CN108895986A - 基于条纹成像投影的显微三维形貌测量装置 - Google Patents

基于条纹成像投影的显微三维形貌测量装置 Download PDF

Info

Publication number
CN108895986A
CN108895986A CN201810784359.0A CN201810784359A CN108895986A CN 108895986 A CN108895986 A CN 108895986A CN 201810784359 A CN201810784359 A CN 201810784359A CN 108895986 A CN108895986 A CN 108895986A
Authority
CN
China
Prior art keywords
microcobjective
lens
microscopic
projection
striped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810784359.0A
Other languages
English (en)
Other versions
CN108895986B (zh
Inventor
朱勇建
罗坚
黄振
马俊飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dragon Totem Technology Hefei Co ltd
Original Assignee
Guangxi Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangxi Normal University filed Critical Guangxi Normal University
Priority to CN201810784359.0A priority Critical patent/CN108895986B/zh
Publication of CN108895986A publication Critical patent/CN108895986A/zh
Application granted granted Critical
Publication of CN108895986B publication Critical patent/CN108895986B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/2441Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures using interferometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/254Projection of a pattern, viewing through a pattern, e.g. moiré

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

本发明公开了基于条纹成像投影的显微三维形貌测量装置,包括顺序连接的He‑Ne激光器、第一扩束系统、偏振分光镜、λ/2波片、空间光调制器、第一透镜、λ/4波片、第二扩束系统、空间滤波器、第二透镜、聚光镜、第一孔径光阑、投射显微物镜、成像显微物镜、第二孔径光阑、筒镜和CCD相机,其中,空间滤波器和第二透镜之间设有反光板,待测物体放置于投射显微物镜与成像显微物镜之间的带有水平面板的工作台的水平面板上,CCD相机外接计算机。这种装置灵活高效、具有较大的动态测量范围、能降低光路的成本,增强测量的灵活,可实现相移测量,具备高精度、高垂直分辨率、测量简单快捷、无损优点。

Description

基于条纹成像投影的显微三维形貌测量装置
技术领域
本发明涉及三维形貌测量技术,具体是基于条纹成像投影的显微三维形貌测量装置。
背景技术
随着时代的发展、科技的进步,在现代化的检测技术中,三维形貌测量技术逐步成为人们的研究重点,特别是随着激光技术、计算机技术,以及图像处理技术等高新技术的发展,使得光学式非接触三维测量技术成为可能并得到广泛的应用,其中以结构光投影为代表的三维形貌光学测量技术被认为是最具有发展前途的三维形貌测量方法。
三维形貌测量是物体表面轮廓的三维尺寸和形状的测量。与传统二维测量相比,物体三维形貌测量能够记录更多的信息量,能够更真实、更全面地再现客观物体。三维形貌测量技术在越来越多的领域发挥作用,其中非接触光学测量方法由于无损、速度快被广泛应用,随着机械工业、半导体工业和生物技术的迅速发展,为了加快产品制造和确保产品质量,需要正确测量其三维形貌,尤其是在超精密加工、纳米技术、微机电系统、活体细胞工程等对微纳尺度的三维形貌测量提出了更高的要求,需要具有实时动态观测特性、高分辨率及大量程的三维表面形貌精密测量仪器。
条纹投影技术和显微系统相结合的三维形貌测量方法可以满足高精密微小物体的三维形貌测量,具备高精度、高垂直分辨率、测量简单快捷、无损等优点,成为这类测量中最常用的手段之一,具有较强的实际应用价值。
现有技术方法之一是采用激光光栅显微投影法(参见“激光光栅显微投影法表面微观形貌测量系统的研制”,于复生,司书春,张国雄,应用激光,(3):159-161,168,2004,),该方法使用两个显微物镜:一个用来将光栅进行缩小投影到被测物体的表面上,形成被测物体表面高度所调制的条纹,另一个显微物镜则将被调制的条纹图像成像到CCD的靶面上,CCD采集的图像输入到计算机中进行相关计算而得出被测表面的微观形貌,此方法虽然测量的数据与标准量块及多次与触针式测量仪(泰勒雪夫—4)的测量结果具有较好的一致性,但是不适用于不同类型的微观物体三维形貌测量,仅仅采集一幅变形栅像,其测量精度低,通用性不强,正弦相移条纹不方便连续调节;
现有技术方法之二是采用数字全息法(参见“数字全息法测量三维形貌的研究”,曾贞,于佳,王惠萍,杨宇,王金城,激光杂志,(5):33-34,2013,),该方法利用离轴反射式数字全息系统,再现利用菲涅尔再现算法,然后对再现像使用快速相位解包裹算法,得到物体的三维形貌,此方法虽能有效得到物体的三维形貌,但是其测量效率和通用性不强,不适合大范围推广;
现有技术方法之三是采用显微干涉技术和偏振技术相结合的方法来研制微/纳结构三维形貌亚纳米级精度测试系统(参见“微/纳结构三维形貌高精度测试系统”,谢勇君,史铁林,刘世元,光电工程,(1):19-24,2010,),该系统通过对标准多刻线样板的实验研究得到系统的Ra重复测量精度可达0.06nm,最大示值误差不到±1%,示值变动性不到0.5%,但是该系统光学结构复杂,调节困难,容易受外界噪声干扰以及系统像差的干扰,但是其测量效率和通用性不强,不适合大范围推广;
现有技术方法之四是采用基于结构光的数字栅线三维纹理测量系统(参见“结构光数字栅线法对物体三维形貌的高精度测量”,罗刚银,唐玉国,乔培玉,王弼陡,贾赞东,光谱学与光谱分析,(9):2331-2335,2012,),该系统利用解位相的方法进行物体三维高度信息的计算,此系统所使用的方法在条纹图的P0=22.7mm-1时,获取的三维信息分辨率为2.75μm,高度信息精度优于0.5μm,但是该系统的条纹图存在噪声,其正弦特性和清晰度均不能保持最佳,且无畸变,同时相移调制不够精确。
发明内容
本发明的目的是针对现有技术的不足,而提供一种基于条纹成像投影的显微三维形貌测量装置。这种装置可实现不同种类的不透明微小物体的三维形貌测量,亦可实现对不透明相位物体的检测,这种装置灵活高效、具有较大的动态测量范围、不采用激光干涉结构,以电控空间光调制器产生光学条纹,对条纹进行成像投射,此结构能降低光路的成本,增强测量的灵活,可实现相移测量,具备高精度、高垂直分辨率、测量简单快捷、无损优点。
实现本发明目的技术方案是:
基于条纹成像投影的显微三维形貌测量装置,与现有技术不同的是,包括顺序连接的He-Ne激光器、第一扩束系统、偏振分光镜、λ/2波片、空间光调制器、第一透镜、λ/4波片、第二扩束系统、空间滤波器、第二透镜、聚光镜、第一孔径光阑、用于条纹投射的投射显微物镜、用于被测物调制后的条纹成像的成像显微物镜、第二孔径光阑、筒镜和CCD相机,其中,空间滤波器和第二透镜之间设有反光板,待测物体放置于投射显微物镜与成像显微物镜之间的带有水平面板的工作台的水平面板上,CCD相机外接计算机。
由He-Ne激光器产生的线偏振激光通过第一扩束系统投射到偏振分光镜上,偏振分光镜放置在水平面上,光线经λ/2波片后投射到空间光调制器中,空间光调制器采用纯相位方式反射空间光调制器,纯相位方式反射空间光调制器相位可以根据输入信号进行连续调制,方便产生相移,激光经过空间光调制器衍射,激光束分为三束,即0级和±1级衍射光,三束衍射光被偏振分光镜反射经第一透镜被λ/4波片调制成圆偏振光,再经第二扩束系统、高通空间滤波器挡住0级衍射光后,±1级衍射光形成干涉条纹,所产生的干涉条纹依经过第二透镜得到正弦相移条纹,正弦相移条纹再经过聚光镜、第一孔径光阑、用于条纹投射的显微物镜得到空间条纹像,空间条纹像投射到待测物上,被待测物调制后的条纹图依次通过用于被测物调制后的条纹成像的显微物镜、第二孔径光阑、筒镜和CCD相机,CCD相机外接计算机,计算机控制CCD相机的图像采集模式,并对CCD相机采集的图像进行后续的相位提取进而得到物体的三维形貌信息。
所述的空间光调制器为纯相位方式反射空间光调制器,纯相位方式反射空间光调制器动态产生干涉条纹图,此条纹图是真实激光产生的空间干涉条纹,产生的正弦相移条纹图以四步相移为最佳,四步相移法可以有效地减少相移误差引起的系统校正误差,其正弦特性和清晰度均能保持最佳,无畸变,同时相移调制精确,速度快,并具有接近衍射极限的光学分辨率,远远优于计算机电子条纹图。
所述第一扩束系统和第二扩束系统的规格、性能参数相同。
所述第一透镜和第二透镜的规格、性能参数相同。
第一孔径光阑和第二孔径光阑的规格、性能参数相同。
所述偏振分光镜3的光线透反射光强比为1:1,材料为K9光学玻璃。
所述聚光镜为简单的阿贝聚光镜,或是优质的消色差-消球差聚光镜系统,该系统包括有色差和像差校正的聚光镜本体,聚光镜与第一孔径光阑配合显微物镜进行空间条纹成像。
所述显微物镜和筒镜相互配合使用,目的是校正物镜的色差和像差。
所述显微物镜配合聚光镜使用,作用是产生要进行投射条纹的空间像,将空间像投射到被测物体上,然后利用CCD相机从另外一个角度将经过物体调制后的变形条纹图采集过来,经过数据处理得到物体的三维形貌信息。
待测物与经过聚光镜、第一孔径光阑、显微物镜得到的空间条纹像之间有间距d,d>0。
上述投射条纹的光强分布满足式子:
I(x,y)=I0(x,y)×[1+γ(x,y)cosφ(x,y)]
其中I0(x,y)为背景光强,γ(x,y)为条纹对比度,φ(x,y)为相位场,
所述的空间光调制器产生的相移条纹依次经过透镜、λ/4波片、第二扩束系统、空间滤波器、透镜得到的正弦相移条纹,假设CCD相机采集n幅图像,则采集图像的光强分布为:
In(x,y)为第n步时的光强,为第n步的总相移量,其中每步的相移增量恒为一个常量。
空间光调制器动态产生真实激光干涉条纹,产生的正弦相移条纹图以四步相移为最佳,则n=4,即四步相移法,四步法的每步相移量都是π/2,其相应的光强分布公式如下:
I1(x,y)=I0(x,y)×[1+γ(x,y)cosφ(x,y)]
I1(x,y)=I0(x,y)×[1+γ(x,y)cos(φ(x,y)+π/2)]
I1(x,y)=I0(x,y)×[1+γ(x,y)cos(φ(x,y)+π)]
I1(x,y)=I0(x,y)×[1+γ(x,y)cos(φ(x,y)+3π/2)]
得出其包裹相位为:
其对比度为:
这种装置,利用空间光调制器形成激光干涉,产生真实的相移干涉条纹图,并通过聚光镜和显微物镜对条纹图进行空间成像,成像光线投射到待测物上,经待测物反射,变形条纹携带待测物表面信号再依次经过显微物镜、孔径光阑、筒镜最终聚焦在CCD相机上,并送入计算机进行后续的相位提取进而得到物体的三维形貌信息。采用真实干涉条纹图作为投射光源,可以突破衍射极限,实现系统的超分辨,同时经电光调制的相移序列条纹的引入可以大大提高系统的检测速度与精度,增强抗噪声能力,采用聚光镜和显微物镜的组合可以使条纹光线覆盖整个待测物体,完成多种不同大小、不同面形的物体三维形貌测量,使检测系统具有较高的灵活性。
这种装置可实现不同种类的不透明微小物体的三维形貌测量,亦可实现对不透明相位物体的检测,这种装置成本低、可实现相移测量,具备高精度、高垂直分辨率、测量简单快捷、无损的优点,具有较大的动态测量范围。
附图说明
图1为实施例的结构示意图。
图中,1.He-Ne激光器2.第一扩束系统3.偏振分光镜4.λ/2波片5.空间光调制器6.第一透镜7.λ/4波片8.第二扩束系统9.空间滤波器10.反光板11.第二透镜12.正弦相移条纹图13.聚光镜14.第一孔径光阑15.投射显微物镜16.空间条纹像17.待测物18.工作台19成像显微物镜20.第二孔径光阑21.筒镜22.CCD 23.计算机。
具体实施方式
下面结合附图和实施例对本发明的内容作进一步的阐述,但不是对本发明的限定。
实施例:
参照图1,基于条纹成像投影的显微三维形貌测量装置,与现有技术不同的是,包括顺序连接的He-Ne激光器1、第一扩束系统2、偏振分光镜3、λ/2波片4、空间光调制器5、第一透镜6、λ/4波片7、第二扩束系统8、空间滤波器9、第二透镜11、聚光镜13、第一孔径光阑14、用于条纹投射的投射显微物镜15、用于被测物调制后的条纹成像的成像显微物镜19、第二孔径光阑20、筒镜21和CCD相机22,其中,空间滤波器9和第二透镜11之间设有反光板10,待测物体17放置于投射显微物镜15与成像显微物镜19之间的带有水平面板的工作台18的水平面板上,CCD相机22外接计算机23。
由He-Ne激光器1产生的线偏振激光通过第一扩束系统2投射到偏振分光镜3上,偏振分光镜3放置在水平面上,光线经λ/2波片4后投射到空间光调制器5中,空间光调制器5采用纯相位方式反射空间光调制器,纯相位方式反射空间光调制器相位可以根据输入信号进行连续调制,方便产生相移,激光经过空间光调制器5衍射,激光束分为三束,即0级和±1级衍射光,三束衍射光被偏振分光镜反射经第一透镜6被λ/4波片7调制成圆偏振光,再经第二扩束系统8、高通空间滤波器9挡住0级衍射光后,±1级衍射光形成干涉条纹,所产生的干涉条纹依经过第二透镜11得到正弦相移条纹12,正弦相移条纹12再经过聚光镜13、第一孔径光阑14、用于条纹投射的显微物镜15得到空间条纹像16,空间条纹像16投射到待测物17上,被待测物17调制后的条纹图依次通过用于被测物调制后的条纹成像的显微物镜19、第二孔径光阑20、筒镜21和CCD相机22,CCD相机22外接计算机23,计算机23控制CCD相机22的图像采集模式,并对CCD相机22采集的图像进行后续的相位提取进而得到物体的三维形貌信息。
所述的空间光调制器5为纯相位方式反射空间光调制器,纯相位方式反射空间光调制器动态产生干涉条纹图,此条纹图是真实激光产生的空间干涉条纹,产生的正弦相移条纹图以四步相移为最佳,四步相移法可以有效地减少相移误差引起的系统校正误差,其正弦特性和清晰度均能保持最佳,无畸变,同时相移调制精确,速度快,并具有接近衍射极限的光学分辨率,远远优于计算机电子条纹图。
所述第一扩束系统2和第二扩束系统8的规格、性能参数相同。
所述第一透镜6和第二透镜11的规格、性能参数相同。
第一孔径光阑14和第二孔径光阑20的规格、性能参数相同。
所述偏振分光镜3的光线透反射光强比为1:1,材料为K9光学玻璃。
所述聚光镜13为简单的阿贝聚光镜,或是优质的消色差-消球差聚光镜系统,该系统包括有色差和像差校正的聚光镜本体,聚光镜13与第一孔径光阑14配合显微物镜15进行空间条纹成像。
所述显微物镜19和筒镜21相互配合使用,目的是校正物镜的色差和像差。
所述显微物镜15配合聚光镜13使用,作用是产生要进行投射条纹的空间像16,将空间像16投射到被测物体17上,然后利用CCD相机22从另外一个角度将经过物体调制后的变形条纹图采集过来,经过数据处理得到物体的三维形貌信息。
待测物17与经过聚光镜13、第一孔径光阑14、显微物镜15得到的空间条纹像16之间有间距d,d>0。
上述投射条纹的光强分布满足式子:
I(x,y)=I0(x,y)×[1+γ(x,y)cosφ(x,y)]
其中I0(x,y)为背景光强,γ(x,y)为条纹对比度,φ(x,y)为相位场,
所述的空间光调制器产生的相移条纹依次经过透镜6、λ/4波片7、第二扩束系统8、空间滤波器9、透镜11得到的正弦相移条纹,假设CCD相机22采集n幅图像,则采集图像的光强分布为:
In(x,y)为第n步时的光强,为第n步的总相移量,其中每步的相移增量恒为一个常量。
空间光调制器5动态产生真实激光干涉条纹,产生的正弦相移条纹图以四步相移为最佳,则n=4,即四步相移法,四步法的每步相移量都是π/2,其相应的光强分布公式如下:
I1(x,y)=I0(x,y)×[1+γ(x,y)cosφ(x,y)]
I1(x,y)=I0(x,y)×[1+γ(x,y)cos(φ(x,y)+π/2)]
I1(x,y)=I0(x,y)×[1+γ(x,y)cos(φ(x,y)+π)]
I1(x,y)=I0(x,y)×[1+γ(x,y)cos(φ(x,y)+3π/2)]
得出其包裹相位为:
其对比度为:

Claims (7)

1.基于条纹成像投影的显微三维形貌测量装置,其特征在于包括顺序连接的He-Ne激光器、第一扩束系统、偏振分光镜、λ/2波片、空间光调制器、第一透镜、λ/4波片、第二扩束系统、空间滤波器、第二透镜、聚光镜、第一孔径光阑、投射显微物镜、成像显微物镜、第二孔径光阑、筒镜和CCD相机,其中,空间滤波器和第二透镜之间设有反光板,待测物体放置于投射显微物镜与成像显微物镜之间的带有水平面板的工作台的水平面板上,CCD相机外接计算机。
2.根据权利要求1所述的基于条纹成像投影的显微三维形貌测量装置,其特征在于,所述的空间光调制器为纯相位方式反射空间光调制器。
3.根据权利要求1所述的基于条纹成像投影的显微三维形貌测量装置,其特征在于,所述第一扩束系统和第二扩束系统的规格、性能参数相同。
4.根据权利要求1所述的基于条纹成像投影的显微三维形貌测量装置,其特征在于,所述第一透镜和第二透镜的规格、性能参数相同。
5.根据权利要求1所述的基于条纹成像投影的显微三维形貌测量装置,其特征在于,所述第一孔径光阑和第二孔径光阑的规格、性能参数相同。
6.根据权利要求1所述的基于条纹成像投影的显微三维形貌测量装置,其特征在于,所述偏振分光镜的光线透反射光强比为1:1,材料为K9光学玻璃。
7.根据权利要求1所述的基于条纹成像投影的显微三维形貌测量装置,其特征在于,待测物与经过聚光镜、第一孔径光阑、显微物镜得到的空间条纹像之间有间距d,d>0。
CN201810784359.0A 2018-07-17 2018-07-17 基于条纹成像投影的显微三维形貌测量装置 Active CN108895986B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810784359.0A CN108895986B (zh) 2018-07-17 2018-07-17 基于条纹成像投影的显微三维形貌测量装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810784359.0A CN108895986B (zh) 2018-07-17 2018-07-17 基于条纹成像投影的显微三维形貌测量装置

Publications (2)

Publication Number Publication Date
CN108895986A true CN108895986A (zh) 2018-11-27
CN108895986B CN108895986B (zh) 2020-11-13

Family

ID=64349755

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810784359.0A Active CN108895986B (zh) 2018-07-17 2018-07-17 基于条纹成像投影的显微三维形貌测量装置

Country Status (1)

Country Link
CN (1) CN108895986B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109443237A (zh) * 2018-11-30 2019-03-08 广西师范大学 一种远距离结构光三维测量装置
CN110017767A (zh) * 2019-04-30 2019-07-16 长春理工大学 基于液晶空间光调制器的空间移相动态干涉仪及其应用
CN113029033A (zh) * 2021-03-29 2021-06-25 中国计量大学 一种显微表面测量装置及测量方法
CN113091881A (zh) * 2021-04-13 2021-07-09 河南省计量科学研究院 提高光子相关法空气声压测量精度的方法
CN113466187A (zh) * 2021-04-12 2021-10-01 清华大学 对荧光各向异性进行偏振超分辨成像的系统及方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1041035A (zh) * 1988-09-05 1990-04-04 太原工业大学 激光精密测量物体直线度装置及其测量方法
JPH04223208A (ja) * 1990-12-25 1992-08-13 Nippon Telegr & Teleph Corp <Ntt> 実時間変形・形状解析方法及び装置
JPH08320205A (ja) * 1995-05-24 1996-12-03 Canon Inc 干渉縞の評価装置及びそれを用いた回折干渉光学系の検査方法
US20010021146A1 (en) * 2000-02-01 2001-09-13 Pioneer Corporation Optical pickup apparatus and information recording and/or reproducing apparatus
CN1831474A (zh) * 2006-01-23 2006-09-13 贵州大学 基于垂直位移扫描的非接触式表面形貌测量方法及测量仪
WO2007138867A1 (ja) * 2006-05-26 2007-12-06 Optware Corporation 光情報記録方法及び記録媒体
CN101403608A (zh) * 2008-11-13 2009-04-08 哈尔滨工程大学 工件表面形貌精密测量装置及测量方法
CN102679882A (zh) * 2012-04-27 2012-09-19 夏豪杰 一种相位调制光栅传感器及实现测量的方法
CN102778209A (zh) * 2012-07-13 2012-11-14 中山大学 一种自适应光斑轮廓调控及测量系统
CN102865811A (zh) * 2012-09-29 2013-01-09 哈尔滨工程大学 基于正交双光栅的同步移相共光路干涉显微检测装置及检测方法
US20130016362A1 (en) * 2011-07-13 2013-01-17 Faro Technologies, Inc. Device and method using a spatial light modulator to find 3d coordinates of an object
CN106091940A (zh) * 2016-06-20 2016-11-09 哈尔滨工业大学 一种外差式四自由度光栅运动测量系统

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1041035A (zh) * 1988-09-05 1990-04-04 太原工业大学 激光精密测量物体直线度装置及其测量方法
JPH04223208A (ja) * 1990-12-25 1992-08-13 Nippon Telegr & Teleph Corp <Ntt> 実時間変形・形状解析方法及び装置
JPH08320205A (ja) * 1995-05-24 1996-12-03 Canon Inc 干渉縞の評価装置及びそれを用いた回折干渉光学系の検査方法
US20010021146A1 (en) * 2000-02-01 2001-09-13 Pioneer Corporation Optical pickup apparatus and information recording and/or reproducing apparatus
US6885616B2 (en) * 2000-02-01 2005-04-26 Pioneer Corporation Optical pickup apparatus and information recording and/or reproducing apparatus
CN1831474A (zh) * 2006-01-23 2006-09-13 贵州大学 基于垂直位移扫描的非接触式表面形貌测量方法及测量仪
WO2007138867A1 (ja) * 2006-05-26 2007-12-06 Optware Corporation 光情報記録方法及び記録媒体
CN101403608A (zh) * 2008-11-13 2009-04-08 哈尔滨工程大学 工件表面形貌精密测量装置及测量方法
US20130016362A1 (en) * 2011-07-13 2013-01-17 Faro Technologies, Inc. Device and method using a spatial light modulator to find 3d coordinates of an object
CN102679882A (zh) * 2012-04-27 2012-09-19 夏豪杰 一种相位调制光栅传感器及实现测量的方法
CN102778209A (zh) * 2012-07-13 2012-11-14 中山大学 一种自适应光斑轮廓调控及测量系统
CN102865811A (zh) * 2012-09-29 2013-01-09 哈尔滨工程大学 基于正交双光栅的同步移相共光路干涉显微检测装置及检测方法
CN106091940A (zh) * 2016-06-20 2016-11-09 哈尔滨工业大学 一种外差式四自由度光栅运动测量系统

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109443237A (zh) * 2018-11-30 2019-03-08 广西师范大学 一种远距离结构光三维测量装置
CN109443237B (zh) * 2018-11-30 2023-09-22 广西师范大学 一种远距离结构光三维测量装置
CN110017767A (zh) * 2019-04-30 2019-07-16 长春理工大学 基于液晶空间光调制器的空间移相动态干涉仪及其应用
CN110017767B (zh) * 2019-04-30 2021-03-19 长春理工大学 基于液晶空间光调制器的空间移相动态干涉仪及其应用
CN113029033A (zh) * 2021-03-29 2021-06-25 中国计量大学 一种显微表面测量装置及测量方法
CN113466187A (zh) * 2021-04-12 2021-10-01 清华大学 对荧光各向异性进行偏振超分辨成像的系统及方法
CN113091881A (zh) * 2021-04-13 2021-07-09 河南省计量科学研究院 提高光子相关法空气声压测量精度的方法

Also Published As

Publication number Publication date
CN108895986B (zh) 2020-11-13

Similar Documents

Publication Publication Date Title
Hu et al. Microscopic fringe projection profilometry: A review
CN108895986A (zh) 基于条纹成像投影的显微三维形貌测量装置
CN109211934B (zh) 基于干涉显微的微球面缺陷检测装置及其检测方法
CN106017356B (zh) 基于格里诺型体式显微镜的三维显微表面轮廓测量方法
US11635289B2 (en) Surface shape measurement device and surface shape measurement method
TWI436029B (zh) 光學式強度型三維表面形貌與顯微量測裝置及方法
CN103968779A (zh) 超分辨三维测量显微镜
CN111220553B (zh) 基于光学自旋霍尔效应以及古斯-汉森效应的微分相衬方法及系统
WO2016183874A1 (zh) 数字相移点衍射干涉仪及光学系统波像差测量方法
CN108303038A (zh) 基于二维光学点阵的反射型面形测量方法和装置
CN110763159A (zh) 一种光学偏折显微表面测量装置及方法
Pan et al. Diffraction-assisted image correlation for three-dimensional surface profiling
Wei et al. Measurement of base angle of an axicon lens based on auto-collimation optical path
Sivakumar et al. Large surface profile measurement with instantaneous phase-shifting interferometry
Xin et al. A white-light interferometry method for 3D measurement of compactly spaced micro-nano structural units
CN101033949B (zh) 一种基于错位相关原理的物体应变测量方法及装置
CN115598147A (zh) 基于白光显微干涉的微球内外表面缺陷检测装置及方法
Heikkinen Defocused speckle imaging for remote surface motion measurements
CN113946116A (zh) 散射光场全息范围三维位移紧凑型测量装置、方法及介质
Liu et al. High precision phase measuring profilometry based on stereo microscope
Han et al. A novel coaxial focus position detection technique based on differential modulation evaluation for laser direct photolithography
Liu et al. Binocular three-dimensional measurement system using a Dammann grating
TW201516374A (zh) 線型掃描形貌量測系統
Chen et al. Innovative simultaneous confocal full-field 3D surface profilometry for in situ automatic optical inspection (AOI)
Lehtonen et al. A compact LED-based phase measuring deflectometry setup

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20240119

Address after: 230000 floor 1, building 2, phase I, e-commerce Park, Jinggang Road, Shushan Economic Development Zone, Hefei City, Anhui Province

Patentee after: Dragon totem Technology (Hefei) Co.,Ltd.

Address before: 541004 No. 15 Yucai Road, Qixing District, Guilin, the Guangxi Zhuang Autonomous Region

Patentee before: Guangxi Normal University

TR01 Transfer of patent right