GHz用于VAST、波段28–40GHz用于LMDS等,以及应用于60GHz的通讯设备。这对微波介电陶瓷提出了更高的要求。
近年来,大量的研究人员的研究方向主要集中于具有温度稳定,并且介电常数的范围在10–20的高Q值材料。具有上述介电性能的材料主要用于通讯系统中的电子元件如滤波器等,以此来增强对频率的敏感性和选择性。本发明采用传统两步法固相反应法制备(0.85–x)MgTiO3–xMg2.05SiO4.05–0.15Ca0.61Nd0.26TiO3(x=0.25,0.35,0.45,0.55)陶瓷,通过热分析研究了陶瓷的预烧及烧结工艺,并展开讨论介电性能和显微组织结构的关系。
发明内容
由于微波无线通信工作频率范围的扩大,本发明提供了一种钛酸盐系微波介质陶瓷及其制备方法,具体涉及一种具有低介电常数和高品质因数的微波介质陶瓷材料(0.85–x)MgTiO3–xMg2.05SiO4.05–0.15Ca0.61Nd0.26TiO3(x=0.25,0.35,0.45,0.55)及其制备方法。为了达到上述发明目的,本发明采用以下技术方案:
一种钙钕钛系微波介质陶瓷的制备方法,包括以下步骤:
(1)配料:将Mg(OH)2·4MgCO3·5H2O,TiO2,Nd2O3,CaCO3以及SiO2为原料,按照(0.85–x)MgTiO3–xMg2.05SiO4.05–0.15Ca0.61Nd0.26TiO3(x=0.25,0.35,0.45,0.55)的化学计量比(0.17+0.21x):x:0.0195:0.024:x进行配比;
(2)混料:将配料得到的物料、球磨石、纯水按照1:4.5:1.5的质量比置于球磨机中进行湿法球磨,球磨时间为20h,得到泥浆状原料;
(3)烘干:将步骤(2)的泥浆状原料置入烘箱中烘干至恒重,得到干燥的粉体;
(4)预烧:将一次球磨后的MgTiO3以及Ca0.61Nd0.26TiO3的粉体在1100℃进行预烧,预烧时间为4h;将一次球磨的Mg2.05SiO4.05的粉体在1350℃进行预烧,预烧时间为3h;
(5)球磨:按式(0.85–x)MgTiO3–xMg2.05SiO4.05–0.15Ca0.61Nd0.26TiO3配比经第二次球磨,得到浆料;
(6)烘干:将步骤(5)的浆料置入烘箱中烘干至恒重,得到干燥的混合料;
(7)造粒:将步骤(6)得到的混合料粉末过60目标准筛,取筛下料加入5wt.%PVA的水溶液;混合均匀后将粉料颗粒过60目标准筛,取筛下料制成圆柱体生坯;
(8)排胶:将圆柱体生坯置于高温炉中以5℃/min的速度升温至550℃,保温1h;
(9)烧结:将排胶处理后的圆柱体生坯进行烧结处理,得到微波介质陶瓷材料(0.85–x)MgTiO3–xMg2.05SiO4.05–0.15Ca0.61Nd0.26TiO3(x=0.25、0.35、0.45、0.55)。
进一步的,本发明步骤(9)之后还包括以下步骤:
(10)后期机械加工:将烧结好的微波介质陶瓷材料(0.85–x)MgTiO3–xMg2.05SiO4.05–0.15Ca0.61Nd0.26TiO3(x=0.25、0.35、0.45、0.55)进行研磨抛光。
进一步的,所述步骤(1)中所述Nd2O3的纯度为99.99%,所述CaCO3的纯度为99.99%,TiO2的纯度为99.99%。
进一步的,所述步骤(2)和步骤(5)中所述球磨机为行星式球磨机,转速为110r/min-180r/min。
所述步骤(7)中聚乙烯醇溶液的添加量为(0.85–x)MgTiO3–xMg2.05SiO4.05–0.15Ca0.61Nd0.26TiO3(x=0.25、0.35、0.45、0.55)粉末质量的5wt%;所述圆柱体生坯的直径为Φ=15mm、厚度6~7mm。
进一步的,所述步骤(9)中先于550℃保温1h,以3℃/min的速度将温度升至1300℃-1420℃烧结2h,然后自然冷却。
本发明中,上述方法获得的钛酸盐系微波介质陶瓷的介电常数εr范围为9.74~17.82,品质因数Q×f的范围为36992GHz~63899GHz;用于通信领域中。本发明与现有技术相比具有以下优点:
本发明制备的微波介质陶瓷材料(0.85–x)MgTiO3–xMg2.05SiO4.05–0.15Ca0.61Nd0.26TiO3(x=0.25、0.35、0.45、0.55)的制备方法为标准的固相反应法,制备工艺简单,过程无污染,生产成本较低,能显著提升其微波介电性能,具有广泛应用前景。
本发明制备的微波介质陶瓷其烧结温度低(最佳烧结温度为1380℃),微波性能优异,能够稳定得到具有低介电常数(9.74~17.82),高品质因数(36992GHz~63899GHz)的微波介质陶瓷材料。
附图说明
图1为Mg2.05SiO4.05于1350℃保温3h所得预烧粉体的XRD图;
图2为本发明制备得到的微波介质陶瓷材料(0.85–x)MgTiO3–xMg2.05SiO4.05–0.15Ca0.61Nd0.26TiO3(x=0.25、0.35、0.45、0.55)在1380℃烧结2h的XRD图谱;
图3为本发明制备得到的微波介质陶瓷材料(0.85–x)MgTiO3–xMg2.05SiO4.05–0.15Ca0.61Nd0.26TiO3(x=0.25、0.35、0.45、0.55)的介电常数随烧结温度变化的曲线图;
图4为本发明制备得到的微波介质陶瓷材料(0.85–x)MgTiO3–xMg2.05SiO4.05–0.15Ca0.61Nd0.26TiO3(x=0.25、0.35、0.45、0.55)的品质因数随烧结温度变化的曲线图。
具体实施方式
下面结合具体实施例来进一步描述本发明,本发明的优点和特点将会随着描述而更为清楚。但实施例仅是范例性的,并不对本发明的范围构成任何限制。本领域技术人员应该理解的是,在不偏离本发明的精神和范围下可以对本发明技术方案的细节和形式进行修改或替换,但这些修改和替换均落入本发明的保护范围内。
本发明实施例中Nd2O3的纯度为99.99%,所述CaCO3的纯度为99.99%,TiO2的纯度为99.99%。
实施例1:一种钙钕钛系微波介质陶瓷材料(0.85–x)MgTiO3–xMg2.05SiO4.05–0.15Ca0.61Nd0.26TiO3(x=0.25)及其制备方法
包括以下步骤:
(1)配料:将原料Mg(OH)2·4MgCO3·5H2O,TiO2,Nd2O3,CaCO3以及SiO2为原料,按照化学计量比0.89:1:0.078:0.096:1进行配比;
(2)混料:将配料得到的物料、球磨石、纯水按照1:3:1.2的质量比置于转速为150rp/min的行星式球磨机中进行湿法球磨,球磨时间为20h,得到泥浆状原料;
(3)烘干:将步骤(2)的泥浆状原料置入烘箱中烘干至恒重,得到干燥的混合料;
(4)预烧:将步骤(3)的混合料过筛80目分散,然后置入高温炉中预烧4h,预烧温度为1100℃,制得MgTiO3以及Ca0.61Nd0.26TiO3粉体,将一次球磨后的Mg2.05SiO4.05的粉体在1350℃进行预烧,预烧时间为3h;
(5)球磨:将步骤(4)的Ca0.61Nd0.26TiO3粉体加入纯MgTiO3,并加入纯水(0.85–x)MgTiO3–xMg2.05SiO4.05–0.15Ca0.61Nd0.26TiO3(x=0.25)置于转速为150rp/min的行星式球磨机中进行湿法球磨,研磨10h,形成浆料;
(6)烘干:将步骤(5)的(0.85–x)MgTiO3–xMg2.05SiO4.05–0.15Ca0.61Nd0.26TiO3(x=0.25)浆料置于烘箱中在60℃下烘干至恒重,得到(0.85–x)MgTiO3–xMg2.05SiO4.05–0.15Ca0.61Nd0.26TiO3(x=0.25)粉末;
(7)造粒:将步骤(6)的(0.85–x)MgTiO3–xMg2.05SiO4.05–0.15Ca0.61Nd0.26TiO3(x=0.25)粉末过60目标准筛,取筛下料加入5wt%聚乙烯醇溶液,混合均匀后将粉料颗粒过60目标准筛,取筛下料在300Mpa压力下压制成直径15mm,厚6-7mm的压制成圆柱体生坯;
(8)排胶:将圆柱体生坯置于高温炉中以3℃/min的速度升温至550℃,保温1h;
(9)烧结:高温炉中以3℃/min的速度将温度升至1300℃,将排胶处理后的圆柱体生坯在1300℃下烧结2小时后随炉冷却,得到微波介质陶瓷材料(0.85–x)MgTiO3–xMg2.05SiO4.05–0.15Ca0.61Nd0.26TiO3(x=0.25)。
(10)后期机械加工:将烧结好的(0.85–x)MgTiO3–xMg2.05SiO4.05–0.15Ca0.61Nd0.26TiO3(x=0.25)陶瓷进行研磨抛光,得到表面平整光滑的陶瓷成品。
实施例2:一种钙钕钛系微波介质陶瓷材料(0.85–x)MgTiO3–xMg2.05SiO4.05–0.15Ca0.61Nd0.26TiO3(x=0.35)及其制备方法
包括以下步骤:
(1)配料:将原料Mg(OH)2·4MgCO3·5H2O,TiO2,Nd2O3,CaCO3以及SiO2为原料,按照化学计量比0.2435:0.75:0.0195:0.0915:0.35进行配比;
(2)混料:将配料得到的物料、球磨石、纯水按照1:3:1.2的质量比置于转速为150rp/min的行星式球磨机中进行湿法球磨,球磨时间为20h,得到泥浆状原料;
(3)烘干:将步骤(2)的泥浆状原料置入烘箱中烘干至恒重,得到干燥的混合料;
(4)预烧:将步骤(3)的混合料过筛80目分散,然后置入高温炉中预烧4h,预烧温度为1100℃,制得MgTiO3以及Ca0.61Nd0.26TiO3粉体,将一次球磨后的Mg2.05SiO4.05的粉体在1350℃进行预烧,预烧时间为3h;
(5)球磨:将步骤(4)的Ca0.61Nd0.26TiO3粉体加入纯MgTiO3,并加入纯水(0.85–x)MgTiO3–xMg2.05SiO4.05–0.15Ca0.61Nd0.26TiO3(x=0.35)置于转速为150rp/min的行星式球磨机中进行湿法球磨,研磨10h,形成浆料;
(6)烘干:将步骤(5)的(0.85–x)MgTiO3–xMg2.05SiO4.05–0.15Ca0.61Nd0.26TiO3(x=0.35)浆料置于烘箱中在60℃下烘干至恒重,得到(0.85–x)MgTiO3–xMg2.05SiO4.05–0.15Ca0.61Nd0.26TiO3(x=0.35)粉末;
(7)造粒:将步骤(6)的(0.85–x)MgTiO3–xMg2.05SiO4.05–0.15Ca0.61Nd0.26TiO3(x=0.35)粉末过60目标准筛,取筛下料加入5wt%聚乙烯醇溶液,混合均匀后将粉料颗粒过60目标准筛,取筛下料在300Mpa压力下压制成直径15mm,厚6-7mm的压制成圆柱体生坯;
(8)排胶:将圆柱体生坯置于高温炉中以3℃/min的速度升温至550℃,保温1h;
(9)烧结:高温炉中以3℃/min的速度将温度升至1300℃,将排胶处理后的圆柱体生坯在1340℃下烧结2小时后随炉冷却,得到微波介质陶瓷材料(0.85–x)MgTiO3–xMg2.05SiO4.05–0.15Ca0.61Nd0.26TiO3(x=0.35)。
(10)后期机械加工:将烧结好的(0.85–x)MgTiO3–xMg2.05SiO4.05–0.15Ca0.61Nd0.26TiO3(x=0.35)陶瓷进行研磨抛光,得到表面平整光滑的陶瓷成品。
实施例3:一种钙钕钛系微波介质陶瓷材料(0.85–x)MgTiO3–xMg2.05SiO4.05–0.15Ca0.61Nd0.26TiO3(x=0.45)及其制备方法
包括以下步骤:
(1)配料:将原料Mg(OH)2·4MgCO3·5H2O,TiO2,Nd2O3,CaCO3以及SiO2为原料,按照0.2645:0.75:0.0195:0.45化学计量比进行配比;
(2)混料:将配料得到的物料、球磨石、纯水按照1:3:1.2的质量比置于转速为150rp/min的行星式球磨机中进行湿法球磨,球磨时间为20h,得到泥浆状原料;
(3)烘干:将步骤(2)的泥浆状原料置入烘箱中烘干至恒重,得到干燥的混合料;
(4)预烧:将步骤(3)的混合料过筛80目分散,然后置入高温炉中预烧4h,预烧温度为1100℃,制得MgTiO3以及Ca0.61Nd0.26TiO3粉体,将一次球磨后的Mg2.05SiO4.05的粉体在1350℃进行预烧,预烧时间为3h;
(5)球磨:将步骤(4)的Ca0.61Nd0.26TiO3粉体加入纯MgTiO3,并加入纯水(0.85–x)MgTiO3–xMg2.05SiO4.05–0.15Ca0.61Nd0.26TiO3(x=0.45)置于转速为150rp/min的行星式球磨机中进行湿法球磨,研磨10h,形成浆料;
(6)烘干:将步骤(5)的(0.85–x)MgTiO3–xMg2.05SiO4.05–0.15Ca0.61Nd0.26TiO3(x=0.45)浆料置于烘箱中在60℃下烘干至恒重,得到(0.85–x)MgTiO3–xMg2.05SiO4.05–0.15Ca0.61Nd0.26TiO3(x=0.45)粉末;
(7)造粒:将步骤(6)的(0.85–x)MgTiO3–xMg2.05SiO4.05–0.15Ca0.61Nd0.26TiO3(x=0.45)粉末过60目标准筛,取筛下料加入5wt%聚乙烯醇溶液,混合均匀后将粉料颗粒过60目标准筛,取筛下料在300Mpa压力下压制成直径15mm,厚6-7mm的压制成圆柱体生坯;
(8)排胶:将圆柱体生坯置于高温炉中以3℃/min的速度升温至550℃,保温1h;
(9)烧结:高温炉中以3℃/min的速度将温度升至1300℃,将排胶处理后的圆柱体生坯在1380℃下烧结2小时后随炉冷却,得到微波介质陶瓷材料(0.85–x)MgTiO3–xMg2.05SiO4.05–0.15Ca0.61Nd0.26TiO3(x=0.45)。
(10)后期机械加工:将烧结好的(0.85–x)MgTiO3–xMg2.05SiO4.05–0.15Ca0.61Nd0.26TiO3(x=0.45)陶瓷进行研磨抛光,得到表面平整光滑的陶瓷成品。
实施例4:一种钙钕钛系微波介质陶瓷材料(0.85–x)MgTiO3–xMg2.05SiO4.05–0.15Ca0.61Nd0.26TiO3(x=0.55)及其制备方法
包括以下步骤:
(1)配料:将原料Mg(OH)2·4MgCO3·5H2O,TiO2,Nd2O3,CaCO3以及SiO2为原料,按照0.2855:0.45;0.0195:0.915:0.55化学计量比进行配比;
(2)混料:将配料得到的物料、球磨石、纯水按照1:3:1.2的质量比置于转速为150rp/min的行星式球磨机中进行湿法球磨,球磨时间为20h,得到泥浆状原料;
(3)烘干:将步骤(2)的泥浆状原料置入烘箱中烘干至恒重,得到干燥的混合料;
(4)预烧:将步骤(3)的混合料过筛80目分散,然后置入高温炉中预烧4h,预烧温度为1100℃,制得MgTiO3以及Ca0.61Nd0.26TiO3粉体,将一次球磨后的Mg2.05SiO4.05的粉体在1350℃进行预烧,预烧时间为3h;
(5)球磨:将步骤(4)的Ca0.61Nd0.26TiO3粉体加入纯MgTiO3,并加入纯水(0.85–x)MgTiO3–xMg2.05SiO4.05–0.15Ca0.61Nd0.26TiO3(x=0.55)置于转速为150rp/min的行星式球磨机中进行湿法球磨,研磨10h,形成浆料;
(6)烘干:将步骤(5)的(0.85–x)MgTiO3–xMg2.05SiO4.05–0.15Ca0.61Nd0.26TiO3(x=0.55)浆料置于烘箱中在60℃下烘干至恒重,得到(0.85–x)MgTiO3–xMg2.05SiO4.05–0.15Ca0.61Nd0.26TiO3(x=0.55)粉末;
(7)造粒:将步骤(6)的(0.85–x)MgTiO3–xMg2.05SiO4.05–0.15Ca0.61Nd0.26TiO3(x=0.55)粉末过60目标准筛,取筛下料加入5wt%聚乙烯醇溶液,混合均匀后将粉料颗粒过60目标准筛,取筛下料在300Mpa压力下压制成直径15mm,厚6-7mm的压制成圆柱体生坯;
(8)排胶:将圆柱体生坯置于高温炉中以3℃/min的速度升温至550℃,保温1h;
(9)烧结:高温炉中以3℃/min的速度将温度升至1300℃,将排胶处理后的圆柱体生坯在1420℃下烧结2小时后随炉冷却,得到微波介质陶瓷材料(0.85–x)MgTiO3–xMg2.05SiO4.05–0.15Ca0.61Nd0.26TiO3(x=0.55)。
(10)后期机械加工:将烧结好的(0.85–x)MgTiO3–xMg2.05SiO4.05–0.15Ca0.61Nd0.26TiO3(x=0.55)陶瓷进行研磨抛光,得到表面平整光滑的陶瓷成品。
试验例:对本发明获得的钙钕钛系微波介质陶瓷进行性能检测
陶瓷样品的体积密度采用阿基米德排水法测量。采用X射线衍射仪(D/MAX 2000X)确定烧结过程中的中间相以及反应产物的最终物相,连续扫描模式,6°/min;微波介电性能采用矢量网络分析仪(Keysight E5232B)测试;显微组织形貌采用白光干涉仪(KLA-TencorMicroXAM-800)进行观察。如图1-4所示,图2结果表明在该体系中只有三相存在,而并无其它杂相存在,这表明三相可以很好的共存而不发生固溶。可以看到,这三相分别为MgTiO3、Mg2SiO4和Ca0.61Nd0.26TiO3。并没有发现能够降低介电性能的MgTi2O5相和MgSiO3相。这主要是由于该体系中在制备Mg2.05SiO4.05除了Mg2SiO4还有剩余的MgO,如图1所示,这些过量的MgO能够抑制MgTi2O5的生成。图3显示,介电常数无明显变化,介电常数εr范围为9.74~17.82。图4显示,品质因数Q×f的范围为36992GHz~63899GHz,当离子掺杂量x=0.35时,在1380℃下烧结的品质因数最高。
以上实施例的说明只是用于帮助理解本发明方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求保护范围内。

Claims (9)

1.一种钙钕钛系微波介质陶瓷,其特征在于,所述微波介质陶瓷的材料为(0.85–x)MgTiO3–xMg2.05SiO4.05–0.15Ca0.61Nd0.26TiO3(x=0.25,0.35,0.45,0.55)。
2.如权利要求1所述钙钕钛系微波介质陶瓷的制备方法,其特征在于,所述制备方法包括以下步骤:
(1)配料:将Mg(OH)2·4MgCO3·5H2O,TiO2,Nd2O3,CaCO3以及SiO2为原料,按照(0.85–x)MgTiO3–xMg2.05SiO4.05–0.15Ca0.61Nd0.26TiO3(x=0.25,0.35,0.45,0.55)的化学计量比(0.17+0.21x):x:0.0195:0.024:x进行配比;
(2)混料:将配料得到的物料、球磨石、纯水按照1:4.5:1.5的质量比置于球磨机中进行湿法球磨,球磨时间为20h,得到泥浆状原料;
(3)烘干:将步骤(2)的泥浆状原料置入烘箱中烘干至恒重,得到干燥的粉体;
(4)预烧:将一次球磨后的MgTiO3以及Ca0.61Nd0.26TiO3的粉体在1100℃进行预烧,预烧时间为4h;将一次球磨的Mg2.05SiO4.05的粉体在1350℃进行预烧,预烧时间为3h;
(5)球磨:按式(0.85–x)MgTiO3–xMg2.05SiO4.05–0.15Ca0.61Nd0.26TiO3配比经第二次球磨,得到浆料;
(6)烘干:将步骤(5)的浆料置入烘箱中烘干至恒重,得到干燥的混合料;
(7)造粒:将步骤(6)得到的混合料粉末过60目标准筛,取筛下料加入5wt.%PVA的水溶液;混合均匀后将粉料颗粒过60目标准筛,取筛下料制成圆柱体生坯;
(8)排胶:将圆柱体生坯置于高温炉中以5℃/min的速度升温至550℃,保温1h;
(9)烧结:将排胶处理后的圆柱体生坯进行烧结处理,得到微波介质陶瓷材料(0.85–x)MgTiO3–xMg2.05SiO4.05–0.15Ca0.61Nd0.26TiO3(x=0.25、0.35、0.45、0.55)。
3.根据权利要求2所述的制备方法,其特征在于,所述制备方法还包括以下步骤:
(10)后期机械加工:将烧结好的微波介质陶瓷材料(0.85–x)MgTiO3–xMg2.05SiO4.05–0.15Ca0.61Nd0.26TiO3(x=0.25、0.35、0.45、0.55)进行研磨抛光。
4.根据权利要求2所述的制备方法,其特征在于,所述步骤(1)中Nd2O3的纯度为99.99%,CaCO3的纯度为99.99%,TiO2的纯度为99.99%。
5.根据权利要求2所述的制备方法,其特征在于,所述步骤(2)和步骤(5)中所述球磨机为行星式球磨机,转速为110r/min-180r/min。
6.根据权利要求2所述的制备方法,其特征在于,所述步骤(7)中聚乙烯醇溶液的添加量为(0.85–x)MgTiO3–xMg2.05SiO4.05–0.15Ca0.61Nd0.26TiO3(x=0.25、0.35、0.45、0.55)粉末质量的5wt%;所述圆柱体生坯的直径为Φ=15mm、厚度6~7mm。
7.根据权利要求2所述的制备方法,其特征在于,所述步骤(9)中先于550℃保温1h,以3℃/min的速度将温度升至1300℃-1420℃烧结2h,然后自然冷却。
8.如权利要求2-7任一项所述制备方法获得的钙钕钛系微波介质陶瓷的介电常数εr范围为9.74~17.82,品质因数Q×f的范围为36992GHz~63899GHz。
9.如权利要求2-7任一项所述制备方法获得的钙钕钛系微波介质陶瓷在通信领域中的应用。
CN202110895741.0A 2021-08-05 2021-08-05 一种钛酸盐系微波介质陶瓷及其制备方法 Withdrawn CN113548887A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110895741.0A CN113548887A (zh) 2021-08-05 2021-08-05 一种钛酸盐系微波介质陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110895741.0A CN113548887A (zh) 2021-08-05 2021-08-05 一种钛酸盐系微波介质陶瓷及其制备方法

Publications (1)

Publication Number Publication Date
CN113548887A true CN113548887A (zh) 2021-10-26

Family

ID=78105268

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110895741.0A Withdrawn CN113548887A (zh) 2021-08-05 2021-08-05 一种钛酸盐系微波介质陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN113548887A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116354700A (zh) * 2023-03-03 2023-06-30 深圳顺络电子股份有限公司 低介电常数微波陶瓷材料、微波陶瓷滤波器和制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116354700A (zh) * 2023-03-03 2023-06-30 深圳顺络电子股份有限公司 低介电常数微波陶瓷材料、微波陶瓷滤波器和制备方法

Similar Documents

Publication Publication Date Title
CN110183227B (zh) 一种Li2MoO4-Mg2SiO4基复合陶瓷微波材料及其制备方法
CN111592348A (zh) 一种具有优异温度稳定性的低介电常数微波介质陶瓷及其制备方法
CN110981439A (zh) 一种微波陶瓷粉料及其制备方法和其在介质滤波器中的应用
CN113233889A (zh) 一种钙钕钛系微波介质陶瓷及其制备方法
CN101857435A (zh) 中温烧结复合铌酸盐高频介质陶瓷及其制备方法
CN113307615B (zh) 一种微波介质陶瓷材料及其制备方法
CN114349493A (zh) 一种铜离子掺杂硅酸钙微波介质陶瓷及其制备方法
CN110436917B (zh) 一种中介微波介质陶瓷材料及其制备方法
CN105000881A (zh) 一种铌酸盐中介电常数微波介质陶瓷材料及其制备方法
CN113548887A (zh) 一种钛酸盐系微波介质陶瓷及其制备方法
CN111004030A (zh) 一种MgTiO3基微波介质陶瓷及其制备方法
CN111908897B (zh) MgO基微波陶瓷介质材料及其制备方法
CN106747574B (zh) 一种微波窑用Si2N2O透波-隔热一体化内衬材料及其制备方法
CN108585833A (zh) 一种MgTiO3基微波介质复合陶瓷及其制备方法
CN105060878A (zh) 低介电常数高品质因数微波介质陶瓷及其制备方法
CN116854472A (zh) 一种微波介质材料及其制备方法
CN115417670B (zh) 一种在b位进行高熵化设计的高介电常数陶瓷及其制备方法
CN111960821B (zh) 一种微波介质陶瓷材料及其制备方法和应用
CN114736012B (zh) 具有超高q值的低介微波介质陶瓷及其ltcc材料
CN110818413A (zh) 一种极低温烧结的钼酸铝基微波介质复合陶瓷及其制备方法
CN110698199A (zh) 一种采用分步预烧法制备的低损耗微波介质陶瓷
CN109354495A (zh) 镁锆铌锑系微波介质陶瓷及制备方法和应用
CN115304367A (zh) 一种微波介电陶瓷的制备方法和产品
CN110357628B (zh) 一种Ca5Mg4-xCox(VO4)6低温烧结微波陶瓷材料及其制备方法
CN111087234B (zh) 一种具有优异温度敏感特性陶瓷在谐振器温度传感器中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20211026

WW01 Invention patent application withdrawn after publication