WO2010104120A1 - プラズマ処理装置 - Google Patents

プラズマ処理装置 Download PDF

Info

Publication number
WO2010104120A1
WO2010104120A1 PCT/JP2010/054017 JP2010054017W WO2010104120A1 WO 2010104120 A1 WO2010104120 A1 WO 2010104120A1 JP 2010054017 W JP2010054017 W JP 2010054017W WO 2010104120 A1 WO2010104120 A1 WO 2010104120A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
processing apparatus
plasma processing
vacuum vessel
plasma
Prior art date
Application number
PCT/JP2010/054017
Other languages
English (en)
French (fr)
Inventor
裕一 節原
栄一 西村
明憲 江部
Original Assignee
株式会社イー・エム・ディー
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社イー・エム・ディー, 東京エレクトロン株式会社 filed Critical 株式会社イー・エム・ディー
Priority to CN201080011245.4A priority Critical patent/CN102349357B/zh
Priority to KR1020117023908A priority patent/KR101743306B1/ko
Priority to EP10750873.1A priority patent/EP2408275B1/en
Priority to US13/255,319 priority patent/US20120031563A1/en
Publication of WO2010104120A1 publication Critical patent/WO2010104120A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • H01J37/3211Antennas, e.g. particular shapes of coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma

Definitions

  • the present invention relates to an inductively coupled plasma processing apparatus that can be used for substrate surface treatment and the like.
  • An inductively coupled plasma processing apparatus is used to form a thin film on the substrate surface or perform an etching process.
  • a plasma generating gas such as hydrogen is introduced into a vacuum vessel and then a high frequency induction electric field is generated to decompose the plasma generating gas and generate plasma.
  • a film forming source gas or etching gas is introduced into the vacuum vessel, and the molecules of the film forming source gas are decomposed by plasma and deposited on the substrate, or the molecules of the etching gas are decomposed. Ions and radicals used for etching.
  • Patent Document 1 a high-frequency antenna for generating a high-frequency induction electric field is placed on the ceiling of a vacuum vessel, and a dielectric for allowing the high-frequency induction electric field to pass through a portion of the ceiling directly below the high-frequency antenna.
  • An external antenna type plasma processing apparatus having a made window is described.
  • the dielectric window needs to be thickened to maintain the mechanical strength. The strength of the high-frequency induction electric field introduced into is reduced.
  • Patent Documents 2 to 4 an internal antenna type in which a high frequency antenna is provided inside a vacuum vessel is used.
  • a high-frequency antenna (corresponding to an inductive coupling antenna having a number of turns of less than 1), such as a U-shape or a semicircular shape, is used in which a linear conductor does not circulate. Yes.
  • the high-frequency antenna since the inductance is lower than that of the inductive coupling antenna having one or more turns, the high-frequency voltage generated at both ends of the high-frequency antenna is reduced, and the plasma potential due to the electrostatic coupling to the generated plasma is reduced. High frequency oscillation is suppressed. For this reason, excessive electron loss accompanying the plasma potential fluctuation to the ground potential is reduced, and the plasma potential is reduced. This enables a thin film formation process with low ion damage on the substrate.
  • the length of the antenna conductor is made shorter than the length of a quarter wavelength of the high frequency. Therefore, it can suppress that a standing wave generate
  • Japanese Unexamined Patent Publication No. 08-227878 ([0010], Fig. 5) JP 11-317299 A ([0044]-[0046], Fig. 1-2) Japanese Patent Laid-Open No. 2001-035697 ([0050]-[0051], FIG. 11) JP 2004-039719 A ([0019]-[0021], FIG. 3)
  • ions in the plasma are accelerated toward the high-frequency antenna by a DC self-bias voltage generated between the conductor of the high-frequency antenna and the plasma. Therefore, if the antenna conductor is exposed, the high-frequency antenna conductor itself is sputtered and its life is shortened, and atoms and ions of the sputtered conductor are mixed into the plasma, and the surface of the substrate to be processed and the vacuum container There arises a problem that it adheres to the inner wall and enters the thin film or the substrate to be etched as an impurity.
  • the high-frequency antenna is covered with a dielectric (insulator) pipe made of ceramic, quartz, or the like, which is harder to be sputtered than copper or aluminum, which is a conductor of the high-frequency antenna.
  • the pipe is used here for flowing cooling water for the purpose of preventing temperature rise of the antenna conductor.
  • it is necessary to provide both an electrical connection part for supplying high-frequency power and a connection part for supplying / draining cooling water at the ends of the antenna conductor and the dielectric pipe.
  • the structure becomes complicated, which hinders the removal and maintenance of antennas and maintenance.
  • the problem to be solved by the present invention is that a strong high frequency induction electric field is formed in the vacuum vessel, the plasma density distribution can be made more uniform, and the substrate is generated by generation of particles and sputtering of the conductor of the high frequency antenna. It is an object of the present invention to provide a plasma processing apparatus that can prevent contamination of the plasma.
  • a plasma processing apparatus is an inductively coupled plasma apparatus using high frequency discharge.
  • a vacuum vessel a vacuum vessel; b) an antenna placement portion provided between the inner surface and the outer surface of the vacuum vessel wall; c) one high-frequency antenna that is arranged in the antenna arrangement section and terminates without turning, d) a dielectric partition material that partitions the antenna arrangement portion and the inside of the vacuum vessel;
  • the length of the high frequency antenna is shorter than the length of a quarter wavelength of the high frequency.
  • an antenna arrangement portion is provided between the inner surface and the outer surface of the vacuum vessel wall.
  • the high-frequency antenna arranged in such an antenna arrangement part can generate a strong high-frequency induction electric field almost the same as that of the internal antenna system inside the vacuum vessel.
  • the high frequency antenna and the vacuum vessel are partitioned by a dielectric partition material, so that it is possible to prevent the generation of particles and the sputtering of the high frequency antenna. Moreover, it can suppress that the temperature of a high frequency antenna rises.
  • the space for arranging the high-frequency antenna in the vacuum vessel is not required, the volume of the vacuum vessel can be made smaller than in the case of the internal antenna method. Therefore, diffusion of gas and plasma is suppressed, and ions and radicals reaching the substrate are increased, so that the film forming speed or the etching speed is improved.
  • the plasma density is not particularly increased in the immediate vicinity of the high frequency antenna, so the uniformity of density distribution is reduced as in the internal antenna method. Can be prevented. Furthermore, it is possible to prevent a decrease in the uniformity of the density distribution from the standpoint that no standing wave is generated because the length of the antenna is shorter than a quarter wavelength of the high frequency.
  • a dielectric member different from the wall of the vacuum vessel can be used.
  • a part of the wall can be used as a partitioning material.
  • the high-frequency antenna can be embedded in the wall of the vacuum vessel, but it is easier to place it in a cavity provided between the inner surface and the outer surface.
  • the portion of the vacuum vessel wall where the high-frequency antenna is embedded corresponds to the antenna placement portion, and in the latter case, the cavity corresponds to the antenna placement portion.
  • the sealed cavity can be a sealed one. Thereby, the penetration
  • the inside of the cavity may be filled with a solid dielectric. Thereby, it is possible to prevent unnecessary discharge from occurring in the cavity. In this case, it is not necessary to seal the inside of the cavity. Further, instead of using a cavity, it is possible to adopt a configuration in which at least a part of the wall is made of a solid dielectric, and the high-frequency antenna is embedded in the dielectric.
  • a lid may be provided on the outer surface side of the cavity.
  • the high frequency antenna can be easily put in and out between the outer surface side of the wall of the vacuum vessel and the inside of the cavity by opening the lid at the time of maintenance and inspection. Further, the high-frequency antenna can be attached to the lid. Thereby, a high frequency antenna can be taken in and out more easily only by removing and attaching a cover.
  • the plasma processing apparatus can include a plurality of antenna arrangement portions. Thereby, the uniformity of the density of the plasma formed in the vacuum vessel can be further enhanced.
  • the plasma processing apparatus of the present invention it is possible to form a strong high-frequency induction electric field in the vacuum vessel, to make the plasma density distribution more uniform, and to generate particles and the conductor of the high-frequency antenna. Contamination of the substrate due to sputtering can be prevented.
  • the longitudinal cross-sectional view which shows the example which embeds a high frequency antenna between the outer surface 111A and the inner surface 111B.
  • the side view and top view which show the example which uses a plate-shaped member for a part of high frequency antenna.
  • the graph which shows the result of the experiment which calculated
  • the plasma processing apparatus 10 includes a vacuum vessel 11, an antenna placement portion 12 provided between the outer surface 111A and the inner face 111B of the upper wall 111 of the vacuum vessel 11, a high-frequency antenna 13 placed in the antenna placement portion 12, A bulky dielectric filler 14 that fills the space other than the high-frequency antenna 13 in the antenna placement portion 12, and a dielectric partition material (partition plate) 15 provided on the upper wall inner surface 111 ⁇ / b> B side of the antenna placement portion 12, The lid 16 that covers the antenna arrangement portion 12 from the upper wall outer surface 111A side, the gas discharge port 17 and the gas introduction port 18 provided on the side wall of the vacuum vessel 11, and the substrate holding portion arranged in the internal space 112 of the vacuum vessel 19 and.
  • the antenna placement unit 12 is specifically configured as follows. A through hole is provided in a part of the upper wall 111 of the vacuum vessel 11, and a plate-like support member 121 is attached to the upper wall 111 so as to fill the through hole. The support member 121 is hollowed from above. This space is the antenna placement unit 12. In the antenna arrangement part 12, the high frequency antenna 13 and the dielectric filler 14 are provided as described above. The edge of the lid 16 is fixed to the upper surface of the support member 121.
  • the high frequency antenna 13 is a metal pipe bent into a U shape.
  • the length of the metal pipe is 35cm.
  • the high-frequency propagation wavelength of 13.56 MHz which is often used in commercial high-frequency power supplies, is 22 m in free space, but is estimated to be about 13 m in a propagation model that takes into account the coupling with plasma. (Non-Patent Document 1). Therefore, the length of the metal pipe is shorter than 1/4 of the high-frequency propagation wavelength of 13.56 MHz.
  • Both ends of the high-frequency antenna 13 are attached to the lid 16 via feedthroughs 161.
  • the pipe of the high frequency antenna 13 has a function of cooling the high frequency antenna 13 by allowing a coolant such as water to pass through when the plasma processing apparatus 10 is used.
  • the partition member 15 is for preventing the inside of the antenna arrangement portion 12 from being exposed to plasma, but is itself exposed to plasma. Therefore, it is desirable to use a material having a high plasma resistance such as quartz as the material of the partition member 15. On the other hand, since the dielectric filler 14 is not exposed to plasma due to the presence of the partitioning material 15, it is desirable to use a material that is excellent in workability rather than plasma resistance.
  • Such materials with excellent processability include polytetrafluoroethylene (PTFE), polyether ether ketone (PEEK) and other resins. Of course, alumina, silica or other ceramics may be used.
  • Vacuum seals are provided between the upper wall 111 and the support member 121, between the support member 121 and the lid 16, and between the lid 16 and the feedthrough 161.
  • the partition member 15 is attached to the support member 121, but there is no vacuum seal between the partition member 15 and the support member 121.
  • a total of eight high-frequency antennas 13 housed one by one in the eight antenna placement units 12 are used. These eight high-frequency antennas 13 are divided into two groups of four, and one high-frequency power source is connected to each group.
  • Four feeding rods 134 extending in four directions from the feeding point 133 are connected to one end (feeding side end 131) of each high-frequency antenna 13, and a high-frequency power source is connected to the feeding point 133.
  • the other end (ground end 132) of each high-frequency antenna 13 is grounded.
  • the operation of the plasma processing apparatus 10 of the present embodiment will be described by taking as an example the case where a film forming material is deposited on the substrate S.
  • the substrate S is carried into the internal space 112 of the vacuum container from the substrate carry-in / out port 113 and placed on the substrate holding part 19.
  • the substrate carry-in / out port 113 is closed, and air, water vapor, and the like in the internal space 112 of the vacuum vessel are discharged from the gas discharge port 17 using a vacuum pump.
  • a plasma generating gas and a film forming raw material gas are introduced from the gas inlet 18.
  • high-frequency power is supplied to the high-frequency antenna 13 while flowing a refrigerant through the pipe of the high-frequency antenna 13.
  • a high frequency induction electric field is generated around the high frequency antenna 13.
  • This high frequency induction electric field passes through the dielectric partition 15 and is introduced into the internal space 112 of the vacuum vessel, and ionizes the plasma generating gas. Thereby, plasma is generated.
  • the film forming source gas introduced into the internal space 112 of the vacuum vessel together with the plasma generating gas is decomposed by plasma and deposited on the substrate S.
  • the high frequency antenna 13 is disposed in the antenna placement portion 12 provided between the outer surface 111A and the inner surface 111B of the upper wall 111 of the vacuum vessel, the high frequency induction stronger than in the case of the external antenna method.
  • An electric field can be generated in the internal space 112 of the vacuum vessel 11.
  • the antenna placement portion 12 in which the high frequency antenna 13 is placed and the internal space 112 of the vacuum vessel in which plasma is generated are separated by the partition material 15, the plasma etches the high frequency antenna 13 and the life of the high frequency antenna 13 is shortened.
  • the material of the high-frequency antenna 13 can be prevented from being mixed into the thin film or the substrate to be processed as impurities.
  • the dielectric filler 14 is filled in the antenna placement portion 12, it is possible to prevent unnecessary discharge from occurring in the antenna placement portion 12.
  • the dielectric partition material (partition plate) 15 is used separately from the dielectric filler material 14.
  • the dielectric filler material 14 is made of a material having high plasma resistance and is vacuum.
  • the dielectric filler 14 having a sufficient thickness exists between the internal space 112 of the container and the high-frequency antenna 13, the dielectric filler 14 also serves as a partitioning material.
  • the partition material 15 (other than 14) can be omitted.
  • the bulky dielectric filler 14 is used, but a dielectric powder may be used instead.
  • the antenna arrangement portion 12 is sealed so that powder does not leak from the antenna arrangement portion 12.
  • a dielectric partition material 25 is provided on the inner surface 111B side of the cavity 22, and a lid 26 is provided on the outer surface 111A side.
  • the partition member 25 is attached so as to be placed on the step 111 ⁇ / b> C protruding inward at the lower end of the inner peripheral surface of the cavity 22.
  • a convex portion is provided on the lower surface of the lid 26 so as to fit into the cavity 22 from the outside of the vacuum vessel 11. Further, both ends of the high-frequency antenna 13 are attached to the lid 26 via feedthroughs 261, and the high-frequency antenna 13 can be easily attached to and detached from the plasma processing apparatus by attaching and detaching the lid 26.
  • the cavity 22 is sealed by a vacuum seal provided between the lid 26 and the upper wall 111 and between the partition member 25 and the upper wall 111. Further, the lid 26 is provided with a cavity exhaust port 27 so that the cavity 22 can be in a vacuum state independently of the internal space 112 of the vacuum vessel.
  • the operation of the plasma processing apparatus of the second embodiment is basically the same as that of the plasma processing apparatus 10 of the first embodiment.
  • the difference from the first embodiment is that the inside of the cavity 22 is evacuated by discharging the gas in the cavity 22 from the cavity exhaust port 27 to the outside before supplying high frequency power to the high frequency antenna 13. Thereby, it is possible to prevent unnecessary discharge from occurring in the cavity 22.
  • a cavity 22A is formed by providing a hole from the lower surface of the upper wall 111 without penetrating the upper wall 111. Therefore, a part of the upper wall 111 remains on the cavity 22A.
  • the high-frequency antenna 13 is attached to the portion where the upper wall 111 is left via a feedthrough, and the cavity exhaust port 27A is attached.
  • Other configurations are the same as those of the first modification of the second embodiment.
  • a cavity inert gas introduction port 37 ⁇ / b> A and a cavity gas exhaust port 37 ⁇ / b> B are provided in the lid 36.
  • An inert gas such as argon or nitrogen is introduced from the cavity inert gas inlet 37A, and air or water vapor in the cavity 22 is replaced with an inert gas and discharged from the cavity gas outlet 37B. Fill with inert gas. Thereby, it is possible to prevent unnecessary discharge from occurring as in the case where the inside of the cavity 22 is evacuated.
  • Other configurations are the same as those of the second embodiment.
  • the dielectric filler 14 and the cavity 22 are provided between the outer surface 111A and the inner surface 111B of the vacuum vessel.
  • the outer surface 111A and the inner surface 111B are used without using a cavity.
  • a dielectric is interposed between them or the upper wall 111 itself Is made of a dielectric.
  • the entire upper wall 111 may be made of a dielectric, but the cost can be reduced if only the vicinity of the high-frequency antenna 13 in the upper wall 111 is made of a dielectric.
  • the dielectric material here may be the same as the dielectric filler 14 described above.
  • the partition material 45 can be comprised by making the part which exists between the high frequency antenna 13 and the internal space 112 of a vacuum vessel among the upper walls 111 from a dielectric material.
  • the shape of the high-frequency antenna is U-shaped, but an arc-shaped high-frequency antenna such as a semicircular shape can also be used.
  • These U-shaped or arc-shaped high-frequency antennas are inductively coupled antennas having a number of turns of less than one, and have an inductance smaller than that of a case where the number of turns is one or more. Therefore, they are generated in the antenna when a predetermined high-frequency power is supplied. The voltage can be reduced, and plasma can be generated efficiently.
  • the number of antenna arrangement portions is eight, but the number can be determined according to the capacity of the vacuum vessel. When the capacity of the vacuum vessel is relatively small, only one antenna arrangement portion may be provided.
  • positioning part was provided in the upper wall of the vacuum vessel in the said embodiment, you may provide in walls other than upper walls, such as a side wall.
  • the density of plasma generated in the vacuum vessel was measured for a plasma processing apparatus having only one antenna arrangement portion.
  • the high-frequency antenna 13 is made of a copper pipe having an outer diameter of 6 mm and has a U-shaped bottom portion having a length parallel to the upper wall 111 over a length of 150 mm. The position of the bottom of the high-frequency antenna 13 was adjusted to the position of the inner wall surface of the upper wall 111 (FIG. 4).
  • the partition member 15A was made of quartz and had a thickness of 6 mm.
  • the vacuum vessel 11 After the vacuum vessel 11 was evacuated, a mixed gas of hydrogen and argon was introduced into the vacuum vessel 11 at a pressure of 1 Pa. Then, high-frequency power with an output of 1 kW and a frequency of 13.56 MHz was supplied while flowing cooling water through the pipe of the high-frequency antenna 13. As a result, the vacuum vessel 11 was filled with plasma, and the plasma density at a position 20 cm away from the U-shaped bottom of the high-frequency antenna 13 was 1.2 ⁇ 10 11 / cm 3 . When the output of the high-frequency power was changed within the range of 1kW to 3kW, the plasma density at the above position changed in proportion to the output of the high-frequency power (Fig. 9).
  • Example 2 A copper plate having a length of 150 mm and a width of 30 mm was joined to the bottom of the high-frequency antenna 13 used in Experiment 1 so as to be parallel to the upper wall 111. However, the high frequency antenna 13 was moved upward from Experiment 1, and the position of the copper plate was aligned with the position of the lower surface of the upper wall 111. When an experiment similar to Experiment 1 was performed using this high-frequency antenna, the plasma density at a position 20 cm away from the copper plate was 1.4 ⁇ 10 11 / cm 3 , which was higher than in Experiment 1 without the copper plate. This is considered to be because the impedance of the antenna was lowered by attaching a copper plate wider than the pipe diameter of the copper pipe, and the current flowing through the high-frequency antenna (copper pipe and copper plate) was increased.
  • Example 3 As shown in FIG. 2, eight sets of the high-frequency antennas used in Experiment 1 were used, and high-frequency power with an output of 2 kW and a frequency of 13.56 kHz was supplied to the feeding point 133 from each high-frequency power source. Other conditions were the same as in Experiments 1 and 2. As a result of measuring the plasma density at a position 20 cm away from the bottom of the U-shape of the high-frequency antenna 13 for each high-frequency antenna unit, it was confirmed that plasma of almost the same intensity was generated from any high-frequency antenna. . By using a plurality of high-frequency antennas (antenna placement portions on which the same intensity plasma is generated) in this way, the uniformity of plasma in the vacuum vessel 11 can be improved.

Abstract

 本発明は、真空容器内に強い高周波誘導電界を形成し、且つ、プラズマの密度分布をより均一にすることができると共に、パーティクルの発生や高周波アンテナの導体のスパッタリングによる基体の汚染を防ぐことができるプラズマ処理装置を提供する。本発明に係るプラズマ処理装置10は、高周波放電による誘導結合方式のプラズマ処理装置において、真空容器11と、前記真空容器11の壁の内面111Bと外面111Aの間に設けられたアンテナ配置部12と、前記アンテナ配置部12に配置された周回しないで終端する1個の高周波アンテナと、前記アンテナ配置部12と前記真空容器の内部112を仕切る誘電体製の仕切材15とを備え、前記高周波アンテナ13の長さが、当該高周波の1/4波長の長さよりも短いことを特徴としている。

Description

プラズマ処理装置
 本発明は、基体表面処理等に用いることができる誘導結合型のプラズマ処理装置に関する。
 基体表面に対する薄膜形成やエッチング処理を行うために、誘導結合型プラズマ処理装置が用いられている。誘導結合型プラズマ処理装置では、真空容器内に水素等のプラズマ生成ガスを導入したうえで高周波誘導電界を生成することによりプラズマ生成ガスを分解し、プラズマを生成する。そして、プラズマ生成ガスとは別に、真空容器内に製膜原料ガスあるいはエッチングガスを導入し、プラズマにより製膜原料ガスの分子を分解して基体上に堆積させ、あるいはエッチングガスの分子を分解してエッチングに用いるイオンやラジカルを生成する。
 特許文献1には、高周波誘導電界を生成するための高周波アンテナを真空容器の天井の上に載置し、前記天井のうち高周波アンテナの直下の部分を、高周波誘導電界を通過させるための誘電体製の窓とした外部アンテナ方式のプラズマ処理装置が記載されている。外部アンテナ方式では、近年の被処理基体の大型化に対応してプラズマ処理装置を大型化を図ると、誘電体製の窓は機械的強度を保つために厚くする必要が生じるため、真空容器内に導入される高周波誘導電界の強度が小さくなってしまう。そこで、高周波アンテナを真空容器の内部に設けた内部アンテナ方式のものが用いられている(特許文献2~4)。
 また、特許文献3及び4に記載の発明では、U字形や半円形等のように、線状の導体が周回しないで終端する高周波アンテナ(巻数が1未満の誘導結合アンテナに相当)を用いている。このような高周波アンテナによれば、巻数が1以上の誘導結合アンテナよりもインダクタンスが低いため、高周波アンテナの両端に発生する高周波電圧が低減され、生成するプラズマへの静電結合に伴うプラズマ電位の高周波揺動が抑制される。このため、対地電位へのプラズマ電位揺動に伴う過剰な電子損失が低減され、プラズマ電位が低減される。これにより、基板上での低イオンダメージの薄膜形成プロセスが可能となる。
 更に、特許文献4に記載の発明では、アンテナ導体の長さを高周波の1/4波長の長さよりも短くなるようにしている。これにより、アンテナ導体において定在波が発生することを抑え、生成されるプラズマの均一性を高めることができる。
特開平08-227878号公報([0010], 図5) 特開平11-317299号公報([0044]-[0046], 図1-2) 特開2001-035697号公報([0050]-[0051], 図11) 特開2004-039719号公報([0019]-[0021], 図3)
節原裕一、江部明憲,「メートルサイズの大面積プロセスに向けたプラズマ技術」,表面技術,表面技術協会,2005年5月,第56巻,第5号,pp. 18-25
 内部アンテナ方式では、高周波アンテナの導体とプラズマとの間に生じる直流のセルフバイアス電圧により、プラズマ中のイオンが高周波アンテナに向かって加速される。そのため、アンテナ導体が露出していると、高周波アンテナ導体自身がスパッタされ、その寿命が短くなるうえ、スパッタされた導体の原子やイオンがプラズマ中に混入し、被処理基体の表面や真空容器の内壁に付着して、薄膜や被エッチング基体に不純物として混入する、という問題が生じる。そのため、特許文献2に記載の発明では、高周波アンテナの導体である銅やアルミニウム等よりもスパッタされ難いセラミックスや石英等から成る誘電体(絶縁体)のパイプで高周波アンテナを覆っている。ここでパイプを用いるのは、アンテナ導体の温度上昇を防ぐことを目的として冷却水を流すためである。しかし、このような構成では、アンテナ導体及び誘電体パイプの端部に、高周波電力を投入するための電気的な接続部と冷却水の給排水のための接続部の双方を設ける必要があるため、構造が複雑になり、アンテナの脱着や保守点検に支障をきたす。
 また、内部アンテナ方式では、真空容器の内部空間に高周波アンテナが突出しているため、高周波アンテナの直近にプラズマが生成される。これにより、プラズマの密度が高周波アンテナの直近において特に高くなり、密度分布の均一性が低下する。それと共に、高周波アンテナ(又はその周囲の誘電体パイプ)の表面に製膜時における薄膜材料やエッチング時の副生成物が付着してしまう、という問題も生じる。このような付着物は、基体の表面に落下してパーティクルが発生する原因となる。
 さらに、内部アンテナ方式では、真空容器内に高周波アンテナを配置するスペースを確保するために、外部アンテナ方式よりも真空容器の容積を大きくする必要が生じる。そのため、ガスやプラズマが拡散し、基板に到達するイオンやラジカルが減少するため、製膜速度あるいはエッチング速度が低下する。
 本発明が解決しようとする課題は、真空容器内に強い高周波誘導電界を形成し、且つ、プラズマの密度分布をより均一にすることができると共に、パーティクルの発生や高周波アンテナの導体のスパッタリングによる基体の汚染を防ぐことができるプラズマ処理装置を提供することである。
 上記課題を解決するために成された本発明に係るプラズマ処理装置は、高周波放電による誘導結合方式のプラズマ装置において、
 a) 真空容器と、
 b) 前記真空容器の壁の内面と外面の間に設けられたアンテナ配置部と、
 c) 前記アンテナ配置部に配置された周回しないで終端する1個の高周波アンテナと、
 d) 前記アンテナ配置部と前記真空容器の内部を仕切る誘電体製の仕切材と、
を備え、前記高周波アンテナの長さが、当該高周波の1/4波長の長さよりも短いことを特徴とする。
 本発明に係るプラズマ処理装置では、真空容器の壁の内面と外面の間にアンテナ配置部を設けている。このようなアンテナ配置部内に配置された高周波アンテナは、内部アンテナ方式とほとんど変わらない強い高周波誘導電界を真空容器の内部に生成することができる。
 一方、従来の内部アンテナ方式とは異なり、高周波アンテナと真空容器内が誘電体製の仕切材により仕切られるため、パーティクルが発生したり、高周波アンテナがスパッタされたりすることを防ぐことができる。また、高周波アンテナの温度が上昇することを抑えることができる。
 また、真空容器内に高周波アンテナを配置するスペースを必要としないため、内部アンテナ方式の場合よりも真空容器の容積を小さくすることができる。そのため、ガスやプラズマの拡散が抑えられ、基板に到達するイオンやラジカルが増加するため、製膜速度あるいはエッチング速度が向上する。
 さらに、このようにプラズマを生成する領域と高周波アンテナを分離することにより、高周波アンテナの直近でプラズマの密度が特に高くなるということがなくなるため、内部アンテナ方式のように密度分布の均一性が低下することを防ぐことができる。更に、アンテナの長さが高周波の1/4波長よりも短いため定在波が生じないという点からも、密度分布の均一性の低下を防ぐことができる。
 仕切材には真空容器の壁とは別の誘電体製の部材を用いることができる。また、真空容器の壁が誘電体製である場合にはその壁の一部を仕切材として用いることもできる。
 前記高周波アンテナは真空容器の壁の中に埋め込むこともできるが、前記内面と前記外面の間に設けられた空洞内に配置するのがより容易である。前者の場合は真空容器の壁のうち高周波アンテナを埋め込んだ部分がアンテナ配置部に該当し、後者の場合は空洞がアンテナ配置部に該当する。
 前記空洞には密閉されたものを用いることができる。これにより、空洞内への異物の侵入を防ぐことができる。また、密閉された空洞内が真空であるか又は不活性ガスで満たされていれば、空洞内において不要な放電が生じることを防ぐことができる。
 前記空洞内は固体の誘電体で満たされていてもよい。これにより、空洞内において不要な放電が生じることを防ぐことができる。この場合、空洞内を密閉する必要はない。また、空洞を用いる代わりに、前記壁の少なくとも一部が固体の誘電体から成り、前記高周波アンテナが該誘電体内に埋め込まれている、という構成を採ることもできる。
 前記空洞の前記外面側には蓋が設けられていてもよい。このような蓋を用いれば、保守点検等の際に蓋を開けることで、真空容器の壁の外面側と空洞内の間で高周波アンテナを容易に出し入れすることができる。また、前記蓋に前記高周波アンテナを取り付けることができる。これにより、蓋を着脱するだけで、更に容易に高周波アンテナを出し入れすることができる。
 本発明に係るプラズマ処理装置は、アンテナ配置部を複数備えることができる。これにより、真空容器内に形成されるプラズマの密度の均一性を更に高めることができる。
 本発明に係るプラズマ処理装置によれば、真空容器内に強い高周波誘導電界を形成することができ、且つ、プラズマの密度分布をより均一にするができると共に、パーティクルの発生や高周波アンテナの導体のスパッタリングによる基体の汚染を防ぐことができる。
本発明に係るプラズマ処理装置の第1の実施例を示す縦断面図(a)及びアンテナ配置部12付近の拡大図(b)。 高周波アンテナと高周波電源の接続の一例を示す上面図。 本発明に係るプラズマ処理装置の第2の実施例を示す拡大縦断面図。 第2実施例のプラズマ処理装置の第1変形例を示す拡大縦断面図。 第2実施例のプラズマ処理装置の第2変形例を示す拡大縦断面図。 本発明に係るプラズマ処理装置の第3の実施例を示す拡大縦断面図。 高周波アンテナを外面111Aと内面111Bの間に埋め込む例を示す縦断面図。 高周波アンテナの一部に板状部材を用いる例を示す側面図及び上面図。 高周波電力の出力の変化によるプラズマ密度の変化を求めた実験の結果を示すグラフ。
 図1~図9を用いて、本発明に係るプラズマ処理装置の実施例を説明する。
 まず、図1及び図2を用いて、第1の実施例のプラズマ処理装置10を説明する。プラズマ処理装置10は、真空容器11と、真空容器11の上壁111の外面111Aと内面111Bの間に設けられたアンテナ配置部12と、アンテナ配置部12内に配置された高周波アンテナ13と、アンテナ配置部12内において高周波アンテナ13以外の空間を埋める塊状の誘電体製充填材14と、アンテナ配置部12の上壁内面111B側に設けられた誘電体製の仕切材(仕切板)15と、アンテナ配置部12を上壁外面111A側から覆う蓋16と、真空容器11の側壁に設けられたガス排出口17及びガス導入口18と、真空容器の内部空間112に配置された基体保持部19と、を有する。
 アンテナ配置部12は、具体的には以下のように構成されている。真空容器11の上壁111の一部には貫通孔が設けられており、この貫通孔を埋めるように板状の支持部材121が上壁111に取り付けられている。そして、この支持部材121に上側から空間がくりぬかれている。この空間がアンテナ配置部12である。アンテナ配置部12内には、上述のように高周波アンテナ13と誘電体製充填材14が設けられている。蓋16はその縁が支持部材121の上面に固定されている。
 高周波アンテナ13は金属製のパイプをU字形に曲げたものである。金属製パイプの長さは35cmである。ここで、商用の高周波電源でよく用いられている周波数13.56MHzの高周波の伝搬波長は、自由空間では22mであるが、プラズマとの結合を考慮した伝搬モデルでは約13mであると見積もられている(非特許文献1)。従って、上記金属製パイプの長さは、周波数13.56MHzの高周波の伝搬波長の1/4よりも短い。高周波アンテナ13はその両端が、フィードスルー161を介して蓋16に取り付けられている。高周波アンテナ13のパイプは、プラズマ処理装置10の使用時に水などの冷媒を通過させることにより高周波アンテナ13を冷却する機能を有する。
 仕切材15は、アンテナ配置部12内がプラズマに晒されることを防ぐためのものであるが、それ自体はプラズマに晒される。そのため、仕切材15の材料には、石英等、耐プラズマ性の高いものを用いることが望ましい。一方、誘電体製充填材14は、仕切材15が存在することでプラズマに晒されないため、耐プラズマ性よりもむしろ加工性に優れたものを用いることが望ましい。そのような加工性に優れた材料には、ポリテトラフルオロエチレン(PTFE)、ポリエーテルエーテルケトン(PEEK)その他の樹脂がある。もちろん、アルミナ、シリカその他のセラミックスを用いてもよい。
 上壁111と支持部材121の間、支持部材121と蓋16の間、及び蓋16とフィードスルー161の間には真空シールが設けられている。一方、仕切材15は支持部材121に取り付けられているが、仕切材15と支持部材121の間には真空シールがない。
 ガス排出口17は真空ポンプに接続されており、真空ポンプにより真空容器の内部空間112の空気や水蒸気等がガス排出口17から排出される。ガス導入口18は、真空容器の内部空間112に水素ガス等のプラズマ生成ガスや製膜原料のガスを導入するためのものである。基体保持部19に保持される基体Sは、真空容器11の側壁に設けられた基体搬出入口113から真空容器の内部空間112に搬入され、又は真空容器の内部空間から搬出される。基体搬出入口113は、基体Sの搬出入時以外には気密に閉鎖される。
 次に、図2を用いて、高周波アンテナ13と高周波電源を接続する構成の一例を説明する。本実施形態では、8個のアンテナ配置部12内に1個ずつ収容された、合計8個の高周波アンテナ13が用いられる。これら8個の高周波アンテナ13は4個ずつの2組に分けられ、組毎に1個の高周波電源が接続されている。各高周波アンテナ13の一方の端部(給電側端部131)には、給電点133から4方向に延びる4本の給電棒134が接続され、この給電点133に高周波電源が接続されている。各高周波アンテナ13の他方の端部(接地側端部132)は接地されている。
 本実施形態のプラズマ処理装置10の動作を、基体S上に製膜物質を堆積させる場合を例に説明する。まず、基体Sを基体搬出入口113から真空容器の内部空間112に搬入し、基体保持部19の上に載置する。次に、基体搬出入口113を閉鎖し、真空ポンプを用いて、真空容器の内部空間112の空気や水蒸気等をガス排出口17から排出する。続いて、ガス導入口18からプラズマ生成用ガス及び製膜原料ガスを導入する。そして、高周波アンテナ13のパイプに冷媒を流しつつ、高周波アンテナ13に高周波電力を投入する。この高周波電力の投入により高周波アンテナ13の周囲に高周波誘導電界が生成される。この高周波誘導電界は誘電体製の仕切材15を通過して真空容器の内部空間112に導入され、プラズマ生成用ガスを電離する。これによりプラズマが生成される。プラズマ生成用ガスと共に真空容器の内部空間112に導入された製膜原料ガスはプラズマにより分解され、基体S上に堆積する。
 本実施形態のプラズマ処理装置10では、真空容器の上壁111の外面111Aと内面111Bの間に設けられたアンテナ配置部12に高周波アンテナ13を配置したため、外部アンテナ方式の場合よりも強い高周波誘導電界を真空容器11の内部空間112に生成することができる。また、高周波アンテナ13が配置されたアンテナ配置部12とプラズマが生成される真空容器の内部空間112を仕切材15により分離したため、プラズマが高周波アンテナ13をエッチングして高周波アンテナ13の寿命が短くなることや、薄膜あるいは被処理基体に高周波アンテナ13の材料が不純物として混入することを防ぐことができる。更に、アンテナ配置部12内に誘電体製充填材14を充填したため、アンテナ配置部12内において不要な放電が生じることを防ぐことができる。
 上記第1実施例では誘電体製充填材14とは別に誘電体製の仕切材(仕切板)15を用いたが、誘電体製充填材14が耐プラズマ性の高い材料から成り、且つ、真空容器の内部空間112と高周波アンテナ13の間に十分な厚みの誘電体製充填材14が存在する場合には、誘電体製充填材14が仕切材の役割を兼ねるため、(誘電体製充填材14とは別の)仕切材15を省略することができる。
 また、上記第1実施例では塊状の誘電体製充填材14を用いたが、その代わりに誘電体の粉末を用いることもできる。この場合、粉末がアンテナ配置部12から漏出しないように、アンテナ配置部12を密閉する。
 次に、図3を用いて、第2の実施例のプラズマ処理装置を説明する。ここでは、第1実施例のプラズマ処理装置10と同じ構成要素は、図3に図1のものと同じ符号を付したうえで説明を省略する。本実施例では、真空容器11の上壁111の外面111Aと内面111Bの間に、アンテナ配置部である空洞22が設けられている。
 空洞22の内面111B側には誘電体製の仕切材25が設けられており、外面111A側には蓋26が設けられている。仕切材25は、空洞22の内周面の下端において内側に突出した段111Cの上に載置されるように取り付けられている。蓋26の下面には、真空容器11の外側から空洞22に嵌合するように凸部が設けられている。また、蓋26にはフィードスルー261を介して高周波アンテナ13の両端が取り付けられており、この高周波アンテナ13は蓋26の着脱によってプラズマ処理装置から容易に着脱することができる。
 空洞22は、蓋26と上壁111の間及び仕切材25と上壁111の間に設けられた真空シールにより密閉されている。また、蓋26には空洞排気口27が設けられており、真空容器の内部空間112とは独立に空洞22を真空状態にすることができる。
 第2実施例のプラズマ処理装置の動作は、基本的には第1実施例のプラズマ処理装置10と同様である。第1実施例との相違は、高周波アンテナ13に高周波電力を投入する前に、空洞排気口27から空洞22内の気体を外部に排出することにより空洞22内を真空にする点である。これにより、空洞22内に不要な放電が生じることを防ぐことができる。
 次に、図4を用いて、上記第2実施例の第1の変形例を説明する。本変形例では段111Cがなく、仕切材25Aが真空容器の内部空間112側から空洞22を覆うように設けられている。これにより、空洞22を真空容器の内部空間112側に拡大し、高周波アンテナ13の位置を真空容器の内部空間112に近づけることができる。その他の構成は上記第2実施例と同様である。
 図5を用いて、上記第2実施例の第2の変形例について説明する。本変形例では、上壁111の下面から、上壁111を貫通させることなく孔を設けることにより、空洞22Aが形成されている。従って、空洞22Aの上には上壁111の一部がそのまま残っている。その上壁111が残された部分に、フィードスルーを介して高周波アンテナ13が取り付けられていると共に、空洞排気口27Aが取り付けられている。その他の構成は上記第2実施例の第1の変形例と同様である。
 次に、図6を用いて、第3の実施例のプラズマ処理装置を説明する。本実施例では、第2実施例における空洞排気口27の代わりに、空洞不活性ガス導入口37A及び空洞ガス排気口37Bが蓋36に設けられている。空洞不活性ガス導入口37Aからアルゴンや窒素などの不活性ガスを導入し、空洞22内の空気や水蒸気を不活性ガスで置換して空洞ガス排気口37Bから排出することにより、空洞22内を不活性ガスで満たす。これにより、空洞22内を真空排気した場合と同様に、不要な放電が生じることを防ぐことができる。その他の構成は上記第2実施例と同様である。
 ここまでは真空容器の外面111Aと内面111Bの間に誘電体製充填材14や空洞22を設けた例を示したが、図7に示すように、空洞を用いることなく、外面111Aと内面111Bの間の位置(アンテナ配置部42)に高周波アンテナ13を埋め込むこともできる。この場合、高周波アンテナ13と上壁111を電気的に絶縁すると共に、高周波アンテナ13の近傍で不要な放電が生じることを防ぐために、両者の間に誘電体を介挿するか、上壁111自体を誘電体製とする。後者の場合、上壁111の全体を誘電体製としてもよいが、上壁111のうち高周波アンテナ13の近傍のみを誘電体製とする方がコストを抑えることができる。ここでの誘電体の材料には上述の誘電体製充填材14と同様のものを用いることができる。また、上壁111のうち高周波アンテナ13と真空容器の内部空間112の間にある部分を誘電体製とすることにより仕切材45を構成することができる。
[上記各実施例に共通の変形例]
 上記各実施例において、棒状(管状)の高周波アンテナの代わりに、板状の高周波アンテナや、棒状の部材と板状の部材を組み合わせた高周波アンテナを用いることもできる。このように棒状のものと板状のものを使い分け、あるいは組み合わせることにより、アンテナのインピーダンスを調整することができる。図8に、底部が平坦なU字形の金属管の下部に板状部材51が取り付けられた高周波アンテナを示す。この板状部材51の幅や厚みによりアンテナのインピーダンスを調整することができる。
 また、上記各実施例では、高周波アンテナの形状をU字形としたが、半円形などの円弧状の高周波アンテナを用いることもできる。これらU字形あるいは円弧状の高周波アンテナは巻数が1回未満の誘導結合アンテナであり、巻数が1回以上である場合よりもインダクタンスが小さいため、所定の高周波電力を供給した際にアンテナに発生する電圧を小さくすることができ、効率よくプラズマを生成することができる。また、上記実施例ではアンテナ配置部の個数を8個としたが、その個数は真空容器の容量などに応じて定めることができる。真空容器の容量が比較的小さい場合にはアンテナ配置部を1個のみ設けてもよい。また、上記実施形態ではアンテナ配置部を真空容器の上壁に設けたが、側壁など、上壁以外の壁に設けてもよい。
[実験1]
 第2実施例においてアンテナ配置部を1個のみとしたプラズマ処理装置につき、真空容器内に生成されるプラズマの密度を測定した。高周波アンテナ13には外径6mmの銅パイプ製であって、U字の底部に長さ150mmに亘って上壁111と平行な部分を有するものを用いた。高周波アンテナ13の底部の位置は上壁111の内壁面の位置に合わせた(図4)。仕切材15Aには、石英製であって厚さ6mmのものを用いた。
 真空容器11内を真空にした後、真空容器11内に水素とアルゴンの混合ガスを圧力1Paで導入した。そして、高周波アンテナ13のパイプ内に冷却水を流しつつ、出力1kW、周波数13.56MHzの高周波電力を供給した。その結果、真空容器11内にプラズマが充満し、高周波アンテナ13のU字の底部から20cm離れた位置におけるプラズマ密度は1.2×1011/cm3であった。また、高周波電力の出力を1kW~3kWの範囲内で変化させたところ、上記位置におけるプラズマ密度は高周波電力の出力に比例して変化した(図9)。
[実験2]
 実験1で用いた高周波アンテナ13の底部に、長さ150mm、幅30mmの銅板を上壁111に平行に向けて接合した。但し、実験1よりも高周波アンテナ13を上方に移動させ、上壁111の下面の位置に銅板の位置を合わせた。この高周波アンテナを用いて実験1と同様の実験を行ったところ、銅板から20cm離れた位置におけるプラズマ密度は1.4×1011/cm3と、銅板がない実験1よりも高くなった。これは、銅製パイプの管径よりも幅が広い銅板を取り付けることにより、アンテナのインピーダンスが低下し、高周波アンテナ(銅製パイプ及び銅板)に流れる電流が増加したことによると考えられる。
 次に、比較のために仕切材15Aを外して同様の実験を行ったところ、上記位置におけるプラズマ密度は1.6×1011/cm3であった。このように、仕切材15Aを用いてもプラズマの生成に与える影響は小さいことが確認された。
[実験3]
 実験1で用いた高周波アンテナを、図2に示すように8組用い、各高周波電源から出力2kW、周波数13.56kHzの高周波電力を給電点133に供給した。その他の条件は実験1及び2と同様とした。各高周波アンテナユニット毎に、高周波アンテナ13のU字の底部から20cm離れた位置でのプラズマ密度を測定した結果、いずれの高周波アンテナからもほぼ同強度のプラズマが生成されていることが確認された。このように同強度のプラズマが生成される高周波アンテナ(が配置されたアンテナ配置部)を複数用いることにより、真空容器11内のプラズマの均一性を高めることができる。
10…プラズマ処理装置
11…真空容器
111…真空容器11の上壁
111A…上壁111の外面
111B…上壁111の内面
111C…内面111Bの段
112…内部空間
113…基体搬出入口
12、42…アンテナ配置部
121…支持部材
13…高周波アンテナ
131…給電側端部
132…接地側端部
133…給電点
134…給電棒
14…誘電体製充填材
15、15A、25、25A、45…仕切材
16、26、36…蓋
161、261…フィードスルー
17…ガス排出口
18…ガス導入口
19…基体保持部
22、22A…空洞
27、27A…空洞排気口
37A…空洞不活性ガス導入口
37B…空洞ガス排気口
51…板状部材
S…基体

Claims (10)

  1.  高周波放電による誘導結合方式のプラズマ装置において、
     a) 真空容器と、
     b) 前記真空容器の壁の内面と外面の間に設けられたアンテナ配置部と、
     c) 前記アンテナ配置部に配置された周回しないで終端する1個の高周波アンテナと、
     d) 前記アンテナ配置部と前記真空容器の内部を仕切る誘電体製の仕切材と、
    を備え、前記高周波アンテナの長さが、当該高周波の1/4波長の長さよりも短いことを特徴とするプラズマ処理装置。
  2.  前記アンテナ配置部が前記内面と前記外面の間に設けられた空洞であることを特徴とする請求項1に記載のプラズマ処理装置。
  3.  前記空洞が密閉されていることを特徴とする請求項2に記載のプラズマ処理装置。
  4.  前記空洞内が固体の誘電体で満たされていることを特徴とする請求項2に記載のプラズマ処理装置。
  5.  前記空洞内が不活性ガスで満たされていることを特徴とする請求項3に記載のプラズマ処理装置。
  6.  前記空洞の前記外面側に蓋が設けられていることを特徴とする請求項2~5のいずれかに記載のプラズマ処理装置。
  7.  前記高周波アンテナが前記蓋に取り付けられていることを特徴とする請求項6に記載のプラズマ処理装置。
  8.  前記壁の少なくとも一部が固体の誘電体から成り、前記高周波アンテナが該誘電体内に埋め込まれていることを特徴とする請求項1に記載のプラズマ処理装置。
  9.  前記高周波アンテナがU字形であることを特徴とする請求項1~8のいずれかに記載のプラズマ処理装置。
  10.  前記アンテナ配置部を複数備えることを特徴とする請求項1~9のいずれかに記載のプラズマ処理装置。
PCT/JP2010/054017 2009-03-11 2010-03-10 プラズマ処理装置 WO2010104120A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201080011245.4A CN102349357B (zh) 2009-03-11 2010-03-10 等离子体处理装置
KR1020117023908A KR101743306B1 (ko) 2009-03-11 2010-03-10 플라즈마 처리장치
EP10750873.1A EP2408275B1 (en) 2009-03-11 2010-03-10 Plasma processing device
US13/255,319 US20120031563A1 (en) 2009-03-11 2010-03-10 Plasma processing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-057327 2009-03-11
JP2009057327A JP5400434B2 (ja) 2009-03-11 2009-03-11 プラズマ処理装置

Publications (1)

Publication Number Publication Date
WO2010104120A1 true WO2010104120A1 (ja) 2010-09-16

Family

ID=42728409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/054017 WO2010104120A1 (ja) 2009-03-11 2010-03-10 プラズマ処理装置

Country Status (7)

Country Link
US (1) US20120031563A1 (ja)
EP (1) EP2408275B1 (ja)
JP (1) JP5400434B2 (ja)
KR (1) KR101743306B1 (ja)
CN (1) CN102349357B (ja)
TW (1) TWI536872B (ja)
WO (1) WO2010104120A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012033191A1 (ja) * 2010-09-10 2012-03-15 株式会社イー・エム・ディー プラズマ処理装置
EP2525388A3 (en) * 2011-05-17 2013-07-03 Intevac, Inc. Large area ICP source for plasma application
US9034143B2 (en) 2011-10-05 2015-05-19 Intevac, Inc. Inductive/capacitive hybrid plasma source and system with such chamber

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2615888A4 (en) * 2010-09-06 2015-01-21 Emd Corp PLASMA TREATMENT APPARATUS
JP6101535B2 (ja) * 2013-03-27 2017-03-22 株式会社Screenホールディングス プラズマ処理装置
WO2017221832A1 (ja) * 2016-06-24 2017-12-28 株式会社イー・エム・ディー プラズマ源及びプラズマ処理装置
JP6708887B2 (ja) * 2018-09-25 2020-06-10 株式会社プラズマイオンアシスト プラズマ処理装置、アンテナ導体又は/及び導電性部材の製造方法
EP3813092A1 (en) * 2019-10-23 2021-04-28 EMD Corporation Plasma source
JP7426709B2 (ja) * 2019-10-23 2024-02-02 株式会社イー・エム・ディー プラズマ源

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3283205A (en) * 1961-06-01 1966-11-01 Bolt Harold E De Shifting arc plasma system
JPH06283473A (ja) * 1992-12-01 1994-10-07 Applied Materials Inc 電磁的に結合された平面プラズマ装置内の酸化物をエッチングするための改良されたプロセス
JPH08227878A (ja) 1994-10-31 1996-09-03 Applied Materials Inc 共通rf端子を有する対称並列な複数のコイルをもつ誘導結合プラズマ反応器
JPH09245993A (ja) * 1996-03-04 1997-09-19 Anelva Corp プラズマ処理装置及びアンテナの製造方法
JPH10233297A (ja) * 1996-09-27 1998-09-02 Surface Technol Syst Ltd プラズマ処理装置
JPH11238597A (ja) * 1998-02-23 1999-08-31 Matsushita Electric Ind Co Ltd プラズマ処理方法及び装置
JPH11317299A (ja) 1998-02-17 1999-11-16 Toshiba Corp 高周波放電方法及びその装置並びに高周波処理装置
JP2001035697A (ja) 1999-07-27 2001-02-09 Japan Science & Technology Corp プラズマ発生装置
JP2004039719A (ja) 2002-07-01 2004-02-05 Japan Science & Technology Corp プラズマ装置、プラズマ制御方法及びプラズマ処理基体
JP2004186531A (ja) * 2002-12-05 2004-07-02 Ulvac Japan Ltd プラズマ処理装置
JP2004349199A (ja) * 2003-05-26 2004-12-09 Mitsui Eng & Shipbuild Co Ltd プラズマ発生用アンテナ装置及びプラズマ処理装置
JP2006324603A (ja) * 2005-05-20 2006-11-30 Ulvac Japan Ltd プラズマ処理方法及び装置並びにプラズマcvd方法及び装置
JP2008075182A (ja) * 2007-11-09 2008-04-03 Tokyo Electron Ltd シリコン酸化膜の成膜方法および装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5309063A (en) * 1993-03-04 1994-05-03 David Sarnoff Research Center, Inc. Inductive coil for inductively coupled plasma production apparatus
JPH07263188A (ja) * 1994-03-18 1995-10-13 Hitachi Ltd プラズマ処理装置
US5716451A (en) * 1995-08-17 1998-02-10 Tokyo Electron Limited Plasma processing apparatus
US6245202B1 (en) * 1996-04-12 2001-06-12 Hitachi, Ltd. Plasma treatment device
US6534922B2 (en) * 1996-09-27 2003-03-18 Surface Technology Systems, Plc Plasma processing apparatus
US6830653B2 (en) * 2000-10-03 2004-12-14 Matsushita Electric Industrial Co., Ltd. Plasma processing method and apparatus
JP2004055600A (ja) * 2002-07-16 2004-02-19 Tokyo Electron Ltd プラズマ処理装置
TW201041455A (en) * 2002-12-16 2010-11-16 Japan Science & Tech Agency Plasma generation device, plasma control method, and substrate manufacturing method
JP3618333B2 (ja) * 2002-12-16 2005-02-09 独立行政法人科学技術振興機構 プラズマ生成装置
US7567037B2 (en) * 2003-01-16 2009-07-28 Japan Science And Technology Agency High frequency power supply device and plasma generator
JP4540369B2 (ja) * 2004-03-09 2010-09-08 株式会社シンクロン 薄膜形成装置
CN1934913B (zh) * 2004-03-26 2010-12-29 日新电机株式会社 等离子体发生装置
JP2007149638A (ja) * 2005-10-27 2007-06-14 Nissin Electric Co Ltd プラズマ生成方法及び装置並びにプラズマ処理装置
JP2007123008A (ja) * 2005-10-27 2007-05-17 Nissin Electric Co Ltd プラズマ生成方法及び装置並びにプラズマ処理装置
WO2008024392A2 (en) * 2006-08-22 2008-02-28 Valery Godyak Inductive plasma source with high coupling efficiency
US8992725B2 (en) * 2006-08-28 2015-03-31 Mattson Technology, Inc. Plasma reactor with inductie excitation of plasma and efficient removal of heat from the excitation coil
JP5121476B2 (ja) * 2008-01-29 2013-01-16 株式会社アルバック 真空処理装置
JP4992885B2 (ja) * 2008-11-21 2012-08-08 日新イオン機器株式会社 プラズマ発生装置
JP4621287B2 (ja) * 2009-03-11 2011-01-26 株式会社イー・エム・ディー プラズマ処理装置

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3283205A (en) * 1961-06-01 1966-11-01 Bolt Harold E De Shifting arc plasma system
JPH06283473A (ja) * 1992-12-01 1994-10-07 Applied Materials Inc 電磁的に結合された平面プラズマ装置内の酸化物をエッチングするための改良されたプロセス
JPH08227878A (ja) 1994-10-31 1996-09-03 Applied Materials Inc 共通rf端子を有する対称並列な複数のコイルをもつ誘導結合プラズマ反応器
JPH09245993A (ja) * 1996-03-04 1997-09-19 Anelva Corp プラズマ処理装置及びアンテナの製造方法
JPH10233297A (ja) * 1996-09-27 1998-09-02 Surface Technol Syst Ltd プラズマ処理装置
JPH11317299A (ja) 1998-02-17 1999-11-16 Toshiba Corp 高周波放電方法及びその装置並びに高周波処理装置
JPH11238597A (ja) * 1998-02-23 1999-08-31 Matsushita Electric Ind Co Ltd プラズマ処理方法及び装置
JP2001035697A (ja) 1999-07-27 2001-02-09 Japan Science & Technology Corp プラズマ発生装置
JP2004039719A (ja) 2002-07-01 2004-02-05 Japan Science & Technology Corp プラズマ装置、プラズマ制御方法及びプラズマ処理基体
JP2004186531A (ja) * 2002-12-05 2004-07-02 Ulvac Japan Ltd プラズマ処理装置
JP2004349199A (ja) * 2003-05-26 2004-12-09 Mitsui Eng & Shipbuild Co Ltd プラズマ発生用アンテナ装置及びプラズマ処理装置
JP2006324603A (ja) * 2005-05-20 2006-11-30 Ulvac Japan Ltd プラズマ処理方法及び装置並びにプラズマcvd方法及び装置
JP2008075182A (ja) * 2007-11-09 2008-04-03 Tokyo Electron Ltd シリコン酸化膜の成膜方法および装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YUICHI SETSUHARA, AKINORI EBE: "Journal of The Surface Finishing Society of Japan", vol. 56, May 2005, THE SURFACE FINISHING SOCIETY OF JAPAN, article "Plasma Technologies for Meters-scale Large-Area Processes", pages: 18 - 25

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012033191A1 (ja) * 2010-09-10 2012-03-15 株式会社イー・エム・ディー プラズマ処理装置
EP2525388A3 (en) * 2011-05-17 2013-07-03 Intevac, Inc. Large area ICP source for plasma application
US9034143B2 (en) 2011-10-05 2015-05-19 Intevac, Inc. Inductive/capacitive hybrid plasma source and system with such chamber

Also Published As

Publication number Publication date
TW201117678A (en) 2011-05-16
US20120031563A1 (en) 2012-02-09
JP2010212104A (ja) 2010-09-24
EP2408275B1 (en) 2017-01-11
TWI536872B (zh) 2016-06-01
KR20110134472A (ko) 2011-12-14
CN102349357A (zh) 2012-02-08
EP2408275A4 (en) 2015-10-28
CN102349357B (zh) 2015-03-11
JP5400434B2 (ja) 2014-01-29
EP2408275A1 (en) 2012-01-18
KR101743306B1 (ko) 2017-06-02

Similar Documents

Publication Publication Date Title
JP4621287B2 (ja) プラズマ処理装置
JP5400434B2 (ja) プラズマ処理装置
JP5747231B2 (ja) プラズマ生成装置およびプラズマ処理装置
KR101016147B1 (ko) 플라즈마 처리 장치, 안테나, 플라즈마 처리 장치의 사용방법, 및 플라즈마 처리 장치의 클리닝 방법
JP5462369B2 (ja) プラズマ処理装置
JP5462368B2 (ja) プラズマ処理装置
JP2010225296A (ja) 誘導結合型アンテナユニット及びプラズマ処理装置
KR20170118922A (ko) 타겟 수명에 걸쳐 하나 또는 그 초과의 막 특성들을 제어하기 위한 오토 캐패시턴스 튜너 전류 보상
WO2013030954A1 (ja) スパッタリング薄膜形成装置
JP5475506B2 (ja) スパッタリング薄膜形成装置
JP5635367B2 (ja) プラズマ処理装置
TWI532415B (zh) Plasma processing device
JP2011243732A (ja) プラズマ処理方法及びその装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080011245.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10750873

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010750873

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010750873

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117023908

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13255319

Country of ref document: US