CN106441152B - 非对称式光学干涉测量方法及装置 - Google Patents

非对称式光学干涉测量方法及装置 Download PDF

Info

Publication number
CN106441152B
CN106441152B CN201610907996.3A CN201610907996A CN106441152B CN 106441152 B CN106441152 B CN 106441152B CN 201610907996 A CN201610907996 A CN 201610907996A CN 106441152 B CN106441152 B CN 106441152B
Authority
CN
China
Prior art keywords
imaging len
reference mirror
under test
object under
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610907996.3A
Other languages
English (en)
Other versions
CN106441152A (zh
Inventor
雷枫
边心田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huaiyin Normal University
Original Assignee
Huaiyin Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huaiyin Normal University filed Critical Huaiyin Normal University
Priority to CN201610907996.3A priority Critical patent/CN106441152B/zh
Publication of CN106441152A publication Critical patent/CN106441152A/zh
Priority to PCT/CN2017/086321 priority patent/WO2018072446A1/zh
Priority to US16/326,848 priority patent/US10989524B2/en
Application granted granted Critical
Publication of CN106441152B publication Critical patent/CN106441152B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/2441Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures using interferometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02015Interferometers characterised by the beam path configuration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02041Interferometers characterised by particular imaging or detection techniques
    • G01B9/02044Imaging in the frequency domain, e.g. by using a spectrometer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/0209Low-coherence interferometers

Abstract

本发明公开了一种非对称式光学干涉测量方法及装置,方法包括:入射光源经过分光镜分为两束光,分别投射到待测物体表面和参考镜表面,并分别通过待测物体侧的第一成像透镜、参考镜侧的第二成像透镜,经第三成像透镜在光电传感器上叠加形成至少一个干涉图像;第一成像透镜的放大倍率小于第二成像透镜的放大倍率;将相应干涉图像输入计算机获得相应干涉图像信号;对干涉图像信号进行解析,获得待测物体表面的三维形貌。本发明采用不同的放大倍率,使用小面积的参考镜面,得到大面积的待测物体表面的干涉图像,具有操作方便、成本较低、数据采样时间短、测量仪器抗干扰能力强、测量精度高、测量范围大和工作稳定性能好等优点。

Description

非对称式光学干涉测量方法及装置
技术领域
本发明涉及光学精密测量技术领域,具体涉及非对称式光学干涉测量方法及装置。
背景技术
近年来,随着精密制造技术的进步与发展,检测物体表面形状的技术已得到日益广泛的应用,光学干涉测量利用两束光所产生的干涉条纹,精密测量物体表面的三维形貌结构,由于光学干涉测量具有非接触式测量和测量精度高等特点,被广泛应用于测量半导体集成电路、平板显示器面板(LCD、PDP、EL)、MEMS基板等精密工业制品的表面三维立体细微形状结构,是精密加工领域不可缺少的关键支撑技术。
随着计算机数据处理技术和自动控制技术的飞速发展,光学干涉测量技术也在不断进步,美国ZYGO公司研制的NewView8000、日本Nikon的BW-S500以及德国Bruker公司的ContourGT-K代表当今光学三维精密测量仪器的最高水平,该测量仪器具有以下主要特点:测量精度达到纳米量级,操作方便,应用软件功能齐全,但是,由于该测量仪器采用对称式光学干涉系统和步进式扫描方法,存在测量速度慢和测量范围狭小等缺点。
对称式光学干涉系统即测试光学系统和参考光学系统对称,如图1所示,为对称式光学干涉系统的结构示意图,若需要扩大测试范围,则需要扩大参考基准面,而设计加工大面积的参考基准面需要较高的精密加工和装配技术,成本较高,且目前全世界只有为数不多的公司可以制作大面积的参考基准面,难以操作。
有鉴于此,急需解决现有光学干涉测量方法存在的测量速度慢、测量范围狭小、成本较高和难以操作问题。
发明内容
本发明所要解决的技术问题是解决现有光学干涉测量方法存在测量速度慢、测量范围狭小、成本较高和难以操作问题。
为了解决上述技术问题,本发明所采用的技术方案是提供一种非对称式光学干涉测量方法,包括以下步骤:
入射光源经过分光镜分为两束光,分别投射到待测物体表面和参考镜表面,并分别通过待测物体侧的第一成像透镜、参考镜侧的第二成像透镜,经第三成像透镜在光电传感器上叠加形成至少一个干涉图像;所述第一成像透镜的放大倍率小于所述第二成像透镜的放大倍率;
将相应干涉图像输入计算机,获得相应的干涉图像信号;
对相应的干涉图像信号进行解析,获得待测物体表面的三维形貌。
在上述技术方案中,通过同时调整所述第二成像透镜与分光镜之间的距离、所述参考镜与分光镜之间的距离,并保持所述第二成像透镜与参考镜之间的距离不变,以改变所述参考镜侧的光路和所述待测物体侧的光路之间的光程差,在所述光电传感器上形成多个干涉图像。
在上述技术方案中,在所述第二成像透镜和参考镜之间插入准直透镜、直角转向反射镜和180度回射反射镜,通过调整直角转向反射镜和180度回射反射镜之间的距离,补偿由于改变待测物体的成像位置所引起的所述参考镜侧的光路和所述待测物体侧的光路之间的光程差。
在上述技术方案中,所述光电传感器为面阵相机光电传感器。
在上述技术方案中,利用相移算法或白光干涉法对相应的干涉图像信号进行解析。
本发明还提供了一种非对称式光学干涉测量装置,包括分光镜、待测物体、待测物体侧的第一成像透镜、参考镜、参考镜侧的第二成像透镜、第三成像透镜和光电传感器,所述第一成像透镜的放大倍率小于所述第二成像透镜的放大倍率;
入射光源经所述分光镜分为两束光,分别投射到待测物体表面和参考镜表面,并分别通过所述第一成像透镜和所述第二成像透镜,经所述第三成像透镜在所述光电传感器上叠加形成至少一个干涉图像。
在上述技术方案中,所述参考镜位于所述第二成像透镜的后焦面。
本发明提供了一种测量方式简单易操作、测量范围较大的非对称式光学干涉测量方法及装置,采用不同的放大倍率,使用小面积的参考镜面,得到大面积的待测物体表面的干涉图像,根据一个或者多个干涉图像,解析获得待测物体表面的三维形貌,具有结构设计合理、操作方便、成本较低、数据采样时间短、测量仪器抗干扰能力强、测量精度高、测量范围大和工作稳定性能好等优点。
附图说明
图1为对称式光学干涉系统的结构示意图;
图2为本发明提供的一种非对称式光学干涉测量方法流程图;
图3为本发明实施例1提供的一种非对称式光学干涉测量装置结构示意图;
图4为本发明实施例2提供的一种非对称式光学干涉测量装置结构示意图;
图5为本发明提供的单独使用参考镜M1侧的测量仪器所形成的参考镜M1的像;
图6为本发明提供的单独使用待测物体2侧的测量仪器所形成的待测物体2的像;
图7为本发明提供的同时使用参考镜M1侧和待测物体2侧的测量仪器所形成的干涉图像。
具体实施方式
本发明提供了一种测量方式简单易操作、测量范围最大可达直径1000mm的非对称式光学干涉测量方法及装置,采用不同的放大倍率,使用小面积的参考镜面,得到大面积的待测物体表面的干涉图像,根据一个或者多个干涉图像,解析待测物体表面的三维形貌,具有结构设计合理、操作方便、成本较低、数据采样时间短、测量仪器抗干扰能力强、测量精度高、测量范围大和工作稳定性能好等优点。
下面结合说明书附图和具体实施方式对本发明做出详细的说明。
本发明提供了一种非对称式光学干涉测量方法,如图2所示,包括以下步骤:
S1、入射光源经过分光镜(分束镜)分为检测光和参考光两束光,分别投射到待测物体表面和参考镜表面,其中待测物体表面反射的检测光通过待测物体侧的第一成像透镜,参考镜表面反射的参考光通过参考镜侧的第二成像透镜,最后经第三成像透镜在面阵相机光电传感器上叠加形成至少一个干涉图像。
上述待测物体侧的第一成像透镜的放大倍率小于参考镜侧的第二成像透镜的放大倍率。
S2、将相应干涉图像输入计算机,获得相应的干涉图像信号。
S3、利用相移算法或白光干涉法对相应的干涉图像信号进行解析,获得待测物体表面的三维形貌。
通过同时调整第二成像透镜与分光镜之间的距离、参考镜与分光镜之间的距离,并保持第二成像透镜与参考镜之间的距离不变,以改变参考镜侧的光路和待测物体侧的光路之间的光程差,在光电传感器上形成多个干涉图像。
在第二成像透镜和参考镜之间插入准直透镜、直角转向反射镜和180度回射反射镜,通过调整直角转向反射镜和180度回射反射镜之间的距离,补偿由于改变待测物体的成像位置所引起的参考镜侧的光路和待测物体侧的光路之间的光程差。
实施例1。
本发明实施例1提供了一种非对称式光学干涉测量装置,如图3所示,包括分光镜1、待测物体2、待测物体2侧的第一成像透镜L1、参考镜M1(参考镜M1位于第二成像透镜L2的后焦面)、参考镜M1侧的第二成像透镜L2、第三成像透镜L3和面阵相机光电传感器3,第一成像透镜L1的放大倍率小于第二成像透镜L2的放大倍率;入射光源(激光等相干性较高的光源)经分光镜1分为检测光和参考光两束光,分别投射到待测物体2表面和参考镜M1表面,其中,待测物体2表面反射的检测光通过第一成像透镜L1,参考镜M1表面反射的参考光通过第二成像透镜L2,最后经第三成像透镜L3在面阵相机光电传感器3上叠加形成至少一个干涉图像。
待测物体2侧的第一成像透镜L1具有较小的放大倍率,可以将大面积的待测物体表面成像到面阵相机光电传感器3表面,与此相反,参考镜M1侧的第二成像透镜L2具有较大的放大倍率,可以将小面积的参考镜M1表面成像到面阵相机光电传感器3表面,由于待测物体2表面和参考镜M1表面在面阵相机光电传感器表面3的成像完全重合,可以在面阵相机光电传感器3表面形成干涉图像,从而实现高相干性照明光源的大面积干涉成像。
实施例2。
本发明实施例2对实施例1进一步优化,提供了一种非对称式光学干涉测量装置,该装置既可以使用激光等相干性较高的光源作为入射光源,也可以使用卤素白光光源等相干性较低的光源,如图4所示,包括分光镜1、待测物体2、待测物体2侧的第一成像透镜L1、参考镜M1、参考镜M1侧的第二成像透镜L2、第三成像透镜L3、参考镜M1侧的准直透镜L4、面阵相机光电传感器3、直角转向反射镜M2和180度回射反射镜M3。
直角转向反射镜M2和180度回射反射镜M3设置在准直透镜L4和参考镜M1之间,通过调整直角转向反射镜M2和180度回射反射镜M3之间的距离,补偿由于改变待测物体2的成像位置所引起的参考镜M1侧的光路和待测物体2侧的光路之间的光程差。待测物体2的成像位置与测量范围密切相关,如果待测物体2与第一成像透镜L1之间的距离增大,则会增加待测物体2的测量范围,同时也增加了待测物体2侧光程,所以需要保证待测物体2侧的光路和参考镜M1侧的光路具有相同的光程,以实现低相干性照明光源的大面积干涉成像。
下面采用半导体激光光源作为入射光源对本发明提供的一种非对称式光学干涉测量方法的实现进行说明,所采用的半导体激光光源的中心波长为670nm,输出功率为0.8MW;参考镜M1的直径为3.15mm,表面精度为λ/20(@633nm);参考镜M1侧的放大倍率为1.0;待测物体2为平板玻璃,其直径为45.0mm;待测物体2侧的放大倍数为0.07,所使用的面阵相机光电传感器为美国Opteon公司生产的面阵CCD工业相机。
如图5所示,为单独使用参考镜M1侧的测量仪器所形成的参考镜M1的像;如图6所示,为单独使用待测物体2侧的测量仪器所形成的待测物体2的像;如图7所示,为同时使用参考镜M1侧和待测物体2侧的测量仪器所形成的干涉图像。
由图5和图6可知,通过采用两个不同的放大倍率,参考镜和待测物体在面阵CCD工业相机表面形成大小相同的像;由图7可知,如果同时使用参考镜M1侧和待测物体2侧的测量仪器,这两幅像会在面阵CCD工业相机表面重合,形成干涉图像。
本发明不局限于上述最佳实施方式,任何人在本发明的启示下作出的结构变化,凡是与本发明具有相同或相近的技术方案,均落入本发明的保护范围之内。

