WO2010101024A1 - Procédé de préparation du 5-hydroxyméthylfurfural - Google Patents

Procédé de préparation du 5-hydroxyméthylfurfural Download PDF

Info

Publication number
WO2010101024A1
WO2010101024A1 PCT/JP2010/052435 JP2010052435W WO2010101024A1 WO 2010101024 A1 WO2010101024 A1 WO 2010101024A1 JP 2010052435 W JP2010052435 W JP 2010052435W WO 2010101024 A1 WO2010101024 A1 WO 2010101024A1
Authority
WO
WIPO (PCT)
Prior art keywords
hmf
catalyst
acid
solid
fructose
Prior art date
Application number
PCT/JP2010/052435
Other languages
English (en)
Japanese (ja)
Inventor
幸喜 海老谷
敦 高垣
Original Assignee
国立大学法人北陸先端科学技術大学院大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人北陸先端科学技術大学院大学 filed Critical 国立大学法人北陸先端科学技術大学院大学
Publication of WO2010101024A1 publication Critical patent/WO2010101024A1/fr

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/38Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D307/40Radicals substituted by oxygen atoms
    • C07D307/46Doubly bound oxygen atoms, or two oxygen atoms singly bound to the same carbon atom
    • C07D307/48Furfural
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/38Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D307/40Radicals substituted by oxygen atoms
    • C07D307/46Doubly bound oxygen atoms, or two oxygen atoms singly bound to the same carbon atom
    • C07D307/48Furfural
    • C07D307/50Preparation from natural products

Definitions

  • the present invention relates to a process for producing 5-hydroxymethylfurfural using oligosaccharides and monosaccharides obtained from polysaccharides such as cellulose as raw materials.
  • HMF 5-Hydroxymethylfurfural
  • resin materials such as resin materials, pharmaceuticals, agricultural chemicals, and fragrances.
  • biomass has attracted attention as an alternative to petroleum.
  • Patent Documents 1 to 3 disclose techniques for synthesizing HMF directly from cellulose.
  • the techniques disclosed therein are high-pressure and high-temperature reactions in which a liquid acid such as sulfuric acid coexists and the pressure is 10 MPa or more and 220 ° C. or more, and the yield of HMF is not necessarily high.
  • Patent Document 4 discloses a technique for synthesizing HMF from saccharides using zirconium phosphate as a solid catalyst. However, a supercritical or subcritical hydrothermal reaction is necessary. In the examples, the yield of HMF from fructose is 49-53%, but the yield of HMF from glucose is 20-23%. And low.
  • Patent Document 5 discloses synthesis of HMF from sugars using ammonium sulfate as a catalyst under hydrothermal conditions of 145 to 200 ° C., but the yield is as low as 30% or less.
  • Patent Document 6 discloses the synthesis of HMF from saccharides using an aluminosilicate solid catalyst, but is harsh at 165 ° C. and 10 atm.
  • Patent Document 7 and Non-Patent Documents 1 and 2 disclose a technique for synthesizing HMF from fructose and glucose in a two-phase system of an aqueous phase and an organic phase mainly using hydrochloric acid, but the process is complicated. The synthesis yield of HMF is as low as 24%.
  • Patent Document 8 and Non-Patent Document 3 disclose a technique for synthesizing HMF from glucose in a yield of about 70% by using an ionic liquid, but the ionic liquid is very expensive.
  • An object of the present invention is to provide a method for producing 5-hydroxymethylfurfural, which can be produced at low cost from saccharides under mild conditions.
  • the inventors of the present invention make glucose fructose by an isomerization reaction with an acid and a base, and this fructose mainly undergoes a dehydration reaction with an acid to become HMF. Focused on the process. More specifically, if the isomerization reaction of glucose to fructose proceeds with a solid base catalyst and the subsequent dehydration reaction from fructose to HMF proceeds with a solid acid catalyst, the liquid acid and base simultaneously Although it cannot be added to the reactor, the inventors have focused on the fact that a solid base and a solid acid can coexist in the same reactor, leading to the present invention.
  • the present invention showed that 5-hydroxymethylfurfural was converted from a saccharide in the presence of a solid base catalyst and a solid acid catalyst having a sulfonic acid group in a solvent. It is characterized by obtaining.
  • the saccharides may be not only monosaccharides such as glucose but also oligosaccharides such as cellobiose and sucrose. In the present specification, it means a broad sense oligosaccharide and includes disaccharides.
  • the solid base catalyst is one that does not dissolve in the solvent used in the reaction system and is solid in the solvent.
  • Alkaline earth metal oxides such as CaO and MgO are included in the solid base catalyst, but are used in the present invention.
  • Al 2 O 3 is treated as an acid catalyst and is not included in the solid base catalyst.
  • the solid base catalyst is preferably a layered double hydroxide (LDH).
  • LDH layered double hydroxide
  • the main skeleton of the structure is a sheet-like metal hydroxide.
  • Representative examples of the layered double hydroxide of the catalyst used in the present invention include hydrotalcites.
  • hydrotalcites are represented by [M 2+ 1-X M 3+ X (OH) 2 ] [A n- X / n ⁇ mH 2 O].
  • M 2+ is a divalent metal ion
  • M 3+ is a trivalent metal ion
  • a n ⁇ X / n is an interlayer anion.
  • the hydrotalcite compound is a layered clay mineral and has a positive charge as a whole, but has a property of adsorbing anions between layers and on the surface, and OH ⁇ and CO 3 2 ⁇ on the surface function as a base.
  • various hydrotalcites represented by the above general formula can be used. Among them, Mg—Al—CO 3 hydrotalcites are preferable.
  • the solid acid catalyst preferably has a sulfonic acid group, and sulfonic acid-introduced mesoporous silica or an ion exchange resin for an acid catalyst is preferable.
  • the ion exchange resin for the acid catalyst include Amberlist-15 (Rohm and Haas Co., Amberlist is a registered trademark) represented by the following chemical formula (1), and Nafion (registered trademark) represented by the chemical formula (2). DuPont).
  • an aprotic polar solvent such as dimethylformamide (DMF), dimethylacetamide (DMA), dimethylsulfoxide (DMSO) or the like can be used.
  • a solvent may be individual or a mixed solvent and mixing of a small amount of water is also accepted according to the kind of aprotic polar solvent.
  • the presence of a solid base catalyst and a solid acid catalyst having a sulfonic acid group in the solvent makes it possible to produce HMF at low cost under mild conditions using a general-purpose solvent.
  • the reaction from saccharides to HMF can proceed in a single reactor process, and both the base and the acid are solid, so that separation and recovery after the reaction are easy.
  • Table (1) shows the results of taking 3 ml of the solvent DMF (dimethylformamide) in the reactor, charging 0.1 g of glucose in the presence of each catalyst, and reacting them under predetermined conditions.
  • the arrows in the table indicate the same conditions as above.
  • HMF can be obtained from glucose under mild conditions using the process according to the present invention.
  • Amberlyst-15 0.1 g with respect to 0.1 g of glucose
  • the conversion rate was 65%
  • the yield of HMF was 48% (selectivity of HMF production 73%).
  • Table 2 shows the results of reacting glucose, 0.1 g, and 3 ml of solvent DMF with different combinations of solid acids.
  • Amberlyst-A21 represents an ion exchange resin having a quaternary ammonium group manufactured by Rohm & Haas Co., Ltd., and alkylsulfonic acid group-introduced mesoporous silica and phenylsulfonic acid-introduced mesoporous silica were prepared as follows. It is.
  • ⁇ Alkylsulfonic acid group-introduced mesoporous silica SBA-SO 3 H> 2 g, 4M hydrochloric acid aqueous solution using polyblock copolymer Pluronic 123 (HO (CH 2 CH 2 O) 20 (CH 2 CH (CH 3 ) O) 70 (CH 2 CH 2 O) 20 H, manufactured by BASF) as a surfactant) Dissolved in 30 mL. Water 45mL was added to this and it heated at 40 degreeC.
  • Tetraethoxysilane (TEOS) 18.98 mmol was added as a silica source, 3-mercaptopropyltrimethoxysilane (MPTMS) 1.02 mmol was added thereto, and the mixture was heated at 40 ° C. for 20 hours and further at 80 ° C. for 24 hours. After filtration and drying, the mixture was refluxed in ethanol, filtered and dried again to obtain a white powder. Water was added thereto, and the mixture was further treated with an aqueous hydrogen peroxide solution to obtain alkylsulfonic acid-introduced mesoporous silica.
  • TEOS tetraethoxysilane
  • CETS 2- (4-chlorosulfonylphenyl) ethyltrimethoxysilane
  • the BET specific surface area and pore diameter were measured using a high-accuracy specific surface area / pore distribution measuring device (BELSORP-max, Nippon Bell Co., Ltd.) using nitrogen gas as an adsorbate.
  • the acid catalyst powder was suspended in an aqueous solution and calculated by a neutralization titration method using NaOH.
  • HMF can also be generated by a combination of an ion exchange resin having CaO, MgO and a quaternary ammonium group as a solid base and a solid acid catalyst having a sulfonic acid group.
  • Table 4 shows examples in which the Mg / Al ratio of hydrotalcite was changed as a solid base to glucose, 0.1 g, and solvent DMF 3 ml.
  • Table 5 shows the experimental results of changing the catalyst amount with respect to glucose, 0.1 g, and 3 ml of solvent DMF, and Table 6 shows the experimental results of changing the reaction temperature.
  • the reaction temperature may be mild conditions of 120 ° C. or less, and the milder conditions of 80 to 100 ° C. yielded higher yields of HMF.
  • acetonitrile may be used as a solvent in addition to DMF, DMA and DMSO, and 3 to 6 vol% of H 2 O may be mixed.
  • the present invention can use not only monosaccharides but also oligosaccharides higher than disaccharides as a substrate. Furthermore, it has also been clarified that HMF is produced using fructose and mannose as raw materials.
  • HMF can be produced at low cost from sugars by a one-pot reaction under mild conditions, and effective utilization of natural resources such as cellulose can be expected.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Saccharide Compounds (AREA)
  • Furan Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

L'objectif de la présente invention est de proposer un procédé de préparation du 5-hydroxyméthylfurfural (HMF) à partir d'un saccharide à un faible coût dans des conditions douces. L'attention a été portée sur une voie réactionnelle pour la préparation du HMF à partir d'un saccharide, ladite voie réactionnelle comprenant à la fois une isomérisation du glucose en fructose au moyen d'un acide ou d'une base, et une déshydratation ultérieure du fructose en HMF principalement au moyen d'un acide. De façon spécifique, l'invention porte sur un procédé qui comprend l'isomérisation du glucose en fructose au moyen d'un catalyseur basique solide et la déshydratation du fructose en HMF au moyen d'un catalyseur acide solide ayant des groupes acide sulfonique. Dans ce procédé, le catalyseur basique solide et le catalyseur acide solide peuvent coexister dans le même réacteur, bien qu'une addition simultanée d'un catalyseur acide liquide et d'un catalyseur basique liquide dans le même réacteur soit non admise.
PCT/JP2010/052435 2009-03-06 2010-02-18 Procédé de préparation du 5-hydroxyméthylfurfural WO2010101024A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-053041 2009-03-06
JP2009053041A JP2012121811A (ja) 2009-03-06 2009-03-06 5−ヒドロキシメチルフルフラールの製造方法

Publications (1)

Publication Number Publication Date
WO2010101024A1 true WO2010101024A1 (fr) 2010-09-10

Family

ID=42709585

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/052435 WO2010101024A1 (fr) 2009-03-06 2010-02-18 Procédé de préparation du 5-hydroxyméthylfurfural

Country Status (2)

Country Link
JP (1) JP2012121811A (fr)
WO (1) WO2010101024A1 (fr)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012071708A1 (fr) * 2010-11-29 2012-06-07 中国科学院大连化学物理研究所 Procédé de préparation de catalyse du glucide en 5-hydroxyméthylfurfural
WO2012102347A1 (fr) * 2011-01-28 2012-08-02 三菱化学株式会社 Procédé de production de 2-furaldéhyde
FR2979345A1 (fr) * 2011-08-26 2013-03-01 Centre Nat Rech Scient Procede d'isomerisation du glucose en fructose
CN103113329A (zh) * 2013-02-19 2013-05-22 齐齐哈尔大学 一种由固体超强酸催化制备五羟甲基糠醛的方法
CN103159707A (zh) * 2011-12-09 2013-06-19 中国科学院大连化学物理研究所 一种生物质催化转化制备呋喃衍生物的方法
JP2014528407A (ja) * 2011-09-29 2014-10-27 エスケー ケミカルズ カンパニー リミテッド 有機溶媒の下でイオン交換樹脂を用いる5−ヒドロキシメチル−2−フルフラールまたはそのアルキルエーテル誘導体の製造方法
WO2015054756A1 (fr) * 2013-10-17 2015-04-23 Petróleo Brasileiro S.A. - Petrobras Procédé intégré de production d'acide 2,5-furanique dicarboxylique
EP3114230A4 (fr) * 2014-03-04 2017-07-26 Yale University Nouveaux procédés d'isomérisation d'hydrates de carbone
CN110560088A (zh) * 2019-09-27 2019-12-13 河南科技学院 一锅法合成的功能性碳基磁性固体酸催化剂及其在催化甘蔗渣水解产糖中的应用
CN111841527A (zh) * 2020-07-14 2020-10-30 江苏理工学院 一种复合双金属氧化物介孔材料的制备方法及应用
CN113333022A (zh) * 2021-05-20 2021-09-03 济南大学 一种双功能固体酸催化剂的制备方法及其应用
CN113908825A (zh) * 2021-10-13 2022-01-11 广东省科学院生物与医学工程研究所 一种含铬镁水滑石材料复合生物炭的固体催化剂及其制备方法和应用
CN114736175A (zh) * 2022-03-09 2022-07-12 常州大学 水相中催化葡萄糖制备5-羟甲基糠醛的方法
CN115806534A (zh) * 2021-09-14 2023-03-17 中国科学院大连化学物理研究所 一种5-羟甲基糠醛的制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102993140B (zh) * 2012-12-13 2014-12-17 浙江大学 一种催化生物质转化制备5-羟甲基糠醛的方法
JP5776717B2 (ja) 2013-03-18 2015-09-09 コニカミノルタ株式会社 静電荷像現像用トナー、その製造方法、及び画像形成方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4339387A (en) * 1979-09-05 1982-07-13 Roquette Freres Process for manufacturing 5-hydroxymethylfurfural
JPH06504272A (ja) * 1990-12-07 1994-05-19 コミツサリア レネルジーアトミーク 不均一系触媒による5−ヒドロキシメチルフルフラールの調製方法
JP2007145736A (ja) * 2005-11-25 2007-06-14 Canon Inc 5−ヒドロキシメチルフルフラールの製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4339387A (en) * 1979-09-05 1982-07-13 Roquette Freres Process for manufacturing 5-hydroxymethylfurfural
JPH06504272A (ja) * 1990-12-07 1994-05-19 コミツサリア レネルジーアトミーク 不均一系触媒による5−ヒドロキシメチルフルフラールの調製方法
JP2007145736A (ja) * 2005-11-25 2007-06-14 Canon Inc 5−ヒドロキシメチルフルフラールの製造方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CLAUDE MOREAU ET AL.: "Determination of the basic strength of solid catalysts in water by means of a kinetic tracer", CATALYSIS COMMUNICATIONS, vol. 7, no. 12, 2006, pages 941 - 944 *
MIKA OHARA ET AL.: "Kotai San Enki Shokubai o Mochiita Glucose kara 5-hydroxymethylfurfural eno One-pot Gosei", CSJ: THE CHEMICAL SOCIETY OF JAPAN KOEN YOKOSHU, vol. 89TH, no. 1, 13 March 2009 (2009-03-13), pages 332 1 H3 - 32 *
TAKAGAKI ATSUSHI ET AL.: "A one-pot reaction for biorefinery: combination of solid acid and base catalysts for direct production of 5-hydroxymethylfurfural from saccharides", CHEM. COMMUN., no. 41, 7 November 2009 (2009-11-07), pages 6276 - 6278 *
XINHUA QI ET AL.: "Catalytical conversion of fructose and glucose into 5-hydroxymethylfurfural in hot compressed water by microwave heating", CATALYSIS COMMUNICATIONS, vol. 9, no. 13, 2008, pages 2244 - 2249 *

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9327271B2 (en) 2010-11-29 2016-05-03 Dalian Institute Of Chemical Physics, Chinese Academy Of Sciences Catalytic conversion of carbohydrates into 5-hydroxymethylfurfural
US8785668B2 (en) * 2010-11-29 2014-07-22 Dalian Institute Of Chemical Physics, Chinese Academy Of Sciences Method of catalytic conversion of carbohydrates into 5-hydroxymethylfurfural
WO2012071708A1 (fr) * 2010-11-29 2012-06-07 中国科学院大连化学物理研究所 Procédé de préparation de catalyse du glucide en 5-hydroxyméthylfurfural
US20130281719A1 (en) * 2010-11-29 2013-10-24 Dalian Institute Of Chemical Physics, Chinese Academy Of Sciences Method of catalytic conversion of carbohydrates into 5-hydroxymethylfurfural
US9403787B2 (en) 2011-01-28 2016-08-02 Mitsubishi Chemical Corporation Method for producing 2-furaldehyde
US9815807B2 (en) 2011-01-28 2017-11-14 Mitsubishi Chemical Corporation Method for producing 2-furaldehyde
WO2012102347A1 (fr) * 2011-01-28 2012-08-02 三菱化学株式会社 Procédé de production de 2-furaldéhyde
FR2979345A1 (fr) * 2011-08-26 2013-03-01 Centre Nat Rech Scient Procede d'isomerisation du glucose en fructose
JP2014525342A (ja) * 2011-08-26 2014-09-29 サントル ナスィオナル ド ラ ルシェルシュ スィアンティフィク(セ.エン.エル.エス.) グルコースをフルクトースへ異性化させる方法
WO2013030132A1 (fr) * 2011-08-26 2013-03-07 Centre National De La Recherche Scientifique (C.N.R.S) Procede d'isomerisation du glucose en fructose
US9963477B2 (en) 2011-08-26 2018-05-08 Centre National De La Recherche Scientifique (C.N.R.S.) Method for the isomerisation of glucose into fructose
JP2014528407A (ja) * 2011-09-29 2014-10-27 エスケー ケミカルズ カンパニー リミテッド 有機溶媒の下でイオン交換樹脂を用いる5−ヒドロキシメチル−2−フルフラールまたはそのアルキルエーテル誘導体の製造方法
JP2017128600A (ja) * 2011-09-29 2017-07-27 エスケー ケミカルズ カンパニー リミテッド 有機溶媒の下でイオン交換樹脂を用いる5−ヒドロキシメチル−2−フルフラールまたはそのアルキルエーテル誘導体の製造方法
CN103159707A (zh) * 2011-12-09 2013-06-19 中国科学院大连化学物理研究所 一种生物质催化转化制备呋喃衍生物的方法
CN103113329B (zh) * 2013-02-19 2015-04-08 齐齐哈尔大学 一种由固体超强酸催化制备五羟甲基糠醛的方法
CN103113329A (zh) * 2013-02-19 2013-05-22 齐齐哈尔大学 一种由固体超强酸催化制备五羟甲基糠醛的方法
WO2015054756A1 (fr) * 2013-10-17 2015-04-23 Petróleo Brasileiro S.A. - Petrobras Procédé intégré de production d'acide 2,5-furanique dicarboxylique
EP3114230A4 (fr) * 2014-03-04 2017-07-26 Yale University Nouveaux procédés d'isomérisation d'hydrates de carbone
CN110560088A (zh) * 2019-09-27 2019-12-13 河南科技学院 一锅法合成的功能性碳基磁性固体酸催化剂及其在催化甘蔗渣水解产糖中的应用
CN111841527A (zh) * 2020-07-14 2020-10-30 江苏理工学院 一种复合双金属氧化物介孔材料的制备方法及应用
CN113333022A (zh) * 2021-05-20 2021-09-03 济南大学 一种双功能固体酸催化剂的制备方法及其应用
CN115806534A (zh) * 2021-09-14 2023-03-17 中国科学院大连化学物理研究所 一种5-羟甲基糠醛的制备方法
CN113908825A (zh) * 2021-10-13 2022-01-11 广东省科学院生物与医学工程研究所 一种含铬镁水滑石材料复合生物炭的固体催化剂及其制备方法和应用
CN113908825B (zh) * 2021-10-13 2023-08-25 广东省科学院生物与医学工程研究所 一种含铬镁水滑石材料复合生物炭的固体催化剂及其制备方法和应用
CN114736175A (zh) * 2022-03-09 2022-07-12 常州大学 水相中催化葡萄糖制备5-羟甲基糠醛的方法
CN114736175B (zh) * 2022-03-09 2023-09-26 常州大学 水相中催化葡萄糖制备5-羟甲基糠醛的方法

Also Published As

Publication number Publication date
JP2012121811A (ja) 2012-06-28

Similar Documents

Publication Publication Date Title
WO2010101024A1 (fr) Procédé de préparation du 5-hydroxyméthylfurfural
Yang et al. Functionalized silica nanoparticles for conversion of fructose to 5-hydroxymethylfurfural
CN101245055B (zh) 通过作为中间体的5-酰氧基甲基糠醛制备5-羟甲基糠醛的方法
US8575374B1 (en) Ionic liquids processing of biomass to reducing sugars and other dehydration products
CN104016371B (zh) 含铜丝光沸石的原位合成方法
CN101891606A (zh) 一种辛酸铑(ii)的合成新方法
CN111229264A (zh) 一种制取5 -羟甲基糠醛的方法及其催化剂和催化剂的制备方法
CN100554231C (zh) 制备乙二醇丁醚的方法
JP2009215172A (ja) フルフラール類の生産方法
CN102659088B (zh) 一种叠氮化钠的水相合成方法
CN102675393A (zh) 制备19-去甲-4-雄烯二酮的方法
CN100420697C (zh) 一种制备蔗糖-6-有机酸酯的方法
CN101671296B (zh) 从2-氯-5-甲基吡啶与2-氯-3-甲基吡啶混合物中得到2-氯-3-甲基吡啶的新方法
CN107188804B (zh) 一种复合型磷钨酸盐催化合成油酸甲酯的方法
CN105693737B (zh) 一类具有轴手性的联吡啶配体及其合成方法
CN103709039B (zh) Cu-丝光沸石催化合成没食子酸甲(乙)酯的方法
Polidoro et al. CO 2-assisted hydrolytic hydrogenation of cellulose and cellulose-based waste into sorbitol over commercial Ru/C
Ma et al. Preparation, characterization and application of sulfonated mesoporous hollow carbon microspheres
Yang et al. Effective hydrolysis of polysaccharides by activated attapulgite
CN102718734A (zh) 一种4-羟甲基糠酸和2,4-呋喃二甲酸的制备方法
JP2015209411A (ja) ヒドロキシメチルフルフラールの合成方法
CN114591157A (zh) 一种5-氯-2-戊酮的合成工艺
CN103833530A (zh) 一种有机中间体3-苯氧基-1,2-丙二醇的制备方法
CN109513453A (zh) 一种金属氧化物@黏土基固体酸材料及其催化生物质水解的应用
CN114130429B (zh) 一种温敏型杂多酸催化剂、其制备方法及在合成5-羟甲基糠醛中的应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10748620

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10748620

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP