WO2010106758A1 - 形状測定装置及び方法 - Google Patents

形状測定装置及び方法 Download PDF

Info

Publication number
WO2010106758A1
WO2010106758A1 PCT/JP2010/001643 JP2010001643W WO2010106758A1 WO 2010106758 A1 WO2010106758 A1 WO 2010106758A1 JP 2010001643 W JP2010001643 W JP 2010001643W WO 2010106758 A1 WO2010106758 A1 WO 2010106758A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
measured
conical lens
shape
lens
Prior art date
Application number
PCT/JP2010/001643
Other languages
English (en)
French (fr)
Inventor
濱野誠司
太田禎章
菅田文雄
菊池義弘
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to KR1020107020251A priority Critical patent/KR101233941B1/ko
Priority to US12/935,300 priority patent/US20110043822A1/en
Priority to CN201080001241.8A priority patent/CN101970983B/zh
Priority to EP10753255A priority patent/EP2410289A1/en
Publication of WO2010106758A1 publication Critical patent/WO2010106758A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02041Interferometers characterised by particular imaging or detection techniques
    • G01B9/02044Imaging in the frequency domain, e.g. by using a spectrometer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/2441Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures using interferometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02055Reduction or prevention of errors; Testing; Calibration
    • G01B9/02062Active error reduction, i.e. varying with time
    • G01B9/02063Active error reduction, i.e. varying with time by particular alignment of focus position, e.g. dynamic focussing in optical coherence tomography

Definitions

  • the present invention relates to a shape measuring apparatus and method capable of measuring an object such as an industrial product with a depth of focus that is one or two orders of magnitude higher than that of a conventional object and a high resolution that is, for example, submicron or less. It is.
  • Michelson interference as a method for measuring the shape by detecting interference light.
  • the light from the light source is converted into parallel light, the parallel light is split into two by a beam splitter, one of the branched lights is irradiated to the object to be measured through the objective lens, and the other split light is irradiated.
  • a device that irradiates a reference mirror equipped with a moving mechanism and forms an image of backscattered light from the object to be measured and reflected light from the reference mirror on a light detector placed on the focal plane via an imaging lens It is.
  • the backscattered light from the object to be measured and the reflected light from the reference mirror are from the same light source and are coherent, so if the reference path provided with the moving mechanism is moved to change the optical path difference relatively, An interference signal is obtained from the detector, and the shape of the object to be measured can be measured from the interference signal (see, for example, Patent Document 1).
  • reference numeral 201 denotes a light emitting element that emits light
  • 202 denotes a collimator lens that converts the light emitted from the light emitting element 201 into parallel light
  • Reference numeral 203 denotes a beam splitter for branching the parallel light from the collimator lens 202 to the measured object side and the reference mirror side.
  • Reference numeral 304 denotes an objective lens for irradiating one of the parallel lights branched by the beam splitter 203 to the object to be measured 205.
  • Reference numerals 206 and 207 denote a lens that collects another of the parallel lights branched by the beam splitter 203 and a reference reflection mirror.
  • Reference numerals 208 and 209 denote a lens that collects reflected light or scattered light from the object 205 to be measured, and interference light of two lights from the reference reflection mirror 207, and a detector that is a detection element.
  • the objective lens 304 has one or more spherical or spherical surfaces.
  • the light of the objective lens 304 has a depth of focus ⁇ / NA 2 that is optically determined by the numerical aperture NA of the objective lens 304 and the wavelength ⁇ of the light emitted from the light-emitting element, and the light diameter 1. It has 22 ⁇ ⁇ / NA. Therefore, as the distance from the focal position of the objective lens 304 increases, the diameter of the light increases and the resolution of the measuring device decreases.
  • the depth of focus is 63 ⁇ m and the light (beam) diameter is 7.7 ⁇ m.
  • one or more spherical or aspherical lenses are used as the objective lens 304, and the depth of measurement and the resolution of measurement are determined by the numerical aperture NA of the objective lens 304. ing. Specifically, in order to increase the measurement depth, it is necessary to decrease the numerical aperture NA of the objective lens 304. However, if the numerical aperture NA is decreased, the resolution of the measurement is deteriorated. On the other hand, in order to increase the measurement resolution, it is necessary to increase the numerical aperture NA of the objective lens 304. However, increasing the numerical aperture NA decreases the depth of measurement. As described above, when one or more spherical or aspherical lenses are used as the objective lens 304, in the apparatus using the Michelson interference, the measurement depth and the measurement high resolution are in an incompatible relationship. Can not be compatible.
  • an object of the present invention is to provide a shape measuring apparatus and method capable of solving both of the above-described problems and achieving both a large depth of measurement and a high resolution of measurement.
  • the present invention is configured as follows.
  • a light source that emits parallel light
  • a beam splitter that branches the parallel light emitted from the light source into two lights, and one of the two lights that are branched by the beam splitter.
  • One light is transmitted, and the transmitted light is changed to light having a maximum energy density on the optical axis over a distance ⁇ that satisfies the following formula, and is irradiated on the surface of the object to be measured.
  • a detector that detects interference light between the reflected light or backscattered light that has been irradiated and transmitted through the conical lens and reflected light from the reference mirror, and the interference light detected based on the interference light detected by the detector.
  • the measurement object Shape measuring apparatus characterized by comprising a shape measuring unit for measuring the shape of the surface.
  • ⁇ / 2 sin ⁇ 1 ⁇ nsin ( ⁇ / 2 ⁇ / 2) ⁇ ⁇ ⁇ / 2 + ⁇ / 2
  • D Effective diameter of the conical lens
  • Conical apex angle of the conical lens
  • Distance along the optical axis of the light from the apex of the conical lens to the object to be measured
  • n Refractive index of the conical lens
  • the shape measuring apparatus according to the first aspect, further comprising an optical filter that is disposed between the beam splitter and the conical lens and shields a region corresponding to the top of the conical lens. I will provide a.
  • the apparatus further includes a plurality of shutters disposed between the beam splitter and the conical lens, each having a shielding part and a donut-shaped transmission part arranged on an outer periphery of the shielding part.
  • the shielding portions of the plurality of shutters shield regions corresponding to the tops of the conical lenses, and the positions of the transmission portions of the plurality of shutters are arranged at different positions, and the shape measuring unit is And a measurement unit that selectively uses the plurality of shutters to selectively irradiate the light from the conical lens onto the surfaces of the plurality of objects to be measured, and performs the shape measurement.
  • a shape measuring apparatus is provided.
  • the shape of the surface of the object to be measured is obtained by moving the object to be measured in a direction orthogonal to the optical axis direction of the light incident on the object to be measured from the conical lens.
  • the shape measuring device according to any one of the first to third aspects, further comprising a device to be measured moving device for measuring the above.
  • the parallel light emitted from the light source is branched into two lights, and one of the branched two lights is set to a distance ⁇ that satisfies the following formula using a conical lens. Then, the energy density on the optical axis is changed to light that is maximized, the surface of the object to be measured is irradiated, the other of the two light beams branched off is reflected by a reference mirror, and the object to be measured is Interference light between reflected light or backscattered light reflected by the surface and transmitted through the conical lens and reflected light from the reference mirror is detected, and based on the detected interference light, the object to be measured is detected.
  • a shape measuring method comprising measuring the shape of the surface.
  • ⁇ / 2 sin ⁇ 1 ⁇ nsin ( ⁇ / 2 ⁇ / 2) ⁇ ⁇ ⁇ / 2 + ⁇ / 2
  • D Effective diameter of the conical lens
  • Conical apex angle of the conical lens
  • Distance along the optical axis of the light from the apex of the conical lens to the object to be measured
  • n Refractive index of the conical lens
  • the shutter disposed between the beam splitter and the conical lens when the one light out of the two lights branched by the beam splitter passes through the conical lens. Based on the first reflected light reflected by the first surface of the object to be measured, the one light transmitted through the doughnut-shaped transmission part arranged on the outer periphery of the region corresponding to the top of the conical lens After measuring the shape of the first surface of the object to be measured, when the one light out of the two lights branched by the beam splitter passes through the conical lens, a transmission portion is provided at a position different from the shutter.
  • the other shutter having the other shutter disposed between the beam splitter and the conical lens and disposed on an outer periphery of a region corresponding to a top of the conical lens of the another shutter
  • the second surface of the second object different from the first surface of the object to be measured is based on the second reflected light that is reflected by the second surface of the object to be measured.
  • the device under test is moved by the device under test moving device in a direction perpendicular to the optical axis direction of the light incident on the device under test from the conical lens, and the device under test is measured.
  • the shape measuring method according to the fifth or sixth aspect wherein the shape of the surface of an object is measured.
  • shape measurement capable of measuring at a greater depth for example, having a depth of focus one or two orders of magnitude greater than conventional
  • high resolution for example, having sub-micron resolution or less
  • FIG. 1 is a diagram of a basic configuration of a shape measuring apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a diagram for explaining the operation of the conical lens of the shape measuring apparatus according to the first embodiment.
  • FIG. 3 is a graph comparing the distance ⁇ and the light energy density I between the case of the conical lens of the first embodiment of the present invention and the case of the conventional objective lens.
  • FIG. 4A is a cross-sectional view illustrating the operation of the optical filter of the shape measuring apparatus according to the second embodiment of the present invention.
  • FIG. 4B is a plan view of the optical filter of the shape measuring apparatus according to the second embodiment of the present invention.
  • FIG. 5A is a diagram showing one specific configuration example of the shape measuring apparatus according to the first embodiment
  • FIG. 5B is an explanatory diagram when inspecting the shapes of the front and back surfaces of a plurality of lenses using the shape measuring apparatus according to the first embodiment
  • FIG. 5C is an explanatory diagram showing a partial configuration of the shape measuring apparatus according to the third embodiment of the present invention
  • FIG. 5D is an explanatory diagram showing a partial configuration of the shape measuring apparatus according to the third embodiment
  • FIG. 5E is an explanatory diagram showing a partial configuration of the shape measuring apparatus according to the third embodiment
  • FIG. 5A is a diagram showing one specific configuration example of the shape measuring apparatus according to the first embodiment
  • FIG. 5B is an explanatory diagram when inspecting the shapes of the front and back surfaces of a plurality of lenses using the shape measuring apparatus according to the first embodiment
  • FIG. 5C is an explanatory
  • FIG. 5F is an explanatory diagram showing a partial configuration of the shape measuring apparatus according to the third embodiment
  • FIG. 5G is an explanatory diagram showing a partial configuration of the shape measuring apparatus according to the third embodiment
  • FIG. 5H is a flowchart showing a procedure when a shape measuring operation is performed using the shape measuring apparatus according to the third embodiment
  • FIG. 5I is an explanatory diagram of a lens to be tested when performing a shape measurement operation using the shape measurement apparatus according to the third embodiment
  • FIG. 6 is a diagram of the configuration of a conventional shape measuring apparatus
  • FIG. 7 is a diagram for explaining the problems of the conventional shape measuring apparatus.
  • FIG. 1 shows a basic configuration of a shape measuring apparatus 83 according to the first embodiment of the present invention.
  • reference numeral 101 denotes a light emitting element that emits light
  • 102 denotes a collimator lens that changes the light emitted from the light emitting element 101 to parallel light 120.
  • the light emitting element 101 and the collimator lens 102 constitute a parallel light source 90.
  • Reference numeral 103 denotes a beam splitter for branching the parallel light 120 from the collimator lens 102 into two parts, that is, the measured object side and the reference mirror side.
  • Reference numeral 104 denotes an emission side (measurement target) for irradiating the measurement target 105 with the first parallel light 121A, which is one of the parallel lights branched to the measurement target side by the beam splitter 103.
  • the object 105 side) is a conical lens having a conical shape. That is, the conical lens 104 here means a lens having a conical shape at least on the emission side.
  • the incident side (beam splitter 103 side) of the conical lens 104 with respect to the first parallel light 121A may be a flat surface or a curved surface.
  • the 106 is a lens that condenses the second parallel light 121B, which is another parallel light branched by the beam splitter 103, and 107 is a reference reflection mirror that reflects the second parallel light 121B.
  • the reference reflecting mirror 107 can be moved back and forth in the optical axis direction of the second parallel light 121B by a reflecting mirror moving device 91 as an example of a reference plane driving unit.
  • the reflecting mirror moving device 91 can drive the reference reflecting mirror 107 functioning as a reference plane in the vertical direction of FIG.
  • Reference numeral 108 denotes a lens that collects interference light of two lights 123 and 124, that is, reflected light or scattered light 123 from an object 105 to be measured such as an industrial product and reflected light 124 from a reference reflecting mirror 107.
  • Reference numeral 109 denotes a detector (for example, a photodetector) that is an element for detecting the condensed interference light.
  • the shape inspection apparatus 82 is configured by the above-described components excluding the DUT 105. Further, a part obtained by removing the movable stage from the shape inspection apparatus 82 is a shape inspection unit 81. By moving the shape inspection unit 81 relative to the object 105, the surface of the object 105 to be measured can be inspected.
  • a shape measuring unit 80 that measures the shape of the surface of the object 105 to be measured based on the interference light detected by the detector 109 is connected to the detector 109 to form the shape measuring device 83 as a whole. is doing.
  • the shape measuring unit 80 may be configured by known software that can measure the shape of the surface of the DUT 105 based on the interference light detected by the detector 109.
  • a spectroscope 80A, an A / D converter 80B, and a personal computer 80C are used, and the interference light detected by the detector 109 is used. Only the necessary light is extracted by performing spectroscopy with the spectroscope 80A. After the analog information contained in the light extracted by the spectroscope 80A is converted to digital information by the A / D converter 80B, the shape information may be obtained by using known software built in the personal computer 80C.
  • the light emitting element 101, the collimator lens 102, the beam splitter 103, the conical lens 104, and the device under test 105 are arranged on the same optical axis.
  • the lens 106 and the reference reflection mirror 107 are arranged coaxially with respect to the lens 108 and the detector 109 along a direction orthogonal to the optical axis of the light emitting element 101 and with the beam splitter 103 interposed therebetween. .
  • the device under test 105 is a movable stage 92 as an example of a device under test moving device configured by an X-axis stage 92x on which the device under test 105 is held and a Y-axis stage 92y that movably supports the X-axis stage 92x. Thus, each is moved in the XY directions.
  • the X-axis stage 92x is a mechanism that drives the DUT 105 in the X-axis direction (a direction that penetrates the paper surface of FIG. 1).
  • the Y-axis stage 92y is a mechanism that drives the DUT 105 in the Y-axis direction (vertical direction in FIG.
  • the X-axis stage 92x and the Y-axis stage 92y are used to be placed on a placement portion (not shown) on the X-axis stage 92x.
  • the measured object 105 is moved relative to the shape inspection unit 81 so that the entire surface of the measured object 105 to be measured can be inspected.
  • FIG. 1A in order to facilitate understanding, the forward and backward paths of light traveling along the optical axis are shown with their positions slightly shifted from each other.
  • the light emitted from the light emitting element 101 becomes parallel light 120 by the collimating lens 102.
  • the parallel light 120 is split into two parallel lights 121A and 121B by the beam splitter 103.
  • the first parallel light 121 ⁇ / b> A from the beam splitter 103 is incident on the flat bottom surface 104 b of the conical lens 104 with a refractive index n having a conical shape with an apex angle ⁇ [°].
  • the first parallel light 121A incident on the conical lens 104 is refracted with an angle ( ⁇ / 2) [°] formed with the optical axis expressed by the following equation (2).
  • the light energy density of the first parallel light 121A that exits from the collimator lens 102 and enters the conical lens 104 via the beam splitter 103 is i, and an arbitrary point (for example, an object to be measured) 89 from the apex 104a of the conical lens 104.
  • the distance along the optical axis of the first parallel light 121A up to ⁇ [mm] (where 0 ⁇ ), and the distance between the optical axis of the first parallel light 121A and the optical axis of the conical lens 104 is r [mm].
  • the beam profile is a 1 / r curve, and the light energy density I is maximized on the optical axis.
  • Such a point 89 at a distance ⁇ where the light energy density I is high can be expressed as Expression (4), where the effective diameter of the conical lens 104 is D [mm].
  • ⁇ [nm] is the wavelength of light (beam) emitted from the light source.
  • the conical lens 104 is formed in a shape that satisfies the above-described formula.
  • the light (beam) 122 transmitted through the conical lens 104 is irradiated on the surface of the object 105 to be measured.
  • the reflected light from the surface of the object 105 to be measured or the backscattered light 123 on the surface of the object 105 to be transmitted is transmitted through the conical lens 104 and the beam splitter.
  • the second parallel light 121 ⁇ / b> B that is emitted from the collimator lens 102 and enters the reference reflection mirror 107 via the beam splitter 103 and further via the condenser lens 106 is reflected by the reference reflection mirror 107. .
  • the reflected light 124 reflected by the reference reflecting mirror 107 enters the beam splitter 103 via the condenser lens 106.
  • the reflected light or backscattered light 123 on the surface of the object 105 to be measured and the reflected light 124 from the reference mirror 107 are combined again by the beam splitter 103 to become interference light, and the interference light passes through the condenser lens 108. Enters the detector 109 and the detector 109 detects the interference light.
  • FIG. 3 shows a graph (see arrow I) in which the distance ⁇ at the conical lens 104 and the intensity I of light (beam) are normalized by the maximum intensity value.
  • the horizontal axis is the distance ⁇
  • the vertical axis is the intensity I of light (beam).
  • a graph in which the distance ⁇ and the intensity I of light (beam) are normalized by the maximum value of the intensity is also shown in FIG.
  • the point of the distance ⁇ where the light energy density I is high extends over 11.4 mm.
  • the diameter ⁇ of the light (beam) spot at the point of the distance ⁇ where the light energy density I is high it is 1.5 ⁇ m.
  • NA 0.1
  • the depth of focus was only 63 ⁇ m (see FIG. 3).
  • the light (beam) diameter can be obtained.
  • the intensity of the interference light between the reflected light from the object to be measured 105 or the backscattered light and the reflected light from the reference mirror 107 is detected by the detector 109 with finer horizontal resolution. Then, the shape can be measured by the shape measuring unit 80. Therefore, in the shape measuring apparatus 83 according to the present embodiment, since the depth of focus is deep, the thickness direction of the object to be measured 105 (direction orthogonal to the XY direction) can be obtained only by moving in the XY direction along the surface of the object to be measured 105. That is, the shape measurement in the depth direction) can be almost performed, and the shape measurement can be performed almost without moving the object 105 to be measured in the depth direction.
  • the light emitting element 101, the movable stage 92, the reflecting mirror moving device 91, the detector 109, and the shape measuring unit 80 are connected to the control device 60, respectively.
  • the shape measurement operation is performed under the respective control.
  • the reference mirror 107 In measuring the shape, the reference mirror 107 is fixed and the object to be measured 105 is moved in the X direction, the Y direction, or the XY direction by the movable stage 92, and the interference light of the reflected light or scattered light is detected by the detector 109. May be. Conversely, the object to be measured 105 may be fixed, and the interference light of reflected light or scattered light may be detected by the detector 109 while the reference mirror 107 is moved by the reflection mirror moving device 91.
  • the shape measuring device 83 By measuring the shape of the object 105 to be measured using the light (irradiation beam) as described above, it is possible to realize the shape measuring device 83 capable of measuring at a large depth and with high resolution.
  • (Second Embodiment) 4A and 4B show a partial configuration of the shape measuring apparatus according to the second embodiment of the present invention.
  • an optical filter 601 is disposed in front of the conical lens 104 (on the light emitting element 101 side).
  • the optical filter 601 for example, a concentric light transmission part 601b (the white part in FIGS. 4A and 4B) and a mask part (shielding part) 601a (shielded part) arranged in a region other than the transmission part 601b to shield light. What formed the black part of FIG. 4A and FIG. 4B can be used.
  • the mask portion 601a shields light (beam) disturbed near the apex because the shape accuracy near the apex is not sufficient. Can be lost.
  • the minimum range of the mask portion 601a for removing processing errors is a range of 1 ⁇ m in diameter.
  • the outer peripheral mask portion 601c is optional and may be omitted.
  • the shape is not an acute angle and the shape is within the range of about 10 ⁇ m in the vicinity of the apex. May be. Therefore, by masking a region having a diameter of 2 mm or more around the apex to form the mask portion 601a and shielding the light with the mask portion 601a, the region of light (beam) disturbed by a processing error can be eliminated.
  • the shape measurement procedure in the second embodiment is the same as that in the first embodiment.
  • the reflected light or backscattered light from the object 105 to be measured passes through the optical filter 601 in the opposite optical path coaxial with the incident light and is detected by the detector 109.
  • the reference mirror 107 is fixed, and the object 105 to be measured is moved in the X direction, the Y direction, or the XY direction by the movable stage 92 while reflecting light or
  • the interference light of the scattered light may be detected by the detector 109.
  • FIG. 5A shows one specific configuration example of the shape measuring apparatus according to the first embodiment described above.
  • FIG. 5B is an explanatory diagram for inspecting the shapes of the front and back surfaces of a plurality of lenses using the shape measuring apparatus according to the first embodiment described above.
  • FIGS. 5C to 5G respectively show a partial configuration of the shape measuring apparatus according to the third embodiment of the present invention.
  • FIG. 5H is a flowchart showing a procedure when a shape measuring operation is performed using the shape measuring apparatus according to the first embodiment described above.
  • the measurement object 105 that is a measurement object (test lens)
  • a plurality of tests such as a lens barrel of a digital still camera (DSC) are used.
  • a lens provided with the lenses 105A and 105B coaxially is defined as a measurement object (test lens).
  • the lens barrel itself is omitted, and only the plurality of test lenses 105A and 105B are illustrated.
  • Shapes of the front and back surfaces of the plurality of test lenses 105A and 105B as such measurement objects (the front surface 105Aa and the back surface 105Ab of the first test lens 105A and the front surface 105Ba and the back surface 105Bb of the second test lens 105B).
  • 5B in the state assembled as a lens barrel, the front and back surfaces of the test lenses 105A and 105B (the front surface 105Aa and the back surface 105Ab of the first test lens 105A, and the second test sample).
  • a plurality of donut-shaped shutters 70, 71, 72, 73 having different diameters are prepared, and the plurality of shutters 70 are as shown in FIGS. 5C to 5G. , 71, 72, 73 are adjusted so that the front and back surfaces of the DUT 105 are focused as shown in FIG. 5B.
  • the first shutter 70 forms a concentric light transmitting portion 70b in a region corresponding to the vicinity of the periphery of the top of the conical lens 104, and the remaining portion ( A mask part (shielding part) 70a is formed on the top part and the outer peripheral part of the transmission part 70b.
  • the light transmitted through the transmission part 70b is focused on the surface 105Aa of the first lens 105A by the conical lens 104, reflected by the surface 105Aa, and then transmitted through the transmission part 70b again.
  • the shape of the surface 105Aa can be detected by moving toward the beam splitter 103.
  • the area of the transmission part 70b and the area of the mask part 70a on the center side are set to be approximately the same.
  • the second shutter 71 has a concentric light transmission part 71b on the outer peripheral side from the position of the transmission part 70b, that is, between the top part and the outer peripheral part of the conical lens 104.
  • the mask portion 71a is formed in the remaining portion (the portion on the optical axis center side of the transmission portion 71b and the outer peripheral portion of the transmission portion 71b).
  • the third shutter 72 forms a concentric light transmitting portion 72b at a position closer to the outer peripheral side than the position of the transmitting portion 71b, and the remaining portion (light of the transmitting portion 72b).
  • a mask portion 72a is formed on the axial center portion and the outer peripheral portion of the transmission portion 72b.
  • the fourth shutter 73 forms a concentric light transmitting portion 73b at a position closer to the outer peripheral side than the position of the transmitting portion 72b, and the remaining portion (light of the transmitting portion 73b).
  • a mask portion 73a is formed on the axial center portion and the outer peripheral portion of the transmission portion 73b.
  • transmission part 73b will permeate
  • the tables of the test lenses 105A, 105B are moved without moving the optical system such as the conical lens 104. Focus on the back side.
  • a plurality of shutters in this way, when measuring the shape of the front surface 105Aa and the back surface 105A of the first lens, that is, the first lens 105A, the second and subsequent lenses, It is possible to remove the light whose focal depth matches the front surface 105Ba and the back surface 105Bb of the second test lens 105B, and to prevent interference with the second and subsequent test lenses.
  • the shape of the test lens can be accurately measured.
  • the shielding portion in the vicinity of the top of each of the first to fourth shutters 70, 71, 72, and 73 is omitted, and the entire area in the vicinity of the top is regarded as the transmission portion. You can also
  • the switching device 61 for the first to fourth shutters 70, 71, 72, 73 fixes the first to fourth shutters 70, 71, 72, 73 to a disk member, and rotates the motor or the like.
  • the disk member is rotated by a predetermined angle by the apparatus, and a desired shutter of the first to fourth shutters 70, 71, 72, 73 is positioned on the optical axis, and any one of the states shown in FIGS. 5C to 5G It is possible to control so that Such control of the shutter switching operation can be performed by the control device 60 that controls the operation of the entire shape measuring apparatus.
  • the control device 60 controls the operations of the light emitting element 101, the movable stage 92, the reflection mirror moving device 91, the detector 109, the shape measuring unit 80, and the switching device 61, respectively.
  • the shape measuring operation by the shape measuring device 83 will be described with reference to FIG. 5H. This shape measurement operation is performed under operation control by the control device 60.
  • step S1 the surface of the object to be measured 105 is irradiated with laser through the light emitting element 101 through the collimator lens 102, the beam splitter 103, and the conical lens 104.
  • step S ⁇ b> 2 the reflected light reflected from the surface of the object 105 to be measured or the backscattered light scattered behind the surface passes through the conical lens 104, and is reflected by the reference mirror 107 and the beam splitter 103.
  • the combined light becomes interference light, and the interference light is detected by the detector 109 via the condenser lens 108. That is, the detector 109 detects the interference intensity for each wavelength of the surface of the object 105 to be measured and the reference reflecting mirror 107.
  • step S3 the interference intensity detected by the spectroscope 80A of the shape measuring unit 80 via the detector 109 is converted into digital information by the A / D converter 80B, and then taken into the personal computer 80C. Fourier transform the information.
  • step S4 the measurement of the shape of the surface of the object to be measured 105 is completed by obtaining the height information from the digital information obtained by Fourier transforming the digital information in step S3.
  • Steps S1 to S4 are performed for each of the first to fourth shutters 70, 71, 72, and 73 by driving the switching device 61, whereby the front and back surfaces of the plurality of lenses 105A and 105B (the first lens 105A).
  • the shape of the front surface 105Aa and the back surface 105Ab and the front surface 105Ba and the back surface 105Bb) of the second lens 105B can be inspected.
  • the object to be measured 105 is either a spherical surface or an aspherical surface. It is necessary to move the optical system such as the conical lens 104 so as to trace the surface shape of the lens.
  • the focal point 122a is set near the center of the surface of the object to be measured 105 in the optical axis depth direction as shown in FIG.
  • the inspection can be performed without moving the conical lens 104 or the like at all. This is because the inspection is performed without moving the conical lens 104 or the like by performing the Fourier transform by detecting with the spectroscope 80A, or by performing the inspection by moving the conical lens 104 or the reference mirror 107, and optically. Because they are equivalent.
  • the parallel light 120 emitted from the parallel light source 90 is branched into two parallel lights 121A and 121B by the beam splitter 103, and one parallel light 121A of the branched light is converted into a cone.
  • the lens 104 irradiates the surface of the object 105 to be measured by changing to the light (beam) 122 that maximizes the energy density I on the optical axis over the distance ⁇ satisfying the equations (4) and (2).
  • the other parallel light 121 ⁇ / b> B of the obtained light is irradiated on the reference mirror 107, reflected light or backscattered light 123 of the light (beam) 122 irradiated on the surface of the object 105 to be measured, and reflected light 124 from the reference mirror 107.
  • Is detected by the detector 109, and the shape of the surface of the DUT 105 is measured by the shape measuring unit 80 based on the interference light detected by the detector 109. Because of such a configuration, it is possible to perform shape measurement with a depth (for example, one or two orders of magnitude greater than the conventional depth) and high resolution (for example, a resolution of submicron or less). it can.
  • the depth of measurement and the resolution of measurement are determined by the numerical aperture NA of the objective lens, and deep measurement is performed.
  • the depth of measurement and the high resolution of measurement are in conflict with each other, making it impossible to achieve both.
  • the conical lens 104 having a configuration satisfying the above equations (4) and (2) a depth larger than the conventional one (for example, one digit or more than the conventional one) It is possible to perform shape measurement with a double-digit greater depth of focus and high resolution (for example, sub-micron resolution).
  • the shape measurement for measuring the shape of the surface or the back surface of an object to be measured such as an industrial product (for example, a lens) capable of measuring the shape of the object to be measured with a large depth and high resolution. It is useful as an apparatus and method.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)

Abstract

 光源(90)から出射した光を平行光にし、その平行光を2つに分岐し、分岐した光の1つを円錐レンズ(104)により距離に亘って光軸上のエネルギー密度が極大になる光(ビーム)に変え被測定物(105)の表面に照射し、分岐した光のもう1つは参照ミラー(107)に照射し、被測定物の表面に照射した光(ビーム)の後方散乱光と、参照ミラーからの反射光の干渉光を検出することで被測定物の形状を測定する。

Description

形状測定装置及び方法
 本発明は、工業製品などの測定対象物に対して、従来よりも焦点深度が例えば一桁又は二桁大きい大深度且つ例えばサブミクロン以下の高分解能な測定が可能な形状測定装置及び方法に関するものである。
 従来、干渉光を検出して形状を測定する方法としてマイケルソン干渉による装置がある。これは、光源からの光を平行光にし、この平行光をビームスプリッタで2つに分岐し、分岐した一方の光を対物レンズを介して被測定物に照射し、分岐したもう一方の光を移動機構を備えた参照ミラーに照射し、被測定物からの後方散乱光と、参照ミラーからの反射光を、結像レンズを介して焦点面に置かれた光の検出器に結像させる装置である。被測定物からの後方散乱光と、参照ミラーからの反射光は、同一光源からのもので可干渉であるため、移動機構を備えた参照ミラーを移動させて光路差を相対変化させると、光の検出器からは干渉信号が得られ、その干渉信号から被測定物の形状測定ができる(例えば、特許文献1参照。)。
 従来の構成を図6に示す。
 図6において、201は光を出射する発光素子、202は発光素子201から出射された光を平行光にするコリメータレンズである。また、203は、コリメータレンズ202からの平行光を被測定物側と参照ミラー側に分岐するためのビームスプリッタである。304は、ビームスプリッタ203で分岐された平行光の1つを205の被測定物に照射するための対物レンズである。206、207は、ビームスプリッタ203で分岐された平行光のもう一つを集光するレンズと、参照用の反射ミラーとである。208、209は被測定物205からの反射光、又は散乱光と、参照用の反射ミラー207からの2つの光の干渉光を集光するレンズと、検出する素子である検出器とである。
 従来は、マイケルソン干渉において、対物レンズ304に球面又は被球面の1枚又は複数枚のレンズを用いていた。対物レンズ304の光は、図7に示すように、光学的に対物レンズ304の開口数NAと発光素子から出射される光の波長λとによって定まる焦点深度λ/NA及び光の径1.22×λ/NAを持つ。従って、対物レンズ304の焦点位置から離れるに伴って光の径は大きくなり、測定装置の分解能が低下した。例えば、光源に光(ビーム)波長λ=633nmのHeNeレーザ、対物レンズ304に開口数NA=0.1を用いた場合、焦点深度は63μm、光(ビーム)径は7.7μmになる。
特開平6-341809号公報
 しかしながら、従来のマイケルソン干渉による装置では、対物レンズ304に球面又は非球面の1枚又は複数枚のレンズを用いており、対物レンズ304の開口数NAにより、測定の深度と測定の分解能が決まっている。具体的には、測定の深度を大きくするには対物レンズ304の開口数NAを小さくする必要があるが、開口数NAが小さくなると測定の分解能が悪くなる。反対に、測定の分解能を高くするには、対物レンズ304の開口数NAを大きくする必要があるが、開口数NAを大きくすると測定の深度が浅くなる。このように、対物レンズ304に球面又は非球面の1枚又は複数枚のレンズを用いた場合、マイケルソン干渉による装置では、測定の大深度と測定の高分解能が、相反する関係になり、双方を両立することができない。
 従って、本発明の目的は、上記問題を解決することにあって、測定の大深度と測定の高分解能の双方を両立することができる形状測定装置及び方法を提供することにある。
 上記目的を達成するために、本発明は以下のように構成する。
 本発明の第1態様によれば、平行光を出射する光源と、前記光源から出射した平行光を2つの光に分岐するビームスプリッタと、前記ビームスプリッタで分岐した前記2つの光のうちの1つの光が透過し、この透過する光を、下記数式を満たす距離ρに亘って光軸上のエネルギー密度が極大になる光に変えて、被測定物の表面に照射すると共に、前記被測定物の前記表面からの反射光又は後方散乱光が透過する円錐レンズと、前記ビームスプリッタで分岐した前記2つの光のうちのもう一方の光を反射する参照ミラーと、前記被測定物の前記表面に照射しかつ前記円錐レンズを透過した前記反射光又は後方散乱光と、前記参照ミラーからの反射光との干渉光を検出する検出器と、前記検出器で検出された前記干渉光を基に前記被測定物の前記表面の形状を測定する形状測定部と、を備えていることを特徴とする形状測定装置。
  ρ<D/{2tan(β)}
 ただし、β/2=sin-1{nsin(π/2-α/2)}-π/2+α/2
     D:前記円錐レンズの有効径
     α:前記円錐レンズの円錐形状の頂角
     ρ:前記円錐レンズの頂点から前記被測定物までの前記光の光軸に沿った距離
     n:前記円錐レンズの屈折率
 本発明の第2態様によれば、前記ビームスプリッタと前記円錐レンズとの間に配置され、前記円錐レンズの頂部に対応する領域を遮蔽する光学フィルタをさらに備える第1態様に記載の形状測定装置を提供する。
 本発明の第3態様によれば、前記ビームスプリッタと前記円錐レンズとの間に配置され、遮蔽部と前記遮蔽部の外周に配置されたドーナツ状の透過部とを有するシャッターを複数個さらに備え、前記複数個のシャッターの前記遮蔽部は前記円錐レンズの頂部に対応する領域を遮蔽し、前記複数個のシャッターの前記透過部のそれぞれの位置は互いに異なる位置に配置され、前記形状測定部は、前記複数個のシャッターを選択的に使用して、複数の前記被測定物の表面それぞれに対して前記円錐レンズからの前記光を選択的に照射して前記形状測定を行う測定部である第1態様に記載の形状測定装置を提供する。
 本発明の第4態様によれば、前記円錐レンズから前記被測定物に入射する前記光の光軸方向と直交する方向に前記被測定物を移動させて、前記被測定物の前記表面の形状を測定する被測定物移動装置をさらに備える、第1~3のいずれか1つの態様に記載の形状測定装置を提供する。
 本発明の第5態様によれば、光源から出射された平行光を2つの光に分岐させ、分岐された前記2つの光のうちの1つの光を、円錐レンズにより下記数式を満たす距離ρに亘って光軸上のエネルギー密度が極大になる光に変えて、被測定物の表面に照射させ、分岐した前記2つの光のうちのもう一方の光を参照ミラーで反射させ、前記被測定物の前記表面で反射し且つ前記円錐レンズを透過した反射光又は後方散乱光と、前記参照ミラーからの反射光との干渉光を検出し、検出された前記干渉光を基に前記被測定物の前記表面の形状を測定することを特徴とする形状測定方法。
  ρ<D/{2tan(β)}
 ただし、β/2=sin-1{nsin(π/2-α/2)}-π/2+α/2
     D:前記円錐レンズの有効径
     α:前記円錐レンズの円錐形状の頂角
     ρ:前記円錐レンズの頂点から前記被測定物までの前記光の光軸に沿った距離
     n:前記円錐レンズの屈折率
 本発明の第6態様によれば、ビームスプリッタで分岐した前記2つの光のうちの前記1つの光が前記円錐レンズを透過する時、前記ビームスプリッタと前記円錐レンズとの間に配置されたシャッターの前記円錐レンズの頂部に対応する領域の外周に配置されたドーナツ状の透過部を透過した前記1つの光が前記被測定物の第1表面で反射した第1反射光に基づいて、前記被測定物の第1表面の形状測定を行った後、前記ビームスプリッタで分岐した前記2つの光のうちの前記1つの光が前記円錐レンズを透過する時、前記シャッターとは異なる位置に透過部を有する別のシャッターを前記ビームスプリッタと前記円錐レンズとの間に配置し、前記別のシャッターの前記円錐レンズの頂部に対応する領域の外周に配置された前記別のシャッターのドーナツ状の透過部を透過した前記1つの光が前記被測定物の第2表面で反射した第2反射光に基づいて、前記被測定物の前記第1表面とは異なる前記第2表面の形状測定を行う、第5態様に記載の形状測定方法を提供する。
 本発明の第7態様によれば、前記円錐レンズから前記被測定物に入射する前記光の光軸方向と直交する方向に前記被測定物を被測定物移動装置により移動させて、前記被測定物の前記表面の形状を測定する、第5又は6の態様に記載の形状測定方法を提供する。
 本発明によれば、従来よりも大深度(例えば、従来よりも一桁又は二桁大きい焦点深度を持ち)且つ高分解能な(例えばサブミクロン以下の分解能を持つ)測定が可能な形状測定をすることができる。
 本発明のこれらと他の目的と特徴は、添付された図面についての好ましい実施形態に関連した次の記述から明らかになる。この図面においては、
図1は、本発明の第1実施形態における形状測定装置の基本構成の図であり、 図2は、前記第1実施形態における前記形状測定装置の円錐レンズの動作を説明する図であり、 図3は、距離ρと光エネルギー密度Iとを、本発明の第1実施形態の円錐レンズの場合と従来の対物レンズの場合とで比較するグラフであり、 図4Aは、本発明の第2実施形態における形状測定装置の光学フィルタの動作を説明する断面図であり、 図4Bは、本発明の第2実施形態における形状測定装置の光学フィルタの平面図であり、 図5Aは、前記第1実施形態に係る形状測定装置の1つの具体的な構成例を示す図であり、 図5Bは、前記第1実施形態に係る形状測定装置を使用して、複数のレンズの表裏面の形状を検査する場合の説明図であり、 図5Cは、本発明の第3実施形態にかかる形状測定装置の一部の構成を示す説明図であり、 図5Dは、前記第3実施形態にかかる形状測定装置の一部の構成を示す説明図であり、 図5Eは、前記第3実施形態にかかる形状測定装置の一部の構成を示す説明図であり、 図5Fは、前記第3実施形態にかかる形状測定装置の一部の構成を示す説明図であり、 図5Gは、前記第3実施形態にかかる形状測定装置の一部の構成を示す説明図であり、 図5Hは、前記第3実施形態に係る形状測定装置を使用して形状測定動作を行なうときの手順を示すフローチャートであり、 図5Iは、前記第3実施形態に係る形状測定装置を使用して形状測定動作を行なうときの被検レンズの説明図であり、 図6は、従来の形状測定装置の構成の図であり、 図7は、従来の形状測定装置の問題点を説明する図である。
 以下、本発明の実施形態について、図面を参照しながら説明する。
 (第1実施形態)
 図1は、本発明の第1実施形態に係る形状測定装置83の基本構成を示している。
 図1において、101は光を出射する発光素子、102は発光素子101から出射された光を平行光120にするコリメータレンズであり、発光素子101とコリメータレンズ102とで平行光光源90を構成している。また、103は、コリメータレンズ102からの平行光120を被測定物側と参照ミラー側との2つに分岐するためのビームスプリッタである。104は、ビームスプリッタ103で被測定物側に分岐された平行光の1つである第1平行光121Aを被測定物105に照射するための、被測定物105と対向する出射側(被測定物105側)が円錐形状となった円錐レンズである。すなわち、ここで言う円錐レンズ104とは、少なくとも、出射側の形状が円錐形状となったレンズを意味する。円錐レンズ104の第1平行光121Aに対する入射側(ビームスプリッタ103側)は、平面又は湾曲面でもよい。
 106は、ビームスプリッタ103で分岐されたもう一つの平行光である第2平行光121Bを集光するレンズであり、107は、この第2平行光121Bを反射する参照用の反射ミラーである。参照用の反射ミラー107は、参照平面駆動部の一例としての反射ミラー移動装置91により第2平行光121Bの光軸方向に進退移動可能となっている。受光部109で受光される光の干渉具合を調整するために、この反射ミラー移動装置91により、参照平面として機能する参照用の反射ミラー107を図1の上下方向に駆動させることができる。108は、工業製品などの被測定物105からの反射光又は散乱光123と、参照用の反射ミラー107からの反射光124との2つの光123,124の干渉光を集光するレンズである。109は、集光された干渉光を検出する素子である検出器(例えば、フォトディテクター)である。
 被測定物105を除く前述の構成要素により、形状検査装置82を構成している。また、形状検査装置82から可動ステージを除いた部分は、形状検査部81である。この形状検査部81が被測定物105に対して相対的に移動することにより、被測定物105の測定すべき面を検査することができる。
 さらに、検出器109で検出された干渉光を基に被測定物105の表面の形状を測定する形状測定部80を検出器109に接続して配置して、全体として、形状測定装置83を構成している。形状測定部80は、検出器109で検出された干渉光を基に、被測定物105の表面の形状を測定することができる、公知のソフトウェアなどで構成すればよい。なお、形状測定部80の一例としては、図5Aにも示すように、分光器80Aと、A/D変換器80Bと、パーソナルコンピュータ80Cとで構成し、検出器109で検出された干渉光を分光器80Aで分光して必要な光のみを取り出す。分光器80Aで取り出された光に含まれるアナログ情報をA/D変換器80Bでデジタル情報に変換したのち、パーソナルコンピュータ80Cに内蔵された公知のソフトウェアなどで形状情報を得るようにすればよい。
 発光素子101と、コリメータレンズ102と、ビームスプリッタ103と、円錐レンズ104と、被測定物105とは同一光軸上に配置されている。レンズ106と参照用の反射ミラー107とは、レンズ108と検出器109とに対して、発光素子101の光軸とは直交する方向沿いで且つビームスプリッタ103を挟んで同軸上に配置されている。
 発光素子101の例としては、HeNeレーザ又は半導体レーザなどがある。被測定物105は、被測定物105が保持されるX軸ステージ92xとX軸ステージ92xを移動可能に支持するY軸ステージ92yとで構成される被測定物移動装置の一例としての可動ステージ92で、XY方向にそれぞれ移動されるようにしている。X軸ステージ92xは、X軸方向(図1の紙面を貫通する方向)に被測定物105を駆動させる機構である。Y軸ステージ92yは、X軸方向とは直交するY軸方向(図1の上下方向)に被測定物105を駆動させる機構である。この第1実施形態にかかる形状測定装置83の形状検査装置82では、X軸ステージ92xとY軸ステージ92yとを用いて、X軸ステージ92x上の載置部(図示せず)に載置された被測定物105を、形状検査部81に対して相対的に移動させることで、被測定物105の測定すべき面の全面を検査できるようにしている。
 なお、図1Aでは、理解しやすくするため、光軸沿いに進む光の往路と復路とを互いに少し位置をずらせて示すようにしている。
 以下、前述のように構成した第1実施形態に係る形状測定装置の動作を、円錐レンズ104の構造と共に、より詳細に説明する。
 発光素子101から出射した光は、コリメートレンズ102により平行光120になる。
 この平行光120は、ビームスプリッタ103により2つの平行光121A,121Bに分岐する。ビームスプリッタ103からの第1平行光121Aは、図2に示すように、頂角α[°]の円錐形状を有する屈折率nの円錐レンズ104の平らな底面104bに入射する。
 円錐レンズ104に入射した第1平行光121Aは、図2に示すように、以下の式(2)で表した光軸とのなす角(β/2)[°]を持って屈折する。
Figure JPOXMLDOC01-appb-M000001
                            ....(2)
 コリメータレンズ102から出射してビームスプリッタ103を介して円錐レンズ104に入射する第1平行光121Aの光エネルギー密度をiとし、円錐レンズ104の頂点104aから任意の点(例えば、被測定物)89までの第1平行光121Aの光軸に沿った距離をρ[mm](ただし、0<ρ)、且つ第1平行光121Aの光軸と円錐レンズ104の光軸と距離をr[mm](ただし、0≦r≦(D/2))とすると、頂点104aから任意の点(例えば、被測定物)89までの距離ρ、第1平行光121Aの光軸と円錐レンズ104の光軸との距離rの点89における光エネルギー密度I(ρ,r)は、以下の式(3)のようになる。
Figure JPOXMLDOC01-appb-M000002
                            ....(3)
 式(3)のように、ビームプロファイルは1/rの曲線となり、光エネルギー密度Iは光軸上で極大となる。このような光エネルギー密度Iが高い距離ρの点89は、円錐レンズ104の有効径をD[mm]とすると、式(4)のように表せる。
Figure JPOXMLDOC01-appb-M000003
                            ....(4)
 また、光エネルギー密度Iが高い距離ρの点89での光(ビーム)スポットの直径をφ[μm]とすると、式(5)のように表せる。λ[nm]は光源から出射される光(ビーム)の波長である。
Figure JPOXMLDOC01-appb-M000004
                            ....(5)
 円錐レンズ104は、前記したような式が成立するような形状で構成する。
 このような円錐レンズ104を透過した光(ビーム)122が被測定物105の表面に照射される。光(ビーム)122が被測定物105の表面に照射されたのち、被測定物105の表面からの反射光又は被測定物105の表面の後方散乱光123が円錐レンズ104を透過してビームスプリッタ103に入る。一方、コリメータレンズ102から出射してビームスプリッタ103を介して、さらに、集光レンズ106を介して参照用の反射ミラー107に入射する第2平行光121Bは、参照用の反射ミラー107で反射する。参照用の反射ミラー107で反射した反射光124は、集光レンズ106を介してビームスプリッタ103に入る。被測定物105の表面の反射光又は後方散乱光123と、参照ミラー107からの反射光124とは、再び、ビームスプリッタ103で結合されて干渉光となり、集光レンズ108を介して、干渉光が検出器109に入射して、検出器109で干渉光を検出する。
 一例として、円錐レンズ104に材質BK7(屈折率n=1.515)を使用し、円錐レンズ104の頂角α=120°、有効径D=10mmとすると共に、光源の一例である発光素子101にλ=633nmのHeNeレーザを用いる場合を、以下に説明する。
 図3に、円錐レンズ104での距離ρと光(ビーム)の強度Iを強度の最大値で正規化したグラフ(矢印Iを参照)を示す。横軸は距離ρ、縦軸は光(ビーム)の強度Iである。このグラフに、比較のために、従来のように、光源の例である発光素子にλ=633nmのHeNeレーザ、開口数NA=0.1の対物レンズを円錐レンズ104の代わりに用いた場合の距離ρと光(ビーム)の強度Iを強度の最大値で正規化したグラフ(矢印IIを参照)を図3内に併記する。
 図3のように、円錐レンズ104の場合(矢印Iを参照)の光エネルギー密度Iの高い距離ρの点は11.4mmに亘る。また、この光エネルギー密度Iの高い距離ρの点での光(ビーム)スポットの直径φを測定すると、1.5μmになる。これに対して、従来では、前述の通り、対物レンズに開口数NA=0.1の物を用いた場合(矢印IIを参照)、その焦点深度は63μmでしかなかった(図3参照)。また、光(ビーム)径も7.7μmと大きかった。よって、円錐レンズ104を使用することにより、従来の構成に比べて、11.4/0.063=約180倍も深い焦点深度と、1.5/7.7=約1/5の微細な光(ビーム)径を得ることができる。
 よって、このような深い焦点深度内において、より微細な水平分解能で、被測定物105からの反射光又は後方散乱光と参照ミラー107からの反射光との干渉光の強度を検出器109で検出し、形状測定部80で形状を測定することができる。従って、本実施形態にかかる形状測定装置83では、焦点深度が深いため、被測定物105の表面沿いにXY方向に移動するだけで、被測定物105の厚さ方向(XY方向と直交する方向、すなわち、深さ方向)での形状測定もほとんど行うことができ、ほとんど被測定物105を深度方向に動かさずに形状測定を行うことができる。そのため、必要に応じて深度方向に移動させる程度でよい。言い換えれば、被測定物105の表面の凹凸の寸法が焦点深度内であれば、被測定物105の厚さ方向への走査は不要となり、単に、XY方向への移動(走査)のみで形状測定を行うことができて、測定誤差の発生を効果的に防止することができる。これに対して、従来の構成では、形状測定の焦点深度が浅いため、被測定物の表面沿いにXY方向に移動させるだけでは深さ方向の形状測定がすべて行うことができず、深さ方向にも小刻みに移動させる必要があるため、煩雑であるとともに、測定誤差が発生しやすかった。
 なお、発光素子101と、可動ステージ92と、反射ミラー移動装置91と、検出器109と、形状測定部80とは、それぞれ制御装置60に接続されて、これらの装置の動作は、制御装置60により、それぞれ制御されて、形状測定動作を行うようにしている。
 形状の測定においては、参照ミラー107を固定にし、被測定物105を可動ステージ92でX方向又はY方向又はXY方向に移動しつつ、反射光又は散乱光の干渉光を検出器109で検出してもよい。逆に、被測定物105を固定にし、参照ミラー107を反射ミラー移動装置91で移動しつつ、反射光又は散乱光の干渉光を検出器109で検出してもよい。
 前記のような光(照射ビーム)を用いて、被測定物105の形状測定を行うことにより、大深度且つ高分解能な測定が可能な形状測定装置83を実現することができる。
 (第2実施形態)
 図4A及び図4Bは本発明の第2実施形態にかかる形状測定装置の一部の構成を示している。
 第2実施形態では、第1実施形態に加えて、円錐レンズ104の手前(発光素子101側)に光学フィルタ601を配置している。光学フィルタ601としては、例えば同心円状の光の透過部601b(図4A及び図4Bの白抜き部分)と透過部601b以外の領域に配置されて光が遮蔽されるマスク部(遮蔽部)601a(図4A及び図4Bの黒色部分)とを形成したものを用いることができる。このマスク部601aにより、円錐レンズ104の頂点104a付近の頂部での円錐レンズ104の加工誤差により、その頂部付近での形状精度が十分でないために、頂部付近で乱れた光(ビーム)を遮蔽して無くすることができる。加工誤差を除去するための、マスク部601aの最低範囲としては、直径1μmの範囲である。外周のマスク部601cは任意であり、無くてもよい。
 このようにマスク部601aを設ける具体的な例としては、有効径Dが10mmの円錐レンズ104において、頂部付近の直径10μm程度の範囲内は、加工上、形状が鋭角にならず、形状がだれることがある。そのため、頂部回りに直径2mm以上の領域をマスクしてマスク部601aを形成し、マスク部601aにより遮光することで、加工誤差により乱れた光(ビーム)の領域を無くすことができる。
 この第2実施形態での形状測定の手順は、前述の第1実施形態と同様である。
 なお、本実施形態においては、被測定物105からの反射光又は後方散乱光は、入射した時と同軸で逆方向の光路で光学フィルタ601を通り、検出器109で検出される。
 また、被測定物105の測定すべき面の形状の測定においては、参照ミラー107を固定にし、被測定物105を可動ステージ92でX方向又はY方向又はXY方向に移動させつつ、反射光又は散乱光の干渉光を検出器109で検出してもよい。逆に、被測定物105を固定にし、参照ミラー107を反射ミラー移動装置91で移動させつつ、反射光又は散乱光の干渉光を検出器109で検出してもよいことも同様である。
 (第3実施形態)
 図5Aは、前述の第1実施形態に係る形状測定装置の1つの具体的な構成例を示している。図5Bは、前述の第1実施形態に係る形状測定装置を使用して、複数のレンズの表裏面の形状を検査する場合の説明図である。図5A及び図5Bでは、理解しやすくするため、光軸中心を進む光の往路と復路とを少し位置をずらせて示すようにしている。図5C~図5Gは本発明の第3実施形態にかかる形状測定装置の一部の構成をそれぞれ示している。図5Hは、前述の第1実施形態に係る形状測定装置を使用して形状測定動作を行なうときの手順を示すフローチャートである。
 測定対象物(被検レンズ)である被測定物105の具体的な例としては、図5Aに示すように、デジタル・スチル・カメラ(DSC)のレンズ鏡筒等のように、複数の被検レンズ105A,105Bが同軸で備えられたものを測定対象物(被検レンズ)とする。ただし、図5Aでは、簡略化するため、レンズ鏡筒自体は省略して複数の被検レンズ105A,105Bのみを図示している。
 このような測定対象物である複数の被検レンズ105A,105Bの表裏面(第1被検レンズ105Aの表面105Aaと裏面105Ab、及び、第2被検レンズ105Bの表面105Baと裏面105Bb)の形状を図5Bに示すように検査する場合、レンズ鏡筒として組んだ状態で、それぞれの被検レンズ105A,105Bの表裏面(第1被検レンズ105Aの表面105Aaと裏面105Ab、及び、第2被検レンズ105Bの表面105Baと裏面105Bb)を検査したいが、そのためには、発光素子101及び円錐レンズ104を被検レンズ105A,105Bに対して相対的に移動させる必要がある。
 しかしながら、測定精度及び測定速度(タクトタイム)を考えると、発光素子101及び円錐レンズ104を被検レンズ105A,105Bに対して移動させないことが望ましい。
 そこで、本発明の第3実施形態にかかる形状測定装置では、直径の異なる複数のドーナツ状のシャッター70,71,72,73を用意し、図5C~図5Gのようにして、複数のシャッター70,71,72,73を切替え、図5Bのように、被測定物105の各表裏面に焦点が合うように調整する。
 すなわち、まず、図5C及び図5Dに示すように、第1シャッター70は、同心円状の光の透過部70bを、円錐レンズ104の頂部の周囲付近に対応する領域に形成し、残りの部分(頂部及び透過部70bの外周部)にはマスク部(遮蔽部)70aを形成して構成している。このように構成すれば、透過部70bを透過した光が、円錐レンズ104により、第1被検レンズ105Aの表面105Aaに焦点を結び、表面105Aaで反射したのち、再び、透過部70bを透過してビームスプリッタ103に向かうことにより、表面105Aaの形状を検出することができる。なお、この例では、透過部70bの面積と中央側のマスク部70aの面積とがほぼ同じ程度になるようにしている。
 また、図5Eに示すように、第2シャッター71は、同心円状の光の透過部71bを、透過部70bの位置よりも外周部側に、すなわち、円錐レンズ104の頂部と外周部との中間部に対応する領域に形成し、残りの部分(透過部71bの光軸中心側の部分と透過部71bの外周部)にはマスク部71aを形成して構成している。このように構成すれば、透過部71bを透過した光が、円錐レンズ104により、第1被検レンズ105Aを透過して、第1被検レンズ105Aの裏面105Abに焦点を結び、裏面105Abで反射したのち、再び、第1被検レンズ105A及び透過部71bを透過してビームスプリッタ103に向かうことにより、裏面105Abの形状を検出することができる。
 また、図5Fに示すように、第3シャッター72は、同心円状の光の透過部72bを、透過部71bの位置よりも外周部側の位置に形成し、残りの部分(透過部72bの光軸中心側の部分と透過部72bの外周部)にはマスク部72aを形成して構成している。このように構成すれば、透過部72bを透過した光が、円錐レンズ104により、第1被検レンズ105Aを透過して、第2被検レンズ105Bの表面105Baに焦点を結び、表面105Baで反射したのち、再び、第1被検レンズ105A及び透過部72bを透過してビームスプリッタ103に向かうことにより、表面105Baの形状を検出することができる。
 また、図5Gに示すように、第4シャッター73は、同心円状の光の透過部73bを、透過部72bの位置よりも外周部側の位置に形成し、残りの部分(透過部73bの光軸中心側の部分と透過部73bの外周部)にはマスク部73aを形成して構成している。このように構成すれば、透過部73bを透過した光が、円錐レンズ104により、第1被検レンズ105Aを透過して、第2被検レンズ105Bの裏面105Bbに焦点を結び、裏面105Bbで反射したのち、再び、第1被検レンズ105A及び透過部73bを透過してビームスプリッタ103に向かうことにより、裏面105Bbの形状を検出することができる。
 このようにして、第1~第4シャッター70,71,72,73を適宜切替えながら調整することにより、円錐レンズ104等の光学系の移動を行なうことなく、被検レンズ105A,105Bの各表裏面に焦点を合せることができる。このように複数個のシャッターを使用することにより、1枚目の被検レンズすなわち第1被検レンズ105Aの表面105Aaと裏面105Aとの形状測定を行うとき、2枚目以降の被検レンズすなわち第2被検レンズ105Bの表面105Baと裏面105Bbに焦点深度が合う光を除去することができて、2枚目以降の被検レンズに対する干渉が発生しないようにすることができ、1枚目の被検レンズの形状測定を精度良く行うことができる。
 なお、先の光学フィルタ601を配置することにより、第1~第4シャッター70,71,72,73のそれぞれの頂部付近の領域の遮蔽部を省略して、頂部付近の領域を全て透過部とすることもできる。
 この第1~第4シャッター70,71,72,73の切り替え装置61は、例えば、円板部材に第1~第4シャッター70,71,72,73を固定しておき、モータなどの回転駆動装置で円板部材を所定角度回転させて、第1~第4シャッター70,71,72,73のうちの所望のシャッターを光軸上に位置させて、図5C~図5Gのいずれかの状態となるように制御することが可能である。このようなシャッターの切り替え動作の制御は、形状測定装置全体の動作を制御する制御装置60で行なうことができる。制御装置60は、発光素子101と、可動ステージ92と、反射ミラー移動装置91と、検出器109と、形状測定部80と、切り替え装置61との動作をそれぞれ制御するものである。
 このような形状測定装置83による形状測定動作について、図5Hを基に説明する。なお、この形状測定動作は、制御装置60での動作制御の下に行われる。
 測定開始後、まず、ステップS1で、発光素子101からコリメータレンズ102とビームスプリッタ103と円錐レンズ104とを透過して、被測定物105の表面にレーザ照射を行う。
 次いで、ステップS2で、被測定物105の表面で反射した反射光又は表面の後方で散乱した後方散乱光が、円錐レンズ104を透過して、参照ミラー107からの反射光と、ビームスプリッタ103で結合されて干渉光となり、集光レンズ108を介して、干渉光が検出器109で検出される。すなわち、被測定物105の表面と参照用の反射ミラー107の波長毎の干渉強度を検出器109で検出する。
 次いで、ステップS3で、検出器109を介して形状測定部80の分光器80Aで検出された干渉強度を、A/D変換器80Bでデジタル情報に変換したのち、パーソナルコンピュータ80Cに取り込み、そのデジタル情報をフーリエ変換する。
 次いで、ステップS4で、ステップS3でデジタル情報をフーリエ変換することで求めてデジタル情報から高さ情報を得ることによって、被測定物105の表面の形状の測定が完了する。
 前記ステップS1~ステップS4を、切り替え装置61を駆動して、第1~第4シャッター70,71,72,73のそれぞれについて行うことにより、複数のレンズ105A,105Bの表裏面(第1レンズ105Aの表面105Aaと裏面105Ab、及び、第2レンズ105Bの表面105Baと裏面105Bb)の形状を検査することができる。
 さらに、通常、各被測定物105の表面に焦点を合せる際に、測定対象物(被検レンズ)の被測定物105が球面又は非球面のどちらの場合においても、焦点が、被測定物105の表面形状をなぞるように、円錐レンズ104等の光学系を動かす必要がある。
 しかしながら、本発明では、前述の構成を用いることにより(特に、円錐レンズ104を使用することにより)、光軸深さ方向にマージンを有する検査(言い換えれば、円錐レンズ104を使用して深い焦点深度M(図5I参照)を利用しながら検査)を行うことが可能となっている。
 そのため、被測定物105の表面形状の設計値等のデータが既知の場合は、光軸深さ方向において、図5Iに示すように、被測定物105の表面の中央付近に焦点122aを合せることで、被測定物105の表面を検査する場合に、円錐レンズ104等を全く動かすことなく、検査を行うことが可能である。これは、分光器80Aで検出してフーリエ変換を行なうことで円錐レンズ104等を全く動かさずに検査を行うことが、円錐レンズ104や参照ミラー107を動かして検査を行うことと、光学的に等価であるためです。
 上記第1~第3実施形態によれば、平行光光源90から出射した平行光120をビームスプリッタ103で2つの平行光121A,121Bに分岐し、分岐した光の1つの平行光121Aを、円錐レンズ104により、前記数式(4)及び(2)を満たす距離ρに亘って光軸上のエネルギー密度Iが極大になる光(ビーム)122に変えて被測定物105の表面に照射し、分岐した光のもう1つの平行光121Bは参照ミラー107に照射し、前記被測定物105の表面に照射した光(ビーム)122の反射光又は後方散乱光123と、参照ミラー107からの反射光124との干渉光を検出器109で検出し、検出器109で検出された干渉光を基に被測定物105の表面の形状を形状測定部80で測定する。このような構成であるため、従来よりも大深度(例えば、従来よりも一桁又は二桁大きい焦点深度を持ち)且つ高分解能な(例えばサブミクロン以下の分解能を持つ)形状測定を行うことができる。
 すなわち、対物レンズに球面又は非球面の1枚又は複数枚のレンズを用いたマイケルソン干渉による従来の形状測定装置では、対物レンズの開口数NAにより測定の深度と測定の分解能が決まり、深い測定の深度と高い測定の分解能が、相反する関係になり、双方を両立することができなかった。しかしながら、上記第1~第3実施形態によれば、上記式(4)及び(2)を満たす構成の円錐レンズ104を使用することにより、従来よりも大深度(例えば、従来よりも一桁又は二桁大きい焦点深度を持ち)且つ高分解能な(例えばサブミクロン以下の分解能を持つ)形状測定を行うことができる。
 なお、上記様々な実施形態のうちの任意の実施形態を適宜組み合わせることにより、それぞれの有する効果を奏するようにすることができる。
 本発明により、被測定物の形状を大深度且つ高分解能に測定すること可能な、工業製品(例えば、レンズ)などの被測定物(測定対象物)の表面又は裏面の形状を測定する形状測定装置及び方法として有用である。
 本発明は、添付図面を参照しながら好ましい実施形態に関連して充分に記載されているが、この技術の熟練した人々にとっては種々の変形又は修正は明白である。そのような変形又は修正は、添付した請求の範囲による本発明の範囲から外れない限りにおいて、その中に含まれると理解されるべきである。

Claims (7)

  1.  平行光を出射する光源と、
     前記光源から出射した平行光を2つの光に分岐するビームスプリッタと、
     前記ビームスプリッタで分岐した前記2つの光のうちの1つの光が透過し、この透過する光を、下記数式を満たす距離ρに亘って光軸上のエネルギー密度が極大になる光に変えて、被測定物の表面に照射すると共に、前記被測定物の前記表面からの反射光又は後方散乱光が透過する円錐レンズと、
     前記ビームスプリッタで分岐した前記2つの光のうちのもう一方の光を反射する参照ミラーと、
     前記被測定物の前記表面に照射しかつ前記円錐レンズを透過した前記反射光又は後方散乱光と、前記参照ミラーからの反射光との干渉光を検出する検出器と、
     前記検出器で検出された前記干渉光を基に前記被測定物の前記表面の形状を測定する形状測定部と、を備えている形状測定装置。
      ρ<D/{2tan(β)}
     ただし、β/2=sin-1{nsin(π/2-α/2)}-π/2+α/2
         D:前記円錐レンズの有効径
         α:前記円錐レンズの円錐形状の頂角
         ρ:前記円錐レンズの頂点から前記被測定物までの前記光の光軸に沿った距離
         n:前記円錐レンズの屈折率
  2.  前記ビームスプリッタと前記円錐レンズとの間に配置され、前記円錐レンズの頂部に対応する領域を遮蔽する光学フィルタをさらに備える請求項1に記載の形状測定装置。
  3.  前記ビームスプリッタと前記円錐レンズとの間に配置され、遮蔽部と前記遮蔽部の外周に配置されたドーナツ状の透過部とを有するシャッターを複数個さらに備え、
     前記複数個のシャッターの前記遮蔽部は前記円錐レンズの頂部に対応する領域を遮蔽し、
     前記複数個のシャッターの前記透過部のそれぞれの位置は互いに異なる位置に配置され、
     前記形状測定部は、前記複数個のシャッターを選択的に使用して、複数の前記被測定物の表面それぞれに対して前記円錐レンズからの前記光を選択的に照射して前記形状測定を行う測定部である、請求項1に記載の形状測定装置。
  4.  前記円錐レンズから前記被測定物に入射する前記光の光軸方向と直交する方向に前記被測定物を移動させて、前記被測定物の前記表面の形状を測定する被測定物移動装置をさらに備える、請求項1~3のいずれか1つに記載の形状測定装置。
  5.  光源から出射された平行光を2つの光に分岐させ、
     分岐された前記2つの光のうちの1つの光を、円錐レンズにより下記数式を満たす距離ρに亘って光軸上のエネルギー密度が極大になる光に変えて、被測定物の表面に照射させ、
     分岐した前記2つの光のうちのもう一方の光を参照ミラーで反射させ、
     前記被測定物の前記表面で反射し且つ前記円錐レンズを透過した反射光又は後方散乱光と、前記参照ミラーからの反射光との干渉光を検出し、
     検出された前記干渉光を基に前記被測定物の前記表面の形状を測定する形状測定方法。
      ρ<D/{2tan(β)}
     ただし、β/2=sin-1{nsin(π/2-α/2)}-π/2+α/2
         D:前記円錐レンズの有効径
         α:前記円錐レンズの円錐形状の頂角
         ρ:前記円錐レンズの頂点から前記被測定物までの前記光の光軸に沿った距離
         n:前記円錐レンズの屈折率
  6.  ビームスプリッタで分岐した前記2つの光のうちの前記1つの光が前記円錐レンズを透過する時、前記ビームスプリッタと前記円錐レンズとの間に配置されたシャッターの前記円錐レンズの頂部に対応する領域の外周に配置されたドーナツ状の透過部を透過した前記1つの光が前記被測定物の第1表面で反射した第1反射光に基づいて、前記被測定物の第1表面の形状測定を行った後、
     前記ビームスプリッタで分岐した前記2つの光のうちの前記1つの光が前記円錐レンズを透過する時、前記シャッターとは異なる位置に透過部を有する別のシャッターを前記ビームスプリッタと前記円錐レンズとの間に配置し、前記別のシャッターの前記円錐レンズの頂部に対応する領域の外周に配置された前記別のシャッターのドーナツ状の透過部を透過した前記1つの光が前記被測定物の第2表面で反射した第2反射光に基づいて、前記被測定物の前記第1表面とは異なる前記第2表面の形状測定を行う、請求項5に記載の形状測定方法。
  7.  前記円錐レンズから前記被測定物に入射する前記光の光軸方向と直交する方向に前記被測定物を被測定物移動装置により移動させて、前記被測定物の前記表面の形状を測定する、請求項5又は6に記載の形状測定方法。
PCT/JP2010/001643 2009-03-19 2010-03-09 形状測定装置及び方法 WO2010106758A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020107020251A KR101233941B1 (ko) 2009-03-19 2010-03-09 형상 측정 장치 및 방법
US12/935,300 US20110043822A1 (en) 2009-03-19 2010-03-09 Shape measuring apparatus and method thereof
CN201080001241.8A CN101970983B (zh) 2009-03-19 2010-03-09 形状测定装置以及方法
EP10753255A EP2410289A1 (en) 2009-03-19 2010-03-09 Shape measurement device and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009067183A JP2010217124A (ja) 2009-03-19 2009-03-19 形状測定装置及び方法
JP2009-067183 2009-03-19

Publications (1)

Publication Number Publication Date
WO2010106758A1 true WO2010106758A1 (ja) 2010-09-23

Family

ID=42739426

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/001643 WO2010106758A1 (ja) 2009-03-19 2010-03-09 形状測定装置及び方法

Country Status (6)

Country Link
US (1) US20110043822A1 (ja)
EP (1) EP2410289A1 (ja)
JP (1) JP2010217124A (ja)
KR (1) KR101233941B1 (ja)
CN (1) CN101970983B (ja)
WO (1) WO2010106758A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116294983A (zh) * 2023-02-28 2023-06-23 重庆米森科技有限公司 基于平面光路设计的非闭合光路波阵面分割干涉仪

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102581703A (zh) * 2011-01-05 2012-07-18 财团法人精密机械研究发展中心 同轴向双进给轴量测装置
US8810904B2 (en) * 2011-02-09 2014-08-19 Northwestern University Optical contact micrometer
DE102011103003A1 (de) * 2011-05-24 2012-11-29 Lufthansa Technik Ag Verfahren und Vorrichtung zur Rissprüfung eines Flugzeug- oder Gasturbinen-Bauteils
CN104949631B (zh) * 2014-03-27 2017-12-15 纽富来科技股份有限公司 曲率测定装置以及曲率测定方法
EP3290892B1 (en) * 2016-08-30 2021-03-31 Nidek Co., Ltd Lens measurement device
CN106441152B (zh) * 2016-10-18 2019-02-01 淮阴师范学院 非对称式光学干涉测量方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06341809A (ja) 1993-06-01 1994-12-13 Mitsutoyo Corp マイケルソン形干渉測定装置
JPH0763508A (ja) * 1993-08-31 1995-03-10 Ishikawajima Harima Heavy Ind Co Ltd レーザ顕微鏡
JPH08136248A (ja) * 1994-11-08 1996-05-31 Idec Izumi Corp 共焦点位置測定装置
JP3633713B2 (ja) * 1996-04-23 2005-03-30 松下電器産業株式会社 距離計測方法及び距離センサ

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7072045B2 (en) * 2002-01-16 2006-07-04 The Regents Of The University Of California High resolution optical coherence tomography with an improved depth range using an axicon lens
US7218403B2 (en) * 2002-06-26 2007-05-15 Zygo Corporation Scanning interferometer for aspheric surfaces and wavefronts
JP4144389B2 (ja) * 2003-03-14 2008-09-03 オムロン株式会社 光学式膜計測装置
CN2788123Y (zh) * 2005-01-26 2006-06-14 闫宏 双光路自准直镀膜厚度光学监控装置
US7586670B2 (en) * 2006-05-13 2009-09-08 Alcatel-Lucent Usa Inc. Nonlinear optical devices based on metamaterials
CN101324422B (zh) * 2007-06-12 2011-01-19 北京普瑞微纳科技有限公司 白光干涉测量样品表面形状精细分布的方法及其装置
US20090195788A1 (en) * 2007-12-17 2009-08-06 Shinichi Dosaka Apparatus for profile irregularity measurement and surface imperfection observation; method of profile irregularity measurement and surface imperfection observation; and inspection method of profile irregularity and surface imperfection

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06341809A (ja) 1993-06-01 1994-12-13 Mitsutoyo Corp マイケルソン形干渉測定装置
JPH0763508A (ja) * 1993-08-31 1995-03-10 Ishikawajima Harima Heavy Ind Co Ltd レーザ顕微鏡
JPH08136248A (ja) * 1994-11-08 1996-05-31 Idec Izumi Corp 共焦点位置測定装置
JP3633713B2 (ja) * 1996-04-23 2005-03-30 松下電器産業株式会社 距離計測方法及び距離センサ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116294983A (zh) * 2023-02-28 2023-06-23 重庆米森科技有限公司 基于平面光路设计的非闭合光路波阵面分割干涉仪
CN116294983B (zh) * 2023-02-28 2024-01-23 重庆米森科技有限公司 基于平面光路设计的非闭合光路波阵面分割干涉仪

Also Published As

Publication number Publication date
JP2010217124A (ja) 2010-09-30
KR20100124757A (ko) 2010-11-29
EP2410289A1 (en) 2012-01-25
CN101970983B (zh) 2012-08-29
CN101970983A (zh) 2011-02-09
US20110043822A1 (en) 2011-02-24
KR101233941B1 (ko) 2013-02-15

Similar Documents

Publication Publication Date Title
JP6377218B2 (ja) 計測システムおよび計測方法
WO2010106758A1 (ja) 形状測定装置及び方法
TWI484139B (zh) 彩色共焦掃描裝置
US7477401B2 (en) Trench measurement system employing a chromatic confocal height sensor and a microscope
JP4760564B2 (ja) パターン形状の欠陥検出方法及び検出装置
US9671600B2 (en) Light microscope and microscopy method
EP2538170A1 (en) Method and device for measuring multiple parameters of differential confocal interference component
US10345246B2 (en) Dark field wafer nano-defect inspection system with a singular beam
CN104515469A (zh) 用于检查微观样本的光显微镜和显微镜学方法
JP5268061B2 (ja) 基板検査装置
US20240230551A9 (en) Defect inspection device, defect inspection method, and adjustment substrate
JP2002071513A (ja) 液浸系顕微鏡対物レンズ用干渉計および液浸系顕微鏡対物レンズの評価方法
JP2010121960A (ja) 測定装置及び被検物の測定方法
WO2012001929A1 (ja) 波面収差測定装置及び波面収差測定方法
CN115291378A (zh) 显微镜的光路系统
JP4325909B2 (ja) 欠陥検査装置、欠陥検査方法、光学式走査装置、半導体デバイス製造方法
JP2008002891A (ja) 表面状態検査装置及び表面状態検査方法
JP6143155B2 (ja) フィラー微粒子分散性評価装置及びフィラー微粒子分散性評価方法
JP5759270B2 (ja) 干渉計
KR101245097B1 (ko) 박막 두께 측정장치
JP5046054B2 (ja) 欠陥検査装置、欠陥検査方法、光学式走査装置、半導体デバイス製造方法
WO2021199340A1 (ja) 欠陥検査装置及び欠陥検査方法
KR101326204B1 (ko) 박막 두께 측정장치 및 방법
US8108942B2 (en) Probe microscope
JP2008261829A (ja) 表面測定装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080001241.8

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20107020251

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12935300

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010753255

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10753255

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE