WO2010107340A1 - Matériau d'anode pour source d'énergie chimiques et procédé de fabrication correspondant - Google Patents

Matériau d'anode pour source d'énergie chimiques et procédé de fabrication correspondant Download PDF

Info

Publication number
WO2010107340A1
WO2010107340A1 PCT/RU2010/000086 RU2010000086W WO2010107340A1 WO 2010107340 A1 WO2010107340 A1 WO 2010107340A1 RU 2010000086 W RU2010000086 W RU 2010000086W WO 2010107340 A1 WO2010107340 A1 WO 2010107340A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
stage
temperature
anode material
mixture
Prior art date
Application number
PCT/RU2010/000086
Other languages
English (en)
Russian (ru)
Inventor
Вадим Сергеевич ГОРШКОВ
Original Assignee
Общество С Ограниченной Ответственностью "Элионт"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество С Ограниченной Ответственностью "Элионт" filed Critical Общество С Ограниченной Ответственностью "Элионт"
Priority to EP10753758.1A priority Critical patent/EP2405512B1/fr
Priority to CN201080019545.7A priority patent/CN102714309B/zh
Publication of WO2010107340A1 publication Critical patent/WO2010107340A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G37/00Compounds of chromium
    • C01G37/006Compounds containing, besides chromium, two or more other elements, with the exception of oxygen or hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the electrical industry, in particular, to anode materials for chemical current sources (CIT) and can be used as starting material for lithium-ion secondary batteries (accumulators) intended for applications requiring high capacity and high working currents, for example, for electric vehicles - HEV (hybrid electric car), PHEV (rechargeable hybrid electric car), BEV (battery electric car), or a portable electric tool.
  • CIT chemical current sources
  • accumulators lithium-ion secondary batteries
  • the level of technology Currently, the most used pair of electrodes in lithium-ion batteries is a pair of LiCoO 2 / C (carbon). However, the compound LiC 6 , which is formed when lithium ions are introduced into the carbon structure, for example, graphite, is explosive.
  • This formula expresses the formation of two nonequivalent sublattices with octahedral positions of the 16c and lbd types. Since in the described process the initial tetrahedral sites, when filled with additional lithium atoms, become octahedral (8a ⁇ 16c), this concentration phase transition is possible only if all tetrahedral positions in the initial spinel structure are occupied by mobile lithium.
  • the charged form of the material - Li 7 Ti 5 Oj 2 is completely safe, unlike LiC 6 and, especially, metallic lithium,
  • titanium has a high oxidation state of 4+, and the charge balance can be expressed by the formula Li + 4 Ti 4+ 5 0 2 ⁇ i 2 . Since titanium ion 4+ has an electronic configuration of ⁇ d °, the valence band is completely filled, and the conduction band
  • the electronic conductivity, as for other dielectrics, is determined by the “imperfections” of the sample, primarily the presence and concentration of impurities giving donor and acceptor levels, as well as intrinsic defectiveness. According to many published sources, the electronic conductivity of Li 4 Ti 5 Oi 2 under normal conditions lies in the range 100 10 ⁇ 8 - 10 ⁇ 13 ohm "1- cm " 1 . [FROM. H. Schep, JT Vaugeu, AN Japsep, DW Dees, AJ Kahaiap, T. Goascher, MM Thasker.
  • compositions with electrically conductive polymers have also been proposed.
  • the electrode material is an electrically conductive additive.
  • Li 7 Ti 5 O 12 phase obtained from the starting material upon its discharge is a very good conductor, since it contains a high concentration of Ti 3+ ( ⁇ d 1 ), i.e. electrons in the conduction band (in accordance with the formula Li 7 Ti 3+ zTi 4+ 2 ⁇ j 2 ).
  • Li 4 Ti 5 Oi 2 particles (starting from the composition L locker + ⁇ is ⁇ i ⁇ , where ⁇ ⁇ 0.1, i.e. ⁇ 1/30 of the total capacity) are covered with a conductive layer of Li 7 Ti S O 12 which makes the presence of a previously created layer redundant. Further, the process proceeds along the interphase boundary between Li 4 Ti 5 O 12 and Li 7 Ti 5 Oi 2 , i.e. lithium ions and electrons enter the reaction zone through the layer
  • the concentration of the alloying element is such that the type of crystalline structure of the starting material does not change. As a result of such substitution, impurity charge defects are formed in the substance, which serve as carriers of electric current.
  • the known method is a prototype of the receipt of the specified anode material for
  • lithium-ion HIT includes the preparation of a mixture of the starting components containing lithium and titanium by homogenization and grinding, followed by heat treatment of the prepared mixture in a controlled atmosphere from inert and reducing gases. Moreover, hydrogen, hydrocarbons, carbon monoxide are used as reducing gases, and the reduction process (heat treatment)
  • the objective of the present invention is to obtain an anode material for lithium-ion ChIT having high electrical conductivity and electrochemical 260 capacity for use in devices operating at high discharge currents.
  • the problem is solved in that the known anode material for lithium-ionic chitos based on lithium-titanium spinel of the chemical formula Li 4 Ti 5 0i 2-x , where x is the deviation from stoichiometry in the range 0 ⁇ x ⁇ 0.02,
  • ACCORDING TO THE INVENTION contains alloying components — chromium and vanadium in equivalent amounts to achieve the composition of the formula Li 4 Ti 5 . 2 y (Cr y V y ) O 12-x , where 0.02 ⁇ x ⁇ 0.5, y is the stoichiometric coefficient in the range 0 ⁇ y ⁇ 0.25.
  • anode material for lithium-ionic chitosan comprising preparing a mixture of starting components containing lithium and titanium, by homogenization and grinding, followed by heat treatment of the prepared mixture in an atmosphere of inert and reducing gases, ACCORDING TO THE INVENTION, sources of alloying elements — chromium and vanadium — are introduced into the mixture of the starting components, grinding 275 is carried out to obtain particles with a size of no more than 0.5 microns, and heat treatment is carried out step by step in an atmosphere of argon and acetylene, adjusting the volume ratio of gases in the argon: acetylene stream from 999: 1 to 750: 250, respectively, according to the following scheme:
  • the mixture of components is heated to a temperature not exceeding 350 ° C;
  • heating is continued in the temperature range 350 - 750 ° C with a speed of not more than 10 ° C / min, providing solid-phase interaction of the components;
  • the temperature is increased to 840 - 850 0 C and the resulting product is held at this temperature for at least 1 hour;
  • the temperature is lowered to 520 - 580 ° C with a speed of no more
  • the finished anode material is purged with pure argon 290 when cooled to 40 - 60 ° C and packaged.
  • the type of alloying elements and their concentration are selected in such a way that these elements appear only at the octahedral positions of the crystal structure, which ensures the cyclicality of the material in the electrochemical process; 00 - grinding of the starting components to obtain particles no larger than
  • the temperature, speed and time regimes of stepwise heat treatment contribute to the main reaction in the solid phase without melting, without a significant increase in the particle size of the material, without the formation of impurity compounds and low-reaction titanium oxide in the form of rutile, with the achievement
  • the final heat treatment step when purging with pure argon prevents oxidation of the finished anode material during cooling, protecting it also from moisture absorption from the atmosphere.
  • Electrochemical potential 1.53 ⁇ 0.01 V 320 The best embodiment of the invention.
  • the best option has been selected from a large-scale series of experiments (more than 100) for the production of anode material for lithium-ion chemically active compounds carried out in laboratory conditions of an electrochemical plant in the Ural region.
  • the starting components were homogenized (mixed) and placed in a ball mill for grinding to a particle size of not more than 0.5 ⁇ m.
  • the degree of homogeneity of the mixture was characterized by the fact that an arbitrary sample of a mixture of reagents weighing not more than 0.1 g contained an excess of any of the components not more than 0.1%.
  • 360 the prepared mixture of components was placed in a tube furnace with a controlled gas atmosphere, creating a volumetric ratio of gases in the argon: acetylene stream, respectively 750: 250.
  • the heat treatment was carried out in stages according to the following scheme:
  • the mixture of components was heated to a temperature of 350 ° C;
  • heating was continued in the temperature range 350 - 750 ° C with a speed of 10 ° C / min, providing solid-phase interaction (recovery) of the components according to the main reaction;
  • the temperature was increased to 850 ° C and the resulting product was held at this temperature for 1 hour;
  • the temperature was lowered to 550 ° C at a rate of 4 ° C / min and the obtained anode material was kept at this temperature for 2 hours; - at the finish stage, the finished anode material was purged with pure argon while cooling to a temperature below 50 0 C and packed in containers in
  • the inventive anode material for lithium-ion ChIT having high electrochemical capacity (165 ⁇ 5 mA-h / g) and electronic conductivity

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

La présente invention concerne l'industrie électrotechnique, et plus précisément des matériaux anodiques pour les cellules électrochimiques aux ions de lithium. Elle porte sur un matériau d'anode pour cellules électrochimiques, qui est basé sur le spinelle lithium-titane et correspond à la formule chimique Li(4)Ti(5-2y) ((Cr(y)V(y)) O(12-x), où « x » est un écart par rapport à la stoechiométrie de l'ordre de 0,02 <x <0,05, et « y » est le coefficient stoechiométrique de l'ordre de 0 <y <0,25. Le procédé de fabrication du matériau d'anode consiste à préparer un mélange de composants de départ, qui contiennent du lithium et du titane et des sources d'alliages de chrome et de vanadium, par l'homogénéisation et le broyage, effectués jusqu'à ce que les particules aient une taille inférieure ou égale à 0,5 micromètres, après quoi on effectue un traitement thermique du mélange étape par étape dans une atmosphère contrôlée constituée d'argon inerte, puis on effectue la préparation du mélange d'acétylène de réduction avec de l'argon, avec un rapport de gaz dans le flux de 999:1 à 750:250, respectivement, en utilisant le schéma suivant: dans un premier stade, le mélange des composants est chauffé à une température ne dépassant pas 350 ° C, dans un deuxième stade, on poursuit le réchauffement dans une plage de températures de 350-750 ° C. Dans un troisième stade, la température est portée à 840-880°C; dans un quatrième stade, la température est abaissée à 520-580 °C. Au stade final, l'argon pur est soufflé sur le matériau d'anode fini lors du refroidissement à 40-60 ° C, puis ce matériau est mis sous emballage. L'invention permet d'augmenter la capacité électrochimique et la conductivité électronique.
PCT/RU2010/000086 2009-03-06 2010-02-25 Matériau d'anode pour source d'énergie chimiques et procédé de fabrication correspondant WO2010107340A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP10753758.1A EP2405512B1 (fr) 2009-03-06 2010-02-25 Matériau d'anode pour sources d'énergie chimique et procédé de fabrication correspondant
CN201080019545.7A CN102714309B (zh) 2009-03-06 2010-02-25 用于电化学电池的阳极材料及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2009107944/09A RU2397576C1 (ru) 2009-03-06 2009-03-06 Анодный материал для литий-ионных хит и способ его получения
RU2009107944 2009-03-06

Publications (1)

Publication Number Publication Date
WO2010107340A1 true WO2010107340A1 (fr) 2010-09-23

Family

ID=42677415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2010/000086 WO2010107340A1 (fr) 2009-03-06 2010-02-25 Matériau d'anode pour source d'énergie chimiques et procédé de fabrication correspondant

Country Status (6)

Country Link
US (2) US8367249B2 (fr)
EP (1) EP2405512B1 (fr)
KR (1) KR20120004987A (fr)
CN (1) CN102714309B (fr)
RU (1) RU2397576C1 (fr)
WO (1) WO2010107340A1 (fr)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI441779B (zh) * 2010-12-20 2014-06-21 Ind Tech Res Inst 摻雜磷之尖晶石結構鋰鈦氧化物材料及其製備方法
CN102844912B (zh) * 2011-02-15 2016-07-13 松下知识产权经营株式会社 锂离子二次电池用负极活性物质材料及其制造方法
RU2495752C1 (ru) * 2012-04-02 2013-10-20 Федеральное государственное бюджетное учреждение науки Институт неорганической химии им. А.В. Николаева Сибирского отделения Российской академии наук (ИНХ СО РАН) Способ получения композиционного материала, содержащего слоистые материалы на основе графита и сульфида молибдена
KR101708361B1 (ko) 2012-08-21 2017-02-20 삼성에스디아이 주식회사 복합 음극 활물질, 그 제조방법, 및 이를 포함하는 리튬 전지
KR20140025160A (ko) 2012-08-21 2014-03-04 삼성에스디아이 주식회사 복합 음극 활물질, 그 제조방법, 및 이를 포함하는 리튬 전지
GB2508218A (en) * 2012-11-26 2014-05-28 Leclanch S A Electrode for the reduction of gassing in lithium titanate cells
EP3709402A1 (fr) * 2014-09-10 2020-09-16 Kabushiki Kaisha Toshiba Batterie électrolytique non aqueuse
EP3353844B1 (fr) 2015-03-27 2022-05-11 Mason K. Harrup Solvants entièrement inorganiques pour électrolytes
US10707531B1 (en) 2016-09-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
CN110459750B (zh) * 2019-08-21 2023-06-09 内蒙古骅扬高新材料科技有限公司 一种锂离子动力电池负极材料及其制备方法
CN112456546A (zh) * 2020-12-09 2021-03-09 昆明理工大学 一种锂离子电池电极材料及其制备方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57152669A (en) * 1981-03-18 1982-09-21 Sanyo Electric Co Ltd Chargeable organic electrolyte battery
US6379843B1 (en) 1996-06-14 2002-04-30 Hitachi Maxwell, Ltd. Nonaqueous secondary battery with lithium titanium cathode
US20040217335A1 (en) * 2003-04-29 2004-11-04 Hans-Josef Sterzel Preparation of nanocrystalline lithium titanate spinels
US6881393B2 (en) 2002-03-08 2005-04-19 Altair Nanomaterials Inc. Process for making nano-sized and sub-micron-sized lithium-transition metal oxides
JP2006202552A (ja) * 2005-01-19 2006-08-03 Sii Micro Parts Ltd リチウム電池およびその製造方法
US7211350B2 (en) 2001-01-29 2007-05-01 Rutgers University Foundation Nanostructure lithium titanate electrode for high cycle rate rechargeable electrochemical cell
RU2304325C2 (ru) 2003-06-25 2007-08-10 Эл Джи Кем, Лтд. Анодный материал для вторичного литиевого элемента большой емкости
US20070238023A1 (en) 2006-04-11 2007-10-11 Enerdel, Inc. Lithium Titanate And Method Of Forming The Same
US20070243467A1 (en) 2000-12-05 2007-10-18 Hydro-Quebec Li4Ti5O12, Li(4-a)ZaTi5O12 OR Li4ZbetaTi(5-beta)O12 particles, process for obtaining same and use as electrochemical generators
RU2321924C1 (ru) * 2004-08-17 2008-04-10 Эл Джи Кем, Лтд. Литиевые вторичные батареи с улучшенными безопасностью и рабочими характеристиками
US20080315161A1 (en) 2004-07-28 2008-12-25 Gs Yuasa Corporation Electrochemical Device-Oriented Electrode Material and Production Method Thereof , as Well as Electrochemical Device-Oriented Electrode and Electochemical Device
US20090004563A1 (en) 2007-06-28 2009-01-01 Zhimin Zhong Substituted lithium titanate spinel compound with improved electron conductivity and methods of making the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003217583A (ja) * 2002-01-18 2003-07-31 Hitachi Maxell Ltd 複合電極およびそれを用いた電気化学素子
JP2003297433A (ja) * 2002-03-28 2003-10-17 Hitachi Maxell Ltd 電気化学素子
US7635541B2 (en) * 2004-10-29 2009-12-22 Medtronic, Inc. Method for charging lithium-ion battery
JP4445447B2 (ja) * 2005-09-15 2010-04-07 株式会社東芝 非水電解質電池および電池パック
ES2663895T3 (es) * 2006-05-18 2018-04-17 Hydro-Quebec Procedimiento de preparación de cerámicas, cerámicas obtenidas de este modo y sus utilizaciones concretamente como diana para pulverización catódica

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57152669A (en) * 1981-03-18 1982-09-21 Sanyo Electric Co Ltd Chargeable organic electrolyte battery
US6379843B1 (en) 1996-06-14 2002-04-30 Hitachi Maxwell, Ltd. Nonaqueous secondary battery with lithium titanium cathode
EP0845825B1 (fr) 1996-06-14 2004-01-21 Hitachi Maxell, Ltd. Batterie secondaire au lithium
US20070243467A1 (en) 2000-12-05 2007-10-18 Hydro-Quebec Li4Ti5O12, Li(4-a)ZaTi5O12 OR Li4ZbetaTi(5-beta)O12 particles, process for obtaining same and use as electrochemical generators
US7211350B2 (en) 2001-01-29 2007-05-01 Rutgers University Foundation Nanostructure lithium titanate electrode for high cycle rate rechargeable electrochemical cell
US6881393B2 (en) 2002-03-08 2005-04-19 Altair Nanomaterials Inc. Process for making nano-sized and sub-micron-sized lithium-transition metal oxides
US20040217335A1 (en) * 2003-04-29 2004-11-04 Hans-Josef Sterzel Preparation of nanocrystalline lithium titanate spinels
US7368097B2 (en) 2003-04-29 2008-05-06 Basf Aktiengesellschaft Preparation of nanocrystalline lithium titanate spinels
RU2304325C2 (ru) 2003-06-25 2007-08-10 Эл Джи Кем, Лтд. Анодный материал для вторичного литиевого элемента большой емкости
US20080315161A1 (en) 2004-07-28 2008-12-25 Gs Yuasa Corporation Electrochemical Device-Oriented Electrode Material and Production Method Thereof , as Well as Electrochemical Device-Oriented Electrode and Electochemical Device
RU2321924C1 (ru) * 2004-08-17 2008-04-10 Эл Джи Кем, Лтд. Литиевые вторичные батареи с улучшенными безопасностью и рабочими характеристиками
JP2006202552A (ja) * 2005-01-19 2006-08-03 Sii Micro Parts Ltd リチウム電池およびその製造方法
US20070238023A1 (en) 2006-04-11 2007-10-11 Enerdel, Inc. Lithium Titanate And Method Of Forming The Same
US7541016B2 (en) 2006-04-11 2009-06-02 Enerdel, Inc. Lithium titanate and method of forming the same
US20090004563A1 (en) 2007-06-28 2009-01-01 Zhimin Zhong Substituted lithium titanate spinel compound with improved electron conductivity and methods of making the same

Non-Patent Citations (32)

* Cited by examiner, † Cited by third party
Title
A. D. ROBERTSON, L. TREVINO, H. TUKAMOTO, J. T. S. IRVINE.: "New inorganic spinel oxides for use as negative electrode materials in future lithium-ion batteries II", J. OF POWER SOURCES., vol. 81-82, 1999, pages 352 - 357, XP004363177, DOI: doi:10.1016/S0378-7753(98)00217-1
A. D. ROBERTSON, L. TREVINO, H. TUKAMOTO, J. T. S. IRVINE.: "New inorganic spinel oxides for use as negative electrode materials in future lithium-ion batteries", J. OF POWER SOURCES., vol. 81-82, 1999, pages 352 - 357, XP004363177, DOI: doi:10.1016/S0378-7753(98)00217-1
A.D. ROBERSTON, H. TUKAMOTO, J. T. S. IRVINE.: "Li1+xFe1-3xTi1-2xO4 (0.0 < x < 0.33) Based Spinels: Possible Negative Electrode Materials for Future Li-Ion Batteries", J. ELECTROCHEM. SOC., vol. 146, 1999, pages 3958 - 3962
C. H. CHEN, J. T. VAUGHEY, A. N. JANSEN, D. W. DEES, A. J. KAHAIAN, T. GOACHER, M. M. THACKERAY.: "Studies of Mg-Substituted Li4-xMgxTi5O12 Spinel Electrodes (0 < x < 1) for Lithium Batteries 11", J. ELECTROCHEM. SOC., vol. 148, 2001, pages A102
D. W. MURPHY, R. J. CAVA, S. ZAHURAK, A. SANTORO.: "Ternary LixTiO2 phases from insertion reactions", SOLID STATE IONICS., vol. 9-10, 1983, pages 413 - 417, XP024620168, DOI: doi:10.1016/0167-2738(83)90268-0
E. FERG, R. J. GUMMOW, A. DE KOCK, M. M. THACKERAY.: "Spinel Anodes for Lithium-Ion Batteries", J. ELECTROCHEM. SOC., vol. 141, no. I. 11, 1994, pages L147 - L150
F. RONCI, P. REALE, B. SCROSATI, S. PANERO, V. R. ALBERTINI, P. PERFETTI, M. DI MICHIEL, J. M. MERINO.: "High-Resolution In-Situ Structural Measurements of the Li4/3Ti5/3O4 ''Zero-Strain'' Insertion Material", J. PHYS. CHEM. B, vol. 106, 2002, pages 3082
H. YU, H. XIE, A. F. JALBOUT, X. YAN, X. PAN, R. WANG: "High-rate characteristics of novel anode L14TisO12/polyacene materials for Li-ion secondary batteries", ELECTROCHIMICA ACTA., vol. 53. - I., 2007, pages 4200 - 4204
I. A. LEONIDOV, O. N. LEONIDOVA, O. F. SAMIGULLINA, M. V. PATRAKEEV.: "Structural Aspects of Lithium Transfer in Solid Electrolytes Li2xZn2-3xTi1+xO4 (0.33 < x < 0.67", ZHURNAL STRUKTURNOY KHIMII, vol. 45, no. 2, 2004, pages 262 - 268
J. L. ALLEN, T. R. JOW, J. WOLFENSTINE.: "Low temperature performance ofnanophase Li4Ti5O12", J. OF POWER SOURCES, vol. 159. - 1, 2006, pages 1340 - 1345
J. LI, Y-L. JIN, X.-G. ZHANG, H. YANG.: "Microwave solid-state synthesis of spinel Li4Ti5O12 nanocrystallites as anode material for lithium-ion batteries", SOLID STATE IONICS, vol. 178., 2007, pages 1590 - 1594, XP022374195, DOI: doi:10.1016/j.ssi.2007.10.012
K. M. COLBOW, J. R. DAHN, R. R. HAERING., STRUCTURE AND ELECTROCHEMISTRY OF SPINEL OXIDES LITI204 AND LI4/3TIS/304 // J. OF POWER SOURCES., vol. 26, no. 3/4., 1989, pages 397 - 402
K. ZAGHIB, M. ARMAND, M. GAUTHIER.: "Electrochemistry of Anodes in Solid-State Li-Ion Polymer Batteries II", J. ELECTROCHEM. SOC., vol. M. 145., 1998, pages 3135 - 3140
L. CHENG, X. LI, H. LIU, H. XIONG, P. ZHANG, Y. XIA.: "Carbon-Coated Li4Ti5O12 as a High Rate Electrode Material for Li-Ion Intercalation", J. ELECTROCHEM. SOC., vol. 154. - I, 2007, pages A692 - A697
M. Q. SNYDER, S. A. TREBUKHOVA, B. RAVDEL, M. C. WHEELER, J. DICARLO, C. P. TRIPP, W. J. DESISTO.: "Synthesis and characterization of atomic layer deposited titanium nitride thin films on lithium titanate spinel powder as a lithium-ion battery anode", JOURNAL OF POWER SOURCES, vol. 165, 2007, pages 379 - 3 85
M. WILKENING, R. AMADE, W. IWANIAK, P. HEITJANS.: "Ultraslow Li diffusion in spinel-type structured Li4Ti5012 - A comparison of results from solid state NMR and impedance spectroscopy II", PHYS. CHEM. CHEM. PHYS., vol. 9, 2007, pages 1239 - 1246
P. KUBIAK, A. GARCIA, M. WOMES, L. ALDON, J. OLIVIER-FOURCADE, P.-E. LIPPENS, J.-C. JUMAS.: "Phase transition in the spinel Li4Tis012 induced by lithium insertion. Influence of the substitutions Ti/V, Ti/Mn, Ti/Fe", J. POWER SOURCES., vol. 119 - 12, 2003, pages 626 - 630, XP004430243, DOI: doi:10.1016/S0378-7753(03)00186-1
P. KUBIAK, A. GARCIA, M. WOMES, L. ALDON, J. OLIVIER-FOURCADE, P.-E. LIPPENS, J.-C. JUMAS.: "Phase transition in the spinel Li4TisO12 induced by lithium insertion. Influence of the substitutions TiN, Ti/Mn, Ti/Fe", J. POWER SOURCES., vol. 119-121, 2003, pages 626 - 630, XP004430243, DOI: doi:10.1016/S0378-7753(03)00186-1
P. P. PROSINI, R. MANCINI, L. PETRUCCI ET AL., SOLID STATE IONICS., vol. 144, 2001, pages 185 - 192
R. DOMINKO, M. GABERSCEK, M. BELE, D. MIHAILOVIC, J. JAMNIK.: "Carbon nanocoatings on active materials for Li-ion batteries", J. OF THE EUR. CER. SOC., vol. 27. - I, no. 2-3, 2007, pages 909 - 913
S. HUANG, Z. WEN, B. LIN, J. HAN, X. XU.: "The high-rate performance of the Newly Designed Li4Ti5O12/Cu composite anode for lithium ion batteries", JOURNAL OF ALLOYS AND COMPOUNDS., vol. 457, - I, no. I.1-2, 2008, pages 400 - 403
S. HUANG, Z. WEN, J. ZHANG, X. YANG.: "Improving the electrochemical performance of Li4Tis012/Ag composite by an electroless deposition method", ELECTROCHIMICA ACTA., vol. 52, no. I. 11, 2007, pages 3704 - 3708, XP005897760, DOI: doi:10.1016/j.electacta.2006.10.044
S. HUANG, Z. WEN, J. ZHANG, Z. GU: "Xi. Li4Ti5O12/Ag composite as electrode materials for lithium-ion battery II", SOLID STATE IONICS, vol. 177.- I., 2006, pages 851 - 855, XP025033914, DOI: doi:10.1016/j.ssi.2006.01.050
S. HUANG, Z. WEN, X. ZHU, Z. LIN.: "Effects of dopant on the electrochemical performance of Li4Ti5O12 as electrode material for lithium ion batteries", J. OF POWER SOURCES., vol. 165. - I, 2007, pages 408 - 412, XP005883244, DOI: doi:10.1016/j.jpowsour.2006.12.010
S. HUANG, Z. WEN, Z. GU, X. ZHU.: "Preparation and cycling performance of Al and F co-substituted compounds Li4AlxTi5- xFyOi2-y", ELECTROCHIMICA ACTA., vol. 50. - 1., 2005, pages 4057 - 4062, XP004971776, DOI: doi:10.1016/j.electacta.2004.12.036
S. SCHARNER, W. WEPNER, P. SCHMID-BEURMANN.: "Evidence of Two-Phase Formation upon Lithium insertion into the Li1.33Ti1.67O4 Spinel II", J. ELECTROCHEM. SOC., vol. 146. - 1, 1999, pages 857 - 861
S. SCHARNER, W. WEPNER, P. SCHMID-BEURMANN.: "Evidence of Two-Phase Formation upon Lithium insertion into the Li1.33Ti1.67O4 Spinel", J. ELECTROCHEM. SOC., vol. 146. - 1, 1999, pages 857 - 861
See also references of EP2405512A4 *
T. OHZUKU, A. UEDA, N. YAMAMOTO.: "Zero-Strain Insertion Material of Li[Li1/3Ti5/3]O4 for Rechargeable Lithium Cells", J. ELECTROCHEM. SOC., vol. 142. - 1, 1995, pages 1431 - 1435, XP002401881, DOI: doi:10.1149/1.2048592
W. LU, 1. BELHAROUAK, J. LIU, K. AMINE.: "Electrochemical and Thermal Investigation of Li4/3Ti5/3O4 Spinel", J. ELECTROCHEM. SOC., vol. 154., 2007, pages AL 14 - A118
XU J., WANG Y., LI Z., ZHANG W.F.: "Preparation and electrochemical properties of carbon-doped Ti02 nanotubes as an anode material for lithium-ion batteries II", JOURNAL OF POWER SOURCES, vol. 175., 2008, pages 903 - 908
Z. ZHONG.: "Synthesis of Mo4+ Substituted Spinel Li4Tis-xMoxOlz", ELECTROCHEMICAL AND SOLID-STATE LETTERS, vol. 10, no. 12, 2007, pages A267 - A269

Also Published As

Publication number Publication date
KR20120004987A (ko) 2012-01-13
CN102714309A (zh) 2012-10-03
EP2405512A1 (fr) 2012-01-11
US8475960B2 (en) 2013-07-02
RU2397576C1 (ru) 2010-08-20
EP2405512A4 (fr) 2013-09-04
US20100224824A1 (en) 2010-09-09
US8367249B2 (en) 2013-02-05
CN102714309B (zh) 2015-02-18
EP2405512B1 (fr) 2014-08-20
US20130048923A1 (en) 2013-02-28

Similar Documents

Publication Publication Date Title
WO2010107340A1 (fr) Matériau d&#39;anode pour source d&#39;énergie chimiques et procédé de fabrication correspondant
EP3604219B1 (fr) Électrolyte solide, batterie au lithium, bloc-batterie et véhicule
US11728510B2 (en) Solid conductor, preparation method thereof, solid electrolyte including the solid conductor, and electrochemical device including the solid conductor
US7541016B2 (en) Lithium titanate and method of forming the same
US8741484B2 (en) Doped positive electrode active materials and lithium ion secondary battery constructed therefrom
US7820137B2 (en) Lithium titanate and method of forming the same
Wei et al. Effect of Mg2+/F− co-doping on electrochemical performance of LiNi0. 5Mn1. 5O4 for 5 V lithium-ion batteries
WO2011059693A2 (fr) Matériaux pour électrode positibve enduits pour batteries à ions lithium
JP2013503449A (ja) 金属酸化物でコーティングされたリチウム系電池用正極材料
WO2013119571A1 (fr) Compositions d&#39;oxyde métallique de lithium à phases mixtes présentant une performance de batterie souhaitable
US20170271670A1 (en) Anode materials for sodium-ion batteries and methods of making same
EP2724982A2 (fr) Oxyde de silicium, procédé de fabrication, électrode négative, batterie secondaire au lithium-ion et condensateur électrochimique
EP3932860A1 (fr) Oxyde, son procédé de préparation, électrolyte solide l&#39;incluant et dispositif électrochimique incluant l&#39;oxyde
Ali et al. Ge-doped Li4Ti5-xGexO12 (x= 0.05) as a fast-charging, long-life bi-functional anode material for lithium-and sodium-ion batteries
CN108735988B (zh) 锂离子二次电池用负极活性物质粒子及其制造方法
JPWO2019087717A1 (ja) リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極、リチウムイオン二次電池、電子機器及び車両
EP4376127A1 (fr) Cathode pour batterie entièrement solide et batterie entièrement solide la comprenant
Zhou et al. A hydrothermal synthesis of Ru-doped LiMn 1.5 Ni 0.5 O 4 cathode materials for enhanced electrochemical performance
Bakierska et al. Reversible Cation‐Mediated Anionic Redox in Defect Spinel Structure for High Power Batteries
JP6677669B2 (ja) 複合酸化物、正極活物質、正極、非水電解質蓄電素子、及び複合酸化物の製造方法
EP4343883A1 (fr) Matériau actif d&#39;électrode positive composite, matériau d&#39;électrode positive et batterie
Su et al. Dual-functional urea induced interface reaction enables the improved cycling stability of cation-disordered Li1. 2Ti0. 4Mn0. 4O2 cathode
Heidari et al. Li 0.33 La 0.56 TiO 3, a novel coating to improve the electrochemical properties and safety of NCM523 cathode materials for Li-ion batteries
JP2024047461A (ja) 硫化物固体電解質、固体電解質複合体及び固体電池
Griffith et al. Translating a Material Discovery into a Commercial Product in the Modern Lithium-ion Battery Market

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080019545.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10753758

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117023479

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010753758

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 7717/DELNP/2011

Country of ref document: IN