WO2010106815A1 - 空気調和装置 - Google Patents

空気調和装置 Download PDF

Info

Publication number
WO2010106815A1
WO2010106815A1 PCT/JP2010/001985 JP2010001985W WO2010106815A1 WO 2010106815 A1 WO2010106815 A1 WO 2010106815A1 JP 2010001985 W JP2010001985 W JP 2010001985W WO 2010106815 A1 WO2010106815 A1 WO 2010106815A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
compression mechanism
magnetic field
heat exchanger
temperature
Prior art date
Application number
PCT/JP2010/001985
Other languages
English (en)
French (fr)
Inventor
木下英彦
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to US13/256,389 priority Critical patent/US9328944B2/en
Priority to EP10753310.1A priority patent/EP2410265A4/en
Priority to AU2010225954A priority patent/AU2010225954B2/en
Priority to JP2011504759A priority patent/JP5370474B2/ja
Priority to RU2011142187/06A priority patent/RU2487304C1/ru
Priority to KR1020117024490A priority patent/KR101246448B1/ko
Priority to CN201080011815.XA priority patent/CN102348944B/zh
Publication of WO2010106815A1 publication Critical patent/WO2010106815A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/005Outdoor unit expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/006Compression machines, plants or systems with reversible cycle not otherwise provided for two pipes connecting the outdoor side to the indoor side with multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/008Refrigerant heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0312Pressure sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0315Temperature sensors near the outdoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/02Increasing the heating capacity of a reversible cycle during cold outdoor conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2104Temperatures of an indoor room or compartment

Definitions

  • the present invention relates to an air conditioner.
  • Patent Document 1 Japanese Patent Laid-Open No. 2000-97510
  • the heating capacity is increased by heating the refrigerant flowing into the refrigerant heater with a gas burner.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2000-97510
  • the temperature of the refrigerant is prevented from excessively increasing, so that the protection operation is not frequently performed.
  • a technique for adjusting the combustion amount of the gas burner based on the detection value of the thermistor has been proposed.
  • the detected value of the thermistor is used as a judgment criterion, so that the abnormal temperature of the refrigerant is detected even though the detected value of the thermistor is within an appropriate range. If the increase occurs, such an abnormal temperature increase cannot be suppressed.
  • coolant is an electromagnetic induction heating system
  • a heating rate is quick, it is calculated
  • the present invention has been made in view of the above points, and an object of the present invention is to provide an air conditioner capable of preventing the refrigerant temperature from rising excessively even when the refrigerant is heated by an electromagnetic induction heating method. Is to provide.
  • An air conditioner is an air conditioner that uses a refrigeration cycle having a compression mechanism that circulates refrigerant and a refrigerant pipe and / or a heat generating member that makes thermal contact with the refrigerant flowing in the refrigerant pipe. And it has a magnetic field generation part, a detection part, and a control part.
  • the heat generating member may be in thermal contact with the refrigerant flowing in the refrigerant pipe while being in thermal contact with the refrigerant pipe, or directly with the refrigerant flowing in the refrigerant pipe while being in thermal contact with the refrigerant pipe.
  • the refrigerant may not be in contact, or may not be in thermal contact with the refrigerant pipe, but may be in thermal contact with the refrigerant flowing in the refrigerant pipe.
  • the magnetic field generator generates a magnetic field for induction heating of the heat generating member.
  • the detection unit detects a temperature or a temperature change related to the refrigerant flowing through the predetermined portion that is at least a part of the refrigeration cycle, or detects a pressure or a pressure change related to the refrigerant flowing through the predetermined portion.
  • the control unit permits generation of a magnetic field by the magnetic field generation unit when the magnetic field generation permission condition is satisfied.
  • the magnetic field generation permission condition is that when the compression mechanism is caused to execute both the first compression mechanism state and the high second compression mechanism state in which the output of the compression mechanism is different, the detection unit is in the first compression mechanism state.
  • the value to be detected and the value detected by the detection unit in the second compression mechanism state change, or the detection value by the detection unit in the first compression mechanism state and the detection value by the detection unit in the second compression mechanism state Or detecting a change between the two.
  • the second compression mechanism state is a state where the output level is higher than that of the first compression mechanism state.
  • the first compression mechanism state includes a stop state of the compression mechanism.
  • the control unit when the magnetic field generation permission condition is not satisfied, it is possible to grasp that the amount of refrigerant flowing through the predetermined portion is not sufficiently secured, and the control unit does not permit the operation of the magnetic field generation unit. Like that. For this reason, it can suppress that electromagnetic induction heating is performed in the state close
  • the magnetic field generation permission condition when the magnetic field generation permission condition is satisfied, the generation of the magnetic field by the magnetic field generation unit is permitted. As a result, the refrigerant can be quickly heated while preventing an abnormal temperature rise of the refrigerant.
  • An air conditioner according to a second aspect is the air conditioner according to the first aspect, wherein the detection unit is a temperature detection unit that detects a temperature or a temperature change.
  • the temperature detection unit since the temperature detection unit detects the temperature or temperature change, the temperature detection unit directly grasps the temperature or temperature change, thereby quickly heating the refrigerant while preventing an abnormal temperature rise of the refrigerant. Will be able to.
  • An air conditioner according to a third aspect is the air conditioner according to the first aspect or the second aspect, wherein the heat generating member includes a magnetic material.
  • the magnetic field generator since the magnetic field generator generates a magnetic field for a portion containing the magnetic material, heat generation efficiency by electromagnetic induction can be efficiently performed.
  • An air conditioner according to a fourth aspect is the air conditioner according to any one of the first to third aspects, wherein the refrigeration cycle is connectable to the suction side of the compression mechanism, the suction side heat exchanger, the compression mechanism A discharge-side heat exchanger that can be connected to the discharge side, and an expansion mechanism that can reduce the pressure of the refrigerant flowing from the discharge-side heat exchanger to the suction-side heat exchanger.
  • a control part performs opening degree control at the time of starting, when making a compression mechanism into a 2nd compression mechanism state. In this start-up opening degree control, the opening degree of the expansion mechanism is set to an opening degree that is narrowed to be narrower than the opening degree of the expansion mechanism under the same conditions in the constant supercooling degree control.
  • This constant supercooling degree control is control for making the supercooling degree of the refrigerant flowing out to the expansion mechanism side of the discharge side heat exchanger constant.
  • Examples of the items that have the same condition here include a compressor frequency, an outside air temperature, a heat load, and the like.
  • the opening degree of the expansion mechanism is controlled so as to be throttled, so that the refrigerant pressure on the suction side tends to decrease.
  • the detection unit can confirm that the refrigerant flow exists by detecting a decrease in the refrigerant temperature on the suction side.
  • the detection unit can detect that the refrigerant flow exists by detecting a decrease in the refrigerant temperature on the suction side as the temperature change.
  • the detection unit can confirm that the refrigerant flow exists by detecting an increase in the discharge pressure of the refrigerant discharged from the compression mechanism.
  • the detection unit can confirm that the refrigerant flow exists by detecting a change in which the discharge pressure of the refrigerant discharged from the compression mechanism increases.
  • the detection unit can confirm that the refrigerant flow exists by detecting a change in which the discharge pressure of the refrigerant discharged from the compression mechanism increases.
  • the control unit satisfies both of the flow securing condition and the magnetic field generation permission condition.
  • This flow securing condition is an operating condition of at least one of maintaining the output level of the compression mechanism at an output level higher than that in the second compression mechanism state or maintaining it in the second compression mechanism state.
  • An air conditioner is the air conditioner according to any one of the first aspect to the fifth aspect, wherein the first compression mechanism state is a state in which a minimum flow amount for refrigerant determination is ensured.
  • the second compression mechanism state is a state that follows the first compression mechanism state and is a state that secures a refrigerant flow amount that exceeds the determination minimum flow amount.
  • a change in the refrigerant temperature or a change in the refrigerant pressure is detected while the refrigerant flow rate is further increased from the state in which the minimum flow rate for determination is ensured. It was confirmed that it was done.
  • An air conditioner according to a seventh aspect is the air conditioner according to the second aspect, wherein the refrigeration cycle is connected to the suction side of the compression mechanism and to the discharge side of the compression mechanism. It further has a side heat exchanger and an expansion mechanism capable of lowering the pressure of the refrigerant flowing from the discharge side heat exchanger to the suction side heat exchanger.
  • the predetermined portion is at least one of the suction side heat exchanger, the vicinity of the upstream side of the suction side heat exchanger, and the vicinity of the downstream side of the suction side heat exchanger.
  • the temperature of the refrigerant passing through at least one of the suction side heat exchanger, the vicinity of the upstream side of the suction side heat exchanger, and the vicinity of the downstream side of the suction side heat exchanger, or a decrease in temperature is reduced.
  • the temperature detector can detect with high accuracy.
  • An air conditioner according to an eighth aspect is the air conditioner according to any one of the first to seventh aspects, wherein the control unit is configured such that after the output level of the compression mechanism becomes equal to or lower than the first compression mechanism state.
  • the generation of the magnetic field by the magnetic field generation unit is permitted on condition that the magnetic field generation permission condition is satisfied again.
  • the reliability of the device can be maintained by determining the magnetic field generation permission condition again. Is possible.
  • An air conditioner according to a ninth aspect further includes a notifying unit that notifies that the refrigerant is not properly supplied in any of the air conditioners according to the first to eighth aspects.
  • the control unit causes the notification unit to notify when the magnetic field generation permission condition is not satisfied.
  • this air conditioner in order not to satisfy the conditions for permitting magnetic field generation, it is possible to notify the surrounding persons that the refrigerant circulation amount is not sufficient to suppress the refrigerant temperature increase rate due to electromagnetic induction heating. It becomes possible.
  • the control unit can adjust the magnitude of the magnetic field generated by the magnetic field generation unit.
  • the control unit permits the generation of the magnetic field at the maximum output by the magnetic field generation unit only when any of the magnetic field generation permission condition, the flow ensuring condition, and the magnetic field maximum output permission condition is satisfied.
  • the flow ensuring condition is a condition for maintaining the output level of the compression mechanism at a higher output level than the second compression mechanism state or the second compression mechanism state.
  • the maximum magnetic field output permission condition is a predetermined determination difference between the detection result of the detection unit before and after the magnetic field generation unit generates a magnetic field while maintaining the compression mechanism state of the compression mechanism at a constant level or a constant range level.
  • An air conditioner according to an eleventh aspect is the air conditioner according to the second aspect, further comprising an elastic member that gives an elastic force to the temperature detection unit.
  • the temperature detection part is in the state pressed by the predetermined part with the elastic force by an elastic member.
  • electromagnetic induction heating in general, a rapid temperature increase of a predetermined portion is more likely to occur than a temperature increase due to a change in the circulation state of the refrigerant in the refrigeration cycle.
  • this air conditioning apparatus since it is maintained in a state of being pressed against a predetermined portion by the elastic member, the responsiveness of the temperature detection unit can be improved. This makes it possible to perform control with improved responsiveness.
  • the refrigerant can be quickly heated while preventing an abnormal temperature rise of the refrigerant.
  • the air conditioning apparatus according to the second aspect by directly grasping the temperature or temperature change, it is possible to quickly heat the refrigerant while preventing an abnormal temperature rise of the refrigerant.
  • the heat generation efficiency by electromagnetic induction can be efficiently performed.
  • the air conditioner according to the sixth aspect not only can the refrigerant flow be present, but even if the refrigerant flow rate is further increased, the refrigerant temperature is unlikely to rise abnormally. You will be able to confirm that In the air conditioner according to the seventh aspect, the temperature of the refrigerant passing through at least one of the suction side heat exchanger, the vicinity of the upstream side of the suction side heat exchanger, and the vicinity of the downstream side of the suction side heat exchanger. Alternatively, the temperature detection unit can accurately detect a decrease in temperature. In the air conditioner according to the eighth aspect, the reliability of the device can be maintained. In the air conditioner according to the ninth aspect, it is possible to notify the surrounding persons that the refrigerant circulation amount sufficient to suppress the refrigerant temperature increase rate due to electromagnetic induction heating is not ensured.
  • the reliability of the device can be improved even when the output from the magnetic field generator is maximized.
  • control with improved responsiveness can be performed.
  • FIG. 1 is a refrigerant circuit diagram showing a refrigerant circuit 10 of the air conditioner 1.
  • the air conditioner 1 is an air conditioner in a space where a use side device is arranged by connecting an outdoor unit 2 as a heat source side device and an indoor unit 4 as a use side device by a refrigerant pipe.
  • An electromagnetic induction heating unit 6 and the like are provided.
  • the compressor 21, the four-way switching valve 22, the outdoor heat exchanger 23, the outdoor electric expansion valve 24, the accumulator 25, the outdoor fan 26, the hot gas bypass valve 27, the capillary tube 28, and the electromagnetic induction heating unit 6 are included in the outdoor unit 2. Is housed in.
  • the indoor heat exchanger 41 and the indoor fan 42 are accommodated in the indoor unit 4.
  • the refrigerant circuit 10 includes a discharge pipe A, an indoor gas pipe B, an indoor liquid pipe C, an outdoor liquid pipe D, an outdoor gas pipe E, an accumulator pipe F, a suction pipe G, a hot gas bypass circuit H, and a branch pipe K. And a merging pipe J.
  • the indoor side gas pipe B and the outdoor side gas pipe E pass a large amount of refrigerant in the gas state, but the refrigerant passing therethrough is not limited to the gas refrigerant.
  • the indoor side liquid pipe C and the outdoor side liquid pipe D pass a large amount of liquid refrigerant, but the refrigerant passing therethrough is not limited to liquid refrigerant.
  • the discharge pipe A connects the compressor 21 and the four-way switching valve 22.
  • the indoor side gas pipe B connects the four-way switching valve 22 and the indoor heat exchanger 41.
  • a pressure sensor 29a for detecting the pressure of the refrigerant passing therethrough is provided.
  • the indoor side liquid pipe C connects the indoor heat exchanger 41 and the outdoor electric expansion valve 24.
  • the outdoor liquid pipe D connects the outdoor electric expansion valve 24 and the outdoor heat exchanger 23.
  • the outdoor gas pipe E connects the outdoor heat exchanger 23 and the four-way switching valve 22.
  • the accumulator pipe F connects the four-way switching valve 22 and the accumulator 25, and extends in the vertical direction when the outdoor unit 2 is installed.
  • An electromagnetic induction heating unit 6 is attached to a part of the accumulator tube F.
  • the accumulator tube F At least a heat generating portion whose periphery is covered by a coil 68, which will be described later, is a copper tube F1 in which a coolant is flowing inside, and a magnetic tube provided so as to cover the periphery of the copper tube F1.
  • F2 is configured (see FIG. 15).
  • the magnetic tube F2 is made of SUS (Stainless Used Steel) 430.
  • the SUS430 is a ferromagnetic material, and generates eddy currents when placed in a magnetic field, and generates heat due to Joule heat generated by its own electrical resistance.
  • Portions other than the magnetic pipe F2 among the pipes constituting the refrigerant circuit 10 are made of copper pipes.
  • tube is not limited to SUS430,
  • at least 2 or more types of metals chosen from conductors, such as iron, copper, aluminum, chromium, nickel, and these groups are used. It can be an alloy or the like.
  • Examples of magnetic materials include ferrites, martensites, and those containing a combination of these two, but they are ferromagnetic and have a relatively high electrical resistance.
  • a material having a Curie temperature higher than the temperature range is preferred.
  • the accumulator tube F here requires more electric power, but does not have to include a magnetic body and a material containing the magnetic body, and contains a material to be subjected to induction heating. It may be a thing.
  • the magnetic material may constitute all of the accumulator tube F, or may be formed only on the inner surface of the accumulator tube F, and is contained in the material constituting the accumulator tube F. May exist.
  • the accumulator tube F can be heated by electromagnetic induction, and the refrigerant sucked into the compressor 21 via the accumulator 25 can be warmed.
  • the heating capability of the air conditioning apparatus 1 can be improved.
  • the lack of capacity at the time of starting can be compensated for by the rapid heating by the electromagnetic induction heating unit 6.
  • the electromagnetic induction heating unit 6 quickly opens the accumulator tube F.
  • the compressor 21 can compress the rapidly heated refrigerant as a target. For this reason, the temperature of the hot gas discharged from the compressor 21 can be raised rapidly. Thereby, the time required to thaw frost by defrost operation can be shortened. Thereby, even if it is necessary to perform a defrost operation in a timely manner during the heating operation, the operation can be returned to the heating operation as soon as possible, and the user's comfort can be improved.
  • the suction pipe G connects the accumulator 25 and the suction side of the compressor 21.
  • the hot gas bypass circuit H connects a branch point A1 provided in the middle of the discharge pipe A and a branch point D1 provided in the middle of the outdoor liquid pipe D.
  • the hot gas bypass circuit 27 is provided with a hot gas bypass valve 27 that can switch between a state that allows passage of refrigerant and a state that does not allow passage of the refrigerant.
  • a capillary tube 28 is provided between the hot gas bypass valve 27 and the branch point D1 to reduce the pressure of refrigerant passing therethrough.
  • the capillary tube 28 can be brought close to the pressure after the refrigerant pressure is reduced by the outdoor electric expansion valve 24 during heating operation, the capillary tube 28 is a chamber by supplying hot gas to the outdoor liquid pipe D through the hot gas bypass circuit H. An increase in the refrigerant pressure in the outer liquid pipe D can be suppressed.
  • the branch pipe K constitutes a part of the outdoor heat exchanger 23, and a refrigerant pipe extending from the gas side inlet / outlet 23e of the outdoor heat exchanger 23 will be described later in order to increase the effective surface area for heat exchange. It is a pipe branched into a plurality of lines at a branching junction 23k.
  • the branch pipe K includes a first branch pipe K1, a second branch pipe K2, and a third branch pipe K3 that extend independently from the branch junction point 23k to the junction branch point 23j.
  • the pipes K1, K2, and K3 merge at the merge branch point 23j. Note that, when viewed from the merging pipe J side, the branch pipe K extends at a merging branch point 23j.
  • the junction pipe J constitutes a part of the outdoor heat exchanger 23 and extends from the junction branch point 23j to the liquid side inlet / outlet 23d of the outdoor heat exchanger 23.
  • the junction pipe J can unify the degree of supercooling of the refrigerant flowing out of the outdoor heat exchanger 23 during the cooling operation, and can defrost frosted ice near the lower end of the outdoor heat exchanger 23 during the heating operation.
  • the junction pipe J has a cross-sectional area that is approximately three times the cross-sectional area of each of the branch pipes K1, K2, and K3, and the amount of refrigerant passing through is approximately three times that of each of the branch pipes K1, K2, and K3. .
  • the four-way switching valve 22 can switch between a cooling operation cycle and a heating operation cycle.
  • the connection state when performing the heating operation is indicated by a solid line
  • the connection state when performing the cooling operation is indicated by a dotted line.
  • the indoor heat exchanger 41 functions as a refrigerant cooler
  • the outdoor heat exchanger 23 functions as a refrigerant heater
  • the indoor heat exchanger 41 functions as a refrigerant heater.
  • the outdoor heat exchanger 23 includes a gas side inlet / outlet 23e, a liquid side inlet / outlet 23d, a branch junction 23k, a junction branch point 23j, a branch pipe K, a junction pipe J, and a heat exchange fin 23z.
  • the gas side inlet / outlet 23 e is located at the end of the outdoor heat exchanger 23 on the outdoor gas pipe E side, and is connected to the outdoor gas pipe E.
  • the liquid side inlet / outlet 23 d is located at the end of the outdoor heat exchanger 23 on the outdoor liquid pipe D side, and is connected to the outdoor liquid pipe D.
  • the branch junction 23k branches a pipe extending from the gas side inlet / outlet port 23e, and can branch or join the refrigerant according to the direction of the flowing refrigerant.
  • a plurality of branch pipes K extend from each branch portion at the branch junction 23k.
  • the junction branch point 23j joins the branch pipe K and can join or branch the refrigerant according to the direction of the flowing refrigerant.
  • the junction pipe J extends from the junction branch point 23j to the liquid side inlet / outlet 23d.
  • the heat exchange fins 23z are configured by arranging a plurality of plate-like aluminum fins in the thickness direction and arranged at predetermined intervals.
  • the branch pipe K and the merge pipe J both have the heat exchange fins 23z as a common penetration target.
  • the branch pipe K and the junction pipe J are disposed so as to penetrate in the plate pressure direction at different portions of the common heat exchange fin 23z.
  • an outdoor air temperature sensor 29b for detecting the outdoor air temperature is provided on the windward side of the outdoor fan 26 in the air flow direction.
  • the outdoor heat exchanger 23 is provided with an outdoor heat exchange temperature sensor 29c that detects the temperature of the refrigerant flowing through the branch pipe air conditioner.
  • an indoor temperature sensor 43 that detects the indoor temperature is provided.
  • the indoor heat exchanger 41 is provided with an indoor heat exchanger temperature sensor 44 that detects the refrigerant temperature on the indoor liquid pipe C side to which the outdoor electric expansion valve 24 is connected.
  • the outdoor control unit 12 that controls the devices arranged in the outdoor unit 2 and the indoor control unit 13 that controls the devices arranged in the indoor unit 4 are connected by the communication line 11a, so that the control unit 11 is constituted.
  • the control unit 11 performs various controls for the air conditioner 1. Further, the outdoor control unit 12 is provided with a timer 95 that counts elapsed time when performing various controls.
  • the control unit 11 has a controller 90 that accepts a setting input from the user.
  • Outdoor unit 2 In FIG. 2, the external appearance perspective view of the front side of the outdoor unit 2 is shown. In FIG. 3, the perspective view about the positional relationship with the outdoor heat exchanger 23 and the outdoor fan 26 is shown. In FIG. 4, the perspective view of the back side of the outdoor heat exchanger 23 is shown.
  • the outdoor unit 2 has an outer surface formed by a substantially rectangular parallelepiped outdoor unit casing configured by a top plate 2a, a bottom plate 2b, a front panel 2c, a left side panel 2d, a right side panel 2f, and a back panel 2e.
  • an outdoor heat exchanger 23, an outdoor fan 26, and the like are arranged, a blower room on the left side panel 2d side, a compressor 21 and an electromagnetic induction heating unit 6 are arranged, and the right side panel 2f side.
  • the machine room is separated by a partition plate 2h.
  • the outdoor unit 2 is fixed by being screwed to the bottom plate 2b, and has an outdoor unit support 2g that forms the lowermost end portion of the outdoor unit 2 on the right side and the left side.
  • the electromagnetic induction heating unit 6 is disposed at an upper position in the vicinity of the left side panel 2d and the top plate 2a in the machine room.
  • the heat exchange fins 23z of the outdoor heat exchanger 23 described above are arranged side by side in the plate thickness direction so that the plate thickness direction is substantially horizontal.
  • the joining pipe J is disposed in the lowermost portion of the heat exchange fins 23z of the outdoor heat exchanger 23 by penetrating the heat exchange fins 23z in the thickness direction.
  • the hot gas bypass circuit H is arranged along the lower side of the outdoor fan 26 and the outdoor heat exchanger 23.
  • FIG. 5 is an overall front perspective view showing the internal structure of the machine room of the outdoor unit 2.
  • FIG. 6 is a perspective view showing the internal structure of the machine room of the outdoor unit 2.
  • FIG. 7 the perspective view about the arrangement
  • the partition plate 2h of the outdoor unit 2 includes a fan room in which the outdoor heat exchanger 23 and the outdoor fan 26 are arranged, a machine room in which the electromagnetic induction heating unit 6, the compressor 21, the accumulator 25, and the like are arranged, Is partitioned from the upper end to the lower end from the front to the rear.
  • the compressor 21 and the accumulator 25 are disposed in a space below the machine room of the outdoor unit 2.
  • the electromagnetic induction heating unit 6, the four-way switching valve 22, and the outdoor control unit 12 are disposed in a space above the machine room of the outdoor unit 2 and above the compressor 21, the accumulator 25, and the like.
  • the tube 28 and the electromagnetic induction heating unit 6 include a discharge pipe A, an indoor side gas pipe B, an outdoor side liquid pipe D, an outdoor side gas pipe E, an accumulator so as to execute the refrigeration cycle by the refrigerant circuit 10 shown in FIG.
  • the hot gas bypass circuit H is configured by connecting nine parts of the first bypass part H1 to the ninth bypass part H9, and when the refrigerant flows into the hot gas bypass circuit H, , Flows in the direction from the first bypass portion H1 toward the ninth bypass portion H9 in order.
  • the joining pipe J shown in FIG. 7 has an area equivalent to the sectional area of each of the first branch pipe K1, the second branch pipe K2, and the third branch pipe K3.
  • the heat exchange effective surface area can be increased in comparison with the merged pipe J in the first branch pipe K1, the second branch pipe K2, and the third branch pipe K3.
  • the outdoor heat Ice growth under the exchanger 23 can be more effectively suppressed.
  • the joining pipe J is configured by connecting the first joining pipe part J1, the second joining pipe part J2, the third joining pipe part J3, and the fourth joining pipe part J4 to each other.
  • coolant which flowed through the branch piping K among the outdoor heat exchangers 23 is merged in the merge branch point 23j, and the flow of the refrigerant
  • merging piping part J1 is extended from the confluence
  • the second joining pipe portion J2 extends from the end of the first joining pipe portion J1 so as to penetrate the plurality of heat exchange fins 23z. Moreover, the 4th junction piping part J4 is extended so that the several heat exchanger fin 23z may be penetrated similarly to the 2nd junction piping part J2.
  • the third joining pipe part J3 is a U-shaped pipe that connects the second joining pipe part J2 and the fourth joining pipe part J4 at the end of the outdoor heat exchanger 23.
  • the refrigerant flow can be made one in the junction pipe J, so that the supercooling at the outlet of the outdoor heat exchanger 23 The degree can be adjusted.
  • the hot gas bypass valve 27 is opened, and the high-temperature refrigerant discharged from the compressor 21 is placed outside the outdoor heat exchanger 23 before the outdoor part. It can be supplied to the junction pipe J provided at the lower end of the heat exchanger 23. For this reason, ice that has formed frost in the vicinity of the lower part of the outdoor heat exchanger 23 can be effectively thawed.
  • Hot gas bypass circuit H In FIG. 8, the top view in the state which removed the ventilation mechanism of the outdoor unit 2 is shown.
  • FIG. 9 is a plan view showing the positional relationship between the bottom plate of the outdoor unit 2 and the hot gas bypass circuit H.
  • the hot gas bypass circuit H includes a first bypass portion H1 to an eighth bypass portion H8 and a ninth bypass portion H9 (not shown).
  • the hot gas bypass circuit H branches from the discharge pipe A at the branch point A1 and extends to the hot gas bypass valve 27, and a portion further extending from the hot gas bypass valve 27 is the first bypass portion H1.
  • the second bypass portion H2 extends from the end of the first bypass portion H1 to the blower chamber side in the vicinity of the back surface side.
  • the third bypass portion H3 extends from the end of the second bypass portion H2 toward the front side.
  • the fourth bypass portion H4 extends from the end of the third bypass portion H3 toward the left side that is the opposite side to the machine room side.
  • the fifth bypass portion H5 extends from the end of the fourth bypass portion H4 toward the back side to a portion where a space can be ensured between the back panel 2e of the outdoor unit casing.
  • the sixth bypass portion H6 extends from the end of the fifth bypass portion H5 to the right side that is the machine room side and toward the back side.
  • the seventh bypass portion H7 extends from the end of the sixth bypass portion H6 toward the right side, which is the machine room side, in the blower chamber.
  • the eighth bypass portion H8 extends in the machine room from the end of the seventh bypass portion H7.
  • the ninth bypass portion H9 extends from the end of the eighth bypass portion H8 to the capillary tube 28.
  • the hot gas bypass circuit H causes the refrigerant to flow from the first bypass portion H1 to the ninth bypass portion H9 in order with the hot gas bypass valve 27 being opened. For this reason, the refrigerant branched at the branch point A1 of the discharge pipe A extending from the compressor 21 flows on the first bypass portion H1 side before the refrigerant flowing through the ninth bypass portion H9.
  • the refrigerant flowing through the hot gas bypass circuit H as a whole the refrigerant after flowing through the fourth bypass portion H4 flows to the fifth to eighth bypass portions H8, and therefore the fourth bypass portion H4. Is more likely to be higher than the refrigerant temperature flowing through the fifth to eighth bypass portions H8.
  • the hot gas bypass circuit H is disposed so as to pass through the vicinity of the lower part of the outdoor fan 26 and the lower part of the outdoor heat exchanger 23 in the bottom plate 2b of the outdoor unit casing. For this reason, without using a separate heat source such as a heater, the vicinity of the portion through which the hot gas bypass circuit H passes can be warmed by the high-temperature refrigerant branched and supplied from the discharge pipe A of the compressor 21. Therefore, even if the upper side of the bottom plate 2b gets wet by rain water or the drain water generated in the outdoor heat exchanger 23, ice grows below the outdoor fan 26 and below the outdoor heat exchanger 23 in the bottom plate 2b. Can be suppressed.
  • the hot gas bypass circuit H is arranged to pass under the outdoor fan 26 after branching at the branch point A1 of the discharge pipe A and before passing under the outdoor heat exchanger 23. For this reason, it is possible to prevent the growth of ice below the outdoor fan 26 more preferentially.
  • FIG. 10 shows a schematic perspective view of the electromagnetic induction heating unit 6 attached to the accumulator tube F.
  • FIG. 11 shows an external perspective view of the electromagnetic induction heating unit 6 with the shielding cover 75 removed.
  • tube F is shown.
  • the electromagnetic induction heating unit 6 is disposed so as to cover the magnetic tube F2 that is a heat generating portion of the accumulator tube F from the outside in the radial direction, and causes the magnetic tube F2 to generate heat by electromagnetic induction heating.
  • the heat generating portion of the accumulator tube F has a double tube structure having an inner copper tube F1 and an outer magnetic tube F2.
  • the electromagnetic induction heating unit 6 includes a first hexagon nut 61, a second hexagon nut 66, a first bobbin lid 63, a second bobbin lid 64, a bobbin body 65, a first ferrite case 71, a second ferrite case 72, and a third ferrite.
  • a case 73, a fourth ferrite case 74, a first ferrite 98, a second ferrite 99, a coil 68, a shielding cover 75, an electromagnetic induction thermistor 14, a fuse 15 and the like are provided.
  • the first hex nut 61 and the second hex nut 66 are made of resin, and stabilize the fixed state between the electromagnetic induction heating unit 6 and the accumulator tube F using a C-shaped ring (not shown).
  • the first bobbin lid 63 and the second bobbin lid 64 are made of resin and cover the accumulator tube F from the radially outer side at the upper end position and the lower end position, respectively.
  • the first bobbin lid 63 and the second bobbin lid 64 have four screw holes for screws 69 for screwing first to fourth ferrite cases 71 to 74, which will be described later, through the screws 69. ing.
  • the second bobbin lid 64 has an electromagnetic induction thermistor insertion opening 64f for inserting the electromagnetic induction thermistor 14 shown in FIG. 12 and attaching it to the outer surface of the magnetic tube F2.
  • the second bobbin lid 64 has a fuse insertion opening 64e for inserting the fuse 15 shown in FIG. 13 and attaching it to the outer surface of the magnetic tube F2.
  • the electromagnetic induction thermistor 14 is an electromagnetic induction thermistor wiring that transmits the detection results of the electromagnetic induction thermistor detector 14a, the outer protrusion 14b, the side protrusion 14c, and the electromagnetic induction thermistor detector 14a as signals to the controller 11. 14d.
  • the electromagnetic induction thermistor detection unit 14a has a shape that follows the curved shape of the outer surface of the accumulator tube F, and has a substantial contact area.
  • the fuse 15 includes a fuse detection unit 15a, an asymmetric shape 15b, and a fuse wiring 15d that transmits a detection result of the fuse detection unit 15a to the control unit 11 as a signal.
  • the control unit 11 receives the notification of temperature detection exceeding the predetermined limit temperature from the fuse 15, the control unit 11 performs control to stop the power supply to the coil 68 to avoid thermal damage of the device.
  • the bobbin main body 65 is made of resin, and the coil 68 is wound around it.
  • the coil 68 is wound spirally around the outside of the bobbin main body 65 with the direction in which the accumulator tube F extends as the axial direction.
  • the coil 68 is connected to a control printed board (not shown) and is supplied with a high-frequency current.
  • the output of the control printed circuit board is controlled by the control unit 11.
  • the electromagnetic induction thermistor 14 and the fuse 15 are attached in a state where the bobbin main body 65 and the second bobbin lid 64 are fitted together.
  • the plate spring 16 is pushed inward in the radial direction of the magnetic body tube F ⁇ b> 2 to maintain a good pressure contact state with the outer surface of the magnetic body tube F ⁇ b> 2.
  • the attachment state of the fuse 15 is also pressed by the leaf spring 17 inward in the radial direction of the magnetic tube F2, so that a good pressure contact state with the outer surface of the magnetic tube F2 is maintained.
  • the electromagnetic induction thermistor 14 and the fuse 15 maintain good adhesion to the outer surface of the accumulator tube F, the responsiveness is improved and a rapid temperature change due to electromagnetic induction heating can be detected quickly. I can do it.
  • the first ferrite case 71 is sandwiched between the first bobbin lid 63 and the second bobbin lid 64 from the direction in which the accumulator tube F extends, and is fixed by screwing with screws 69.
  • the first ferrite case 71 to the fourth ferrite case 74 contain the first ferrite 98 and the second ferrite 99 made of ferrite, which is a material having high magnetic permeability. As shown in the sectional view of the accumulator tube F and the electromagnetic induction heating unit 6 in FIG. 15 and the magnetic flux explanatory diagram in FIG. By forming it, the magnetic field is made difficult to leak outside.
  • the shielding cover 75 is disposed on the outermost peripheral portion of the electromagnetic induction heating unit 6 and collects magnetic flux that cannot be drawn only by the first ferrite 98 and the second ferrite 99. Almost no leakage magnetic flux is generated outside the shielding cover 75, and the location where the magnetic flux is generated can be determined.
  • Electromagnetic Induction Heating Control The electromagnetic induction heating unit 6 described above is configured so that the accumulator pipe F is activated when starting the heating operation when the refrigeration cycle is operated for heating, when assisting the heating capacity, and when performing the defrost operation. Control is performed to generate heat in the magnetic tube F2.
  • the control unit 11 starts the heating operation.
  • the controller 11 waits for the pressure detected by the pressure sensor 29a to rise to 39 kg / cm 2 after the compressor 21 is started, and drives the indoor fan 42.
  • electromagnetic induction heating using the electromagnetic induction heating unit 6 is performed.
  • the control unit 11 performs control to determine whether or not the electromagnetic induction heating can be started before the electromagnetic induction heating is started. Such determination includes a flow condition determination process, a sensor detachment detection process, a rapid pressure increase process, and the like, as shown in the time chart of FIG.
  • the accumulator tube is in a stage before starting the electromagnetic induction heating so that the electromagnetic induction heating by the electromagnetic induction heating unit 6 is not performed in a state where the refrigerant does not flow into the accumulator tube F in this way.
  • Flow condition determination processing for confirming that the refrigerant is flowing in F is performed.
  • step S11 the controller 11 determines whether or not the controller 90 has received a command for heating operation instead of cooling operation from the user. Since the refrigerant heating by the electromagnetic induction heating unit 6 is necessary in an environment where the heating operation is performed, such a determination is made.
  • step S12 the controller 11 starts the compressor 21 and gradually increases the frequency of the compressor 21.
  • step S13 the control unit 11 determines whether or not the frequency of the compressor 21 has reached the predetermined minimum frequency Qmin. If it is determined that the frequency has reached, the process proceeds to step S14.
  • step S14 the control unit 11 starts the flow condition determination process, and the detected temperature data of the electromagnetic induction thermistor 14 when the frequency of the compressor 21 reaches the predetermined minimum frequency Qmin (see point a in FIG. 17) and The temperature data detected by the outdoor heat exchange temperature sensor 29c is stored, and the timer 95 starts counting the flow detection time.
  • the frequency of the compressor 21 does not reach the predetermined minimum frequency Qmin
  • the refrigerant flowing through the accumulator tube F and the outdoor heat exchanger 23 is in a gas-liquid two-phase state and is maintained at a constant temperature at a saturation temperature. Therefore, the temperature detected by the electromagnetic induction thermistor 14 and the outdoor heat exchange temperature sensor 29c is constant at the saturation temperature and does not change.
  • the frequency of the compressor 21 increases after a while, the refrigerant pressure in the outdoor heat exchanger 23 and the accumulator pipe F further decreases, and the saturation temperature starts to decrease, so that the electromagnetic induction thermistor 14
  • the temperature detected by the outdoor heat exchanger temperature sensor 29c also starts to decrease.
  • the outdoor heat exchanger 23 exists downstream of the accumulator pipe F with respect to the suction side of the compressor 21, the temperature of the refrigerant passing through the accumulator pipe F starts to decrease.
  • the timing at which the temperature of the refrigerant passing through the outdoor heat exchanger 23 begins to decrease is earlier than the timing (see points b and c in FIG. 17).
  • step S15 the control unit 11 determines whether or not the flow detection time of 10 seconds has elapsed from the start of the count of the timer 95. If the flow detection time has elapsed, the control unit 11 proceeds to step S16. On the other hand, if the flow detection time has not yet elapsed, step S15 is repeated.
  • step S16 the control unit 11 detects the detected temperature data and the outdoor heat of the electromagnetic induction thermistor 14 in a state where the refrigerant temperature in the outdoor heat exchanger 23 and the accumulator tube F is lowered when the flow detection time has elapsed. The detected temperature data of the alternating temperature sensor 29c is acquired, and the process proceeds to step S17.
  • step S17 the control unit 11 determines whether or not the detected temperature of the electromagnetic induction thermistor 14 acquired in step S16 is lower by 3 ° C. or more than the detected temperature data of the electromagnetic induction thermistor 14 stored in step S14, and It is determined whether or not the detected temperature of the outdoor heat exchanger temperature sensor 29c acquired in step S16 is lower by 3 ° C. or more than the detected temperature data of the outdoor heat exchanger temperature sensor 29c stored in step S14. That is, it is determined whether or not a decrease in the refrigerant temperature has been detected during the flow detection time.
  • the detected temperature of the electromagnetic induction thermistor 14 or the detected temperature of the outdoor heat exchange temperature sensor 29c is lowered by 3 ° C.
  • the refrigerant is flowing through the accumulator tube F.
  • the flow condition determination process is terminated when it is determined that the flow of the gas is secured, and the process proceeds to the rapid pressure increase process at the start-up that uses the output of the electromagnetic induction heating unit 6 to the maximum, or the sensor disconnection detection process, etc. To do.
  • step S18 the control unit 11 determines that the amount of refrigerant flowing through the accumulator tube F is insufficient for performing induction heating by the electromagnetic induction heating unit 6, and the control unit 11 displays a flow abnormality on the display screen of the controller 90. Output the display.
  • the sensor detachment detection process is performed after the electromagnetic induction thermistor 14 is attached to the accumulator tube F and the installation of the air conditioner 1 is completed (after the installation is completed, the electromagnetic induction heating unit 6 This is a process for confirming the mounting state of the electromagnetic induction thermistor 14 that is performed when the heating operation is started for the first time. Specifically, after it is determined that the amount of refrigerant flowing in the accumulator tube F is secured in the above-described flow condition determination process, and the output of the electromagnetic induction heating unit 6 is maximized. Before performing the rapid pressure increase process at the time of startup, the control unit 11 performs a sensor detachment detection process.
  • the electromagnetic induction heating unit 6 is only activated after the carry-in.
  • the sensor detachment detection process is performed at the timing described above. In the sensor detachment detection process, the following processes are performed as shown in the flowchart of FIG.
  • the power supply to the coil 68 of the electromagnetic induction heating unit 6 is started while storing the detected temperature data of the electromagnetic induction thermistor 14 (see the point d in FIG. 17) at the time of
  • the supply of electric power to the coil 68 of the electromagnetic induction heating unit 6 here is a sensor outage detection with a power outage detection supply power M1 (1 kW) of 50%, which is an output smaller than a predetermined maximum supply power Mmax (2 kW). It takes only 20 seconds as time.
  • the electromagnetic induction thermistor 14 is The output is suppressed to 50% so that the fuse 15 is not damaged due to the inability to detect an abnormal temperature rise and the resin member of the electromagnetic induction heating unit 6 is not melted.
  • the control unit 11 continues the output by the electromagnetic induction heating unit 6. The elapsed time is counted by the timer 95.
  • the supply of electric power to the coil 68 of the electromagnetic induction heating unit 6 and the magnitude of the magnetic field generated around the coil 68 are values having a correlation.
  • step S22 the control unit 11 determines whether the sensor detachment detection time has ended. If the sensor detachment detection time has ended, the process proceeds to step S23. On the other hand, if the sensor detachment detection time has not ended yet, step S22 is repeated.
  • step S23 the control unit 11 acquires the temperature detected by the electromagnetic induction thermistor 14 at the time when the sensor detachment detection time ends (see point e in FIG. 17), and proceeds to step S24.
  • step S24 the controller 11 detects that the detected temperature of the electromagnetic induction thermistor 14 at the time when the sensor disconnection detection time acquired in step S23 has ended is the electromagnetic induction thermistor at the start of the sensor disconnection detection time stored in step S21.
  • the detected temperature data of 14 is higher by 10 ° C. or more. That is, it is determined whether or not the refrigerant temperature has increased by 10 ° C. or more due to induction heating by the electromagnetic induction heating unit 6 during the sensor detachment detection time.
  • the detection temperature of the electromagnetic induction thermistor 14 is increased by 10 ° C. or more, the attachment state of the electromagnetic induction thermistor 14 with respect to the accumulator tube F is good, and induction heating by the electromagnetic induction heating unit 6 is performed.
  • the sensor detachment detection process is terminated, and the process proceeds to a rapid pressure increase process at the start-up that uses the output of the electromagnetic induction heating unit 6 to the maximum.
  • the process proceeds to step S25.
  • step S25 the control unit 11 counts the number of sensor detachment retry processes. If the number of retries is less than 10, the process proceeds to step S26. If the number of retries exceeds 10, the process proceeds to step S27 without proceeding to step S26.
  • step S ⁇ b> 26 the control unit 11 performs a sensor removal retry process.
  • the detected temperature data (not shown in FIG. 17) of the electromagnetic induction thermistor 14 at the time when another 30 seconds have elapsed is stored in the coil 68 of the electromagnetic induction heating unit 6 and the electric power at the detected power supply M1 is detected. Supply is performed for 20 seconds, and the same processing as in steps S22 and S23 is performed.
  • the sensor detachment detection processing is terminated and the output of the electromagnetic induction heating unit 6 is output. Shift to rapid high pressure processing at start-up for maximum use.
  • the process returns to step S25.
  • step S ⁇ b> 27 the control unit 11 determines that the attachment state of the electromagnetic induction thermistor 14 to the accumulator tube F is unstable or not good, and outputs a sensor detachment abnormality display on the display screen of the controller 90.
  • Rapid pressure increase processing After the flow condition determination processing and the sensor detachment detection processing are completed, sufficient refrigerant flow is secured in the accumulator tube F, and the electromagnetic induction thermistor 14 is attached to the accumulator tube F in a good state. In a state where it is confirmed that the accumulator tube F has been appropriately heated by induction heating by the electromagnetic induction heating unit 6, the control unit 11 starts the rapid pressure increase processing.
  • the induction heating by the electromagnetic induction heating unit 6 is performed at a high output, it has been confirmed that the accumulator tube F does not rise abnormally, so the reliability of the air conditioner 1 can be improved. ing.
  • step S31 the control unit 11 does not set the power supply to the coil 68 of the electromagnetic induction heating unit 6 as the detachment detection supply power M1 whose output is limited to 50% as in the sensor detachment detection process described above.
  • a predetermined maximum supply power Mmax (2 kW) is assumed.
  • the output by the electromagnetic induction heating unit 6 here is continuously performed until the pressure sensor 29a reaches a predetermined target high pressure Ph.
  • the control unit 11 forcibly stops the compressor 21 when the pressure sensor 29a detects an abnormal high pressure Pr.
  • the target high pressure Ph in the rapid high pressure process is provided as a separate threshold value that is a pressure value smaller than the abnormal high pressure Pr.
  • step S32 the control unit 11 determines whether or not 10 minutes of the maximum continuous output time of the electromagnetic induction heating unit 6 that has started counting in step S21 of the sensor detachment detection process has elapsed. If the maximum continuous output time has not elapsed, the process goes to step S33. On the other hand, if the maximum continuous output time has elapsed, the process goes to step S34.
  • step S33 the control unit 11 determines whether or not the pressure detected by the pressure sensor 29a has reached the target high pressure Ph. If the target high pressure Ph has been reached, the process proceeds to step S34. On the other hand, if the target high pressure Ph is not reached, step S32 is repeated. In step S34, the control unit 11 starts driving the indoor fan 42, finishes the rapid pressure increase process, and shifts to the steady output process.
  • step S34 when the process is changed from step S33 to step S34, the indoor fan 42 starts to operate in a state in which sufficiently warm conditioned air can be provided to the user.
  • step S32 to step S34 it has not reached a state in which sufficient warm conditioned air can be provided to the user, but is in a state in which a certain amount of warm conditioned air can be provided, and the elapsed time from the start of heating operation. Provision of warm air can be started within a range that does not become too long.
  • the steady supply power M2 (1.4 kW), which is an output that is greater than or equal to the detection power supply M1 (1 kW) and less than or equal to the maximum supply power Mmax (2 kW), is a fixed output value.
  • the power supply frequency of the electromagnetic induction heating unit 6 is PI controlled so that the detected temperature of the electromagnetic induction thermistor 14 is maintained at 80 ° C., which is the target accumulator temperature at startup.
  • step S41 the control unit 11 stores the detected temperature of the electromagnetic induction thermistor 14, and proceeds to step S42.
  • step S42 the control unit 11 compares the detected temperature of the electromagnetic induction thermistor 14 stored in step S41 with the activation target accumulator tube temperature of 80 ° C. so that the detected temperature of the electromagnetic induction thermistor 14 is equal to the activation target accumulator. It is determined whether or not a predetermined maintenance temperature lower than the tube temperature of 80 ° C. by a predetermined temperature is reached. If the temperature is equal to or lower than the predetermined maintenance temperature, the process proceeds to step S43.
  • step S43 the control part 11 grasps
  • step S44 the control unit 11 continuously supplies power to the electromagnetic induction heating unit 6 while keeping the constant supply power M2 (1.4 kW) constant for 30 seconds, and sets the frequency of this set as the set.
  • the PI control is performed to increase the frequency as the elapsed time grasped in step S43 is longer.
  • ⁇ Characteristics of the air conditioner 1 of the present embodiment> In the air conditioner 1, before performing induction heating of the accumulator pipe F by the electromagnetic induction heating unit 6, flow condition determination processing for confirming that the refrigerant is flowing in the accumulator pipe F is performed. Then, induction heating using the electromagnetic induction heating unit 6 is performed while maintaining a flow amount equal to or larger than the refrigerant flow amount confirmed in the flow condition determination process.
  • induction heating by the electromagnetic induction heating unit 6 is prevented in a state where no refrigerant flows through the accumulation tube F, and the accumulation tube F, the electromagnetic induction heating unit 6 itself, the fuse 15, the electromagnetic induction thermistor 14, etc. It is possible to suppress damage due to exposure to high temperatures and deterioration of refrigerating machine oil.
  • the flow condition determination process it can be confirmed that the detected temperature is lowered. For this reason, even if the induction heating by the electromagnetic induction heating unit 6 is performed after confirming the flow by this flow condition determination process, the temperature of the induction heating target portion does not further increase due to the flow of the refrigerant. The degree of temperature rise in the portion is suppressed by the flow of the refrigerant. Also from this point, the reliability of induction heating using the electromagnetic induction heating unit 6 of the air conditioner 1 can be improved.
  • electromagnetic induction heating is performed, in general, a rapid temperature increase is more likely to occur than a temperature increase due to a change in the circulation state of the refrigerant in the refrigeration cycle.
  • the electromagnetic induction thermistor 14 is pressed against the magnetic tube F2 by the elastic force of the leaf spring 16 and detects the temperature change caused by the electromagnetic induction heating.
  • the responsiveness to a rapid temperature change due to electromagnetic induction heating is well maintained. For this reason, it is possible to improve the responsiveness of the flow condition determination process and shorten the time required to end the process.
  • step S14 of the flow condition determination process the control unit 11 detects the temperature data detected by the electromagnetic induction thermistor 14 when the frequency of the compressor 21 reaches the predetermined minimum frequency Qmin (see point a in FIG. 17).
  • the saturation temperature which is the detected temperature data of the outdoor heat exchanger temperature sensor 29c, is stored, and then the flow is ensured on condition that a decrease in the detected temperature is detected will be described as an example. did.
  • the present invention is not limited to this.
  • the detected temperature of the electromagnetic induction thermistor 14 or the detected temperature of the outdoor heat exchange temperature sensor 29c in a state where the compressor 21 is driven at a predetermined first frequency equal to or higher than a predetermined minimum frequency Qmin, and the frequency of the compressor 21 are set. Comparing the detected temperature data of the electromagnetic induction thermistor 14 with the second frequency higher than the first frequency and the detected temperature of the outdoor heat exchanger temperature sensor 29c, on the condition that a temperature drop is detected, You may make it confirm that the flow is ensured. Moreover, as the compressor 21 of the 1st frequency here, the state which has stopped may be sufficient, for example.
  • the present invention is not limited to this.
  • the predetermined temperature of the detection device is a value between the temperature before and after the sensor detachment detection process. By doing so, the refrigerant flow may be confirmed. In this case, even if the specific temperature at the time of performing the flow condition determination process cannot be detected, the flow state can be confirmed by detecting the temperature change.
  • C In the above-described embodiment, a case has been described in which the flow condition determination process is terminated by determining that the flow of the refrigerant is ensured when the refrigerant temperature has decreased by 3 ° C. or more during the flow detection time.
  • the present invention is not limited to this.
  • the present invention is not limited to this.
  • the opening degree of the outdoor electric expansion valve 24 may be controlled so as to be throttled while the frequency of the compressor 21 is increased to a predetermined minimum frequency Qmin or more.
  • the refrigerant pressure in the outdoor heat exchanger 23 and the accumulator pipe F is more rapidly reduced, and the temperature is more rapidly reduced. Become. For this reason, confirmation operations such as the flow condition determination process and the sensor detachment detection process can be completed quickly, and the provision timing of warm conditioned air to the user can be advanced.
  • the opening degree of the throttle of the outdoor electric expansion valve 24 for example, an opening degree narrower than the opening degree of the outdoor electric expansion valve 24 at the time of the constant supercooling degree control as described below is adopted. May be.
  • the constant supercooling degree control is, for example, the degree of supercooling of the refrigerant flowing from the outdoor heat exchanger 23 toward the outdoor electric expansion valve 24 when the control at the start of the heating operation is finished and the steady state is reached.
  • the control of adjusting the opening degree of the outdoor electric expansion valve 24 shall be said.
  • the opening degree of the outdoor electric expansion valve 24 when performing the flow condition determination processing here is narrowed so as to be narrower than the opening degree of the outdoor electric expansion valve 24 when the subcooling degree constant control is performed. Opening degree.
  • the opening degree is narrower. Thereby, the above-mentioned effect of reducing the refrigerant pressure in the outdoor heat exchanger 23 and the accumulator pipe F more quickly can be achieved.
  • the present invention is not limited to this.
  • the capacity of the indoor heat exchanger 41, the capacity of the outdoor heat exchanger 23, the opening degree of the outdoor electric expansion valve 24, etc. By fixing all the conditions, factors other than the frequency of the compressor 21 can be made as small as possible, and the detected temperature change of the electromagnetic induction thermistor 14 or the outdoor heat exchanger temperature sensor 29c is due to the frequency change of the compressor 21. It becomes possible to grasp more clearly.
  • the capacity of the indoor heat exchanger 41, the capacity of the outdoor heat exchanger 23, and the opening degree of the outdoor electric expansion valve 24 are not limited to those maintained at predetermined values. For example, the frequency of the compressor 21 is changed.
  • the present invention is not limited to this.
  • other refrigerant pipes other than the accumulator pipe F may be provided.
  • a magnetic material such as the magnetic material tube F2 is provided in the refrigerant piping portion where the electromagnetic induction heating unit 6 is provided.
  • the refrigerant is flowing through the accumulator pipe F of the refrigerant circuit 10. It may be.
  • a pressure sensor include a sensor that detects the refrigerant pressure on at least one of the discharge side and the suction side of the compressor. And when grasping
  • the detection value of the pressure sensor 29a that detects the refrigerant pressure flowing through the indoor side gas pipe B (refrigerant piping connecting the discharge side of the compressor 21 and the indoor heat exchanger 41), or this detection value It is also possible to confirm that the refrigerant is flowing in the portion of the accumulator tube F by grasping the change in the above.
  • processing using such a pressure sensor 29a will be described with reference to the flowchart of FIG.
  • the refrigerant flows through the accumulator tube F at the stage before starting the electromagnetic induction heating.
  • step S111 the controller 11 determines whether or not the controller 90 has received a command for heating operation instead of cooling operation from the user.
  • step S ⁇ b> 112 the control unit 11 starts activation of the compressor 21 and gradually increases the frequency of the compressor 21.
  • step S113 the control unit 11 starts the flow condition determination process, stores the detected pressure data of the pressure sensor 29a, and starts counting the flow detection time by the timer 95.
  • step S114 the control unit 11 determines whether or not the flow detection time of 10 seconds has elapsed from the start of the count of the timer 95. If the flow detection time has elapsed, the control unit 11 proceeds to step S115. On the other hand, if the flow detection time has not yet elapsed, step S114 is repeated.
  • step S115 the control unit 11 acquires the detected pressure data of the pressure sensor 29a when the flow detection time has elapsed, and proceeds to step S116.
  • step S116 the control unit 11 determines that the detected pressure of the pressure sensor 29a acquired in step S115 is higher than the detected pressure data of the acquired pressure sensor 29a stored in step S113 by a predetermined pressure (for example, 5 Mpa) or more. Judge whether or not. That is, it is determined whether or not an increase in refrigerant pressure has been detected during the flow detection time.
  • a predetermined pressure for example, 5 Mpa
  • the process proceeds to a rapid high pressure process at the start-up that uses the output of the electromagnetic induction heating unit 6 to the maximum, or a sensor detachment detection process.
  • step S117 the controller 11 determines that the amount of refrigerant flowing through the indoor gas pipe B is insufficient for induction heating by the electromagnetic induction heating unit 6, and the controller 11 displays the controller 90 display. Output a flow abnormality display on the screen.
  • the flow condition determination process can be started immediately after the drive of the compressor 21 is started. That is, when the flow condition determination process using the electromagnetic induction thermistor 14 is performed as in the above embodiment, the process waiting until the frequency of the compressor 21 reaches the predetermined minimum frequency Qmin becomes unnecessary, and the flow condition determination process Can finish quickly.
  • the flow detection time may be set to a shorter time. That is, in the above embodiment, since the temperature change of the refrigerant in the accumulator tube F and the outdoor heat exchanger 23 is detected, the refrigerant is in a gas-liquid two-phase state at the start of the compressor 21 and is saturated. May be kept at a constant temperature. This is because the temperature detected by the electromagnetic induction thermistor 14 and the outdoor heat exchanger temperature sensor 29c is constant at the saturation temperature and may not change for a while until the compressor 21 is driven and the saturation temperature starts to decrease. .
  • step S211 the control unit 11 determines whether or not the temperature detected by the outdoor heat exchange temperature sensor 29c satisfies a predetermined defrost condition while the normal heating operation is performed.
  • a defrost condition for example, the detection temperature of the outdoor heat exchanger temperature sensor 29c can be set to be a temperature lower than 10 ° C.
  • the defrost time is started to be counted by the timer 95 while the defrost signal is transmitted as an internal signal, and the process proceeds to step S212.
  • the induction heating by the electromagnetic induction heating unit 6 has been performed, the induction heating is stopped.
  • the opening degree of the outdoor electric expansion valve 24 is lowered while stopping the driving of the indoor fan 42. If the defrost condition is not satisfied, the process of step S211 is repeated.
  • step S212 as a preparation for starting the defrost operation, the control unit 11 waits for 40 seconds while maintaining the rotation speed of the compressor 21 in a state larger than the minimum frequency Qmin. Thereafter, the process proceeds to step S213.
  • step S213 the control unit 11 switches the connection state of the four-way switching valve 22 from the connection state of the heating cycle to the connection state of the cooling cycle (switches from the solid line to the dotted line state in FIG. 1), After equalizing the low-pressure pressure, supply of the discharged refrigerant to the outdoor heat exchanger 23 is started to start defrosting, and the initial value of the low-pressure pressure when the pressure is equalized is stored.
  • the timer 95 starts counting the waiting time of 30 seconds for starting induction heating by the electromagnetic induction heating unit 6. Furthermore, when the control unit 11 starts counting the waiting time of 30 seconds, the control unit 11 maintains that the rotation speed of the compressor 21 is larger than the minimum frequency Qmin, and heating operation. It is confirmed that the attachment state of the electromagnetic induction thermistor 14 is confirmed to be appropriate by the sensor detachment detection process (see the above embodiment) at the start. If this confirmation can be made, the flow condition determination process at the time of defrosting is started, and the process proceeds to step S214.
  • step S214 the control unit 11 grasps and stores the current value of the low pressure and the current location of the high pressure, and proceeds to step S215.
  • step S215 the control unit 11 determines that the difference between the initial value of the low pressure when the pressure is equalized stored in step S213 and the current value of the low pressure stored in step S214 is a predetermined pressure difference (for example, 3 kg / cm 2 ) It is determined whether or not the difference between the current value of the high pressure stored in step S214 and the current value of the low pressure stored in step S214 is greater than a predetermined pressure difference. That is, after the four-way switching valve 22 is switched to the defrost cycle, it is determined whether or not a high / low pressure difference starts to occur.
  • a predetermined pressure difference for example, 3 kg / cm 2
  • the flow condition determination process at the start of the heating operation confirms that the refrigerant is flowing due to the change in the temperature detected by the electromagnetic induction thermistor 14, but immediately after the connection state of the four-way switching valve 22 is switched at the time of this defrost. Therefore, the refrigerant temperature is easily maintained constant, and it is difficult to grasp that the refrigerant is flowing as a temperature change. For this reason, in the flow condition determination process at the time of defrosting, it is confirmed that the refrigerant is flowing due to the pressure difference.
  • step S216 the control unit 11 determines whether or not the waiting time of 30 seconds that has started counting in step S213 has elapsed. If the waiting time has elapsed, the process proceeds to step S217. If the waiting time has not elapsed, the system waits until the waiting time elapses. In step S217, the control unit 11 starts induction heating by the electromagnetic induction heating unit 6.
  • the induction heating by the electromagnetic induction heating unit 6 is performed with an output of 2 kW determined as a maximum upper limit output, and the control unit 11 controls the detection temperature of the electromagnetic induction thermistor 14 to be 40 ° C. I do.
  • the control unit 11 controls the detection temperature of the electromagnetic induction thermistor 14 to be 40 ° C. I do.
  • step S218 the control unit 11 has either detected that the temperature detected by the outdoor heat exchanger temperature sensor 29c has become 10 ° C. or higher, or has passed 10 minutes or more since the defrost signal was transmitted in step S211. It is determined whether or not the defrost termination condition is satisfied. When it is determined that the defrost end condition is satisfied, the process proceeds to step S219. If it is determined that the defrost termination condition is not satisfied, step S218 is repeated. In step S219, the control part 11 stops the compressor 21, complete
  • step S220 the control unit 11 returns the four-way switching valve 22 to the normal heating cycle, drives the compressor 21 again, and returns to the normal heating operation.
  • the low pressure and high pressure described above may be pressures detected by the pressure sensor 29a, and the detected temperature of the indoor heat exchanger temperature sensor 44 may be the saturation temperature of the refrigerant. Or a value obtained by converting the detected temperature of the outdoor heat exchanger temperature sensor 29c into a pressure as the saturation temperature of the refrigerant, or the like.
  • step S220 When returning to the normal heating operation in step S220, a process similar to the flow condition determination process performed at the start of the heating operation in the above embodiment may be performed.
  • the rotation speed of the compressor 21 is reduced to a predetermined rotation speed and waits for 40 seconds, and instead of step S213, four steps are performed.
  • the rotational speed of the compressor 21 may be increased.
  • the switching of the four-way switching valve 22 is performed after the rotational speed of the compressor 21 is reduced, the sound generated at the time of switching can be suppressed to a low level.
  • the accumulation pipe F was comprised as a double pipe
  • the present invention is not limited to this.
  • the magnetic member F2a and the two stoppers F1a and F1b may be arranged inside the accumulator pipe F or the refrigerant pipe to be heated.
  • the magnetic member F2a contains a magnetic material, and is a member that generates heat by electromagnetic induction heating in the above embodiment.
  • the stoppers F1a and F1b always allow the refrigerant to pass through at two locations inside the copper tube F1, but do not allow the magnetic member F2a to pass through. Thereby, the magnetic member F2a does not move even when the refrigerant flows. For this reason, the target heating position of the accumulator tube F or the like can be heated.
  • the magnetic member F2a described in the other embodiment (I) may be positioned with respect to the pipe without using the stoppers F1a and F1b.
  • the copper pipe F1 may be provided with two bent portions FW, and the magnetic body member F2a may be disposed inside the copper pipe F1 between the two bent portions FW. Even in this case, the movement of the magnetic member F2a can be suppressed while allowing the refrigerant to pass therethrough.
  • the coil 68 is spirally wound around the accumulator tube F.
  • the present invention is not limited to this.
  • the coil 168 wound around the bobbin main body 165 may be arranged around the accumulator tube F without being wound around the accumulator tube F.
  • the bobbin main body 165 is disposed so that the axial direction is substantially perpendicular to the axial direction of the accumulator tube F. Further, the bobbin main body 165 and the coil 168 are arranged separately in two so as to sandwich the accumulator tube F.
  • the first bobbin lid 163 and the second bobbin lid 164 penetrating the accumulator tube F are disposed in a state of being fitted to the bobbin main body 165. Good.
  • the first bobbin lid 163 and the second bobbin lid 164 may be sandwiched and fixed by the first ferrite case 171 and the second ferrite case 172.
  • the case where the two ferrite cases are arranged so as to sandwich the accumulator tube F is taken as an example, but may be arranged in four directions as in the above embodiment. Moreover, you may accommodate the ferrite similarly to the said embodiment.
  • an electromagnetic induction heating unit that heats the refrigerant using electromagnetic induction and air It is particularly useful in a harmony device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

 電磁誘導加熱方式によって冷媒を加熱する場合であっても、冷媒温度の上がり過ぎを防ぐことが可能な空気調和装置を提供する。冷媒を循環させる圧縮機(21)と、磁性体(F2)が外周を覆っている冷媒配管(F)を有する冷凍サイクルを利用する空気調和装置(1)であって、コイル(68)、電磁誘導サーミスタ(14)、および、制御部(11)を備えている。コイル(68)は、磁性体管(F2)を誘導加熱するための磁界を発生させる。電磁誘導サーミスタ(14)は、冷凍サイクルの少なくとも一部であるアキューム管(F)を流れる冷媒に関する温度を検知する。制御部(11)は、磁界発生許可条件を満たした場合に、磁界発生部による磁界の発生を許可する。磁界発生許可条件は、圧縮機(21)の2つの出力状態において電磁誘導サーミスタ(14)の検知温度が変化することである。

Description

空気調和装置
 本発明は、空気調和装置に関する。
 暖房運転可能な空気調和装置について、暖房能力を増大させる目的で冷媒加熱機能を備えたものが提案されている。
 例えば、以下に示す特許文献1(特開2000-97510号公報)に記載の空気調和機では、冷媒加熱器に流入した冷媒をガスバーナーによって加熱することで暖房能力を増大させている。
 ここで、この特許文献1(特開2000-97510号公報)に記載の空気調和機では、暖房運転時に、冷媒の温度が上昇し過ぎて保護動作が頻繁に行われてしまうことを防止するために、サーミスタの検知値に基づいてガスバーナーの燃焼量を調節する技術が提案されている。
 上述の特許文献1(特開2000-97510号公報)に記載の技術では、サーミスタの検知値を判断基準としているため、サーミスタの検知値が適正な範囲内であるにも関わらず冷媒の異常温度上昇が生じてしまうと、このような異常温度上昇を抑制させることができない。
 なお、冷媒の加熱方式が電磁誘導加熱方式である場合には、加熱速度が速いため、冷媒温度の異常上昇を防ぐことが特に求められる。
 本発明は上述した点に鑑みてなされたものであり、本発明の課題は、電磁誘導加熱方式によって冷媒を加熱する場合であっても、冷媒温度の上がり過ぎを防ぐことが可能な空気調和装置を提供することにある。
 第1の観点にかかる空気調和装置は、冷媒を循環させる圧縮機構と、冷媒配管および/または冷媒配管中を流れる冷媒と熱的接触をする発熱部材と、を有する冷凍サイクルを利用する空気調和装置であって、磁界発生部、検知部、および、制御部を備えている。発熱部材は、冷媒配管と熱的接触をしつつ冷媒配管中を流れる冷媒とも熱的接触をしてもよいし、冷媒配管と熱的接触をしつつ冷媒配管中を流れる冷媒とは直接的に接触していなくてもよいし、冷媒配管と熱的接触をしないけれども冷媒配管中を流れる冷媒とは熱的接触をするものであってもよい。磁界発生部は、発熱部材を誘導加熱するための磁界を発生させる。検知部は、冷凍サイクルの少なくとも一部である所定部分を流れる冷媒に関する温度もしくは温度変化を検知するか、または、所定部分を流れる冷媒に関する圧力もしくは圧力変化を検知する。制御部は、磁界発生許可条件を満たした場合に、磁界発生部による磁界の発生を許可する。磁界発生許可条件は、圧縮機構の出力が異なる第1圧縮機構状態と高い第2圧縮機構状態との両方の圧縮機構状態を圧縮機構に実行させた際に、第1圧縮機構状態で検知部が検知する値と、第2圧縮機構状態で検知部が検知する値とが変化すること、もしくは、第1圧縮機構状態での検知部による検知値と第2圧縮機構状態での検知部による検知値との間の変化を検知すること、のいずれかである。第2圧縮機構状態は、第1圧縮機構状態よりも出力レベルの高い状態である。なお、第1圧縮機構状態には、圧縮機構の停止状態も含まれる。
 この空気調和装置では、磁界発生許可条件を満たしていない場合には、所定部分を流れる冷媒量が十分に確保されていないことを把握することができ、制御部が磁界発生部の稼働を許可しないようにする。このため、空焚きに近い状態で電磁誘導加熱が行われることを抑制し、冷媒の異常温度上昇を防止することができる。これに対して、磁界発生許可条件が満たされた場合には、磁界発生部による磁界の発生が許可される。これにより、冷媒の異常温度上昇を防止しつつ迅速な冷媒の加熱を行うことができるようになる。
 第2の観点にかかる空気調和装置は、第1の観点の空気調和装置において、検出部は、温度もしくは温度変化を検知する温度検知部である。
 この空気調和装置では、温度検知部が、温度もしくは温度変化を検知するため、温度もしくは温度変化を直接的に把握することで、冷媒の異常温度上昇を防止しつつ迅速な冷媒の加熱を行うことができるようになる。
 第3の観点にかかる空気調和装置は、第1の観点または第2の観点の空気調和装置において、発熱部材は、磁性体材料を含んでいる。
 この空気調和装置では、磁性体材料を含んでいる部分を対象として、磁界発生部が磁界を生じさせるため、電磁誘導による発熱効率を効率的に行うことが可能になる。
 第4の観点にかかる空気調和装置は、第1の観点から第3の観点のいずれかの空気調和装置において、冷凍サイクルは、圧縮機構の吸入側に接続可能な吸入側熱交換器、圧縮機構の吐出側に接続可能な吐出側熱交換器、および、吐出側熱交換器から吸入側熱交換器へと流れる冷媒の圧力を下げることが可能な膨張機構をさらに有している。制御部は、圧縮機構を第2圧縮機構状態とさせる場合には、起動時開度制御を行う。この起動時開度制御では、膨張機構の開度を、過冷却度一定制御における同一条件下での膨張機構の開度よりも狭くなるように絞った開度とする。この過冷却度一定制御は、吐出側熱交換器のうち膨張機構側に流れ出る冷媒の過冷却度を一定化させる制御である。ここでの同一条件とする項目としては、例えば、圧縮機周波数、外気温度、熱負荷等が挙げられる。
 この空気調和装置では、制御部が圧縮機構を第2圧縮機構状態にする場合には、膨張機構の開度が絞り気味に制御されているため、吸入側の冷媒圧力が下がりやすくなる。これにより、検知部は、例えば、温度を検知している場合には、吸入側の冷媒温度の低下を検知することで冷媒の流れが存在することを確認できる。また、検知部は、例えば、温度変化を検知している場合には、吸入側の冷媒温度の低下を温度変化として検知することで、冷媒の流れが存在することを確認できる。また、検知部は、例えば、圧力を検知している場合には、圧縮機構から吐出される冷媒の吐出圧力の増大を検知することで冷媒の流れが存在することを確認できる。また、検知部は、例えば、圧力変化を検知している場合には、圧縮機構から吐出される冷媒の吐出圧力が増大する変化を検知することで、冷媒の流れが存在することを確認できる。
 これにより、電磁誘導加熱を行う場合であっても、所定部分の内部に冷媒が流れている状態が確保されているため、誘導加熱で生じた熱が留まりにくくなり、電磁誘導加熱を行った場合の冷媒温度の異常上昇を防止することが可能になる。
 第5の観点にかかる空気調和装置は、第1の観点から第4の観点のいずれかの空気調和装置において、制御部は、流動確保条件、および、磁界発生許可条件のいずれの条件も満たした場合に、磁界発生部による磁界の発生を許可する。この流動確保条件は、圧縮機構の出力レベルを第2圧縮機構状態よりも高い出力レベルで維持するか、もしくは、第2圧縮機構状態で維持するか、の少なくともいずれか一方の運転条件である。
 この空気調和装置では、磁界発生許可条件を満たしていることで冷媒の流れが存在していることを確認できた場合に、さらに、流動確保条件を満たすことを判断することで、磁界発生許可条件を満たしている場合以上冷媒の流れが確保されていることを確認できる。このため、より確実に冷媒温度の異常上昇を防止することができる。
 第6の観点にかかる空気調和装置は、第1の観点から第5の観点のいずれかの空気調和装置において、第1圧縮機構状態は、冷媒の判定用最低流動量を確保する状態である。第2圧縮機構状態は、第1圧縮機構状態の後に続く状態で、かつ、判定用最低流動量を超える冷媒の流動量を確保する状態である。
 この空気調和装置では、磁界発生許可条件を満たした場合には、判定用最低流動量が確保された状態からさらに冷媒の流動量を上げた状態で、冷媒温度の変化もしくは冷媒圧力の変化を検知したことを確認できたことになる。このように、冷媒の流動量を増大させることで、単に冷媒の流れが存在していることを把握できるだけでなく、冷媒の流動量をさらに上げたとしても冷媒温度の異常上昇が生じにくいという状態になっていることを確認できるようになる。
 第7の観点にかかる空気調和装置は、第2の観点の空気調和装置において、冷凍サイクルは、圧縮機構の吸入側に接続可能な吸入側熱交換器、圧縮機構の吐出側に接続可能な吐出側熱交換器、および、吐出側熱交換器から吸入側熱交換器へと流れる冷媒の圧力を下げることが可能な膨張機構をさらに有している。所定部分は、吸入側熱交換器、吸入側熱交換器の上流側近傍、および、吸入側熱交換器の下流側近傍の少なくともいずれか1つである。
 この空気調和装置では、吸入側熱交換器、吸入側熱交換器の上流側近傍、および、吸入側熱交換器の下流側近傍の少なくともいずれかの部分を通過する冷媒の温度もしくは温度の低下を、温度検知部が精度良く検知できるようになる。
 第8の観点にかかる空気調和装置は、第1の観点から第7の観点のいずれかの空気調和装置において、制御部は、圧縮機構の出力レベルが第1圧縮機構状態以下になった後は、再度磁界発生許可条件を満たすことを条件に磁界発生部による磁界の発生を許可する。
 この空気調和装置では、冷凍サイクルの状況変化によって、冷媒の循環状況が変化しているおそれがある場合であっても、再度磁界発生許可条件を判断することで、機器の信頼性を維持することが可能になる。
 第9の観点にかかる空気調和装置は、第1の観点から第8の観点のいずれかの空気調和装置において、冷媒が適切に供給されていないことを報知する報知部をさらに備えている。制御部は、磁界発生許可条件を満たさない場合に報知部に報知させる。
 この空気調和装置では、磁界発生許可条件を満たさないために、電磁誘導加熱による冷媒温度上昇速度を抑えたるだけの冷媒循環量が確保されていない状態であることを、周囲の者に知らせることが可能になる。
 第10の観点にかかる空気調和装置は、第1の観点または第2の観点の空気調和装置において、制御部は、磁界発生部による磁界の大きさを調整可能である。制御部は、磁界発生許可条件、流動確保条件、および、磁界最大出力許可条件のいずれの条件も満たした場合にのみ、磁界発生部による最大出力での磁界の発生を許可する。流動確保条件とは、圧縮機構の出力レベルを第2圧縮機構状態よりも高い出力レベルもしくは第2圧縮機構状態とした状態を維持する条件である。磁界最大出力許可条件とは、圧縮機構の圧縮機構状態を一定レベルもしくは一定範囲レベルに維持したままで磁界発生部によって磁界を発生させる前と後との検知部の検知結果の差異が所定判定差異未満であるという条件である。
 この空気調和装置では、磁界発生部による出力を最大にする前に、検知部の検知状態および所定部分における冷媒流動量の十分な確保を確認することができる。これにより、磁界発生部による出力を最大とする場合においても、機器の信頼性を向上させることができる。
 第11の観点にかかる空気調和装置は、第2の観点の空気調和装置において、温度検知部に対して弾性力を与える弾性部材をさらに備えている。温度検知部は、弾性部材による弾性力によって所定部分に圧接された状態になっている。
 電磁誘導加熱が行われる場合には、一般に、冷凍サイクルにおいて冷媒の循環状況が変化することによる温度上昇よりも、所定部分の急激な温度上昇が生じやすい。
 これに対して、この空気調和装置では、弾性部材によって所定部分に対して圧接された状態で維持されているため、温度検知部の応答性をより良好にすることができる。これにより、応答性を向上させた制御を行うことが可能になる。
 第1の観点にかかる空気調和装置では、冷媒の異常温度上昇を防止しつつ迅速な冷媒の加熱を行うことができるようになる。
 第2の観点にかかる空気調和装置では、温度もしくは温度変化を直接的に把握することで、冷媒の異常温度上昇を防止しつつ迅速な冷媒の加熱を行うことができるようになる。
 第3の観点にかかる空気調和装置では、電磁誘導による発熱効率を効率的に行うことが可能になる。
 第4の観点にかかる空気調和装置では、電磁誘導加熱を行った場合の冷媒温度の異常上昇を防止することが可能になる。
 第5の観点にかかる空気調和装置では、より確実に冷媒温度の異常上昇を防止することができる。
 第6の観点にかかる空気調和装置では、単に冷媒の流れが存在していることを把握できるだけでなく、冷媒の流動量をさらに上げたとしても冷媒温度の異常上昇が生じにくいという状態になっていることを確認できるようになる。
 第7の観点にかかる空気調和装置では、吸入側熱交換器、吸入側熱交換器の上流側近傍、および、吸入側熱交換器の下流側近傍の少なくともいずれかの部分を通過する冷媒の温度もしくは温度の低下を、温度検知部が精度良く検知できるようになる。
 第8の観点にかかる空気調和装置では、機器の信頼性を維持することが可能になる。
 第9の観点にかかる空気調和装置では、電磁誘導加熱による冷媒温度上昇速度を抑えるだけの冷媒循環量が確保されていない状態であることを、周囲の者に知らせることが可能になる。
 第10の観点にかかる空気調和装置では、磁界発生部による出力を最大とする場合においても、機器の信頼性を向上させることができる。
 第11の観点にかかる空気調和装置では、応答性を向上させた制御を行うことが可能になる。
本発明の一実施形態にかかる空気調和装置の冷媒回路図である。 室外機の正面側を含む外観斜視図である。 室外機の内部配置構成斜視図である。 室外機の内部配置構成の背面側を含む外観斜視図である。 室外機の機械室の内部構造を示す全体前方斜視図である。 室外機の機械室の内部構造を示す斜視図である。 室外機の底板と室外熱交換器との斜視図である。 室外機の送風機構を取り除いた状態での平面図である。 室外機の底板とホットガスバイパス回路との配置関係を示す平面図である。 電磁誘導加熱ユニットの外観斜視図である。 電磁誘導加熱ユニットから遮蔽カバーを取り除いた状態を示す外観斜視図である。 電磁誘導サーミスタの外観斜視図である。 ヒューズの外観斜視図である。 電磁誘導サーミスタおよびヒューズの取付状態を示す概略断面図である。 電磁誘導加熱ユニットの断面構成図である。 磁束の様子を示す図である。 電磁誘導加熱制御のタイムチャートを示す図である。 流動条件判定処理のフローチャートを示す図である。 センサ外れ検知処理のフローチャートを示す図である。 急速高圧化処理のフローチャートを示す図である。 定常出力処理のフローチャートを示す図である。 他の実施形態(H)の圧力センサを用いて冷媒の流動を把握する例を示すフローチャートである。 他の実施形態(I)のデフロスト運転時における冷媒の流動を把握する例を示すフローチャートである。 他の実施形態(J)の冷媒配管の説明図である。 他の実施形態(K)の冷媒配管の説明図である。 他の実施形態(L)のコイルと冷媒配管との配置例を示す図である。 他の実施形態(L)のボビン蓋の配置例を示す図である。 他の実施形態(L)のフェライトケースの配置例を示す図である。
 以下、図面を参照しつつ、本発明の一実施形態における電磁誘導加熱ユニット6を備えた空気調和装置1を例に挙げて説明する。
 <1-1>空気調和装置1
 図1に、空気調和装置1の冷媒回路10を示す冷媒回路図を示す。
 空気調和装置1は、熱源側装置としての室外機2と、利用側装置としての室内機4とが冷媒配管によって接続されて、利用側装置が配置された空間の空気調和を行うものであって、圧縮機21、四路切換弁22、室外熱交換器23、室外電動膨張弁24、アキュームレータ25、室外ファン26、室内熱交換器41、室内ファン42、ホットガスバイパス弁27、キャピラリーチューブ28および電磁誘導加熱ユニット6等を備えている。
 圧縮機21、四路切換弁22、室外熱交換器23、室外電動膨張弁24、アキュームレータ25、室外ファン26、ホットガスバイパス弁27、キャピラリーチューブ28および電磁誘導加熱ユニット6は、室外機2内に収容されている。室内熱交換器41および室内ファン42は、室内機4内に収容されている。
 冷媒回路10は、吐出管A、室内側ガス管B、室内側液管C、室外側液管D、室外側ガス管E、アキューム管F、吸入管G、ホットガスバイパス回路H、分岐配管Kおよび合流配管Jを有している。室内側ガス管Bおよび室外側ガス管Eは、ガス状態の冷媒が多く通過するものではあるが、通過する冷媒をガス冷媒に限定しているものではない。室内側液管Cおよび室外側液管Dは、液状態の冷媒が多く通過するものではあるが、通過する冷媒を液冷媒に限定しているものではない。
 吐出管Aは、圧縮機21と四路切換弁22とを接続している。
 室内側ガス管Bは、四路切換弁22と室内熱交換器41とを接続している。この室内側ガス管Bの途中には、通過する冷媒の圧力を検知する圧力センサ29aが設けられている。
 室内側液管Cは、室内熱交換器41と室外電動膨張弁24とを接続している。
 室外側液管Dは、室外電動膨張弁24と室外熱交換器23とを接続している。
 室外側ガス管Eは、室外熱交換器23と四路切換弁22とを接続している。
 アキューム管Fは、四路切換弁22とアキュームレータ25とを接続しており、室外機2の設置状態で鉛直方向に伸びている。アキューム管Fの一部に対して、電磁誘導加熱ユニット6が取り付けられている。アキューム管Fのうち、少なくとも後述するコイル68によって周囲を覆われている発熱部分は、内側に冷媒を流している銅管F1、および、銅管F1の周囲を覆うように設けられた磁性体管F2によって構成されている(図15参照)。この磁性体管F2は、SUS(Stainless Used Steel:ステンレス鋼)430によって構成されている。このSUS430は、強磁性体材料であって、磁界に置かれると渦電流を生じつつ、自己の電気抵抗によって生ずるジュール熱により発熱する。冷媒回路10を構成する配管のうち磁性体管F2以外の部分は、銅管で構成されている。なお、上記銅管の周囲を覆う管の材質はSUS430に限定されるものではなく、例えば、鉄、銅、アルミ、クロム、ニッケル等の導体およびこれらの群から選ばれる少なくとも2種以上の金属を含有する合金等とすることができる。また、磁性体材料としては、例えば、フェライト系、マルテンサイト系およびこれらの2種類の組み合わせを含有したものが例として挙げられるが、強磁性体であって電気抵抗が比較的高いものであり使用温度範囲よりもキュリー温度が高い材料が好ましい。なお、ここでのアキューム管Fは、より多くの電力が必要とされるが、磁性体および磁性体を含有する材料を備えていなくてもよく、誘導加熱が行われる対象となる材質を含有するものであってもよい。なお、磁性体材料は、例えば、アキューム管Fのすべてを構成していてもよいし、アキューム管Fの内側表面のみに形成されていてもよく、アキューム管Fを構成する材料中に含有されることで存在していてもよい。このように電磁誘導加熱を行うことで、アキューム管Fを電磁誘導によって加熱させることができ、アキュームレータ25を介して圧縮機21に吸入される冷媒を暖めることができる。これにより、空気調和装置1の暖房能力を向上させることができる。また、例えば、暖房運転の起動時においては、圧縮機21が十分に暖まっていない場合であっても、電磁誘導加熱ユニット6による迅速な加熱によって起動時の能力不足を補うことができる。さらに、四路切換弁22を冷房運転用の状態に切り換えて、室外熱交換器23等に付着した霜を除去するデフロスト運転を行う場合には、電磁誘導加熱ユニット6がアキューム管Fを迅速に加熱することで、圧縮機21は迅速に暖められた冷媒を対象として圧縮することができる。このため、圧縮機21から吐出するホットガスの温度を迅速に上げることができる。これにより、デフロスト運転によって霜を解凍させるのに必要とされる時間を短縮化させることができる。これにより、暖房運転中に適時デフロスト運転を行うことが必要となる場合であっても、できるだけ早く暖房運転に復帰させることができ、ユーザの快適性を向上させることができる。
 吸入管Gは、アキュームレータ25と圧縮機21の吸入側とを接続している。
 ホットガスバイパス回路Hは、吐出管Aの途中に設けられた分岐点A1と室外側液管Dの途中に設けられた分岐点D1とを接続している。ホットガスバイパス回路Hは、途中に冷媒の通過を許容する状態と許容しない状態とを切換可能なホットガスバイバス弁27が配置されている。なお、ホットガスバイパス回路Hは、ホットガスバイバス弁27と分岐点D1との間に、通過する冷媒圧力を下げるキャピラリーチューブ28が設けられている。このキャピラリーチューブ28は、暖房運転時の室外電動膨張弁24による冷媒圧力の低下後の圧力に近づけることができるため、ホットガスバイパス回路Hを通じた室外側液管Dへのホットガスの供給による室外側液管Dの冷媒圧力上昇を抑えることができる。
 分岐配管Kは、室外熱交換器23の一部を構成しており、熱交換を行うための有効表面積を増大させるために、室外熱交換器23のガス側出入口23eから伸びる冷媒配管が後述する分岐合流点23kで複数本に分岐した配管である。この分岐配管Kは、分岐合流点23kから合流分岐点23jまでそれぞれ独立して延びている第1分岐配管K1、第2分岐配管K2および第3分岐配管K3を有しており、これらの各分岐配管K1、K2、K3は合流分岐点23jで合流している。なお、合流配管J側から見ると、合流分岐点23jで分岐して分岐配管Kが延びている。
 合流配管Jは、室外熱交換器23の一部を構成しており、合流分岐点23jから室外熱交換器23の液側出入口23dまで伸びている配管である。合流配管Jは、冷房運転時に室外熱交換器23から流れ出る冷媒の過冷却度を統一させることができるとともに、暖房運転時に室外熱交換器23の下端近傍に着霜した氷を解凍させることができる。合流配管Jは、各分岐配管K1、K2、K3の断面積の略3倍の断面積を有しており、通過冷媒量が、各分岐配管K1、K2、K3の略3倍になっている。
 四路切換弁22は、冷房運転サイクルと暖房運転サイクルとを切換可能である。図1では、暖房運転を行う際の接続状態を実線で示し、冷房運転を行う際の接続状態を点線で示している。暖房運転時には、室内熱交換器41が冷媒の冷却器として、室外熱交換器23が冷媒の加熱器として機能する。冷房運転時には、室外熱交換器23が冷媒の冷却器として、室内熱交換器41が冷媒の加熱器として機能する。
 室外熱交換器23は、ガス側出入口23e、液側出入口23d、分岐合流点23k、合流分岐点23j、分岐配管K、合流配管Jおよび熱交フィン23zを有している。ガス側出入口23eは、室外熱交換器23の室外側ガス管E側の端部に位置しており、室外側ガス管Eと接続される。液側出入口23dは、室外熱交換器23の室外側液管D側の端部に位置しており、室外側液管Dと接続される。分岐合流点23kは、ガス側出入口23eから伸びる配管を分岐させており、流れる冷媒の方向に応じて冷媒を分岐もしくは合流させることができる。分岐配管Kは、分岐合流点23kにおける各分岐部分から複数本伸びている。合流分岐点23jは、分岐配管Kを合流させており、流れる冷媒の方向に応じて冷媒を合流もしくは分岐させることができる。合流配管Jは、合流分岐点23jから液側出入口23dまで伸びている。熱交フィン23zは、板状のアルミフィンが板厚方向に複数枚並んで、所定の間隔で配置されて構成されている。分岐配管Kおよび合流配管Jは、いずれも、熱交フィン23zを共通の貫通対象としている。具体的には、分岐配管Kおよび合流配管Jは、共通の熱交フィン23zの異なる部分で板圧方向に貫通して配置されている。この室外熱交換器23に対して、室外ファン26の空気流れ方向風上側には、室外の気温を検知する室外気温センサ29bが設けられている。また、室外熱交換器23には、分岐配管空気調和装置を流れる冷媒温度を検知する室外熱交温度センサ29cが設けられている。
 室内機4内には、室内温度を検知する室内温度センサ43が設けられている。また、室内熱交換器41には、室外電動膨張弁24が接続されている室内側液管C側の冷媒温度を検知する室内熱交温度センサ44が設けられている。
 室外機2内に配置される機器を制御する室外制御部12と、室内機4内に配置されている機器を制御する室内制御部13とが、通信線11aによって接続されることで、制御部11を構成している。この制御部11は、空気調和装置1を対象とした種々の制御を行う。
 また、室外制御部12には、各種制御を行う際に経過時間をカウントするタイマ95が設けられている。
 なお、制御部11には、ユーザからの設定入力を受け付けるコントローラ90を有している。
 <1-2>室外機2
 図2に、室外機2の正面側の外観斜視図を示す。図3に、室外熱交換器23および室外ファン26との位置関係についての斜視図を示す。図4に、室外熱交換器23の背面側の斜視図を示す。
 室外機2は、天板2a、底板2b、フロントパネル2c、左側面パネル2d、右側面パネル2fおよび背面パネル2eによって構成される略直方体形状の室外機ケーシングによって外面を構成している。
 室外機2は、室外熱交換器23および室外ファン26等が配置されており左側面パネル2d側である送風機室と、圧縮機21や電磁誘導加熱ユニット6が配置されており右側面パネル2f側である機械室と、に仕切り板2hを介して区切られている。また、室外機2は、底板2bに対して螺着されることで固定され、室外機2の最下端部を右側と左側において構成する室外機支持台2gを有している。なお、電磁誘導加熱ユニット6は、機械室のうちの左側面パネル2dおよび天板2aの近傍である上方の位置に配置されている。ここで、上述した室外熱交換器23の熱交フィン23zは、略水平方向に板厚方向が向くようにしつつ、板厚方向に複数並んで配置されている。合流配管Jは、室外熱交換器23の熱交フィン23zのうち最も下の部分において、熱交フィン23zを厚み方向に貫通することで配置されている。ホットガスバイパス回路Hは、室外ファン26および室外熱交換器23の下方を沿うように配置されている。
 <1-3>室外機2の内部構造
 図5に、室外機2の機械室の内部構造を示す全体前方斜視図を示す。図6に、室外機2の機械室の内部構造を示す斜視図を示す。図7に、室外熱交換器23と底板2bとの配置関係についての斜視図を示す。
 室外機2の仕切り板2hは、室外熱交換器23および室外ファン26等が配置されている送風機室と、電磁誘導加熱ユニット6、圧縮機21およびアキュームレータ25等が配置されている機械室と、を区切るように前方から後方に向けて上端から下端に掛けて仕切っている。圧縮機21およびアキュームレータ25は、室外機2の機械室の下方の空間に配置されている。そして、電磁誘導加熱ユニット6、四路切換弁22および室外制御部12は、室外機2の機械室の上方の空間であって、圧縮機21やアキュームレータ25等の上の空間に配置されている。室外機2を構成する機能要素であって機械室に配置されている圧縮機21、四路切換弁22、室外熱交換器23、室外電動膨張弁24、アキュームレータ25、ホットガスバイパス弁27、キャピラリーチューブ28および電磁誘導加熱ユニット6は、図1において示した冷媒回路10による冷凍サイクルを実行するように、吐出管A、室内側ガス管B、室外側液管D、室外側ガス管E、アキューム管F、ホットガスバイパス回路H等を介して接続されている。ここで、ホットガスバイパス回路Hは、後述するように、第1バイパス部分H1~第9バイパス部分H9の、9つの部分が繋がって構成されており、ホットガスバイパス回路Hに冷媒が流れる際は、第1バイパス部分H1から順番に第9バイパス部分H9に向かう方向に流れる。
 <1-4>合流配管Jおよび分岐配管K
 図7に示す合流配管Jは、上述したように、断面積が、第1分岐配管K1、第2分岐配管K2および第3分岐配管K3の各配管の断面積相当の面積を有しているため、室外熱交換器23のうち、第1分岐配管K1、第2分岐配管K2および第3分岐配管K3の部分では、合流配管Jよりも熱交換有効表面積を増大させることができている。また、合流配管Jの部分には、第1分岐配管K1、第2分岐配管K2および第3分岐配管K3の部分と比較して、大量の冷媒がまとまって集中的に流れているため、室外熱交換器23の下方における氷の成長をより効果的に抑制させることができている。ここで、合流配管Jは、図7に示すように、第1合流配管部分J1、第2合流配管部分J2、第3合流配管部分J3および第4合流配管部分J4が互いに接続されることで構成されている。そして、室外熱交換器23のうち分岐配管Kを流れてきた冷媒は、合流分岐点23jにおいて合流され、冷媒回路10における冷媒の流れが1つにまとめられた状態で、室外熱交換器23の最下端部分を一往復するように配置されている。ここで、第1合流配管部分J1は、合流分岐点23jから室外熱交換器23の最縁部に配置された熱交フィン23zまで延びている。第2合流配管部分J2は、第1合流配管部分J1の端部から複数枚の熱交フィン23zを貫通するように延びている。また、第4合流配管部分J4は、第2合流配管部分J2と同様に、複数枚の熱交フィン23zを貫通するように延びている。第3合流配管部分J3は、第2合流配管部分J2と第4合流配管部分J4とを室外熱交換器23の端部において接続するU字管である。冷房運転時には、冷媒回路10における冷媒の流れは、分岐配管Kにおいて複数に分かれている流れを合流配管Jが1つにまとめることになるため、たとえ分岐配管Kを流れる冷媒の合流分岐点23jの直前部分における過冷却度が分岐配管Kを構成する個々の配管を流れる冷媒毎に異なっていたとしても、合流配管Jにおいて冷媒流れを1つにできるため、室外熱交換器23の出口の過冷却度を整えることができる。そして、暖房運転時おいてデフロスト運転をする場合には、ホットガスバイパス弁27を開けて、圧縮機21から吐出した温度の高い冷媒を、室外熱交換器23の他の部分より先に、室外熱交換器23の下端に設けられている合流配管Jに供給することができる。このため、室外熱交換器23の下方近傍に着霜した氷を効果的に解凍させることができる。
 <1-5>ホットガスバイパス回路H
 図8に、室外機2の送風機構を取り除いた状態での平面図を示す。図9に、室外機2の底板とホットガスバイパス回路Hとの配置関係について平面図で示す。
 ホットガスバイパス回路Hは、図8および図9に示すように、第1バイパス部分H1~第8バイパス部分H8および図示しない第9バイパス部分H9を有している。ここで、ホットガスバイパス回路Hは、吐出管Aから分岐点A1で分岐してホットガスバイパス弁27まで延びており、このホットガスバイパス弁27からさらに延びる部分が第1バイパス部分H1である。第2バイパス部分H2は、第1バイパス部分H1の端部から、背面側近傍において送風機室側に延びている。第3バイパス部分H3は、第2バイパス部分H2の端部から、正面側に向けて延びている。第4バイパス部分H4は、第3バイパス部分H3の端部から、機械室側とは反対側である左側に向けて延びている。第5バイパス部分H5は、第4バイパス部分H4の端部から、背面側に向けて、室外機ケーシングの背面パネル2eとの間に間隔が確保できる部分まで延びている。第6バイパス部分H6は、第5バイパス部分H5の端部から、機械室側である右側であってかつ背面側に向けて延びている。第7バイパス部分H7は、第6バイパス部分H6の端部から、機械室側である右側に向けて送風機室内を延びている。第8バイパス部分H8は、第7バイパス部分H7の端部から、機械室内を延びている。第9バイパス部分H9は、第8バイパス部分H8の端部から、キャピラリーチューブ28に至るまで延びている。このホットガスバイパス回路Hは、上述したように、ホットガスバイパス弁27が開けられた状態で、第1バイパス部分H1から順番に、第9バイパス部分H9に向けて冷媒を流していく。このため、圧縮機21から延びている吐出管Aの分岐点A1で分岐する冷媒は、第9バイパス部分H9を流れる冷媒よりも先に、第1バイパス部分H1側を流れる。このため、ホットガスバイパス回路Hを流れる冷媒は、全体として見ると、第4バイパス部分H4を流れた後の冷媒が第5~第8バイパス部分H8へと流れていくため、第4バイパス部分H4を流れる冷媒温度のほうが、第5~第8バイパス部分H8を流れる冷媒温度よりも高温となりやすくなっている。
 このように、ホットガスバイパス回路Hは、室外機ケーシングの底板2bのうち、室外ファン26の下方および室外熱交換器23の下方の部分近傍を通過するように配置されている。このため、ヒータ等の別熱源を利用することなく、ホットガスバイパス回路Hが通過する部分近傍を、圧縮機21の吐出管Aから分岐して供給される高温冷媒によって暖めることができる。よって、底板2bの上側が雨水や室外熱交換器23において生じたドレン水によって濡れることがあっても、底板2bのうち室外ファン26の下方および室外熱交換器23の下方において氷が成長してしまうことを抑制することができる。これにより、室外ファン26の駆動が氷によって妨げられる状況や室外熱交換器23の表面が氷で覆われて熱交換効率が低減してしまう状況を回避することができている。また、ホットガスバイパス回路Hは、吐出管Aの分岐点A1で分岐した後、室外熱交換器23の下を通過する前に、室外ファン26の下を通過するように配置されている。このため、室外ファン26の下方における氷の成長をより優先的に防止することができる。
 <1-6>電磁誘導加熱ユニット6
 図10に、アキューム管Fに取り付けられた電磁誘導加熱ユニット6概略斜視図を示す。図11に、電磁誘導加熱ユニット6から遮蔽カバー75を取り除いた状態の外観斜視図を示す。図12に、アキューム管Fに取り付けられた電磁誘導加熱ユニット6の断面図を示す。
 電磁誘導加熱ユニット6は、アキューム管Fのうち発熱部分である磁性体管F2を径方向外側から覆うように配置されており、電磁誘導加熱によって磁性体管F2を発熱させる。このアキューム管Fの発熱部分は、内側の銅管F1と外側の磁性体管F2とを有する二重管構造となっている。
 電磁誘導加熱ユニット6は、第1六角ナット61、第2六角ナット66、第1ボビン蓋63、第2ボビン蓋64、ボビン本体65、第1フェライトケース71、第2フェライトケース72、第3フェライトケース73、第4フェライトケース74、第1フェライト98、第2フェライト99、コイル68、遮蔽カバー75、電磁誘導サーミスタ14およびヒューズ15等を備えている。
 第1六角ナット61および第2六角ナット66は、樹脂製であって、図示しないC型リングを用いて、電磁誘導加熱ユニット6とアキューム管Fとの固定状態を安定させる。第1ボビン蓋63および第2ボビン蓋64は、樹脂製であって、アキューム管Fをそれぞれ上端位置および下端位置において径方向外側から覆っている。この第1ボビン蓋63および第2ボビン蓋64は、後述する第1~第4フェライトケース71~74をネジ69を介して螺着させるための、ネジ69用の螺着孔を4つ有している。さらに、第2ボビン蓋64は、図12に示す電磁誘導サーミスタ14を差し込んで、磁性体管F2の外表面に取り付けるための電磁誘導サーミスタ差し込み開口64fを有している。また、第2ボビン蓋64は、図13に示すヒューズ15を差し込んで、磁性体管F2の外表面に取り付けるためのヒューズ差し込み開口64eを有している。電磁誘導サーミスタ14は、図12に示すように、電磁誘導サーミスタ検知部14a、外側突起14b、側面突起14cおよび電磁誘導サーミスタ検知部14aの検知結果を信号にして制御部11まで伝える電磁誘導サーミスタ配線14dを有している。電磁誘導サーミスタ検知部14aは、アキューム管Fの外表面の湾曲形状に沿うような形状を有しており、実質的な接触面積を有している。ヒューズ15は、図13に示すように、ヒューズ検知部15a、非対称形状15bおよびヒューズ検知部15aの検知結果を信号にして制御部11まで伝えるヒューズ配線15dを有している。ヒューズ15から所定制限温度を超えた温度検知の知らせを受けた制御部11は、コイル68への電力供給を停止させる制御を行って、機器の熱損傷を回避させる。ボビン本体65は、樹脂製であって、コイル68が巻き付けられる。コイル68は、ボビン本体65の外側においてアキューム管Fの延びる方向を軸方向として螺旋状に巻き付けられている。コイル68は、図示しない制御用プリント基板に接続されており、高周波電流の供給を受ける。制御用プリント基板は、制御部11によって出力制御される。図14に示すように、ボビン本体65と第2ボビン蓋64とが勘合している状態で、電磁誘導サーミスタ14およびヒューズ15が取り付けられる。ここで、電磁誘導サーミスタ14の取り付け状態では、板バネ16によって磁性体管F2の径方向内側に押されることで、磁性体管F2の外表面との良好な圧接状態を維持している。また、ヒューズ15の取り付け状態も同様に、板バネ17によって磁性体管F2の径方向内側に押されることで、磁性体管F2の外表面との良好な圧接状態を維持している。このように、電磁誘導サーミスタ14およびヒューズ15がアキューム管Fの外表面との密着性を良好に保たれているために、応答性を向上させ、電磁誘導加熱による急激な温度変化も迅速に検出できるようにしている。第1フェライトケース71は、第1ボビン蓋63と第2ボビン蓋64とをアキューム管Fの延びている方向から挟み込み、ネジ69によって螺着固定されている。第1フェライトケース71~第4フェライトケース74は、透磁率の高い素材であるフェライトによって構成された第1フェライト98および第2フェライト99を収容している。第1フェライト98および第2フェライト99は、図15のアキューム管Fおよび電磁誘導加熱ユニット6の断面図および図16の磁束説明図において示すように、コイル68によって生じる磁界を取りこんで磁束の通り道を形成することで、磁界が外部に漏れ出しにくいようにしている。遮蔽カバー75は、電磁誘導加熱ユニット6の最外周部分に配置されており、第1フェライト98および第2フェライト99だけでは呼び込みきれない磁束を集める。この遮蔽カバー75の外側にはほとんど漏れ磁束が生じず、磁束の発生場所について自決することができている。
 <1-7>電磁誘導加熱制御
 上述した電磁誘導加熱ユニット6は、冷凍サイクルを暖房運転させる場合に暖房運転を開始させる起動時、暖房能力補助時、および、デフロスト運転を行う時にアキューム管Fの磁性体管F2を発熱させる制御を行う。
 以下、起動時に関する説明を行う。
 コントローラ90に対してユーザから暖房運転指示が入力された場合に、制御部11は、暖房運転を開始させる。暖房運転が開始されると、制御部11は、圧縮機21が起動した後であって圧力センサ29aが検知する圧力が39kg/cm2まで上昇するのを待って、室内ファン42を駆動させる。これにより、室内熱交換器41を通過する冷媒が暖まっていない段階で、暖まっていない室内に空気流れを生じさせてしまうことによるユーザの不快感を防止している。ここで、圧縮機21が起動して圧力センサ29aが検知する圧力が39kg/cm2まで上昇するまでの時間を短くするために、電磁誘導加熱ユニット6を用いた電磁誘導加熱を行う。この電磁誘導加熱では、アキューム管Fの温度が急上昇するため、電磁誘導加熱を開始させる前に、電磁誘導加熱を開始してよい状況になったか否かを判定する制御を制御部11が行う。このような判定として、図17のタイムチャートに示すように、流動条件判定処理と、センサ外れ検知処理と、急速高圧化処理等がある。
 <1-8>流動条件判定処理
 電磁誘導加熱を行う際に、アキューム管Fに冷媒が流れていない状況では、加熱負荷は、アキューム管Fのうち電磁誘導加熱ユニット6が取り付けられている部分に滞留している冷媒だけになってしまう。このようにアキューム管Fに冷媒が流れていない状況で、電磁誘導加熱ユニット6による電磁誘導加熱を行ってしまうと、アキューム管Fの温度が冷凍機油を劣化させてしまうほどに異常上昇してしまう。また、電磁誘導加熱ユニット6自体も温度が上昇してしまい、機器の信頼性を低下させてしまう。このため、ここでは、このようにアキューム管Fに冷媒が流れていない状況で電磁誘導加熱ユニット6による電磁誘導加熱が行われることが無いように、電磁誘導加熱を開始する前の段階でアキューム管Fに冷媒が流れていることを確認する流動条件判定処理を行う。
 流動条件判定処理では、図18のフローチャートに示すように、以下の各処理が行われる。
 ステップS11では、制御部11は、コントローラ90が、ユーザから、冷房運転ではなく、暖房運転の指令を受け付けたか否か判断する。電磁誘導加熱ユニット6による冷媒加熱は、暖房運転が行われる環境下で必要になるため、このような判断を行う。
 ステップS12では、制御部11は、圧縮機21の起動を開始させ、圧縮機21の周波数を徐々に上げていく。
 ステップS13では、制御部11は、圧縮機21の周波数が所定最低周波数Qminに到達したか否かを判断し、到達していると判断した場合には、ステップS14に以降する。
 ステップS14では、制御部11は、流動条件判定処理を開始して、圧縮機21の周波数が所定最低周波数Qminに到達した時(図17の点a参照)の電磁誘導サーミスタ14の検出温度データおよび室外熱交温度センサ29cの検知温度データを格納し、タイマ95による流動検知時間のカウントを開始する。この圧縮機21の周波数が所定最低周波数Qminに達していない状態では、アキューム管Fおよび室外熱交換器23を流れる冷媒は、気液二相状態であって飽和温度で一定温度に保たれているため、電磁誘導サーミスタ14および室外熱交温度センサ29cが検知する温度は、飽和温度で一定であり、変化しない。しかし、しばらくして圧縮機21の周波数が上昇していき、室外熱交換器23内およびアキューム管F内の冷媒圧力がさらに低下していき、飽和温度が低下し始めることで、電磁誘導サーミスタ14および室外熱交温度センサ29cが検知する温度も低下し始める。なお、ここでは、圧縮機21の吸入側に対して、室外熱交換器23の方が、アキューム管Fよりも下流側に存在しているため、アキューム管Fを通過する冷媒の温度が下がり始めるタイミングよりも、室外熱交換器23を通過している冷媒温度が低下し始めるタイミングのほうが早い(図17の点bおよび点c参照)。
 ステップS15では、制御部11は、タイマ95のカウント開始から10秒間の流動検知時間が経過したか否かを判断し、流動検知時間が経過していた場合にはステップS16に移行する。他方、流動検知時間が未だ経過していない場合は、ステップS15を繰り返す。
 ステップS16では、制御部11は、流動検知時間が経過したときの、室外熱交換器23内およびアキューム管F内の冷媒温度が低下した状態での、電磁誘導サーミスタ14の検出温度データおよび室外熱交温度センサ29cの検知温度データを取得し、ステップS17に移行する。
 ステップS17では、制御部11は、ステップS16で取得した電磁誘導サーミスタ14の検出温度が、ステップS14で格納した電磁誘導サーミスタ14の検出温度データよりも3℃以上低下しているか否か、および、ステップS16で取得した室外熱交温度センサ29cの検知温度が、ステップS14で格納した室外熱交温度センサ29cの検知温度データよりも3℃以上低下しているか否かを判断する。すなわち、流動検知時間中に冷媒温度の低下を検出できたか否かを判断する。ここで、電磁誘導サーミスタ14の検出温度または室外熱交温度センサ29cの検知温度のいずれか一方が3℃以上低下している場合には、アキューム管Fに冷媒が流れている状態であり、冷媒の流動が確保された状態にあると判断して流動条件判定処理を終了し、電磁誘導加熱ユニット6の出力を最大限利用する起動時の急速高圧化処理、もしくは、センサ外れ検知処理等に移行する。
 他方、電磁誘導サーミスタ14の検出温度または室外熱交温度センサ29cの検知温度のいずれもが3℃以上低下していない場合には、ステップS18に移行する。
 ステップS18では、制御部11は、アキューム管Fを流れている冷媒量が電磁誘導加熱ユニット6による誘導加熱を行うには不十分であるとして、制御部11が、コントローラ90の表示画面に流動異常表示を出力する。
 <1-9>センサ外れ検知処理
 センサ外れ検知処理は、電磁誘導サーミスタ14がアキューム管Fに取り付けられて空気調和装置1の据え付けが終了した後(据え付けが終了した後、電磁誘導加熱ユニット6に電力を供給しているブレーカが落ちた後も含む)であって、初めて暖房運転が開始される際に行う、電磁誘導サーミスタ14の取付状態を確認するための処理である。具体的には、上述の流動条件判定処理においてアキューム管F内の冷媒の流動量が確保されていると判断された後であって、かつ、電磁誘導加熱ユニット6の出力を最大限にして利用する起動時の急速高圧化処理を行う前に、制御部11が、センサ外れ検知処理を行う。
 空気調和装置1の搬入作業時には、予期しない振動等が加わることで電磁誘導サーミスタ14の取付状態が不安定になったり外れてしまったりすることがあり、搬入して初めて電磁誘導加熱ユニット6を稼働させる場合には、特に、その信頼性が求められ、搬入して初めての電磁誘導加熱ユニット6の稼働が適正に行われた場合には、その後の稼働も安定して行われることがある程度予測できる。このため、上述のタイミングでセンサ外れ検知処理が行われる。
 センサ外れ検知処理では、図19のフローチャートに示すように、以下の各処理が行われる。
 ステップS21では、制御部11は、流動条件判定処理によって確認されたアキューム管Fでの冷媒流動量もしくはそれ以上の冷媒流動量を確保しつつ、流動検知時間が終了した時点(=センサ外れ検知時間の開始時点)での電磁誘導サーミスタ14の検知温度データ(図17の点d参照)を格納しつつ、電磁誘導加熱ユニット6のコイル68に電力供給を開始する。ここでの電磁誘導加熱ユニット6のコイル68に対する電力の供給は、所定の最大供給電力Mmax(2kW)よりも小さな出力である50%の出力の外れ検知供給電力M1(1kW)で、センサ外れ検知時間としての20秒間だけ行われる。この段階では、未だ電磁誘導サーミスタ14の取付状態が良好であることが確認されていない段階であるため、アキューム管Fが異常な温度上昇をしているにもかかわらず、電磁誘導サーミスタ14がこの異常な温度上昇を検出できないことによってヒューズ15を損傷してしまったり、電磁誘導加熱ユニット6の樹脂製の部材を溶かしてしまったりすることが無いように、出力を50%に抑えている。また、同時に、電磁誘導加熱ユニット6による連続加熱時間が最大連続出力時間の10分を超えることが無いように予め設定しているため、制御部11は、電磁誘導加熱ユニット6による出力を継続している間の経過時間をタイマ95によってカウントし始める。なお、電磁誘導加熱ユニット6のコイル68に対する電力の供給と、コイル68が周囲に生じさせる磁界の大きさとは相関関係がある値である。
 ステップS22では、制御部11は、センサ外れ検知時間が終了したか否か判断する。センサ外れ検知時間が終了している場合には、ステップS23に移行する。他方、センサ外れ検知時間が未だ終了していない場合には、ステップS22を繰り返す。
 ステップS23では、制御部11は、センサ外れ検知時間が終了した時点での電磁誘導サーミスタ14の検出温度を取得し(図17の点e参照)、ステップS24に移行する。
 ステップS24では、制御部11は、ステップS23で取得したセンサ外れ検知時間が終了した時点での電磁誘導サーミスタ14の検出温度が、ステップS21で格納したセンサ外れ検知時間の開始時点での電磁誘導サーミスタ14の検出温度データよりも10℃以上上昇しているか否かを判断する。すなわち、センサ外れ検知時間中に電磁誘導加熱ユニット6による誘導加熱によって冷媒温度が10℃以上上昇しているか否かを判断する。ここで、電磁誘導サーミスタ14の検出温度が10℃以上上昇している場合には、電磁誘導サーミスタ14のアキューム管Fに対する取付状態が良好であること、および、電磁誘導加熱ユニット6による誘導加熱でアキューム管Fが適切に暖められていることを確認できたと判断してセンサ外れ検知処理を終了し、電磁誘導加熱ユニット6の出力を最大限利用する起動時の急速高圧化処理に移行する。他方、電磁誘導サーミスタ14の検出温度が10℃以上上昇していない場合には、ステップS25に移行する。
 ステップS25では、制御部11は、センサ外れリトライ処理の回数をカウントする。リトライ回数が10回未満である場合にはステップS26に移行し、リトライ回数が10回を超えている場合にはステップS26に移行することなくステップS27に移行する。
 ステップS26では、制御部11は、センサ外れリトライ処理を実行する。ここでは、さらに30秒経過した時点での電磁誘導サーミスタ14の検知温度データ(図17には示していない)を格納しつつ、電磁誘導加熱ユニット6のコイル68に外れ検知供給電力M1での電力供給を20秒間行い、ステップS22、23同様の処理を行い、電磁誘導サーミスタ14の検出温度が10℃以上上昇している場合にはセンサ外れ検知処理を終了し、電磁誘導加熱ユニット6の出力を最大限利用する起動時の急速高圧化処理に移行する。他方、電磁誘導サーミスタ14の検出温度が10℃以上上昇していない場合には、ステップS25に戻る。
 ステップS27では、制御部11は、電磁誘導サーミスタ14のアキューム管Fに対する取付状態が不安定もしくは良好でないと判断して、コントローラ90の表示画面にセンサ外れ異常表示を出力する。
 <1-10>急速高圧化処理
 流動条件判定処理と、センサ外れ検知処理とを終えて、アキューム管Fにおける十分な冷媒の流動が確保され、電磁誘導サーミスタ14のアキューム管Fに対する取付状態が良好であること、および、電磁誘導加熱ユニット6による誘導加熱でアキューム管Fが適切に暖められていることを確認した状態で、制御部11は、急速高圧化処理を開始する。
 ここでは、電磁誘導加熱ユニット6による誘導加熱を、高い出力で行ったとしても、アキューム管Fを異常温度上昇させることがないことが確認されているため、空気調和装置1の信頼性を向上できている。
 急速高圧化処理では、図20のフローチャートに示すように、以下の各処理が行われる。
 ステップS31では、制御部11は、電磁誘導加熱ユニット6のコイル68に対する電力の供給を、上述のセンサ外れ検知処理のときのように50%に出力制限した外れ検知供給電力M1とすることなく、所定の最大供給電力Mmax(2kW)とする。ここでの電磁誘導加熱ユニット6による出力は、圧力センサ29aが、所定の目標高圧圧力Phに達するまで継続して行う。
 この空気調和装置1の冷凍サイクルにおける高圧異常上昇を防止させるために、圧力センサ29aが異常高圧圧力Prを検知した場合に、制御部11は、圧縮機21を強制的に停止する。この急速高圧処理の際の目標高圧圧力Phは、この異常高圧圧力Prよりも小さな圧力値である別個の閾値として設けられている。
 ステップS32では、制御部11は、センサ外れ検知処理のステップS21でカウントを開始した電磁誘導加熱ユニット6の最大連続出力時間の10分を経過しているか否かを判断する。ここで、最大連続出力時間を経過していない場合には、ステップS33に以降する。他方、最大連続出力時間を経過している場合には、ステップS34に以降する。
 ステップS33では、制御部11は、圧力センサ29aの検知圧力が目標高圧圧力Phに達したか否か判断する。ここで、目標高圧圧力Phに達している場合には、ステップS34に移行する。他方、ここで、目標高圧圧力Phに達していない場合には、ステップS32を繰り返す。
 ステップS34では、制御部11は、室内ファン42の駆動を開始させ、急速高圧化処理を終え、定常出力処理に移行する。
 ここでは、ステップS33からステップS34に以降された場合には、ユーザに対して十分に暖かい調和空気を提供できる状態になった状況で室内ファン42が稼働し始める。ステップS32からステップS34に以降した場合には、ユーザに対して十分な暖かい調和空気を提供できる状態に至っていないが、ある程度の暖かい調和空気を提供できる状態であって暖房運転開始からの経過時間が長くなりすぎない範囲で温風の提供を開始させることができるようになる。
 <1-11>定常出力処理
 定常出力処理では、外れ検知供給電力M1(1kW)以上であって最大供給電力Mmax(2kW)以下の出力である定常供給電力M2(1.4kW)を固定出力値として、電磁誘導サーミスタ14の検知温度が起動時目標アキューム管温度である80℃で維持されるように、電磁誘導加熱ユニット6の電力供給頻度をPI制御する。
 定常出力処理では、図21のフローチャートに示すように、以下の各処理が行われる。
 ステップS41では、制御部11は、電磁誘導サーミスタ14の検知温度を格納し、ステップS42に移行する。
 ステップS42では、制御部11は、ステップS41で格納した電磁誘導サーミスタ14の検知温度を、起動時目標アキューム管温度の80℃と比較して、電磁誘導サーミスタ14の検知温度が、起動時目標アキューム管温度の80℃よりも所定温度だけ低い所定維持温度以下となったか否かを判断する。所定維持温度以下となっている場合には、ステップS43に移行する。所定維持温度以下になっていない場合には、引き続き所定維持温度以下になるまで待つ。
 ステップS43では、制御部11は、最近の電磁誘導加熱ユニット6への電力供給を終えた時からの経過時間を把握する。
 ステップS44では、制御部11は、連続して30秒間定常供給電力M2(1.4kW)で一定に保ったままで電磁誘導加熱ユニット6に電力を供給することを1セットとして、このセットの頻度を、ステップS43で把握した経過時間が長ければ長い程頻度を上げる、PI制御を行う。
 <本実施形態の空気調和装置1の特徴>
 空気調和装置1では、電磁誘導加熱ユニット6によるアキューム管Fの誘導加熱を行う前に、アキューム管Fに冷媒が流れていることを確認する流動条件判定処理を行っている。そして、この流動条件判定処理で確認された冷媒流動量以上の流動量を保ったままで、電磁誘導加熱ユニット6を用いた誘導加熱を行うこととしている。このため、アキューム管Fに冷媒が流れていない状態で電磁誘導加熱ユニット6による誘導加熱が行われることを防止し、アキューム管Fや電磁誘導加熱ユニット6自体やヒューズ15、電磁誘導サーミスタ14等が高温にさらされることにより損傷してしまうこと、および、冷凍機油の劣化を抑制することができている。
 また、流動条件判定処理では、検知温度の低下が生じていることを確認することができている。このため、この流動条件判定処理による流動を確認した後に電磁誘導加熱ユニット6による誘導加熱を行ったとしても、誘導加熱対象部分は、冷媒の流動があることでよりいっそう温度上昇が生じるのではなく、冷媒の流動があることによって当該部分の温度上昇の程度が抑えられるようになる。この点からも、空気調和装置1の電磁誘導加熱ユニット6を用いた誘導加熱の信頼性を向上させることができている。
 なお、電磁誘導加熱が行われる場合には、一般に、冷凍サイクルにおいて冷媒の循環状況が変化することによる温度上昇よりも、急激な温度上昇が生じやすい。これに対して、この空気調和装置1の電磁誘導加熱ユニット6では、板バネ16の弾性力によって磁性体管F2に圧接され電磁誘導サーミスタ14は、上述の電磁誘導加熱による温度変化を検出するセンサ外れ検知処理において、電磁誘導加熱による迅速な温度変化に対する応答性が良好に維持されている。このため、流動条件判定処理の応答性を良好にして、処理を終了させるまでに要する時間を短くすることができている。
 <他の実施形態>
 以上、本発明の実施形態について図面に基づいて説明したが、具体的な構成は、これらの実施形態に限られるものではなく、発明の要旨を逸脱しない範囲で変更可能である。
 (A)
 上記実施形態では、流動条件判定処理のステップS14において、制御部11が、圧縮機21の周波数が所定最低周波数Qminに到達した時(図17の点a参照)の電磁誘導サーミスタ14の検出温度データおよび室外熱交温度センサ29cの検知温度データである飽和温度を格納し、その後に検知温度の低下が検出されることを条件に流動が確保されていることを確認する場合について例に挙げて説明した。
 しかし、本発明はこれに限られるものではない。
 例えば、所定最低周波数Qmin以上の所定の第1周波数で圧縮機21を駆動させた状態での電磁誘導サーミスタ14の検出温度もしくは室外熱交温度センサ29cの検知温度と、さらに圧縮機21の周波数を第1周波数よりも高い第2周波数に上げた状態での電磁誘導サーミスタ14の検出温度データおよび室外熱交温度センサ29cの検知温度とを比較して、温度低下が検出されることを条件に、流動が確保されていることを確認するようにしてもよい。また、ここでの第1周波数の圧縮機21としては、例えば、停止している状態であってもよい。
 (B)
 上記実施形態では、アキューム管Fの外側を構成している磁性体管F2の温度を検出する電磁誘導サーミスタ14の検知温度の変化に着目して、冷媒の流動が確保されているか否かを判断する場合について説明した。
 しかし、本発明はこれに限られるものではない。
 例えば、所定温度以上であるか所定温度以下であるかを検知するバイメタル等検出機器を用いつつ、検出機器の所定温度がセンサ外れ検知処理の前の温度と後の温度との間の値となるようにすることで、冷媒流動の確認を行うようにしてもよい。この場合には、流動条件判定処理を行う際の具体的な温度を検出できなくても、温度変化を検知することにより、流動状態を確認することができる。
 (C)
 上記実施形態では、流動検知時間中に冷媒温度が3℃以上低下している場合には、冷媒の流動が確保された状態にあると判断して流動条件判定処理を終了する場合について説明した。
 しかし、本発明はこれに限られるものではない。
 例えば、流動検知時間として説明した10秒間の経過を待つことなく、所定温度(例えば、3℃)の温度低下を検出した時点で冷媒の流動が確保された状態にあると判断して流動条件判定処理を終了するようにしてもよい。この場合には、10秒間の流動検知時間の経過を待つまでもなく、より迅速に流動条件判定処理を終えることが可能になり、ユーザへの暖かい調和空気をより早いタイミングで提供開始することが可能になる。
 (D)
 上記実施形態では、流動条件判定処理において、圧縮機21の周波数を所定最低周波数Qmin以上に上げた状態での、圧縮機21の吸入側の温度低下を検出することで、冷媒の流動の有無を確認する場合について説明した。
 しかし、本発明はこれに限られるものではない。
 例えば、流動条件判定処理において、圧縮機21の周波数を所定最低周波数Qmin以上に上げた状態で、室外電動膨張弁24の開度を絞り気味にする制御を行うようにしてもよい。この場合には、室外電動膨張弁24を通過する冷媒量が少なく抑えられるため、室外熱交換器23やアキューム管Fの冷媒圧力がより迅速に低下し、温度の低下もより迅速に生じることになる。このため、流動条件判定処理およびセンサ外れ検知処理等の確認作業を迅速に終えることができ、ユーザに対する暖かい調和空気の提供タイミングを早めることが可能になる。
 なお、ここでの室外電動膨張弁24の絞り気味の開度としては、例えば、以下のような過冷却度一定制御の際の室外電動膨張弁24の開度より狭い開度を採用するようにしてもよい。過冷却度一定制御は、例えば、暖房運転の起動時の制御が終了して、定常状態になった場合に、室外熱交換器23から室外電動膨張弁24に向けて流れる冷媒の過冷却度を一定化させるために、室外電動膨張弁24の開度を調整する制御をいうものとする。そして、ここでの流動条件判定処理を行う際の室外電動膨張弁24の開度は、この過冷却度一定制御を行っている時の室外電動膨張弁24の開度よりも狭くなるように絞った開度とする。具体的には、流動条件判定処理を行う際の室内温度、室外温度、室外ファン26、室内ファン42、圧縮機21の周波数等の運転条件下で過冷却度一定制御を行う場合に調節される室外電動膨張弁24の開度と比較して、より狭く絞った開度とする。これにより、室外熱交換器23およびアキューム管Fの冷媒圧力をより迅速に低下させるという上述の作用効果を奏することができる。
 (E)
 上記実施形態では、流動条件判定処理の際の温度低下を検出する場所について、室外熱交換器23もしくはアキューム管Fを対象とする場合について説明した。
 しかし、本発明はこれに限られるものではない。
 例えば、流動条件判定処理の際の温度変化を検出する場所として、室外熱交換器23の上流側近傍(室外熱交換器23の室外電動膨張弁24側)や、室内熱交換器41の下流側近傍(圧縮機21と室内熱交換器41との間)の位置を検知対象としてもよい。
 (F)
 上記実施形態では、流動条件判定処理において電磁誘導サーミスタ14もしくは室外熱交温度センサ29cの検知温度の変化の有無を判断する制御を行う場合について説明した。
 しかし、本発明はこれに限られるものではない。
 例えば、流動条件判定処理を行う際には、圧縮機21の周波数を上昇させる制御以外の、室内熱交換器41の能力、室外熱交換器23の能力、室外電動膨張弁24の開度等の条件をいずれも固定させることで、圧縮機21の周波数以外の要因をできるだけ小さくさせ、電磁誘導サーミスタ14もしくは室外熱交温度センサ29cの検知温度変化が圧縮機21の周波数変化によるものであることを、より明確に把握することが可能になる。また、ここでの室内熱交換器41の能力、室外熱交換器23の能力、室外電動膨張弁24の開度は、所定値に維持するものに限られず、例えば、圧縮機21の周波数の変更による影響と比べると無視しうる程度の所定の幅をもった範囲内で維持するようにしてもよい。
 (G)
 上記実施形態では、冷媒回路10のうち、アキューム管Fに対して電磁誘導加熱ユニット6が取り付けられる場合について説明した。
 しかし、本発明はこれに限られるものではない。
 例えば、アキューム管F以外の他の冷媒配管に設けられていてもよい。この場合には、電磁誘導加熱ユニット6を設ける冷媒配管部分に磁性体管F2等の磁性体を設ける。
 (H)
 上記実施形態では、アキューム管Fに対して取り付けられた電磁誘導サーミスタ14の検知温度の変化を把握することで、冷媒回路10のアキューム管Fの部分に冷媒が流れていることを確認し、その確認後に電磁誘導加熱ユニット6による誘導加熱を開始する場合を例に挙げて説明した。
 しかし、本発明はこれに限られるものではない。
 例えば、圧力センサの検知圧力が変化したこと、もしくは、所定圧力になったもしくは超えたことを把握することによって、冷媒回路10のアキューム管Fの部分に冷媒が流れていることの確認を行うようにしてもよい。このような圧力センサとしては、例えば、圧縮機の吐出側もしくは吸入側の少なくともいずれかの冷媒圧力を検知するものが挙げられる。そして、圧縮機の吐出側の冷媒圧力を把握する場合には、圧縮機が起動した後に検知圧力の上昇が生じることを把握することで、冷媒の流れを確認することができる。また、圧縮機の吸入側の冷媒圧力を把握する場合には、圧縮機が起動した後に検知圧力が低下したことを把握することで、冷媒の流れを確認することができる。
 なお、上記実施形態では、室内側ガス管B(圧縮機21の吐出側と室内熱交換器41とを繋ぐ冷媒配管)を流れる冷媒圧力を検知する圧力センサ29aの検知値、もしくは、この検知値の変化を把握することで、アキューム管Fの部分に冷媒が流れていることを確認するようにしてもよい。以下、このような圧力センサ29aを用いた処理を、図22のフローチャートと共に説明する。
 ここでは、アキューム管Fに冷媒が流れていない状況で電磁誘導加熱ユニット6による電磁誘導加熱が行われることが無いように、電磁誘導加熱を開始する前の段階でアキューム管Fに冷媒が流れていることを確認する流動条件判定処理を、圧力センサ29aを用いて行う例を示す(ステップS113~S117)。なお、流動条件判定処理が開始される前には、以下のように、圧縮機21の駆動を開始する処理が行われる(ステップS111、S112)。
 ステップS111では、制御部11は、コントローラ90が、ユーザから、冷房運転ではなく、暖房運転の指令を受け付けたか否か判断する。
 ステップS112では、制御部11は、圧縮機21の起動を開始させ、圧縮機21の周波数を徐々に上げていく。
 ステップS113では、制御部11は、流動条件判定処理を開始して、圧力センサ29aの検知圧力データを格納し、タイマ95による流動検知時間のカウントを開始する。
 ステップS114では、制御部11は、タイマ95のカウント開始から10秒間の流動検知時間が経過したか否かを判断し、流動検知時間が経過していた場合にはステップS115に移行する。他方、流動検知時間が未だ経過していない場合は、ステップS114を繰り返す。
 ステップS115では、制御部11は、流動検知時間が経過したときの圧力センサ29aの検知圧力データを取得し、ステップS116に移行する。
 ステップS116では、制御部11は、ステップS115で取得した圧力センサ29aの検知圧力が、ステップS113で格納した取得した圧力センサ29aの検知圧力データよりも所定圧力(例えば、5Mpa)以上上昇しているか否かを判断する。すなわち、流動検知時間中に冷媒圧力の上昇を検出できたか否かを判断する。ここで、圧力上昇を検知できている場合には、室内側ガス管Bに冷媒が流れている状態であり、冷媒の流動が確保された状態にあると判断して流動条件判定処理を終了し、上記実施形態と同様に、電磁誘導加熱ユニット6の出力を最大限利用する起動時の急速高圧化処理、もしくは、センサ外れ検知処理等に移行する。
 他方、圧力上昇を検知できていない場合には、ステップS117に移行する。
 ステップS117では、制御部11は、室内側ガス管Bに冷媒が流れている冷媒量が電磁誘導加熱ユニット6による誘導加熱を行うには不十分であるとして、制御部11が、コントローラ90の表示画面に流動異常表示を出力する。
 このようにして、圧力センサ29aを用いた流動条件判定処理を行う場合には、圧縮機21の駆動を開始して直ぐに、流動条件判定処理を開始することができる。すなわち、上記実施形態のように電磁誘導サーミスタ14を用いた流動条件判定処理を行う場合に、圧縮機21の周波数が所定最低周波数Qminに達するまで待っていた処理が不要になり、流動条件判定処理を早く終えることができる。このため、上記流動検知時間をより短い時間に設定してもよい。すなわち、上記実施形態では、アキューム管Fや室外熱交換器23の冷媒の温度変化を検知しているため、圧縮機21の起動開始時点では、冷媒が、気液二相状態であって飽和温度で一定温度に保たれていることがある。そして、電磁誘導サーミスタ14および室外熱交温度センサ29cが検知する温度は、飽和温度で一定であり、圧縮機21が駆動して飽和温度が低下し始めるまで、しばらく変化しないことがあるからである。
 (I)
 上記実施形態では、空気調和装置1の運転停止状態から暖房運転を開始する際に、アキューム管Fを冷媒が流れていることを検知するために流動条件判定処理を行う場合を例に挙げて説明した。
 しかし、本発明はこれに限られるものではない。
 例えば、暖房運転の開始時以外であっても、例えば、室外熱交換器23に付着した霜を除去するデフロスト運転を行う場合に電磁誘導加熱ユニット6による誘導加熱を行い、その誘導加熱を開始させるための条件としてデフロスト時の流動条件判定処理を行うようにしてもよい。以下、このようなデフロスト時の流動条件判定処理を、図23のフローチャートと共に説明する。
 ステップS211では、通常の暖房運転が行われている状態で、室外熱交温度センサ29cが検知する温度が、所定のデフロスト条件を満たすか否かを制御部11が判断する。このデフロスト条件としては、例えば、室外熱交温度センサ29cの検知温度が10℃よりも低い温度になることを条件とすることができる。ここで、デフロスト条件を満たしていると判断した場合には、デフロスト信号を内部信号として送信しつつ、タイマ95によってデフロスト時間をカウントし始めて、ステップS212に移行する。この際に、電磁誘導加熱ユニット6による誘導加熱が行われていた場合には、その誘導加熱を停止させる。また、室内ファン42の駆動も停止させつつ、室外電動膨張弁24の開度を下げる。
 なお、デフロスト条件を満たしていない場合には、ステップS211の処理を繰り返す。
 ステップS212では、制御部11は、デフロスト運転を開始させるための前準備として、圧縮機21の回転数を最低周波数Qminより大きい状態で維持しつつ、40秒経過するのを待つ。その後、ステップS213に移行する。
 ステップS213では、制御部11は、四路切換弁22の接続状態を、暖房サイクルの接続状態から冷房サイクルの接続状態に切り換えて(図1の実線から点線状態に切り換えて)、高圧圧直と低圧圧力とを均圧させた後、室外熱交換器23に吐出冷媒の供給を開始して除霜を始めるとともに、均圧された時の低圧圧力の初期値を格納する。そして、タイマ95によって電磁誘導加熱ユニット6による誘導加熱を開始するための30秒の待ち時間のカウントを開始する。
 さらに、制御部11は、この待ち時間の30秒のカウントが開始された時に、制御部11は、圧縮機21の回転数が最低周波数Qminより大きい状態に維持されていること、および、暖房運転開始時のセンサ外れ検知処理(上記実施形態参照)により電磁誘導サーミスタ14の取付状態が適切であることが確認されていること、を確認する。この確認ができた場合には、デフロスト時の流動条件判定処理を開始し、ステップS214に移行する。
 ステップS214では、制御部11は、低圧圧力の現在値および高圧圧力の現在地を把握して格納し、ステップS215に移行する。
 ステップS215では、制御部11は、ステップS213で格納した均圧された時の低圧圧力の初期値と、ステップS214で格納した低圧圧力の現在値との差が所定圧力差(例えば、3kg/cm2)より大きくなっているか、もしくは、ステップS214で格納した高圧圧力の現在値と、ステップS214で格納した低圧圧力の現在値との差が所定圧力差よりも大きくなっているか、を判断する。すなわち、四路切換弁22がデフロストサイクルに切り換えられた後に、高低圧差が生じ始めているか否かを判断する。暖房運転開始時の流動条件判定処理は、電磁誘導サーミスタ14の検知温度の変化により冷媒が流れていることを確認してが、このデフロスト時には、四路切換弁22の接続状態が切り換えられた直後であるため、冷媒温度が一定に維持されやすく、冷媒が流れていることを温度変化として把握することは難しい。このため、このデフロスト時の流動条件判定処理では、圧力差によって冷媒が流れていることを確認している。
 ここで所定圧力差よりも大きくなっている場合には、ステップS216に移行する。他方、流動検知時間が未だ経過していない場合は、ステップS215を繰り返す。なお、この繰り返しの際に、ユーザがコントローラ90を介してデフロスト時の流動条件判定処理を終了させる指示を入力した場合は、その時点でデフロスト時の流動条件判定処理は終了する。
 ステップS216では、制御部11は、ステップS213でカウントを開始した30秒の待ち時間が経過しているか否かを判断する。ここで、待ち時間が経過している場合は、ステップS217に移行する。待ち時間が経過していない場合は、待ち時間が経過する時まで待機する。
 ステップS217では、制御部11は、電磁誘導加熱ユニット6による誘導加熱を開始する。なお、ここでの電磁誘導加熱ユニット6による誘導加熱は、最大上限出力として定められている2kWの出力で行い、電磁誘導サーミスタ14の検知温度が40℃となることを目標に制御部11が制御を行う。この誘導加熱によって、デフロスト運転中の室外熱交換器23に送られる冷媒の熱量をさらに増大させることができ、除霜に要する時間を短縮化させることができる。その後、ステップS218に移行する。
 ステップS218では、制御部11は、室外熱交温度センサ29cの検知温度が10℃以上になったかこと、ステップS211でデフロスト信号の送信が行われた時から10分以上経過したこと、のいずれかのデフロスト終了条件を満たしているか否かを判断する。デフロスト終了条件を満たしていると判断した場合は、ステップS219に移行する。デフロスト終了条件を満たしていないと判断した場合は、ステップS218を繰り返す。
 ステップS219では、制御部11は、圧縮機21を停止させ、電磁誘導加熱ユニット6による誘導加熱を終了し、ステップS220に移行する。
 ステップS220では、制御部11は、四路切換弁22を通常の暖房サイクルに戻し、圧縮機21を再度駆動させ、通常の暖房運転に復帰する。
 上述では、デフロスト運転時の各種処理について説明したが、上述した低圧圧力や高圧圧力は、圧力センサ29aによる検知圧力であってもよいし、室内熱交温度センサ44の検知温度を冷媒の飽和温度として圧力に換算して得られる値や、室外熱交温度センサ29cの検知温度を冷媒の飽和温度として圧力に換算して得られる値等であってもよい。
 なお、ステップS220における通常の暖房運転への復帰時には、上記実施形態において暖房運転の開始時に行った流動条件判定処理と同様の処理を行うようにしてもよい。
 なお、デフロスト運転を開始させるための前準備として、上記ステップS212の代わりに、圧縮機21の回転数を所定回転数まで低下させて、40秒経過するのを待ち、ステップS213の代わりに、四路切換弁22の切り換えとともに、圧縮機21の回転数を上昇させていくようにしてもよい。この場合には、四路切換弁22の切り換えは、圧縮機21の回転数が低下された後に行われるため、切り換え時に生ずる音を小さく抑えることができる。
 (J)
 上記実施形態では、アキューム管Fは、銅管F1と磁性体管F2との二重管として構成されている場合を挙げて説明した。
 しかし、本発明はこれに限られるものではない。
 図22に示すように、例えば、磁性体部材F2aと、2つのストッパーF1a、F1bと、がアキューム管Fや加熱対象となる冷媒配管の内部に配置されていてもよい。ここで、磁性体部材F2aは、磁性体材料を含有しており、上記実施形態における電磁誘導加熱によって発熱を生じる部材である。ストッパーF1a、F1bは、銅管F1の内側二カ所において、冷媒の通過を常時許容するが、磁性体部材F2aの通過は許容しない。これにより、磁性体部材F2aは、冷媒が流れても移動しない。このため、アキューム管F等の目的の加熱位置を加熱させることができる。さらに、発熱する磁性体部材F2aと冷媒とが直接接触するため、熱伝達効率を向上させることができる。
 (K)
 上記他の実施形態(I)で説明した磁性体部材F2aは、ストッパーF1a、F1bを用いることなく配管に対して位置が定まるようにしてもよい。
 図24に示すように、例えば、銅管F1に二カ所で曲げ部分FWを設け、当該二カ所の曲げ部分FWの間の銅管F1の内側に磁性体部材F2aを配置させてもよい。このようにしても、冷媒を通過させつつ、磁性体部材F2aの移動を抑制させることができる。
 (L)
 上記実施形態では、コイル68がアキューム管Fに対して螺旋状に巻き付けられている場合について説明した。
 しかし、本発明はこれに限られるものではない。
 例えば、図25に示すように、ボビン本体165に巻き付けられたコイル168が、アキューム管Fに巻き付くことなく、アキューム管Fの周囲に配置されていてもよい。ここでは、ボビン本体165は、軸方向がアキューム管Fの軸方向に対して略垂直となるように配置されている。また、ボビン本体165およびコイル168は、アキューム管Fを挟むように2つに別れて配置されている。
 この場合には、例えば、図26に示すように、アキューム管Fを貫通させている第1ボビン蓋163および第2ボビン蓋164が、ボビン本体165に対して勘合した状態で配置されていてもよい。
 さらに、図27に示すように、第1ボビン蓋163および第2ボビン蓋164が、第1フェライトケース171および第2フェライトケース172によって挟み込まれて固定されていてもよい。図28では、2つのフェライトケースがアキューム管Fを挟み込むように配置されている場合を例に挙げたが、上記実施形態と同様に、4方向に配置されていてもよい。また、上記実施形態と同様に、フェライトを収容させていてもよい。
 <その他>
 以上、本発明の実施形態について、いくつかの例を挙げて説明したが、本発明はこれらに限られない。例えば、上記記載から当業者が実施可能な範囲で、上述の実施形態の異なる部分を適宜組み合わせて得られる組合せ実施形態も、本発明に含まれる。
 本発明を利用すれば、電磁誘導加熱方式によって冷媒を加熱する場合であっても、冷媒温度の上がり過ぎを防ぐことが可能なため、電磁誘導を用いて冷媒を加熱させる電磁誘導加熱ユニットおよび空気調和装置において特に有用である。
  1 空気調和装置
  6 電磁誘導加熱ユニット
 10 冷媒回路
 11 制御部
 14 電磁誘導サーミスタ(検知部、温度検知部)
 15 ヒューズ(検知部、温度検知部)
 16 板バネ(弾性部材)
 17 板バネ(弾性部材)
 21  圧縮機(圧縮機構)
 23  室外熱交換器(吸入側熱交換器)
 24  室外電動膨張弁(膨張機構)
 29a 圧力センサ(検知部)
 29b 室外気温センサ
 29c 室外熱交温度センサ
 41  室内熱交換器(吐出側熱交換器)
 43 室内温度センサ
 44 室内熱交温度センサ
 68  コイル(磁界発生部)
 90 コントローラ(報知部)
  B  室内側ガス管(所定部分)
  F  アキューム管、冷媒配管(所定部分、冷媒配管)
  F2 磁性体管(発熱部材)
特開2000-97510号公報

Claims (11)

  1.  冷媒を循環させる圧縮機構(21)と、冷媒配管(F)および/または前記冷媒配管(F)中を流れる冷媒と熱的接触をする発熱部材(F2)と、を有する冷凍サイクルを利用する空気調和装置(1)であって、
     前記発熱部材(F2)を誘導加熱するための磁界を発生させる磁界発生部(68)と、
     前記冷凍サイクルの少なくとも一部である所定部分(F、B)を流れる冷媒に関する温度もしくは温度変化を検知するか、または、圧力もしくは圧力変化を検知する検知部(14、15、29a)と、
     第1圧縮機構状態と前記第1圧縮機構状態よりも出力レベルの高い第2圧縮機構状態との前記圧縮機構の出力が異なる両方の圧縮機構状態を前記圧縮機構に実現させた際に、前記第1圧縮機構状態と前記第2圧縮機構状態とで前記検知部(14、15、29a)が検知する値が変化することもしくは前記検知部(14、15、29a)が検知する値の変化を検知することのいずれかである磁界発生許可条件を満たした場合に、前記磁界発生部(68)による前記磁界の発生を許可する制御部(11)と、
    を備えた空気調和装置(1)。
  2.  前記検出部は、温度もしくは温度変化を検知する温度検知部(14、15)である、
    請求項1に記載の空気調和装置(1)。
  3.  前記発熱部材(F2)は、磁性体材料を含んでいる、
    請求項1または2に記載の空気調和装置(1)。
  4.  前記冷凍サイクルは、前記圧縮機構(21)の吸入側に接続可能な吸入側熱交換器(23)、前記圧縮機構(21)の吐出側に接続可能な吐出側熱交換器(41)、および、前記吐出側熱交換器(41)から前記吸入側熱交換器(23)へと流れる冷媒の圧力を下げることが可能な膨張機構(24)をさらに有しており、
     前記制御部(11)は、前記圧縮機構(21)を前記第2圧縮機構状態とさせる場合には、前記膨張機構(24)の開度を前記吐出側熱交換器(41)のうち前記膨張機構(24)側に流れ出る冷媒の過冷却度を一定化させる過冷却度一定制御における同一条件下での前記膨張機構(24)の開度よりも狭くなるように絞った開度とする起動時開度制御を行う、
    請求項1から3のいずれか1項に記載の空気調和装置(1)。
  5.  前記制御部(11)は、前記圧縮機構の出力レベルを前記第2圧縮機構状態よりも高い出力レベルで維持するかもしくは前記第2圧縮機構状態で維持するかの少なくともいずれか一方の流動確保条件、および、前記磁界発生許可条件をいずれも満たした場合に、前記磁界発生部(68)による前記磁界の発生を許可する、
    請求項1から4のいずれか1項に記載の空気調和装置(1)。
  6.  前記第1圧縮機構状態は、冷媒の判定用最低流動量(Qmin)を確保する状態であり、
     前記第2圧縮機構状態は、前記第1圧縮機構状態の後に続く状態で、かつ、前記判定用最低流動量(Qmin)を超える冷媒の流動量を確保する状態である、
    請求項1から5のいずれか1項に記載の空気調和装置(1)。
  7.  前記冷凍サイクルは、前記圧縮機構(21)の吸入側に接続可能な吸入側熱交換器(23)、前記圧縮機構(21)の吐出側に接続可能な吐出側熱交換器(41)、および、前記吐出側熱交換器(41)から前記吸入側熱交換器(23)へと流れる冷媒の圧力を下げることが可能な膨張機構(24)をさらに有しており、
     前記所定部分(F)は、前記吸入側熱交換器(23)、前記吸入側熱交換器(23)の上流側近傍、および、前記吸入側熱交換器(23)の下流側近傍の少なくともいずれか1つである、
    請求項2に記載の空気調和装置(1)。
  8.  前記制御部(11)は、前記圧縮機構の出力レベルが前記第1圧縮機構状態以下になった後は、再度前記磁界発生許可条件を満たすことを条件に前記磁界発生部(68)による前記磁界の発生を許可する、
    請求項1から7のいずれか1項に記載の空気調和装置(1)。
  9.  前記冷媒が適切に供給されていないことを報知する報知部(90)をさらに備え、
     前記制御部(11)は、前記磁界発生許可条件を満たさない場合に前記報知部(90)に報知させる、
    請求項1から8のいずれか1項に記載の空気調和装置(1)。
  10.  前記制御部(11)は、前記磁界発生部(68)による前記磁界の大きさを調整可能であり、
     前記制御部(11)は、
     前記磁界発生許可条件と、
     前記圧縮機構の出力レベルを前記第2圧縮機構状態よりも高い出力レベルもしくは前記第2圧縮機構状態とした状態を維持する流動確保条件と、
     前記圧縮機構の出力レベルを一定レベルもしくは一定範囲レベルに維持したままで前記磁界発生部(68)によって前記磁界を発生させる前と後との前記検知部(14、15)の検知結果の差異が所定判定差異未満であるという磁界最大出力許可条件と、
    をいずれも満たした場合にのみ、前記磁界発生部(68)による最大出力での前記磁界の発生を許可する、
    請求項1または2に記載の空気調和装置(1)。
  11.  前記温度検知部(14、15)に対して弾性力を与える弾性部材(16、17)をさらに備え、
     前記温度検知部(14、15)は、前記弾性部材(16、17)による前記弾性力によって前記所定部分(F)に圧接している、
    請求項2に記載の空気調和装置(1)。
PCT/JP2010/001985 2009-03-19 2010-03-19 空気調和装置 WO2010106815A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US13/256,389 US9328944B2 (en) 2009-03-19 2010-03-19 Air conditioning apparatus
EP10753310.1A EP2410265A4 (en) 2009-03-19 2010-03-19 Air conditioner
AU2010225954A AU2010225954B2 (en) 2009-03-19 2010-03-19 Air conditioning apparatus
JP2011504759A JP5370474B2 (ja) 2009-03-19 2010-03-19 空気調和装置
RU2011142187/06A RU2487304C1 (ru) 2009-03-19 2010-03-19 Кондиционер
KR1020117024490A KR101246448B1 (ko) 2009-03-19 2010-03-19 공기 조화 장치
CN201080011815.XA CN102348944B (zh) 2009-03-19 2010-03-19 空调装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009069121 2009-03-19
JP2009-069121 2009-03-19

Publications (1)

Publication Number Publication Date
WO2010106815A1 true WO2010106815A1 (ja) 2010-09-23

Family

ID=42739482

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/001985 WO2010106815A1 (ja) 2009-03-19 2010-03-19 空気調和装置

Country Status (8)

Country Link
US (1) US9328944B2 (ja)
EP (1) EP2410265A4 (ja)
JP (1) JP5370474B2 (ja)
KR (1) KR101246448B1 (ja)
CN (1) CN102348944B (ja)
AU (1) AU2010225954B2 (ja)
RU (1) RU2487304C1 (ja)
WO (1) WO2010106815A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9335071B2 (en) * 2009-03-19 2016-05-10 Daikin Industries, Ltd. Air conditioning apparatus
KR102237600B1 (ko) * 2014-03-18 2021-04-07 삼성전자주식회사 공기 조화기 및 그 제어방법법
KR102404082B1 (ko) * 2015-06-08 2022-05-31 삼성전자주식회사 공기 조화기 및 그 제어 방법
DK3332181T3 (da) 2015-08-03 2021-10-25 Carrier Corp Kølesystem og driftsfremgangsmåde
WO2019146070A1 (ja) * 2018-01-26 2019-08-01 三菱電機株式会社 冷凍サイクル装置
CN108716458A (zh) * 2018-05-18 2018-10-30 川屹节能科技(上海)有限公司 用于蒸汽压缩式制冷装置的压缩机
US11326812B2 (en) 2018-06-20 2022-05-10 Hefei Midea Heating & Ventilating Equipment Co., Ltd. Heat pump system with electromagnetic-induction heating and control method therefor
EP3623726B1 (en) * 2018-06-20 2023-10-18 Hefei Midea Heating & Ventilating Equipment Co., Ltd. Heat pump system and control method therefor
CN116972554A (zh) * 2019-02-28 2023-10-31 施耐德电气It公司 用于冷却系统的接收器
CN110398119B (zh) * 2019-08-12 2020-11-10 珠海格力电器股份有限公司 制冷设备上电后的首次化霜控制方法、装置和系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6277574A (ja) * 1985-09-30 1987-04-09 株式会社東芝 冷凍サイクル
JP2000097510A (ja) 1998-09-21 2000-04-04 Sanyo Electric Co Ltd 冷媒加熱式空気調和機
JP2001255025A (ja) * 2000-03-10 2001-09-21 Daikin Ind Ltd ヒートポンプ装置
JP2007127381A (ja) * 2005-11-07 2007-05-24 Daikin Ind Ltd 冷媒加熱装置
JP2007178114A (ja) * 2005-12-02 2007-07-12 Daikin Ind Ltd 冷媒加熱装置
JP2007212036A (ja) * 2006-02-08 2007-08-23 Daikin Ind Ltd 冷媒加熱装置およびその加熱容量制御方法

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2986015A (en) * 1958-02-03 1961-05-30 John E Mitchell Company Inc Refrigeration system control
US3405535A (en) * 1966-02-10 1968-10-15 Controls Co Of America Temperature controlled flow control device and refrigeration system including such device
US3817053A (en) * 1972-11-10 1974-06-18 Controls Co Of America Refrigerating system including flow control valve
JPS52150056U (ja) 1976-05-10 1977-11-14
JPS56148576U (ja) 1980-04-09 1981-11-09
JPS61140738A (ja) 1984-12-12 1986-06-27 Matsushita Refrig Co 空気調和機の制御装置
JPS61246537A (ja) 1985-04-22 1986-11-01 Hitachi Ltd 空気調和機
JPH01111153A (ja) 1987-10-26 1989-04-27 Matsushita Electric Ind Co Ltd 空気調和機の制御装置
JPH0359358A (ja) 1989-07-28 1991-03-14 Toshiba Corp 空気調和機
JP2701516B2 (ja) 1990-05-07 1998-01-21 松下電器産業株式会社 冷媒加熱装置を具備した空気調和機
JP3040141B2 (ja) 1990-07-19 2000-05-08 松下電器産業株式会社 空気調和機
US5203179A (en) * 1992-03-04 1993-04-20 Ecoair Corporation Control system for an air conditioning/refrigeration system
RU2027125C1 (ru) * 1992-08-27 1995-01-20 Научно-исследовательский институт энергетического машиностроения МГТУ им.Н.Э.Баумана Парокомпрессионная холодильная установка с дроссельным регулятором расхода хладагента
JPH06277574A (ja) * 1993-03-30 1994-10-04 Nissan Motor Co Ltd 希釈塗料供給装置
JPH07301459A (ja) 1994-05-09 1995-11-14 Kubota Corp ヒートポンプ装置
US5715693A (en) * 1996-07-19 1998-02-10 Sunpower, Inc. Refrigeration circuit having series evaporators and modulatable compressor
JP2947255B1 (ja) 1998-02-26 1999-09-13 松下電器産業株式会社 冷媒加熱器出口温度の制御方法
JP3282719B2 (ja) 1998-07-13 2002-05-20 船井電機株式会社 空気調和機の室内送風制御装置
JP2000220912A (ja) 1998-11-25 2000-08-08 Daikin Ind Ltd 冷媒加熱装置
JP2001174055A (ja) 1999-12-14 2001-06-29 Daikin Ind Ltd 誘導加熱装置
JP4304832B2 (ja) 2000-06-22 2009-07-29 ダイキン工業株式会社 空気調和装置
JP2002106980A (ja) 2000-09-29 2002-04-10 Daikin Ind Ltd 冷凍装置
KR100382488B1 (ko) 2000-11-10 2003-05-09 엘지전자 주식회사 2개의 압축기를 갖는 공조시스템의 전자팽창변 제어방법
CN1389693A (zh) * 2001-06-06 2003-01-08 邓兆山 热泵空调热管辅助加热器装置
JP3801006B2 (ja) * 2001-06-11 2006-07-26 ダイキン工業株式会社 冷媒回路
JP2003042574A (ja) 2001-08-01 2003-02-13 Denso Corp 蒸気圧縮式冷凍機
JP4036015B2 (ja) 2002-03-18 2008-01-23 株式会社デンソー 空気調和装置
DE60300058T2 (de) 2002-03-18 2006-02-23 Denso Corp., Kariya Kraftfahrzeug-Klimatisierungssystem
KR20030079784A (ko) 2002-04-04 2003-10-10 마츠시타 덴끼 산교 가부시키가이샤 냉동 사이클 장치와, 그것을 구비하는 공기 조화기,냉장고, 온수 공급기 및 극저온 냉동 장치
JP2004003827A (ja) 2002-04-04 2004-01-08 Matsushita Electric Ind Co Ltd 冷凍サイクル装置
JP2004003804A (ja) 2002-04-12 2004-01-08 Denso Corp 蒸気圧縮式冷凍機
JP3963190B2 (ja) * 2005-04-07 2007-08-22 ダイキン工業株式会社 空気調和装置の冷媒量判定システム
JP4596426B2 (ja) * 2005-09-21 2010-12-08 日立アプライアンス株式会社 熱源装置
JP4114691B2 (ja) * 2005-12-16 2008-07-09 ダイキン工業株式会社 空気調和装置
US7992395B2 (en) * 2006-01-17 2011-08-09 Hussmann Corporation Expansion valve with piezo material
JP4100432B2 (ja) 2006-02-08 2008-06-11 ダイキン工業株式会社 冷媒加熱装置
JP2007255736A (ja) 2006-03-20 2007-10-04 Daikin Ind Ltd 冷媒加熱装置および加熱制御方法
JP4815281B2 (ja) 2006-06-26 2011-11-16 東芝キヤリア株式会社 空気調和機
JP4386071B2 (ja) 2006-12-28 2009-12-16 ダイキン工業株式会社 冷凍装置
JP5394008B2 (ja) * 2008-06-03 2014-01-22 株式会社ケーヒン 温度検出器
KR101598624B1 (ko) * 2008-11-10 2016-02-29 엘지전자 주식회사 공기 조화 시스템
US8205465B2 (en) * 2009-06-17 2012-06-26 Emerson Electric Co. Control system for an expansion valve regulating refrigerant to an evaporator of a climate control system
US8820104B2 (en) * 2010-10-22 2014-09-02 Tai-Her Yang Temperature regulation system with active jetting type refrigerant supply and regulation
JP5464207B2 (ja) * 2011-12-28 2014-04-09 ダイキン工業株式会社 冷凍装置の室外ユニット
JP6024111B2 (ja) * 2012-02-06 2016-11-09 ダイキン工業株式会社 冷凍装置の室外ユニット

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6277574A (ja) * 1985-09-30 1987-04-09 株式会社東芝 冷凍サイクル
JP2000097510A (ja) 1998-09-21 2000-04-04 Sanyo Electric Co Ltd 冷媒加熱式空気調和機
JP2001255025A (ja) * 2000-03-10 2001-09-21 Daikin Ind Ltd ヒートポンプ装置
JP2007127381A (ja) * 2005-11-07 2007-05-24 Daikin Ind Ltd 冷媒加熱装置
JP2007178114A (ja) * 2005-12-02 2007-07-12 Daikin Ind Ltd 冷媒加熱装置
JP2007212036A (ja) * 2006-02-08 2007-08-23 Daikin Ind Ltd 冷媒加熱装置およびその加熱容量制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2410265A4 *

Also Published As

Publication number Publication date
AU2010225954B2 (en) 2012-12-06
KR20110139282A (ko) 2011-12-28
AU2010225954A1 (en) 2011-11-03
EP2410265A1 (en) 2012-01-25
RU2011142187A (ru) 2013-04-27
US9328944B2 (en) 2016-05-03
RU2487304C1 (ru) 2013-07-10
KR101246448B1 (ko) 2013-03-22
JP5370474B2 (ja) 2013-12-18
JPWO2010106815A1 (ja) 2012-09-20
CN102348944A (zh) 2012-02-08
EP2410265A4 (en) 2017-05-31
US20120000223A1 (en) 2012-01-05
CN102348944B (zh) 2014-06-25

Similar Documents

Publication Publication Date Title
JP5370474B2 (ja) 空気調和装置
JP4605306B2 (ja) 空気調和装置
JP4826643B2 (ja) 空気調和装置
JP5067505B2 (ja) 空気調和装置
WO2010106821A1 (ja) 空気調和装置
JP5647396B2 (ja) 空気調和装置
JP2011002190A (ja) 冷凍装置
WO2010106803A1 (ja) 空気調和装置
JP2011002189A (ja) 冷凍装置
JP2012167824A (ja) 冷凍装置
JP2010243149A (ja) 空気調和装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080011815.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10753310

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011504759

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13256389

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010753310

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117024490

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2011142187

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2010225954

Country of ref document: AU

Date of ref document: 20100319

Kind code of ref document: A