WO2010100967A1 - 弾性表面波装置 - Google Patents

弾性表面波装置 Download PDF

Info

Publication number
WO2010100967A1
WO2010100967A1 PCT/JP2010/050640 JP2010050640W WO2010100967A1 WO 2010100967 A1 WO2010100967 A1 WO 2010100967A1 JP 2010050640 W JP2010050640 W JP 2010050640W WO 2010100967 A1 WO2010100967 A1 WO 2010100967A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
electrode
acoustic wave
film thickness
surface acoustic
Prior art date
Application number
PCT/JP2010/050640
Other languages
English (en)
French (fr)
Inventor
木村 哲也
門田 道雄
拓生 羽田
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2011502680A priority Critical patent/JP5321678B2/ja
Publication of WO2010100967A1 publication Critical patent/WO2010100967A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02818Means for compensation or elimination of undesirable effects
    • H03H9/02929Means for compensation or elimination of undesirable effects of ageing changes of characteristics, e.g. electro-acousto-migration
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02818Means for compensation or elimination of undesirable effects
    • H03H9/02937Means for compensation or elimination of undesirable effects of chemical damage, e.g. corrosion

Definitions

  • the present invention relates to a surface acoustic wave device used for, for example, a resonator or a bandpass filter, and more particularly to a surface acoustic wave device having a structure in which a dielectric film is formed on a piezoelectric substrate.
  • Patent Document 1 discloses a surface acoustic wave device in which an IDT electrode made of Al is formed on a LiTaO 3 substrate.
  • Patent Document 1 also shows that the propagation loss changes when the electrode film thickness and the rotation angle of the IDT electrode are changed as shown in FIG. In FIG. 16, although it depends on the magnitude of the rotation angle of LiTaO 3 , the film thickness of the IDT electrode is desirably about 8 to 10% of the wavelength.
  • UMTS BAND-1 uses the 2.1 GHz band
  • UMTS BAND-7 uses the 2.6 GHz band.
  • a frequency of 2.5 GHz band is used. Furthermore, it has been considered that a frequency of 3 GHz or more is used in the fourth generation mobile phone.
  • the electrode finger pitch of the IDT electrode may be narrowed. However, when the electrode finger pitch of the IDT electrode is reduced, the width of the electrode finger is also reduced accordingly. For this reason, the resistance of the electrode finger is increased, and the loss is increased in the bandpass filter and the resonator.
  • the electrode film thickness of the IDT is increased, the resistance of the electrode fingers can be reduced.
  • the optimum value of the electrode film thickness is about 8 to 10% of the wavelength. If the electrode film thickness is made larger than this range, the excitation strength of the SSBW increases and the propagation loss increases.
  • the frequency f also decreases if the wavelength is constant.
  • the wavelength In order not to reduce the frequency, the wavelength must be shortened in proportion to the speed of sound.
  • the absolute value of the film thickness of the electrode is decreased even if the wavelength normalized film thickness of the electrode is the same, and the resistance of the electrode finger is also increased. Further, when the wavelength is shortened, the manufacturing cost is increased, and the surge resistance and power resistance are also lowered.
  • the object of the present invention is to eliminate the above-mentioned drawbacks of the prior art, obtain a higher sound speed than the conventional surface acoustic wave device, and increase the film thickness of the electrode to reduce the resistance loss.
  • an object of the present invention is to provide a surface acoustic wave device capable of reducing propagation loss.
  • a piezoelectric substrate having first and second main surfaces facing each other, and a plurality of electrode fingers provided on the first main surface of the piezoelectric substrate and interleaved with each other.
  • a dielectric that is provided in at least a region between the electrode fingers without covering the upper surface of the electrode fingers of the IDT electrode and is thinner than the thickness of the electrode fingers.
  • the sound velocity of the dielectric film is higher than the sound velocity of the piezoelectric substrate.
  • the energy of the surface acoustic wave can be more reliably concentrated near the surface of the piezoelectric substrate.
  • the thickness of the dielectric film is 1 to 5% of ⁇ . Is within the range. In this case, the speed of sound can be increased, and the reflection coefficient can be further appropriately increased.
  • the surface acoustic wave device further includes a protective film provided to cover both the electrode fingers and the dielectric film provided in a region between the electrode fingers.
  • a protective film may be formed so as to cover the electrode fingers and the dielectric film in addition to the dielectric film, thereby improving moisture resistance, contamination resistance, and the like.
  • the IDT electrode includes an electrode layer made of Al or an alloy mainly containing Al as a main electrode layer of the entire IDT electrode.
  • the IDT electrode is formed of a material mainly composed of Al, the sound velocity of the surface acoustic wave can be further increased, and the propagation loss can be more reliably reduced.
  • the piezoelectric substrate is made of LiTaO 3 , and ⁇ in the Euler angles ( ⁇ , ⁇ , ⁇ ) of the LiTaO 3 substrate is in a range of 120 ° to 140 °. In this case, the speed of sound of the surface acoustic wave can be increased more reliably.
  • the dielectric film thinner than the thickness of the electrode fingers is formed in the region between the electrode fingers of the IDT electrode, the sound velocity of the surface acoustic wave is higher than that of the conventional surface acoustic wave device. Can be increased. Therefore, the electrode finger pitch of the IDT can be increased, and the absolute value of the electrode film thickness can be increased even if the electrode film thickness normalized by the wavelength is the same. Therefore, the resistance loss of the electrode can be reduced. Moreover, since the electrode finger pitch can be increased, surge resistance and power resistance can be improved.
  • the reflection coefficient can be set to an appropriate size. Therefore, the degree of freedom in design can be increased, and ripples due to insufficient reflection coefficient can be suppressed.
  • the energy concentration of the surface acoustic wave on the surface of the piezoelectric substrate can be increased. Therefore, it is possible to reduce the propagation loss even when the thickness of the IDT electrode is increased.
  • FIGS. 1A and 1B are a partially cutaway enlarged front sectional view and a plan view showing a main part of a surface acoustic wave device according to a first embodiment of the present invention.
  • FIG. 2 shows the relationship between the normalized film thickness (h / ⁇ ) (%) of the Al film, which is the IDT electrode of the first embodiment, and the normalized film thickness of the SiO 2 film and the acoustic velocity of the surface acoustic wave.
  • FIG. FIG. 3 shows the normalized film thickness (h / ⁇ ) (%) of the Al film that is the IDT electrode of the first embodiment, the normalized film thickness of the SiO 2 film, and the reflection coefficient per electrode finger. It is a figure which shows a relationship.
  • FIG. 1 shows the relationship between the normalized film thickness (h / ⁇ ) (%) of the Al film, which is the IDT electrode of the first embodiment, and the normalized film thickness of the SiO 2 film and the reflection coefficient per electrode finger. It is a figure which
  • FIG. 4 shows the normalized thickness (h / ⁇ ) (%) of the Al film that is the IDT electrode of the first embodiment, the normalized thickness of the SiO 2 film, and a depth of one wavelength from the substrate surface. It is a figure which shows the relationship with the ratio (%) of surface wave energy.
  • FIG. 5 shows the Euler angles (0 °, ⁇ , 0 °) ⁇ of the LiTaO 3 substrate, the normalized film thickness of the SiO 2 film, the normalized film thickness of the Al film, and the substrate in the first embodiment. It is a figure which shows the relationship with the ratio (%) of the surface wave energy confined to the depth of 1 wavelength from the surface.
  • FIG. 5 shows the Euler angles (0 °, ⁇ , 0 °) ⁇ of the LiTaO 3 substrate, the normalized film thickness of the SiO 2 film, the normalized film thickness of the Al film, and the substrate in the first embodiment. It is a figure which shows the relationship with the ratio (%) of the surface wave energy confined to the
  • FIG. 6 is a diagram showing the relationship between the normalized film thickness (h / ⁇ ) (%) of the Al film, which is the IDT electrode of the second embodiment, and the normalized film thickness of the SiN film and the acoustic velocity of the surface acoustic wave. It is.
  • FIG. 7 shows the relationship between the normalized film thickness (h / ⁇ ) (%) of the Al film that is the IDT electrode of the second embodiment, the normalized film thickness of the SiN film, and the reflection coefficient per electrode finger.
  • FIG. FIG. 8 shows the normalized film thickness (h / ⁇ ) (%) of the Al film that is the IDT electrode of the second embodiment, the normalized film thickness of the SiN film, and the surface confined to a depth of one wavelength from the substrate surface.
  • FIG. 9 is a diagram showing the relationship between the normalized film thickness (h / ⁇ ) (%) of the Al film, which is the IDT electrode of the third embodiment, and the normalized film thickness of the SiC film and the acoustic velocity of the surface acoustic wave. It is.
  • FIG. 10 shows the relationship between the normalized film thickness (h / ⁇ ) (%) of the Al film that is the IDT electrode of the third embodiment, the normalized film thickness of the SiC film, and the reflection coefficient per electrode finger.
  • FIG. 11 shows the normalized film thickness (h / ⁇ ) (%) of the Al film that is the IDT electrode of the third embodiment, the normalized film thickness of the SiC film, and the surface confined to a depth of one wavelength from the substrate surface. It is a figure which shows the relationship with the ratio (%) of wave energy.
  • FIG. 12 shows the relationship between the normalized film thickness (h / ⁇ ) (%) of the Al film that is the IDT electrode of the fourth embodiment, the normalized film thickness of the Al 2 O 3 film, and the acoustic velocity of the surface acoustic wave.
  • FIG. 13 shows the normalized film thickness (h / ⁇ ) (%) of the Al film that is the IDT electrode of the fourth embodiment, the normalized film thickness of the Al 2 O 3 film, and the reflection coefficient per electrode finger. It is a figure which shows the relationship.
  • FIG. 14 shows the normalized film thickness (h / ⁇ ) (%) of the Al film that is the IDT electrode of the fourth embodiment, the normalized film thickness of the Al 2 O 3 film, and the depth of one wavelength from the substrate surface. It is a figure which shows the relationship with the ratio (%) of the surface wave energy confined in.
  • FIG. 15 is a diagram showing the relationship between the rotation angle of the piezoelectric substrate and the propagation loss in the conventional surface acoustic wave device.
  • FIG. 16 is a diagram showing the relationship between the normalized film thickness (h / ⁇ ) of an electrode, the propagation loss, and the rotation angle (cut angle) of LiTaO 3 in a conventional surface acoustic wave device.
  • FIGS. 1A and 1B are a partially cutaway front sectional view and a plan view showing a main part of a surface acoustic wave device according to an embodiment of the present invention.
  • the surface acoustic wave device 1 has a piezoelectric substrate 2 made of a LiTaO 3 substrate.
  • the piezoelectric substrate 2 has a first main surface 2a and a second main surface 2b facing each other.
  • IDT electrodes 3 to 5 are arranged along the surface acoustic wave propagation direction.
  • the IDT electrode 4 includes a comb electrode 4a having a plurality of electrode fingers and a comb electrode 4b having a plurality of electrode fingers.
  • a plurality of electrode fingers of the comb-tooth electrode 4a and a plurality of electrode fingers of the comb-tooth electrode 4b are interleaved with each other.
  • FIG. 1 (a) shows an enlarged view of a portion where the electrode finger 6 of the comb electrode 4a of the IDT electrode 4 and the electrode finger 7 of the comb electrode 4b are inserted.
  • reflectors 8 and 9 are arranged on both sides in the propagation direction of the surface acoustic wave in the region where the IDT electrodes 3 to 5 are provided.
  • the IDT electrodes 3 to 5 and the reflectors 8 and 9 constitute a longitudinally coupled resonator type surface acoustic wave filter.
  • a dielectric film 10 is formed in the gap between the electrode finger 6 and the electrode finger 7.
  • the dielectric film 10 is provided in the gap between the electrode fingers of the reflectors even in the portion where the reflectors 8 and 9 are provided.
  • the region between the electrode fingers is called a gap as described above.
  • the dielectric film 10 is formed so as to cover all regions on the piezoelectric substrate 2 other than the IDT electrodes 3 to 5 and the reflectors 8 and 9.
  • the dielectric film 10 is a portion other than the IDT electrodes 3 to 5 and the reflectors 8 and 9 in at least the region of the upper surface of the piezoelectric substrate 2 where the IDT electrodes 3 to 5 and the reflectors 8 and 9 are provided. May be provided.
  • the dielectric film 10 is provided in the gap between the electrode fingers of the IDT electrodes 3 to 5, and the formation region is not particularly limited as long as it is formed so as not to cover the upper surface of the electrode fingers of the IDT electrode. . That is, the dielectric film 10 need not necessarily be formed outside the region where the IDT electrodes 3 to 5 are provided. In other words, the dielectric film 10 does not cover the surface of the electrode fingers of the IDT electrode, but covers at least a region between the electrode fingers of the IDT electrodes 3 to 5 on the first main surface 2a of the piezoelectric substrate 2. It only has to be formed.
  • the electrode film thickness of the reflectors 8 and 9 is made equal to the electrode film thickness of the IDT electrodes 3 to 5, while the dielectric film 10 is made thinner than the electrode fingers 6 and 7.
  • Al is used as an electrode material for forming the IDT electrodes 3 to 5 and the reflectors 8 and 9.
  • an alloy mainly composed of Al may be used.
  • the IDT electrodes 3 to 5 and the reflectors 8 and 9 may be formed of a laminated electrode film in which a plurality of electrode films are laminated. In this case, it is desirable that one or more electrode films made of Al or an alloy containing Al as a main component among the plurality of electrode films are included as a main portion in the laminated electrode film.
  • the alloy mainly composed of Al, an AlCu alloy, an AlMg alloy, or the like can be raised.
  • examples of the electrode film made of a metal other than Al or an Al alloy include a Ti film, a Ni film, or a Cu film for improving adhesion.
  • the dielectric film 10 is made of SiO 2 in this embodiment, but may be made of silicon oxide other than SiO 2 . Furthermore, the dielectric film 10 may be formed of various dielectric materials such as SiN, SiC, or Al 2 O 3, as in dielectric materials other than silicon oxide, and modifications described later.
  • the feature of this embodiment is that the dielectric film 10 is provided, so that (a) the speed of sound of the surface acoustic wave can be increased as compared with the conventional surface acoustic wave device, and (b) the electrode film thickness is increased. Even so, the reflection coefficient does not become too large and the reflection coefficient is set to an appropriate level. (C) Furthermore, even if the electrode film thickness is increased, the energy concentration of the surface acoustic wave on the piezoelectric substrate surface is reduced. It is difficult to occur and the propagation loss can be reduced. This will be described based on a specific experimental example.
  • the piezoelectric substrate 2 made of a LiTaO 3 substrate with Euler angles (0 °, 132 °, 0 °) is used.
  • IDT electrodes 3 to 5 and reflectors 8 and 9 made of Al were formed.
  • Several types of surface acoustic wave devices were formed by varying the electrode film thickness of the IDT electrodes 3 to 5 and the reflectors 8 and 9 and the thickness of the dielectric film 10.
  • the electrode thickness and the thickness of the dielectric film 10 are both represented by a normalized thickness that is a ratio h / ⁇ to ⁇ , where ⁇ is the surface acoustic wave wavelength.
  • h shows thickness.
  • the normalized film thickness was appropriately expressed as 100 ⁇ h / ⁇ (%). Specifically, the electrode standardized film thickness is 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17% or 18%, and SiO.
  • the normalized film thickness of the dielectric film 10 made of 2 was set to 0%, 1%, 2%, 3%, 4% or 5%.
  • the number of electrode fingers of the IDT electrode was 68.
  • the wavelength ⁇ of the surface acoustic wave was 2 ⁇ m.
  • the normalized film thickness of the SiO 2 film of 0% corresponds to a conventional example having no dielectric film.
  • FIG. 3 shows the relationship between the reflection coefficient per finger
  • FIG. 4 shows the relationship between the normalized film thickness of the Al film and the ratio of energy confined to a depth of one wavelength from the surface of the piezoelectric substrate.
  • the dielectric film 10 made of SiO 2 is formed regardless of the normalized film thickness of the Al film that is the electrode film of the IDT electrode, the dielectric film 10 It can be seen that the thicker the thickness, the higher the speed of sound. That is, it can be seen that the electrode finger pitch required for the desired frequency can be increased. Therefore, the resistance loss can be reduced by forming the dielectric film 10. In addition, since the electrode finger pitch is increased, the power durability is also improved.
  • the reflection coefficient increases as the thickness of the Al film increases. If the reflection coefficient is small, an undesirable ripple occurs in the frequency characteristics. However, if the reflection coefficient is too large, the surface wave is closed in the IDT electrode and does not propagate to the cloudy reflector, so the degree of freedom in designing the IDT electrode is reduced.
  • the reflection coefficient in the longitudinally coupled resonator type surface acoustic wave filter, if the reflection coefficient becomes too large, the steepness on the low frequency side of the passband deteriorates. Therefore, it is desirable that the reflection coefficient has an appropriate size.
  • the standardized film thickness of the Al film is usually around 10%.
  • the reflection coefficient is about 0.1. Therefore, if the reflection coefficient is about 0.1, the conventional design technique can be utilized, which is desirable.
  • the magnitude of the reflection coefficient also changes depending on the thickness of the dielectric film 10, and that the reflection coefficient decreases as the thickness of the dielectric film increases. This is presumably because part of the electrode fingers 6 and 7 are buried in the dielectric film 10, and as a result, the reflection coefficient decreases as the thickness of the dielectric film 10 increases.
  • the reflection coefficient can be suppressed as compared with the structure without the dielectric film 10. That is, the reflection coefficient can be set to an appropriate value. Therefore, the degree of freedom in design can be increased and unwanted ripples can be suppressed.
  • the vertical axis of FIG. 4 indicates the ratio A of the energy of the surface wave that is confined to the depth of one wavelength from the surface of the piezoelectric substrate, as described above.
  • A the ratio of energy confined to the depth of one wavelength from the substrate surface
  • B energy confined to the depth of one wavelength from the substrate surface
  • C total energy of the surface wave
  • the ratio A indicates the degree of concentration of surface wave energy on the surface of the piezoelectric substrate. The higher the A (%), the higher the concentration on the surface, and the smaller the leakage component in the substrate depth direction. Means that.
  • the ratio A is about 10% when the normalized film thickness of the Al film is about 10%.
  • the standardized film thickness of the Al film is usually about 10%.
  • the energy ratio A rapidly decreases and the leakage component increases as the normalized film thickness of the Al film increases from 11% to 16%. Recognize. That is, it can be seen that the propagation loss increases.
  • the SiO 2 film as the dielectric film corresponding to the embodiment of the present invention is formed, even if the Al standardized film thickness is increased by more than 10%, the energy concentration degree It turns out that the ratio A which shows is not reduced so much. Therefore, even if the electrode film thickness is increased, the reduction of the propagation loss is reduced, and it can be seen that both the reduction of the propagation loss and the suppression of the resistance loss can be achieved. Therefore, it is possible to provide a surface acoustic wave device with even lower loss.
  • the horizontal axis of FIG. 5 represents ⁇ of Euler angles (0 °, ⁇ , 0 °), and the vertical axis represents the ratio (%) of energy confined to a depth of one wavelength from the substrate surface, as in FIG. .
  • is more preferably 126 ° to 140 °.
  • the condition that 90% or more of the surface wave energy is confined within the depth of one wavelength from the surface of the piezoelectric substrate depends on the normalized film thickness of the SiO 2 film. Is as follows.
  • the normalized film thickness of SiO 2 is 1 to 5%
  • the normalized film thickness of the Al film is preferably 8% or more and 18% or less.
  • the film thickness of the Al film becomes too thick, making it difficult to manufacture.
  • it is less than 8% it is difficult for the surface acoustic wave energy of 90% or more to be confined to the depth of one wavelength from the piezoelectric substrate surface.
  • the dielectric film 10 is made of SiO 2
  • the second embodiment is the same as the first embodiment except that the dielectric film 10 is made of a SiN film. It is said that.
  • the standardized film thickness of the dielectric film 10 made of SiN was set to 1%, 2%, 3%, 4%, or 5%, and the standardized film thickness of the Al film was varied as in the first embodiment.
  • a plurality of surface acoustic wave devices were produced.
  • FIG. 6 shows the relationship between the normalized film thickness of the Al film, the normalized film thickness of the SiN film, and the sound velocity of the surface acoustic wave.
  • FIG. 7 shows the normalized film thickness of the Al film and the normalized film thickness of the SiN film.
  • FIG. 8 shows the relationship between the film thickness and the reflection coefficient per electrode finger.
  • FIG. 8 shows the normalized film thickness of the Al film and the normalized film thickness of the SiN film and the energy confined to a depth of one wavelength from the substrate surface. The relationship with the percentage (%) is shown. That is, FIG. 6 to FIG. 8 correspond to FIG. 2 to FIG.
  • the sound velocity can be increased as compared with the conventional surface acoustic wave device having no dielectric film, as in the case of the first embodiment. It can also be seen that the sound speed increases as the thickness of the SiN film increases.
  • the sound speed of the SH component is 4227 m / sec for LiTaO 3
  • that for SiN is 5878 m / sec, which is higher than that of LiTaO 3 .
  • the reflection coefficient per electrode finger is smaller than that of the conventional example. It can also be seen that the reflection coefficient decreases as the normalized film thickness of the SiN film increases.
  • the propagation loss can be further reduced as compared with the conventional surface acoustic wave device.
  • the condition that 90% or more of the surface wave energy is confined within the depth of one wavelength from the surface of the piezoelectric substrate is as follows.
  • the normalized film thickness of SiN When the normalized film thickness of SiN is 1%, the normalized film thickness of the Al film is 8% or more and 15% or less. When the normalized film thickness of SiN is 2%, the normalized film thickness of the Al film is 8.5% or more and 17% or less. When the normalized film thickness of SiN is 3%, the normalized film thickness of the Al film is 10.5% or more and 18% or less. When the normalized film thickness of SiN is 4%, the normalized film thickness of the Al film is 12% or more and 18% or less. When the normalized film thickness of SiN is 5%, the normalized film thickness of the Al film is 13.5% or more and 18% or less.
  • the dielectric film 10 is made of SiO 2
  • the third embodiment is the same as the first embodiment except that the dielectric film 10 is made of an SiC film. It is said that.
  • the standardized film thickness of the dielectric film 10 made of SiC is set to 1%, 2%, 3%, 4%, or 5%, and the standardized film thickness of Al is variously changed as in the first embodiment.
  • a surface acoustic wave device was prepared.
  • FIG. 9 shows the relationship between the normalized film thickness of the Al film, the normalized film thickness of the SiC film, and the acoustic velocity of the surface acoustic wave.
  • FIG. 10 shows the normalized film thickness of the Al film and the normalized film thickness of the SiC film.
  • 11 shows the relationship between the film thickness and the reflection coefficient per electrode finger.
  • FIG. 11 shows the normalized film thickness of the Al film and the normalized film thickness of the SiC film and the energy confined to a depth of one wavelength from the substrate surface. The relationship with the percentage (%) is shown. 9 to 11 correspond to FIGS. 2 to 4.
  • FIG. 10 shows the normalized film thickness of the Al film and the normalized film thickness of the SiC film.
  • 11 shows the relationship between the film thickness and the reflection coefficient per electrode finger.
  • FIG. 11 shows the normalized film thickness of the Al film and the normalized film thickness of the SiC film and the energy confined to a depth of one wavelength from the substrate surface. The relationship with the percentage (%) is shown. 9
  • the sound velocity can be increased as compared with the conventional surface acoustic wave device having no dielectric film, as in the case of the first embodiment. It can also be seen that the sound speed increases as the thickness of the SiC film increases.
  • the loss can be further reduced as compared with the conventional surface acoustic wave device.
  • the dielectric film 10 is made of SiC, 90% or more of the surface acoustic wave energy is confined within the depth of one wavelength from the piezoelectric substrate surface in the case of the following electrode film thickness. is there.
  • the normalized film thickness of SiC is 1%
  • the normalized film thickness of the Al film is 8.5% or more and 15.5% or less.
  • the normalized film thickness of SiC When the normalized film thickness of SiC is 2%, the normalized film thickness of the Al film is 10% or more and 18% or less. When the normalized film thickness of SiC is 3%, the normalized film thickness of the Al film is 11% or more and 18% or less. When the normalized film thickness of SiC is 4%, the normalized film thickness of the Al film is 13% or more and 18% or less. When the normalized film thickness of SiC is 5%, the normalized film thickness of the Al film is 14.5% or more and 18% or less.
  • the dielectric film 10 is made of SiO 2.
  • the third embodiment is different from the first embodiment except that the dielectric film 10 is made of an Al 2 O 3 film. It is the same as the form.
  • a standardized film thickness of the dielectric film 10 made of Al 2 O 3 is set to 1, 2, 3, 4 or 5%, and a plurality of standardized film thicknesses of Al are variously changed as in the first embodiment.
  • a surface acoustic wave device was fabricated.
  • Figure 12 shows the normalized thickness of Al film, and the normalized film thickness of the Al 2 O 3 film, the relationship between the acoustic velocity of the surface acoustic wave, FIG. 13, the Al film of the normalized film thickness and Al 2
  • FIG. 14 shows the relationship between the normalized film thickness of the O 3 film and the reflection coefficient per electrode finger.
  • FIG. 14 shows the normalized film thickness of the Al film, the normalized film thickness of the Al 2 O 3 film, and the substrate surface. The relationship with the ratio (%) of energy confined to the depth of one wavelength is shown. 12 to 14 correspond to FIGS. 2 to 4.
  • the sound velocity can be increased as compared with the conventional surface acoustic wave device having no dielectric film, as in the case of the first embodiment. I understand. It can also be seen that the sound speed increases as the thickness of the Al 2 O 3 film increases.
  • the sound speed of the SH component is 4227 m / sec for the LiTaO 3 substrate, while that for Al 2 O 3 is 6077 m / sec, which is higher than that of the LiTaO 3 substrate.
  • the dielectric film is an Al 2 O 3 film
  • the surface acoustic wave energy of 90% or more is confined within the depth of one wavelength from the surface of the piezoelectric substrate. This is the case for thickness.
  • the standardized film thickness of the Al film is 9.5% or more and 15.5% or less.
  • the normalized film thickness of the Al film is 11.5% or more and 15.5% or less.
  • the standardized film thickness of the Al film is 13% or more and 18% or less.
  • the standardized film thickness of the Al film is 14% or more and 18% or less.
  • the normalized film thickness of the Al film is 14.5% or more and 18% or less.
  • the speed of sound can be increased by forming a dielectric film thinner than the thickness of the electrode fingers in the gap provided in the region between the electrode fingers.
  • the reflection coefficient per electrode finger can be set to an appropriate value, and even if the thickness of the electrode made of Al is increased, the energy concentration of the surface acoustic wave on the substrate surface is unlikely to decrease. I understand that. As described above, the reason why the reflection coefficient is suppressed is that part of the electrode finger is buried in the dielectric film, and the area contributing to the reflection on the side surface of the electrode finger is reduced.
  • the reflection coefficient is suppressed to an appropriate value, ripples due to insufficient reflection coefficient are not easily generated, and the degree of design freedom can be increased.
  • the electrode film thickness is increased, it is difficult for the energy concentration of the surface acoustic wave to decrease on the substrate surface. Therefore, even if the electrode film thickness is increased, the propagation loss can be reduced.
  • the dielectric film is formed of SiO 2 , SiN, SiC, or Al 2 O 3 , but is formed of other silicon oxide, silicon nitride, silicon carbide, or aluminum oxide. Also good. Further, the dielectric film may be formed of AlN or DLC (diamond-like carbon) other than these.
  • the dielectric film 10 is preferably made of one type of dielectric selected from the group consisting of silicon oxide, silicon nitride, silicon carbide, aluminum oxide, aluminum nitride, and DLC.
  • the normalized film thickness obtained by normalizing with the wavelength ⁇ of the surface acoustic wave of the dielectric film 10 is in the range of 1% to 5%.
  • the effect of the present invention can be further enhanced.
  • the thickness of the dielectric film is less than 1%, as in the conventional example, when the frequency is increased, the resistance loss increases, the power durability decreases, and the propagation loss may further decrease. If the thickness of the dielectric film 10 exceeds 5%, the increase in the reflection coefficient can be suppressed, but the warpage of the wafer due to the increase in the film stress becomes remarkable, and the yield may be deteriorated.
  • the dielectric film 10 is not formed on the upper surface of the electrode finger. Accordingly, as described above, loss can be reduced even when the electrode film thickness is increased.
  • the protective film 11 indicated by the alternate long and short dash line in FIG. 1A may be formed so as to cover the surfaces of the dielectric film 10 and the electrode fingers 6 and 7.
  • the insulating material for forming such a protective film include synthetic resins such as polyimide and amorphous materials such as glass. These protective film materials are different from the dielectric film 10. is there.
  • the insulating material for forming the protective film may be a film made of an inorganic material such as an oxide film or a nitride film, and may be the same material as the dielectric film 10. Such a protective film is much thinner than the dielectric film 10, for example, 0.0 It is about 2 ⁇ m.
  • the protective film 11 may be provided at least in a region where the IDT electrodes 3 to 5 and the reflectors 8 and 9 are provided.
  • an insulating film may be formed so as to cover the upper surfaces of the dielectric film 10 and the electrode fingers 6 and 7. Such an insulating film is formed to adjust the frequency, reaches the upper surface of the electrode finger, and gives a damping effect on the electrode finger. Therefore, the insulating film is different from the dielectric film 10. is there.
  • the insulating film for frequency adjustment can be formed in the same manner as the protective film 11 and can be formed of the same material.
  • SYMBOLS 1 Surface acoustic wave apparatus 2 ... Piezoelectric substrate 2a ... 1st main surface 2b ... 2nd main surface 3-5 ... IDT electrode 4a ... Comb electrode 4b ... Comb electrode 6, 7 ... Electrode finger 8, 9 ... Reflector 10 ... Dielectric film 11 ... Protective film

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

 従来の弾性表面波装置に比べて大きな音速を得ることができ、かつ電極の膜厚を厚くして抵抗損失を小さくすることができるだけでなく、伝搬損失を低減することが可能な弾性表面波装置を提供する。  圧電基板2の第1の主面2a上に、複数本の電極指6,7を有するIDT電極3~5が形成されており、電極指6と電極指7との間のギャップに電極指6,7の厚みよりも厚みの薄い誘電体膜10が形成されている、弾性表面波装置1。

Description

弾性表面波装置
 本発明は、例えば共振子や帯域フィルタなどに用いられる弾性表面波装置に関し、より詳細には、圧電基板上に誘電体膜が形成されている構造を備えた弾性表面波装置に関する。
 従来、弾性表面波装置が共振子や帯域フィルタなどに広く用いられている。例えば下記の特許文献1には、LiTaO基板上にAlからなるIDT電極が形成されている弾性表面波装置が開示されている。特許文献1では、図15に示すように、上記弾性表面波装置において、LiTaO基板の回転角と、弾性表面波装置の伝搬損失及びIDT電極の電極膜厚との関係が記載されている。図15から明らかなように、LiTaOの回転角を40°~42°付近とすることにより伝搬損失を小さくし得ることが示されている。なお、この回転角は、カット角と称されている角度であり、回転角=オイラー角のθ-90°との関係がある。
 また、特許文献1では、図16に示すように、IDT電極の電極膜厚と回転角とを変化させた場合に伝搬損失が変化することも示されている。図16では、LiTaOの回転角の大きさにもよるが、IDT電極の膜厚は波長の8~10%程度が望ましいとされている。
特開平9-167936号公報
 近年、携帯電話機などの移動体通信システムで用いられている周波数は高くなってきている。UMTSのBAND-1では、2.1GHz帯が用いられており、UMTSのBAND-7では2.6GHz帯が用いられている。
 また、無線LANにおいても、2.5GHz帯の周波数が用いられている。さらに、第4世代の携帯電話機では、3GHz以上の周波数が利用されることが検討されてきている。ところで、弾性表面波装置を高周波化するには、IDT電極の電極指ピッチを狭くすればよい。しかしながら、IDT電極の電極指ピッチを狭くすると、電極指の幅もそれにつれて狭くなる。そのため、電極指の抵抗が高くなり、帯域フィルタや共振子において損失が大きくなる。
 IDTの電極膜厚を厚くすると、電極指の抵抗を小さくすることは可能である。しかしながら、特許文献1に示されているように、伝搬損失を考慮すると、電極膜厚の最適値は波長の8~10%程度である。この範囲よりも電極膜厚を大きくすると、SSBWの励振強度が増大し、伝搬損失が大きくなる。
 さらに、電極膜厚が厚くなると、圧電単結晶の回転角によらず音速が低下することがわかっている。音速が低下すると、波長が一定であれば、周波数fも低下することとなる。周波数を低下させないためには、波長を音速に比例して短くしなければならない。しかしながら、波長を短くすると、電極の波長規格化膜厚は同じであっても、電極の膜厚の絶対値が小さくなり、やはり電極指の抵抗は増大することとなる。また、波長が短くなると、製造コストが高くなり、耐サージ性や耐電力性も低下することとなる。
 本発明の目的は、上述した従来技術の欠点を解消し、従来の弾性表面波装置に比べて大きな音速を得ることができ、かつ電極の膜厚を厚くして抵抗損失を小さくすることができるだけでなく、伝搬損失を低減することが可能な弾性表面波装置を提供することにある。
 本発明によれば、対向し合う第1,第2の主面を有する圧電基板と、前記圧電基板の第1の主面上に設けられており、互いに間挿し合う複数本の電極指を有するIDT電極と、前記圧電基板の第1の主面上において、IDT電極の電極指の上面を覆わずに、少なくとも電極指間の領域に設けられており、かつ前記電極指の厚みよりも薄い誘電体膜とを備える、弾性表面波装置が提供される。
 本発明に係る弾性表面波装置のある特定の局面では、前記誘電体膜の音速が、前記圧電基板の音速よりも速くされている。この場合には、弾性表面波のエネルギーをより確実に圧電基板表面付近に集中させることができる。
 本発明に係る弾性表面波装置では、好ましくは、前記弾性表面波装置のIDT電極で励振される弾性表面波の波長をλとしたときに、前記誘電体膜の厚みがλの1~5%の範囲内である。この場合には、高音速化を図り、さらに反射係数をより一層適度な大きさとすることができる。
 本発明に係る弾性表面波装置のさらに他の特定の局面では、前記電極指及び電極指間の領域に設けられている前記誘電体膜の双方を覆うように設けられた保護膜がさらに備えられている。このように、本発明においては、上記誘電体膜以外に電極指及び誘電体膜を覆うように保護膜が形成されていてもよく、それによって、耐湿性や耐汚染性等を高めることができる。
 本発明に係る弾性表面波装置のさらに別の特定の局面では、前記IDT電極がAlまたはAlを主体とする合金からなる電極層をIDT電極全体の主たる電極層として含む。Alを主体とする材料によりIDT電極が形成されている場合には、弾性表面波の音速をより一層高めることができ、かつ伝搬損失の低減をより一層確実に図ることが可能となる。
 本発明に係る弾性表面波装置では、好ましくは、圧電基板がLiTaOからなり、該LiTaO基板のオイラー角(φ,θ,ψ)におけるθが120°~140°の範囲内にある。この場合には、弾性表面波の音速をより一層確実に高めることができる。
 本発明に係る弾性表面波装置では、IDT電極の電極指間の領域に電極指の厚みよりも薄い誘電体膜が形成されているので、従来の弾性表面波装置に比べて弾性表面波の音速を高めることができる。そのため、IDTの電極指ピッチを大きくすることができ、波長により規格化された電極膜厚が同じであっても、電極の膜厚の絶対値を大きくすることができる。従って、電極の抵抗損失を小さくすることができる。また、電極指ピッチを大きくすることができるので、耐サージ性や耐電力性を高めることができる。
 さらに、IDT電極の膜厚を増大したとしても、誘電体膜の一部が電極指の側面を覆っているため、反射係数を適度な大きさとすることが可能となる。従って、設計の自由度を高めることができ、かつ反射係数不足によるリップルを抑制することができる。
 加えて、前記誘電体膜の形成により、IDT電極の膜厚を厚くした場合であっても、弾性表面波の圧電基板表面へのエネルギー集中度を高めることができる。そのため、IDT電極の膜厚を厚くした場合であっても、伝搬損失を低減することが可能となる。
図1(a),(b)は、本発明の第1の実施形態の弾性表面波装置の要部を示す部分切欠拡大正面断面図及び平面図である。 図2は、第1の実施形態のIDT電極であるAl膜の規格化膜厚(h/λ)(%)と、SiO膜の規格化膜厚と弾性表面波の音速との関係を示す図である。 図3は、第1の実施形態のIDT電極であるAl膜の規格化膜厚(h/λ)(%)と、SiO膜の規格化膜厚と電極指1本あたりの反射係数との関係を示す図である。 図4は、第1の実施形態のIDT電極であるAl膜の規格化膜厚(h/λ)(%)と、SiO膜の規格化膜厚と基板表面から1波長の深さに閉じこもる表面波エネルギーの割合(%)との関係を示す図である。 図5は、第1の実施形態において、LiTaO基板のオイラー角(0°,θ,0°)のθと、SiO膜の規格化膜厚と、Al膜の規格化膜厚と、基板表面から1波長の深さに閉じこもる表面波エネルギーの割合(%)との関係を示す図である。 図6は、第2の実施形態のIDT電極であるAl膜の規格化膜厚(h/λ)(%)と、SiN膜の規格化膜厚と弾性表面波の音速との関係を示す図である。 図7は、第2の実施形態のIDT電極であるAl膜の規格化膜厚(h/λ)(%)と、SiN膜の規格化膜厚と電極指1本あたりの反射係数との関係を示す図である。 図8は、第2の実施形態のIDT電極であるAl膜の規格化膜厚(h/λ)(%)と、SiN膜の規格化膜厚と基板表面から1波長の深さに閉じこもる表面波エネルギーの割合(%)との関係を示す図である。 図9は、第3の実施形態のIDT電極であるAl膜の規格化膜厚(h/λ)(%)と、SiC膜の規格化膜厚と弾性表面波の音速との関係を示す図である。 図10は、第3の実施形態のIDT電極であるAl膜の規格化膜厚(h/λ)(%)と、SiC膜の規格化膜厚と電極指1本あたりの反射係数との関係を示す図である。 図11は、第3の実施形態のIDT電極であるAl膜の規格化膜厚(h/λ)(%)と、SiC膜の規格化膜厚と基板表面から1波長の深さに閉じこもる表面波エネルギーの割合(%)との関係を示す図である。 図12は、第4の実施形態のIDT電極であるAl膜の規格化膜厚(h/λ)(%)と、Al膜の規格化膜厚と弾性表面波の音速との関係を示す図である。 図13は、第4の実施形態のIDT電極であるAl膜の規格化膜厚(h/λ)(%)と、Al膜の規格化膜厚と電極指1本あたりの反射係数との関係を示す図である。 図14は、第4の実施形態のIDT電極であるAl膜の規格化膜厚(h/λ)(%)と、Al膜の規格化膜厚と基板表面から1波長の深さに閉じこもる表面波エネルギーの割合(%)との関係を示す図である。 図15は、従来の弾性表面波装置において、圧電基板の回転角と伝搬損失との関係を示す図である。 図16は、従来の弾性表面波装置における電極の規格化膜厚(h/λ)と伝搬損失とLiTaOの回転角(カット角)との関係を示す図である。
 以下、図面を参照しつつ、本発明の具体的な実施形態を説明することにより本発明を明らかにする。
 図1(a)及び(b)は、本発明の一実施形態に係る弾性表面波装置の要部を示す部分切欠正面断面図及び平面図である。
 弾性表面波装置1は、LiTaO基板からなる圧電基板2を有する。圧電基板2は、対向し合う第1の主面2a及び第2の主面2bを有する。第1の主面2a上に、IDT電極3~5が弾性表面波伝搬方向に沿って配置されている。IDT電極4を例にとると、IDT電極4は、複数本の電極指を有する櫛歯電極4aと、複数本の電極指を有する櫛歯電極4bとを有する。櫛歯電極4aの複数本の電極指と、櫛歯電極4bの複数本の電極指とが互いに間挿し合っている。
 図1(a)では、IDT電極4の櫛歯電極4aの電極指6と、櫛歯電極4bの電極指7とが間挿し合う部分が拡大して示されている。
 他方、IDT電極3~5が設けられている領域の弾性表面波が伝搬方向両側には、反射器8,9が配置されている。IDT電極3~5及び反射器8,9により、縦結合共振子型の弾性表面波フィルタが構成されている。
 本実施形態では、図1(a)に示すように、電極指6と電極指7との間のギャップに誘電体膜10が形成されている。誘電体膜10は、反射器8,9が設けられている部分においても、反射器の電極指間のギャップに設けられている。
 本明細書においては、電極指間の領域を上記のようにギャップと呼ぶ。
 本実施形態では、IDT電極3~5及び反射器8,9以外の圧電基板2上のすべての領域を覆うように誘電体膜10が形成されている。しかし、誘電体膜10は、圧電基板2の上面の内少なくともIDT電極3~5及び反射器8,9が設けられている領域において、IDT電極3~5及び反射器8,9上以外の部分に設けられてもよい。
 さらに、誘電体膜10は、IDT電極3~5の電極指間のギャップに設けられており、IDT電極の電極指の上面を覆わないように形成されておれば、その形成領域は特に限定されない。すなわち、IDT電極3~5が設けられている領域の外側に誘電体膜10は必ずしも形成されずともよい。言い換えれば、誘電体膜10は、IDT電極の電極指の表面を覆わずに、圧電基板2の第1の主面2a上において、少なくともIDT電極3~5の電極指間の領域を覆うように形成されておればよい。
 反射器8,9の電極膜厚は、IDT電極3~5の電極膜厚と等しくされており、他方、誘電体膜10の厚みは、電極指6,7の厚みよりも薄くされている。
 上記IDT電極3~5及び反射器8,9を形成するための電極材料としては、本実施形態では、Alが用いられている。もっとも、Alを主体とする合金が用いられてもよい。あるいは、IDT電極3~5及び反射器8,9は、複数の電極膜を積層した積層電極膜により形成されていてもよい。この場合、複数の電極膜の内、AlまたはAlを主体とする合金からなる1以上の電極膜が積層電極膜において主たる部分として含まれていることが望ましい。
 上記Alを主体とする合金としては、AlCu合金やAlMg合金などを上げることができる。
 複数の電極膜を積層した積層電極膜において、AlまたはAl合金以外の金属からなる電極膜としては、密着性を高めるためのTi膜、Ni膜またはCu膜などを挙げることができる。
 上記誘電体膜10は、本実施形態では、SiOからなるが、SiO以外の酸化ケイ素により形成されてもよい。さらに、酸化ケイ素以外の誘電体材料、後述の変形例のように、例えば、SiN、SiCまたはAlなどの様々な誘電体により誘電体膜10を形成してもよい。
 本実施形態の特徴は、上記誘電体膜10が設けられているため、(a)従来の弾性表面波装置に比べて弾性表面波の音速を高めることができ、(b)電極膜厚を厚くしたとしても、反射係数が大きくなりすぎず、反射係数が適度な大きさとされ、(c)さらに、電極膜厚を厚くしても、弾性表面波の圧電基板表面へのエネルギー集中度の低下が生じ難く、伝搬損失を低減することができることにある。これを、具体的な実験例に基づき説明する。
 (第1の実施形態)
 第1の実施形態では、オイラー角(0°,132°,0°)のLiTaO基板からなる圧電基板2を用いた。この圧電基板2上に、AlからなるIDT電極3~5及び反射器8,9を形成した。IDT電極3~5及び反射器8,9の電極膜厚及び誘電体膜10の厚みを種々異ならせ、数種の弾性表面波装置を形成した。電極膜厚及び誘電体膜10の厚みは、いずれも、弾性表面波の波長をλとしたときに、λに対する割合h/λである規格化膜厚で示した。なお、hは厚みを示す。規格化膜厚は適宜100×h/λ(%)で示した。具体的には、電極規格化膜厚は、7%、8%、9%、10%、11%、12%、13%、14%、15%、16%、17%または18%とし、SiOからなる誘電体膜10の規格化膜厚は0%、1%、2%、3%、4%または5%とした。IDT電極の電極指の対数は68とした。弾性表面波の波長λは2μmとした。
 なお、SiO膜の規格化膜厚が0%は、誘電体膜を有しない従来例に相当する。
 上記のようにして得られた複数の弾性表面波装置のIDT電極としてのAl膜の規格化膜厚と、弾性表面波の音速との関係を図2に、Al膜の規格化膜厚と電極指1本あたりの反射係数との関係を図3に、Al膜の規格化膜厚と圧電基板表面から1波長の深さに閉じこもるエネルギーの割合との関係を図4に示す。
 図2から明らかなように、IDT電極の電極膜であるAl膜の規格化膜厚の如何に関わらず、SiOからなる誘電体膜10が形成されている場合には、誘電体膜10の厚みが厚いほど、音速が高められていることがわかる。すなわち、所望の周波数に対して必要な電極指ピッチを大きくすることができることがわかる。そのため、誘電体膜10の形成により抵抗損失を小さくすることができる。また、電極指ピッチが大きくなるため、耐電力性も高められる。
 他方、図3から明らかなように、Al膜の膜厚が増加するにつれて、反射係数は高くなっている。反射係数が小さいと、周波数特性上に所望でないリップルが生じる。もっとも、反射係数が大きすぎると、IDT電極内で表面波が閉じ籠もり反射器まで伝搬しないため、IDT電極の設計の自由度が小さくなる。
 また、縦結合共振子型弾性表面波フィルタでは、反射係数が大きくなりすぎると、通過帯域低周波側における急峻性が悪化する。そのため、反射係数は適度な大きさであることが望ましい。
 上記誘電体膜10を有しない従来の弾性表面波装置では、Al膜の規格化膜厚は10%付近とされているのが普通である。この場合の反射係数は、0.1程度である。従って、反射係数が0.1程度であれば、従来の設計技術を活用することができ、望ましい。
 図3から明らかなように、反射係数の大きさは、誘電体膜10の厚みによっても変化すること、並びに、誘電体膜の厚みが厚くなるほど、反射係数が小さくなっていくことがわかる。これは、電極指6,7の一部が誘電体膜10に埋まることとなり、それによって誘電体膜10の厚みが増加すると反射係数が小さくなっていくためと考えられる。
 従って、本実施形態のように、電極膜厚すなわちAl膜の規格化膜厚を厚くした場合であっても、誘電体膜10を有しない構造に比べて、反射係数を抑えることができる。すなわち、反射係数を適度な値に設定することができる。従って、設計の自由度を高めることができ、かつ所望でないリップルを抑制することができる。
 他方、図4の縦軸は、前述した通り、圧電基板の表面から1波長分の深さに閉じ籠もる表面波のエネルギーの割合Aを示す。このエネルギー割合Aは、A=B/C(%)で求めた値である。ここで、A=基板表面から1波長の深さに閉じこもるエネルギーの割合であり、B=基板表面から1波長の深さに閉じこもるエネルギー、C=表面波の全エネルギーであり、これらは有限要素法によって計算により求めたものである。
 割合Aは、圧電基板表面への表面波のエネルギーの集中の程度を示し、A(%)が高いほど、表面への集中度が高いことを意味し、基板深さ方向への漏洩成分が小さいことを意味する。
 図4から明らかなように、Al膜の規格化膜厚を厚くしていった場合、誘電体膜10を有しない従来例では、Al膜の規格化膜厚が10%程度において、割合Aがピークを示し、それよりもAl膜の規格化膜厚が厚くなると、急激にエネルギー集中度合Aが低下している。従って、従来、Al膜の規格化膜厚が10%程度とされているのが普通であった。
 そして、誘電体膜10を有しない従来例の構造では、Al膜の規格化膜厚が11%から16%と増大するにつれて、エネルギーの割合Aが急速に小さくなり、漏洩成分が大きくなることがわかる。すなわち、伝搬損失が大きくなっていくことがわかる。
 これに対して、本発明の実施例に相当する、誘電体膜としてのSiO膜を形成した構造では、Alの規格化膜厚が10%を越えて高められたとしても、エネルギーの集中度合いを示す割合Aはさほど低下しないことがわかる。従って、電極膜厚を厚くしたとしても、伝搬損失の低減が小さくなり、伝搬損失の低減と抵抗損失の抑制とを両立し得ることがわかる。よって、より一層低損失の弾性表面波装置を提供することができる。
 なお、図4では、オイラー角のθが132°、言い換えればカット角が42°であるLiTaO基板を用いたが、他のカット角のLiTaOを用いた場合においても同様の結果が得られる。これを図5に示す。
 図5の横軸は、オイラー角(0°,θ,0°)のθを示し、縦軸は図4と同様に、基板表面から1波長の深さに閉じこもるエネルギーの割合(%)を示す。
 図5から明らかなよう、オイラー角のθが120°~140°の範囲内であれば、SiO膜を形成した構造において、基板表面へのエネルギーの集中度が電極膜厚を厚くしたとしても、さほど劣化しないことがわかる。
 特に、基板深さ方向の1波長以内に95%以上の割合のエネルギーが閉じこもるので、θは、より好ましくは、126°~140°である。
 第1の実施形態では、図2~図4から明らかなように、圧電基板表面から1波長の深さ以内に90%以上の表面波エネルギーが閉じこもる条件はSiO膜の規格化膜厚に応じて、以下の通りである。
 SiO膜の規格化膜厚が1%の場合、Al膜の規格化膜厚=8%以上、18%以下。
 SiO膜の規格化膜厚が2%の場合、Al膜の規格化膜厚=8%以上、18%以下。
 SiO膜の規格化膜厚が3%の場合、Al膜の規格化膜厚=8%以上、18%以下。
 SiO膜の規格化膜厚が4%の場合、Al膜の規格化膜厚=8%以上、18%以下。
 SiO膜の規格化膜厚が5%の場合、Al膜の規格化膜厚=8%以上、18%以下。
 すなわち、SiOの規格化膜厚が1~5%のいずれの場合においても、Al膜の規格化膜厚は、8%以上、18%以下であることが好ましい。
 18%を越えると、Al膜の膜厚が厚くなりすぎ、製造が困難となる。逆に、8%未満では、圧電基板表面から1波長の深さに90%以上の弾性表面波のエネルギーが閉じこもり難い。
 (第2の実施形態)
 第1の実施形態では、誘電体膜10がSiOで形成されていたが、第2の実施形態は、誘電体膜10がSiN膜からなることを除いては、第1の実施形態と同様とされている。
 SiNからなる誘電体膜10の規格化膜厚を1%、2%、3%、4%または5%とし、第1の実施形態と同様に、Al膜の規格化膜厚が種々異ならされた複数の弾性表面波装置を作製した。
 図6は、Al膜の規格化膜厚と、SiN膜の規格化膜厚と、弾性表面波の音速との関係を示し、図7は、Al膜の規格化膜厚及びSiN膜の規格化膜厚と電極指1本あたりの反射係数との関係を示し、図8は、Al膜の規格化膜厚及びSiN膜の規格化膜厚と、基板表面から1波長の深さに閉じこもるエネルギーの割合(%)との関係を示す。すなわち、図6~図8は、図2~図4に相当する図である。
 図6から明らかなように、SiN膜を用いた場合も、第1の実施形態の場合と同様に、誘電体膜を有しない従来の弾性表面波装置に比べて音速を高め得ることがわかる。また、SiN膜の膜厚が厚いほど、音速が高められていることがわかる。
 なお、SH成分の音速は、LiTaOは4227m/秒であるのに対し、SiNは5878m/秒と、LiTaOよりも高音速である。
 図7から明らかなように、SiN膜が誘電体膜10として形成されている第2の実施形態においても、電極指1本あたりの反射係数は従来例よりも小さくなる。また、SiN膜の規格化膜厚が厚くなるにつれて、当然のことながら、反射係数が低くなることがわかる。
 さらに、図8から明らかなように、SiN膜の形成により、基板表面から1波長の深さに閉じこもるエネルギーの割合Aがピークを示す電極膜厚は、従来例の場合の電極膜厚=10%よりも電極膜厚が厚い側にシフトしていることがわかる。従って、電極膜厚を従来例よりも厚くすることができ、それによって、伝搬損失の低減と、抵抗損失の抑制とを両立し得ることがわかる。
 よって、第2の実施形態においても、従来の弾性表面波装置よりも、より一層伝搬損失を低減することができる。
 誘電体膜10がSiNである場合、図6~8から明らかなように、圧電基板表面から1波長の深さ以内に90%以上の表面波エネルギーが閉じこもる条件は以下の通りである。
 SiNの規格化膜厚が1%のとき、Al膜の規格化膜厚は8%以上、15%以下。
 SiNの規格化膜厚が2%のとき、Al膜の規格化膜厚は8.5%以上、17%以下。
 SiNの規格化膜厚が3%のとき、Al膜の規格化膜厚は10.5%以上、18%以下。
 SiNの規格化膜厚が4%のとき、Al膜の規格化膜厚は12%以上、18%以下。
 SiNの規格化膜厚が5%のとき、Al膜の規格化膜厚は13.5%以上、18%以下。
 (第3の実施形態)
 第1の実施形態では、誘電体膜10がSiOで形成されていたが、第3の実施形態は、誘電体膜10がSiC膜からなることを除いては、第1の実施形態と同様とされている。
 SiCからなる誘電体膜10の規格化膜厚を1%、2%、3%、4%または5%とし、第1の実施形態と同様に、Alの規格化膜厚が種々異ならされた複数の弾性表面波装置を作製した。
 図9は、Al膜の規格化膜厚と、SiC膜の規格化膜厚と、弾性表面波の音速との関係を示し、図10は、Al膜の規格化膜厚及びSiC膜の規格化膜厚と電極指1本あたりの反射係数との関係を示し、図11は、Al膜の規格化膜厚及びSiC膜の規格化膜厚と、基板表面から1波長の深さに閉じこもるエネルギーの割合(%)との関係を示す。すなわち、図9~図11は、図2~図4に相当する図である。
 図9から明らかなように、SiC膜を用いた場合も、第1の実施形態の場合と同様に、誘電体膜を有しない従来の弾性表面波装置に比べて音速を高め得ることがわかる。また、SiC膜の膜厚が厚いほど、音速が高められていることがわかる。
 なお、SH成分の音速は、LiTaO基板は4227m/秒であるのに対し、SiCは7603m/秒と、LiTaO基板よりも高音速である。
 図10から明らかなように、SiC膜が誘電体膜10として形成されている第3の実施形態においても、電極指1本あたりの反射係数は、従来例よりも小さくされている。またSiC膜の規格化膜厚が厚くなるにつれて、反射係数が低いことがわかる。さらに、図11から明らかなように、SiC膜の形成により、基板表面から1波長の深さに閉じこもるエネルギーの割合Aがピークを示す電極膜厚が、従来例における電極膜厚=10%よりも電極膜厚が厚い側にシフトしていることがわかる。従って、電極膜厚を従来例よりも厚くすることができ、それによって、伝搬損失の低減と、抵抗損失の抑制とを両立し得ることがわかる。
 よって、第3の実施形態においても、従来の弾性表面波装置よりも、より一層損失を低減することができる。
 図9~11から明らかなように誘電体膜10がSiCからなる場合、圧電基板表面から1波長の深さ以内に弾性表面波エネルギーの90%以上が閉じこもるのは以下の電極膜厚の場合である。
 SiCの規格化膜厚が1%のときは、Al膜の規格化膜厚は8.5%以上、15.5%以下。
 SiCの規格化膜厚が2%のときは、Al膜の規格化膜厚は10%以上、18%以下。
 SiCの規格化膜厚が3%のときは、Al膜の規格化膜厚は11%以上、18%以下。
 SiCの規格化膜厚が4%のときは、Al膜の規格化膜厚は13%以上、18%以下。
 SiCの規格化膜厚が5%のときは、Al膜の規格化膜厚は14.5%以上、18%以下。
 (第4の実施形態)
 第1の実施形態では、誘電体膜10がSiOで形成されていたが、第3の実施形態は、誘電体膜10がAl膜からなることを除いては、第1の実施形態と同様とされている。
 Alからなる誘電体膜10の規格化膜厚を1、2、3、4または5%とし、第1の実施形態と同様に、Alの規格化膜厚が種々異ならされた複数の弾性表面波装置を作製した。
 図12は、Al膜の規格化膜厚と、Al膜の規格化膜厚と、弾性表面波の音速との関係を示し、図13は、Al膜の規格化膜厚及びAl膜の規格化膜厚と電極指1本あたりの反射係数との関係を示し、図14は、Al膜の規格化膜厚及びAl膜の規格化膜厚と、基板表面から1波長の深さに閉じこもるエネルギーの割合(%)との関係を示す。すなわち、図12~図14は、図2~図4に相当する図である。
 図12から明らかなように、Al膜を用いた場合も、第1の実施形態の場合と同様に、誘電体膜を有しない従来の弾性表面波装置に比べて音速を高め得ることがわかる。また、Al膜の膜厚が厚くなるほど、音速を高めることがわかる。
 なお、SH成分の音速は、LiTaO基板は4227m/秒であるのに対し、Alは6077m/秒と、LiTaO基板よりも高音速である。
 図13から明らかなように、Al膜が誘電体膜10として形成されている第3の実施形態においても、電極指1本あたりの反射係数は、従来例よりも小さくされている。またAl膜の規格化膜厚が厚くなるにつれて、反射係数が低いことがわかる。さらに、図14から明らかなように、Al膜の形成により、基板表面から1波長の深さに閉じこもるエネルギーの割合Aがピークを示す電極膜厚が、従来例における電極膜厚=10%よりも電極膜厚が厚い側にシフトしていることがわかる。従って、電極膜厚を従来例よりも厚くすることができ、それによって、伝搬損失の低減と、抵抗損失の抑制とを両立し得ることがわかる。
 よって、第4の実施形態においても、従来の弾性表面波装置よりも、より一層伝搬損失を低減することができる。
 図12~14から明らかなように、誘電体膜がAl膜の場合、圧電基板表面から1波長の深さ以内に90%以上の弾性表面波エネルギーが閉じこもるのは、以下の電極膜厚の場合である。
 Alが1%の場合には、Al膜の規格化膜厚は9.5%以上、15.5%以下。
 Alが2%の場合には、Al膜の規格化膜厚は11.5%以上、15.5%以下。
 Alが3%の場合には、Al膜の規格化膜厚は13%以上、18%以下。
 Alが4%の場合には、Al膜の規格化膜厚は14%以上、18%以下。
 Alが5%の場合には、Al膜の規格化膜厚は14.5%以上、18%以下。
 上述した第1~第4の実施形態から明らかなように、電極指の厚みよりも薄い誘電体膜を、電極指間の領域に設けられているギャップに形成することにより、音速を高めることができ、電極指1本あたりの反射係数を適度な値とすることができ、さらにAlからなる電極の膜厚を厚くしても、弾性表面波の基板表面へのエネルギー集中度の低下が生じ難いことがわかる。反射係数が抑制されるのは、前述した通り、電極指の一部が誘電体膜に埋まり、電極指側面の反射に寄与する面積が小さくなるためと考えられる。もっとも、弾性表面波の音速が大きくなる理由、並びに、Al膜の膜厚を厚くしても、圧電基板表面へのエネルギー集中度の低下が生じ難い理由については必ずしも明確ではないが、第1~第4の実施形態の実験例により裏付けられる。
 そして、本発明では、上記の通り、弾性表面波の音速を高めることができるので、電極指ピッチを大きくすることができる。従って、弾性表面波の波長で規格化した電極膜厚が同じ場合であっても、電極の実際の厚みは大きくなるため、抵抗損失を小さくでき、さらに耐サージ性や耐電力性を高めることができる。
 また、反射係数が適度な値に抑制されるので、反射係数不足によるリップルが生じ難いだけでなく、設計の自由度を高めることができる。加えて、電極膜厚を厚くしても、基板表面への弾性表面波のエネルギー集中度の低下が生じ難いので、電極膜厚を厚くしたとしても、伝搬損失を小さくすることができる。
 なお、上述してきた実施形態では、上記誘電体膜は、SiO、SiN、SiCまたはAlにより形成されていたが、他の酸化ケイ素、窒化ケイ素、炭化ケイ素または酸化アルミにより形成されてもよい。さらに、これら以外のAlNやDLC(ダイヤモンドライクカーボン)などにより誘電体膜を形成してもよい。
 従って、上記誘電体膜10は、酸化ケイ素、窒化ケイ素、炭化ケイ素、酸化アルミニウム、窒化アルミニウム及びDLCからなる群から選択された1種の誘電体からなることが好ましい。
 好ましくは、誘電体膜10の弾性表面波の波長λで規格化してなる規格化膜厚は、1%~5%の範囲とされる。その場合には、上記各実施形態から明らかなように、本発明の効果をより一層高めることができる。なお、誘電体膜の厚みが1%未満では、従来例と同様に、高周波化を図ると、抵抗損失が増大し、耐電力性が低下し、さらに伝搬損失が低下するおそれがある。誘電体膜10の厚みが5%を越えると、反射係数の増大は抑制し得るものの膜応力の増加によるウエハの反りが顕著となり、歩留りが悪くなるおそれがある。
 なお、本発明では、上記電極指の上面には誘電体膜10が形成されていないことが必要である。それによって、前述のように、電極膜厚を厚くした場合にも、損失の低減を果たすことができる。もっとも、耐湿性や耐汚染性を高めるために、誘電体膜10及び電極指6,7の表面を覆うように、図1(a)で一点鎖線で示す保護膜11を形成してもよい。このような保護膜を形成する絶縁性材料としては、例えば、ポリイミドなどの合成樹脂、ガラスなどのアモルファスなどを挙げることができ、これらの保護膜材料は、上記誘電体膜10とは異なる材料である。なお、保護膜を形成する絶縁材料としては、酸化膜や窒化膜などの無機材料からなる膜であってもよく、さらに誘電体膜10と同じ材料であってもよい。このような保護膜の膜厚は誘電体膜10よりもかなり薄い膜であり、例えば0.0
2μm程度である。
 保護膜11は、少なくともIDT電極3~5及び反射器8,9が設けられている領域において、設けられておればよい。
 また、周波数調整を図るために、誘電体膜10及び電極指6,7の上面を覆うように絶縁膜を形成してもよい。このような絶縁膜は、周波数調整を図るために形成されるものであり、電極指の上面に至り、電極指上にダンピング効果を与えるものであるため、上記誘電体膜10とは異なるものである。なお、上記周波数調整用の絶縁膜については、上記保護膜11と同様に形成することができ、また同様の材料で形成することができる。
 1…弾性表面波装置
 2…圧電基板
 2a…第1の主面
 2b…第2の主面
 3~5…IDT電極
 4a…櫛歯電極
 4b…櫛歯電極
 6,7…電極指
 8,9…反射器
 10…誘電体膜
 11…保護膜

Claims (6)

  1.  対向し合う第1,第2の主面を有する圧電基板と、
     前記圧電基板の第1の主面上に設けられており、互いに間挿し合う複数本の電極指を有するIDT電極と、
     前記圧電基板の第1の主面上において、IDT電極の電極指の上面を覆わずに、少なくとも電極指間の領域に設けられており、かつ前記電極指の厚みよりも薄い誘電体膜とを備える、弾性表面波装置。
  2.  前記誘電体膜の音速が、前記圧電基板の音速よりも速い、請求項1に記載の弾性表面波装置。
  3.  前記弾性表面波装置のIDT電極で励振される弾性表面波の波長をλとしたときに、前記誘電体膜の厚みがλの1~5%の範囲内にある、請求項1または2に記載の弾性表面波装置。
  4.  前記電極指及び電極指間の領域に設けられている前記誘電体膜の双方を覆うように設けられた保護膜をさらに備える、請求項1~3のいずれか1項に記載の弾性表面波装置。
  5.  前記IDT電極がAlまたはAlを主体とする合金からなる電極層をIDT電極全体の主たる電極層として含む、請求項1~4のいずれか1項に記載の弾性表面波装置。
  6.  前記圧電基板がLiTaOからなり、該LiTaO基板のオイラー角(φ,θ,ψ)において、θが120°~140°の範囲内にある、請求項1~5のいずれか1項に記載の弾性表面波装置。
PCT/JP2010/050640 2009-03-02 2010-01-20 弾性表面波装置 WO2010100967A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011502680A JP5321678B2 (ja) 2009-03-02 2010-01-20 弾性表面波装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009048311 2009-03-02
JP2009-048311 2009-03-02

Publications (1)

Publication Number Publication Date
WO2010100967A1 true WO2010100967A1 (ja) 2010-09-10

Family

ID=42709531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/050640 WO2010100967A1 (ja) 2009-03-02 2010-01-20 弾性表面波装置

Country Status (2)

Country Link
JP (1) JP5321678B2 (ja)
WO (1) WO2010100967A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014192676A (ja) * 2013-03-27 2014-10-06 Panasonic Corp 弾性波素子
JP5828032B2 (ja) * 2012-07-30 2015-12-02 スカイワークス・パナソニック フィルターソリューションズ ジャパン株式会社 弾性波素子とこれを用いたアンテナ共用器
JP2019075704A (ja) * 2017-10-17 2019-05-16 太陽誘電株式会社 弾性波デバイスおよびその製造方法
CN112260660A (zh) * 2020-10-21 2021-01-22 济南晶正电子科技有限公司 一种复合基底、复合薄膜及其制备方法
WO2022059586A1 (ja) * 2020-09-17 2022-03-24 株式会社村田製作所 弾性波装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5526724A (en) * 1978-08-15 1980-02-26 Nippon Telegr & Teleph Corp <Ntt> Elastic surface wave device
JPS5647117A (en) * 1979-09-27 1981-04-28 Toshiba Corp Surface elastic wave filter element
JPS57162819A (en) * 1981-04-01 1982-10-06 Toshiba Corp Surface acoustic wave filter
JPH11186866A (ja) * 1997-12-22 1999-07-09 Kyocera Corp 弾性表面波装置及びその製造方法
JP2002084156A (ja) * 2000-09-08 2002-03-22 Seiko Epson Corp Saw素子及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5526724A (en) * 1978-08-15 1980-02-26 Nippon Telegr & Teleph Corp <Ntt> Elastic surface wave device
JPS5647117A (en) * 1979-09-27 1981-04-28 Toshiba Corp Surface elastic wave filter element
JPS57162819A (en) * 1981-04-01 1982-10-06 Toshiba Corp Surface acoustic wave filter
JPH11186866A (ja) * 1997-12-22 1999-07-09 Kyocera Corp 弾性表面波装置及びその製造方法
JP2002084156A (ja) * 2000-09-08 2002-03-22 Seiko Epson Corp Saw素子及びその製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5828032B2 (ja) * 2012-07-30 2015-12-02 スカイワークス・パナソニック フィルターソリューションズ ジャパン株式会社 弾性波素子とこれを用いたアンテナ共用器
JP2014192676A (ja) * 2013-03-27 2014-10-06 Panasonic Corp 弾性波素子
JP2019075704A (ja) * 2017-10-17 2019-05-16 太陽誘電株式会社 弾性波デバイスおよびその製造方法
WO2022059586A1 (ja) * 2020-09-17 2022-03-24 株式会社村田製作所 弾性波装置
CN112260660A (zh) * 2020-10-21 2021-01-22 济南晶正电子科技有限公司 一种复合基底、复合薄膜及其制备方法
CN112260660B (zh) * 2020-10-21 2023-03-03 济南晶正电子科技有限公司 一种复合基底、复合薄膜及其制备方法

Also Published As

Publication number Publication date
JP5321678B2 (ja) 2013-10-23
JPWO2010100967A1 (ja) 2012-09-06

Similar Documents

Publication Publication Date Title
US9035725B2 (en) Acoustic wave device
JP5035421B2 (ja) 弾性波装置
CN103250348B (zh) 弹性表面波装置
JP4178328B2 (ja) 弾性境界波装置
JP5141763B2 (ja) 弾性境界波装置
JP4968334B2 (ja) 弾性表面波装置
WO2009098840A1 (ja) 弾性境界波装置
KR102345524B1 (ko) 탄성파 장치
JP5120497B2 (ja) 弾性境界波装置
JP4760911B2 (ja) 弾性境界波装置
CN108141198B (zh) 弹性波装置
WO2009139108A1 (ja) 弾性境界波装置
JPWO2008004408A1 (ja) 弾性表面波装置
JPWO2008087836A1 (ja) 弾性境界波装置の製造方法
JP5321678B2 (ja) 弾性表面波装置
WO2010116783A1 (ja) 弾性波装置
JP4636178B2 (ja) 弾性表面波装置
WO2008038493A1 (en) Boundary acoustic wave device
JP5110091B2 (ja) 弾性表面波装置
JPWO2010122993A1 (ja) 弾性境界波装置及びその製造方法
WO2009090715A1 (ja) 弾性表面波装置
JP2009194895A (ja) 弾性表面波装置
JP5299521B2 (ja) 弾性境界波装置
KR102722448B1 (ko) 탄성파 장치
JP2004228985A (ja) 表面波装置及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10748565

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011502680

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10748565

Country of ref document: EP

Kind code of ref document: A1