WO2010103826A1 - 太陽電池モジュール及びその製造方法 - Google Patents

太陽電池モジュール及びその製造方法 Download PDF

Info

Publication number
WO2010103826A1
WO2010103826A1 PCT/JP2010/001699 JP2010001699W WO2010103826A1 WO 2010103826 A1 WO2010103826 A1 WO 2010103826A1 JP 2010001699 W JP2010001699 W JP 2010001699W WO 2010103826 A1 WO2010103826 A1 WO 2010103826A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
cell module
electrode layer
power generation
scribe
Prior art date
Application number
PCT/JP2010/001699
Other languages
English (en)
French (fr)
Inventor
高山道寛
田口遊子
高梨弘樹
大勝敏秀
内田寛人
Original Assignee
株式会社アルバック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アルバック filed Critical 株式会社アルバック
Priority to US13/146,590 priority Critical patent/US20110308565A1/en
Priority to CN2010800051465A priority patent/CN102292819A/zh
Priority to KR1020117018466A priority patent/KR101219111B1/ko
Priority to JP2011503715A priority patent/JP5145456B2/ja
Priority to DE112010001140T priority patent/DE112010001140T5/de
Publication of WO2010103826A1 publication Critical patent/WO2010103826A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03921Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/208Particular post-treatment of the devices, e.g. annealing, short-circuit elimination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a solar cell module and a manufacturing method thereof.
  • This application claims priority based on Japanese Patent Application No. 2009-056777 filed on Mar. 10, 2009, the contents of which are incorporated herein by reference.
  • a solar cell using a silicon single crystal is excellent in energy conversion efficiency per unit area.
  • a solar cell using a silicon single crystal uses a silicon wafer obtained by slicing a silicon single crystal ingot, a large amount of energy is consumed for manufacturing the ingot and the manufacturing cost is high.
  • solar cells using amorphous (amorphous) silicon thin films that can be manufactured at lower cost are widely used as low-cost solar cells.
  • Amorphous silicon solar cells use a semiconductor film having a layer structure called a pin junction in which an amorphous silicon film (i-type) that generates electrons and holes when receiving light is sandwiched between p-type and n-type silicon films. . Electrodes are formed on both sides of the semiconductor film. Electrons and holes generated by sunlight move actively due to the potential difference between the p-type and n-type semiconductors, and this is continuously repeated, causing a potential difference between the electrodes on both sides.
  • i-type amorphous silicon film
  • a transparent electrode such as TCO (Transparent Conductive Oxide) is formed on a glass substrate as a lower electrode, and a semiconductor film made of amorphous silicon, an upper electrode, A structure in which an Ag thin film or the like is formed is employed.
  • TCO Transparent Conductive Oxide
  • an amorphous silicon solar cell including a photoelectric conversion body composed of such upper and lower electrodes and a semiconductor film there is a problem that a potential difference is small and a resistance value is large only by depositing each layer uniformly over a wide area on a substrate. .
  • an amorphous silicon solar battery is configured by forming a photovoltaic cell in which a photoelectric conversion body is electrically partitioned for each predetermined size and electrically connecting adjacent photovoltaic cells. .
  • a groove called a scribe line (scribe line) is formed using a laser beam or the like on a photoelectric conversion body uniformly formed over a large area on a substrate to obtain a plurality of strip-shaped solar cells.
  • a structure in which the solar cells are electrically connected in series is employed.
  • the thin-film silicon solar battery in which a plurality of solar battery cells are connected in series, when the output (power generation amount) of some of the solar battery cells decreases, the thin-film silicon solar battery
  • the output of the entire battery module is significantly reduced.
  • the solar battery cell whose output is reduced becomes a resistance in a series circuit composed of a plurality of solar battery cells, and a voltage (bias voltage) is applied in the opposite direction to both ends of the solar battery cell.
  • the present invention has been made in order to solve the above-described problems, and does not require a complicated structure, can prevent a hot spot phenomenon, and provides a highly reliable solar cell module.
  • the first purpose Further, the present invention can be used in an existing apparatus without increasing the number of steps in manufacturing a solar cell module, can reduce costs, can prevent a hot spot phenomenon, and has excellent reliability.
  • a second object is to provide a manufacturing method capable of manufacturing a solar cell module.
  • the solar cell module of the first aspect of the present invention includes a laminate in which a first electrode layer, a power generation layer, and a second electrode layer are sequentially laminated, and a plurality of solar cells electrically connected in series; Among the plurality of solar cells, a scribe line that partitions adjacent solar cells, a laser scribe hole formed so as to penetrate the power generation layer and the second electrode layer, and the laser scribe hole And a bypass path composed of a shunt region generated in the periphery.
  • the solar cell module according to the first aspect of the present invention preferably includes a plurality of laser scribe holes formed so as to penetrate the power generation layer and the second electrode layer.
  • the direction in which the plurality of laser scribe holes are arranged may be a direction parallel to the scribe line, a direction orthogonal to the scribe line, or a direction intersecting the scribe line at a predetermined angle.
  • the manufacturing method of the solar cell module according to the second aspect of the present invention includes forming a scribe line by forming a laminated body in which a first electrode layer, a power generation layer, and a second electrode layer are sequentially laminated on a substrate.
  • the “solar cell module” in the present invention is not limited to a single cell having a single power generation layer, but also includes a multi-junction cell in which a plurality of power generation layers are stacked. Further, the “processed end surface” is a surface substantially parallel to the laser light irradiation direction.
  • the shunt region is a region formed from the processed end face toward the inside of the power generation layer and the second electrode layer in a direction parallel to the substrate.
  • Such a shunt region is formed in the vicinity of the processed end face, and has a predetermined depth in a direction parallel to the substrate.
  • the first electrode layer and the second electrode layer are connected with a resistance lower than that of the power generation layer, or the first electrode layer, the power generation layer, and the second electrode layer are electrically short-circuited. ing.
  • the solar cell module of the present invention includes a laser scribe hole formed so as to penetrate the power generation layer and the second electrode layer.
  • a laser scribe hole is formed by removing a part of the power generation layer and the second electrode layer by irradiating a laser beam.
  • shunt regions are formed on the processed end surfaces of the power generation layer and the second electrode layer by heat generated when forming the laser scribe holes.
  • FIG. 2A Sectional drawing which shows the solar cell module shown in FIG. Sectional drawing which shows the manufacturing method of the solar cell module which concerns on embodiment of this invention. Sectional drawing which shows the manufacturing method of the solar cell module which concerns on embodiment of this invention. Sectional drawing which shows the manufacturing method of the solar cell module which concerns on embodiment of this invention. Sectional drawing which shows the manufacturing method of the solar cell module which concerns on embodiment of this invention. Sectional drawing which shows the manufacturing method of the solar cell module which concerns on embodiment of this invention. Sectional drawing which shows the manufacturing method of the solar cell module which concerns on embodiment of this invention. Sectional drawing which shows the manufacturing method of the solar cell module which concerns on embodiment of this invention. Sectional drawing which shows the manufacturing method of the solar cell module which concerns on embodiment of this invention. Sectional drawing which shows the manufacturing method of the solar cell module which concerns on embodiment of this invention. Sectional drawing which shows the manufacturing method of the solar cell module which concerns on embodiment of this invention.
  • FIG. 1 is an enlarged perspective view showing an amorphous silicon solar cell module according to an embodiment of the present invention.
  • 2A to 2C are cross-sectional views showing the layer structure of the solar cell module of FIG. 2A is a cross-sectional view taken along line X1-X2 of FIG.
  • FIG. 2B is an enlarged cross-sectional view showing a portion indicated by reference numeral A in FIG. 2A.
  • 2C is a cross-sectional view taken along line Y1-Y2 of FIG.
  • the solar cell module 10 of the present embodiment includes a configuration in which a plurality of solar cells 21 electrically connected in series are formed on the first surface 11 a of the substrate 11.
  • the solar battery cell 21 includes a stacked body 12 in which a first electrode layer 13, a power generation layer 14, a buffer layer 15, and a second electrode layer 16 are sequentially stacked.
  • a scribe line 20 is formed in solar cells adjacent to each other among the plurality of solar cells 21.
  • the scribe line 20 is formed on the first electrode layer 13, thereby dividing a plurality of solar cells 21.
  • a laser scribe hole 30 (scribe hole) formed so as to penetrate the power generation layer 14, the buffer layer 15, and the second electrode layer 16 is formed.
  • a shunt region 31 is generated around the laser scribe hole 30, and a bypass path composed of the shunt region 31 is provided.
  • the shunt region 31 generated around the laser scribe hole 30 acts as a bypass path. It can flow. For this reason, it is possible to reduce the voltage applied to the solar battery cell whose output is reduced, and to prevent the solar battery cell whose output is reduced from being destroyed.
  • a complicated structure is unnecessary, a hot spot phenomenon can be prevented, and excellent reliability can be obtained.
  • the substrate 11 is made of, for example, an insulating material having excellent sunlight transmittance and durability such as glass or transparent resin.
  • sunlight S is incident on the second surface 11 b of the substrate 11 that is opposite to the first surface 11 a.
  • first electrode layer (lower electrode) 13 a power generation layer 14 (semiconductor layer) 14, a buffer layer 15, and a second electrode layer (upper electrode) 16 are formed on the first surface 11 a of the substrate 11. They are stacked in order.
  • the first electrode layer (lower electrode) 13 is formed of a transparent conductive material, for example, a light-transmitting metal oxide such as SnO 2 , ITO, or ZnO.
  • the power generation layer 14 semiconductor layer 14 has a pin junction structure in which an i-type amorphous silicon film 14i is sandwiched between a p-type amorphous silicon film 14p and an n-type amorphous silicon film 14n.
  • an i-type amorphous silicon film 14i is sandwiched between a p-type amorphous silicon film 14p and an n-type amorphous silicon film 14n.
  • sunlight is incident on the power generation layer 14
  • electrons and holes are generated, and the electrons and holes are activated between the p-type amorphous silicon film 14p and the n-type amorphous silicon film 14n.
  • a potential difference is generated between the first electrode layer 13 and the second electrode layer 16 (photoelectric conversion).
  • a buffer layer 15 is disposed between the power generation layer 14 and the second electrode layer 16 formed above the power generation layer 14.
  • the material of the buffer layer 15 is, for example, ZnO.
  • the second electrode layer 16 (upper electrode) 16 is made of a light reflecting film having conductivity such as Ag (silver) or Al (aluminum).
  • the second electrode layer 16 can be formed by using a film forming method such as sputtering.
  • Such a laminate 12 is divided into a plurality of laminates by forming scribe lines 20.
  • a plurality of solar cells 21 having a strip-shaped outer shape are formed on the substrate 11a.
  • the plurality of solar cells 21 are electrically partitioned, and the adjacent solar cells 21 are electrically connected in series.
  • all of the plurality of solar cells 21 having the stacked body 12 are electrically connected in series.
  • electric power having a high potential difference and a high current amount can be obtained.
  • the scribe line 20 is formed by, for example, forming the laminated body 12 uniformly on the first surface 11a of the substrate 11 and then irradiating the laminated body 12 with a laser beam or the like. As a result, grooves having a predetermined interval are formed in the laminate 12.
  • a plurality of laser scribe holes 30 are formed so as to penetrate the power generation layer 14, the buffer layer 15, and the second electrode layer 16. Has been.
  • a shunt region 31 is generated around the laser scribe hole 30, thereby providing a bypass path.
  • the plurality of laser scribe holes 30 are arranged on a line parallel to the scribe line 20 as shown in FIG.
  • the output of the entire solar cell module is lowered. Further, the solar battery cell whose output is reduced becomes a resistance in a series circuit composed of a plurality of solar battery cells, and a voltage (bias voltage) is applied in the opposite direction to both ends of the solar battery cell. In this case, a current concentrates on a defective portion in the solar battery cell, and a phenomenon of local heating (hot spot phenomenon) occurs.
  • the solar cell module 10 of the present embodiment since the shunt region 31 functions as a bypass path, it is possible to suppress local concentration of all reverse voltages generated in the solar cells. As a result, hot spots can be prevented from being formed.
  • the present invention does not limit the position where the laser scribe hole 30 is formed, the shape of the laser scribe hole 30, the size of the laser scribe hole 30, and the like.
  • the fill factor (FF) of the solar cell may decrease. For example, if the number of scribe holes 30 is increased more than necessary, the characteristics will be degraded. For this reason, in order to obtain hot spot resistance, for example, the number of the scribe holes 30 and the position where the scribe holes 30 are formed may be determined so that the FF value is in the range of FF ⁇ 0.60. preferable.
  • a plurality of laser scribe holes 30 are formed in the stacked body 12 and the plurality of scribe holes are arranged in a line. Thereby, it can suppress effectively that a hot spot is formed, without reducing a characteristic.
  • FIGS. 3A to 3F are cross-sectional views showing a method for manufacturing a solar cell module according to an embodiment of the present invention in the order of steps.
  • FIGS. 3A to 3F corresponds to a cross-sectional view taken along line Y1-Y2 of FIG.
  • the power generation layer 14, the buffer layer 15, and the second electrode layer 16 are partially removed, and the laser scribe hole 30 is formed. Yes.
  • a shunt region 31 is generated on the processed end faces rd of the power generation layer 14, the buffer layer 15, and the second electrode layer 16 due to heat generated during laser light irradiation.
  • the shunt region 31 functions as a bypass route.
  • the substrate 11 is prepared.
  • the substrate 11 is made of an insulating material having excellent sunlight permeability and durability, such as glass or transparent resin.
  • the first electrode layer 13 is formed on the first surface 11 a of the substrate 11.
  • the first electrode layer 13 is made of a light-transmitting metal oxide such as TCO (Transparent Conducting Oxide) such as AZO (ZnO added with Al), GZO (ZnO added with Ga), or ITO (Indium Tin Oxide).
  • TCO Transparent Conducting Oxide
  • AZO ZnO added with Al
  • GZO ZnO added with Ga
  • ITO Indium Tin Oxide
  • a p-type amorphous silicon film 14p, an i-type amorphous silicon film 14i, and an n-type amorphous silicon film 14n of the power generation layer 14 are formed on the first electrode layer 13 (FIG. 3B). 2B).
  • Each of these films 14p, 14i, 14n is formed in a dedicated plasma CVD reaction chamber for forming each film.
  • the p-type amorphous silicon film 14p is formed by a plasma CVD method in the reaction chamber.
  • the substrate temperature is set to 180 to 200 ° C.
  • the power supply frequency is set to 13.56 MHz
  • the reaction chamber pressure is set to 70 to 120 Pa.
  • the reaction gas flow conditions are as follows: monosilane (SiH 4 ) is 300 sccm, hydrogen (H 2 ) is 2300 sccm, diborane (B 2 H 6 / H 2 ) containing hydrogen as a diluent gas is 180 sccm, and methane (CH 4). ) Is set to 500 sccm.
  • the i-type amorphous silicon film 14i is formed in the reaction chamber by a plasma CVD method.
  • the substrate temperature is set to 180 to 200 ° C.
  • the power supply frequency is set to 13.56 MHz
  • the reaction chamber pressure is set to 70 to 120 Pa.
  • monosilane (SiH 4 ) is set to 1200 sccm.
  • the n-type amorphous silicon film 14n is formed in the reaction chamber by a plasma CVD method.
  • the substrate temperature is set to 180 to 200 ° C.
  • the power supply frequency is set to 13.56 MHz
  • the reaction chamber pressure is set to 70 to 120 Pa.
  • the reaction gas flow rate is set to 200 sccm of phosphine (PH 3 / H 2 ) containing hydrogen as a diluent gas.
  • the buffer layer 15 and the second electrode 16 are sequentially formed on the power generation layer 14 by sputtering.
  • the buffer layer 15 and the second electrode layer 16 are continuously formed (deposited) in the same apparatus using, for example, an inline type sputtering apparatus.
  • the protective layer 17 may be formed on the second electrode layer 16 by using, for example, a sputtering method.
  • a laser beam is irradiated toward the power generation layer 14, the buffer layer 15, and the second electrode layer 16 to form a scribe line 20.
  • the laminated body 12 is divided
  • the plurality of solar cells 21 are electrically partitioned from each other.
  • the adjacent photovoltaic cells 21 are electrically connected in series.
  • the power generation layer 14, the buffer layer 15, and the second electrode 16 are irradiated by irradiating a predetermined portion of the second surface 11 b of the substrate 11 with the laser beam r. And a laser scribe hole 30 is formed. Specifically, by scanning the second surface 11b (on the first electrode layer 13) with the irradiation spot rp of the laser beam r, the power generation layer 14, the buffer layer 15 formed at a position corresponding to this portion, And the second electrode 16 is removed. The plurality of laser scribe holes 30 are arranged in a direction parallel to the scribe line 20.
  • IR laser light is used as the laser light r.
  • IR (InfraRed) laser light can be generated and the second surface 11 b of the substrate 11 can be irradiated with the laser light.
  • Infrared light is light having a wavelength longer than 780 nm and is also called heat rays. Infrared light is light that causes a large thermal effect.
  • CO 2 laser light or YAG laser light Yttrium Aluminum Garnet Laser
  • the IR laser light is a fundamental wave (wavelength 1064 nm), and the diameter of the spot rp can be increased to, for example, 60 ⁇ m or more.
  • the buffer layer 15, the second electrode 16, and the protective layer 17 are etched by irradiating with IR laser light, damage is generated on the processed end faces rd of these layers 14, 15, 16, and 17. Specifically, particles removed by evaporation from the layers 14, 15, 16, and 17 are attached to the processed end surface rd due to heat generated during laser light irradiation. Such particles are mainly TCO. Further, due to the fact that the wavelength absorbed by the power generation layer 14 includes an infrared wavelength, damage such as electromigration also occurs.
  • the processing end faces rd of the layers 14, 15, 16, and 17 are damaged, thereby forming a short-circuit portion in which the layers 14, 15, 16, and 17 are electrically short-circuited with each other, that is, the shunt region. 31 is formed.
  • the solar cell module 10 shown in FIGS. 1 and 2A to 2C is obtained.
  • the plurality of laser scribe holes 30 are arranged in a direction parallel to the scribe line 20, but the direction in which the plurality of laser scribe holes 30 are arranged is the scribe line 20. It may be a direction perpendicular to the scribe line, or a direction intersecting the scribe line at a predetermined angle.
  • the shunt region generated around the laser scribe hole serves as a bypass path.
  • current can flow through the bypass path. For this reason, it is possible to reduce the voltage applied to the solar cell whose output is reduced, and to prevent the solar cell whose output is reduced from being destroyed.
  • the solar cell module 10 it is possible to prevent the output from decreasing, to prevent the hot spot phenomenon, and to obtain excellent reliability.
  • a solar cell module is manufactured as follows. First, a first electrode layer was formed on a transparent substrate. Next, each of a p-type amorphous silicon film, an i-type amorphous silicon film, and an n-type amorphous silicon film is formed on the first electrode layer in a dedicated plasma CVD reaction chamber for forming each film, and a power generation layer Formed. Next, after separating the power generation layer by laser irradiation, a buffer layer and a second electrode layer were sequentially formed on the power generation layer by sputtering.
  • a laser beam was irradiated toward the first electrode layer, the power generation layer, and the second electrode layer to form a scribe line (scribe line).
  • a laser scribe hole was formed so as to penetrate the power generation layer, the buffer layer, and the second electrode. The conditions for forming the laser scribe holes in Examples 1 to 8 and the comparative example will be described below.
  • Example 1 Laser scribe holes were formed using YAG laser light (wavelength 1064 nm). The beam diameter is 45 ⁇ m. Laser light irradiation conditions are 0.7 to 1.0 (J / cm 2 ). In Examples 1 to 4, a plurality of laser scribe holes were formed in a direction parallel to the scribe line. The spacing between the plurality of laser scribe holes is shown in Table 1.
  • Example 5 to 8 Laser scribe holes were formed using YAGSHHG laser light (Aluminum Garnet Second Harmonic Generation Laser, wavelength 532 nm). The beam diameter is 45 ⁇ m. Laser light irradiation conditions are 0.7 to 1.0 (J / cm 2 ). In Examples 5 to 8, a plurality of laser scribe holes were formed in a direction parallel to the scribe line. The spacing between the plurality of laser scribe holes is shown in Table 1.
  • Hot spot tests were conducted on the solar cell modules of Examples 1 to 8 and the solar cell module of the comparative example.
  • the FF value before the hot spot resistance test (hereinafter also referred to as the HS test) of IEC-61646 (2008) is compared with the FF value after the HS test. did.
  • the evaluation results are shown in Table 1.
  • the solar cell module and the manufacturing method thereof according to the present invention have been described above.
  • the technical scope of the present invention is not limited to the above-described embodiment, and various modifications are made without departing from the spirit of the present invention. Is possible.
  • the module structure has been described by taking a single cell structure having a single power generation layer as an example, but the present invention is not limited to this structure.
  • the structure of the present invention can also be applied to a multi-junction cell in which a plurality of power generation layers are stacked.
  • the present invention is widely applicable to a solar cell module and a manufacturing method thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 太陽電池モジュールであって、第一電極層(13),発電層(14),及び第二電極層(16)が順に積層された積層体(12)を含み、電気的に直列に接続された複数の太陽電池セル(21)と、複数の前記太陽電池セル(21)のうち、互いに隣接する太陽電池セル(21)を区画するスクライブ線(20)と、前記発電層(14)と前記第二電極層(16)とを貫通するように形成されたスクライブ孔(30)と、前記スクライブ孔(30)の周辺に生じたシャント領域(31)からなるバイパス経路とを含む。

Description

太陽電池モジュール及びその製造方法
 本発明は、太陽電池モジュール及びその製造方法に関する。
 本願は、2009年3月10日に出願された特願2009-056777号に基づき優先権を主張し、その内容をここに援用する。
 エネルギーの効率的な利用の観点から、近年、太陽電池はますます広く一般に利用されつつある。特に、シリコン単結晶を利用した太陽電池は単位面積当たりのエネルギー変換効率に優れている。しかし、一方でシリコン単結晶を利用した太陽電池は、シリコン単結晶インゴットをスライスしたシリコンウエハを用いるため、インゴットの製造に大量のエネルギーが費やされ、製造コストが高い。特に、屋外などに設置される大面積の太陽電池を実現する場合、シリコン単結晶を利用して太陽電池を製造すると、現状では相当にコストが掛かる。そこで、より安価に製造可能なアモルファス(非晶質)シリコン薄膜を利用した太陽電池が、ローコストな太陽電池として普及している。
 アモルファスシリコン太陽電池は、光を受けると電子及びホールを発生するアモルファスシリコン膜(i型)が、p型及びn型のシリコン膜によって挟まれたpin接合と呼ばれる層構造の半導体膜を用いている。この半導体膜の両面には、それぞれ電極が形成されている。太陽光によって発生した電子及びホールは、p型・n型半導体の電位差によって活発に移動し、これが連続的に繰り返されることで両面の電極に電位差が生じる。
 こうしたアモルファスシリコン太陽電池の具体的な構成としては、例えば、ガラス基板にTCO(Transparent Conductive Oxide)などの透明電極を下部電極として成膜し、この上にアモルファスシリコンからなる半導体膜と、上部電極となるAg薄膜などが形成された構成が採用される。
 このような上下電極と半導体膜からなる光電変換体を備えたアモルファスシリコン太陽電池においては、基板上に広い面積で均一に各層を成膜しただけでは電位差が小さく、抵抗値が大きくなる問題がある。そのため、例えば、光電変換体を所定のサイズごとに電気的に区画された太陽電池セルを形成し、互いに隣接する太陽電池セルを電気的に接続することにより、アモルファスシリコン太陽電池が構成されている。
 具体的には、基板上に広い面積で均一に形成した光電変換体にレーザ光などを用いてスクライブ線(スクライブライン)と称される溝を形成し、短冊状の複数の太陽電池セルを得て、この太陽電池セルが電気的に直列に接続された構造が採用される。
 ところで、複数の太陽電池セルが直列に接続されている薄膜系シリコン太陽電池においては、複数の太陽電池セルのうち、一部の太陽電池セルにおける出力(発電量)が低下すると、薄膜系シリコン太陽電池モジュール全体の出力が著しく低下する。例えば、太陽電池セルの製造工程において、パーティクルが混入したり、電極が不均一に形成されたり、電極に不良が生じたりした場合、或いは、光入射面にゴミが載ったり、光入射面が影で覆われたりした場合に、薄膜系シリコン太陽電池モジュール全体の出力が低下する。更に、出力が低下している太陽電池セルは、複数の太陽電池セルからなる直列回路における抵抗になり、その太陽電池セルの両端には逆方向に電圧(バイアス電圧)が印加される。この場合、太陽電池セル内の欠陥箇所に電流が集中し、局所的に加熱する現象(ホットスポット現象)が発生してしまう。このような局所的に発生する熱に起因して太陽電池セルの光起電力が失われ、太陽電池セルが破壊されるという問題がある。
 従来、出力の低下とホットスポット現象を回避するために、薄膜シリコン太陽電池モジュールにバイパスダイオードを並列に接続することにより、光起電力が失われた太陽電池セルに印加される電圧を低減させ、光起電力が失われた太陽電池セルの破壊を防止する方法(例えば、特許文献1参照)が知られている。更に、スクライブ線に平行に、部分的スクライブ線を設ける技術(例えば、特許文献2参照)等が知られている。
 しかしながら、これらの技術においては、製造工程の数が増加し、複数のバイパスダイオードを並列接続することによってコストが増加する等の問題があった。
特開2001-068696号公報 特開2002-76402号公報
 本発明は、上記の課題を解決するためになされたものであって、複雑な構造が不要であり、ホットスポット現象を防止することができ、信頼性に優れた太陽電池モジュールを提供することを第一の目的とする。
 また、本発明は、太陽電池モジュール製造における工程の数を増やすことなく、既設の装置において用いることができ、コストを削減することができ、ホットスポット現象を防止することができ、信頼性に優れた太陽電池モジュールを製造することができる製造方法を提供することを第二の目的とする。
 本発明の第1態様の太陽電池モジュールは、第一電極層,発電層,及び第二電極層が順に積層された積層体を含み、電気的に直列に接続された複数の太陽電池セルと、複数の前記太陽電池セルのうち、互いに隣接する太陽電池セルを区画するスクライブ線と、前記発電層と前記第二電極層とを貫通するように形成されたレーザスクライブ孔と、前記レーザスクライブ孔の周辺に生じたシャント領域からなるバイパス経路とを含む。
 本発明の第1態様の太陽電池モジュールは、前記発電層と前記第二電極層とを貫通するように形成された複数のレーザスクライブ孔を含むことが好ましい。
 ここで、複数のレーザスクライブ孔が配列する方向は、スクライブ線に平行な方向でもよいし、スクライブ線に直交する方向でもよいし、スクライブ線に対して所定の角度で交差する方向でもよい。
 本発明の第2態様の太陽電池モジュールの製造方法は、基板上に、第一電極層,発電層,及び第二電極層が順に積層された積層体を形成し、スクライブ線を形成することにより、電気的に直列に接続された複数の太陽電池セルを形成し、前記発電層及び第二電極層の一部にレーザ光を照射することによって、前記発電層と前記第二電極層とを貫通するスクライブ孔を形成し、前記レーザ光を照射した時に発生する熱により、前記発電層及び第二電極層の加工端面に生じたシャント領域からなるバイパス経路を形成する。
 なお、本発明における「太陽電池モジュール」は、単一の発電層を有するシングルセルに限定されず、複数の発電層が積層した多接合セルも含む。
 また、「加工端面」とは、レーザ光の照射方向に略平行な面である。また、シャント領域は、基板に平行な方向において、加工端面から発電層及び第二電極層の内側に向けて形成された領域である。このようなシャント領域は、加工端面の近傍に形成されており、基板に平行な方向において、所定の深さを有する。このシャント領域においては、発電層より低い抵抗で第一電極層と前記第二電極層とが接続されている、若しくは、第一電極層,発電層,及び第二電極層が電気的に短絡している。
 本発明の太陽電池モジュールは、発電層と第二電極層とを貫通するように形成されたレーザスクライブ孔を含む。
 これにより、複数の太陽電池セルの一つに不具合が生じて出力が低下した場合であっても、レーザスクライブ孔周辺に生じたシャント領域がバイパス経路として作用するため、バイパス経路に電流を流すことができる。このため、出力が低下した太陽電池セルに印加される電圧を低減させ、出力が低下した太陽電池セルが破壊されることを防止することができる。
 その結果、本発明の太陽電池モジュールにおいては、複雑な構造が不要であり、ホットスポット現象を防止することができ、信頼性に優れた太陽電池モジュールを提供することができる。
 本発明の太陽電池モジュールにおいては、レーザ光を照射することによって発電層及び第二電極層の一部を除去し、レーザスクライブ孔を形成している。
 この方法によって得られる太陽電池モジュールにおいて、レーザスクライブ孔を形成する時に発生する熱により発電層及び第二電極層の加工端面にシャント領域が形成される。
 その結果、本発明の太陽電池モジュールの製造方法においては、工程の数を増やすことなく、既設の装置においてこの製造方法を用いることができ、コストを削減することができ、ホットスポット現象を防止することができ、信頼性に優れた太陽電池モジュールを製造することができる。
本発明の実施形態に係る太陽電池モジュールを示す拡大斜視図。 図1に示す太陽電池モジュールを示す断面図。 図2Aに示す太陽電池モジュールを示す拡大断面図。 図1に示す太陽電池モジュールを示す断面図。 本発明の実施形態に係る太陽電池モジュールの製造方法を示す断面図。 本発明の実施形態に係る太陽電池モジュールの製造方法を示す断面図。 本発明の実施形態に係る太陽電池モジュールの製造方法を示す断面図。 本発明の実施形態に係る太陽電池モジュールの製造方法を示す断面図。 本発明の実施形態に係る太陽電池モジュールの製造方法を示す断面図。 本発明の実施形態に係る太陽電池モジュールの製造方法を示す断面図。
 以下、本発明に係る太陽電池モジュール、及びその製造方法の実施形態について、図面に基づき説明する。
 なお、各図においては、各構成要素を図面上で認識し得る程度の大きさとするため、各構成要素の寸法及び比率を実際のものとは適宜に異ならせてある。
 図1は、本発明の実施形態に係るアモルファスシリコン型の太陽電池モジュールを示す拡大斜視図である。
 図2A~図2Cは図1の太陽電池モジュールの層構成を示す断面図である。図2Aは、図1のX1-X2線に沿う断面図である。図2Bは、図2Aの符号Aで示された部分を示す拡大断面図である。図2Cは、図1のY1-Y2線に沿う断面図である。
 本実施形態の太陽電池モジュール10は、電気的に直列に接続された複数の太陽電池セル21が基板11の第1面11a上に形成された構成を含む。太陽電池セル21は、第一電極層13,発電層14,バッファ層15,及び第二電極層16を順に積層された積層体12を含む。複数の太陽電池セル21のうち、互いに隣接する太陽電池セルには、スクライブ線20が形成されている。スクライブ線20は、第一電極層13上に形成されており、これによって複数の太陽電池セル21が区画されている。
 本実施形態の太陽電池モジュール10においては、発電層14,バッファ層15,及び第二電極層16を貫通するように形成されたレーザスクライブ孔30(スクライブ孔)が形成されている。レーザスクライブ孔30の周辺には、シャント領域31が生じており、シャント領域31からなるバイパス経路が設けられている。
 これにより、複数の太陽電池セルの一つに不具合が生じて出力が低下した場合であっても、レーザスクライブ孔30周辺に生じたシャント領域31がバイパス経路として作用するため、バイパス経路に電流を流すことができる。このため、出力が低下した太陽電池セルに印加される電圧を低減させ、出力が低下した太陽電池セルが破壊されることを防止することができる。
 その結果、本実施形態の太陽電池モジュール10においては、複雑な構造が不要であり、ホットスポット現象を防止することができ、優れた信頼性を得ることができる。
 基板11は、例えば、ガラス又は透明樹脂等、太陽光の透過性に優れ、かつ、耐久性を有する絶縁材料からなる。この太陽電池モジュール10においては、第1面11aとは反対側である基板11の第2面11bに太陽光Sが入射される。
 積層体12においては、基板11の第1面11a上に、第一電極層(下部電極)13,発電層14(半導体層)14,バッファ層15,及び第二電極層(上部電極)16が順に積層されている。
 第一電極層(下部電極)13は、透明な導電材料、例えば、SnO,ITO,ZnOなどの光透過性の金属酸化物から形成されている。
 発電層14(半導体層)14は、例えば、図2Bに示すように、p型アモルファスシリコン膜14pとn型アモルファスシリコン膜14nとの間にi型アモルファスシリコン膜14iが挟まれたpin接合構造を有する。
 発電層14に太陽光が入射すると、電子及びホールが生じて、p型アモルファスシリコン膜14pとn型アモルファスシリコン膜14nとの間において、電子及びホールが活発化される。この作用が連続的に繰り返されることによって、第一電極層13と第二電極層16との間に電位差が生じる(光電変換)。
 また、発電層14と、発電層14の上方に形成される第二電極層16との間には、バッファ層15が配置されていることが好ましい。発電層14と第二電極16との間にバッファ層15が配置されていることにより、第二電極16から発電層14中にシリコンが拡散し、反応することを抑制することができる。このようなバッファ層15の材料は、例えば、ZnO等である。
 第二電極層16(上部電極)16は、例えば、Ag(銀)又はAl(アルミニウム)等の導電性を有する光反射膜からなる。この第二電極層16は、例えば、スパッタ法等の成膜法を用いて形成することができる。
 このような積層体12は、スクライブ線20を形成することによって、複数の積層体に分割されている。これによって、例えば、短冊状の外形を有する複数の太陽電池セル21が基板11a上に形成されている。複数の太陽電池セル21は電気的に区画され、互いに隣接する太陽電池セル21が電気的に直列に接続されている。このような構成においては、上記の積層体12を有する複数の太陽電池セル21の全てが電気的に直列に接続されている。これによって、高い電位差及び高い電流量を有する電力を得ることができる。
 スクライブ線20は、例えば、基板11の第1面11aに均一に積層体12を形成した後、レーザ光等を積層体12に照射することによって形成される。これによって、所定の間隔を有する溝が積層体12に形成される。
 特に、本実施形態の太陽電池モジュール10においては、図1及び図2Cに示すように、発電層14,バッファ層15,及び第二電極層16を貫通するように複数のレーザスクライブ孔30が形成されている。レーザスクライブ孔30の周辺にシャント領域31が生じており、これによってバイパス経路が設けられている。
 複数のレーザスクライブ孔30は、図1に示すように、スクライブ線20と平行な線上に配列されている。
 従来の太陽電池セルにおいては、光入射面(第2面11b)にゴミが載ったり、この光入射面が影で覆われたりした場合に、太陽電池モジュール全体の出力が低下する。更に、出力が低下している太陽電池セルは、複数の太陽電池セルからなる直列回路における抵抗になり、その太陽電池セルの両端には逆方向に電圧(バイアス電圧)が印加される。この場合、太陽電池セル内の欠陥箇所に電流が集中し、局所的に加熱する現象(ホットスポット現象)が発生してしまう。
 これに対し、本実施形態の太陽電池モジュール10においては、シャント領域31がバイパス経路として機能するため、太陽電池セルにおいて生じた逆電圧の全てが局所的に集中することを抑制することができる。これにより、ホットスポットが形成されてしまうことを防止できる。
 本発明は、レーザスクライブ孔30が形成される位置,レーザスクライブ孔30の形状,レーザスクライブ孔30の大きさ等を限定しない。
 レーザスクライブ孔30を形成する工程における条件に依存して、太陽電池の曲線因子(FF)が低下する場合がある。例えば、必要以上にスクライブ孔30の数を増加すると、特性が低下してしまう。このため、ホットスポット耐性が得られるように、例えば、FF値がFF≧0.60の範囲となるように、スクライブ孔30の個数と、スクライブ孔30が形成される位置とを決定することが好ましい。
 具体的には、例えば、複数のレーザスクライブ孔30が積層体12に形成され、複数の前記スクライブ孔が線状に配列されていることが好ましい。
 これにより、特性を低下させることなく、ホットスポットが形成されることを効果的に抑制することができる。
 次に、上述の構成を有する太陽電池モジュール10の製造方法について説明する。
 図3A~図3Fは、本発明の実施形態に係る太陽電池モジュールの製造方法を工程順に示す断面図である。図3A~図3Fの各々は、図1のY1-Y2線に沿う断面図に対応する。
 本実施形態の太陽電池モジュールの製造方法においては、レーザ光を照射することによって、発電層14,バッファ層15,及び第二電極層16の一部が除去され、レーザスクライブ孔30が形成されている。更に、レーザ光照射時に発生する熱により発電層14,バッファ層15,及び第二電極層16の加工端面rdにシャント領域31が生じている。このシャント領域31は、バイパス経路として機能する。
 その結果、本実施形態の太陽電池モジュールの製造方法においては、太陽電池モジュール製造における工程の数を増やすことなく、既設の装置においてこの製造方法を用いることができ、コストを削減することができ、ホットスポット現象を防止することができ、信頼性に優れた太陽電池モジュール10を製造することが可能である。以下、工程順に説明する。
(1)まず、基板11を用意する。
 基板11は、例えば、ガラス又は透明樹脂等、太陽光の透過性に優れ、かつ耐久性を有する絶縁材料からなる。
(2)次に、図3Aに示すように、基板11の第1面11a上に第一電極層13を形成する。
 この第一電極層13は、光透過性を有する金属酸化物、例えばAZO(Alを添加したZnO)、GZO(Gaを添加したZnO)又はITO(Indium Tin Oxide)等のTCO(Transparent Conducting Oxide)からなるTCO電極である。
(3)次いで、図3Bに示すように、第一電極層13上に、発電層14のp型アモルファスシリコン膜14p,i型アモルファスシリコン膜14i,及びn型アモルファスシリコン膜14nを形成する(図2B参照)。これらの膜14p,14i,14nの各々は、各膜を形成するための専用のプラズマCVD反応室内で形成される。
 p型アモルファスシリコン膜14pは、反応室内において、プラズマCVD法により形成される。成膜条件としては、例えば、基板温度が180-200℃、電源周波数が13.56MHz、反応室内圧力が70~120Paに設定される。また、反応ガス流量の条件としては、モノシラン(SiH)が300sccm,水素(H)が2300sccm,水素を希釈ガスとして含むジボラン(B/H)が180sccm,及びメタン(CH)が500sccmに設定される。
 i型アモルファスシリコン膜14iは、反応室内において、プラズマCVD法により形成される。成膜条件としては、例えば、基板温度が180~200℃、電源周波数が13.56MHz、反応室内圧力が70~120Paに設定される。また、反応ガス流量の条件としては、モノシラン(SiH)が1200sccmに設定される。
 n型アモルファスシリコン膜14nは、反応室内において、プラズマCVD法により形成される。成膜条件としては、例えば、基板温度が180~200℃、電源周波数が13.56MHz、反応室内圧力が70~120Paに設定される。また、反応ガス流量の条件としては、水素を希釈ガスとして含むホスフィン(PH/H)が200sccmに設定される。
(4)次に、図3Cに示すように、発電層14上に、バッファ層15及び第二電極16をスパッタ法により順に形成する。バッファ層15及び第二電極層16は、例えば、インライン型のスパッタ装置を用いて、同じ装置内で連続して形成(成膜)される。また、第二電極層16上に、例えば、スパッタ法等を用いて保護層17を形成してもよい。
(5)次に、発電層14、バッファ層15及び第二電極層16に向けて、例えばレーザ光線等を照射して、スクライブ線(スクライブライン)20を形成する。これにより、積層体12は、複数の積層体に分割されており、これによって短冊状の複数の太陽電池セル21が得られる。
 複数の太陽電池セル21は、互いに電気的に区画されている。また、互いに隣接する太陽電池セル21は、電気的に直列に接続される。
(6)次に、図3D及び図3Eに示すように、基板11の第2面11bにおける所定の部位にレーザ光rを照射することによって、発電層14,バッファ層15,及び第二電極16を除去し、レーザスクライブ孔30を形成する。具体的に、第2面11b上(第一電極層13上)をレーザ光rの照射スポットrpでスキャンすることにより、この部位に対応する位置に形成されている発電層14,バッファ層15,及び第二電極16が除去される。複数のレーザスクライブ孔30は、スクライブ線20に平行な方向に配列されている。
 レーザ光rとしては、例えば、IRレーザ光が用いられる。赤外光を発振するレーザ光発振器を用いることにより、IR(InfraRed)レーザ光を発生させ、基板11の第2面11bにレーザ光を照射することができる。
 赤外光は、波長780nmより長い光であり、熱線とも呼ばれている。赤外光は、大きい熱作用を生じさせる光である。
 このIRレーザ光としては、COレーザ光又はYAGレーザ光(Yttrium Aluminum Garnet Laser)が用いられる。YAGレーザ光を用いる場合には、IRレーザ光は基本波(波長1064nm)であり、そのスポットrpの径を、例えば、60μm以上に大きくすることができる。
 IRレーザ光を照射することによって、上記発電層14,バッファ層15,第二電極16,及び保護層17をエッチングすると、これらの層14,15,16,17の加工端面rdにダメージが生じる。具体的に、レーザ光照射時に発生する熱に起因して、層14,15,16,17から蒸発して除去されたパーティクルが加工端面rdに付着する。このようなパーティクルは、主にTCOである。また、発電層14が吸収する波長に赤外波長が含まれることに起因して、エレクトロマイグレーション等のダメージも生じる。このように、層14,15,16,17の加工端面rdにダメージが生じることによって、層14,15,16,17が互いに電気的に短絡している短絡部が形成され、即ち、シャント領域31が形成される。
 最後に、図3Fに示すように、図1及び図2A~図2Cに示す太陽電池モジュール10が得られる。
 なお、上述した太陽電池モジュール10の製造方法においては、複数のレーザスクライブ孔30はスクライブ線20に平行な方向に配列されているが、複数のレーザスクライブ孔30が配列する方向は、スクライブ線20に直交する方向でもよいし、スクライブ線に対して所定の角度で交差する方向でもよい。
 このようにして製造された太陽電池モジュール10においては、複数の太陽電池セルの一つに不具合が生じて出力が低下した場合であっても、レーザスクライブ孔周辺に生じたシャント領域がバイパス経路として作用するため、バイパス経路に電流を流すことができる。このため、出力が低下した太陽電池セルに印加される電圧を低減させ、出力が低下した太陽電池セルが破壊されることを防止することができる。その結果、太陽電池モジュール10においては、出力が低下することを防止し、ホットスポット現象を防止することができ、優れた信頼性を得ることができる。
 次に、本発明の実施例について説明する。
 この実施例においては、以下のように太陽電池モジュールを作製している。
 まず、透明基板上に第一電極層を形成した。
 次いで、第一電極層上に、p型アモルファスシリコン膜,i型アモルファスシリコン膜,及びn型アモルファスシリコン膜の各々を、各膜を形成するための専用のプラズマCVD反応室内で形成し、発電層を形成した。
 次に、発電層をレーザ照射によって分離した後に、発電層上に、スパッタ法を用いて、バッファ層及び第二電極層を順に形成した。次に、第一電極層,発電層,及び第二電極層に向けて、レーザ光線を照射して、スクライブ線(スクライブライン)を形成した。
 次に、発電層,バッファ層,及び第二電極を貫くようにレーザスクライブ孔を形成した。
 以下に、実施例1~8及び比較例におけるレーザスクライブ孔を形成する条件について説明する。
(実施例1~4)
 YAGレーザ光(波長1064nm)を用いて、レーザスクライブ孔を形成した。
 ビーム径は45μmである。レーザ光照射条件は0.7~1.0(J/cm)である。実施例1~4においては、スクライブ線に平行な方向に複数のレーザスクライブ孔を形成した。複数のレーザスクライブ孔の間隔は、表1に示されている。
(実施例5~8)
 YAGSHGレーザ光(Aluminum Garnet Second Harmonic Generation Laser、波長532nm)を用いて、レーザスクライブ孔を形成した。ビーム径は45μmである。レーザ光照射条件は0.7~1.0(J/cm)である。実施例5~8においては、スクライブ線に平行な方向に複数のレーザスクライブ孔を形成した。複数のレーザスクライブ孔の間隔は、表1に示されている。
(比較例)
 比較例おいては、レーザスクライブ孔を形成しなかった。
 実施例1~8の太陽電池モジュール及び比較例の太陽電池モジュールについて、ホットスポット試験を行った。
 太陽電池モジュールの各々の評価方法としては、IEC-61646(2008)のホットスポット耐性試験(以下、HS試験とも呼ぶ)を行う前におけるFF値と、HS試験を行った後のFF値とを比較した。
 評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、レーザスクライブ孔を形成しなかった比較例の太陽電池モジュールにおいて、HS試験を行う前のFF値(初期値)と、HS試験を行った後のFF値とを比較すると、FF値が大きく劣化していることが確認された。
 これに対し、レーザスクライブ孔を形成した実施例1~8の太陽電池モジュールにおいて、HS試験を行う前のFF値(初期値)と、HS試験を行った後のFF値とを比較すると、FF値の劣化が大幅に抑えられていることが確認された。
 このように実施例1~8おいてFF値の劣化を抑制することができる理由は、レーザスクライブ孔周辺に生じたシャント領域がバイパス経路として機能していると考えられる。
 以上、本発明の太陽電池モジュール及びその製造方法について説明したが、本発明の技術範囲は、上記の実施形態に限定されることなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
 上記の太陽電池モジュールにおいては、モジュール構造として、単一の発電層を有するシングルセル構造を例に挙げて説明したが、本発明は、この構造に限定されない。複数の発電層が積層された多接合セルにおいても本発明の構造を適用することができる。
 本発明は、太陽電池モジュール及びその製造方法に広く適用可能である。
 10 太陽電池モジュール、11 基板、12 積層体、13 第一電極層、14 発電層、15 バッファ層、16 第二電極層、20 スクライブ線、21 太陽電池セル、30 レーザスクライブ孔、31 シャント領域。
 
 

Claims (3)

  1.  太陽電池モジュールであって、
     第一電極層,発電層,及び第二電極層が順に積層された積層体を含み、電気的に直列に接続された複数の太陽電池セルと、
     複数の前記太陽電池セルのうち、互いに隣接する太陽電池セルを区画するスクライブ線と、
     前記発電層と前記第二電極層とを貫通するように形成されたスクライブ孔と、
     前記スクライブ孔の周辺に生じたシャント領域からなるバイパス経路と
     を含むことを特徴とする太陽電池モジュール。
  2.  請求項1に記載の太陽電池モジュールであって、
     前記発電層と前記第二電極層とを貫通するように形成された複数のスクライブ孔を含むことを特徴とする太陽電池モジュール。
  3.  太陽電池モジュールの製造方法であって、
     基板上に、第一電極層,発電層,及び第二電極層が順に積層された積層体を形成し、
     スクライブ線を形成することにより、電気的に直列に接続された複数の太陽電池セルを形成し、
     前記発電層及び第二電極層の一部にレーザ光を照射することによって、前記発電層と前記第二電極層とを貫通するスクライブ孔を形成し、
     前記レーザ光を照射した時に発生する熱により、前記発電層及び第二電極層の加工端面に生じたシャント領域からなるバイパス経路を形成する
     ことを特徴とする太陽電池モジュールの製造方法。
PCT/JP2010/001699 2009-03-10 2010-03-10 太陽電池モジュール及びその製造方法 WO2010103826A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/146,590 US20110308565A1 (en) 2009-03-10 2010-03-10 Solar cell module and method for manufacturing the same
CN2010800051465A CN102292819A (zh) 2009-03-10 2010-03-10 太阳能电池组件及其制造方法
KR1020117018466A KR101219111B1 (ko) 2009-03-10 2010-03-10 태양 전지 모듈 및 그 제조 방법
JP2011503715A JP5145456B2 (ja) 2009-03-10 2010-03-10 太陽電池モジュール及びその製造方法
DE112010001140T DE112010001140T5 (de) 2009-03-10 2010-03-10 Solarzellen-Modul und Verfahren zum Herstellen desselben

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-056777 2009-03-10
JP2009056777 2009-03-10

Publications (1)

Publication Number Publication Date
WO2010103826A1 true WO2010103826A1 (ja) 2010-09-16

Family

ID=42728122

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/001699 WO2010103826A1 (ja) 2009-03-10 2010-03-10 太陽電池モジュール及びその製造方法

Country Status (7)

Country Link
US (1) US20110308565A1 (ja)
JP (1) JP5145456B2 (ja)
KR (1) KR101219111B1 (ja)
CN (1) CN102292819A (ja)
DE (1) DE112010001140T5 (ja)
TW (1) TW201104888A (ja)
WO (1) WO2010103826A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015103789A (ja) * 2013-11-28 2015-06-04 パナソニックIpマネジメント株式会社 太陽電池及びその製造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9093586B2 (en) 2007-11-01 2015-07-28 Sandia Corporation Photovoltaic power generation system free of bypass diodes
US9141413B1 (en) 2007-11-01 2015-09-22 Sandia Corporation Optimized microsystems-enabled photovoltaics
CN102612756A (zh) * 2010-03-18 2012-07-25 富士电机株式会社 薄膜太阳能电池和其制造方法
KR101395792B1 (ko) * 2012-06-22 2014-05-19 인텔렉추얼디스커버리 주식회사 집적 광기전력 모듈
US9831369B2 (en) 2013-10-24 2017-11-28 National Technology & Engineering Solutions Of Sandia, Llc Photovoltaic power generation system with photovoltaic cells as bypass diodes
TWI765653B (zh) * 2021-04-09 2022-05-21 凌巨科技股份有限公司 太陽能電池模組與太陽能電池顯示裝置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11112010A (ja) * 1997-10-08 1999-04-23 Sharp Corp 太陽電池およびその製造方法
JP2002076402A (ja) * 2000-08-30 2002-03-15 Kanegafuchi Chem Ind Co Ltd 薄膜太陽電池モジュール
JP2006005020A (ja) * 2004-06-15 2006-01-05 Mitsubishi Heavy Ind Ltd 薄膜太陽電池

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8330578D0 (en) * 1983-11-16 1983-12-21 Rca Corp Inter-connected photovoltaic devices
JP2001068696A (ja) 1999-08-25 2001-03-16 Kanegafuchi Chem Ind Co Ltd 薄膜光電変換モジュール
JP2006005220A (ja) 2004-06-18 2006-01-05 Seiko Epson Corp 半導体装置の製造方法
JP5104132B2 (ja) 2007-09-03 2012-12-19 東ソー株式会社 多層積層体
CN100559613C (zh) * 2008-04-25 2009-11-11 中电电气(南京)光伏有限公司 带有热斑激光刻蚀环的硅太阳能电池及其制备方法
CN100559614C (zh) * 2008-08-28 2009-11-11 苏州富能技术有限公司 薄膜太阳电池模块及其加工方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11112010A (ja) * 1997-10-08 1999-04-23 Sharp Corp 太陽電池およびその製造方法
JP2002076402A (ja) * 2000-08-30 2002-03-15 Kanegafuchi Chem Ind Co Ltd 薄膜太陽電池モジュール
JP2006005020A (ja) * 2004-06-15 2006-01-05 Mitsubishi Heavy Ind Ltd 薄膜太陽電池

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015103789A (ja) * 2013-11-28 2015-06-04 パナソニックIpマネジメント株式会社 太陽電池及びその製造方法

Also Published As

Publication number Publication date
DE112010001140T5 (de) 2012-06-21
CN102292819A (zh) 2011-12-21
US20110308565A1 (en) 2011-12-22
KR20110099061A (ko) 2011-09-05
KR101219111B1 (ko) 2013-01-11
TW201104888A (en) 2011-02-01
JP5145456B2 (ja) 2013-02-20
JPWO2010103826A1 (ja) 2012-09-13

Similar Documents

Publication Publication Date Title
JP5492354B1 (ja) 結晶シリコン太陽電池の製造方法、太陽電池モジュールの製造方法、結晶シリコン太陽電池並びに太陽電池モジュール
JP5145456B2 (ja) 太陽電池モジュール及びその製造方法
JP6360340B2 (ja) 太陽電池モジュールの製造方法
JP4194468B2 (ja) 太陽電池およびその製造方法
JP4791098B2 (ja) 集積型薄膜太陽電池モジュール
US20120000506A1 (en) Photovoltaic module and method of manufacturing the same
KR20180076197A (ko) 태양 전지 및 이의 제조 방법
JP2010251667A (ja) 太陽電池
JP6613252B2 (ja) 光電変換素子
JP6164939B2 (ja) 太陽電池およびその製造方法、ならびに太陽電池モジュール
JP5362833B2 (ja) 太陽電池モジュール
JP2009094272A (ja) 光電変換モジュールおよび光電変換モジュールの製造方法
WO2014050193A1 (ja) 光電変換モジュール
JP4443274B2 (ja) 光電変換装置
WO2016114371A1 (ja) 光電変換素子、それを備えた太陽電池モジュールおよび太陽光発電システム
JP6285713B2 (ja) 結晶シリコン系太陽電池および太陽電池モジュール
JP4441377B2 (ja) 光電変換装置およびその製造方法
JP5539081B2 (ja) 集積型薄膜光電変換装置の製造方法
JP5280942B2 (ja) 集積型薄膜光電変換装置とその製造方法
JP6653696B2 (ja) 光電変換素子
JP6313086B2 (ja) 結晶シリコン太陽電池およびその製造方法、太陽電池モジュールの製造方法、集光型太陽電池モジュールの製造方法
JP4173692B2 (ja) 太陽電池素子およびその製造方法
JP2005244071A (ja) 太陽電池およびその製造方法
JP2008251914A (ja) 多接合型光電変換装置
JP2010147307A (ja) 太陽電池モジュール、及びその製造方法並びに製造装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080005146.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10750583

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011503715

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12011501461

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 5708/DELNP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 13146590

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20117018466

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112010001140

Country of ref document: DE

Ref document number: 1120100011400

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10750583

Country of ref document: EP

Kind code of ref document: A1