WO2010100903A1 - 水素生成装置、それを備える燃料電池システム、及び水素生成装置の運転方法 - Google Patents

水素生成装置、それを備える燃料電池システム、及び水素生成装置の運転方法 Download PDF

Info

Publication number
WO2010100903A1
WO2010100903A1 PCT/JP2010/001427 JP2010001427W WO2010100903A1 WO 2010100903 A1 WO2010100903 A1 WO 2010100903A1 JP 2010001427 W JP2010001427 W JP 2010001427W WO 2010100903 A1 WO2010100903 A1 WO 2010100903A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw material
water
hydrogen generator
reformer
supply
Prior art date
Application number
PCT/JP2010/001427
Other languages
English (en)
French (fr)
Inventor
可児幸宗
鵜飼邦弘
向井裕二
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201080001483.7A priority Critical patent/CN102015526B/zh
Priority to US12/989,780 priority patent/US8951683B2/en
Priority to JP2011502647A priority patent/JP5420636B2/ja
Priority to EP10748502.1A priority patent/EP2455335B1/en
Publication of WO2010100903A1 publication Critical patent/WO2010100903A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/384Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts the catalyst being continuously externally heated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04776Pressure; Flow at auxiliary devices, e.g. reformer, compressor, burner
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0435Catalytic purification
    • C01B2203/044Selective oxidation of carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/047Composition of the impurity the impurity being carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1276Mixing of different feed components
    • C01B2203/1282Mixing of different feed components using static mixers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1288Evaporation of one or more of the different feed components
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1288Evaporation of one or more of the different feed components
    • C01B2203/1294Evaporation by heat exchange with hot process stream
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1609Shutting down the process
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1614Controlling the temperature
    • C01B2203/1619Measuring the temperature
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/169Controlling the feed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a hydrogen generator that generates a hydrogen-containing gas using raw materials, a fuel cell system including the hydrogen generator, and a method for operating the hydrogen generator.
  • the hydrogen gas required as a fuel during the power generation operation of this fuel cell system has not been developed as an existing infrastructure (Infrastructure). For this reason, normally, a hydrogen generator for generating a hydrogen-containing gas using raw materials supplied from existing infrastructure such as city gas and propane gas is attached to the fuel cell system.
  • This hydrogen generator is equipped with a reformer that uses a Ru catalyst or a Ni catalyst to reform the raw material and steam at a temperature of 600 ° C. to 700 ° C.
  • a hydrogen-containing gas is generated by the reforming reaction in the reformer.
  • this hydrogen generator uses a Cu—Zn-based catalyst or a noble metal-based catalyst to advance a conversion reaction of carbon monoxide and water vapor in a hydrogen-containing gas at a temperature of 200 ° C. to 350 ° C. It is equipped with a metamorphic part that reduces
  • using a Ru catalyst or a Pt catalyst carbon monoxide is selectively oxidized at a temperature of 100 ° C. to 200 ° C. to further reduce carbon monoxide in the hydrogen-containing gas.
  • a reaction section such as a selective oxidizer is provided.
  • Patent Document 1 the hydrogen generator described in Patent Document 1 is in a steam atmosphere in a high temperature state immediately after the inside of the reformer is stopped, but such a state may cause the reforming catalyst to deteriorate due to steam oxidation. This is not preferable.
  • the present invention has been made in view of the above circumstances, and provides a hydrogen generator, a fuel cell system, and a method of operating the hydrogen generator in which deterioration due to steam oxidation of the reforming catalyst is suppressed more than before when the reforming catalyst is stopped.
  • the purpose is to do.
  • a hydrogen generator includes a raw material supplier that supplies raw materials, a water supplier that supplies water, and water that has been supplied with water from the water supplier evaporates.
  • a controller configured to stop the supply of the raw material from the raw material supply device and close the valve before the inside of the reformer is purged by the supplied raw material. .
  • a combustion detector for detecting a state by an ionic current and the controller stops the supply of the raw material from the raw material supplier when an ionic current of a predetermined threshold value or more is detected by the combustion detector.
  • the valve may be closed.
  • the controller supplies the raw material from the raw material supplier in accordance with operating conditions of the hydrogen generator before stopping the water supply of the water supplier. You may control the time to continue.
  • the operating condition of the hydrogen generator may be any of a raw material supply amount, a water supply amount, and an operation time of the hydrogen generator.
  • the controller after closing the valve, when the temperature in the reformer is equal to or lower than a predetermined temperature at which carbon deposition does not occur from the raw material, And the inside of the reformer may be purged with the raw material.
  • the controller stops the supply of the raw material from the raw material supplier and closes the valve before the water vapor generation in the evaporator stops. Also good.
  • the controller may continue the supply of the raw material from the raw material supplier until the generation of water vapor in the evaporator stops.
  • the controller may continue supplying the raw material from the raw material supplier until at least the generation of water vapor in the evaporator is stopped.
  • the fuel cell system according to the present invention includes the hydrogen generator and a fuel cell that generates power using a hydrogen-containing gas supplied from the hydrogen generator.
  • the operation method of the hydrogen generator according to the present invention includes a raw material supplier that supplies a raw material, a water supplier that supplies water, and water that is supplied with water from the water supplier is evaporated to produce water vapor.
  • a reformer having a reforming catalyst for generating a hydrogen-containing gas by a reforming reaction using the raw material and the steam, and a reformer in a gas path downstream of the reformer.
  • FIG. 1 is a block diagram schematically showing the configuration of the hydrogen generator according to Embodiment 1 of the present invention.
  • FIG. 2 is a flowchart schematically showing an operation stop process of the hydrogen generator shown in FIG.
  • FIG. 3 is a block diagram schematically showing the configuration of the hydrogen generator according to Embodiment 2 of the present invention.
  • FIG. 4 is a cross-sectional view schematically showing the internal configuration of the hydrogen generator provided in the hydrogen generator according to Embodiment 2 of the present invention.
  • FIG. 5 is a flowchart schematically showing a characteristic operation stop method of the hydrogen generator according to Embodiment 2 of the present invention.
  • FIG. 6 is a flowchart schematically showing a first modification of the characteristic operation stop method for the hydrogen generator according to Embodiment 2 of the present invention.
  • FIG. 7 is a flowchart schematically showing a second modification of the characteristic operation stop method for the hydrogen generator according to Embodiment 2 of the present invention.
  • FIG. 8 is a flowchart schematically showing a characteristic operation stop method of the hydrogen generator according to Embodiment 3 of the present invention.
  • FIG. 9 is a flowchart schematically showing an operation stop process of the hydrogen generator according to the modification of the third embodiment of the present invention.
  • FIG. 10 is a schematic diagram showing a schematic configuration of a fuel cell system according to Embodiment 4 of the present invention.
  • FIG. 1 is a block diagram schematically showing the configuration of the hydrogen generator according to Embodiment 1 of the present invention.
  • the hydrogen generator 100 includes a raw material supplier 4 that supplies raw materials, a water supplier 3 that supplies water, and water supplied from the water supplier 3.
  • the downstream gas path 9 includes a valve 12 for communicating / blocking the reformer 20 and the atmosphere, and a controller 11.
  • the hydrogen generator 1 has a combustor 2 a, a reformer 20, and an evaporator 23.
  • the controller 11 continues the supply of the raw material from the raw material supply unit 4 with the valve 12 opened, and the reformer uses the supplied raw material. Before the inside 20 is purged, the supply of the raw material from the raw material supplier 4 is stopped and the valve 12 is closed.
  • the raw material may be any material that can generate a hydrogen-containing gas by a reforming reaction using the raw material and water vapor.
  • a material containing an organic compound containing at least carbon and hydrogen as constituent elements such as a hydrocarbon such as ethane or propane, or an alcohol-based raw material such as methanol can be used.
  • the raw material may contain a hydrocarbon having 2 or more carbon atoms. Examples of the hydrocarbon having 2 or more carbon atoms include ethane and propane.
  • a liquid raw material such as methanol is used in the raw material supply, the inside of the reformer 20 is at a high temperature. Therefore, when the liquid raw material is supplied into the reformer 20, the liquid raw material is vaporized and supplied as a gas. Is done.
  • the raw material supplier 4 is connected to the gas infrastructure line 6 and is configured to supply the raw material while adjusting the flow rate to the reformer 20.
  • the raw material supplier 4 may be in any form as long as it can supply the raw material while adjusting the flow rate and shut off the supply of the raw material. Moreover, you may be comprised by the combination of the booster pump and the flow regulating valve.
  • the water supplier 3 is configured to supply water purified by a purifier from a water supply source (for example, a water supply or a water tank) to the evaporator 23 while adjusting the flow rate.
  • a water supply source for example, a water supply or a water tank
  • the water supply device 3 may be in any form as long as it can supply water while adjusting the flow rate and shut off the supply of water.
  • the water supply device 3 may be composed of a single flow rate adjustment valve.
  • you may be comprised by the combination of a pump and a flow regulating valve.
  • the evaporator 23 has a residual heat even after the generation operation of the hydrogen-containing gas is stopped, and is configured to vaporize the water supplied from the water supply device 3 and supply water vapor to the reformer 20. ing.
  • a combustion gas supply path 10 for supplying combustion fuel and a combustion air supply device 18 for supplying combustion air are connected to the combustor 2a.
  • the combustion air supply device 18 for example, fans such as a blower or a sirocco fan can be used.
  • combustion fuel for example, hydrogen-containing gas discharged from the raw material or the reformer 20
  • combustion air are supplied, and these are combusted to generate combustion exhaust gas.
  • the generated combustion exhaust gas heats the reformer 20 and the evaporator 23, then flows through the combustion exhaust gas path (not shown), and is discharged out of the hydrogen generator 100.
  • generated with the raw material and the reformer 20 is mentioned.
  • the reformer 20 has a reforming catalyst 20a.
  • the reforming catalyst 20a is, for example, a substance that catalyzes a steam reforming reaction that generates a hydrogen-containing gas from a raw material and steam, and includes a ruthenium-based catalyst in which ruthenium (Ru) is supported on a catalyst carrier such as alumina.
  • a nickel catalyst or the like in which nickel (Ni) is supported on the same catalyst carrier can be used. From the viewpoint of cost reduction, it is preferable to use a nickel-based catalyst containing nickel element as a catalyst metal as the reforming catalyst.
  • a hydrogen-containing gas is generated by a reforming reaction between the raw material supplied from the raw material supplier 4 and the water vapor supplied from the evaporator 23.
  • the generated hydrogen-containing gas is supplied to a hydrogen utilization device (for example, a fuel cell or a hydrogen storage tank) via the gas path 9.
  • a hydrogen utilization device for example, a fuel cell or a hydrogen storage tank
  • the hydrogen-containing gas in this specification includes gases such as hydrogen gas, raw material, and water vapor.
  • valve 12 for communicating / blocking the reformer 20 and the atmosphere via the gas path 9.
  • the valve 12 may have any form as long as it can communicate / block the reformer 20 and the atmosphere.
  • an on-off valve such as an electromagnetic valve can be used.
  • the controller 11 may be in any form as long as it is a device that controls the combustor 2a, the water supply device 3, the raw material supply device 4, the valve 12, and the combustion air supply device 18, such as a microprocessor, It can be composed of a CPU or the like. Note that the controller 11 is not only configured as a single controller, but also configured as a controller group in which a plurality of controllers cooperate to execute control of the hydrogen generator 100. I do not care. Further, the controller 11 may include not only an arithmetic processing unit exemplified by a microprocessor, a CPU, etc., but also a storage unit including a memory and a time measuring unit.
  • FIG. 2 is a flowchart schematically showing an operation stop process of the hydrogen generator 100 shown in FIG.
  • a stop command to the hydrogen generator 100 is issued. Is issued (step S101).
  • step S102 step (a)
  • the controller 11 controls the water supplier 3 to stop supplying water (step S102: step (a)).
  • step S102 step (a)
  • the supply of water from the water supply device 3 to the evaporator 23 is immediately stopped, but the water existing in the evaporator 23 is vaporized into water vapor by the residual heat of the evaporator 23, and is supplied to the reformer 20. Supplied.
  • the controller 11 stops the supply of water from the water supply unit 3 to the evaporator 23 and then from the raw material supply unit 4 to the reformer 20.
  • the raw material supply is continued (step S103: step (b)).
  • the amount of raw material supply in step S103 is arbitrary, but the generation of steam oxidation of the reforming catalyst 20a is suppressed.
  • the controller 11 preferably controls the raw material supplier 4.
  • the controller 11 also preferably controls the raw material supply amount from the raw material supplier 4.
  • the controller 11 stops the supply of the raw material from the raw material supplier 4 to the reformer 20, and closes the valve 12 to seal the gas path including the reformer 20 (step S104). . And the controller 11 complete
  • the supply of the raw material from the raw material supplier 4 to the reformer 20 is stopped by the raw material from the raw material supplier 4 to the reformer 20 after the water supply from the water supplier 3 to the evaporator 23 is stopped.
  • it may be performed at any timing. Thereby, compared with the case where the raw material is supplied to the reformer 20 until the inside of the reformer 20 is purged with the raw material, the deposition of carbon derived from the raw material on the surface of the reforming catalyst 20a is suppressed.
  • the supply of the raw material from the raw material supplier 4 to the reformer 20 is stopped from the stop of the supply of water from the water supplier 3 to the evaporator 23.
  • the raw material is supplied from the raw material supplier 4 to the reformer 20 while the steam generated in the evaporator 23 is being supplied to the reformer 20.
  • the hydrogen-containing gas (reformed gas) generated by the reformer 20 is sent to the hydrogen utilization device, but is not limited thereto.
  • a shifter having a shift catalyst (for example, a copper-zinc catalyst) for reducing carbon monoxide in the hydrogen-containing gas sent from the reformer 20 in the hydrogen generator 1, an oxidation catalyst (for example, The hydrogen-containing gas after passing through a carbon monoxide remover having a ruthenium-based catalyst or a methanation catalyst (for example, a ruthenium-based catalyst) may be sent to a hydrogen-using device.
  • the hydrogen generator 100 of Modification 1 exemplifies a mode in which the controller 11 stops the supply of the raw material from the raw material supplier 4 before the water vapor generation in the evaporator 23 stops.
  • the configuration of the hydrogen generator 100 of Modification 1 is the same as that of the hydrogen generator 100 according to Embodiment 1, and the controller 11 uses the evaporator 23 in step S104 shown in FIG. Before the production of the water vapor stops, the supply of the raw material from the raw material supplier 4 to the reformer 20 is stopped.
  • a flow meter for detecting the gas flow rate is provided in the gas path 9, and the flow meter
  • a time until the same flow rate as the flow rate of the raw material supplied from the raw material supply unit 4 (hereinafter referred to as a water vapor generation stop time) is determined in advance by an experiment or the like, and before the water vapor generation stop time elapses.
  • a flow meter for detecting the gas flow rate is provided in the gas path 9, and the supply of the raw material from the raw material supply device 4 and the supply of water from the water supply device 3 are simultaneously cut off (stopped). After that, a time until the flow meter no longer detects the gas flow rate (hereinafter referred to as “water vapor generation stop time”) is determined in advance by an experiment or the like, and the supply of the raw material is stopped before the water vapor generation stop time elapses. Is mentioned.
  • a pressure detector is provided in the reformer 20, and the supply of the raw material from the raw material supply device 4 and the supply of water from the water supply device 3 are simultaneously cut off (stopped), and the valve 12 is closed.
  • water vapor generation stop time a time until the pressure detector stops detecting the pressure increase.
  • a method of stopping the supply of the raw material from the raw material supplier 4 to the reformer 20 before the stop time elapses can be mentioned. Note that the timing at which the controller 11 outputs a raw material supply stop command to the raw material supplier 4 is arbitrary as long as it is within the water vapor generation stop time.
  • the hydrogen generator 100 of the modification 2 illustrates the form in which the controller 11 continues the supply of the raw material from the raw material supplier 4 until at least the water vapor generation in the evaporator 23 is stopped.
  • the configuration of the hydrogen generator 100 of Modification 2 is the same as that of the hydrogen generator 100 according to Embodiment 1, and the controller 11 at least in the evaporator 23 in step S103 illustrated in FIG. The supply of the raw material from the raw material supply device 4 to the reformer 20 is continued until the generation of water vapor therein stops.
  • the supply of the raw material is continued until the steam generation in the evaporator 23 is stopped means that the steam supply in the evaporator 23 is stopped from the raw material supply unit 4 to the reformer 20. This means that the supply of raw materials is continued.
  • the timing at which the controller 11 outputs a raw material supply stop command to the raw material supplier 4 is after the steam generation is stopped in the evaporator 23 until the inside of the reformer 20 is purged with the raw material. Is optional. Therefore, in the hydrogen generator 100 of the second modification, for example, the integrated supply amount of the raw material after a predetermined steam generation stop time has elapsed by the above-described method is measured, and this integrated supply amount is the reformer 20.
  • the operation of the raw material supplier 4 is stopped by the controller 11 before the amount to be purged is reached.
  • the integrated supply amount may be a direct value called a time integral value of a measurement value of a flow meter that detects the flow rate of the gas provided in the gas path 9.
  • an indirect value such as an integrated supply time of the raw material may be used.
  • FIG. 3 is a block diagram schematically showing the configuration of the hydrogen generator according to Embodiment 2 of the present invention. In FIG. 3, only the components necessary for explaining the present invention are extracted and shown, and the other components are not shown.
  • the hardware configuration of the hydrogen generator 100 according to the present embodiment is the same as the hardware configuration of the conventional hydrogen generator.
  • the hydrogen generator 100 includes a hydrogen generator 1 that generates a hydrogen-containing gas by advancing a reforming reaction between a raw material containing an organic compound containing at least carbon and hydrogen as constituent elements and water vapor. It has.
  • the hydrogen generator 100 also supplies a raw material to the hydrogen generator 1 and controls the flow rate of the raw material (raw material flow rate), and the sulfur contained in the raw material supplied to the raw material supplier 4.
  • a desulfurizer 5 for removing components.
  • the hydrogen generator 100 includes a water supplier 3 that supplies water to the hydrogen generator 1 and controls the flow rate of the water (water flow rate).
  • the raw material supplier 4 has a booster pump.
  • the supply amount of the raw material to the hydrogen generator 1 is adjusted by appropriately controlling current pulses, input power, and the like input thereto. It has a possible configuration.
  • the raw material supplier 4 is connected to a gas infrastructure line 6 of city gas (for example, methane gas) as a raw material supply source, and a desulfurizer 5 is provided on the gas infrastructure line 6.
  • the desulfurizer 5 is connected so that the raw material is supplied to the hydrogen generator 1 through the raw material supplier 4. That is, as shown in FIG. 3, a gas infrastructure line 6 that supplies raw materials to the desulfurizer 5 is connected.
  • the desulfurizer 5 is disposed on the upstream side of the raw material, and the raw material supplier 4 is disposed on the downstream side of the raw material.
  • the present embodiment is limited to such a form.
  • the arrangement order of the raw material supplier 4 and the desulfurizer 5 may be appropriately determined in consideration of the characteristics of each configuration.
  • the desulfurizer 5 may be configured to include a zeolite adsorbent that removes sulfur components (mainly odorous components) in the raw material by adsorption, or may be configured to use a hydrodesulfurization catalyst.
  • the water supply device 3 has a pump having a flow rate adjusting function, and the current pulse, input power, etc. input thereto are appropriately controlled in the same manner as the raw material supply device 4.
  • the water supply amount to the hydrogen generator 1 can be adjusted.
  • FIG. 4 is a cross-sectional view schematically showing the internal configuration of the hydrogen generator provided in the hydrogen generator according to Embodiment 2 of the present invention.
  • the hydrogen generator 1 of the hydrogen generator 100 evaporates the water supplied from the water supplier 3 through the water supply port 13, and from the raw material supplier 4 through the raw material supply port 14.
  • An evaporator 23 that preheats and mixes with the supplied raw material, and a first temperature detector 24 that detects the temperature of the mixture of the raw material and water vapor in the evaporator 23 are provided.
  • the hydrogen generator 1 includes a reformer 20 including a Ni-based catalyst serving as a reforming catalyst, and the temperature of the hydrogen-containing gas in the gas path 22 immediately after the reformer 20. And a second temperature detector 21 for detecting.
  • the hydrogen generator 1 performs a conversion reaction of carbon monoxide and water vapor in the hydrogen-containing gas generated in the reformer 20, so that the carbon monoxide-containing concentration of the hydrogen-containing gas. And a mixture of supplying and mixing the air from the air supply device 8 to the hydrogen-containing gas discharged from the conversion device 25 through the air supply port 16. And a selective oxidizer 26 including a Ru-based catalyst that mainly oxidizes and removes carbon monoxide remaining in the hydrogen-containing gas discharged from the mixer 19. The hydrogen-containing gas discharged from the selective oxidizer 26 is discharged from the hydrogen generator 100 to the outside through the hydrogen-containing gas discharge port 15.
  • the specific configurations of the reformer 20, the transformer 25, and the selective oxidizer 26 are the same as those general configurations. Accordingly, further detailed description of the reformer 20, the transformer 25, and the selective oxidizer 26 is omitted here.
  • the configuration in which the first temperature detector 24 is provided is illustrated, but the present invention is not limited to such a configuration, and the first temperature detector 24 may be omitted.
  • the hydrogen generator 1 includes a heater 2 for supplying reaction heat necessary for the reforming reaction in the reformer 20.
  • the heater 2 includes a combustor 2a (for example, a burner) that burns combustion gas that serves as a heating source, an igniter (not shown) that serves as an ignition source for the combustor 2a, and a combustor 2a.
  • a flame rod 7 combustion detector
  • a combustion fan 18 for supplying fuel air to the combustor 2a are provided.
  • a combustion gas supply path 10 is connected to a predetermined position of the heater 2, and the combustion gas is supplied from the combustion gas supply path 10 to the combustor 2 a of the heater 2. Is supplied. Further, the combustion exhaust gas discharged from the combustor 2a rises in a space provided on the outer periphery of the combustor 2a, and is discharged outside from the combustion exhaust gas discharge port 17 of the hydrogen generator 1.
  • the hydrogen generator 1 includes a heater 2 that supplies heat necessary for the reforming reaction in the hydrogen generator 1 by a combustion reaction, and combustion that occurs in the combustion reaction of the combustor 2a.
  • a configuration is employed in which the evaporator 23 is heated by exhaust gas.
  • the flame rod 7 is a device for detecting an ionic current in the flame (in the combustion exhaust gas) formed by the combustion reaction in the combustor 2a.
  • a temperature detection device such as a thermocouple may be used instead of the frame rod 7 to detect the flame temperature, the combustion exhaust gas temperature, or the like.
  • a combustion gas supply path 10 for supplying combustion gas burned by the heater 2 is connected to a predetermined position of the heater 2 provided in the hydrogen generator 1.
  • a hydrogen-containing gas supply path 9 gas path for supplying a hydrogen-containing gas to an external device such as a fuel cell not shown in FIG. ) Is connected.
  • a sealer (valve) 12 using an electromagnetic valve is provided in this Embodiment.
  • the sealer 12 using a solenoid valve is illustrated, it is not limited to such a structure.
  • a solenoid valve having a function of sealing the hydrogen-containing gas supply path 9 such as an electric valve or a three-way valve using them can be used.
  • the combustion gas supplied to the heater 2 via the combustion gas supply path 10 includes a raw material for generating a hydrogen-containing gas, a hydrogen-containing gas generated by the hydrogen generator 100, a fuel cell, or the like.
  • a hydrogen-containing gas (off-gas) that has not been consumed in the external device is used.
  • the hydrogen generator 100 includes the air supplier 8 that supplies air to the hydrogen generator 1 and appropriately controls the flow rate of the air.
  • the air supplier 8 has a sirocco fan having a flow rate adjusting function, and the current pulses, input power, and the like input thereto are appropriately controlled in the same manner as the water supplier 3 and the raw material supplier 4. Thus, the air supply amount to the hydrogen generator 1 can be adjusted.
  • the hydrogen generator 100 includes an operation controller (controller) 11 for appropriately controlling the operation of the hydrogen generator 100.
  • the operation controller 11 is electrically connected to predetermined components of the hydrogen generator 100, and supplies the raw material supplied from the raw material supplier 4 to the hydrogen generator 1, and supplies hydrogen from the water supplier 3.
  • the supply amount of water supplied to the generator 1 and the supply amount of air supplied from the air supply device 8 to the hydrogen generator 1 are controlled.
  • the operation controller 11 monitors the desulfurization performance of the desulfurizer 5, receives a signal from the frame rod 7, and controls the operation of the sealer 12.
  • the operation controller 11 stores operation information such as a startup method, an operation method, and a stop method sequence of the hydrogen generator 100 by a semiconductor memory, a CPU, and the like, and appropriately calculates an appropriate operation condition according to the situation. To do. Then, the operation controller 11 instructs an appropriate operating condition toward components necessary for the operation of the hydrogen generator 100 such as the water supplier 3 and the raw material supplier 4.
  • the form using raw material gas (city gas) mainly composed of methane as the raw material has been exemplified, but the present invention is not limited to such a form, and the raw material may be a hydrocarbon or the like. Any raw material including an organic compound composed of at least carbon and hydrogen may be used. For example, LPG, kerosene, or the like may be used.
  • the operation of the hydrogen generator 100 according to the present embodiment is the same as the operation of the conventional hydrogen generator from the start-up to the power generation operation.
  • the combustion gas is supplied to the heater 2 via the combustion gas supply path 10, and the combustion gas is ignited by the combustor 2 a so that the hydrogen generator 1 Start heating.
  • the raw material supply unit 4 and the water supply unit 3 are operated to supply the raw material and water to the hydrogen generator 1, and the reforming reaction between the steam and the raw material is started.
  • a raw material gas containing methane as a main component is used as a raw material.
  • the amount of water supplied from the water supplier 3 to the hydrogen generator 1 is controlled so that the water vapor is about 2.5 to 3 moles per 1 mole of carbon atoms in the average molecular formula of the city gas.
  • the operation controller 11 of the hydrogen generator 100 controls the operations of the raw material supplier 4 and the water supplier 3 so that the steam carbon ratio (S / C) is about 2.5 to 3.
  • the steam reforming reaction proceeds in the reformer 20, the shift reaction proceeds in the shift converter 25, and the selective oxidation reaction of carbon monoxide proceeds in the selective oxidizer 26.
  • the hydrogen-containing gas discharged from the selective oxidizer 26 is supplied to an external device such as a fuel cell through the hydrogen-containing gas supply path 9.
  • the concentration of carbon monoxide in the hydrogen-containing gas is, for example, when supplying the hydrogen-containing gas to a solid polymer fuel cell as an external device, the carbon monoxide concentration is approximately the volume concentration (dry gas base). Reduce to 20 ppm or less.
  • the production amount of the hydrogen-containing gas is controlled by adjusting the supply amounts of the raw material and water supplied to the hydrogen generator 1.
  • the configuration in which the hydrogen generator 1 includes both the transformer 25 and the selective oxidizer 26 is illustrated, but the configuration is not limited to such a configuration.
  • the hydrogen generator 1 may be configured not to include at least one of the transformer 25 and the selective oxidizer 26 according to the required concentration of carbon monoxide in the external device.
  • the air supply device 8 becomes unnecessary.
  • FIG. 5 is a flowchart schematically showing a characteristic operation stop method of the hydrogen generator according to Embodiment 2 of the present invention. In FIG. 5, only one cycle of the characteristic operation stop method of the hydrogen generator is extracted and shown.
  • a stop command to the hydrogen generator 100 is issued. Is issued (step S1).
  • step S2 when a stop command is issued to the hydrogen generator 100, the operation controller 11 shifts the operation process of the hydrogen generator 100 to step (a), and the water from the water supplier 3 to the evaporator 23 is transferred. Control is performed to stop the supply (step S2).
  • the supply of water from the water supplier 3 to the evaporator 23 is immediately stopped, but the supply of water vapor to the reformer 20 is not immediately stopped, but water remains in the evaporator 23.
  • the hydrogen generator 1 improves the energy efficiency in the reforming reaction, heat exchange is performed between the combustion exhaust gas and water, and water is cascade-heated from a low temperature state to a high temperature state to generate water vapor. is there. Therefore, when the supply of the raw material from the raw material supply device 4 to the reformer 20 is stopped almost simultaneously with the stop of the supply of water from the water supply device 3 to the hydrogen generator 1 (evaporator 23), it remains in the evaporator 23.
  • the catalyst in the reformer 20 is oxidized by the water vapor generated from the water, and the catalyst characteristics are deteriorated.
  • the operation controller 11 performs the operation process of the hydrogen generator 100 in a state where the supply of the raw material from the raw material supplier 4 to the reformer 20 is continued. Control is made to shift to (b) (step S3). At this time, water remaining in the evaporator 23 is vaporized into steam by the residual heat of the evaporator 23, and the vaporized steam is supplied into the reformer 20 and mixed with the raw material. From the viewpoint of suppressing the degree of steam oxidation of the reforming catalyst 20a as compared with the conventional hydrogen generator, the amount of raw material supply in the step (b) is arbitrary, but the generation of steam oxidation of the reforming catalyst 20a.
  • step S3 when the flow of the air-fuel mixture of the water vapor and the raw material in the reformer 20 is started in step S3, the operation controller 11 continues the raw material supply in the reformer 20 by continuing the supply of the raw material. It is determined whether or not the duration time during which the air-fuel mixture of the water vapor and the raw material is flowing (that is, the time during which the raw material supply is continued) has reached a predetermined duration time (step S4).
  • the operation controller 11 determines that the duration of the state in which the mixture of the steam and the raw material is flowing in the reformer 20 has not yet reached the predetermined duration (step) Control is performed such that the state of step S3 is further continued.
  • step S4 when the operation controller 11 determines that the duration of the state in which the mixture of steam and the raw material is flowing in the reformer 20 has reached a predetermined duration (YES in step S4), hydrogen In the state where the operation process of the production apparatus 100 is shifted to the process (c) and the process (d) and the steam is passed through the reformer 20, the supply of the raw material from the raw material supplier 4 to the reformer 20 is performed. Control is performed to stop, and the reformer 20 is sealed with the sealer 12 (step S5 and step 6a). That is, the operation controller 11 controls the reformer 20 to stop the raw material and steam at the same time.
  • the “predetermined duration” as a criterion for the operation controller 11 in step S4 to shift the operation process of the hydrogen generator 100 from the process (b) to the process (c) and the process (d). Is set as the time for the internal atmosphere after sealing the reformer 20 not to be an atmosphere (water vapor concentration) in which the reforming catalyst 20a is steam-oxidized. This is because water remaining in the reformer 20 evaporates after the operation process of the hydrogen generator 100 is shifted to step (c) (sealing the reformer 20), and the water vapor concentration in the reformer 20 is increased. This is because there is a possibility that the reforming catalyst 20a in the reformer 20 is steam-oxidized.
  • the internal atmosphere (water vapor concentration) in which this catalyst is not oxidized by water vapor is different for each catalyst, and the ratio of water vapor to be circulated through the catalyst under the conditions of use is determined using an atmospheric pressure fixed bed flow type reactor or the like. It is possible to grasp in advance by changing and measuring the change in the catalyst characteristics. For example, with respect to the “predetermined duration” in step S4, when the internal atmosphere after sealing the reformer 20 is a Ni-based catalyst, the catalyst characteristics are hardly deteriorated, and the steam carbon ratio (S / C) is 10 or less. Is a preferable “predetermined duration”. This “predetermined duration” varies depending on the catalyst.
  • the transition from the above step (b) to the step (c) is necessary until the water constantly remaining in the hydrogen generator 1 evaporates in the step (b).
  • Time is measured in advance, and a time shorter than the time required for evaporation of the residual water is set as a predetermined duration. After the predetermined duration has elapsed, the steps (b) to (c) and ( The configuration is shifted to d).
  • step (b) shown as step S3 even if water remaining in the hydrogen generator 1 evaporates, the raw material is passed through the reformer 20 together with the water vapor. Can be made to flow.
  • step S5 the raw material supplied from the raw material supplier 4 to the reformer 20 in a state where the water vapor and the raw material supplied from the raw material supplier 4 are passed through the reformer 20 Stop supplying.
  • the operation controller 11 is a step following the step (c) shown as step S5 in order to prevent air from entering the hydrogen generator 1 from the outside of the hydrogen generator 100.
  • the step (d) is not necessarily performed immediately after the step (c).
  • step S4 For example, if the predetermined duration in step S4 is set as the time necessary for evaporation of the residual water in the reformer 20, and control is made to shift to step (c) after the predetermined time has elapsed, further residual water Since the raw material in the reformer 20 is not discharged to the outside of the reformer 20 due to evaporation, in such a case, the step (d) may not be executed immediately after the step (c). Absent.
  • the operation controller 11 shifts the operation process of the hydrogen generator 100 to the process (e) of step S6b, and the sealing is performed.
  • the reactor 12 is opened and the supply of the raw material from the raw material supplier 4 to the hydrogen generator 1 (reformer 20) is temporarily resumed to control the inside of the hydrogen generator 1 to be replaced with the raw material (step) S6b).
  • the transition from the step (d) to the step (e) is such that the temperature detected by the second temperature detector 21 is a temperature at which carbon does not precipitate (for example, a temperature of 300 ° C. or lower for a Ni-based catalyst).
  • parameters may be set and managed according to the parameters.
  • the catalyst is removed using EMIA-920V manufactured by Horiba.
  • the temperature at which carbon is deposited is determined by quantifying the amount of carbon deposited on the catalyst by an infrared absorption method by high-frequency heating combustion in an oxygen stream, and set below that temperature.
  • the catalyst is observed with a transmission electron microscope to determine whether carbon is precipitated, and a temperature at which the carbon derived from the raw material does not precipitate is set. be able to.
  • step S6a in a series of steps after step S1 to step S5.
  • the hydrogen generator 1 is generated by a large amount of water vapor generated from the evaporator 23.
  • the inside of is in a high pressure state.
  • the step (d) of operating the sealer 12 is performed after most of the water remaining in the evaporator 23 is evaporated in step S3 as in the present embodiment, the inside of the hydrogen generator 1 is increased. The pressure increase can be prevented beforehand. Thereby, since the hydrogen generator 1 can be comprised with low pressure
  • step S5 shown in FIG. 5 the operation controller 11 controls the reformer 20 to stop the raw material and steam at the same time.
  • the raw material supplier 4 Alternatively, the supply of the raw material to the reformer 20 may be stopped by gradually decreasing the supply amount of the raw material. Since the amount of water evaporation decreases as the residual water decreases, it is preferable to reduce the supply amount of the raw material in accordance with the decrease. [Modification] Next, Modification 1 of the operation of the hydrogen generator 100 according to Embodiment 2 of the present invention will be described.
  • the duration of the step (b) shown as step S3 corresponds to the operating conditions of the hydrogen generator 100 before the transition to the step (a) shown as step S2 in FIG. Only the points that are set are different. Therefore, here, the points different from the operation of the hydrogen generator 100 shown in FIG. 5 will be extracted and described.
  • FIG. 6 is a flowchart schematically showing a first modification of the characteristic operation stop method of the hydrogen generator according to Embodiment 2 of the present invention.
  • step S1 when a stop command is issued to the hydrogen generator 100 (step S1), the operation controller 11 performs a process (step S3 in FIG. 6) ( As the first stage of step S2 before shifting to a), the supply amount of water from the water supplier 3 to the evaporator 23, which is one of the operating conditions of the hydrogen generator 100, is grasped (step S2a). By this step S2a, the operation controller 11 estimates the amount of water remaining in the evaporator 23 of the hydrogen generator 1. The amount of water supplied from the water supplier 3 to the evaporator 23 can be grasped from the operation status of the water supplier 3.
  • step S2a when the amount of water still remaining in the evaporator 23 of the hydrogen generator 1 is estimated in step S2a, the operation controller 11 performs the second step of step S2 based on the estimated amount of water.
  • the duration of the step (b) is determined (step S2b).
  • the predetermined duration determined in step S2b is stored in the semiconductor memory of the operation controller 11.
  • the appropriate amount of water evaporation in the above-described step (b) is the amount of water evaporation required because the internal atmosphere after sealing the reformer 20 does not become an atmosphere in which the reforming catalyst undergoes steam oxidation (water vapor concentration). Defined as a quantity.
  • step S2b the operation controller 11 sequentially performs steps S3 to S7b in the same manner as the operations shown in steps 2 to S6b of the hydrogen generator 100 shown in FIG. Control to run.
  • the supply amount of the raw material from the raw material supply device 4 to the hydrogen generator 1 (reformer 20) is linked with the supply amount of water from the water supply device 3 to the evaporator 23. ing. Therefore, in this modification, the amount of water remaining in the evaporator 23 is based on the amount of raw material supplied from the raw material supplier 4 to the hydrogen generator 1 (reformer 20), which is the operating condition of the hydrogen generator 100. It is good also as a structure which estimates. This is because, as described above, for example, the supply amount of the raw material to the hydrogen generator 1 is controlled in conjunction with the supply amount of water to the evaporator 23 so as to obtain a predetermined S / C. By indirectly grasping the water supply amount from the raw material supply amount, the amount of water remaining in the evaporator 23 can be estimated based on the water supply amount.
  • the temperature of the evaporator 23 provided in the hydrogen generator 1 increases in proportion to the elapsed time from the startup of the hydrogen generator 100. For example, when the elapsed time from the startup of the hydrogen generator 100 is short, the temperature of the evaporator 23 is low, and when the elapsed time from the startup of the hydrogen generator 100 is long. The temperature of the evaporator 23 becomes high. Therefore, in the first modification, the operation condition of the hydrogen generating device 100 is the operating time from the start of the hydrogen generating device 100 to the transition to step (a) shown as step S3 in FIG. 6 (stop command). Based on this, the amount of water remaining in the evaporator 23 may be estimated.
  • the amount of water remaining in the evaporator 23 increases immediately after the start of the hydrogen generator 100 when the evaporator 23 is not sufficiently heated. In such a case, it is possible to appropriately grasp that a large amount of water remains in the evaporator 23 based on the operation time from the start of the hydrogen generator 100 to before the transition to the step (a). it can.
  • the heating state of the evaporator 23 can be grasped by the first temperature detector 24. Therefore, instead of the first modification, the amount of water remaining in the evaporator 23 may be estimated based on the temperature detected by the first temperature detector 24 included in the hydrogen generator 1. Even with such a configuration, the same effect as in the first modification can be obtained.
  • FIG. 7 is a flowchart schematically showing a second modification of the characteristic operation stop method of the hydrogen generator according to Embodiment 2 of the present invention.
  • step S3 the operation controller 11 performs a process (step S3 in FIG. 7) ( As the first stage of step S2 before shifting to a), the supply amount of water from the water supplier 3 to the evaporator 23, which is one of the operating conditions of the hydrogen generator 100, is grasped (step S2a). By this step S2a, the operation controller 11 estimates the amount of water remaining in the evaporator 23 of the hydrogen generator 1. The amount of water supplied from the water supplier 3 to the evaporator 23 can be grasped from the operation status of the water supplier 3.
  • step S2a when the amount of water still remaining in the evaporator 23 of the hydrogen generator 1 is estimated in step S2a, the operation controller 11 performs the second step of step S2 based on the estimated amount of water.
  • the transition timing to the step (c) and the step (d) is determined by calculating the time necessary for evaporating an appropriate amount of water in the step (b) shown as step S ⁇ b> 4 (step S ⁇ b> 4). S2b).
  • the transition timing to the step (c) determined in step S2b is stored in the semiconductor memory of the operation controller 11.
  • the appropriate amount of water evaporation in the above-described step (b) is the water necessary for the internal atmosphere after sealing the reformer 20 not to be an atmosphere (water vapor concentration) in which the reforming catalyst 20a is steam-oxidized. It is defined as the amount of evaporation.
  • step S2b the operation controller 11 performs steps S3 to S3 in the same manner as the operations shown in steps 2 to S6b of the hydrogen generator 100 shown in FIG. Step S7b is controlled to be executed sequentially.
  • the supply amount of the raw material from the raw material supply device 4 to the hydrogen generator 1 (reformer 20) is the water supply device. 3 is linked to the amount of water supplied to the evaporator 23. Therefore, also in the second modification, the amount of water remaining in the evaporator 23 is based on the supply amount of the raw material from the raw material supplier 4 to the hydrogen generator 1 (reformer 20), which is the operating condition of the hydrogen generator 100. It is good also as a structure which estimates.
  • the temperature of the evaporator 23 provided in the hydrogen generator 1 increases in proportion to the elapsed time from the startup of the hydrogen generator 100. Therefore, also in this modification, based on the operation time from the start of the hydrogen generator 100, which is the operating condition of the hydrogen generator 100, to the step (a) shown in FIG. 7 as step S3 (stop command). The amount of water remaining in the evaporator 23 may be estimated.
  • the heating state of the evaporator 23 can be grasped by the first temperature detector 24. Therefore, as in the case of the first modification of the second embodiment, instead of this modification, the amount of water remaining in the evaporator 23 is determined based on the temperature detected by the first temperature detector 24 provided in the hydrogen generator 1. It is good also as a structure to estimate. Even with such a configuration, the same effect as in the second modification can be obtained.
  • the duration of the step (b) is set according to the operating conditions of the hydrogen generator 100 at the time of stoppage, or the step (c ),
  • the amount of water remaining in the evaporator 23 can be estimated to some extent accurately according to the situation. For example, when the amount of hydrogen-containing gas generated immediately before the stop command is large, the amount of water remaining in the evaporator 23 is large. On the other hand, when the amount of hydrogen-containing gas generated is small, the amount of water remaining is small. This is because the amount of water to be reduced is also reduced.
  • the operation mode of the hydrogen generator 100 shown in the first and second modifications of the second embodiment is an evaporator.
  • the operation mode is even more preferable than the operation mode in which the time of the step (b) for evaporating water in 23 or the transition timing to the step (c) for stopping the supply of the raw material is constant.
  • ⁇ Configuration of hydrogen generator 100> The hardware configuration of the hydrogen generator according to Embodiment 3 of the present invention is the same as the hardware configuration of the hydrogen generator according to Embodiment 2. Therefore, description of the hardware configuration of the hydrogen generator according to Embodiment 3 of the present invention is omitted here.
  • the operation method of the hydrogen generator according to Embodiment 3 of the present invention is basically the same as the operation method of the hydrogen generator 100 according to Embodiment 2. However, compared with the operation method of the hydrogen generator 100 according to the second embodiment, the operation method of the hydrogen generator according to the third embodiment of the present invention is different in a part of the operation method at the time of stoppage.
  • FIG. 8 is a flowchart schematically showing a characteristic operation stop method of the hydrogen generator according to Embodiment 3 of the present invention.
  • step S1 when it is determined that generation of hydrogen-containing gas is unnecessary any more, for example, by stopping the operation of an external device such as a fuel cell in accordance with the power load of each household.
  • a stop command is issued to the hydrogen generator 100 (step S1).
  • the operation controller 11 shifts the operation process of the hydrogen generator 100 to step (a) in the same manner as in the second embodiment, Control is performed to stop the supply of water from the supply device 3 to the evaporator 23 (step S2).
  • step S3 the operation controller 11 continues to supply the raw material from the raw material supplier 4 to the reformer 20.
  • step S3 shown in FIG. 8 are the same as those in the second embodiment. However, the difference is that after step S3 shown in FIG. It is. Specifically, it is not based on the operating conditions of the hydrogen generator 100 such as the duration, the supply amount of raw materials and water immediately before the stop, and the operating time from the start to the transition to the step (a).
  • step S3b When the output is detected (step S3b) and an ion current equal to or higher than a preset current threshold is detected by the frame rod 7 (YES in step S3c), the evaporation state of water is grasped, and the step (b)
  • the operation step of the hydrogen generator 100 is shifted from step S4 to step (c) shown as step S4.
  • the operation controller 11 further detects the output of the frame rod 7.
  • the surplus hydrogen-containing gas (off-gas) is obtained except when nearly 100% of the hydrogen-containing gas generated therein is consumed in an external apparatus such as a fuel cell. It is burned by the heater 2 and used for the reforming reaction or the like. This is to increase the energy efficiency during hydrogen generation.
  • the hydrogen generator 100 constantly generates the hydrogen-containing gas
  • a part of the generated hydrogen-containing gas is supplied from the combustion gas supply path 10 to the heater 2,
  • the heater 2 is combusted.
  • whether or not the combustion reaction is continued by detecting the ionic current in the flame formed by the combustion reaction in the combustor 2a of the heater 2 using the frame rod 7. Is detected.
  • the ionic current in the flame is proportional to the amount of hydrocarbon radicals in the flame, and increases or decreases in proportion to the concentration of hydrocarbons in the hydrogen-containing gas.
  • the concentration of hydrocarbons in the hydrogen-containing gas is greatly influenced by the steam carbon ratio in the reforming reaction, so in the step (b) in which the ratio of the raw material and steam changes with time (with time). The detected ion current value changes greatly with time.
  • the amount of water evaporation decreases with time, but the supply of the raw material from the raw material supplier 4 to the hydrogen generator 1. Will continue, so the steam carbon ratio will decrease. As a result, the concentration of hydrocarbon components in the hydrogen-containing gas increases. And in the heater 2, since the hydrogen containing gas with which the density
  • step S3b and step S3c are performed after step S2, the evaporation state of water is grasped over time, and the evaporation state of water is in an appropriate state.
  • the operation method of shifting to the step (c) as step S4 for stopping the supply of the raw material is realized.
  • the appropriate water evaporation state in step S2 described above refers to the amount of water necessary for the internal atmosphere after sealing the reformer 20 not to be an atmosphere in which the reforming catalyst undergoes steam oxidation (water vapor concentration). Is defined as the evaporated state.
  • the residual amount of water in the evaporator 23 of the hydrogen generator 1 and the existing ratio of the raw material and water when the operation of the hydrogen generator 100 is stopped are appropriately grasped. Therefore, it is possible to obtain a high prevention effect with respect to the deterioration of the catalyst characteristics due to the carbon deposition and the catalytic oxidation of water vapor.
  • step (c) is executed in step S4
  • the operation controller 11 sequentially executes steps S5a and S5b in the same manner as the operations shown in steps S6a and S6b of the hydrogen generator 100 shown in FIG. Control to do.
  • the relationship between the above ionic current value and the remaining amount of water varies depending on the characteristics of the catalyst used in the hydrogen generator 100, the water evaporation state, the temperature of the reformer 20, the configuration of the frame rod 7, and the like. Therefore, it is necessary to appropriately set for each hydrogen generator from the viewpoint of effectively suppressing the deterioration of the catalyst characteristics due to the carbon deposition and the catalytic oxidation of water vapor.
  • the same effect as in the second embodiment can be obtained.
  • FIG. 9 is a flowchart schematically showing an operation stop process of the hydrogen generator according to the modification of the third embodiment.
  • the hydrogen generator 100 of the present modification exemplifies a mode in which the raw material supply from the raw material supplier 4 to the reformer 20 is continued until the combustion detector 7 detects the combustion stop of the combustor 2a. .
  • the controller 11 determines that the amount of raw material supplied to the combustor 2a is less than the lower combustion limit of the raw material for the combustion air supplied to the combustor 2a.
  • the raw material supplier 4 is controlled so that If the combustion detector 7 can detect the combustion stop of the combustor 2a, for example, a configuration using a flame rod or a temperature detection device such as a thermocouple is used to detect a flame temperature, a combustion exhaust gas temperature, or the like. Any form can be used.
  • step S103 since the raw material below the lower combustion limit is supplied to the reformer 20, when the steam generation is stopped in the evaporator 23, the combustion air supplied to the combustor 2a in step S103 is reduced. Only raw materials below the lower combustion limit are pushed out (not supplied) from the reformer 20 to the combustor 2a. For this reason, in the combustor 2a, combustion cannot be continued, combustion stops, and flame temperature and combustion exhaust gas temperature fall rapidly. Therefore, in the hydrogen generator 100 of the present modification, when the combustion state of the combustor 2a is acquired in step S103a and combustion is stopped (YES in step S103b), the supply of the raw material from the raw material supply device 4 to the reformer 20 is performed. Is stopped and the valve 12 is closed (step S104).
  • FIG. 10 is a schematic diagram showing a schematic configuration of a fuel cell system according to Embodiment 4 of the present invention.
  • the fuel cell system 200 according to Embodiment 4 of the present invention generates power using the hydrogen generator 100 according to Embodiment 1 and the hydrogen-containing gas supplied from the hydrogen generator 100.
  • a fuel cell 102 A fuel cell 102.
  • the fuel cell 102 has an anode 102A and a cathode 102B.
  • the fuel cell 102 is configured to supply an oxidant gas (here, air) to the fuel gas flow channel 41 and the cathode 102B configured to supply a fuel gas (hydrogen-containing gas) to the anode 102A.
  • the oxidant gas flow path 42 is provided.
  • the upstream end of the fuel gas passage 41 of the fuel cell 102 is connected to the hydrogen generator 100 (reformer 20) via the gas path 9, and the off-fuel gas path 29 is connected to the downstream end of the fuel cell. ing.
  • the upstream end of the oxidant gas passage 42 is connected to the oxidant gas supply device 101 via the oxidant gas supply passage 28, and the off-oxidant gas passage 30 is connected to the downstream end thereof. .
  • the hydrogen-containing gas supplied to the anode 102A and the air supplied to the cathode 102B react electrochemically to generate electricity and heat.
  • the surplus hydrogen-containing gas that has not been used in the anode 102A and the surplus oxidant gas that has not been used in the cathode 102B are discharged outside the fuel cell system 200 (in the atmosphere).
  • the surplus hydrogen-containing gas that has not been used in the anode 102A is preferably discharged into the atmosphere after performing a combustion process or a dilution process with air using an off fuel gas processor (not shown).
  • the hydrogen generator 100 includes the combustor 2a
  • the hydrogen-containing gas that has not been used in the anode 102A may be used as a combustion fuel for the combustor 2a.
  • the controller 11 is configured to control not only the hydrogen generator 100 but also other devices constituting the fuel cell system 200. And the controller 11 is comprised so that the stop process of the hydrogen generator 100 may be performed as described in Embodiment 1 when the fuel cell system 200 is stopped.
  • the fuel cell system 200 according to Embodiment 4 has the same effects as the hydrogen generator 100 according to Embodiment 1.
  • the fuel cell system 200 according to the fourth embodiment is configured to include the hydrogen generation device 100 according to the first embodiment, but is not limited thereto, and the hydrogen generation according to the second to fourth embodiments is performed. It is good also as a structure provided with the hydrogen generator 100 of either of the apparatus 100 and the hydrogen generator 100 of the modification in Embodiment 1 thru
  • the hydrogen generator according to the present invention, the fuel cell system including the hydrogen generator, and the operation method of the hydrogen generator are useful in the field of fuel cells because, when stopped, deterioration of the reforming catalyst due to steam oxidation is suppressed more than before. It is.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Abstract

 本発明の水素生成装置は、原料を供給する原料供給器(4)と、水を供給する水供給器(3)と、水供給器(3)から水が供給された水を蒸発させ、水蒸気を生成する蒸発器(23)と、原料と水蒸気を用いた改質反応により、水素含有ガスを生成させる改質触媒を有する改質器(20)と、改質器(20)の下流側のガス経路において、該改質器(20)と大気とを連通/遮断する弁(12)と、水供給器(3)からの水の供給を停止した後、弁(12)を開放した状態で原料供給器(4)からの原料の供給を継続させ、改質器(20)内が原料でパージされる前に原料供給器(4)からの原料の供給を停止するとともに、弁(12)を閉止するように構成されている制御器(11)と、を備える。

Description

水素生成装置、それを備える燃料電池システム、及び水素生成装置の運転方法
 本発明は、原料を用いて水素含有ガスを生成する水素生成装置、それを備える燃料電池システム、及び水素生成装置の運転方法に関する。
 従来から、小型でありかつ高効率な発電が可能である燃料電池システムは、分散型エネルギー供給源の発電システムとして、鋭意開発が進められている。
 この燃料電池システムの発電運転時に必要となる燃料としての水素ガスは、既存のインフラ(Infrastructure)として整備されていない。そのため、通常は、例えば都市ガス、プロパンガス等の既存のインフラから供給される原料を利用して、水素含有ガスを生成させる水素生成装置が、その燃料電池システムに併設されている。
 この水素生成装置は、Ru触媒やNi触媒を用いて、600℃~700℃の温度で原料と水蒸気とを改質反応させる、改質器を備えている。この改質器における改質反応により、水素含有ガスが生成される。又、この水素生成装置は、Cu-Zn系触媒や貴金属系触媒を用いて、200℃~350℃の温度で水素含有ガス中の一酸化炭素と水蒸気との変成反応を進行させて一酸化炭素を低減させる、変成部を備えている。更に、この水素生成装置には、Ru触媒やPt触媒を用いて、100℃~200℃の温度で一酸化炭素を選択的に酸化反応させて水素含有ガス中の一酸化炭素を更に低減させる、選択酸化器等の反応部が設けられている。
 ところで、このような燃料電池システムの停止時に、改質器への原料及び水の供給を停止した後も、蒸発器内の水が水素生成装置の余熱により体積膨張し、改質器内の残留ガスをパージすることが知られている。(例えば、特許文献1参照)。
特開2007-254251号公報
 しかしながら、上記特許文献1に記載の水素生成装置は、改質器内部が停止直後の高温の状態で水蒸気雰囲気になるが、このような状態は、改質触媒が水蒸気酸化により劣化する可能性があるため好ましくない。
 本発明は、上記事情を鑑みてなされたものであり、停止時に、改質触媒の水蒸気酸化による劣化が従来よりも抑制される水素生成装置、燃料電池システム、及び水素生成装置の運転方法を提供することを目的とする。
 上記従来の課題を解決するために、本発明に係る水素生成装置は、原料を供給する原料供給器と、水を供給する水供給器と、前記水供給器から水が供給された水を蒸発させ、水蒸気を生成する蒸発器と、前記原料と前記水蒸気を用いた改質反応により、水素含有ガスを生成させる改質触媒を有する改質器と、前記改質器の下流側のガス経路において、該改質器と大気とを連通/遮断する弁と、前記水供給器からの水の供給を停止した後、前記弁を開放した状態で前記原料供給器からの前記原料の供給を継続させ、該供給された原料により前記改質器内がパージされる前に前記原料供給器からの前記原料の供給を停止するとともに、前記弁を閉止するように構成されている制御器と、を備える。
 また、本発明に係る水素生成装置では、前記改質器を加熱する燃焼器と、前記改質器より排出されたガスが流れ、前記燃焼器と連通する排出経路と、前記燃焼器内の燃焼状態をイオン電流で検知する燃焼検知器と、を備え、前記制御器は、前記燃焼検知器により所定の閾値以上のイオン電流が検知されると前記原料供給器からの前記原料の供給を停止するとともに前記弁を閉止してもよい。
 また、本発明に係る水素生成装置では、前記制御器は、前記水供給器の水の供給を停止する前の前記水素生成装置の運転条件に応じて前記原料供給器からの前記原料の供給を継続する時間を制御してもよい。
 また、本発明に係る水素生成装置では、前記水素生成装置の運転条件とは、原料供給量、水供給量、及び前記水素生成装置の運転時間のいずれかであってもよい。
 また、本発明に係る水素生成装置では、前記制御器は、前記弁を閉止した後に、前記改質器内の温度が前記原料より炭素析出を生じない所定の温度以下になると、前記原料供給器を制御して、前記改質器内を前記原料でパージするように構成されてもよい。
 また、本発明に係る水素生成装置では、前記制御器は、前記蒸発器内での水蒸気生成が停止する前に、前記原料供給器からの前記原料の供給を停止するとともに前記弁を閉止してもよい。
 また、本発明に係る水素生成装置では、前記制御器は、前記蒸発器内での水蒸気生成が停止するまで、前記原料供給器からの前記原料の供給を継続してもよい。
 さらに、本発明に係る水素生成装置では、前記制御器は、少なくとも前記蒸発器内での水蒸気生成が停止するまで、前記原料供給器からの前記原料の供給を継続してもよい。
 また、本発明に係る燃料電池システムは、前記水素生成装置と、前記水素生成装置より供給される水素含有ガスを用いて発電する燃料電池と、を備える。
 さらに、本発明に係る水素生成装置の運転方法は、原料を供給する原料供給器と、水を供給する水供給器と、前記水供給器から水が供給された水を蒸発させ、水蒸気を生成する蒸発器と、前記原料と前記水蒸気を用いた改質反応により、水素含有ガスを生成させる改質触媒を有する改質器と、前記改質器の下流側のガス経路において、該改質器と大気とを連通/遮断する弁と、を備える、水素生成装置の運転方法であって、前記水供給器からの前記水の供給を停止する工程(a)と、前記工程(a)後、前記弁を開放した状態で前記原料供給器からの前記原料の供給を継続させる工程(b)と、前記改質器内が前記原料でパージされる前に前記原料供給器からの前記原料の供給を停止するとともに、前記弁を閉止する工程(c)と、を備える。
 本発明の上記目的、他の目的、特徴、及び利点は、添付図面参照の下、以下の好適な実施形態の詳細な説明から明らかにされる。
 本発明によれば、停止時に、改質触媒の水蒸気酸化による劣化が、従来よりも抑制される水素生成装置、それを備える燃料電池システム、及び水素生成装置の運転方法を提供することが可能になる。
図1は、本発明の実施の形態1に係る水素生成装置の構成を、模式的に示すブロック図である。 図2は、図1に示す水素生成装置の運転停止処理を模式的に示すフローチャートである。 図3は、本発明の実施の形態2に係る水素生成装置の構成を、模式的に示すブロック図である。 図4は、本発明の実施の形態2に係る水素生成装置が備える水素生成器の内部構成を、模式的に示す断面図である。 図5は、本発明の実施の形態2に係る水素生成装置の特徴的な運転停止方法を、模式的に示すフローチャートである。 図6は、本発明の実施の形態2に係る水素生成装置の特徴的な運転停止方法の第1の変形例を、模式的に示すフローチャートである。 図7は、本発明の実施の形態2に係る水素生成装置の特徴的な運転停止方法の第2の変形例を、模式的に示すフローチャートである。 図8は、本発明の実施の形態3に係る水素生成装置の特徴的な運転停止方法を、模式的に示すフローチャートである。 図9は、本発明の実施の形態3の変形例の水素生成装置の運転停止処理を模式的に示すフローチャートである。 図10は、本発明の実施の形態4に係る燃料電池システムの概略構成を示す模式図である。
 以下、図面を参照しながら、本発明を実施するための形態について具体的に説明する。なお、全ての図面において、同一または相当部分には同一符号を付し、重複する説明は省略する。また、全ての図面において、本発明を説明するために必要となる構成要素のみを抜粋して図示しており、その他の構成要素については図示を省略している。さらに、本発明は以下の実施の形態に限定されない。
 (実施の形態1)
 <水素生成装置の構成>
 図1は、本発明の実施の形態1に係る水素生成装置の構成を、模式的に示すブロック図である。
 図1に示すように、本発明の実施の形態1に係る水素生成装置100は、原料を供給する原料供給器4と、水を供給する水供給器3と、水供給器3から水が供給された水を蒸発させ、水蒸気を生成する蒸発器23と、原料と水蒸気を用いた改質反応により、水素含有ガスを生成させる改質触媒20aを有する改質器20と、改質器20の下流側のガス経路9において、該改質器20と大気とを連通/遮断する弁12と、制御器11と、を備えている。また、水素生成器1は、燃焼器2a、改質器20、及び蒸発器23を有している。
 そして、制御器11は、水供給器3からの水の供給を停止した後、弁12を開放した状態で原料供給器4からの原料の供給を継続させ、該供給された原料により改質器20内がパージされる前に原料供給器4からの原料の供給を停止するとともに、弁12を閉止するように構成されている。
 ここで、原料は、当該原料と水蒸気とを用いて改質反応により水素含有ガスを生成できるものであればよい。原料として、例えば、エタン、プロパン等の炭化水素やメタノール等のアルコール系原料といった、少なくとも炭素及び水素を構成元素とする有機化合物を含むものを使用することができる。なお、上記原料としては、炭素数が2以上の炭化水素を含んでいてもよい。炭素数が2以上の炭化水素としては、例えば、エタン、プロパンが挙げられる。また、上記原料供給おいてメタノール等の液体原料を用いる場合、改質器20内部は高温であるため、液体原料が改質器20内部に供給されると、液体原料は気化してガスとして供給される。
 原料供給器4は、ガスインフラライン6と接続されていて、改質器20に流量を調整しながら原料を供給するように構成されている。原料供給器4としては、流量を調整しながら原料を供給し、原料の供給を遮断することができればどのような形態であってもよく、例えば、流量調整弁単体で構成されていてもよく、また、ブースターポンプと流量調整弁との組合せで構成されていてもよい。
 水供給器3は、水供給源(例えば、水道、水タンク)から浄化器により浄化された水を流量を調整しながら、蒸発器23に供給するように構成されている。水供給器3としては、流量を調整しながら水を供給し、水の供給を遮断することができればどの様な形態であってもよく、例えば、流量調整弁単体で構成されていてもよく、また、ポンプと流量調整弁との組合せで構成されていてもよい。また、蒸発器23は、水素含有ガスの生成動作停止後も余熱を有していて、水供給器3から供給された水を気化して、改質器20に水蒸気を供給するように構成されている。
 燃焼器2aには、燃焼用燃料を供給するための燃焼ガス供給経路10と燃焼用空気を供給するための燃焼用空気供給器18が接続されている。燃焼用空気供給器18としては、例えば、ブロワやシロッコファン等のファン類を用いることができる。そして、燃焼器2aでは、燃焼用燃料(例えば、原料や改質器20から排出された水素含有ガス)と燃焼用空気が供給され、これらが燃焼して、燃焼排ガスが生成される。生成された燃焼排ガスは、改質器20や蒸発器23を加熱した後、燃焼排ガス経路(図示せず)を通流して水素生成装置100外に排出される。なお、燃焼用燃料としては、原料や改質器20で生成された水素含有ガスが挙げられる。
 改質器20は、改質触媒20aを有している。改質触媒20aとしては、例えば、原料と水蒸気とから水素含有ガスを発生させる水蒸気改質反応を触媒する物質であって、アルミナ等の触媒担体にルテニウム(Ru)を担持させたルテニウム系触媒や同様の触媒担体にニッケル(Ni)を担持させたニッケル系触媒等を使用することができる。なお、低コスト化の観点から、改質触媒としては、ニッケル元素を触媒金属として含む、ニッケル系触媒を使用することが好ましい。そして、改質器20の改質触媒20aでは、原料供給器4から供給された原料と、蒸発器23から供給された水蒸気と、の改質反応により、水素含有ガスが生成される。生成された水素含有ガスはガス経路9を介して、水素利用機器(例えば、燃料電池や水素貯蔵タンク)に供給される。なお、本明細書における水素含有ガスには、水素ガス、原料、水蒸気等のガスが含まれる。
 ガス経路9の途中には、該ガス経路9を介して改質器20と大気とを連通/遮断する弁12が設けられている。弁12は、改質器20と大気とを連通/遮断することができれば、どのような形態であってもよく、例えば、電磁弁等の開閉弁を用いることができる。
 制御器11は、燃焼器2a、水供給器3、原料供給器4、弁12、燃焼用空気供給器18を制御する機器であればどのような形態であってもよく、例えば、マイクロプロセッサ、CPU等で構成することができる。なお、制御器11は、単独の制御器で構成される形態だけでなく、複数の制御器が協働して水素生成装置100の制御を実行する制御器群で構成される形態であっても構わない。また、制御器11は、マイクロプロセッサ、CPU等に例示される演算処理部だけでなく、メモリー等からなる記憶部及び計時部を有していてもよい。
 <水素生成装置の動作>
 次に、本実施の形態1に係る水素生成装置100の動作について、図2を参照しながら説明する。なお、ここでは、水素生成装置100の停止処理について説明し、本実施の形態1に係る水素生成装置100の水素含有ガスの生成動作については、一般的な水素生成装置100の水素含有ガスの生成動作と同様に行われるため、その説明は省略する。
 図2は、図1に示す水素生成装置100の運転停止処理を模式的に示すフローチャートである。
 まず、各家庭の電力負荷に応じて、燃料電池等の外部装置の動作を停止する等により、水素含有ガスの生成がこれ以上不要と判断される場合には、水素生成装置100への停止命令が発せられる(ステップS101)。
 次に、水素生成装置100への停止命令が発せられると、制御器11は、水供給器3に水の供給を停止するように制御する(ステップS102:工程(a))。このとき、水供給器3から蒸発器23への水の供給は直ちに停止されるが、蒸発器23の余熱により、蒸発器23内に存在する水が水蒸気に気化されて、改質器20に供給される。このため、水供給器3から改質器20への水の供給停止とほぼ同時に、原料供給器4から改質器20への原料の供給を停止すると、蒸発器23内の残留水からの水蒸気生成に伴い改質器20内が水蒸気雰囲気になり、改質触媒20aが水蒸気により酸化されて、触媒特性が低下するおそれがある。
 そこで、本実施の形態1に係る水素生成装置100では、制御器11は、水供給器3から蒸発器23への水の供給を停止させた後も、原料供給器4から改質器20への原料の供給を継続させる(ステップS103:工程(b))。これにより、改質器20内の改質触媒20aが水蒸気により酸化されることを抑制することができる。また、改質器20内(正確には、改質触媒20a)の温度が、改質触媒20aの表面に原料由来の炭素が析出する温度領域であっても、改質器20内は、原料と水蒸気が混在するので、改質触媒20aの表面に炭素が析出することも抑制できる。なお、従来の水素生成装置に比べ、改質触媒20aの水蒸気酸化の程度を抑制するという観点からは、ステップS103における原料供給量は任意であるが、改質触媒20aの水蒸気酸化の発生を抑制するという観点からは、ステップS103での蒸発器23から改質器20への水蒸気供給量に対する原料供給量(スチームカーボン比(S/C))が水蒸気酸化の発生を抑制する値(例えば、S/C=10以下)になるように、制御器11は原料供給器4を制御することが好ましい。また、ステップS103において、改質触媒20aの原料からの炭素析出を抑制する観点からは、改質触媒20aの表面における原料からの炭素析出が抑制されるS/C(例えば、S/C=2以上)になるように、制御器11は、原料供給器4からの原料供給量を制御することも好ましい。
 次に、制御器11は、原料供給器4から改質器20への原料の供給を停止させるとともに、弁12を閉止して、改質器20を含むガス経路を封止する(ステップS104)。そして、制御器11は、本プログラムを終了する。これにより、水素生成装置100外部から改質器20内に空気が混入することを抑制することができる。
 なお、原料供給器4から改質器20への原料の供給の停止は、水供給器3から蒸発器23への水の供給を停止した後の原料供給器4から改質器20への原料の供給により、改質器20内が原料でパージされる前であれば、どのタイミングで行われてもよい。これにより、改質器20内を原料でパージするまで原料を改質器20に供給する場合に比べ、原料由来の炭素が改質触媒20aの表面上に析出するのが抑制される。
 このように本実施の形態1に係る水素生成装置100では、原料供給器4から改質器20への原料の供給の停止を、水供給器3から蒸発器23への水の供給の停止よりも遅らせることにより、蒸発器23で発生した水蒸気が改質器20へ供給されている間も、原料供給器4から改質器20へ原料が供給される。このため、改質器20への原料及び水の供給を同時に停止する従来の水素生成装置に比べ、改質器20の改質触媒20aが水蒸気による酸化されることが抑制される。
 なお、本実施の形態1に係る水素生成装置100では、改質器20で生成された水素含有ガス(改質ガス)が、水素利用機器に送出される構成としたが、これに限定されず、水素生成器1内に改質器20より送出された水素含有ガス中の一酸化炭素を低減するための変成触媒(例えば、銅-亜鉛系触媒)を有する変成器や、酸化触媒(例えば、ルテニウム系触媒)や、メタン化触媒(例えば、ルテニウム系触媒)を有する一酸化炭素除去器を通過した後の水素含有ガスが水素利用機器に送出される形態であってもよい。
 [変形例]
 次に、本実施の形態1に係る水素生成装置100の変形例について、説明する。
 変形例1の水素生成装置100は、制御器11が、蒸発器23内での水蒸気生成が停止する前に、原料供給器4からの原料の供給を停止する形態を例示するものである。具体的には、変形例1の水素生成装置100は、実施の形態1に係る水素生成装置100と構成は同じであり、制御器11が、図2で示したステップS104において、蒸発器23での水蒸気の生成が停止する前に、原料供給器4から改質器20への原料の供給を停止するように構成されている。
 ここで、「蒸発器23内での水蒸気生成が停止する前に原料の供給を停止する」方法としては、例えば、ガス経路9にガスの流量を検知する流量計を設けておき、該流量計が、原料供給器4から供給される原料の流量と同じ流量を検知するまでの時間(以下、水蒸気生成停止時間)を実験等で予め定めておき、該水蒸気生成停止時間が経過する前に、原料の供給を停止する方法が挙げられる。また、例えば、ガス経路9にガスの流量を検知する流量計を設けておき、原料供給器4からの原料の供給と水供給器3からの水の供給を同時に遮断(停止)して、遮断後、流量計がガスの流量を検知しなくなるまでの時間(以下、水蒸気生成停止時間)を実験等で予め定めておき、該水蒸気生成停止時間が経過する前に、原料の供給を停止する方法が挙げられる。さらに、例えば、改質器20内に圧力検知器を設けておき、原料供給器4からの原料の供給と水供給器3からの水の供給を同時に遮断(停止)し、弁12を閉止して、改質器20を含むガス経路を封止した後、圧力検知器が圧力の上昇を検知しなくなるまでの時間(以下、水蒸気生成停止時間)を実験等で予め定めておき、該水蒸気生成停止時間が経過する前に、原料供給器4から改質器20への原料の供給を停止する方法が挙げられる。なお、制御器11が、原料供給器4に原料供給の停止指令を出力するタイミングは、水蒸気生成停止時間内であれば任意である。
 このように構成された変形例1の水素生成装置100であっても、実施の形態1に係る水素生成装置100と同様の作用効果を奏する。
 また、変形例2の水素生成装置100は、制御器11が、少なくとも蒸発器23内での水蒸気生成が停止するまで、原料供給器4からの原料の供給を継続する形態を例示するものである。具体的には、変形例2の水素生成装置100は、実施の形態1に係る水素生成装置100と構成は同じであり、制御器11が、図2で示したステップS103において、少なくとも蒸発器23内での水蒸気生成が停止するまで、原料供給器4から改質器20への原料の供給を継続するように構成されている。
 ここで、「蒸発器23内での水蒸気生成が停止するまで原料の供給を継続する」とは、蒸発器23内での水蒸気生成が停止した後も、原料供給器4から改質器20への原料の供給を継続されることをいう。なお、制御器11が、原料供給器4に原料供給の停止指令を出力するタイミングは、蒸発器23内での水蒸気生成停止後から改質器20内が原料でパージされるまでの間であれば任意である。従って、変形例2の水素生成装置100においては、例えば、上述の方法により予め定められた水蒸気生成停止時間が経過した後の原料の積算供給量を計測し、この積算供給量が改質器20内をパージする量になる前に制御器11により原料供給器4の動作が停止される。なお、上記積算供給量は、ガス経路9に設けられたガスの流量を検知する流量計の計測値の時間積分値という直接的な値を用いてもよく、水蒸気生成停止時間経過後の原料の供給量が一定である場合は、原料の積算供給時間という間接的な値を用いても構わない。
 (実施の形態2)
 <水素生成装置100の構成>
 図3は、本発明の実施の形態2に係る水素生成装置の構成を、模式的に示すブロック図である。尚、図3では、本発明を説明するために必要となる構成要素のみを抜粋して示しており、その他の構成要素は図示を省略している。
 本実施の形態に係る水素生成装置100のハードウェア上の構成は、従来の水素生成装置のハードウェア上の構成と同様である。
 即ち、本実施の形態に係る水素生成装置100は、少なくとも炭素及び水素を構成元素とする有機化合物を含む原料と水蒸気との改質反応を進行させることにより水素含有ガスを生成する水素生成器1を備えている。又、水素生成装置100は、この水素生成器1に原料を供給し、その原料の流量(原料流量)を制御する原料供給器4と、この原料供給器4に供給される原料に含まれる硫黄成分を除去する脱硫器5と、を備えている。又、この水素生成装置100は、水素生成器1に水を供給し、その水の流量(水流量)を制御する水供給器3を備えている。
 本実施の形態において、原料供給器4はブースターポンプを有しており、例えば、それに入力する電流パルス、入力電力等が適宜制御されることにより、水素生成器1への原料の供給量を調節可能な構成となっている。又、図3に示すように、この原料供給器4は、原料の供給源としての都市ガス(例えば、メタンガス)のガスインフラライン6と接続されており、このガスインフラライン6上に脱硫器5が配設され、この脱硫器5から原料供給器4を通して水素生成器1に原料が供給されるように接続されている。つまり、図3に示すように、脱硫器5に原料を提供するガスインフラライン6が接続されている。尚、本実施の形態では、原料の上流側に脱硫器5が配設され、原料の下流側に原料供給器4が配設されている形態を例示しているが、このような形態に限定されることはなく、原料供給器4と脱硫器5との配置順番は、適宜、それぞれの構成の特徴を考慮して決定すればよい。又、脱硫器5は、原料中の硫黄成分(主に、付臭成分)を吸着により除去するゼオライト系吸着剤を備える構成としてもよく、或いは、水添脱硫触媒を用いる構成としてもよい。
 又、本実施の形態において、水供給器3は流量調節機能を有するポンプを有しており、原料供給器4の場合と同様にして、それに入力する電流パルス、入力電力等が適宜制御されることにより、水素生成器1への水の供給量を調節可能な構成となっている。
 ここで、水素生成器1の内部構成について説明する。
 図4は、本発明の実施の形態2に係る水素生成装置が備える水素生成器の内部構成を、模式的に示す断面図である。
 図4に示すように、水素生成装置100の水素生成器1は、水供給器3から水供給口13を介して供給される水を蒸発させ、原料供給器4から原料供給口14を介して供給される原料と共に予熱・混合する蒸発器23と、この蒸発器23における原料と水蒸気との混合気の温度を検出する第1温度検知器24と、を備えている。
 又、図4に示すように、この水素生成器1は、改質触媒となるNi系触媒を備えた改質器20と、この改質器20の直後のガス経路22における水素含有ガスの温度を検出する第2温度検知器21と、を備えている。
 又、図4に示すように、この水素生成器1は、改質器20において生成させた水素含有ガス中の一酸化炭素と水蒸気とを変成反応させて、水素含有ガスの一酸化炭素含有濃度を低減させる、Cu-Zn系触媒を備えた変成器25と、この変成器25から排出された水素含有ガスに空気供給器8からの空気を、空気供給口16を介して供給・混合する混合器19と、この混合器19から排出された水素含有ガス中に残留する一酸化炭素を、主に酸化させて除去する、Ru系触媒を備えた選択酸化器26と、を備えている。この選択酸化器26から排出された水素含有ガスは、水素含有ガス排出口15を介して、水素生成装置100からその外部に排出される。尚、本実施の形態において、改質器20、変成器25、及び、選択酸化器26の具体的な構成は、それらの一般的な構成と同様である。従って、ここでは、改質器20、変成器25、及び、選択酸化器26の更なる詳細な説明は省略する。又、本実施の形態では、第1温度検知器24を設ける構成を例示しているが、このような構成に限定されることはなく、第1温度検知器24を設けない構成としてもよい。
 又、図3及び図4に示すように、この水素生成器1は、改質器20における改質反応に必要な反応熱を供給するための加熱器2を備えている。そして、この加熱器2は、加熱源となる燃焼ガスを燃焼させる燃焼器2a(例えば、バーナー)と、この燃焼器2aの着火源となるイグナイター(図示せず)と、この燃焼器2aにおける燃焼ガスの燃焼状態を検知するフレームロッド7(燃焼検知器)と、この燃焼器2aに燃料用空気を供給する燃焼ファン18と、を備えている。ここで、図3及び図4に示すように、加熱器2の所定の位置には燃焼ガス供給経路10が接続されており、この燃焼ガス供給経路10から加熱器2の燃焼器2aに燃焼ガスが供給される。又、燃焼器2aから排出される燃焼排ガスは、燃焼器2aの外周上に設けられた空間を上昇して、水素生成器1の燃焼排ガス排出口17からその外部に排出される。
 ここで、本実施の形態では、水素生成器1が、燃焼反応によりその水素生成器1における改質反応に必要な熱を供給する加熱器2を備え、燃焼器2aの燃焼反応において発生する燃焼排ガスにより蒸発器23が加熱される構成が採られている。又、フレームロッド7は、燃焼器2aにおける燃焼反応により形成される火炎中(燃焼排ガス中)のイオン電流を検出するためのデバイスである。尚、燃焼器2aにおける燃焼反応の有無だけを検知する場合には、フレームロッド7に代えて熱電対等の温度検知デバイスを用いて、火炎温度や燃焼排ガス温度等を検知する構成としてもよい。
 又、図3に示すように、水素生成器1が備える加熱器2の所定の位置には、その加熱器2で燃焼させる燃焼ガスを供給するための燃焼ガス供給経路10が接続されている。又、水素生成器1の水素含有ガス排出口15(図4参照)には、図3では図示しない燃料電池等の外部装置に水素含有ガスを供給するための水素含有ガス供給経路9(ガス経路)が接続されている。そして、この水素含有ガス供給経路9には、水素含有ガス供給経路9を通じて水素生成器1の内部が外気と接触することを抑制するために、水素含有ガス供給経路9を封止するための、電磁弁を用いた封止器(弁)12が設けられている。尚、本実施の形態では、電磁弁を用いた封止器12を例示しているが、このような構成に限定されることはない。例えば、封止器12としては、電磁弁に代えて、電動弁、それらを用いた3方弁等、水素含有ガス供給経路9を封止する機能を有するものを用いることができる。又、燃焼ガス供給経路10を介して加熱器2に供給される燃焼ガスとしては、水素含有ガスを生成するための原料や、水素生成装置100により生成された水素含有ガス、或いは、燃料電池等の外部装置において消費されなかった水素含有ガス(オフガス)等が利用される。
 又、上述したように、この水素生成装置100は、水素生成器1に空気を供給し、その空気の流量を適宜制御する空気供給器8を備えている。この空気供給器8は、流量調節機能を有するシロッコファンを有しており、水供給器3及び原料供給器4の場合と同様にして、それに入力する電流パルス、入力電力等が適宜制御されることにより、水素生成器1への空気の供給量を調節可能な構成となっている。
 更に、図3に示すように、この水素生成装置100は、水素生成装置100の運転動作を適宜制御するための運転制御器(制御器)11を備えている。この運転制御器11は、水素生成装置100の所定の構成要素と電気的に接続されており、原料供給器4から水素生成器1に供給される原料の供給量や、水供給器3から水素生成器1に供給される水の供給量、空気供給器8から水素生成器1に供給される空気の供給量等の制御を行う。更に、運転制御器11は、脱硫器5の脱硫性能を監視し、フレームロッド7からの信号を受信し、封止器12の動作を制御する。尚、運転制御器11は、半導体メモリーやCPU等により、水素生成装置100の起動方法、運転方法、停止方法のシーケンス等の運転情報等を記憶し、状況に応じた適切な動作条件を適宜演算する。そして、運転制御器11は、水供給器3、原料供給器4等の水素生成装置100の運転に必要な構成要素に向けて適切な動作条件を指示する。
 尚、本実施の形態では、原料としてメタンを主成分とする原料ガス(都市ガス)を用いる形態を例示したが、このような形態に限定されることはなく、原料としては、炭化水素等の少なくとも炭素及び水素から構成される有機化合物を含む原料であればよく、例えば、LPG、灯油等を用いてもよい。
 <水素生成装置100の動作>
 次に、本発明の実施の形態2に係る水素生成装置100の動作について説明する。
 本実施の形態に係る水素生成装置100の動作に関して、その起動から発電運転に渡っては、従来の水素生成装置の動作と同様である。
 即ち、停止状態から水素生成装置100の起動を行う場合には、燃焼ガス供給経路10を介して燃焼ガスを加熱器2に供給し、燃焼器2aで燃焼ガスに着火して水素生成器1の加熱を開始する。
 次に、原料供給器4及び水供給器3を動作させて水素生成器1に原料と水とを供給し、水蒸気と原料との改質反応を開始させる。ここで、本実施の形態では、メタンを主成分とする原料ガスを原料とする。又、水供給器3から水素生成器1への水の供給量は、都市ガスの平均分子式中の炭素原子数1モルに対して、水蒸気が2.5から3モル程度になるように制御される。つまり、水素生成装置100の運転制御器11は、スチームカーボン比(S/C)で2.5から3程度となるように、原料供給器4及び水供給器3の動作を制御する。
 すると、水素生成器1では、改質器20において水蒸気改質反応が、変成器25において変成反応が、選択酸化器26において一酸化炭素の選択酸化反応が進行する。選択酸化器26から排出された水素含有ガスは、水素含有ガス供給経路9を通して、燃料電池等の外部装置に供給される。尚、水素含有ガス中の一酸化炭素の濃度は、例えば、外部装置として、固体高分子形の燃料電池に水素含有ガスを供給する場合、一酸化炭素濃度を体積濃度(ドライガスベース)で約20ppm以下にまで低減させる。又、水素生成器1に供給する原料及び水の供給量を調整することで、水素含有ガスの生成量が制御される。尚、本実施の形態では、水素生成器1が変成器25及び選択酸化器26の双方を備える構成を例示しているが、このような構成に限定されることはない。例えば、外部装置での一酸化炭素の要求濃度に応じて、水素生成器1が変成器25及び選択酸化器26の少なくとも何れかを備えない構成としてもよい。ここで、水素生成器1に選択酸化器26を設けない構成とする場合、空気供給器8は不要となる。
 次に、本発明の実施の形態2に係る水素生成装置100の停止方法を、図5に示すフローチャートを用いて説明する。
 図5は、本発明の実施の形態2に係る水素生成装置の特徴的な運転停止方法を、模式的に示すフローチャートである。尚、図5では、水素生成装置の特徴的な運転停止方法の1サイクルのみを抜粋して示している。
 先ず、各家庭の電力負荷に応じて、燃料電池等の外部装置の動作を停止する等により、水素含有ガスの生成がこれ以上不要と判断される場合には、水素生成装置100への停止命令が発せられる(ステップS1)。
 次に、水素生成装置100への停止命令が発せられると、運転制御器11は、水素生成装置100の動作工程を工程(a)に移行させ、水供給器3から蒸発器23への水の供給を停止するよう制御する(ステップS2)。
 この際、水供給器3から蒸発器23への水の供給は直ちに停止されるが、改質器20への水蒸気の供給は直ちに停止されるのではなく、蒸発器23に水が残留する。水素生成器1では、改質反応におけるエネルギー効率を向上させるので、燃焼排ガスと水とを熱交換させて、水を低温状態から高温状態へとカスケード的に加熱して、水蒸気を発生させるからである。そのため、水供給器3から水素生成器1(蒸発器23)への水の供給停止とほぼ同時に、原料供給器4から改質器20への原料の供給を停止すると、蒸発器23に残留した水から発生した水蒸気により、改質器20における触媒が酸化されて、触媒特性が低下することになる。
 そこで、本実施の形態に係る水素生成装置100では、運転制御器11が、原料供給器4から改質器20への原料の供給を継続させた状態において、水素生成装置100の動作工程を工程(b)に移行させるよう制御する(ステップS3)。このとき、蒸発器23に残留する水は、蒸発器23の余熱により水蒸気に気化し、気化した水蒸気は、改質器20内に供給され、原料と混合される。なお、従来の水素生成装置に比べ、改質触媒20aの水蒸気酸化の程度を抑制するという観点からは、工程(b)における原料供給量は任意であるが、改質触媒20aの水蒸気酸化の発生を抑制するという観点からは、工程(b)での蒸発器23から改質器20への水蒸気供給量に対する原料供給量(スチームカーボン比(S/C))が、改質触媒20aの水蒸気酸化の発生を抑制する値(例えば、S/C=10以下)になるように、制御器11が原料供給器4を制御することが好ましい。また、改質触媒20aの原料からの炭素析出を抑制する観点からは、工程(b)において原料からの炭素析出が抑制されるS/C(例えば、S/C=2以上)になるように、制御器11は、原料供給器4の原料供給量を制御することも好ましい。
 次に、ステップS3により、改質器20内における水蒸気と原料との混合気の通流が開始されると、運転制御器11は、原料供給を継続することによって、その改質器20内において水蒸気と原料との混合気が通流されている状態の継続時間(すなわち、原料供給を継続している時間)が、所定の継続時間に到達したか否かを判定する(ステップS4)。ここで、運転制御器11は、改質器20内において水蒸気と原料との混合気が通流されている状態の継続時間が、未だ所定の継続時間に到達してはいないと判定すると(ステップS4でNO)、ステップS3の状態を更に継続させるよう制御する。
 一方、運転制御器11は、改質器20内において水蒸気と原料との混合気が通流されている状態の継続時間が所定の継続時間に到達したと判定すると(ステップS4でYES)、水素生成装置100の動作工程を工程(c)及び工程(d)に移行させ、改質器20において水蒸気を通流させている状態において、原料供給器4から改質器20への原料の供給を停止するよう制御するとともに封止器12で改質器20を封止する(ステップS5及びステップ6a)。つまり、運転制御器11は、改質器20において原料と水蒸気とを同時に停止させるよう制御する。
 ここで、ステップS4における、運転制御器11が、水素生成装置100の動作工程を工程(b)から工程(c)及び工程(d)に移行させるための判断基準としての「所定の継続時間」は、改質器20を封止後の内部雰囲気が、改質触媒20aが水蒸気酸化する雰囲気(水蒸気濃度)にならないための時間として設定される。これは、水素生成装置100の動作工程を工程(c)に移行させた(改質器20を封止)後に改質器20内に残留する水が蒸発し、改質器20内部の水蒸気濃度が上昇し、改質器20内の改質触媒20aが水蒸気酸化する可能性があるからである。この触媒が水蒸気により酸化されない内部雰囲気(水蒸気濃度)は、触媒毎に相違する状態であり、常圧固定層流通式の反応装置等を用いて、使用条件下で触媒に流通させる水蒸気の比率を変化させ、触媒特性の変化を測定することで、予め把握することができる。例えば、ステップS4における「所定の継続時間」について、改質器20封後の内部雰囲気が、Ni系触媒では、触媒特性の低下がほとんど観られない、スチームカーボン比(S/C)で10以下になる継続時間が、好ましい「所定の継続時間」となる。この「所定の継続時間」は触媒により異なる。尚、本実施の形態においては、上述の工程(b)から工程(c)への移行は、その工程(b)で水素生成器1の内部に定常的に残留する水が蒸発するまでに必要な時間を予め測定し、この残留水の蒸発に必要な時間よりも短い時間を所定の継続時間として設定し、その所定の継続時間の経過後に、工程(b)から工程(c)及び工程(d)へ移行させる構成としている。
 このように、本実施の形態によれば、ステップS3として示す工程(b)において、水素生成器1の内部に残留する水が蒸発しても、この水蒸気とともに原料を改質器20内部に通流させることができる。そして、ステップS5として示す工程(c)において、水蒸気と原料供給器4から供給される原料とを改質器20に通流させている状態で、原料供給器4から改質器20への原料の供給を停止する。これにより、改質器20の各触媒における炭素析出と、水蒸気の触媒酸化による触媒特性の低下とのそれぞれを、効果的に抑制することが可能となる。
 なお、工程(d)は、運転制御器11は、ステップS5として示す工程(c)に続く工程として、水素生成器1の内部に水素生成装置100の外部から空気が混入することを抑制するために、封止器12を作動させる(封止器12で封止する)工程(ステップS6a)である。ここで、この工程(c)から工程(d)への移行は、必ずしも工程(c)の直後に工程(d)を実施しなくてもよい。例えば、ステップS4における所定の継続時間を、改質器20内の残留水の蒸発に必要な時間とし、この所定時間経過後に工程(c)に移行するよう制御されれば、更なる残留水の蒸発に伴い改質器20内の原料が改質器20の外部に排出されることもないので、このような場合は、工程(c)後速やかに工程(d)を実行しなくても構わない。
 次いで、ステップS6aにより封止器12を作動させてガス経路9が封止されると、運転制御器11は、水素生成装置100の動作工程をステップS6bの工程(e)に移行させ、封止器12を開放するとともに原料供給器4から水素生成器1(改質器20)への原料の供給を一時的に再開して、水素生成器1の内部を原料で置換するよう制御する(ステップS6b)。尚、この工程(d)から工程(e)への移行は、第2温度検知器21で検出される温度が炭素析出しない温度(例えば、Ni系触媒であれば300℃以下の温度)となるためのパラメータを設定して、そのパラメータにより管理すればよい。
 ここで、改質触媒20aの表面に原料由来の炭素が析出しない温度の設定方法としては、例えば、所定温度で触媒に原料を流通させた後、堀場製作所製EMIA-920Vを用いて、触媒を酸素気流中で高周波加熱燃焼させ、赤外線吸収法により触媒上に析出した炭素量を定量することにより、炭素が析出する温度を決定し、当該温度以下に設定する方法が挙げられる。また、例えば、所定温度で触媒に原料を流通させた後、透過型電子顕微鏡により触媒を観察することにより、炭素が析出しているかどうかを判定し、原料由来の炭素が析出しない温度を設定することができる。
 このように、ステップS6aを、ステップS1~ステップS5の後に一連で実施することで、更なる効果が得られる。例えば、水素生成装置100の蒸発器23に水が大量に残留した状態において、封止器12を作動させる工程(d)を行うと、蒸発器23から大量に発生した水蒸気により、水素生成器1の内部が高圧状態となる。これに対応するためには、水素生成器1の耐圧性を向上させる必要がある。しかし、本実施の形態のように、ステップS3により蒸発器23に残留する水のほとんどを蒸発させてから、封止器12を作動させる工程(d)を行えば、水素生成器1の内部の圧力上昇を未然に防止できることになる。これにより、水素生成器1を低い耐圧性で構成できるので、その構造を簡素化することを可能とする。
 尚、本実施の形態において、図5に示すステップS5では、運転制御器11が改質器20において原料と水蒸気とを同時に停止させるよう制御するが、このステップS5の制御において、原料供給器4から改質器20への原料の供給を、その原料の供給量を漸次減少させて停止させる構成としてもよい。残留水の減少に伴い水蒸発量が減少するので、その減少に応じて原料の供給量も減少させることが好ましい。
[変形例]
 次に、本発明の実施の形態2に係る水素生成装置100の動作の変形例1について説明する。
 本実施の形態2の変形例1では、図5においてステップS2として示す工程(a)へ移行前の水素生成装置100の運転条件に対応して、ステップS3として示す工程(b)の継続時間が設定される点のみが異なっている。従って、ここでは、図5に示す水素生成装置100の動作と相違する点を抜粋して説明する。
 図6は、本発明の実施の形態2に係る水素生成装置の特徴的な運転停止方法の第1の変形例を、模式的に示すフローチャートである。
 図6に示すように、本実施の形態2の変形例1では、水素生成装置100への停止命令が発せられると(ステップS1)、運転制御器11は、図6ではステップS3として示す工程(a)に移行する前のステップS2の第1段階として、水素生成装置100の運転条件の1つである、水供給器3から蒸発器23への水の供給量を把握する(ステップS2a)。このステップS2aにより、運転制御器11は、水素生成器1の蒸発器23に残留する水の量を推定する。尚、水供給器3から蒸発器23への水の供給量は、水供給器3の動作状況から把握することができる。
 次に、ステップS2aにより、水素生成器1の蒸発器23に未だ残留する水の量が推定されると、運転制御器11は、ステップS2の第2段階として、その推定した水の量に基づき、図6ではステップS4として示す工程(b)において適切な量の水を蒸発させるまでに必要な時間を演算することにより、その工程(b)の継続時間を決定する(ステップS2b)。尚、このステップS2bにより決定された所定の継続時間は、運転制御器11の半導体メモリーに記憶される。なお、上述の工程(b)における適切な水蒸発量とは、改質器20を封止後の内部雰囲気が、改質触媒が水蒸気酸化する雰囲気(水蒸気濃度)にならないために必要な水蒸発量として定義される。
 そして、運転制御器11は、ステップS2bにより所定の継続時間が決定されると、図5に示す水素生成装置100のステップ2~ステップS6bに示す動作と同様にして、ステップS3~ステップS7bを順次実行するよう制御する。
 ここで、本実施の形態2では、原料供給器4から水素生成器1(改質器20)への原料の供給量は、水供給器3から蒸発器23への水の供給量と連動させている。そこで、本変形例では、水素生成装置100の運転条件である、原料供給器4から水素生成器1(改質器20)への原料の供給量に基づき、蒸発器23に残留する水の量を推定する構成としてもよい。これは、上述のとおり、例えば、所定のS/Cとなるよう水素生成器1への原料の供給量は、蒸発器23への水の供給量と連動して制御されているからであり、上記原料供給量より間接的に水供給量が把握されることで、この水供給量に基づき蒸発器23に残留する水の量を推定することができる。
 或いは、本実施の形態2では、水素生成器1が備える蒸発器23の温度は、水素生成装置100の起動時からの経過時間に比例して上昇する。例えば、水素生成装置100の起動時からの経過時間が短時間である場合には、蒸発器23の温度は低温となり、水素生成装置100の起動時からの経過時間が長時間である場合には、蒸発器23の温度は高温となる。そこで、本変形例1では、水素生成装置100の運転条件である、水素生成装置100の起動時から、図6でステップS3として示す工程(a)へ移行(停止命令)前までの運転時間に基づき、蒸発器23に残留する水の量を推定する構成としてもよい。例えば、蒸発器23が十分に加熱されていない、水素生成装置100の起動直後は、蒸発器23に残留する水の量が多くなる。このような場合、水素生成装置100の起動時から前記工程(a)へ移行前までの運転時間に基づくことで、蒸発器23に多量の水が残留していることを適切に把握することができる。
 尚、本実施の形態2において、蒸発器23の加熱状態は、第1温度検知器24により把握することができる。そこで、本変形例1に代えて、水素生成器1が備える第1温度検知器24の検知温度に基づき、蒸発器23に残留する水の量を推定する構成としてもよい。このような構成としても、本変形例1の場合と同様の効果が得られる。
 尚、その他の点については、図5に示す水素生成装置100の動作と同様である。
 次に、本発明の実施の形態2に係る水素生成装置100の動作の変形例2について説明する。
 本実施の形態2の変形例2では、図5において、ステップS2として示す工程(a)へ移行前の水素生成装置100の運転条件に対応して、ステップS5として示す工程(c)への移行タイミングが設定される点のみが、異なっている。従って、ここでは、図5に示す水素生成装置100の動作と相違する点を、抜粋して説明する。
 図7は、本発明の実施の形態2に係る水素生成装置の特徴的な運転停止方法の第2の変形例を、模式的に示すフローチャートである。
 図7に示すように、本実施の形態2の変形例2では、水素生成装置100への停止命令が発せられると(ステップS1)、運転制御器11は、図7ではステップS3として示す工程(a)に移行する前のステップS2の第1段階として、水素生成装置100の運転条件の1つである、水供給器3から蒸発器23への水の供給量を把握する(ステップS2a)。このステップS2aにより、運転制御器11は、水素生成器1の蒸発器23に残留する水の量を推定する。尚、水供給器3から蒸発器23への水の供給量は、水供給器3の動作状況から把握することができる。
 次に、ステップS2aにより、水素生成器1の蒸発器23に未だ残留する水の量が推定されると、運転制御器11は、ステップS2の第2段階として、その推定した水の量に基づき、図7ではステップS4として示す工程(b)において適切な量の水を蒸発させるまでに必要な時間を演算することにより、工程(c)及び工程(d)への移行タイミングを決定する(ステップS2b)。尚、このステップS2bにより決定された工程(c)への移行タイミングは、運転制御器11の半導体メモリーに記憶される。なお、上述の工程(b)における適切な水蒸発量とは、改質器20を封止後の内部雰囲気が、改質触媒20aが水蒸気酸化する雰囲気(水蒸気濃度)にならないために必要な水蒸発量として定義される。
 そして、運転制御器11は、ステップS2bにより工程(c)への移行タイミングが決定されると、図5に示す水素生成装置100のステップ2~ステップS6bに示す動作と同様にして、ステップS3~ステップS7bを順次実行するよう制御する。
 ここで、実施の形態2の変形例1でも説明したように、本実施の形態2では、原料供給器4から水素生成器1(改質器20)への原料の供給量は、水供給器3から蒸発器23への水の供給量と連動させている。そこで、本変形例2でも、水素生成装置100の運転条件である原料供給器4から水素生成器1(改質器20)への原料の供給量に基づき、蒸発器23に残留する水の量を推定する構成としてもよい。
 或いは、実施の形態2の変形例1でも説明したように、水素生成器1が備える蒸発器23の温度は、水素生成装置100の起動時からの経過時間に比例して上昇する。そこで、本変形例でも、水素生成装置100の運転条件である、水素生成装置100の起動時から、図7ではステップS3として示す工程(a)へ移行(停止命令)前までの運転時間に基づき、蒸発器23に残留する水の量を推定する構成としてもよい。
 尚、本変形例2においても、蒸発器23の加熱状態は、第1温度検知器24により把握することができる。そこで、実施の形態2の変形例1の場合と同様、本変形例に代えて、水素生成器1が備える第1温度検知器24の検知温度に基づき、蒸発器23に残留する水の量を推定する構成としてもよい。このような構成としても、本変形例2の場合と同様の効果が得られる。
 尚、その他の点については、図5、6に示す水素生成装置100の動作と同様である。
 以上、実施の形態2の変形例1、2として説明したように、停止時点での水素生成装置100の運転条件に対応させて、工程(b)の継続時間を設定する、又は、工程(c)への移行タイミングを設定することで、蒸発器23に残留する水の量を、状況に応じて、ある程度正確に推定することができる。例えば、停止命令直前の水素含有ガスの生成量が多い場合には、蒸発器23に残留する水の量は多くなるが、それとは反対に、水素含有ガスの生成量が少ない場合には、残留する水の量も少なくなるからである。従って、炭素析出と水蒸気とによる触媒酸化に起因する触媒特性の低下を効果的に抑制させる観点からは、実施の形態2の変形例1、2に示す水素生成装置100の運転形態は、蒸発器23において水を蒸発させる工程(b)の時間、又は原料の供給を停止する工程(c)への移行タイミングを一定にする運転形態よりも、より一層好ましい運転形態となる。
 (実施の形態3)
 次に、本発明の実施の形態3について説明する。
 <水素生成装置100の構成>
 本発明の実施の形態3に係る水素生成装置のハードウェア上の構成は、実施の形態2に係る水素生成装置のハードウェア上の構成と同様である。従って、ここでは、本発明の実施の形態3に係る水素生成装置のハードウェア上の構成の説明は省略する。
 <水素生成装置100の動作>
 本発明の実施の形態3に係る水素生成装置の運転方法は、実施の形態2に係る水素生成装置100の運転方法と基本的に同様である。しかし、実施の形態2に係る水素生成装置100の運転方法と比べて、本発明の実施の形態3に係る水素生成装置の運転方法は、その停止時の運転方法の一部が異なっている。
 以下、本発明の実施の形態3に係る水素生成装置の動作について、実施の形態2に係る水素生成装置100の動作と相違する点を、抜粋して説明する。
 図8は、本発明の実施の形態3に係る水素生成装置の特徴的な運転停止方法を、模式的に示すフローチャートである。
 先ず、実施の形態2の場合と同様にして、各家庭の電力負荷に応じて燃料電池等の外部装置の動作を停止する等により、水素含有ガスの生成がこれ以上不要と判断される場合には、水素生成装置100への停止命令が発せられる(ステップS1)。次に、水素生成装置100への停止命令が発せられると、運転制御器11は、実施の形態2の場合と同様にして、水素生成装置100の動作工程を工程(a)に移行させ、水供給器3から蒸発器23への水の供給を停止するよう制御する(ステップS2)。ついで、運転制御器11は、原料供給器4から改質器20への原料の供給を継続させる(ステップS3)。
 このように、図8に示すステップS3までは、実施の形態2の場合と同様であるが、相違点は、図8に示すステップS3の後に、水の蒸発状態をフレームロッド7により検知する点である。具体的には、継続時間や、停止直前の原料や水の供給量、起動時から前記工程(a)へ移行前までの運転時間といった水素生成装置100の運転条件からではなく、フレームロッド7の出力を検知し(ステップS3b)、予め設定される電流閾値以上のイオン電流が、フレームロッド7により検出されると(ステップS3cでYES)、水の蒸発状態を把握して、前記工程(b)からステップS4として示す工程(c)へ、水素生成装置100の動作工程を移行させる点である。尚、フレームロッド7により検出されるイオン電流が予め設定される電流閾値以上の電流値ではない場合(ステップS3cでNO)、運転制御器11は、フレームロッド7の出力を更に検知する。
 更に詳細に説明すれば、水素生成装置100では、そこで生成させた水素含有ガスが燃料電池等の外部装置において、100%近く消費される場合を除き、余剰となった水素含有ガス(オフガス)は、加熱器2で燃焼させて改質反応等のために利用される。これは、水素生成時のエネルギー効率を高くするためである。本実施の形態においても、水素生成装置100が水素含有ガスを定常的に生成する運転時には、その生成させた水素含有ガスの一部を、燃焼ガス供給経路10から加熱器2に供給して、その加熱器2において燃焼させている。この時、本実施の形態では、フレームロッド7を用いて、加熱器2の燃焼器2aでの燃焼反応により形成される火炎中のイオン電流を検出することで、燃焼反応が継続しているかどうかを検知している。ここで、この火炎中のイオン電流は、火炎中の炭化水素ラジカル量に比例するものであって、水素含有ガス中の炭化水素の濃度に比例して増減する。例えば、所定のスチームカーボン比で原料と水とが水素生成器1(改質器20)に供給され、改質器20の温度が制御されている通常運転時には、フレームロッド7により検出されるイオン電流量は大きく増減しない。一方、水素含有ガス中の炭化水素の濃度は、改質反応におけるスチームカーボン比に大きく影響されるので、原料と水蒸気との割合が経時的に(時間の経過と共に)変化する工程(b)では、検出されるイオン電流値は経時的に大きく変化する。具体的には、水素生成器1の蒸発器23で水を蒸発させる工程(b)では、経時的に水の蒸発量が減少するが、原料供給器4から水素生成器1への原料の供給は継続されているので、スチームカーボン比が減少する。その結果、水素含有ガス中の炭化水素成分の濃度が増加する。そして、加熱器2では、その炭化水素成分の濃度が増加した水素含有ガスを燃焼させているので、フレームロッド7により検出されるイオン電流値が増加することになる。例えば、水素含有ガス中の炭化水素成分の濃度が2倍になると、イオン電流値は約2倍になる。従って、このフレームロッド7の出力が増加することを検知すれば、水の蒸発量が減少していることを把握することができることになる。
 そこで、本実施の形態では、上述の技術的内容に着目し、ステップS2の後にステップS3b及びステップS3cを実施して、水の蒸発状態を経時的に把握し、水の蒸発状態が適切な状態で原料の供給を停止するステップS4としての工程(c)に移行させる運転方法を実現させている。なお、上述のステップS2における適切な水の蒸発状態とは、改質器20を封止後の内部雰囲気が、改質触媒が水蒸気酸化する雰囲気(水蒸気濃度)にならないために必要な量の水を蒸発した状態として定義される。
本実施の形態に係る水素生成装置100の運転停止方法により、水素生成器1の蒸発器23における水の残留量、水素生成装置100の運転停止時の原料と水との存在比率を適切に把握することができるので、炭素析出と、水蒸気の触媒酸化とによる触媒特性の低下に関して、高い防止効果を得ることが可能になる。
 その後、運転制御器11は、ステップS4により工程(c)が実行されると、図5に示す水素生成装置100のステップS6a、S6bに示す動作と同様にして、ステップS5a及びステップS5bを順次実行するよう制御する。
 尚、上述のイオン電流値と水の残存量との関係は、水素生成装置100に用いる触媒の特性、水の蒸発状態、改質器20の温度、フレームロッド7等の構成等により相違する。従って、炭素析出と、水蒸気の触媒酸化とによる触媒特性の低下を効果的に抑制する観点で、水素生成装置毎に適切に設定する必要がある。
 本実施の形態によっても、実施の形態2の場合と同様の効果を得ることができる。又、本実施の形態によれば、既存のフレームロッド7を利用して、蒸発器23における水の蒸発状態を逐次監視して、適切な時期に原料と水蒸気とを水素生成器1において同時に停止させるので、炭素析出と、水蒸気の触媒酸化とによる触媒特性の低下を、より一層確実かつ効果的に抑制することが可能になる。
 尚、その他の点については、実施の形態2の場合と同様である。
 [変形例]
 次に、本実施の形態3に係る水素生成装置100の変形例について説明する。
 図9は、実施の形態3の変形例の水素生成装置の運転停止処理を模式的に示すフローチャートである。
 本変形例の水素生成装置100は、燃焼検知器7が燃焼器2aの燃焼停止を検知するまで、原料供給器4から改質器20への原料の供給を継続する形態を例示するものである。具体的には、制御器11は、図9に示すステップS103において、燃焼器2aに供給される原料量が燃焼器2aに対して供給される燃焼用空気に対して該原料の燃焼下限界未満になるように原料供給器4を制御する。なお、燃焼検知器7は、燃焼器2aの燃焼停止を検知できれば、例えば、フレームロッドを用いる形態や熱電対等の温度検知デバイスを用いて、火炎温度や燃焼排ガス温度等を検知する形態等に例示されるような、任意の形態で構わない。すなわち、改質器20には、燃焼下限界未満の原料が供給されているため、蒸発器23で水蒸気生成が停止すると、ステップS103において燃焼器2aに対して供給される燃焼用空気に対して燃焼下限界未満の原料しか、改質器20から燃焼器2aに押し出されない(供給されない)。このため、燃焼器2aでは、燃焼を継続することができず、燃焼が停止し、火炎温度や燃焼排ガス温度を急激に低下する。従って、本変形例の水素生成装置100では、ステップS103aで燃焼器2aの燃焼状態を取得し、燃焼が停止すると(ステップS103bでYES)、原料供給器4から改質器20への原料の供給を停止するとともに、弁12を閉止する(ステップS104)。
 このように構成された本変形例の水素生成装置100であっても、実施の形態3に係る水素生成装置100と同様の作用効果を奏する。
 (実施の形態4)
 図10は、本発明の実施の形態4に係る燃料電池システムの概略構成を示す模式図である。
 図10に示すように、本発明の実施の形態4に係る燃料電池システム200は、実施の形態1に係る水素生成装置100と、該水素生成装置100より供給される水素含有ガスを用いて発電する燃料電池102と、を備える。
 燃料電池102は、アノード102Aとカソード102Bを有している。また、燃料電池102には、アノード102Aに燃料ガス(水素含有ガス)を供給するように構成された燃料ガス流路41とカソード102Bに酸化剤ガス(ここでは、空気)を供給するように構成された酸化剤ガス流路42が設けられている。
 燃料電池102の燃料ガス流路41の上流端は、ガス経路9を介して、水素生成装置100(改質器20)と接続されていて、その下流端は、オフ燃料ガス経路29が接続されている。また、酸化剤ガス流路42の上流端は、酸化剤ガス供給路28を介して酸化剤ガス供給器101が接続されていて、その下流端は、オフ酸化剤ガス経路30が接続されている。
 燃料電池102では、アノード102Aに供給された水素含有ガスと、カソード102Bに供給された空気と、が電気化学的に反応して、電気と熱が発生する。そして、アノード102Aで使用されなかった余剰の水素含有ガスとカソード102Bで使用されなかった余剰の酸化剤ガスは、燃料電池システム200外(大気中)に排出される。なお、アノード102Aで使用されなかった余剰の水素含有ガスは、図示されないオフ燃料ガス処理器により燃焼処理もしくは空気による希釈処理を実行後に、大気中に排出されるのが好ましい。また、水素生成装置100が燃焼器2aを有するような場合、アノード102Aで使用されなかった水素含有ガスは、燃焼器2aの燃焼用燃料として使用されてもよい。
 制御器11は、本実施の形態4においては、水素生成装置100だけではなく、燃料電池システム200を構成する他の機器を制御するように構成されている。そして、制御器11が、燃料電池システム200の停止時において、水素生成装置100の停止処理を実施の形態1に記載したように行うように構成されている。
 このため、本実施の形態4に係る燃料電池システム200は、実施の形態1に係る水素生成装置100と同様の作用効果を奏する。
 なお、本実施の形態4に係る燃料電池システム200おいては、実施の形態1に係る水素生成装置100を備える構成としたが、これに限定されず、実施の形態2乃至4に係る水素生成装置100及び実施の形態1乃至3における変形例の水素生成装置100のいずれかの水素生成装置100を備える構成としてもよい。
 上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らかである。したがって、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の形態を当業者に教示する目的で提供されたものである。本発明の要旨を逸脱することなく、その構造及び/又は機能の詳細を実質的に変更できる。また、上記実施形態に開示されている複数の構成要素の適宜な組合せにより種々の発明を形成できる。
 本発明に係る水素生成装置、それを備える燃料電池システム、及び水素生成装置の運転方法は、停止時に、改質触媒の水蒸気酸化による劣化が従来よりも抑制されるので、燃料電池の分野で有用である。
 1 水素生成器
 2a 燃焼器
 2 加熱器
 2 燃焼器
 3 水供給器
 4 原料供給器
 5 脱硫器
 6 ガスインフラライン
 7 フレームロッド(燃焼検知器)
 8 空気供給器
 9 ガス経路(水素含有ガス供給経路)
 10 燃焼ガス供給経路
 11 制御器(運転制御器)
 12 弁(封止器)
 12A 弁
 13 水供給口
 14 原料供給口
 15 水素含有ガス排出口
 16 空気供給口
 17 燃焼排ガス排出口
 18 燃焼用空気供給器(燃焼ファン)
 19 混合器
 20a 改質触媒
 20 改質器
 21 第2温度検知器
 22 ガス経路
 23 蒸発器
 24 第1温度検知器
 25 変成器
 26 選択酸化器
 27 排出経路
 28 酸化剤ガス供給路
 29 オフ燃料ガス経路
 30 オフ酸化剤ガス経路
 41 燃料ガス流路
 42 酸化剤ガス流路
 100 水素生成装置
 101 酸化剤ガス供給器
 102 燃料電池
 102A アノード
 102B カソード
 200 燃料電池システム

Claims (10)

  1.  原料を供給する原料供給器と、
     水を供給する水供給器と、
     前記水供給器から水が供給された水を蒸発させ、水蒸気を生成する蒸発器と、
     前記原料と前記水蒸気を用いた改質反応により、水素含有ガスを生成させる改質触媒を有する改質器と、
     前記改質器の下流側のガス経路において、該改質器と大気とを連通/遮断する弁と、
     前記水供給器からの水の供給を停止した後、前記弁を開放した状態で前記原料供給器からの前記原料の供給を継続させ、該供給された原料により前記改質器内がパージされる前に前記原料供給器からの前記原料の供給を停止するとともに、前記弁を閉止するように構成されている制御器と、を備える、水素生成装置。
  2.  前記改質器を加熱する燃焼器と、
     前記改質器より排出されたガスが流れ、前記燃焼器と連通する排出経路と、
     前記燃焼器内の燃焼状態をイオン電流で検知する燃焼検知器と、を備え、
     前記制御器は、前記燃焼検知器により所定の閾値以上のイオン電流が検知されると前記原料供給器からの前記原料の供給を停止するとともに前記弁を閉止する、請求項1に記載の水素生成装置。
  3.  前記制御器は、前記水供給器の水の供給を停止する前の前記水素生成装置の運転条件に応じて前記原料供給器からの前記原料の供給を継続する時間を制御する、請求項1に記載の水素生成装置。
  4.  前記水素生成装置の運転条件とは、原料供給量、水供給量、及び前記水素生成装置の運転時間のいずれかである、請求項3記載の水素生成装置。
  5.  前記制御器は、前記弁を閉止した後に、前記改質器内の温度が前記原料より炭素析出を生じない所定の温度以下になると、前記原料供給器を制御して、前記改質器内を前記原料でパージするように構成されている、請求項1記載の水素生成装置。
  6.  前記制御器は、前記蒸発器内での水蒸気生成が停止する前に、前記原料供給器からの前記原料の供給を停止するとともに前記弁を閉止する、請求項1記載の水素生成装置。
  7.  前記制御器は、少なくとも前記蒸発器内での水蒸気生成が停止するまで、前記原料供給器からの前記原料の供給を継続する、請求項1記載の水素生成装置。
  8.  前記改質器を加熱する燃焼器と、
     前記改質器より排出されたガスが流れ、前記燃焼器と連通する排出経路と、
     前記燃焼器の燃焼状態を検知する燃焼検知器と、を備え、
     前記制御器は、少なくとも前記燃焼検知器が前記燃焼器の燃焼停止を検知するまで前記原料供給器からの前記原料の供給を継続する、請求項1記載の水素生成装置。
  9.  請求項1~8記載の水素生成装置と、
     前記水素生成装置より供給される水素含有ガスを用いて発電する燃料電池と、を備える、燃料電池システム。
  10.  原料を供給する原料供給器と、水を供給する水供給器と、前記水供給器から水が供給された水を蒸発させ、水蒸気を生成する蒸発器と、前記原料と前記水蒸気を用いた改質反応により、水素含有ガスを生成させる改質触媒を有する改質器と、前記改質器の下流側のガス経路において、該改質器と大気とを連通/遮断する弁と、を備える、水素生成装置の運転方法であって、
     前記水供給器からの前記水の供給を停止する工程(a)と、
     前記工程(a)後、前記弁を開放した状態で前記原料供給器からの前記原料の供給を継続させる工程(b)と、
     前記改質器内が前記原料でパージされる前に前記原料供給器からの前記原料の供給を停止するとともに、前記弁を閉止する工程(c)と、を備える、水素生成装置の運転方法。
PCT/JP2010/001427 2009-03-02 2010-03-02 水素生成装置、それを備える燃料電池システム、及び水素生成装置の運転方法 WO2010100903A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201080001483.7A CN102015526B (zh) 2009-03-02 2010-03-02 氢生成装置、具备其的燃料电池系统以及氢生成装置的运转方法
US12/989,780 US8951683B2 (en) 2009-03-02 2010-03-02 Hydrogen generator, fuel cell system including hydrogen generator, and method for operating hydrogen generator
JP2011502647A JP5420636B2 (ja) 2009-03-02 2010-03-02 水素生成装置、それを備える燃料電池システム、及び水素生成装置の運転方法
EP10748502.1A EP2455335B1 (en) 2009-03-02 2010-03-02 Method for operating a hydrogen generator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-048068 2009-03-02
JP2009048068 2009-03-02

Publications (1)

Publication Number Publication Date
WO2010100903A1 true WO2010100903A1 (ja) 2010-09-10

Family

ID=42709470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/001427 WO2010100903A1 (ja) 2009-03-02 2010-03-02 水素生成装置、それを備える燃料電池システム、及び水素生成装置の運転方法

Country Status (5)

Country Link
US (1) US8951683B2 (ja)
EP (1) EP2455335B1 (ja)
JP (1) JP5420636B2 (ja)
CN (1) CN102015526B (ja)
WO (1) WO2010100903A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130122384A1 (en) * 2010-05-28 2013-05-16 Panasonic Corporation Hydrogen generator, method of operation thereof and fuel cell system

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4803532B2 (ja) * 2007-04-06 2011-10-26 Necカシオモバイルコミュニケーションズ株式会社 電子機器及び電子機器のプログラム
WO2013027415A1 (ja) * 2011-08-25 2013-02-28 パナソニック株式会社 燃料電池システム及びその運転方法
JP5874041B2 (ja) * 2013-04-09 2016-03-01 パナソニックIpマネジメント株式会社 燃料電池システム及び燃料電池システムの運転方法
JP6477638B2 (ja) * 2016-09-14 2019-03-06 トヨタ自動車株式会社 熱、水素生成装置
KR20200137106A (ko) * 2019-05-29 2020-12-09 현대자동차주식회사 연료전지용 개질기의 운전 제어 시스템
RU2728270C1 (ru) * 2019-07-10 2020-07-28 Николай Иванович Кузин Устройство для сжигания воды в топке котла

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000095504A (ja) * 1998-09-22 2000-04-04 Matsushita Electric Works Ltd 改質装置
JP2001180908A (ja) * 1999-12-27 2001-07-03 Matsushita Electric Ind Co Ltd 水素発生装置およびその起動方法、停止方法
JP2002008701A (ja) * 2000-06-21 2002-01-11 Tokyo Gas Co Ltd 固体高分子型燃料電池の起動及び停止方法
JP2002151124A (ja) * 2000-11-14 2002-05-24 Tokyo Gas Co Ltd 固体高分子形燃料電池用改質器の停止方法
JP2005216500A (ja) * 2004-01-27 2005-08-11 Matsushita Electric Ind Co Ltd 水素生成器
JP2006335623A (ja) * 2005-06-06 2006-12-14 T Rad Co Ltd 改質システム
JP2007254251A (ja) 2006-03-27 2007-10-04 Aisin Seiki Co Ltd 改質装置の運転停止方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0985635B1 (en) 1998-09-09 2005-04-13 Matsushita Electric Industrial Co., Ltd. Hydrogen generating apparatus
JP4380836B2 (ja) 1999-04-05 2009-12-09 パナソニック株式会社 水素発生装置の運転方法
JP2001270704A (ja) * 2000-03-28 2001-10-02 Matsushita Electric Ind Co Ltd 水素発生装置
EP1316529A4 (en) 2000-08-25 2006-03-08 Matsushita Electric Ind Co Ltd HYDROGEN GENERATOR
JP4130603B2 (ja) 2003-04-03 2008-08-06 東京瓦斯株式会社 水素製造システムの運転方法
WO2005018035A1 (ja) * 2003-08-19 2005-02-24 Matsushita Electric Industrial Co., Ltd. 燃料電池発電システムおよびその改質器の劣化度検出方法、燃料電池発電方法
US20050129997A1 (en) * 2003-11-20 2005-06-16 Matsushita Electric Industrial Co., Ltd. Hydrogen generator, method of operating hydrogen generator, and fuel cell system
JP4486353B2 (ja) * 2003-12-05 2010-06-23 パナソニック株式会社 水素生成装置および水素生成装置の作動停止方法並びに燃料電池発電装置
JP2005209642A (ja) * 2003-12-24 2005-08-04 Fuji Electric Holdings Co Ltd 燃料電池発電装置の起動停止方法
CN1636860B (zh) * 2003-12-26 2011-04-20 松下电器产业株式会社 氢生成装置和使用该装置的燃料电池系统
US20070101647A1 (en) 2004-01-15 2007-05-10 Matsushita Electric Industrial Co., Ltd. Hydrogen generating apparatus, method of operating hydrogen generating apparatus, fuel cell system, and method of operating fuel cell system
CN100522798C (zh) 2004-01-15 2009-08-05 松下电器产业株式会社 氢生成装置及其运转方法和燃料电池系统及其运转方法
JP2005206395A (ja) * 2004-01-20 2005-08-04 Matsushita Electric Ind Co Ltd 水素生成装置およびその起動方法
CN101466636B (zh) 2006-06-15 2011-05-04 松下电器产业株式会社 氢生成装置以及燃料电池系统
WO2007148699A1 (ja) * 2006-06-20 2007-12-27 Panasonic Corporation 水素生成装置および燃料電池システム並びにこれらの運転方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000095504A (ja) * 1998-09-22 2000-04-04 Matsushita Electric Works Ltd 改質装置
JP2001180908A (ja) * 1999-12-27 2001-07-03 Matsushita Electric Ind Co Ltd 水素発生装置およびその起動方法、停止方法
JP2002008701A (ja) * 2000-06-21 2002-01-11 Tokyo Gas Co Ltd 固体高分子型燃料電池の起動及び停止方法
JP2002151124A (ja) * 2000-11-14 2002-05-24 Tokyo Gas Co Ltd 固体高分子形燃料電池用改質器の停止方法
JP2005216500A (ja) * 2004-01-27 2005-08-11 Matsushita Electric Ind Co Ltd 水素生成器
JP2006335623A (ja) * 2005-06-06 2006-12-14 T Rad Co Ltd 改質システム
JP2007254251A (ja) 2006-03-27 2007-10-04 Aisin Seiki Co Ltd 改質装置の運転停止方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130122384A1 (en) * 2010-05-28 2013-05-16 Panasonic Corporation Hydrogen generator, method of operation thereof and fuel cell system

Also Published As

Publication number Publication date
EP2455335B1 (en) 2019-02-13
CN102015526A (zh) 2011-04-13
JP5420636B2 (ja) 2014-02-19
CN102015526B (zh) 2014-07-09
US20110039172A1 (en) 2011-02-17
EP2455335A4 (en) 2013-05-01
JPWO2010100903A1 (ja) 2012-09-06
US8951683B2 (en) 2015-02-10
EP2455335A1 (en) 2012-05-23

Similar Documents

Publication Publication Date Title
JP5420636B2 (ja) 水素生成装置、それを備える燃料電池システム、及び水素生成装置の運転方法
JP5420553B2 (ja) 燃料処理装置、それを備える燃料電池システム、及び燃料処理装置の運転方法
US8202658B2 (en) Method for stopping a hydrogen generator by controlling water supply to a reformer
US10096851B2 (en) Solid oxide fuel cell system and method of stopping the same
JP2005206395A (ja) 水素生成装置およびその起動方法
JP5002220B2 (ja) 燃料電池システム
WO2009147859A1 (ja) 燃料電池発電システム、及び燃料電池発電システムの運転方法
US8771892B2 (en) Fuel cell power generation system and operation stop method of the same
JP5395168B2 (ja) 水素生成装置および燃料電池システム
JP2007191338A (ja) 水素製造装置の運転方法、水素製造装置および燃料電池発電装置
JP5728650B2 (ja) 水素生成装置及びその運転方法並びに燃料電池システム
JP5257186B2 (ja) 燃料電池発電装置
US9184455B2 (en) Fuel cell system and method of operating the same
WO2011036886A1 (ja) 燃料電池システム、及び燃料電池システムの運転方法
JP2011256059A (ja) 水素生成装置および燃料電池システムの運転方法
JP2008081369A (ja) 水素生成装置、水素生成装置の運転方法及び燃料電池システム
JP2004002154A (ja) 水素生成装置およびそれを備える燃料電池システム
JP2009283268A (ja) 燃料電池発電システム
JP2011090864A (ja) 燃料電池システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080001483.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011502647

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12989780

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10748502

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010748502

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2533/MUMNP/2010

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE