WO2010106959A1 - 内燃機関の排気浄化装置 - Google Patents

内燃機関の排気浄化装置 Download PDF

Info

Publication number
WO2010106959A1
WO2010106959A1 PCT/JP2010/054097 JP2010054097W WO2010106959A1 WO 2010106959 A1 WO2010106959 A1 WO 2010106959A1 JP 2010054097 W JP2010054097 W JP 2010054097W WO 2010106959 A1 WO2010106959 A1 WO 2010106959A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust
combustion engine
internal combustion
differential pressure
temperature
Prior art date
Application number
PCT/JP2010/054097
Other languages
English (en)
French (fr)
Inventor
克成 城之内
道彦 原
Original Assignee
ヤンマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤンマー株式会社 filed Critical ヤンマー株式会社
Priority to EP10753451.3A priority Critical patent/EP2410142B1/en
Priority to CN201080012350.XA priority patent/CN102356219B/zh
Priority to US13/257,175 priority patent/US8539756B2/en
Publication of WO2010106959A1 publication Critical patent/WO2010106959A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • F02D41/064Introducing corrections for particular operating conditions for engine starting or warming up for starting at cold start
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/002Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring or estimating temperature or pressure in, or downstream of the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0097Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/002Electrical control of exhaust gas treating apparatus of filter regeneration, e.g. detection of clogging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/029Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a particulate filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1446Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1448Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an exhaust gas pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/04Filtering activity of particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/14Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
    • F01N2900/1404Exhaust gas temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D2041/227Limping Home, i.e. taking specific engine control measures at abnormal conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0414Air temperature
    • F02D2200/0416Estimation of air temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0802Temperature of the exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/02Parameters used for control of starting apparatus said parameters being related to the engine
    • F02N2200/026Catalyst temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an exhaust purification device for an internal combustion engine. More particularly, the present invention relates to a technique for preventing melting damage of an exhaust purification device for an internal combustion engine.
  • an exhaust purification device for an internal combustion engine having a particulate filter in the middle of an exhaust passage.
  • the particulate filter has a porous honeycomb structure made of ceramic or the like, and only the exhaust gas that has permeated through the porous walls defining each flow path is discharged downstream.
  • a technique for burning and removing particulates accumulated inside the porous wall when exhaust passes through the porous wall is known.
  • the particulate filter is not sufficiently cooled by the exhaust gas.
  • the amount of residual oxygen in the exhaust gas increases due to a decrease in the load on the internal combustion engine, excessive combustion due to residual oxygen tends to occur. Therefore, there is a problem in that the possibility of melting of the particulate filter increases.
  • the present invention has been made in view of such problems, and an object thereof is to provide an exhaust purification device for an internal combustion engine that can prevent the operation of the internal combustion engine from being continued in a state where the particulate filter is melted.
  • the particulate filter the exhaust temperature detecting means for detecting the exhaust temperature downstream of the particulate filter, the upstream exhaust pressure of the particulate filter, and the downstream exhaust pressure of the particulate filter
  • An exhaust gas purification device for an internal combustion engine comprising: an exhaust gas differential pressure detection means for calculating the exhaust gas differential pressure every predetermined time; a notification means for performing notification based on the state of the particulate filter; and a control means for controlling the internal combustion engine
  • the control means is connected to the exhaust temperature detecting means, the exhaust differential pressure detecting means, and the notifying means, and the first exhaust differential pressure and a second exhaust differential calculated after a predetermined time elapses.
  • the differential pressure change amount is calculated based on the pressure, and when the differential pressure change amount is greater than or equal to the reference change amount, or the downstream exhaust temperature continues for the reference time or more If the above degrees, a notification for requesting the operation stop of the internal combustion engine by the notification unit, or characterized in that for stopping the operation of the internal combustion engine.
  • control means is configured such that the exhaust temperature detection means detects at least once or more, a value above a reference temperature continuously for a reference time or more, or the exhaust differential pressure detection means at least once or more, When a value equal to or greater than a reference change amount is calculated, a notification requesting inspection of the particulate filter is performed by the notification unit.
  • control means is connected to a filter temperature detecting means for detecting a filter temperature of the particulate filter, and when the filter temperature detected by the filter temperature detecting means is equal to or higher than a filter reference temperature, the internal combustion engine Is not started.
  • control means continuously performs the notification requesting the inspection of the particulate filter by the notification means for a reference period or more, and when the inspection of the particulate filter is not performed, The output of the internal combustion engine is limited until the particulate filter is inspected.
  • the present invention has an effect that it is possible to prevent the operation of the internal combustion engine from being continued in a state where the particulate filter is melted.
  • an exhaust purification device 1 which is an embodiment of an exhaust purification device for an internal combustion engine according to the present invention will be described with reference to FIG.
  • the exhaust gas purification device 1 purifies and discharges the exhaust gas generated in the internal combustion engine 2 as shown in FIG.
  • the exhaust purification device 1 is provided in an internal combustion engine 2 and includes a particulate filter 10, an oxidation catalyst 11, a downstream temperature sensor 20a that is an exhaust temperature detection means, a filter temperature sensor 20b that is a filter temperature detection means, and an exhaust differential pressure detection means.
  • the exhaust pressure difference detection device 21 is an ECU 30 as a control means, a notification device 40 as a notification means, and the like.
  • the internal combustion engine 2 includes one or more cylinders, and converts energy generated by burning fuel injected into the cylinders into rotational power.
  • the internal combustion engine 2 causes the outside air supplied through the intake passage 3 and the fuel supplied from the fuel injection valves 4, 4, 4, 4 to be mixed and burned in the cylinders 5, 5, 5, 5. Exhaust gas generated at this time is discharged through the exhaust path 6.
  • the internal combustion engine 2 according to the present embodiment is an in-line four cylinder, it is not limited to this.
  • the particulate filter 10 removes particulates in the exhaust (carbon soot, high-boiling hydrocarbon components (SOF), etc.).
  • the particulate filter 10 is disposed in the exhaust path 6 of the internal combustion engine 2.
  • the particulate filter 10 has a honeycomb structure composed of a porous wall of ceramic or the like, and is configured such that exhaust gas is discharged after passing through the porous wall.
  • the particulate filter 10 collects particulates in the exhaust when the exhaust passes through the porous wall. As a result, particulates are removed from the exhaust.
  • the oxidation catalyst 11 oxidizes nitrogen compounds.
  • the oxidation catalyst 11 is disposed on the upstream side of the particulate filter 10 and promotes oxidation removal of the particulates.
  • the downstream temperature sensor 20a which is an exhaust gas temperature detection means, detects the temperature of the exhaust gas that has passed through the particulate filter 10.
  • the downstream temperature sensor 20a is disposed at a position where the downstream exhaust temperature T1 after passing through the particulate filter 10 can be detected.
  • the filter temperature sensor 20b serving as filter temperature detecting means detects the filter temperature T10 of the particulate filter 10.
  • the filter temperature sensor 20b is disposed at a position where the filter temperature T10 of the particulate filter 10 can be detected.
  • the exhaust differential pressure detection device 21 which is an exhaust differential pressure detection means detects the differential pressure of the exhaust gas passing through the particulate filter 10.
  • the exhaust differential pressure detection device 21 includes an upstream pressure sensor 21a and a downstream pressure sensor 21b.
  • the upstream pressure sensor 21a is disposed on the upstream side of the particulate filter, and detects the upstream exhaust pressure p1 before passing through the particulate filter 10 every predetermined time.
  • the upstream pressure sensor 21a may be upstream of the particulate filter 10, and may be upstream or downstream of the oxidation catalyst 11.
  • the downstream pressure sensor 21b is disposed on the downstream side of the particulate filter 10, and detects the downstream exhaust pressure p2 after passing through the particulate filter 10 every predetermined time.
  • the exhaust differential pressure detection device 21 detects exhaust differential pressure P (n ⁇ 1), exhaust differential pressure P (n), exhaust differential pressure P (n + 1) at predetermined intervals from the upstream exhaust pressure p1 and the downstream exhaust pressure p2. ⁇ ⁇ Calculate.
  • the ECU 30, which is a control means, controls the internal combustion engine 2 and controls the regeneration of the particulate filter 10. Specifically, the ECU 30 acquires the state of the particulate filter 10 detected by the downstream temperature sensor 20a, the filter temperature sensor 20b, and the exhaust differential pressure detection device 21. Then, the ECU 30 regenerates the particulate filter 10 based on the acquired state of the particulate filter 10 or controls the internal combustion engine 2 to prevent melting damage. Further, the ECU 30 controls the internal combustion engine 2 by a signal from an accelerator (not shown). Further, the internal combustion engine 2 is started and stopped by a signal from the key switch 31.
  • the ECU 30 may be configured such that a CPU, a ROM, a RAM, an HDD, and the like are connected by a bus, or may be configured by a one-chip LSI or the like.
  • the ECU 30 stores various programs and data for controlling the internal combustion engine 2 and the particulate filter 10.
  • the notification device 40 as notification means performs notification based on the state of the particulate filter 10. When there is a possibility that the particulate filter 10 is melted, the notification device 40 performs a notification requesting that the internal combustion engine 2 be stopped or the particulate filter 10 be inspected.
  • the notification device 40 includes a lamp 41 that is a visual notification unit or a speaker 42 that is an auditory notification unit.
  • the lamp 41 performs notification based on the state of the particulate filter 10 by turning on the lamp 41. Specifically, the lamp 41 performs notification for requesting the stop of the internal combustion engine 2 by lighting, and performs notification for requesting the inspection of the particulate filter 10 by blinking. Note that the notification method is not limited to this embodiment.
  • the speaker 42 performs notification based on the state of the particulate filter 10 to the worker using auditory information. Specifically, the speaker 42 performs a notification requesting the stop of the internal combustion engine 2 or a request for checking the particulate filter 10 by voice. Note that the notification method is not limited to this embodiment.
  • the ECU 30 is connected to the fuel injectors 4, 4, 4, 4 and controls the fuel injection amount of the fuel injectors 4, 4, 4, 4, thereby starting and stopping the internal combustion engine 2, controlling output, and the like. It is possible.
  • the ECU 30 is connected to the downstream temperature sensor 20a, and can acquire the downstream exhaust temperature T1 detected by the downstream temperature sensor 20a.
  • the ECU 30 is connected to the filter temperature sensor 20b and can acquire the filter temperature T10 detected by the filter temperature sensor 20b.
  • the ECU 30 is connected to the exhaust differential pressure detection device 21 and can acquire the exhaust differential pressure P (n) calculated by the exhaust differential pressure detection device 21.
  • the ECU 30 performs the second exhaust differential pressure P (n) calculated by the exhaust differential pressure detection device 21 and the first exhaust differential calculated by the exhaust differential pressure detection device 21 a predetermined time before the downstream exhaust temperature T1.
  • the pressure P (n-1) is converted into the second converted exhaust differential pressure TP (n) and the first converted exhaust differential pressure TP (the pressure when the exhaust is discharged at a predetermined temperature and a predetermined flow rate. n-1). It is possible to calculate a differential pressure change amount dP which is a difference between the second converted exhaust differential pressure TP (n) and the first converted exhaust differential pressure TP (n ⁇ 1).
  • the ECU 30 discharges the first exhaust differential pressure P (n ⁇ 1) calculated by the exhaust differential pressure detection device 21 a predetermined time ago at a predetermined temperature and a predetermined flow rate in the state of the downstream exhaust temperature T1. Is converted into the first converted exhaust differential pressure TP (n-1), which is the pressure of the exhaust in this case. Similarly, the ECU 30 in the state of the downstream exhaust temperature T1 when the second exhaust differential pressure P (n) calculated by the exhaust differential pressure detection device 21 is discharged at a predetermined temperature and a predetermined flow rate. The pressure is converted into a second converted exhaust differential pressure TP (n) which is the exhaust pressure. Therefore, the ECU 30 can calculate the differential pressure change amount dP that is the difference between the second converted exhaust differential pressure TP (n) and the first converted exhaust differential pressure TP (n ⁇ 1).
  • the ECU 30 is connected to the notification device 40 and can perform notification based on the state of the particulate filter 10 by controlling the notification device 40.
  • the ECU 30 determines whether the particulate filter 10 is melted or not.
  • the exhaust gas reference temperature T1s, the filter reference temperature 10Ts, the reference change amount Ps, the reference time ts, the reference period h, and the particulate filter 10 can be melted.
  • the melting count N that is counted when a predetermined condition is satisfied is stored. Further, an output map M1 of the internal combustion engine 2 and an output restriction map M2 for limiting the output of the internal combustion engine 2 are stored.
  • the ECU 30 acquires the downstream exhaust temperature T1, the filter temperature T10, and the second exhaust differential pressure P (n), and is calculated by the exhaust differential pressure detection device 21 a predetermined time ago.
  • a differential pressure change amount dP is calculated based on the first exhaust differential pressure P (n ⁇ 1).
  • the ECU 30 determines whether or not the downstream side exhaust temperature T1 and the duration t thereof or the differential pressure change amount dP is equal to or greater than each reference value, that is, whether the particulate filter 10 may be melted.
  • the ECU 30 notifies the requesting device 40 to stop the internal combustion engine or stops the operation of the internal combustion engine 2.
  • step S110 the ECU 30 acquires a signal for starting the internal combustion engine 2 from the key switch 31, and then shifts the control stage to step S120.
  • step S130 after starting the operation of the internal combustion engine 2, the ECU 30 shifts the control stage to step S140.
  • step S140 the ECU 30 acquires the downstream exhaust temperature T1 by the downstream temperature sensor 20a, and then shifts the control stage to step S150.
  • step S150 the ECU 30 acquires the second exhaust differential pressure P (n) calculated by the exhaust differential pressure detection device 21, and then shifts the control stage to step S160.
  • step S160 the ECU 30 calculates the second exhaust differential pressure P (n) at the downstream exhaust temperature T1 and the first exhaust differential pressure P (n-1) calculated by the exhaust differential pressure detection device 21 a predetermined time ago. Are converted into a second converted exhaust differential pressure TP (n) and a first converted exhaust differential pressure TP (n-1), which are exhaust pressures when exhausted at a predetermined temperature and a predetermined flow rate. Then, after calculating the differential pressure change amount dP, which is the difference between the second converted exhaust differential pressure TP (n) and the first converted exhaust differential pressure TP (n ⁇ 1), the control stage proceeds to step S170. .
  • step S170 the ECU 30 determines whether or not the downstream exhaust temperature T1 is equal to or higher than the exhaust reference temperature T1s. As a result, when it is determined that the downstream exhaust temperature T1 is equal to or higher than the exhaust reference temperature T1s, the control stage is shifted to step S180. If the ECU 30 determines that the downstream side exhaust temperature T1 is lower than the exhaust reference temperature T1s, the ECU 30 proceeds to step S480.
  • step S180 the ECU 30 determines whether or not the duration t in which the downstream exhaust temperature T1 is equal to or higher than the exhaust reference temperature T1s is equal to or higher than the reference time ts. As a result, when it is determined that the duration t in which the downstream side exhaust temperature T1 is equal to or higher than the exhaust reference temperature T1s is equal to or longer than the reference time ts, the control stage proceeds to step S190. If the ECU 30 determines that the duration t of the state where the downstream side exhaust temperature T1 is equal to or higher than the exhaust reference temperature T1s is less than the reference time ts, the ECU 30 shifts the control step to step S480.
  • step S190 the ECU 30 adds 1 to the erosion count N, and then shifts the control stage to step S200.
  • step S200 the ECU 30 notifies the requesting device 40 to request that the internal combustion engine 2 be stopped. Alternatively, the ECU 30 stops the operation of the internal combustion engine 2.
  • step S320 the ECU 30 moves the control stage to step S330 after obtaining the filter temperature T10 by the filter temperature sensor 20b.
  • step S330 the ECU 30 determines whether or not the filter temperature T10 is lower than the filter reference temperature T10s. As a result, when it is determined that the filter temperature T10 is lower than the filter reference temperature T10s, the control stage proceeds to step S340. Further, when the ECU 30 determines that the filter temperature T10 is equal to or higher than the filter reference temperature T10s, the ECU 30 repeatedly proceeds to step S120.
  • step S340 the ECU 30 makes a notification requesting that the particulate filter 10 be inspected by the notification device 40, and then proceeds to step 350.
  • step S ⁇ b> 350 the ECU 30 determines whether or not the period during which the notification requesting the inspection of the particulate filter 10 by the notification device 40 is greater than or equal to the reference period h. As a result, when it is determined that the period during which the notification device 40 has requested to check the particulate filter 10 is equal to or longer than the reference period h, the control stage proceeds to step S350. Further, when the ECU 30 determines that the period during which the notification requesting the inspection of the particulate filter 10 by the notification device 40 is less than the reference period h, the ECU 30 proceeds to step S130.
  • step S360 the ECU 30 switches the output map M1 of the internal combustion engine 2 to the output restriction map M2 for restricting the output of the internal combustion engine 2, and then shifts the control stage to step S130.
  • step S480 the ECU 30 determines whether or not the differential pressure change amount dP is greater than or equal to the reference change amount Ps. As a result, if it is determined that the differential pressure change amount dP is greater than or equal to the reference change amount Ps, the control stage proceeds to step S190. Further, when the ECU 30 determines that the differential pressure change amount dP is less than the reference change amount Ps, the ECU 30 shifts the control step to step S140.
  • the duration t in which the downstream exhaust temperature T1 is equal to or higher than the exhaust reference temperature T1s is reset when the operation of the internal combustion engine 2 is stopped.
  • the period during which the melting count N and the notification device 40 notifies the particulate filter 10 to be inspected is reset by inspecting the particulate filter 10.
  • the particulate filter 10 As described above, the particulate filter 10, the downstream temperature sensor 20a, which is a downstream temperature detecting means for detecting the downstream exhaust temperature T1 of the particulate filter 10, the upstream exhaust pressure p1 of the particulate filter 10, and the particulates.
  • An exhaust differential pressure detection device 21 which is an exhaust differential pressure detection means for calculating an exhaust differential pressure P (n) with respect to the downstream exhaust pressure p2 of the filter 10 every predetermined time, and a notification based on the state of the particulate filter 10 are performed.
  • the ECU 30 includes a downstream temperature sensor 20 a and an exhaust differential pressure detection device 21.
  • the first exhaust gas obtained by converting the first exhaust differential pressure P (n-1) under a predetermined condition.
  • the differential pressure based on the differential pressure TP (n-1) and the second converted exhaust differential pressure TP (n) obtained by converting the second exhaust differential pressure P (n) calculated after a predetermined time has passed under a predetermined condition.
  • the notification device 40 causes the internal combustion engine to No. 2 is requested to stop the operation, or the operation of the internal combustion engine 2 is stopped.
  • the ECU 30 detects the reference change when the downstream temperature sensor 20a continuously detects a value equal to or higher than the exhaust reference temperature T1s for a reference time ts or more, or when the exhaust differential pressure detection device 21 detects at least once or more.
  • the notification device 40 makes a notification requesting that the particulate filter 10 be inspected.
  • the ECU 30 is connected to a filter temperature sensor 20b, which is a filter temperature detection means for detecting the filter temperature T10 of the particulate filter 10, and the filter temperature T10 detected by the filter temperature sensor 20b is equal to or higher than the filter reference temperature T10s.
  • the internal combustion engine 2 is not started.
  • the ECU 30 continuously performs the notification requesting the inspection of the particulate filter 10 by the notification device 40 during the reference period h and when the inspection of the particulate filter 10 is not performed, the particulate filter 10
  • the output of the internal combustion engine 2 is limited until the above inspection is performed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Abstract

【課題】パティキュレートフィルタが溶損した状態で内燃機関の運転が継続されることを防止することができる内燃機関の排気浄化装置を提供することを目的とする。 【解決手段】パティキュレートフィルタ10と、下流側排気温度T1を検出する下流側温度センサ20aと、フィルタ温度T10を検出するフィルタ温度センサ20bと、上流側排気圧力p1と下流側排気圧力p2との排気差圧P(n)を所定時間毎に算出する排気差圧検出装置21と、通知装置40と、内燃機関2を制御するECU30と、を備える内燃機関2の排気浄化装置1において、第一の排気差圧P(n-1)と所定時間経過後の第二の排気差圧P(n)とに基づいて差圧変化量dPを算出し、差圧変化量dPが基準変化量Ps以上の場合、または下流側排気温度T1が基準時間ts以上継続して排気基準温度T1s以上の場合に、内燃機関2の運転停止を要求する通知を行う、または運転を停止する。

Description

内燃機関の排気浄化装置
 本発明は、内燃機関の排気浄化装置に関する。より詳細には内燃機関の排気浄化装置の溶損を防止する技術に関する。
 従来、内燃機関から排出される排気中に含まれるパティキュレートを回収する技術として、排気通路途中にパティキュレートフィルタを有する内燃機関の排気浄化装置を装備することが知られている。前記パティキュレートフィルタは、セラミック等からなる多孔質のハニカム構造に構成され、各流路を区画する多孔質壁を透過した排気のみが下流へ排出される。排気が前記多孔質壁を透過する際に、前記多孔質壁内部に堆積していくパティキュレートを燃焼除去する技術は公知である。しかし、内燃機関の回転数が低下することにより排気流量が減少すると、排気によるパティキュレートフィルタの冷却が不十分となる。また、内燃機関の負荷が減少することにより排気中の残留酸素量が増加すると、残留酸素による過剰燃焼が発生しやすくなる。よって、パティキュレートフィルタの溶損が発生する可能性が増大する問題があった。
 そこで、内燃機関の運転状態およびパティキュレートフィルタの温度を検出し、排気流量の低下を抑制することでパティキュレートフィルタの溶損を防止する内燃機関の排気浄化装置の技術は公知である。例えば、特許文献1の如くである。
 しかし、上述のような排気流量の制御を行ってもパティキュレートフィルタの溶損は、完全に防止することは困難である。加えてパティキュレートフィルタの溶損が発生した状態で内燃機関の運転が継続されると、排気中に含まれるパティキュレート等の有害物質が捕集されることなく大気中に排出されるという不具合があった。
特許第4033189号公報
 本発明は係る課題を鑑みてなされたものであり、パティキュレートフィルタが溶損した状態で内燃機関の運転が継続されることを防止することができる内燃機関の排気浄化装置を提供することを目的とする。
 本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段を説明する。
 即ち、本発明においては、パティキュレートフィルタと、前記パティキュレートフィルタの下流側排気温度を検出する排気温度検出手段と、前記パティキュレートフィルタの上流側排気圧と前記パティキュレートフィルタの下流側排気圧との排気差圧を所定時間毎に算出する排気差圧検出手段と、前記パティキュレートフィルタの状態に基づく通知を行う通知手段と、内燃機関を制御する制御手段と、を備える内燃機関の排気浄化装置において、前記制御手段は、前記排気温度検出手段と、前記排気差圧検出手段と、前記通知手段と、が接続され、第一の排気差圧と所定時間経過後に算出される第二の排気差圧とに基づいて差圧変化量を算出し、前記差圧変化量が基準変化量以上の場合、または下流側排気温度が基準時間以上継続して基準温度以上の場合に、前記通知手段により前記内燃機関の運転停止を要求する通知を行う、または前記内燃機関の運転を停止することを特徴とするものである。
 本発明においては、前記制御手段は、前記排気温度検出手段が少なくとも1回以上、基準温度以上の値を基準時間以上継続して検出した場合、または前記排気差圧検出手段が少なくとも1回以上、基準変化量以上の値を算出した場合に、前記通知手段により前記パティキュレートフィルタの点検を要求する通知を行うことを特徴とするものである。
 本発明においては、前記制御手段は、前記パティキュレートフィルタのフィルタ温度を検出するフィルタ温度検出手段が接続され、前記フィルタ温度検出手段が検出するフィルタ温度がフィルタ基準温度以上である場合、前記内燃機関を始動させないことを特徴とするものである。
 本発明においては、前記制御手段は、前記通知手段による前記パティキュレートフィルタの点検を要求する通知を基準期間の間以上継続して行い、かつパティキュレートフィルタの点検が行われていない場合に、前記パティキュレートフィルタの点検が行われるまで前記内燃機関の出力を制限することを特徴とするものである。
 本発明の効果として、以下に示すような効果を奏する。
 本発明は、パティキュレートフィルタが溶損した状態で内燃機関の運転が継続されることを防止することが可能である、という効果を奏する。
本発明に係る内燃機関の排気浄化装置の構成を示す概略図。 本発明に係る実施形態の内燃機関の排気浄化装置の溶損防止制御を示すフローチャート図。
 1      内燃機関の排気浄化装置
 2      内燃機関
 10     パティキュレートフィルタ
 20a    下流側温度センサ
 20b    フィルタ温度センサ
 21     排気差圧検出装置
 30     ECU
 40     通知装置
 T1     下流側排気温度
 T10    フィルタ温度
 P(n-1) 第一の排気差圧
 P(n)   第二の排気差圧
 dP     差圧変化量
 Ps     基準変化量
 ts     基準時間
 T1s    基準温度
 T10s   フィルタ基準温度
 以下に、図1を用いて本発明に係る内燃機関の排気浄化装置の一実施形態である排気浄化装置1について説明する。
 排気浄化装置1は、図1に示すように、内燃機関2で発生した排気を浄化し、排出するものである。排気浄化装置1は、内燃機関2に具備され、パティキュレートフィルタ10、酸化触媒11、排気温度検出手段である下流側温度センサ20a、フィルタ温度検出手段であるフィルタ温度センサ20b、排気差圧検出手段である排気差圧検出装置21、制御手段であるECU30、通知手段である通知装置40等を具備する。
 内燃機関2は、単数または複数の気筒を備え、前記気筒内部に噴射される燃料を燃焼させることで発生するエネルギーを回転動力に変換するものである。内燃機関2は、吸気経路3を介して供給される外気と燃料噴射弁4・4・4・4から供給される燃料とを気筒5・5・5・5内において混合燃焼させる。この際発生する排気は、排気経路6を介して排出される。なお、本実施形態に係る内燃機関2は直列四気筒としたが、これに限定されない。
 パティキュレートフィルタ10は、排気中のパティキュレート(炭素質からなる煤、高沸点炭化水素成分(SOF)等)を除去するものである。パティキュレートフィルタ10は、内燃機関2の排気経路6に配設される。パティキュレートフィルタ10は、具体的にはセラミック等の多孔質壁からなるハニカム構造であり、排気が必ず前記多孔質壁を透過した後に排出されよう構成される。パティキュレートフィルタ10は、排気が前記多孔質壁を通過する際に排気中のパティキュレートを捕集する。その結果、排気からパティキュレートが除去される。
 酸化触媒11は、窒素化合物を酸化するものである。酸化触媒11は、パティキュレートフィルタ10の上流側に配設され、パティキュレートの酸化除去を促進させる。
 排気温度検出手段である下流側温度センサ20aは、パティキュレートフィルタ10を通過した排気の温度を検出するものである。下流側温度センサ20aは、パティキュレートフィルタ10を通過した後の下流側排気温度T1を検出できる位置に配置される。
 フィルタ温度検出手段であるフィルタ温度センサ20bは、パティキュレートフィルタ10のフィルタ温度T10を検出するものである。フィルタ温度センサ20bは、パティキュレートフィルタ10のフィルタ温度T10を検出できる位置に配置される。
 排気差圧検出手段である排気差圧検出装置21は、パティキュレートフィルタ10を通過する排気の差圧を検出するものである。排気差圧検出装置21は、上流側圧力センサ21aと、下流側圧力センサ21bとを具備する。上流側圧力センサ21aは、パティキュレートフィルタの上流側に配設され、パティキュレートフィルタ10を通過する前の上流側排気圧力p1を所定時間毎に検出する。なお、上流側圧力センサ21aは、パティキュレートフィルタ10の上流側であればよく、酸化触媒11の上流側でも下流側でもよい。下流側圧力センサ21bは、パティキュレートフィルタ10の下流側に配設され、パティキュレートフィルタ10を通過した後の下流側排気圧力p2を所定時間毎に検出する。排気差圧検出装置21は、上流側排気圧力p1と下流側排気圧力p2とから所定時間毎に排気差圧P(n-1)・排気差圧P(n)・排気差圧P(n+1)・・を算出する。
 制御手段であるECU30は、内燃機関2の制御、およびパティキュレートフィルタ10の再生の制御を行うものである。ECU30は、具体的には、下流側温度センサ20aや、フィルタ温度センサ20bや、排気差圧検出装置21が検出したパティキュレートフィルタ10の状態を取得する。そして、ECU30は、取得したパティキュレートフィルタ10の状態に基づいて、パティキュレートフィルタ10を再生したり、溶損を防止するため内燃機関2を制御したりする。また、ECU30は、図示しないアクセル等からの信号により内燃機関2の制御等を行う。さらに、キースイッチ31からの信号により内燃機関2の始動および停止を行う。ECU30は、具体的には、CPU、ROM、RAM、HDD等がバスで接続される構成であってもよく、あるいはワンチップのLSI等からなる構成であってもよい。ECU30には、内燃機関2およびパティキュレートフィルタ10の制御を行うための種々のプログラム及びデータが格納される。
 通知手段である通知装置40は、パティキュレートフィルタ10の状態に基づく通知を行うものである。通知装置40は、パティキュレートフィルタ10が溶損する可能性がある場合、内燃機関2の停止やパティキュレートフィルタ10の点検を要求する通知を行う。通知装置40は、視覚通知手段であるランプ41または聴覚通知手段であるスピーカー42から構成される。
 ランプ41は、パティキュレートフィルタ10の状態に基づく通知をランプ41の点灯により行うものである。ランプ41は、具体的には、点灯により内燃機関2の停止を要求する通知を行い、点滅によりパティキュレートフィルタ10の点検を要求する通知を行う。なお、通知の方法は本実施形態に限るものではない。
 スピーカー42は、パティキュレートフィルタ10の状態に基づく通知を聴覚情報で作業者に行うものである。スピーカー42は、具体的には音声により内燃機関2の停止を要求する通知やパティキュレートフィルタ10の点検を要求する通知を行う。なお、通知の方法は本実施形態に限るものではない。
 ECU30は、燃料噴射弁4・4・4・4に接続され、燃料噴射弁4・4・4・4の燃料噴射量を制御することで、内燃機関2の起動および停止、出力制御等をすることが可能である。
 ECU30は、下流側温度センサ20aに接続され、下流側温度センサ20aが検出する下流側排気温度T1を取得することが可能である。
 ECU30は、フィルタ温度センサ20bに接続され、フィルタ温度センサ20bが検出するフィルタ温度T10を取得することが可能である。
 ECU30は、排気差圧検出装置21に接続され、排気差圧検出装置21が算出する排気差圧P(n)を取得することが可能である。
 ECU30は、下流側排気温度T1のときに、排気差圧検出装置21が算出する第二の排気差圧P(n)と所定時間前に排気差圧検出装置21が算出した第一の排気差圧P(n-1)とを、排気が所定の温度、かつ所定の流量で排出された場合における圧力である第二の変換排気差圧TP(n)と第一の変換排気差圧TP(n-1)に変換する。第二の変換排気差圧TP(n)と第一の変換排気差圧TP(n-1)との差である差圧変化量dPを算出することが可能である。
 ECU30は、下流側排気温度T1の状態において、所定時間前に排気差圧検出装置21が算出した第一の排気差圧P(n-1)を、所定の温度、かつ所定の流量で排出された場合における排気の圧力である第一の変換排気差圧TP(n-1)に変換する。同様に、ECU30は、下流側排気温度T1の状態において、排気差圧検出装置21が算出する第二の排気差圧P(n)を、所定の温度、かつ所定の流量で排出された場合における排気の圧力である第二の変換排気差圧TP(n)に変換する。従って、ECU30は、第二の変換排気差圧TP(n)と第一の変換排気差圧TP(n-1)との差である差圧変化量dPを算出することが可能である。
 ECU30は、通知装置40に接続され、通知装置40を制御することでパティキュレートフィルタ10の状態に基づく通知を行うことが可能である。
 ECU30は、パティキュレートフィルタ10が溶損するか否かを判定する排気温度の排気基準温度T1s、フィルタ基準温度10Ts、基準変化量Ps、基準時間ts、基準期間hおよびパティキュレートフィルタ10が溶損する可能性がある所定の条件を満たした場合にカウントされる溶損カウントNを格納している。また、内燃機関2の出力マップM1と、内燃機関2の出力を制限するための出力制限マップM2を格納している。
 次に図2を用いて、本発明に係る排気浄化装置1のECU30によるパティキュレートフィルタ10の溶損防止制御について説明する。
 ECU30は、内燃機関2が始動されると、下流側排気温度T1とフィルタ温度T10と第二の排気差圧P(n)とを取得するとともに所定時間前に排気差圧検出装置21が算出した第一の排気差圧P(n-1)とに基づいて差圧変化量dPを算出する。ECU30は、下流側排気温度T1およびその継続時間t、または差圧変化量dPが各基準値以上かどうか、つまりパティキュレートフィルタ10が溶損する可能性があるか否か判定する。ECU30は、パティキュレートフィルタ10が溶損する可能性がある場合、通知装置40によって内燃機関の停止を要求する通知を行う、または内燃機関2の運転を停止する。
 以下では、ECU30による制御態様について具体的に説明する。
 ステップS110において、ECU30は、キースイッチ31から内燃機関2を始動させる信号を取得した後、制御段階をステップS120へ移行する。
 ステップS120において、ECU30は、溶損カウントNがN=0か否か判定する。
 その結果、溶損カウントNがN=0の場合は制御段階をステップS130へ移行する。
 また、溶損カウントNがN=0でない場合は制御段階をステップS320へ移行する。
 ステップS130において、ECU30は、内燃機関2の運転を開始した後、制御段階をステップS140へ移行する。
 ステップS140において、ECU30は、下流側温度センサ20aによって下流側排気温度T1を取得した後、制御段階をステップS150へ移行する。
 ステップS150において、ECU30は、排気差圧検出装置21が算出する第二の排気差圧P(n)を取得した後、制御段階をステップS160へ移行する。
 ステップS160において、ECU30は、下流側排気温度T1における第二の排気差圧P(n)と所定時間前に排気差圧検出装置21が算出した第一の排気差圧P(n-1)とを、所定の温度、かつ所定の流量で排出された場合における排気の圧力である第二の変換排気差圧TP(n)と第一の変換排気差圧TP(n-1)に変換する。そして、第二の変換排気差圧TP(n)と第一の変換排気差圧TP(n-1)との差である差圧変化量dPを算出した後、制御段階をステップS170へ移行する。
 ステップS170において、ECU30は、下流側排気温度T1が排気基準温度T1s以上か否か判定する。
 その結果、下流側排気温度T1が排気基準温度T1s以上と判定した場合は制御段階をステップS180へ移行する。
 また、ECU30は、下流側排気温度T1が排気基準温度T1s未満と判定した場合は制御段階をステップS480へ移行する。
 ステップS180において、ECU30は、下流側排気温度T1が排気基準温度T1s以上である状態の継続時間tが基準時間ts以上か否か判定する。
 その結果、下流側排気温度T1が排気基準温度T1s以上である状態の継続時間tが基準時間ts以上と判定した場合は制御段階をステップS190へ移行する。
 また、ECU30は、下流側排気温度T1が排気基準温度T1s以上である状態の継続時間tが基準時間ts未満であると判定した場合は制御段階をステップS480へ移行する。
 ステップS190において、ECU30は、溶損カウントNに1を加えた後、制御段階をステップS200へ移行する。
 ステップS200において、ECU30は、通知装置40によって内燃機関2の運転停止をする要求する通知を行う。または、ECU30は、内燃機関2の運転を停止する。
 ステップS320において、ECU30は、フィルタ温度センサ20bによってフィルタ温度T10を取得した後、制御段階をステップS330へ移行する。
 ステップS330において、ECU30は、フィルタ温度T10がフィルタ基準温度T10sより小さいか否か判定する。
 その結果、フィルタ温度T10がフィルタ基準温度T10sより小さいと判定した場合は制御段階をステップS340へ移行する。
 また、ECU30は、フィルタ温度T10がフィルタ基準温度T10s以上と判定した場合は制御段階をステップS120へ繰り返し移行する。
 ステップS340において、ECU30は、通知装置40によってパティキュレートフィルタ10の点検を要求する通知を行った後、制御段階をステップ350へ移行する。
 ステップS350において、ECU30は、通知装置40によるパティキュレートフィルタ10の点検を要求する通知を行った期間が基準期間h以上か否か判定する。
 その結果、通知装置40によるパティキュレートフィルタ10の点検を要求する通知を行った期間が基準期間h以上と判定した場合は制御段階をステップS350へ移行する。
 また、ECU30は、通知装置40によるパティキュレートフィルタ10の点検を要求する通知を行った期間が基準期間h未満と判定した場合は制御段階をステップS130へ移行する。
 ステップS360において、ECU30は、内燃機関2の出力マップM1を内燃機関2の出力を制限するための出力制限マップM2に切り替えた後、制御段階をステップS130へ移行する。
 ステップS480において、ECU30は、差圧変化量dPが基準変化量Ps以上であるか否か判定する。
 その結果、差圧変化量dPが基準変化量Ps以上であると判定した場合は制御段階をステップS190へ移行する。
 また、ECU30は、差圧変化量dPが基準変化量Ps未満であると判定した場合は制御段階をステップS140へ移行する。
 下流側排気温度T1が排気基準温度T1s以上である状態の継続時間tは、内燃機関2の運転が停止された場合にリセットされる。また、溶損カウントNおよび通知装置40によるパティキュレートフィルタ10の点検を要求する通知を行った期間は、パティキュレートフィルタ10の点検を行うことでリセットされる。
 以上の如く、パティキュレートフィルタ10と、パティキュレートフィルタ10の下流側排気温度T1を検出する下流側温度検出手段である下流側温度センサ20aと、パティキュレートフィルタ10の上流側排気圧力p1とパティキュレートフィルタ10の下流側排気圧力p2との排気差圧P(n)を所定時間毎に算出する排気差圧検出手段である排気差圧検出装置21と、パティキュレートフィルタ10の状態に基づく通知を行う通知手段である通知装置40と、内燃機関2を制御する制御手段であるECU30と、を備える内燃機関2の排気浄化装置1において、ECU30は、下流側温度センサ20aと、排気差圧検出装置21と、通知装置40と、が接続され、第一の排気差圧P(n-1)を所定の条件で変換した第一の変換排気差圧TP(n-1)と所定時間経過後に算出される第二の排気差圧P(n)を所定の条件で変換した第二の変換排気差圧TP(n)とに基づいて差圧変化量dPを算出し、差圧変化量dPが基準変化量Ps以上の場合、または下流側排気温度T1が基準時間ts以上継続して排気基準温度T1s以上の場合に、通知装置40により内燃機関2の運転停止を要求する通知を行う、または内燃機関2の運転を停止することを特徴とするものである。
 また、ECU30は、下流側温度センサ20aが少なくとも1回以上、排気基準温度T1s以上の値を基準時間ts以上継続して検出した場合、または排気差圧検出装置21が少なくとも1回以上、基準変化量Ps以上の値を算出した場合に、に、通知装置40によりパティキュレートフィルタ10の点検を要求する通知を行うことを特徴とするものである。
 また、ECU30は、パティキュレートフィルタ10のフィルタ温度T10を検出するフィルタ温度検出手段であるフィルタ温度センサ20bが接続され、フィルタ温度センサ20bが検出するフィルタ温度T10がフィルタ基準温度T10s以上である場合、内燃機関2を始動させないことを特徴とするものである。
 また、ECU30は、通知装置40によるパティキュレートフィルタ10の点検を要求する通知を基準期間hの間以上継続して行い、かつパティキュレートフィルタ10の点検が行われていない場合に、パティキュレートフィルタ10の点検が行われるまで内燃機関2の出力を制限することを特徴とするものである。
 このように構成にすることにより、パティキュレートフィルタ10が溶損する可能性がある状態であることを作業者に通知し、または内燃機関2を強制的に停止することができる。さらに、内燃機関2の出力を制限することでパティキュレートフィルタ10の点検を促進させることができる。これにより、パティキュレートフィルタ10が溶損した状態で内燃機関2の運転が継続されることを防止することができる。

Claims (4)

  1.  パティキュレートフィルタと、
     前記パティキュレートフィルタの下流側排気温度を検出する排気温度検出手段と、
     前記パティキュレートフィルタの上流側排気圧と前記パティキュレートフィルタの下流側排気圧との排気差圧を所定時間毎に算出する排気差圧検出手段と、
     前記パティキュレートフィルタの状態に基づく通知を行う通知手段と、
     内燃機関を制御する制御手段と、
     を備える内燃機関の排気浄化装置において、
     前記制御手段は、
     前記排気温度検出手段と、
     前記排気差圧検出手段と、
     前記通知手段と、
     が接続され、
     第一の排気差圧と所定時間経過後の第二の排気差圧とに基づいて差圧変化量を算出し、前記差圧変化量が基準変化量以上の場合、または下流側排気温度が基準時間以上継続して基準温度以上の場合に、前記通知手段により前記内燃機関の運転停止を要求する通知を行う、または前記内燃機関の運転を停止することを特徴とする内燃機関の排気浄化装置。
  2.  前記制御手段は、
     前記排気温度検出手段が少なくとも1回以上、基準温度以上の値を基準時間以上継続して検出した場合、または前記排気差圧検出手段が少なくとも1回以上、基準変化量以上の値を算出した場合に、前記通知手段により前記パティキュレートフィルタの点検を要求する通知を行うことを特徴とする請求項1に記載の内燃機関の排気浄化装置。
  3.  前記制御手段は、
     前記パティキュレートフィルタのフィルタ温度を検出するフィルタ温度検出手段が接続され、
     前記フィルタ温度検出手段が検出するフィルタ温度がフィルタ基準温度以上である場合、前記内燃機関を始動させないことを特徴とする請求項2に記載の内燃機関の排気浄化装置。
  4.  前記制御手段は、
     前記通知手段による前記パティキュレートフィルタの点検を要求する通知を基準期間の間以上継続して行い、かつパティキュレートフィルタの点検が行われていない場合に、前記パティキュレートフィルタの点検が行われるまで前記内燃機関の出力を制限することを特徴とする請求項3に記載の内燃機関の排気浄化装置。
PCT/JP2010/054097 2009-03-19 2010-03-11 内燃機関の排気浄化装置 WO2010106959A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP10753451.3A EP2410142B1 (en) 2009-03-19 2010-03-11 Exhaust purification device for internal combustion engine
CN201080012350.XA CN102356219B (zh) 2009-03-19 2010-03-11 内燃机的排气净化装置
US13/257,175 US8539756B2 (en) 2009-03-19 2010-03-11 Exhaust purification device for internal combustion engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-068323 2009-03-19
JP2009068323A JP2010222993A (ja) 2009-03-19 2009-03-19 内燃機関の排気浄化装置

Publications (1)

Publication Number Publication Date
WO2010106959A1 true WO2010106959A1 (ja) 2010-09-23

Family

ID=42739619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/054097 WO2010106959A1 (ja) 2009-03-19 2010-03-11 内燃機関の排気浄化装置

Country Status (6)

Country Link
US (1) US8539756B2 (ja)
EP (1) EP2410142B1 (ja)
JP (1) JP2010222993A (ja)
KR (1) KR20110134471A (ja)
CN (1) CN102356219B (ja)
WO (1) WO2010106959A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019194399A (ja) * 2018-05-01 2019-11-07 範多機械株式会社 汚泥吸引車及び汚泥吸引装置

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013132624A1 (ja) * 2012-03-07 2013-09-12 イビデン株式会社 微粒子捕集フィルタ状態検出装置
JP2013209951A (ja) * 2012-03-30 2013-10-10 Panasonic Corp 原動機及びガスヒートポンプエアコン
CN103748530A (zh) * 2012-08-17 2014-04-23 弗莱克斯电子有限责任公司 媒体中心
JP2014070524A (ja) * 2012-09-28 2014-04-21 Kubota Corp ディーゼルエンジン
GB2515102B (en) * 2013-06-14 2019-06-19 Ford Global Tech Llc Particulate filter overheat protection
JP2015169137A (ja) * 2014-03-07 2015-09-28 トヨタ自動車株式会社 内燃機関の排気浄化装置
DE102014209718A1 (de) * 2014-05-22 2015-11-26 Robert Bosch Gmbh Verfahren und Diagnoseeinheit zur Diagnose eines Differenzdrucksensors
DE102014209840A1 (de) * 2014-05-23 2015-11-26 Robert Bosch Gmbh Verfahren und Vorrichtung zur Diagnose eines Partikelfilters
US9416741B2 (en) * 2014-11-24 2016-08-16 GM Global Technology Operations LLC Exhaust system component input pressure estimation systems and methods
JP6387884B2 (ja) * 2015-04-06 2018-09-12 株式会社デンソー 排出ガス浄化装置
JP6722505B2 (ja) * 2016-05-11 2020-07-15 富士通株式会社 画像制御方法、装置、及びプログラム
CN108708793B (zh) * 2018-05-28 2019-09-27 潍柴动力股份有限公司 一种发动机柴油颗粒过滤器的诊断方法和装置
US20220236197A1 (en) * 2021-01-28 2022-07-28 General Electric Company Inspection assistant for aiding visual inspections of machines
GB202106257D0 (en) * 2021-04-30 2021-06-16 Agco Int Gmbh Exhaust gas aftertreatment system and method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0433189B2 (ja) 1985-07-29 1992-06-02 Pfu Ltd
JP2005163652A (ja) * 2003-12-03 2005-06-23 Hino Motors Ltd 排気浄化装置
JP2007327392A (ja) * 2006-06-07 2007-12-20 Toyota Motor Corp Pmトラッパの故障検出システム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3884947B2 (ja) * 2001-11-20 2007-02-21 日野自動車株式会社 パティキュレートフィルタの溶損判定装置
JP3930725B2 (ja) * 2001-11-20 2007-06-13 日野自動車株式会社 パティキュレートフィルタの異常検知装置
JP2004068734A (ja) * 2002-08-07 2004-03-04 Komotetsuku:Kk 内燃機関の不正運転防止装置
JP4470593B2 (ja) * 2004-06-03 2010-06-02 株式会社デンソー 内燃機関の排気浄化装置
JP4033189B2 (ja) 2004-10-22 2008-01-16 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP2007002694A (ja) 2005-06-22 2007-01-11 Honda Motor Co Ltd 内燃機関の排気浄化装置
JP4762043B2 (ja) * 2006-04-27 2011-08-31 本田技研工業株式会社 パティキュレートフィルタの状態検知装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0433189B2 (ja) 1985-07-29 1992-06-02 Pfu Ltd
JP2005163652A (ja) * 2003-12-03 2005-06-23 Hino Motors Ltd 排気浄化装置
JP2007327392A (ja) * 2006-06-07 2007-12-20 Toyota Motor Corp Pmトラッパの故障検出システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019194399A (ja) * 2018-05-01 2019-11-07 範多機械株式会社 汚泥吸引車及び汚泥吸引装置

Also Published As

Publication number Publication date
EP2410142B1 (en) 2018-10-31
EP2410142A1 (en) 2012-01-25
JP2010222993A (ja) 2010-10-07
US20120006009A1 (en) 2012-01-12
EP2410142A4 (en) 2017-07-19
CN102356219A (zh) 2012-02-15
KR20110134471A (ko) 2011-12-14
CN102356219B (zh) 2014-01-08
US8539756B2 (en) 2013-09-24

Similar Documents

Publication Publication Date Title
WO2010106959A1 (ja) 内燃機関の排気浄化装置
JP5155979B2 (ja) ディーゼルエンジン
JP4673226B2 (ja) 排気ガス浄化方法及び排気ガス浄化システム
JP2006291788A (ja) 内燃機関の排気浄化装置
JP2008274835A (ja) 酸化触媒の劣化診断装置
JP2007170360A (ja) 内燃機関の排気浄化装置
JP2007198283A (ja) 排気ガス浄化方法及び排気ガス浄化システム
JP6007489B2 (ja) 排気ガス浄化システムと排気ガス浄化方法
JP2015010470A (ja) 内燃機関の排気浄化装置
JP2011149357A (ja) Dpf再生装置
JP2008121631A (ja) 内燃機関の排気浄化装置
JP2011089479A (ja) Dpf再生制御装置
JP2008261302A (ja) 内燃機関の排気浄化装置
JP4052268B2 (ja) 内燃機関の排気浄化装置
JP5323503B2 (ja) 温度センサの異常検知方法
JP5856642B2 (ja) ディーゼルエンジン
JP6056267B2 (ja) エンジンの排気浄化装置
JP5640028B2 (ja) ディーゼルエンジン
JP2013104349A (ja) フィルタ故障判定システム
JP2014025478A (ja) ディーゼルエンジン
JP2004300973A (ja) Dpfの再生開始判定方法及びdpfを備えた排気ガス浄化システム
JP2012145115A5 (ja)
JP5536837B2 (ja) ディーゼルエンジン
JP2005207240A (ja) パティキュレートフィルタの異常判定装置
JP2004332691A (ja) 排気ガス浄化方法及びそのシステム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080012350.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10753451

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13257175

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010753451

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117023899

Country of ref document: KR

Kind code of ref document: A