Claims (5)

1.一种非对称式光学干涉测量方法,其特征在于,包括以下步骤:
入射光源经过分光镜分为两束光,分别投射到待测物体表面和参考镜表面,并分别通过待测物体侧的第一成像透镜、参考镜侧的第二成像透镜,经第三成像透镜在光电传感器上叠加形成至少一个干涉图像;所述第一成像透镜的放大倍率小于所述第二成像透镜的放大倍率;
将相应干涉图像输入计算机,获得相应的干涉图像信号;
对相应的干涉图像信号进行解析,获得待测物体表面的三维形貌;
其中:通过同时调整所述第二成像透镜与分光镜之间的距离、所述参考镜与分光镜之间的距离,并保持所述第二成像透镜与参考镜之间的距离不变,以改变所述参考镜侧的光路和所述待测物体侧的光路之间的光程差,在所述光电传感器上形成多个干涉图像;
在所述第二成像透镜和参考镜之间插入准直透镜、直角转向反射镜和180度回射反射镜,通过调整直角转向反射镜和180度回射反射镜之间的距离,补偿由于改变待测物体的成像位置所引起的所述参考镜侧的光路和所述待测物体侧的光路之间的光程差。
2.如权利要求1所述的非对称式光学干涉测量方法,其特征在于,所述光电传感器为面阵相机光电传感器。
3.如权利要求1所述的非对称式光学干涉测量方法,其特征在于,利用相移算法或白光干涉法对相应的干涉图像信号进行解析。
4.一种非对称式光学干涉测量装置,其特征在于,包括分光镜、待测物体、待测物体侧的第一成像透镜、参考镜、参考镜侧的第二成像透镜、第三成像透镜和光电传感器,所述第一成像透镜的放大倍率小于所述第二成像透镜的放大倍率;
入射光源经所述分光镜分为两束光,分别投射到待测物体表面和参考镜表面,并分别通过所述第一成像透镜和所述第二成像透镜,经所述第三成像透镜在所述光电传感器上叠加形成至少一个干涉图像;
其中:通过同时调整所述第二成像透镜与分光镜之间的距离、所述参考镜与分光镜之间的距离,并保持所述第二成像透镜与参考镜之间的距离不变,以改变所述参考镜侧的光路和所述待测物体侧的光路之间的光程差,在所述光电传感器上形成多个干涉图像;
在所述第二成像透镜和参考镜之间插入准直透镜、直角转向反射镜和180度回射反射镜,通过调整直角转向反射镜和180度回射反射镜之间的距离,补偿由于改变待测物体的成像位置所引起的所述参考镜侧的光路和所述待测物体侧的光路之间的光程差。
5.如权利要求4所述的非对称式光学干涉测量装置,其特征在于,所述参考镜位于所述第二成像透镜的后焦面。
CN201610907996.3A 2016-10-18 2016-10-18 非对称式光学干涉测量方法及装置 Active CN106441152B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201610907996.3A CN106441152B (zh) 2016-10-18 2016-10-18 非对称式光学干涉测量方法及装置
PCT/CN2017/086321 WO2018072446A1 (zh) 2016-10-18 2017-05-27 非对称式光学干涉测量方法及装置
US16/326,848 US10989524B2 (en) 2016-10-18 2017-05-27 Asymmetric optical interference measurement method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610907996.3A CN106441152B (zh) 2016-10-18 2016-10-18 非对称式光学干涉测量方法及装置

Publications (2)

Publication Number Publication Date
CN106441152A CN106441152A (zh) 2017-02-22
CN106441152B true CN106441152B (zh) 2019-02-01

Family

ID=58177161

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610907996.3A Active CN106441152B (zh) 2016-10-18 2016-10-18 非对称式光学干涉测量方法及装置

Country Status (3)

Country Link
US (1) US10989524B2 (zh)
CN (1) CN106441152B (zh)
WO (1) WO2018072446A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106907987B (zh) * 2017-03-03 2018-06-29 中国科学院长春光学精密机械与物理研究所 一种干涉成像光学系统
CN109596043B (zh) * 2018-11-29 2020-10-30 华东师范大学 非对称量子干涉仪及方法
CN113985711B (zh) * 2021-10-28 2024-02-02 无锡卓海科技股份有限公司 一种套刻测量装置
CN114577125B (zh) * 2022-04-08 2024-01-19 上海树突精密仪器有限公司 一种非接触式光学透镜中心厚度测量方法及测量装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101806585A (zh) * 2010-04-09 2010-08-18 中北大学 基于红外光干涉技术的mems器件形貌测量方法
CN101970983A (zh) * 2009-03-19 2011-02-09 松下电器产业株式会社 形状测定装置以及方法
CN105423947A (zh) * 2015-12-10 2016-03-23 常州雷欧仪器有限公司 一种光学三维成像装置及其成像方法
CN105486247A (zh) * 2015-11-18 2016-04-13 镇江超纳仪器有限公司(中外合资) 一种可连续变倍的表面形貌测量装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3661463A (en) * 1970-03-05 1972-05-09 Kearney & Trecker Corp Single interferometer multiple axis laser measuring system
DE3707331A1 (de) * 1987-03-07 1988-09-15 Zeiss Carl Fa Interferometer zur messung von optischen phasendifferenzen
JPH07107481B2 (ja) * 1987-05-21 1995-11-15 アンリツ株式会社 変位測定装置
DE10118392A1 (de) * 2001-04-13 2002-11-07 Zeiss Carl System und Verfahren zum Bestimmen einer Position oder/und Orientierung zweier Objekte relativ zueinander sowie Strahlführungsanordnung, Interferometeranordnung und Vorrichtung zum Ändern einer optischen Weglänge zum Einsatz in einem solchen System und Verfahren
WO2005060677A2 (en) * 2003-12-18 2005-07-07 Zygo Corporation Interferometric microscopy using reflective optics for complex surface shapes
EP1883781B1 (en) * 2005-05-19 2019-08-07 Zygo Corporation Analyzing low-coherence interferometry signals for thin film structures
EP1892501A3 (en) * 2006-08-23 2009-10-07 Heliotis AG Colorimetric three-dimensional microscopy
KR100939537B1 (ko) * 2007-12-14 2010-02-03 (주) 인텍플러스 표면 형상 측정 시스템 및 그를 이용한 측정 방법
KR101207198B1 (ko) * 2010-01-18 2012-12-03 주식회사 고영테크놀러지 기판 검사장치
FR2959305B1 (fr) * 2010-04-26 2014-09-05 Nanotec Solution Dispositif optique et procede d'inspection d'objets structures.
US20120089365A1 (en) * 2010-10-08 2012-04-12 Zygo Corporation Data interpolation methods for metrology of surfaces, films and underresolved structures

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101970983A (zh) * 2009-03-19 2011-02-09 松下电器产业株式会社 形状测定装置以及方法
CN101806585A (zh) * 2010-04-09 2010-08-18 中北大学 基于红外光干涉技术的mems器件形貌测量方法
CN105486247A (zh) * 2015-11-18 2016-04-13 镇江超纳仪器有限公司(中外合资) 一种可连续变倍的表面形貌测量装置
CN105423947A (zh) * 2015-12-10 2016-03-23 常州雷欧仪器有限公司 一种光学三维成像装置及其成像方法

Also Published As

Publication number Publication date
US20190186904A1 (en) 2019-06-20
US10989524B2 (en) 2021-04-27
CN106441152A (zh) 2017-02-22
WO2018072446A1 (zh) 2018-04-26

Similar Documents

Publication Publication Date Title
CN106441152B (zh) 非对称式光学干涉测量方法及装置
CN101691998B (zh) 二维激光自准直仪
CN106840027A (zh) 光学自由曲面的像散补偿型干涉检测装置与检测方法
US20140293291A1 (en) Wafer Shape and Thickness Measurement System Utilizing Shearing Interferometers
CN101169601A (zh) 一种调焦调平测量系统
JPS62129711A (ja) 物体の形状誤差を測定する方法およびその装置
Tutsch et al. Optical three-dimensional metrology with structured illumination
CN108895986A (zh) 基于条纹成像投影的显微三维形貌测量装置
CN107144237A (zh) 基于三维拼接的大口径干涉测量系统和算法
CN102878935A (zh) 基于剪切散斑干涉的光学离面位移场测量装置及测量方法
CN113899321B (zh) 凹面镜辅助成像的镜面物体三维形貌测量方法及系统
CN102620680A (zh) 一种三平面绝对测量光学面形的检测装置及方法
TW200804757A (en) Measuring error method for high precision and nano-scale rotation axis and the apparatus thereof
CN1740738A (zh) 面内三方向云纹干涉仪
CN103674220A (zh) 测振系统
CN108413893B (zh) 一种散斑偏折术检测平面元件面形的方法与装置
TWI614481B (zh) 轉動角度量測裝置及加工系統
Zhu et al. A method for measuring the guideway straightness error based on polarized interference principle
CN114111626A (zh) 一种基于同轴投影的光场相机三维测量装置及系统
CN203464912U (zh) 表面形貌抗振干涉测量系统
JP2012150018A (ja) 形状計測方法
CN105157560A (zh) 一种三自由度精密激光检测装置
CN2935081Y (zh) 双镜头三角定位深度测量仪
JP2006133059A (ja) 干渉測定装置
US7327466B2 (en) Multi-corner retroreflector

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant