WO2010106978A1 - 半導体レーザモジュール及び光モジュール - Google Patents
半導体レーザモジュール及び光モジュール Download PDFInfo
- Publication number
- WO2010106978A1 WO2010106978A1 PCT/JP2010/054215 JP2010054215W WO2010106978A1 WO 2010106978 A1 WO2010106978 A1 WO 2010106978A1 JP 2010054215 W JP2010054215 W JP 2010054215W WO 2010106978 A1 WO2010106978 A1 WO 2010106978A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- semiconductor laser
- optical fiber
- fixing
- optical
- ferrule
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/022—Mountings; Housings
- H01S5/0225—Out-coupling of light
- H01S5/02251—Out-coupling of light using optical fibres
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/262—Optical details of coupling light into, or out of, or between fibre ends, e.g. special fibre end shapes or associated optical elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/30—Optical coupling means for use between fibre and thin-film device
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
- G02B6/4219—Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
- G02B6/4228—Passive alignment, i.e. without a detection of the degree of coupling or the position of the elements
- G02B6/423—Passive alignment, i.e. without a detection of the degree of coupling or the position of the elements using guiding surfaces for the alignment
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
- G02B6/4219—Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
- G02B6/4236—Fixing or mounting methods of the aligned elements
- G02B6/4237—Welding
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/022—Mountings; Housings
- H01S5/02208—Mountings; Housings characterised by the shape of the housings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/022—Mountings; Housings
- H01S5/0233—Mounting configuration of laser chips
- H01S5/02345—Wire-bonding
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/024—Arrangements for thermal management
- H01S5/02407—Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling
- H01S5/02415—Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling by using a thermo-electric cooler [TEC], e.g. Peltier element
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/024—Arrangements for thermal management
- H01S5/02438—Characterized by cooling of elements other than the laser chip, e.g. an optical element being part of an external cavity or a collimating lens
Definitions
- the present invention relates to a semiconductor laser module used for optical communication, and more particularly to a semiconductor laser module and an optical module for connecting an optical cable or an optical cord.
- semiconductor lasers laser diodes
- a semiconductor laser is used as a signal light source or an excitation light source in optical communication
- it is often used as a semiconductor laser module which is a device in which laser light from the semiconductor laser is optically coupled to an optical fiber.
- the semiconductor laser module 1 is formed by housing a semiconductor laser element 2 in an optically coupled state with an optical fiber 3 inside a package 4.
- the photodiode 9 monitors the light emission state of the semiconductor laser element 2, and the temperature control module 5 controls the temperature of the semiconductor laser element 2.
- the operation of the temperature control module 5 is controlled based on the detected temperature of the thermistor so that the semiconductor laser device 2 has a constant temperature.
- the temperature control of the semiconductor laser device 2 by the temperature control module 5 suppresses the intensity fluctuation and the wavelength fluctuation of the laser light of the semiconductor laser device 2 caused by the temperature fluctuation of the semiconductor laser device 2. The intensity and wavelength are maintained approximately constant.
- the fixing member 17 is, as shown in FIGS. 8 and 9, arranged and fixed to the base 15 with a pair of fixing portions 10a and 10b (10a 'and 10b') spaced apart.
- the fixing member 17 is fixed to the base 6 by, for example, laser welding (for example, YAG laser welding) at the Q position.
- the hearts of the semiconductor laser element 2 and the optical fiber 3 are aligned as closely as possible so as to increase the coupling efficiency.
- the bonding target portion is locally heated, and the ferrule 11 is displaced with respect to the semiconductor laser device 2 due to melting or solidification contraction of metal. It happens that it happens. Therefore, there is a manufacturing method in which the alignment position of the ferrule 11 is shifted in advance by this positional deviation before laser welding, and returned to the alignment position after welding (for example, see Patent Document 1).
- the present invention has been made in view of the above-described circumstances, and is to provide a semiconductor laser module and an optical module in which the coupling efficiency is unlikely to vary even if the movement amount varies due to the influence of welding.
- a semiconductor laser device having an elliptical cross-sectional shape at the emission end face of the emitted laser beam, and an optical fiber arranged to receive the laser beam of the semiconductor laser device.
- a semiconductor laser module comprising: a package for housing the semiconductor laser element and the optical fiber; first fixing means for fixing the optical fiber to the package; and second fixing means for fixing the semiconductor element to the package.
- the semiconductor laser element and the optical fiber are parallel to a line connecting both ends of the optical fiber whose minor axis direction is restricted by the first fixing means of the optical fiber. It is characterized in that it is fixed to
- fixation after the alignment may be any of welding fixation, solder fixation, adhesive fixation, or low melting point glass fixation.
- the optical fiber may be a wedge-shaped lensed fiber, and the direction of the ridgeline of the wedge may be configured to coincide with the long axis direction at the emission end face of the laser beam.
- the optical fiber is installed in a groove provided in the first fixing means, fixed at both ends of the groove, or disposed on the installation surface of the first fixing means, and The part may be fixed by the side.
- an optical module including a configuration in which a first optical component for emitting light and a second optical component for receiving light are optically coupled, wherein the emitting optical end surface of the first optical component is At least one of the cross section and the cross section at the incident end face of the incident part of the second optical component has optical anisotropy, and when fixing the optical component having the optical anisotropic cross section And / or a main direction of deviation after fixation is a long axis direction of a cross section having the anisotropy.
- FIG. 6 is a cross-sectional view taken along the line IV-IV of FIG. 5, and is a view schematically illustrating an arrangement fixing portion of a ferrule. It is a model figure showing the structure of the conventional semiconductor laser module with a typical sectional view.
- FIG. 8 is a top view schematically showing an arrangement fixing portion of a ferrule of the semiconductor laser module shown in FIG. 7. It is a model figure showing an example of one mode of a member for fixation. It is a schematic perspective view which shows the other Example of the member for fixing in 1st Embodiment.
- FIG. 6 is a cross-sectional view taken along the line IV-IV of FIG. 5, and is a view schematically illustrating an arrangement fixing portion of a ferrule.
- FIG. 8 is a top view schematically showing an arrangement fixing portion of a ferrule of the semiconductor laser module shown in FIG. 7.
- It is a model figure showing an example of one mode of a member for fixation.
- It is a schematic perspective view which shows
- FIG. 11 is a front view showing the shape of the fixing member shown in FIG. 10 and located on the semiconductor laser element side. It is a front view which shows the structure for connecting a wire to the semiconductor laser element in 2nd Embodiment. It is a front view which shows the other structure for connecting a wire to the semiconductor laser element in 2nd Embodiment.
- the semiconductor laser module 101 has a package 4 forming the outside thereof, and the semiconductor laser element 2 and the optical fiber 3 housed in the package 4.
- the tip of the optical fiber 3 projects forward from the front end face 11 a of the ferrule 11 and is disposed opposite to the light emitting portion (active layer) of the semiconductor laser device 2 with a gap therebetween.
- the laser emitted from the semiconductor laser device 2 It receives light.
- the optical fiber 3 is a lensed fiber having a lens 12 formed at its tip.
- FIG. 3 (a) is a cross-sectional view taken along the line III-III in FIG. 1, and is a view schematically showing the arrangement fixing portion of the ferrule.
- the two fixing parts 110 have the same structure.
- the fixing member 117 is provided at its lower side with a base portion 15 fixed by welding to the base 6, and a fixing portion 110 is provided to extend from the base portion 15 in the Y direction (vertical direction in FIG. 3A). It is done.
- the fixing portion 110 is formed with a ferrule fixing groove 180 which is cut inward from the side surface thereof.
- the depth of the ferrule fixing groove 180 in the X direction is the center of the optical fiber 3 and the center of the light emitting portion of the semiconductor laser device 2 with the ferrule 11 incorporated in the groove 180. It is secured to some extent deep so that it can be adjusted in the X direction.
- the upper and lower portions in the Y direction are fixed by welding or the like. This fixation is performed at two positions P and P 'of the fixing portions 110 and 110 (four welding points are convenient), and is performed at the positions of the side surfaces of the fixing portions 110 and 110. In the case of welding at the upper and lower portions, the ferrule 11 is displaced in the X direction due to the influence of thermal expansion at the time of welding and the like.
- the ferrule 11 is affected by the thermal expansion at the time of welding. Short axis direction).
- the ferrule 11 is shifted in the X direction (the long axis direction of the elliptical shape of the laser cross section at the emission end face).
- the optical fiber vicinity portion of the fixing member 117 is an inclined surface.
- the optical fiber is fixed to the groove, but it is not limited to the groove, and may be fixed by a protrusion on the surface of the installation portion, a metal piece, a plastic piece or a combination thereof.
- the method of fixing the optical fiber 3 to the fixing member 117 is performed in the following procedure. First, the optical fiber 3 is inserted into the ferrule fixing groove 180 of the two fixing portions 110, 110. In this state, the movement of the optical fiber 3 in the Y direction is restricted, and the center of the optical fiber 3 and the center of the light emitting portion of the semiconductor laser element 2 substantially coincide in the Y direction (short axis direction of laser light). .
- the position of the optical fiber 3 in the X direction is determined.
- the position in the X direction is determined in advance in consideration of the amount of displacement due to heat, in consideration of the occurrence of displacement due to heat due to welding between the fixing portion 110 and the ferrule 11 described above. That is, after thermal deformation, the position in the X direction is determined so that the center of the optical fiber 3 and the center of the semiconductor laser element 2 substantially coincide with each other.
- the ferrule 11 and the fixing portions 110, 110 are welded at the welding points P, P 'described above.
- the center of the optical fiber 3 and the center of the semiconductor laser device 2 substantially coincide in the X direction.
- the reason why the displacement due to welding occurs in the X direction is the displacement along the direction of the major axis of the elliptical shape in the cross section of the elliptical shape of the laser light at the emission end face where the semiconductor laser element 2 emits. To make it occur. That is, as shown in FIG. 4 (c), when the deviation is adjusted in the Y direction (the short axis direction of the elliptical shape; shown by a solid line in FIG. 4 (c)), a slight deviation amount (FIG.
- the cross-sectional area S1 of the laser beam at the emitting end face and the cross-sectional shape S2 at the light receiving end face to be received by the optical fiber 3 are also sharply reduced.
- the vertical axis of the graph of) is lowered. For example, as shown in the graph of FIG. 4, when a shift of 0.5 ⁇ m occurs in the Y direction, the coupling efficiency decreases by about 40%.
- FIG. 10 In the structure described above, adjustment in the Y direction (vertical direction) of the ferrule 11 can not be performed, but according to the following structure, fine adjustment in the Y direction (vertical direction) of the ferrule 11 can also be performed become.
- the shapes of the tip side fixing member 317 located on the semiconductor laser element 2 side and the other rear side fixing member 318 are different.
- the tip end side fixing member 317 is formed in a substantially E shape when viewed from the tip end side of the ferrule 11 as shown in FIGS. 10 and 11.
- the distal end side fixing member 317 includes an upper stage support portion 317a extending substantially horizontally at the top, a middle stage support portion 317b located below the upper side support portion 317b extending substantially horizontally, and a bottom side portion 317c located at the lowermost portion. And an upper and lower support portion 317 d connecting the upper and lower portions on the left side.
- a ferrule fixing groove 320 is formed between the upper stage support portion 317a and the middle stage support portion 317b.
- the ferrule 11 is inserted into the ferrule fixing groove 320 from the opening on the right side of the tip end support member 317.
- the length in the Y direction of the ferrule fixing groove 320 (the length of the gap between the upper stage support portion 317 a and the middle stage support portion 317 b) is formed to be substantially the same as the outer diameter of the ferrule 11. That is, when the ferrule 11 is fitted into the ferrule fixing groove 320, the position of the ferrule 11 in the Y direction is determined.
- the position in the X direction can be arbitrarily adjusted as in the above-described embodiment.
- a twisting groove 321 is formed between the middle stage support portion 317 b and the bottom side portion 317 c.
- the twist groove 321 is used to finely adjust the position of the ferrule 11 in the Y direction. That is, by inserting the ferrule 11 into the ferrule fixing groove 320 and moving it up and down by a small amount (several microns), a portion of the twisted groove 321 (more specifically, the upper and lower support portions 317d positioned on the left side of the space S2 ) Is twisted and bent, and the position of the entire tip fixing member 317 in the Y direction changes. This positional change enables fine adjustment in the Y direction.
- the rear fixing member 318 is formed in a U shape whose upper side is open.
- the ferrule is inserted from the upper opening 319 into the interior.
- the position of the ferrule 11 is not restricted in the Y direction. Therefore, the rear side fixing member 318 can absorb the movement of the ferrule 11 finely adjusted in the Y direction by the tip side fixing member 317 described above.
- the attachment procedure of the ferrule 11 will be described. First, the ferrule 11 is inserted into the distal end side fixing member 317 and the rear side fixing member 318, respectively. At this time, the long axis direction of the elliptical shape S1 of the laser beam is parallel to the X direction. Next, in the distal end side fixing member 317, the position of the ferrule 11 is adjusted. In the X direction, it is determined that the ferrule 11 is shifted by the amount of heat shift when fixing by Yag welding or the like.
- the ferrule fixing groove 320 in the Y direction, but by moving the ferrule 11 up and down by a small amount, the Y direction in the elliptical shape S1 of the laser beam and the cross sectional shape S2 in the light receiving surface It is possible to perform a small amount of position adjustment in the short axis direction). At this time, the movement in the Y direction is absorbed by the rear fixing member 318.
- the ferrule 11 is fixed by Yag welding or the like by the distal end side fixing member 317 and the rear side fixing member 318.
- the ferrule 11 is fixed at an optimum position where the overlapping area of the elliptical shape S1 of the laser beam and the cross-sectional shape S2 on the light receiving surface is increased by moving in the X direction by the heat of welding.
- FIG. 5 is a schematic cross-sectional view of the semiconductor laser module in the second embodiment.
- 6 is a cross-sectional view taken along the line IV-IV of FIG. 5 and is a view schematically showing the arrangement fixing portion of the ferrule.
- the X direction means the depth direction in the plane of FIG. 5
- the Y direction means the vertical direction in the plane of FIG. 5
- the Z direction means the lateral direction in the plane of FIG. Do.
- the attachment of the semiconductor laser device 2 in the first embodiment is rotated by 90 degrees, and the welded portion of the ferrule 11 is rotated by 90 degrees (the same structure as in the prior art).
- the LD carrier 207 is different.
- the fixing member 17 is used in the conventional example, and the other configuration is the same as that of the first embodiment. Therefore, the same components as those shown in the conventional configuration will be described with the same reference numerals.
- the LD carrier 207 is structured to support the semiconductor laser device 2 of the first embodiment in a state of being rotated by 90 degrees. That is, the long axis direction of the elliptical shape of the laser beam emitted from the semiconductor laser element 2 is the Y direction, and the short axis direction is the X direction.
- the left and right ends of the ferrule 11 in the X direction are fixed at two places (the welding places are at four places) of the fixing portions 10a and 10b by welding or the like.
- the ferrule 11 is displaced in the Y direction due to the heat of welding.
- the LD carrier 407 includes a first upright surface 407a formed substantially vertically, a first horizontal surface 407b extending substantially horizontally from the lower end of the first upright surface 407a, and a first horizontal surface 407b. And a second horizontal surface 407d substantially horizontally extending from the lower end of the second rising surface 407c, and a step shape is formed by these shapes. ing.
- one end of the second wire 402 is fixed to the second horizontal surface 407d, and the other end is fixed to the wiring substrate 403 having a surface substantially parallel to the second horizontal surface 407d by wire bonding.
- power can be supplied from the wiring substrate 403 to the LD 2.
- an LD carrier 507 having a shape shown in FIG. 13 can also be used.
- the LD carrier 507 has a substantially horizontal flat surface 507a, and two protrusions (a first protrusion 508 and a second protrusion 509) project upward from the upper surface of the flat surface 507a.
- the first protrusion 508 is provided with a substantially vertical first rising surface 507 b for attaching the LD 2. Also. A substantially vertical second rising surface 507 c is formed on the second protrusion 509.
- the respective end portions of the first wire 401 are fixed to the side surface 2 a of the LD 2 and the first rising surface 507 c by wire bonding.
- respective end portions of the second wires 402 are fixed to the flat surface 507 a and the wiring substrate 403 by wire bonding.
- power can be supplied from the wiring substrate 403 to the LD 2.
- the LD carriers 407 and 507 shown in FIGS. 12 and 13 are shown separately from the base 6, they may be integrally joined to the base 6. Furthermore, the shape of the base 6 may be formed in the above-described step shape or the like.
- the semiconductor laser module 201 has the following effects. That is, the fixing member 17 for welding and fixing the optical fiber 3 and the LD carrier 207 for fixing the semiconductor laser device 2 are provided, and the fixing member 17 is in the X direction across the axial center of the optical fiber 3 Since it is formed in the mode which regulates the both ends of (the short axis direction of the elliptical shape), when fixing the ferrule 11 by welding, it can control that the ferrule 11 shifts in the short axis direction.
- the LD carrier 207 supports the semiconductor laser device 2 so that the minor axis direction of the laser beam is substantially parallel to the line connecting the regulated ends of the optical fiber 3 (parallel to the X direction),
- the ferrule 11 of the optical fiber 3 has its both end portions fixed by welding, so that the displacement direction can be guided such that the optical fiber 3 is displaced in the Y direction by the influence of welding.
- the LD carriers 407 and 507 are provided with second erected surfaces 407c and 507c which are substantially parallel to the substantially vertical side surface 2a of the LD 2 attached by rotating 90 degrees, so the side surface 2a and the second erected surface 407c. , And 507c, both ends of the first wire 401 can be fixed by wire bonding. Thus, wire wiring for supplying power from the wiring substrate 403 can be easily performed.
- the semiconductor laser device 2 and the optical fiber 3 are rotated by 90 degrees and attached to the first embodiment, but the minor axis and the major axis of the elliptical shape of the laser light
- the relative positions of the semiconductor laser element 2 and the optical fiber 3 are determined so that the two coincide with each other, and an angle other than 90 degrees may be used as long as welding is performed such that the displacement direction by welding becomes the long axis direction. I do not mind.
- a fixing member for fixing the optical fiber 3 by welding and an LD carrier for fixing the semiconductor laser element 2 are provided, and the fixing member regulates both ends of the optical fiber 3 across the axial center.
- the LD carrier supports the semiconductor laser device 2 so that the short axis direction of the laser beam is substantially parallel to the line connecting the regulated ends of the optical fiber 3, and the optical fiber 3 has the regulated ends.
- the ferrule and the fixing member are fixed by welding, but soldering or the like may be used.
- the effect of the present invention can also be obtained by using an adhesive or a low melting point glass which has shrinkage or age change at the time of curing.
- the optical coupling between the fiber and the semiconductor laser element has been described as the most preferable example, but at least one of the incident light and the light receiving portion is designed to design optical coupling between anisotropic optical components.
- the present invention can be applied as a method of installing (fixing) the optical component.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- Optical Couplings Of Light Guides (AREA)
- Semiconductor Lasers (AREA)
Abstract
Description
以下、図面を参照して本発明に係る第1実施形態を説明する。
図1は、半導体レーザモジュールの模式的な断面図である。なお、従来構成で示した用品と同じものについては、同じ符号を付して説明する。
また、以下の説明において、X方向とは、図1の紙面奥行き方向をいい、Y方向とは、図1の紙面上下方向をいい、Z方向とは、図1の紙面左右方向をいうものとする。
温度制御モジュール5は、ベース6から熱を吸熱し冷却する機能を果たしており、半導体レーザ素子2からベース6に伝達される熱は、温度制御モジュール5によって効果的に吸熱されるようになる。
この断面形状S1、S2は、その断面の重なる面積が大きくなるほど結合効率は高くなり、逆に重なる面積が小さくなるほど結合効率は低くなる。
固定用部材117は、その下側にベース6に溶接で固定される基部15を備えており、この基部15からY方向(図3(a)の上下方向)に延びるように固定部110が設けられている。この固定部110には、その側面から内側に向かって切り欠かれたフェルール固定溝180が形成されている。
また、フェルール固定溝180のY方向における位置は、フェルール11を溝180内に組み入れた状態で、光ファイバ3の心(より正確には、光ファイバ3の先端部に位置するレンズ12の心)と半導体レーザ素子2の発光部の心とがY方向において一致するようになっている。
まず、2つの固定部110,110のフェルール固定溝180の中に、光ファイバ3を差し込む。この状態で、光ファイバ3のY方向における移動が規制され、光ファイバ3の心と半導体レーザ素子2の発光部の心とがY方向(レーザ光の短軸方向)においてほぼ一致することになる。
例えば、図4のグラフに示すように、Y方向に0.5μmのずれが生じた場合、結合効率は約40%低下する。
例えば、図4のグラフに示すように、X方向に0.5μmのずれが生じた場合、結合効率は数%低下するだけである。
上述した構造では、フェルール11のY方向(上下方向)への調整は行うことができないが、以下の構造によれば、フェルール11のY方向(上下方向)への微調整も行うことができるようになる。この構造では、半導体レーザ素子2側に位置する先端側固定部材317と、もう一方の後側固定部材318との形状が異なっている。
次に、先端側固定部材317において、フェルール11の位置を調整する。X方向では、ヤグ溶接等で固定する際に熱でずれる分だけフェルール11をずらした位置に決定する。Y方向においては、基本的にはフェルール固定溝320によって規定されるが、フェルール11を微量だけ上下させることで、レーザ光の楕円形状S1と受光面における断面形状S2とにおけるY方向(楕円形状の短軸方向)における微量の位置調整を行うことができる。このとき、Y方向の移動を、後側固定部材318で吸収させる。
すなわち、光ファイバ3のフェルール11を溶接固定するための固定用部材117を備え、この固定用部材117のフェルール固定溝180は、レーザ光の楕円形状の短軸方向(Y方向)の移動を規制するように形成されているので、フェルール11を溶接で固定する際にフェルール11が短軸方向にずれるのを規制することができる。
また、短軸方向の両端部で光ファイバ3のフェルール11と固定用部材117の固定部110,110とをP、P′の位置で溶接しているので、光ファイバ3が溶接の影響によってX方向にずれるようにずれ方向を導くことができる。
以下、図面を参照して本発明に係る第2実施形態を説明する。
図5は、第2実施形態における半導体レーザモジュールの模式的な断面図である。また、図6は、図5のIV-IV断面図であって、フェルールの配置固定部分を抜き出して模式的に示した図である。
なお、以下の説明において、X方向とは、図5の紙面奥行き方向をいい、Y方向とは、図5の紙面上下方向をいい、Z方向とは、図5の紙面左右方向をいうものとする。
すわなち、ワイヤボンディングで固定しようとした場合、第1ワイヤ401の取り付け面のそれぞれは、いずれも略平行な面でなければならない。そのため、LD2の側面2aと平行な面である第2起立面407cを設けている。
これにより、配線基板403からLD2へ電源を供給できるようにしている。
すなわち、光ファイバ3を溶接固定するための固定用部材17と、半導体レーザ素子2を固定するためのLDキャリア207とを備え、固定用部材17は、光ファイバ3の軸心を挟んだX方向(楕円形状の短軸方向)の両端を規制する態様で形成されているので、フェルール11を溶接で固定する際にフェルール11が短軸方向にずれるのを規制することができる。
また、LDキャリア207は、レーザ光の短軸方向が光ファイバ3の規制された両端を結ぶ線とほぼ平行になるように(X方向と平行になるように)半導体レーザ素子2を支持し、光ファイバ3のフェルール11は、規制された両端部を溶接によって固定されていることにより、光ファイバ3が溶接の影響によってY方向にずれるようにずれ方向を導くことができる。
例えば、本第2実施形態では、第1実施形態に対して、半導体レーザ素子2と光ファイバ3とを90度回転させて取り付けるようにしているが、レーザ光の楕円形状の短軸と長軸とが一致するように半導体レーザ素子2及び光ファイバ3の相対位置を決定して、溶接によるずれ方向が長軸方向になるように溶接するものであれば、90度以外の角度であってもかまわない。
上記実施例においては、最も好ましい例としてファイバと半導体レーザ素子との光学的結合を説明してきたが、入射光と受光部の少なくともいずれか一方に異方性のある光学部品間の光結合を設計する際に、その光学部品の設置(固定)方法として本願発明を適用することができる。
2 素子(LD)
2a 側部
3 光ファイバ
4 パッケージ
5 温度制御モジュール
6 ベース
7 LDキャリア
8 PDキャリア
9 フォトダイオード
10 固定部
10a 固定部
11 フェルール
11a 前端面
11b 後端面
12 レンズ
15 基部
17 固定用部材
101 半導体レーザモジュール
110 固定部
117 固定用部材
180 フェルール固定溝
201 半導体レーザモジュール
207 LDキャリア
317 先端側固定部材
317a 上段支持部
317b 中段支持部
317c 底辺部
317d 上下支持部
318 後側固定部材
319 上側開口
320 フェルール固定溝
321 捻れ溝
401 第1ワイヤ
402 第2ワイヤ
403 配線基板
407 LDキャリア
407a 第1起立面
407b 第1水平面
407c 第2起立面
407d 第2水平面
507 LDキャリア
507a 平面
507b 第1起立面
507c 第2起立面
508 第1突起
509 第2突起
S1 レーザ光の楕円形状
S2 受光面における断面形状
Claims (7)
- 出射されるレーザ光の出射端面における断面形状が楕円形状をなす半導体レーザ素子と、この半導体レーザ素子のレーザ光を受光するために配置される光ファイバと、前記半導体レーザ素子と前記光ファイバを収容するパッケージと、前記光ファイバをパッケージに固定する第1の固定手段と、前記半導体素子を前記パッケージに固定する第2の固定手段とを備える半導体レーザモジュールであって、
前記半導体レーザ素子と前記光ファイバとは、レーザ光の楕円形状の短軸方向が、前記光ファイバの前記第1の固定手段によって規制された両端部を結ぶ線と平行になるように固定されていることを特徴とする半導体レーザモジュール。 - 前記調心後の固定が、溶接固定、半田固定、接着剤固定、あるいは低融点ガラス固定のいずれかであることを特徴とする請求項1に記載の半導体レーザモジュール。
- 前記光ファイバが楔形レンズドファイバであり、その楔形の稜線の方向が前記レーザ光の出射端面における長軸方向と一致することを特徴とする請求項1または請求項2に記載の半導体レーザモジュール。
- 前記光ファイバは、前記第1の固定手段に設けられた溝に設置され、溝の両端で固定される、あるいは前記第1の固定手段の設置面に配置され、光ファイバの両側面の一部で辺により固定されることを特徴とする請求項1~3のいずれか一つに記載の半導体レーザモジュール。
- 前記半導体レーザ素子がその出射されるレーザ光の出射端面における断面楕円形状の長軸が前記パッケージの底板に平行となるように固定され、かつ調心後に前記光ファイバが前記パッケージ底板と垂直に設置された前記第1の固定手段の設置面の側面に固定されていることを特徴とする請求項1~4のいずれか一つに記載の半導体レーザモジュール。
- 前記半導体レーザ素子がその出射されるレーザ光の出射端面における断面楕円形状の長軸が前記パッケージの底板に垂直となるように固定され、かつ調心後に前記光ファイバが前記パッケージ底板と平行に設置された前記第1の固定手段の設置面上に固定されていることを特徴とする請求項1~4のいずれか一つに記載の半導体レーザモジュール。
- 光を出射する第1の光学部品と光が入射される第2の光学部品を光学的に結合する構成を含む光モジュールであって、
前記第1の光学部品の出射光の出射端面における断面および前記第2の光学部品の入射部の入射端面における断面の少なくともいずれか一方が光学的に異方性を有し、前記光学的に異方性を有する断面を持つ光学的部品の固定時および/または固定後のずれの主方向が前記異方性を有する断面の長軸方向であることを特徴とする光モジュール。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/256,434 US8696217B2 (en) | 2009-03-18 | 2010-03-12 | Semiconductor laser module and optical module |
JP2011504827A JP5255694B2 (ja) | 2009-03-18 | 2010-03-12 | 半導体レーザモジュール及び光モジュール |
CN2010800122371A CN102356523B (zh) | 2009-03-18 | 2010-03-12 | 半导体激光模块 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-065556 | 2009-03-18 | ||
JP2009065556 | 2009-03-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010106978A1 true WO2010106978A1 (ja) | 2010-09-23 |
Family
ID=42739638
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/054215 WO2010106978A1 (ja) | 2009-03-18 | 2010-03-12 | 半導体レーザモジュール及び光モジュール |
Country Status (4)
Country | Link |
---|---|
US (1) | US8696217B2 (ja) |
JP (1) | JP5255694B2 (ja) |
CN (1) | CN102356523B (ja) |
WO (1) | WO2010106978A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014097710A1 (ja) * | 2012-12-21 | 2014-06-26 | 古河電気工業株式会社 | 光ファイバの固定構造、半導体レーザモジュール、光ファイバの固定方法 |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102356523B (zh) * | 2009-03-18 | 2013-11-20 | 古河电气工业株式会社 | 半导体激光模块 |
CN102819075A (zh) * | 2012-09-05 | 2012-12-12 | 日月光半导体制造股份有限公司 | 光通信组件及应用其的光通信封装模块 |
CN103018854A (zh) * | 2012-12-19 | 2013-04-03 | 武汉电信器件有限公司 | 光电子器件的光纤准确对准固定结构及其对准固定方法 |
KR101788540B1 (ko) * | 2013-08-12 | 2017-10-20 | 한국전자통신연구원 | 온도 제어 장치를 가진 광송신 모듈 및 그 제조 방법 |
CN103811985B (zh) * | 2014-03-05 | 2017-01-18 | 中国科学院半导体研究所 | 一种小型化的铒镱共掺超荧光光纤光源 |
CN104020536B (zh) * | 2014-06-09 | 2018-10-19 | 昂纳信息技术(深圳)有限公司 | 光收发模块的封装方法 |
CN107045163A (zh) * | 2016-02-05 | 2017-08-15 | 苏州旭创科技有限公司 | 光学模块及其制作方法 |
CN111095698B (zh) * | 2017-09-19 | 2021-12-28 | 京瓷株式会社 | 发光元件收纳用构件、阵列构件及发光装置 |
CN114236712B (zh) * | 2021-12-20 | 2023-05-09 | 江苏永鼎光电子技术有限公司 | 一种多光路调整激光与光纤耦合的装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0933769A (ja) * | 1995-07-24 | 1997-02-07 | Canon Inc | 光モジュール及びその製法 |
JP2001272577A (ja) * | 2000-03-23 | 2001-10-05 | Mitsubishi Chemicals Corp | 光ファイバの光軸ずれの補正方法及び該補正方法を適用して製造された半導体レーザモジュール |
JP2002350687A (ja) * | 2001-05-22 | 2002-12-04 | Mitsubishi Chemicals Corp | 光ファイバの光出力低下防止構造 |
JP2005148466A (ja) * | 2003-11-17 | 2005-06-09 | Matsushita Electric Ind Co Ltd | 光ファイバのアライメント装置及びアライメント方法 |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0990174A (ja) * | 1995-09-28 | 1997-04-04 | Furukawa Electric Co Ltd:The | 半導体レーザモジュール |
EP0872747B1 (en) * | 1997-04-15 | 2002-09-18 | Sumitomo Electric Industries, Ltd. | Optical module |
JP3345853B2 (ja) * | 1998-11-13 | 2002-11-18 | 古河電気工業株式会社 | レーザダイオードモジュールおよびその作製方法 |
JP2002533781A (ja) * | 1998-12-24 | 2002-10-08 | オプティカル・テクノロジーズ・イタリア・ソチエタ・ペル・アツィオーニ | 光ファイバと光学装置との間の結合装置 |
US6516130B1 (en) * | 1998-12-30 | 2003-02-04 | Newport Corporation | Clip that aligns a fiber optic cable with a laser diode within a fiber optic module |
JP3857876B2 (ja) * | 1999-12-17 | 2006-12-13 | 古河電気工業株式会社 | レンズ付きファイバ、その製造方法、製造装置及び半導体レーザモジュール |
US20020001324A1 (en) * | 2000-02-25 | 2002-01-03 | The Furukawa Electric Co., Ltd. | Laser diode module and method of manufacturing the same |
JP4167378B2 (ja) * | 2000-03-28 | 2008-10-15 | 京セラ株式会社 | 光素子モジュール |
CN1215349C (zh) * | 2000-05-31 | 2005-08-17 | 古河电气工业株式会社 | 半导体激光器模块 |
WO2002003112A1 (fr) * | 2000-07-04 | 2002-01-10 | Namiki Seimitsu Houseki Kabushiki Kaisha | Fibre optique/micro-lentille, fibre optique et technique d'agencement de celle-ci |
KR100365795B1 (ko) * | 2000-08-01 | 2002-12-26 | 삼성전자 주식회사 | 광원 모듈의 광원-광섬유 정렬 장치 |
JP2002267891A (ja) * | 2001-03-06 | 2002-09-18 | Furukawa Electric Co Ltd:The | 半導体レーザモジュールおよびその半導体レーザモジュールの調心方法 |
JP3824879B2 (ja) * | 2001-04-20 | 2006-09-20 | 古河電気工業株式会社 | 光モジュール |
JP2003004989A (ja) * | 2001-06-22 | 2003-01-08 | Furukawa Electric Co Ltd:The | 半導体レーザモジュール |
US6571041B2 (en) * | 2001-08-02 | 2003-05-27 | Corning Incorporated | Method and apparatus for positioning optical elements |
JP2003207672A (ja) * | 2002-01-17 | 2003-07-25 | Sony Corp | 光ファイバー、光ファイバーモジュール及び光学ピックアップ |
US6669379B2 (en) * | 2002-04-01 | 2003-12-30 | Princeton Lightwave, Inc. | Method of attaching optical fiber in alignment with a light source in an optical module |
US6846113B2 (en) * | 2002-05-17 | 2005-01-25 | Archcom Technology, Inc. | Packaging for high power pump laser modules |
JP3802844B2 (ja) * | 2002-06-14 | 2006-07-26 | 古河電気工業株式会社 | 光半導体モジュール |
JP2004233566A (ja) * | 2003-01-29 | 2004-08-19 | Kyocera Corp | レーザ光結合用光ファイバ及び光ファイバ並びに光ファイバモジュール |
JP4265308B2 (ja) * | 2003-06-27 | 2009-05-20 | 日本電気株式会社 | 光学素子ホルダ及びこれを用いた光通信モジュール |
CN102356523B (zh) * | 2009-03-18 | 2013-11-20 | 古河电气工业株式会社 | 半导体激光模块 |
WO2010110068A1 (ja) * | 2009-03-25 | 2010-09-30 | 古河電気工業株式会社 | 半導体レーザモジュールおよび半導体レーザモジュールの製造方法 |
-
2010
- 2010-03-12 CN CN2010800122371A patent/CN102356523B/zh active Active
- 2010-03-12 JP JP2011504827A patent/JP5255694B2/ja active Active
- 2010-03-12 WO PCT/JP2010/054215 patent/WO2010106978A1/ja active Application Filing
- 2010-03-12 US US13/256,434 patent/US8696217B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0933769A (ja) * | 1995-07-24 | 1997-02-07 | Canon Inc | 光モジュール及びその製法 |
JP2001272577A (ja) * | 2000-03-23 | 2001-10-05 | Mitsubishi Chemicals Corp | 光ファイバの光軸ずれの補正方法及び該補正方法を適用して製造された半導体レーザモジュール |
JP2002350687A (ja) * | 2001-05-22 | 2002-12-04 | Mitsubishi Chemicals Corp | 光ファイバの光出力低下防止構造 |
JP2005148466A (ja) * | 2003-11-17 | 2005-06-09 | Matsushita Electric Ind Co Ltd | 光ファイバのアライメント装置及びアライメント方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014097710A1 (ja) * | 2012-12-21 | 2014-06-26 | 古河電気工業株式会社 | 光ファイバの固定構造、半導体レーザモジュール、光ファイバの固定方法 |
JP2014139648A (ja) * | 2012-12-21 | 2014-07-31 | Furukawa Electric Co Ltd:The | 光ファイバの固定構造、半導体レーザモジュール、光ファイバの固定方法 |
US10101547B2 (en) | 2012-12-21 | 2018-10-16 | Furukawa Electric Co., Ltd. | Fixing structure for optical fiber, semiconductor laser module, and fixing method for optical fiber |
Also Published As
Publication number | Publication date |
---|---|
JP5255694B2 (ja) | 2013-08-07 |
US8696217B2 (en) | 2014-04-15 |
CN102356523B (zh) | 2013-11-20 |
JPWO2010106978A1 (ja) | 2012-09-20 |
CN102356523A (zh) | 2012-02-15 |
US20120027352A1 (en) | 2012-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010106978A1 (ja) | 半導体レーザモジュール及び光モジュール | |
US7030422B2 (en) | Semiconductor laser diode module | |
US5619609A (en) | Fiberoptic support clip | |
US8475057B2 (en) | Optical module with ceramic package | |
JP6064530B2 (ja) | 発光モジュール及び光トランシーバ | |
JP5621318B2 (ja) | 半導体レーザモジュールおよびこれを用いたファイバレーザ | |
US20110026877A1 (en) | Semiconductor device assembly | |
JP2013153136A (ja) | 発光モジュール及び光トランシーバ | |
US20100183268A1 (en) | Bi-directional optical subassembly with a wdm filter attached to a cap and a method to assemble the same | |
US20140072005A1 (en) | Optical module with enhanced robustness of temperature controlling device | |
US7901146B2 (en) | Optical module, optical transmission device, and surface optical device | |
WO2011122540A1 (ja) | レーザ装置 | |
JP4744211B2 (ja) | 光モジュール | |
JP2004029161A (ja) | 光半導体素子モジュール | |
JP5379830B2 (ja) | 光ファイバの固定構造、光ファイバの固定方法 | |
JP2000028870A (ja) | 光結合装置 | |
JP4094478B2 (ja) | 半導体レーザモジュールにおける光ファイバアレイとレーザダイオードアレイとを調心する方法および半導体レーザモジュール | |
KR101143739B1 (ko) | 레이저 광원 장치 | |
JP4514367B2 (ja) | 半導体レーザモジュール及びその製造方法 | |
CN110088994B (zh) | 半导体激光模块和半导体激光模块的制造方法 | |
JP3065072B2 (ja) | 半導体レ―ザモジュ―ルとその製造方法 | |
JP2012118380A (ja) | 光結合構造 | |
KR19980084817A (ko) | 레이저 다이오드 모듈 및 그 제조 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080012237.1 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10753470 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011504827 Country of ref document: JP |
|
ENP | Entry into the national phase |
Ref document number: 2011137446 Country of ref document: RU Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13256434 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10753470 Country of ref document: EP Kind code of ref document: A1 |