WO2007148699A1 - 水素生成装置および燃料電池システム並びにこれらの運転方法 - Google Patents

水素生成装置および燃料電池システム並びにこれらの運転方法 Download PDF

Info

Publication number
WO2007148699A1
WO2007148699A1 PCT/JP2007/062344 JP2007062344W WO2007148699A1 WO 2007148699 A1 WO2007148699 A1 WO 2007148699A1 JP 2007062344 W JP2007062344 W JP 2007062344W WO 2007148699 A1 WO2007148699 A1 WO 2007148699A1
Authority
WO
WIPO (PCT)
Prior art keywords
desulfurizer
raw material
ignition
combustor
upper limit
Prior art date
Application number
PCT/JP2007/062344
Other languages
English (en)
French (fr)
Inventor
Yukimune Kani
Kunihiro Ukai
Seiji Fujihara
Hidenobu Wakita
Original Assignee
Panasonic Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corporation filed Critical Panasonic Corporation
Priority to US12/304,159 priority Critical patent/US8304124B2/en
Priority to CN2007800232914A priority patent/CN101472837B/zh
Priority to JP2008522476A priority patent/JP4904348B2/ja
Publication of WO2007148699A1 publication Critical patent/WO2007148699A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/384Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts the catalyst being continuously externally heated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04231Purging of the reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04955Shut-off or shut-down of fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0618Reforming processes, e.g. autothermal, partial oxidation or steam reforming
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • H01M8/0675Removal of sulfur
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • C01B2203/0822Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel the fuel containing hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • C01B2203/0827Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel at least part of the fuel being a recycle stream
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1258Pre-treatment of the feed
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1604Starting up the process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04365Temperature; Ambient temperature of other components of a fuel cell or fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04425Pressure; Ambient pressure; Flow at auxiliary devices, e.g. reformers, compressors, burners
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04664Failure or abnormal function
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04664Failure or abnormal function
    • H01M8/04686Failure or abnormal function of auxiliary devices, e.g. batteries, capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04776Pressure; Flow at auxiliary devices, e.g. reformer, compressor, burner
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Definitions

  • the present invention has a desulfurizer that adsorbs and removes sulfur compounds, a hydrogen generator that generates a hydrogen-containing gas from a raw material that has passed through the desulfurizer by a reforming reaction, a fuel cell system including the hydrogen generator, and an operation thereof Regarding the method.
  • Fuel cells capable of high-efficiency power generation even with small devices are being developed as power generators for distributed energy supply sources.
  • Hydrogen gas used as fuel for power generation by fuel cells has not been developed as general infrastructure.
  • the hydrogen generator includes a reformer that reforms and reacts a raw material and water, a shifter that shifts carbon monoxide and water vapor to reduce the concentration of carbon monoxide in the hydrogen-containing gas, and a monoxide
  • a CO removal device is used to oxidize hydrogen carbon mainly with a small amount of oxidant such as air.
  • catalysts suitable for each reaction are used in these reaction parts, for example, Ru catalysts and Ni catalysts are used in reformers, Cu-Zn catalysts are used in shifters, Ru catalysts are used in CO removers, and the like. Yes.
  • this adsorption type desulfurizer can adsorb and remove sulfur compounds in a room temperature state, but sulfur The compound is always supplied, and the adsorption / desulfurization capacity of the desulfurizer decreases as the period of use increases. In other words, the adsorption / desulfurization capacity (adsorption capacity) of the desulfurizer is limited. Conversion is a prerequisite. Therefore, a desulfurizer with an indicator function that can easily determine when to replace the desulfurizer has been proposed! Speak (see, for example, Patent Document 2).
  • the hydrogen generator is usually provided with a combustor that can raise the temperature of the catalyst in the reformer to a level suitable for the catalytic reaction.
  • the inside of the reformer is purged with the raw material that has been supplied with power and passed through the desulfurizer, and the combustor is combusted using the raw material after the purge (see, for example, Patent Document 3).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-228016
  • Patent Document 2 JP 2002-358992 A
  • Patent Document 3 JP 2005-206395 A
  • the present invention has been made in view of such circumstances, and when the combustion of the combustor is started using the raw material passed through the adsorption-type desulfurizer, the start-up after replacement of the desulfurizer It is an object of the present invention to provide a hydrogen generator capable of appropriately starting a combustion operation without misjudgment as a combustion failure even in operation, a fuel cell system including the same, and an operation method thereof.
  • a hydrogen generator includes a modified desulfurizer having a desulfurizing agent that adsorbs and removes sulfur compounds in a raw material, and a reforming catalyst that generates a hydrogen-containing gas from the raw material.
  • a combustor, a combustor for heating the reformer, and the raw material in the combustor An apparatus for starting the combustion of the combustor using the raw material that has passed through the desulfurizer, wherein an upper limit of the ignition confirmation time of the ignition device is set.
  • An upper limit changer for changing, and a change instruction acquisition unit for acquiring a signal related to the change instruction.
  • the change instruction acquisition unit may be a replacement signal acquisition unit that acquires a signal related to replacement of the desulfurizer, and a signal related to replacement of the desulfurizer by the replacement signal acquisition unit. If is acquired, the upper limit changer will raise the upper limit of the ignition confirmation time.
  • the fuel cell system of the present invention may include the above-described hydrogen generator of the present invention and a fuel cell that generates power using a hydrogen-containing gas supplied from the hydrogen generator.
  • the operation method of the hydrogen generator of the present invention includes a desulfurizer having a desulfurizing agent that adsorbs and removes sulfur compounds in the raw material, and an improved method for generating a hydrogen-containing gas from the raw material that has passed through the desulfurizer.
  • a reformer having a catalyst, a combustor that heats the reformer, and an igniter that ignites the raw material in the combustor, using the raw material that has passed through the desulfurizer.
  • An operation method of a hydrogen generator configured to start combustion of the combustor, wherein after the desulfurizer is replaced, the upper limit of the ignition confirmation time of the ignition device is increased, and the increased ignition confirmation time is increased. An ignition operation of the igniter is performed based on the upper limit.
  • the fuel cell system operating method of the present invention includes a desulfurizer having a desulfurizing agent that adsorbs and removes sulfur compounds in a raw material, and a reforming catalyst that generates a hydrogen-containing gas from the raw material that has passed through the desulfurizer. And a combustor that heats the reformer, and an igniter that ignites the raw material in the combustor, and uses the raw material that has passed through the desulfurizer.
  • a method for operating a fuel cell system comprising: a hydrogen generator configured to start combustion in a combustor; and a fuel cell that generates power using a hydrogen-containing gas supplied from the hydrogen generator. After the desulfurizer is replaced, check the ignition of the igniter In addition to increasing the upper limit of the time, the ignition device is ignited based on the increased upper limit of the ignition confirmation time.
  • the start-up operation after replacement of the desulfurizer is not erroneously determined as a combustion failure.
  • a hydrogen generator capable of starting a combustion operation, a fuel cell system including the same, and an operation method thereof are obtained.
  • FIG. 1 is a block diagram showing a configuration example of a fuel cell system in an embodiment of the present invention.
  • FIG. 2 is a schematic diagram for explaining a configuration example of the combustor of FIG.
  • FIG. 3 is a flowchart showing an example of an ignition sequence of a combustor in the case where desulfurizer replacement is not assumed.
  • FIG. 4 is a flowchart showing another example of the ignition sequence of the combustor in the case where desulfurizer replacement is not assumed.
  • FIG. 5 is a diagram showing an example of measurement of a change over time of the frame rod output during the ignition operation by the igniter.
  • FIG. 6 is a flowchart showing an example of an ignition sequence of the combustor when replacement of the desulfurizer is assumed.
  • FIG. 7 is a view showing an exchange signal acquisition device as an example of an operation screen of a change instruction acquisition device in the ignition sequence of FIG.
  • Fig. 8 shows another example of the ignition sequence of the combustor when replacement of the desulfurizer is assumed. It is a flowchart.
  • FIG. 9 is a diagram showing an example of an operation screen of the change instruction acquisition unit in the ignition sequence of FIG.
  • FIG. 10 is a flowchart showing a modification of the ignition sequence of the combustor.
  • FIG. 11 is a flowchart showing another modification of the ignition sequence of the combustor.
  • FIG. 1 is a block diagram showing a configuration example of a fuel cell system according to an embodiment of the present invention. As shown in FIG. 1, the hydrogen generator 100 and the fuel cell 7 are the main components of the fuel cell system 200.
  • the hydrogen generator 100 is an organic compound composed of at least carbon and hydrogen, such as city gas mainly composed of methane, natural gas, hydrocarbons such as LPG, alcohols such as methanol, or naphtha components. This is a device that can generate a hydrogen-containing gas by proceeding mainly with the reforming reaction between the raw material and the water vapor.
  • This hydrogen generator 100 is a Cu-Zn-based shifter that performs a steam shift reaction of carbon monoxide in the hydrogen-containing gas generated in the reformer 1, in addition to the reformer 1 filled with a Ru-based reforming catalyst.
  • a converter equipped with a catalyst, and a CO remover equipped with a Ru-based catalyst that reduces carbon monoxide remaining in the hydrogen-containing gas after passing through the converter mainly by oxidation may be provided (however, (The illustration of the transformer and CO remover and their detailed explanations are omitted).
  • the hydrogen generator 100 includes a water supplier 2, a raw material supplier 3, a desulfurizer 4, a combustor 5, A controller 8 and a change instruction acquisition unit 101 are provided.
  • the water supply device 2 is a device having a function of adjusting the flow rate of water supplied to the reformer 1. This water is used to generate the steam necessary for the reforming reaction.
  • the water supply device 2 there are used a valve, a flow controller, a pump, and the like that adjust the amount of water supplied from a water supply source (not shown) exemplified by flooded water and a water tank.
  • a water supply source not shown
  • purified purified water obtained by purifying purified water through activated carbon and ion-exchanged resin (both not shown) is supplied to the reformer 1 by the water supplier 2.
  • the raw material supplier 3 is a device (for example, a valve or a flow regulator) having a flow rate adjusting function for supplying the raw material to the reformer 1.
  • a flow path changing valve 4c for example, a three-way valve disposed at the connection between the path between the raw material supplier 3 and the reformer 1 and the bypass path 4d is used.
  • the detour route 4d that passes the raw material discharged from the raw material feeder 3 through the reformer 1 It can also be sent directly to the combustor 5 described later.
  • the desulfurizer 4 has an adsorption-type desulfurization function filled with zeolite, which is an adsorbent for sulfur compounds (in this embodiment, Zeolum F-9 manufactured by Tosoh Corporation).
  • zeolite which is an adsorbent for sulfur compounds (in this embodiment, Zeolum F-9 manufactured by Tosoh Corporation).
  • Each of the pair of shut-off valves 4a is provided at both ends as the inlet / outlet of the desulfurizer 4, one of which is connected to the gas infrastructure line 9 as a raw material supply source, and the other is connected to the raw material supplier 3 It is connected. Then, by opening these shut-off valves 4a, the raw material supplied from the gas infrastructure line 9 and containing the sulfur compound odorant is adsorbed and removed in the desulfurizer 4 after the sulfur compound is adsorbed and removed. Sent to raw material feeder 3
  • the combustor 5 is a device having a flame burner structure that supplies heat required for the reforming reaction to the reforming catalyst of the reformer 1 via high-temperature combustion gas.
  • the combustor 5 is provided with a combustion detector 102, an igniter 103, and a combustion fan 6 for supplying combustion air. The detailed configuration of the combustor 5 will be described later.
  • the controller 8 is constituted by a microprocessor (CPU) or the like, and can control the operation of the fuel cell system 200 (hydrogen generator 100) as shown in Fig. 1 and uses an internal memory such as a semiconductor memory.
  • the controller 8 (CPU) receives the output signals of the change instruction acquisition unit 101 and the combustion detector 102 and the output signals of a temperature sensor and a pressure sensor (not shown), and based on these signals, the raw material supplier 3
  • the operation of the water supply device 2, the combustion fan 6, the igniter 1103, and the various valves 4a, 4c, and 12 is appropriately controlled.
  • the change instruction acquisition unit 101 is configured to acquire a signal related to an instruction to change the upper limit of the ignition confirmation time at the start of combustion of the combustor 5.
  • the change instruction acquisition unit 101 has a touch panel type operation screen, and a predetermined screen using a maintenance operator or a user's (hereinafter referred to as “operator”) finger or a dedicated pen. By the touch operation, the above signal can be acquired. Details of the change instruction acquisition unit 101 will be described later.
  • the solid polymer fuel cell 7 has an anode 7a and a force sword 7c, and is supplied from the hydrogen generator 100 to the anode 7a via the hydrogen gas supply path 10. Supplied to the power sword 7c from an appropriate oxidant gas supply device (not shown). It is comprised so that it may generate electric power using oxidant gas.
  • an appropriate oxidant gas supply device (not shown). It is comprised so that it may generate electric power using oxidant gas.
  • the configuration of the fuel cell 7 is known, and detailed illustration and description thereof will be omitted.
  • the surplus hydrogen off gas generated during power generation of the fuel cell 7 is discharged from the anode 7a and supplied to the combustor 5 through the off gas path 11. Further, as shown in FIG.
  • the hydrogen gas supply path 10 and the off-gas path 11 can be short-circuited, and the flow arranged in the connection between the short-circuit path and the hydrogen gas supply path 10
  • a path change valve 12 (for example, a three-way valve) is provided.
  • FIG. 2 is a schematic diagram for explaining a configuration example of the combustor of FIG.
  • the tubular distributor 50 of the combustor 5 communicates with the bypass path 4d and the off-gas path 11 described above, and can burn many combustible components (for example, raw materials) into the combustion space 52. It has a 50A jet hole. As a result, combustible components flowing in the distributor 50 are dispersed by the ejection holes 50A and ejected to the combustion space 52.
  • the air chamber 51 of the combustor 5 communicates with the inside of the above-described combustion fan 6 through the wall portion 53, and a large number of air that is pumped from the combustion fan 6 can be ejected into the combustion space 52. It has a jet hole 51A. Thereby, the air in the air chamber 51 is dispersed by the ejection holes 51A and ejected into the combustion space 52.
  • the combustible component and air are supplied to the combustion space 52 so as to have an appropriate mixing ratio.
  • igniter 103 is disposed at the tip of the distributor 50 as shown in FIG. 2, and can thereby ignite combustible components existing in the combustion space 52.
  • an igniter using piezoelectric discharge is used as the igniter 103.
  • the combustion detector 102 is disposed in the combustion space 52, whereby the fire of the combustor 5 is detected.
  • the state of flame combustion can be detected.
  • a flame rod (FR) that measures the amount of ion current of charged particles in the combustion space 52 is used as the combustion detector 102 (hereinafter referred to as “flame detector 102” as “frame”). Rod 102 ”t).
  • hydrogen generator 100 the fuel cell system 200 (hereinafter referred to as “hydrogen generator 100 etc.”) of the present embodiment will be described.
  • FIG. 3 is a flowchart showing an example of an ignition sequence of the combustor when the desulfurizer replacement is not considered.
  • FIG. 4 is a flowchart showing another example of the ignition sequence of the combustor when the desulfurizer replacement is not considered.
  • the control program force stored in the internal memory of the controller 8 is read into the CPU of the controller 8. Then, the following processing is executed while controlling various devices such as the CPU 1S hydrogen generator 100 controlled by the control program.
  • the upper limit number of times of ignition “NMAX” corresponding to the upper limit of the “ignition confirmation time” of the igniter 103, and the combustion determination threshold value of the combustor 5 (an example of this will be described later) It is assumed that the “set value” output from the frame rod 102 corresponding to (see FIG. 5) is stored in advance.
  • step S301 The operation of the combustion fan 6 is turned on (step S301), whereby supply of combustion air from the combustion fan 6 to the combustion space 52 is started.
  • N representing the number of ignition trials is reset to “zero (0)”, and then “1” is set to “1”.
  • step S304 and S305 The operation of the igniter 103 is turned on (steps S304 and S305), and a spark discharge is generated in the combustion space 52.
  • the material feeder 3 makes a detour. Feeding of the raw material to the combustion space 52 is started via the path 4d (steps S306 and S307). In other words, an appropriate amount of raw material force flowing through the distributor 50 is injected into the combustion space 52 through the injection hole 50A, whereby the mixture of the raw material and the combustion air enters the combustion range, and a flame is generated in the combustion space 52. It will be ready to form.
  • step S310 it is determined whether or not the output force of the frame rod 102 exceeds the “set value” corresponding to the combustion determination threshold value of the combustor 5 (step S310).
  • the presence or absence of appropriate flame formation in the combustor 5 is determined using the ion current amount of the charged particles as the output of the frame rod 102.
  • step S313 If the output of frame rod 102 exceeds the “set value”! / ⁇ (in step S310! / ⁇ YES), it is determined by the igniter 103 that the material is ignited. (Step S313).
  • the hydrogen-containing gas discharged from the reformer 1 is subjected to a water gas shift reaction in the shifter and a selective oxidation reaction of carbon monoxide in the CO remover. 2 Hydrogen gas is generated with a concentration of Oppm or less.
  • This hydrogen gas is supplied to the anode 7a of the fuel cell 7 via the hydrogen gas supply path 10 and used as a reaction gas for power generation of the fuel cell 7.
  • the output of the frame rod 102 is equal to or less than the “set value” in step S310, it is determined that the raw material is not ignited by the igniter 103 (ignition mistake).
  • step S312 the raw material supply to the combustion space 52 using the raw material supplier 3 is stopped (step S311). Then, it is determined whether or not “N” representing the number of ignition tries is less than the upper limit number of ignitions “NMAX” (step S312).
  • step S312 "N" force representing number of ignition tries If lower than upper limit number of ignitions "NMAX" ("YES" in step S312), the process returns to step S303, and the next ignition try operation is performed.
  • the supply of the raw material is stopped in step S311, the inside of the combustion space 52 is filled with air by the air continuously supplied to the combustion space 52. Therefore, even if the operation of the igniter 103 is turned on again in step 305, no irregular situation such as abnormal combustion of the combustor 5 occurs.
  • step S312 if “N” representing the number of ignition attempts is not less than the upper limit number of ignition “NMAX” (“NO” in step S312), the combustor is in addition to the misignition of the raw material by the igniter 103. 5 is judged to have some abnormality, and the operation of the hydrogen generator 100 etc. is stopped
  • step S309 The operation of the igniter 103 is turned off!
  • step S409 of the ignition sequence in FIG. the detection operation of the frame rod 102 may be executed, and then the operation of the igniter 103 may be turned off in step S410!
  • step S410 the description using the flowchart is omitted.
  • the ignition OFF operation of the igniter 103 in step S410 and the raw material supply stop operation in step S411 are omitted, and ignition is performed.
  • the operation state of the igniter 103 and the material supply by the material supplier 3 may be continued.
  • the operation ON operation of the igniter in step 405 can be omitted in the second and subsequent ignition tries. Therefore, in this case, the upper limit number of ignition times “NMAX” is accurately calculated from step S403 to step S41.
  • the upper limit repeat number between 2 is “NMAX”.
  • FIG. 5 is a diagram showing an example of measurement of the temporal change of the frame rod output during the ignition operation by the igniter. Here, it is assumed that the ignition operation by the igniter 103 is continuously performed.
  • the horizontal axis in Fig. 5 shows the elapsed time of the starting operation of the ignition operation by the igniter 103, and the vertical axis shows the frame rod output.
  • the relationship between the two is the first combustion after the desulfurizer 4 is replaced. It shows the case of the ignition operation in operation (dotted line) and not !, and the case of the ignition operation in normal combustion operation (dashed line).
  • the upper limit “5 (—)” is set for the frame rod output.
  • the frame rod output becomes larger than “0”. If the flame rod output is “1 (one)” or more, it is considered that the combustion of the raw material is stably performed in the combustion space 52.
  • the desulfurization agent that has not been exposed to the raw material after the replacement of the desulfurizer 4 has a high adsorption capacity, when the raw material is passed for the first time, in addition to the sulfur compounds in the raw material, part of the raw material itself is adsorbed. Is done. Therefore, the amount of raw material supplied to the combustion space 52 is reduced, and the time until the mixture of the raw material and combustion air enters the combustion range in the combustion space 52 (that is, the flame rod output is “1 (one)”. The time until reaching the timing exceeding () is considered to be longer.
  • the upper limit ignition number “NMAX” when the operation of the igniter 103 is turned ON / OFF is as follows: Can be estimated.
  • the raw material combustion of the combustor 5 is about 5 minutes from the start of the ignition operation for the reasons described above. It is stable after a lapse. Therefore, in this case, the frame rod output is predicted to exceed “1 (—)” by the 10th ignition try. For this reason, if the upper limit ignition number “NMA X” is set to about “15 times”, it can be expected that the combustion of the raw material in the combustor 5 is stable without any trouble.
  • the upper limit ignition number “NMAX” is set to “15 times”, the desulfurizer 4 is replaced even in the case of the ignition operation in the normal combustion operation. Even in the case of the ignition operation in the first combustion operation, the combustion of the combustor 5 can be performed without any trouble.
  • the upper limit number of ignitions “NMAX” is set to “15 times” even though the raw material combustion of the combustor 5 can be stabilized in the first ignition try. This may delay the detection of combustor 5 abnormalities other than raw material ignition mistakes. In addition, this hinders prompt response to the abnormality, and may hinder proper restoration of the hydrogen generator 100 and the like.
  • FIG. 6 is a flow chart showing an example of an ignition sequence of the combustor when considering desulfurizer replacement.
  • FIG. 7 is a diagram showing an exchange signal acquisition device as an example of an operation screen of the change instruction acquisition device in the ignition sequence of FIG.
  • FIG. 8 is a flowchart showing another example of the ignition sequence of the combustor when considering desulfurizer replacement.
  • FIG. 9 is a diagram showing an example of the operation screen of the change instruction acquisition unit in the ignition sequence of FIG.
  • Step S617 Since the operation of Step S617 is the same as that of Step S301 to Step S313 in FIG. 3, the description of these operations is omitted here.
  • control program force stored in the internal memory of the controller 8 is read into the CPU of the controller 8. CPU controlled by this control program
  • the following processing is executed while controlling various devices such as the 1S hydrogen generator 100.
  • the exchange signal acquisition unit is a touch panel type operation screen shown in FIG. 7, and the following processing can be executed based on a signal input by a screen touch operation on the operation screen by the operator.
  • the initial value of the upper limit ignition frequency "NMAX" is set to "5 times".
  • the operator touches the “submenu” in FIG. 7 (a) and FIG. 7 (b).
  • the “desulfurizer” touch operation in Fig. 7 (c) is performed, and the “replacement” touch operation on the operation screen shown in Fig. 7 (c) is performed.
  • the fact that the desulfurizer replacement signal is “ON” is stored in the memory inside the controller 8.
  • this ON signal force is input to the CPU of the controller 8 as a change instruction signal for changing to the upper limit ignition frequency corresponding to the first combustion operation after desulfurizer replacement.
  • step S601 If the desulfurizer replacement signal is ON in step S601, the CPU of controller 8 will change the upper limit ignition number “NMAX” from “5 times” to “after the desulfurizer replacement based on this desulfurizer replacement ON signal”. The upper limit ignition number corresponding to the first combustion operation is increased to “15 times” (step S602). Then, the desulfurizer replacement signal is turned OFF (step S604), and the CPU of the controller 8 executes the operations after step S605.
  • step S601 the next starting operation is determined to be desulfurizer replacement signal power SOFF in step S601, and the CPU of controller 8 sets the upper limit ignition count “NMAX” to the upper limit ignition corresponding to the normal combustion operation.
  • the number of times is set to “5 times” (step S603), and the operations after step S605 are executed.
  • the CPU of the controller 8 sets the upper limit of the "ignition confirmation time" as in step S602 based on the desulfurizer replacement ON signal acquired from the replacement signal acquirer in step S601.
  • the corresponding upper limit ignition count “NMAX” is changed to a number greater than the upper limit ignition count in normal combustion operation. Therefore, in this process, the CPU of the controller 8 functions as an upper limit changer that changes the upper limit of the ignition confirmation time, and the exchange signal acquisition unit acquires a change instruction for acquiring a signal related to this change instruction. Functions as the acquirer 101.
  • the change instruction acquisition unit 101 is a touch panel type operation screen shown in FIG. 9, and can execute the following processing based on a signal input by a screen touch operation on the operation screen by the operator. .
  • the initial value of the upper limit ignition frequency “NMAX” is set to “5 times”.
  • the operator performs the touch operation of the "sub menu” in Fig. 9 (a) and the touch operation of "ignition number upper limit setting" in Fig. 9 (b), as shown in Fig. 9 (c).
  • step S801 when a start command for the hydrogen generator or the fuel cell system including the hydrogen generator is input by an operation through the operator's operation screen, first, whether the operation sequence is the operation after replacement of the desulfurizer or the normal operation is performed. Determination is made (step S801).
  • step S801 when the operation sequence is the operation after replacement of the desulfurizer, the signal indicating this “operation after replacement of the desulfurizer” indicates the upper limit number of ignitions corresponding to the first combustion operation after replacement of the desulfurizer. It is input to the CPU of the controller 8 as a change instruction signal to be changed. Further, when the operation sequence is operation after replacement of the desulfurizer in step S801, the CPU of the controller 8 sets the upper limit ignition number “NMAX” to “5 times” based on the change instruction signal for the first time after replacement of the desulfurizer. Increase the maximum number of ignitions to “15” corresponding to the combustion operation (step S802). Then, the CPU of the controller 8 executes the operations after step S805.
  • step S801 the operation sequence becomes “normal operation”, and in the subsequent start-up operation, in step S801, the CPU of controller 8 sets the upper limit ignition number “NMAX” to the upper limit ignition corresponding to the normal combustion operation. Change the number of times back to “5 times” (step S803) The operation after S805 is executed.
  • the CPU of the controller 8 corresponds to the upper limit of the "ignition confirmation time" as in step S802 based on the change instruction signal acquired from the change instruction acquisition unit 101 in step S801.
  • the upper limit number of times to fire “NMAX” has been changed. Therefore, in this process, the CPU of the controller 8 functions as an upper limit changer that changes the upper limit of the ignition confirmation time.
  • the hydrogen generator 100 or the like receives an upper limit changer that changes the upper limit ignition number “NMAX” of the igniter 103 and a signal related to this change instruction. And a change instruction acquisition unit 101 to be obtained. Specifically, in the present embodiment, “operation after desulfurizer replacement” is selected by the operator, and the change instruction acquisition unit 101 is changed to the upper limit number of ignitions corresponding to the first combustion operation after desulfurizer replacement. When the change instruction signal to be obtained is acquired, the CPU of the controller 8 as the upper limit changer is configured to increase the upper limit ignition number “NMAX” from “5 times” to “15 times”.
  • the desulfurizing agent that has not been exposed to the raw material after the replacement of the desulfurizer 4 has a high adsorption capacity, when the raw material is first passed, in addition to the sulfur compound in the raw material, the raw material itself Some of them are adsorbed. Therefore, the amount of the raw material supplied to the combustion space 52 is reduced, and the time until the mixture of the raw material and the combustion air in the combustion space 52 enters the combustion range (that is, the frame rod output is “1 (one ) ”Time until reaching the timing exceeding“) ”is considered to be longer.
  • the upper limit ignition number “NMAX” is set sufficiently high, such as “15 times”, the combustion of the raw material in the combustor 5 is stable without any problem. I can expect it.
  • the upper limit number of ignitions “NMAX” is set to about “5 times” in the normal combustion operation, it is possible to quickly detect abnormalities in the combustor 5 other than raw material ignition mistakes. . As a result, it is possible to quickly take appropriate measures such as a recovery operation for the abnormality.
  • the raw material adsorption amount of the desulfurizing agent in the desulfurizer 4 depends on the type of the desulfurizing agent and the desulfurizer 4 charged. It depends on the amount of desulfurizing agent.
  • the time for the material to reach the combustor 5 from the material supplier 3 and the timing at which the flame rod output exceeds “1 (1)” also differ depending on the device configuration such as the hydrogen generator 100. For this reason, it is necessary to set a specific numerical value for the upper limit number of times of ignition “NMAX”, a timer time, and the like as appropriate for each apparatus.
  • FIG. 10 is a flowchart showing a modification of the ignition sequence of the combustor.
  • the example in which the upper limit number of times of ignition “NMAX” of the igniter 103 is changed has been described. Instead, it is the time (the time from step S1011 to step S1013) during which the igniter 103 is operating with respect to the raw material supplied to the combustor 5 through the desulfurizer 4 as shown in FIG.
  • the timer time “Y seconds” in step S1012 may be changed.
  • the value of the upper limit ignition number “ ⁇ ” is set to “5 times”, and the initial value of the timer time “ ⁇ seconds” is It is set to “20 seconds”.
  • step S101 After the operation of FIG. 7 (c) is performed by the operator at the time of replacement of the desulfurizer, the start-up command for the hydrogen generator or the fuel cell system including the same is input, and the desulfurizer is replaced in step S101.
  • the CPU of the controller 8 increases the timer time “Y seconds” from “20 seconds” to “60 seconds” based on this desulfurizer replacement signal (step S 1 002 ).
  • step S1002 the desulfurizer replacement signal is turned OFF. Therefore, in the next and subsequent startup operations, it is determined in step S1001 that the desulfurizer replacement signal is OFF, and the controller 8 The CPU sets the timer time “Y seconds” to “20 seconds” (step S1003) and executes the operations after step S1005.
  • the ignition operation time for each ignition try of the ignition device 103 for the raw material that passes through the desulfurizer 4 and is supplied to the combustor 5 is increased. If this is the case, the same effect as increasing the maximum number of ignitions “ ⁇ ” will be produced. Devised. In this case, as the upper limit of the “ignition confirmation time” of the igniter 103, a value obtained by multiplying the timer time “Y seconds” by the upper limit number of ignition times “ ⁇ ” is employed.
  • FIG. 11 is a flowchart showing another modification of the ignition sequence of the combustor.
  • the example in which the upper limit number of times of ignition “ ⁇ ” of the igniter 103 is changed has been described. Instead, the upper limit number of ignitions “ ⁇ ” as shown in FIG. 11 is changed, and the igniter 1 03 operates on the raw material that passes through the desulfurizer 4 and is supplied to the combustor 5! /
  • the timer time “leap second” in step S 1114 which is the time (time from step SI 113 to step SI 115), may be changed.
  • the initial value of the upper limit ignition number “ ⁇ ⁇ ” is set to “5 times” and the initial time of the timer time “ ⁇ seconds” is set. The value is set to “20 seconds”!
  • step S1101 when the operator performs the operation shown in FIG. 7 (c) when replacing the desulfurizer, the start command for the hydrogen generator or the fuel cell system including the same is input, and the desulfurizer is replaced in step S1101.
  • the CPU of controller 8 increases the timer time “Y seconds” from “20 seconds” to “30 seconds” based on this desulfurizer replacement signal, and the upper limit number of ignitions “ Increase “ ⁇ ” from “5 times” to “10 times” (steps S1102 and S1103).
  • step S1101 since the desulfurizer replacement signal is turned off after the timer time and the upper limit number of ignitions are changed in step SI102, it is determined in step S1101 that the desulfurizer replacement signal is OFF in the next starting operation.
  • the CPU of controller 8 sets the timer time “Y seconds” to “20 seconds” and the upper limit ignition count “ ⁇ ” to “5 times” (steps S1104, S1105), and performs the operations after step SI 105. Execute.
  • the ignition operation time for each ignition try of the ignition device 103 for the raw material that passes through the desulfurizer 4 and is supplied to the combustor 5 is increased.
  • the number of times of upper limit ignition “NMAX” is adopted as the upper limit of the “ignition confirmation time” of the igniter 103.
  • a value obtained by multiplying the timer time “Y seconds” by the upper limit number of ignitions “ ⁇ ” is adopted.
  • a touch panel type operation screen is exemplified as the exchange signal acquisition unit.
  • the acquisition of the exchange signal of the desulfurizer 4 by such a touch panel is only an example until it gets tired.
  • a sensor that detects the replacement of the desulfurizer 4 with a mechanical contact switch may be used as the replacement signal acquisition unit.
  • it may be a method of detecting that the desulfurizer 4 has been replaced using an IC tag or an IC tag reader.
  • the hydrogen generator of the present invention can appropriately start the combustion operation using the raw material that has passed through the desulfurizer without erroneously determining that the combustion is defective even in the start-up operation after replacement of the desulfurizer. It is useful as a household fuel cell cordage system equipped with this hydrogen generator.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Abstract

 水素生成装置(100)は、原料中の硫黄化合物を吸着除去する脱硫剤を有する脱硫器(4)と、原料から水素含有ガスを生成する改質触媒を有する改質器(1)と、改質器(1)を加熱する燃焼器(5)と、燃焼器(5)において原料への着火を起こす着火器(103)と、を備え、脱硫器(4)を通過した原料を用いて燃焼器(5)の燃焼を開始するよう構成されており、着火器(103)による着火確認時間の上限を変更する上限変更器(8)と、当該変更の指示に関連する信号を取得する変更指示取得器(101)とを備える。

Description

明 細 書
水素生成装置および燃料電池システム並びにこれらの運転方法 技術分野
[0001] 本発明は、硫黄化合物を吸着除去する脱硫器を有し、脱硫器を通過した原料から 改質反応により水素含有ガスを生成する水素生成装置およびこれを備える燃料電池 システム並びにこれらの運転方法に関する。
背景技術
[0002] 小型装置でも高効率発電が可能な燃料電池は、分散型エネルギー供給源の発電 装置として開発が進められている。燃料電池の発電時の燃料として用いられる水素 ガスは、一般的なインフラとして整備されていない。このため、例えば、都市ガス、 LP G等の既存化石原料インフラから得られる原料から水素含有ガスを生成させる水素 生成装置を、燃料電池に併設する構成がとられる。水素生成装置は、原料と水とを 改質反応させる改質器、水素含有ガス中の一酸化炭素濃度を低減するために一酸 化炭素と水蒸気を水性ガスシフト反応させる変成器、および一酸ィヒ炭素を主に微量 空気等の酸化剤で酸化させる CO除去器を設ける構成がとられることが多い。また、 それらの反応部には、各反応に適した触媒、例えば、改質器には Ru触媒や Ni触媒 、変成器には Cu— Zn触媒、 CO除去器には Ru触媒等が用いられている。
[0003] ところで、上記既存インフラとしての都市ガスや LPGは、配管等からの原料の漏れ を検知する目的で硫黄ィ匕合物系の付臭剤が添加されている。それら硫黄化合物系 の付臭剤は、水素生成装置に用いる前記触媒の被毒成分となるため、あらかじめ付 臭剤を除去する脱硫器を水素生成装置に設けることが一般的である。
[0004] 例えば、ゼォライト系吸着脱硫剤を用いた吸着型脱硫器で原料中の硫黄ィ匕合物を 除去する方法が考案されている (例えば、特許文献 1参照)。
[0005] また、この吸着型脱硫器は、常温状態で硫黄ィ匕合物を吸着除去できるため、水添 型脱硫器と比較して水素生成装置の起動性が優れるが、原料中の硫黄ィ匕合物は常 に供給され、使用期間が長くなると、脱硫器の吸着脱硫能力は低下する。つまり、脱 硫器の吸着脱硫能力(吸着容量)には限界があるので、長期使用時には脱硫器の交 換が前提となる。そこで、脱硫器の交換時期を容易に判定可能なインジケータ一機 能付きの脱硫器が提案されて!ヽる (例えば、特許文献 2参照)。
[0006] また、水素生成装置は、通常、改質器内の触媒の温度を触媒反応に適したレベル にまで昇温できる燃焼器を備えており、水素生成装置の起動動作において、原料ィ ンフラ力 供給され、脱硫器を通過した原料により改質器内をパージして、当該パー ジ後の原料を用いて燃焼器の燃焼がなされている (例えば、特許文献 3参照)。 特許文献 1:特開 2004— 228016号公報
特許文献 2:特開 2002— 358992号公報
特許文献 3:特開 2005 - 206395号公報
発明の開示
発明が解決しょうとする課題
[0007] さて、上記特許文献 2に記載の水素生成装置のように、吸着型脱硫器の吸着容量 に限界があるので、脱硫器の交換が不可欠であるが、脱硫器の交換後に、上記特許 文献 3に記載の水素生成装置のように脱硫器を通過した原料を用いて燃焼器の燃 焼がなされる場合、脱硫剤での原料吸着が起こり、脱硫器を通過した原料の燃焼器 への供給流量が一時的に少なくなり、燃焼器での燃焼状態が不安定になることがあ る。その結果、例えば、通常の燃焼検知判断基準を適用した場合、脱硫器の原料吸 着による燃焼器の不安定燃焼を、燃焼器の他の要因による燃焼不良と誤判定すると V、う不都合が生じることが予測される。
[0008] 本発明は、このような事情に鑑みてなされたものであり、吸着型脱硫器を通した原 料を用いて燃焼器の燃焼開始がなされる場合に、脱硫器の交換後の起動動作にお いても燃焼不良と誤判定することなく適切に燃焼動作を開始可能な水素生成装置お よびこれを備える燃料電池システム並びにこれらの運転方法を提供することを目的と する。
課題を解決するための手段
[0009] 上記課題を解決するために、本発明の水素生成装置は、原料中の硫黄化合物を 吸着除去する脱硫剤を有する脱硫器と、原料から水素含有ガスを生成する改質触媒 を有する改質器と、前記改質器を加熱する燃焼器と、前記燃焼器において前記原料 への着火を起こす着火器と、を備え、前記脱硫器を通過した前記原料を用いて前記 燃焼器の燃焼を開始するよう構成された装置であって、前記着火器の着火確認時間 の上限を変更する上限変更器と、前記変更の指示に関連する信号を取得する変更 指示取得器とを備えている。
[0010] また、前記変更指示取得器は、前記脱硫器の交換に関連する信号を取得する交 換信号取得器であってもよぐ前記交換信号取得器により前記脱硫器の交換に関連 する信号が取得された場合、前記上限変更器が前記着火確認時間の上限を上げて ちょい。
[0011] これらの構成により、吸着型脱硫器を通した原料を用いて燃焼器の燃焼開始がなさ れる場合に、脱硫器の交換後の水素生成装置の起動動作においても燃焼不良と誤 判定することなく適切に燃焼動作を開始することができる。
[0012] また、本発明の燃料電池システムは、上記本発明の水素生成装置と、前記水素生 成装置より供給される水素含有ガスを用いて発電する燃料電池とを備えてもよい。
[0013] また、本発明の水素生成装置の運転方法は、原料中の硫黄化合物を吸着除去す る脱硫剤を有する脱硫器と、前記脱硫器を通過した原料から水素含有ガスを生成す る改質触媒を有する改質器と、前記改質器を加熱する燃焼器と、前記燃焼器におい て前記原料への着火を起こす着火器と、を備え、前記脱硫器を通過した前記原料を 用いて前記燃焼器の燃焼を開始するよう構成された水素生成装置の運転方法であ つて、前記脱硫器の交換後に、前記着火器の着火確認時間の上限を上げるとともに 、前記上げられた着火確認時間の上限に基づき前記着火器の着火動作を行うことを 特徴とする。
[0014] また、本発明の燃料電池システムの運転方法は、原料中の硫黄化合物を吸着除去 する脱硫剤を有する脱硫器と、前記脱硫器を通過した原料から水素含有ガスを生成 する改質触媒を有する改質器と、前記改質器を加熱する燃焼器と、前記燃焼器にお いて前記原料への着火を起こす着火器と、を備え、前記脱硫器を通過した前記原料 を用いて前記燃焼器の燃焼を開始するよう構成された水素生成装置と、前記水素生 成装置より供給される水素含有ガスを用いて発電を行う燃料電池と、を備える燃料電 池システムの運転方法であって、前記脱硫器の交換後に、前記着火器の着火確認 時間の上限を上げるとともに、前記上げられた着火確認時間の上限に基づき前記着 火器の着火動作を行うことを特徴とする。
[0015] これらの運転方法により、吸着型脱硫器を通した原料を用いて燃焼器の燃焼開始 力 される場合に、脱硫器の交換後の水素生成装置および燃料電池システムの起 動動作においても、燃焼不良と誤判定することなく適切に燃焼動作を開始することが できる。
[0016] 本発明の上記目的、他の目的、特徴、及び利点は、添付図面参照の下、以下の好 適な実施態様の詳細な説明から明らかにされる。
発明の効果
[0017] 本発明によれば、吸着型脱硫器を通過した原料を用いて燃焼器の燃焼開始がなさ れる場合に、脱硫器の交換後の起動動作においても燃焼不良と誤判定することなく 適切に燃焼動作を開始可能な水素生成装置およびこれを備える燃料電池システム 並びにこれらの運転方法が得られる。
図面の簡単な説明
[0018] [図 1]図 1は、本発明の実施の形態における燃料電池システムの構成例を示したプロ ック図である。
[図 2]図 2は、図 1の燃焼器の構成例を説明するための模式図である。
[図 3]図 3は、脱硫器交換を想定しな 、場合の燃焼器の着火シーケンスの一例を示し たフローチャートである。
[図 4]図 4は、脱硫器交換を想定しな 、場合の燃焼器の着火シーケンスの他の例を 示したフローチャートである。
[図 5]図 5は、着火器による着火動作の際のフレームロッド出力の経時変化の一測定 例を示した図である。
[図 6]図 6は、脱硫器交換を想定した場合の燃焼器の着火シーケンスの一例を示した フローチャートである。
[図 7]図 7は、図 6の着火シーケンスにおける変更指示取得器の操作画面の一例であ る交換信号取得器を示した図である。
[図 8]図 8は、脱硫器交換を想定した場合の燃焼器の着火シーケンスの他の例を示し たフローチャートである。
[図 9]図 9は、図 8の着火シーケンスにおける変更指示取得器の操作画面の一例を示 した図である。
[図 10]図 10は、燃焼器の着火シーケンスの変形例を示したフローチャートである。
[図 11]図 11は、燃焼器の着火シーケンスの他の変形例を示したフローチャートであ る。
符号の説明
1 改質器
2 水供給器
3 原料供給器
4 脱硫器
4a 閉止弁
5 燃焼器
6 燃焼ファン
7 燃料電池
8 制御器
9 ガスインフラライン
10 水素ガス供給経路
11 オフガス経路
12 流路変更弁
50 ディストリビュータ
51 空気室
52 燃焼空間
53 壁部
101 変更指示取得器
102 燃焼検知器 (フレームロッド; FR)
103 着火器
100 水素生成装置 200 燃料電池システム
発明を実施するための最良の形態
[0020] 以下、本発明の好ましい実施の形態を、図面を参照しながら説明する。
[0021] 図 1は、本発明の実施の形態における燃料電池システムの構成例を示したブロック 図である。図 1に示すように、燃料電池システム 200の主要な構成要素として、水素 生成装置 100および燃料電池 7がある。
[0022] 水素生成装置 100は、メタンを主成分とする都市ガス、天然ガス、 LPG等の炭化水 素、メタノール等のアルコール、あるいはナフサ成分等の少なくとも炭素及び水素か ら構成される有機化合物を含む原料と、水蒸気との改質反応を主に進行させ、水素 含有ガスを生成できる装置である。この水素生成装置 100は、 Ru系の改質触媒を充 填した改質器 1の他、改質器 1で生成した水素含有ガス中の一酸化炭素を水蒸気変 成反応させる Cu— Zn系変成触媒を設けた変成器、および、変成器通過後の水素含 有ガス中に残留する一酸化炭素を、主に酸化により低減する Ru系触媒を設けた CO 除去器を備えてもよい(但し、変成器および CO除去器の図示およびこれらの詳細説 明は省略する)。
[0023] また、水素生成装置 100は、図 1に示すように、上述の改質器 1の他に、水供給器 2 と、原料供給器 3と、脱硫器 4と、燃焼器 5と、制御器 8と、変更指示取得器 101と、を 備えている。
[0024] 水供給器 2は、改質器 1に供給する水の流量調整機能を有する機器である。この水 は、改質反応に必要な水蒸気を生成するのに用いられる。水供給器 2として、巿水、 水タンク等に例示される水供給源(図示せず)からの水の供給量を調節する弁、流量 調節器、ポンプ等が用いられている。本実施の形態では、巿水を活性炭及びイオン 交換榭脂 (何れも図示せず)を通して浄化させた浄ィ匕水が、水供給器 2により改質器 1に供給されている。
[0025] 原料供給器 3は、改質器 1へ原料を供給する流量調整機能を有する機器 (例えば、 弁や流量調整器)である。なお、図 1に示すように、原料供給器 3と改質器 1との間の 経路と、迂回経路 4dとの間の接続部に配された流路変更弁 4c (例えば三方弁)を用 いて、原料供給器 3から排出された原料を、改質器 1を経ることなぐ迂回経路 4d〖こ 流して、後述の燃焼器 5に直接送ることもできる。
[0026] 脱硫器 4は、硫黄ィ匕合物の吸着剤であるゼォライト (本実施の形態では、東ソ一社 製ゼオラム F— 9を用いた)を充填した吸着型の脱硫機能を有し、一対の閉止弁 4aの それぞれが、脱硫器 4の出入口としての両端のそれぞれに設けられ、その一方が原 料の供給源となるガスインフラライン 9と接続され、その他方が原料供給器 3と接続さ れている。そして、これらの閉止弁 4aを開くことにより、ガスインフラライン 9から供給さ れ、硫黄化合物系の付臭剤が含有された原料は、脱硫器 4において当該硫黄化合 物が吸着除去された後、原料供給器 3に送られる。
[0027] 燃焼器 5は、改質器 1の改質触媒に改質反応に必要な熱を、高温の燃焼ガスを介 して供給する火炎バーナー構造の機器である。この燃焼器 5には、燃焼検知器 102 と、着火器 103と、燃焼空気供給用の燃焼ファン 6と、が配されている。なお、燃焼器 5の詳細な構成は後述する。
[0028] 制御器 8は、マイクロプロセッサ(CPU)などにより構成され、図 1に示すように、燃料 電池システム 200 (水素生成装置 100)の動作を制御できるとともに、半導体メモリー 等の内部メモリーを用いて燃料電池システム 200の運転パラメータや制御プログラム を記憶できる。つまり、制御器 8 (CPU)は、変更指示取得器 101および燃焼検知器 102の出力信号、並びに、図示しない温度センサや圧力センサの出力信号を受け取 り、これらの信号に基づいて原料供給器 3、水供給器 2、燃焼ファン 6および着火器 1 03、並びに、各種の弁 4a、 4c、 12の動作を適切に制御している。
[0029] 変更指示取得器 101は、燃焼器 5の燃焼開始時の着火確認時間の上限の変更指 示に関連する信号を取得するように構成されている。本実施の形態では、この変更 指示取得器 101は、タツチパネル式の操作画面を有しており、メンテナンスオペレー タもしくはユーザー(以下、「作業者」と略す)の指や専用のペンによる所定の画面タツ チ操作により、上述の信号を取得することができる。なお、この変更指示取得器 101 の詳細は、後述する。
[0030] また、固体高分子型の燃料電池 7は、図 1に示すように、アノード 7aおよび力ソード 7cを有し、水素ガス供給経路 10を介して水素生成装置 100からアノード 7aに供給さ れる水素ガスと、適宜の酸化剤ガス供給器(図示せず)から力ソード 7cに供給される 酸化剤ガスと、を用いて発電するように構成されている。但し、燃料電池 7の構成は 公知であり、その詳細な図示および説明は省略する。なお、燃料電池 7の発電時に 余剰になった水素オフガスは、アノード 7aから排出され、オフガス経路 11を通して燃 焼器 5に供給する構成となっている。また、図 1に示すように、水素ガス供給経路 10と オフガス経路 11との間を短絡できる短絡経路、および、この短絡経路と水素ガス供 給経路 10との間の接続部に配された流路変更弁 12 (例えば三方弁)が設けられて いる。これにより、水素生成装置 100の起動時などに、水素生成装置 100の内部(こ こでは、改質器 1や図示しない変成器および CO除去器の内部)を、原料供給器 3か ら供給される可燃性の原料ガスを用いてパージ処理する際に、パージ処理後の可燃 ガス (原料ガスや水素ガス)を、燃料電池 7を経由させずに、燃焼器 5に直接送り、こ の燃焼器 5で燃焼処理できる。
[0031] 次に、燃焼器 5の構成を詳細に説明する。
[0032] 図 2は、図 1の燃焼器の構成例を説明するための模式図である。
[0033] 図 2に示すように、燃焼器 5の管状のディストリビュータ 50は、上述の迂回経路 4dや オフガス経路 11に連通しており、可燃成分 (例えば原料)を燃焼空間 52に噴出でき る多数の噴出孔 50Aを有している。これにより、ディストリビュータ 50内を流れる可燃 成分は、噴出孔 50Aにより分散して燃焼空間 52に噴出される。
[0034] また、燃焼器 5の空気室 51は、壁部 53を介して上述の燃焼ファン 6の内部に連通 しており、燃焼ファン 6から圧送される空気を燃焼空間 52に噴出できる多数の噴出孔 51Aを有している。これにより、空気室 51内の空気は、噴出孔 51Aにより分散して燃 焼空間 52に噴出される。
[0035] このようにして、燃焼空間 52には、可燃成分および空気が適切な混合比となるよう に供給される。
[0036] なお、上述の着火器 103は、図 2に示すように、ディストリビュータ 50の先端に配さ れて、これにより、燃焼空間 52に存在する可燃成分への着火を起こすことができる。 本実施の形態では、着火器 103として、圧電放電を利用したイダナイターが用いられ ている。
[0037] また、燃焼検知器 102は、燃焼空間 52に配されており、これにより、燃焼器 5の火 炎燃焼の状態を検知することができる。本実施の形態では、燃焼検知器 102として、 燃焼空間 52中の荷電粒子のイオン電流量を測定するフレームロッド (FR)が用いら れて 、る(以下、「燃焼検知器 102」を「フレームロッド 102」 t 、う)。
[0038] 次に、本実施の形態の水素生成装置 100および燃料電池システム 200 (以下、「水 素生成装置 100等」という)の起動動作の一例について説明する。
[0039] まず、脱硫器 4の交換を想定しな 、場合の燃焼器 5の着火シーケンスにつ 、て述 ベる。
[0040] 図 3は、脱硫器交換を考慮しない場合の燃焼器の着火シーケンスの一例を示した フローチャートである。
[0041] 図 4は、脱硫器交換を考慮しない場合の燃焼器の着火シーケンスの他の例を示し たフローチャートである。
[0042] 最初に、図 3の着火シーケンスの内容について説明する。
[0043] 当該着火シーケンスでは、制御器 8の内部メモリーに保存された制御プログラム力 制御器 8の CPUに読み込まれる。そして、この制御プログラムにより制御される CPU 1S 水素生成装置 100等の各種機器を制御しながら、以下の処理を実行する。なお 、制御器 8の内部メモリーには、着火器 103の「着火確認時間」の上限に相当する上 限着火回数「NMAX」、および、燃焼器 5の燃焼判定の閾値 (この一例として、後述 の図 5を参照)に相当するフレームロッド 102から出力される「設定値」が、予め記憶さ れているものとする。
[0044] 燃焼ファン 6の作動が ONされ (ステップ S301)、これにより、燃焼ファン 6から燃焼 空間 52への燃焼用空気の供給が開始する。
[0045] 次に、着火トライ回数を表す「N」が「ゼロ(0)」にリセットされ、その後、この「N」に「1
」が加算される(ステップ S302、 S303)。これにより、以下の如ぐ着火器 103による 第 1回目の着火動作がなされる。
[0046] 燃焼空間 52への燃焼用空気の供給開始時力 所定のタイマー時間(ここでは 8秒
)が経つと、着火器 103の作動が ONされ (ステップ S304、 S305)、燃焼空間 52にス パーク放電が発生する。
[0047] この状態で、所定のタイマー時間(ここでは 2秒)が経つと、原料供給器 3より迂回経 路 4dを介して燃焼空間 52への原料供給が開始される (ステップ S306、 S307)。つ まり、ディストリビュータ 50を流れる適量の原料力 噴出孔 50Aを介して、燃焼空間 5 2に噴出され、これにより、原料と燃焼空気との混合気が燃焼範囲に入り、燃焼空間 5 2において火炎が形成できる状態になる。
[0048] そして、燃焼空間 52への原料の供給開始時力も所定のタイマー時間(ここでは 20 秒)が経つと、着火器 103の作動が OFFされる(ステップ S308、 S309)。
[0049] ここで、フレームロッド 102の出力力 燃焼器 5の燃焼判定の閾値に相当する「設定 値」を超えて 、るか否かが判定される(ステップ S310)。
[0050] このように、フレームロッド 102の出力としての荷電粒子のイオン電流量を用いて、 燃焼器 5における適切な火炎形成の有無が判定される。
[0051] フレームロッド 102の出力が当該「設定値」を超えて!/ヽれば (ステップ S310にお!/ヽ て「YES」)、着火器 103により原料が着火していると判定される (ステップ S313)。
[0052] なお、上述の出力(イオン電流量)については、所定期間に亘り一定値に維持され ることも確認され、これにより、燃焼器 5での燃焼の安定性が適切に確保される。
[0053] そして、この場合、水素生成装置 100等の通常運転に入り、水供給器 2により水が 改質器 1に供給されるとともに、流路変更弁 4cが改質器 1側に切替えられ、原料供給 器 3により原料が改質器 1に供給される。これにより、改質器 1の内部において、水蒸 気改質反応により原料と水蒸気から水素含有ガスが生成される。なお、水供給量は、 単位時間当たりに供給される水量中の水分子のモル数が単位時間当たりに供給さ れる原料量中の原料平均組成の炭素原子のモル数の 3倍となるように調整されて 、 る。本実施の形態では、メタンを主成分とする都市ガスを原料とし、都市ガスの平均 組成において 1モルの炭素原子に対して、 3モルの水蒸気が存在するよう、水供給量 が設定されている (スチームカーボン比(SZC) = 3)。そして、改質器 1から排出され た水素含有ガスに対して、変成器において水性ガスシフト反応、および、 CO除去器 において一酸化炭素の選択酸化反応が施され、これにより、一酸化炭素濃度が約 2 Oppm以下となる水素ガスが生成される。この水素ガスは、水素ガス供給経路 10を介 して燃料電池 7のアノード 7aに供給され、燃料電池 7の発電用の反応ガスとして使用 される。 [0054] 一方、ステップ S310において、フレームロッド 102の出力が当該「設定値」以下で あれば、着火器 103により原料が着火していない (着火ミス)と判定される。
[0055] この場合、原料供給器 3を用いた燃焼空間 52への原料供給が停止される (ステップ S311)。そして、着火トライ回数を表す「N」が、上限着火回数「NMAX」を下回るか 否かが判定される(ステップ S312)。
[0056] 着火トライ回数を表す「N」力 上限着火回数「NMAX」を下回って ヽれば (ステップ S312において「YES」)、ステップ S303に戻り、次回の着火トライ動作が行われる。 なお、ステップ S311において原料供給が停止されると、燃焼空間 52に引き続き供給 される空気により、燃焼空間 52の内部は空気で満たされる。このため、ステップ 305 において、着火器 103の作動を再び ONしても、燃焼器 5の異常燃焼などのィレギュ ラーな状況は何等発生しな 、。
[0057] 一方、着火トライ回数を表す「N」が、上限着火回数「NMAX」を下回っていなけれ ば (ステップ S312において「NO」)、着火器 103による原料への着火ミス以外に、燃 焼器 5に何等かの異常があると判断され、水素生成装置 100等の運転が停止される
[0058] このようにして、図 3の燃焼器 5の着火シーケンスにおいては、上限着火回数「NM AX」を適切に設定することにより、着火器 103による原料への着火ミスを少なくできる とともに、着火ミス以外の燃焼器 5の異常に迅速に対応できる。また、着火器 103の 作動が OFFされた後、フレームロッド 102による検知動作がなされているので、フレ ームロッド 102において着火器 103の作動 (スパーク放電)ノイズを拾うことが無くなり 、このようなノイズに弱いフレームロッド 102については有益である。
[0059] 次に、図 4の着火シーケンスの内容について説明する。なお、以下の説明は、図 3 の着火シーケンスと異なる内容に限定する。
[0060] 図 3の着火シーケンスでは、フレームロッド 102の出力力 燃焼器 5の燃焼判定の 閾値に相当する「設定値」を超えている力否かの判定 (ステップ S310)に先立って、 ステップ S309にお!/、て、着火器 103の作動が OFFされて!/ヽる。
[0061] しかし、着火器 103の作動ノイズ耐性に優れたフレームロッド 102を使用する場合 には、図 4の着火シーケンスのステップ S409に示すように、着火器 103の作動 ON 中に、フレームロッド 102の検知動作を実行してもよぐその後、ステップ S410におい て着火器 103の作動を OFFしてもよ!、。
[0062] なお、図 4の着火シーケンスの変形例として、フローチャートを用いた説明は省略す る力 ステップ S410における着火器 103の作動 OFF動作、及びステップ S411にお ける原料供給停止動作を省き、着火トライの繰り返し期間中、着火器 103の作動 ON 状態及び原料供給器 3による原料供給を継続させ続けてもよい。この場合、 2回目以 降の着火トライにおいては、ステップ 405の着火器の作動 ON動作も省略できる。よつ て、ここでは、上限着火回数「NMAX」は、正確には、ステップ S403〜ステップ S41
2間の上限反複回数「NMAX」となる。
[0063] 次に、本実施の形態の水素生成装置 100等における特徴的な動作である、脱硫器
4の交換を考慮した場合の燃焼器 5の着火シーケンスについて述べる。
[0064] 脱硫器 4の交換をしない場合には、図 3および図 4の着火シーケンスに何等の支障 も発生しないが、脱硫器 4の交換をする場合、事情が異なる。
[0065] まず、脱硫器 4の交換をした場合に、図 3および図 4の着火シーケンスを用いる際の 不都合について図面を参照しながら詳しく説明する。
[0066] 図 5は、着火器による着火動作の際のフレームロッド出力の経時変化の一測定例を 示した図である。なお、ここでは、着火器 103による着火動作は継続的になされてい るものと仮定する。
[0067] 図 5の横軸に、着火器 103による着火動作の開始時力も経過時間をとり、縦軸にフ レームロッド出力をとつて、両者の関係が、脱硫器 4の交換後初めての燃焼動作にお ける着火動作の場合 (点線)とそうでな!、通常の燃焼動作における着火動作の場合 ( 破線)とについて示されている。但し、フレームロッド出力には、その上限値「5 (— )」 が設定されている。
[0068] 燃焼空間 52において原料の燃焼が検知されると (つまり、原料への着火が検知さ れると)、フレームロッド出力は「0」よりも大きくなる。また、フレームロッド出力「1 (一)」 以上であれば、燃焼空間 52において原料の燃焼が安定的になされていると考えら れる。
[0069] 図 5に示すように、脱硫器 4の交換後初めての燃焼動作における着火動作の場合( 点線)とそうでな!、通常の燃焼動作における着火動作の場合 (破線)では、フレーム ロッド出力が「1 (一)」を超えるタイミングにずれが生じることが分かる。つまり、通常の 燃焼動作における着火動作と比較して、脱硫器 4の交換後初めての燃焼動作におけ る着火動作では、フレームロッド出力が「1 (一)」を超えるタイミングに到達するまでに は長い時間を要している。脱硫器 4の交換後の原料に曝されていない脱硫剤は、高 い吸着能力を保有しているので、最初の原料通流時には、原料中の硫黄化合物の 他、原料自体も一部、吸着される。よって、燃焼空間 52に供給される原料量の低下 が招かれ、燃焼空間 52において原料と燃焼空気との混合気が燃焼範囲に入るまで の時間(つまり、フレームロッド出力が「1 (一)」を超えるタイミングに到達するまでの時 間)が長くなると考えられる。
[0070] そこで、図 5の横軸の経過時間と縦軸のフレームロッド出力の測定値に基づいて、 着火器 103の作動を ON— OFFする場合の上限着火回数「NMAX」を、以下の如く 見積ちることができる。
[0071] 図 5の実線で示した通常の燃焼動作のおける着火動作の場合、原料供給器 3から 排出された原料が燃焼器 5に到達するには若干の時間ロスがあるので、着火動作の 開始と連動して、フレームロッド出力が直ぐに立ち上がらないが、燃焼器 5の原料燃 焼は、着火動作の開始力も短時間で安定になっている。よって、この場合、第 1回目 の着火トライにより、フレームロッド出力が「1 (一)」を超えると予測される。このため、 上限着火回数「NMAX」を、「5回」程度に設定すれば、燃焼器 5の原料燃焼は支障 なく安定ィ匕すると期待できる。
[0072] 一方、図 5の破線で示した脱硫器 4の交換後初めての燃焼動作における着火動作 の場合、上述の理由により、燃焼器 5の原料燃焼は、着火動作の開始時から約 5分 経過した後に安定になっている。よって、この場合、第 10回目の着火トライにより、フ レームロッド出力が「1 (—)」を超えると予測される。このため、上限着火回数「NMA X」を、「15回」程度に設定すれば、燃焼器 5の原料燃焼は支障なく安定ィ匕すると期 待できる。
[0073] ここで、図 3および図 4の着火シーケンスにおいて、上限着火回数「NMAX」を「15 回」に設定すれば、通常の燃焼動作における着火動作の場合にも脱硫器 4の交換後 初めての燃焼動作における着火動作の場合にも、燃焼器 5の原料燃焼を支障なく行 える。しかし、通常の燃焼動作における着火動作の場合、第 1回目の着火トライで燃 焼器 5の原料燃焼を安定ィ匕できるにも拘らず、上限着火回数「NMAX」を「15回」に 設定することは、原料着火ミス以外の燃焼器 5の異常の察知を遅らせかねない。そし て、このことが、当該異常に対する迅速な対応を妨げ、ひいては、水素生成装置 100 等の適切な復帰を阻害する場合がある。
[0074] よって、本実施の形態では、図 6および図 8の着火シーケンスに示す如ぐ脱硫器 4 の交換後初めての燃焼動作での着火動作において、上述の脱硫器 4による原料吸 着の事態を想定して、上限着火回数「NMAX」が「5回」から「15回」に変更されて!、 る。
[0075] 図 6は、脱硫器交換を考慮した場合の燃焼器の着火シーケンスの一例を示したフロ 一チャートである。図 7は、図 6の着火シーケンスにおける変更指示取得器の操作画 面の一例である交換信号取得器を示した図である。
[0076] 図 8は、脱硫器交換を考慮した場合の燃焼器の着火シーケンスの他の例を示した フローチャートである。図 9は、図 8の着火シーケンスにおける変更指示取得器の操 作画面の一例を示した図である。
[0077] まず、図 6の着火シーケンスの内容について説明する。但し、図 6のステップ S605
〜ステップ S617の動作は、図 3のステップ S301〜ステップ S313と同じなので、ここ では、これらの動作説明は省略する。
[0078] 当該着火シーケンスでは、制御器 8の内部メモリーに保存された制御プログラム力 制御器 8の CPUに読み込まれる。そして、この制御プログラムにより制御される CPU
1S 水素生成装置 100等の各種機器を制御しながら、以下の処理を実行する。
[0079] なお、交換信号取得器は、図 7に示されたタツチパネル式の操作画面であり、作業 者による操作画面の画面タツチ操作により入力された信号に基づき、以下の処理が 実行できる。
[0080] また、ここでは、通常の燃焼動作における着火動作を標準動作と見做して、上限着 火回数「NMAX」の初期値は、「5回」に設定されている。作業者は、脱硫器 4の交換 作業に入る場合には、例えば、図 7 (a)の「サブメニュー」のタツチ操作および図 7 (b) の「脱硫器」のタツチ操作を行 ヽ、図 7 (c)に示される操作画面の「交換」のタツチ操作 を行い、そして、脱硫器 4の交換作業完了の後、図 7 (d)に示される操作画面の「確 認」のタツチ操作を行う。すると、脱硫器交換信号が「ON」であることが制御器 8内部 のメモリーに記憶される。その後、作業者の操作画面を介した操作により水素生成装 置もしくはこれを備える燃料電池システムの起動指令が入力されると、まず、脱硫器 交換信号が ONおよび OFFの何れであるかが判定される(ステップ S601)。
ステップ S601において脱硫器交換信号が ONである場合、この ON信号力 脱硫器 交換後初めての燃焼動作に対応する上限着火回数に変更する変更指示信号として 制御器 8の CPUに入力される。
ステップ S601において脱硫器交換信号が ONである場合、制御器 8の CPUは、こ の脱硫器交換 ON信号に基づ ヽて、上限着火回数「NMAX」を「5回」から脱硫器交 換後初めての燃焼動作に対応する上限着火回数「15回」に上げる (ステップ S602) 。すると、脱硫器交換信号が OFFとなり(ステップ S604)、制御器 8の CPUは、ステツ プ S605以降の動作を実行する。
[0081] この操作により、次回以降の起動動作は、ステップ S601において脱硫器交換信号 力 SOFFと判断され、制御器 8の CPUは、上限着火回数「NMAX」を通常の燃焼動作 に対応する上限着火回数「5回」にして (ステップ S603)、ステップ S605以降の動作 を実行する。
[0082] なお、上述のとおり、制御器 8の CPUは、ステップ S601において交換信号取得器 より取得された脱硫器交換 ON信号に基づいて、ステップ S602の如ぐ「着火確認時 間」の上限に相当する上限着火回数「NMAX」を通常の燃焼動作における上限着 火回数よりも多い回数に変更している。よって、本処理では、当該制御器 8の CPUは 、着火確認時間の上限を変更する上限変更器として機能するし、当該交換信号取得 器は、この変更の指示に関連する信号を取得する変更指示取得器 101として機能す る。
[0083] 次に、図 8の着火シーケンスの内容について説明する。但し、図 8のステップ S805 〜ステップ S817の動作は、図 3のステップ S301〜ステップ S313と同じなので、ここ では、これらの動作説明は省略する。 [0084] 当該着火シーケンスでは、制御器 8の内部メモリーに保存された制御プログラム力 制御器 8の CPUに読み込まれる。そして、この制御プログラムにより制御される CPU 1S 水素生成装置 100等の各種機器を制御しながら、以下の処理を実行する。
[0085] なお、変更指示取得器 101は、図 9に示されたタツチパネル式の操作画面であり、 作業者による操作画面の画面タツチ操作により入力された信号に基づき、以下の処 理を実行できる。
[0086] なお、ここでは、通常の燃焼動作における着火動作を標準動作と見做して、上限着 火回数「NMAX」の初期値は、「5回」に設定されている。
[0087] 例えば、作業者は、図 9 (a)の「サブメニュー」のタツチ操作および図 9 (b)の「着火 回数上限設定」のタツチ操作を行 ヽ、図 9 (c)に示される操作画面の「脱硫器交換後 運転」のタツチ操作を行い、そして、脱硫器 4の交換作業完了の後、図 9 (d)に示され る操作画面の「確認」のタツチ操作を行う。すると、運転シーケンスが「脱硫器交換後 運転」であることが制御器 8内のメモリーに記憶される。その後、作業者の操作画面を 介した操作により水素生成装置もしくはこれを備える燃料電池システムの起動指令が 入力されると、まず、運転シーケンスが脱硫器交換後運転および通常運転の何れで あるかが判定される(ステップ S801)。
ステップ S801にお ヽて運転シーケンスが脱硫器交換後運転である場合、この「脱硫 器交換後運転」であることを示す信号が、脱硫器交換後初めての燃焼動作に対応す る上限着火回数に変更する変更指示信号として、制御器 8の CPUに入力される。 また、ステップ S801において運転シーケンスが脱硫器交換後運転である場合、制 御器 8の CPUは、上記変更指示信号に基づいて、上限着火回数「NMAX」を「5回」 力も脱硫器交換後初めての燃焼動作に対応する上限着火回数「15回」に上げる (ス テツプ S802)。そして、制御器 8の CPUは、ステップ S805以降の動作を実行する。
[0088] 一方、脱硫器 4の交換後初めての燃焼動作を含む水素生成装置等の運転が完了 すると、作業者は、図 9 (c)に示される操作画面の「通常運転」のタツチ操作を行う。す ると、ステップ S801において運転シーケンスが「通常運転」となり、次回以降の起動 動作では、ステップ S801において、制御器 8の CPUは、上限着火回数「NMAX」を 通常の燃焼動作に対応する上限着火回数「5回」に戻して (ステップ S803)、ステップ S805以降の動作を実行する。
[0089] なお、上述のとおり、制御器 8の CPUは、ステップ S801において変更指示取得器 101より取得された変更指示信号に基づいて、ステップ S802の如ぐ「着火確認時 間」の上限に相当する上限着火回数「NMAX」を変更している。よって、本処理では 、当該制御器 8の CPUは、着火確認時間の上限を変更する上限変更器として機能 する。
[0090] 以上に述べたように、本実施の形態の水素生成装置 100等は、着火器 103の上限 着火回数「NMAX」を変更する上限変更器と、この変更の指示に関連する信号を取 得する変更指示取得器 101とを備える。具体的には、本実施の形態では、作業者に より「脱硫器交換後運転」が選択され、変更指示取得器 101が、脱硫器交換後初め ての燃焼動作に対応する上限着火回数に変更する変更指示信号を取得した場合、 上限変更器としての制御器 8の CPUが上限着火回数「NMAX」を「5回」から「15回」 に上げるように構成されて 、る。
[0091] これにより、吸着型脱硫器を通した原料を用いて燃焼器 5の燃焼開始がなされる水 素生成装置 100等において、脱硫器 4の交換後の起動動作においても燃焼不良と 誤判定することなく適切に燃焼動作を開始することができる。
[0092] つまり、脱硫器 4の交換後の原料に曝されていない脱硫剤は、高い吸着能力を保 有しているので、最初の原料通流時には、原料中の硫黄化合物の他、原料自体も一 部、吸着される。よって、燃焼空間 52に供給される原料量の低下が招かれ、燃焼空 間 52での原料と燃焼空気との混合気が燃焼範囲に入るまでの時間(つまり、フレー ムロッド出力が「1 (一)」を超えるタイミングに到達するまでの時間)が長くなると考えら れる。このため、脱硫器 4の交換後初めての燃焼動作での着火動作において、上限 着火回数「NMAX」を、「15回」程度に充分多めにとれば、燃焼器 5の原料燃焼は支 障なく安定ィ匕すると期待できる。一方、通常の燃焼動作での着火動作において、上 限着火回数「NMAX」を「5回」程度に抑えて設定すれば、原料着火ミス以外の燃焼 器 5の異常の迅速な察知を可能にする。これにより、当該異常に対する復帰動作など 適切な対応を迅速に取ることができる。
[0093] なお、脱硫器 4中の脱硫剤の原料吸着量は、脱硫剤の種類や、脱硫器 4に充填す る脱硫剤の量により依存する。また、原料供給器 3から燃焼器 5への原料到達時間や フレームロッド出力が「1 (一)」を超えるタイミングも、水素生成装置 100等の装置構 成に依存して相違する。このため、上限着火回数「NMAX」の具体的な数値やタイ マー時間などを、装置ごとに適宜設定する必要がある。
(変形例 1)
図 10は、燃焼器の着火シーケンスの一変形例を示したフローチャートである。 本実施の形態の水素生成装置 100等では、着火器 103の上限着火回数「NMAX 」を変更する例を述べた。これに代えて、図 10に示す如ぐ脱硫器 4を通過し、燃焼 器 5へ供給される原料に対して着火器 103が動作している時間 (ステップ S1011から ステップ S1013までの時間)である、ステップ S1012のタイマー時間「Y秒」を変更し てもよい。なお、ここでは、通常の燃焼動作における着火動作を標準動作と見做して 、上限着火回数「ΝΜΑΧ」の値は、「5回」に設定され、タイマー時間「Υ秒」の初期値 は、「20秒」に設定されている。
図 10によれば、脱硫器交換時に作業者により図 7 (c)の操作がなされた後、水素生 成装置もしくはこれを備える燃料電池システムの起動指令が入力され、ステップ S10 01において脱硫器交換信号が ONとなった場合、制御器 8の CPUは、この脱硫器交 換信号に基づ 、て、タイマー時間「Y秒」を「20秒」から「60秒」に上げる(ステップ S 1 002)。
[0094] 一方、ステップ S1002でタイマー時間が変更された後、脱硫器交換信号は OFFさ れるので、次回以降の起動動作では、ステップ S 1001において脱硫器交換信号が OFFと判断され、制御器 8の CPUは、タイマー時間「Y秒」を「20秒」にして (ステップ S1003)、ステップ S 1005以降の動作を実行する。
[0095] これにより、吸着型脱硫器 4を通した原料を用いて燃焼器 5の燃焼開始がなされる 水素生成装置 100等において、脱硫器 4の交換後初めての起動動作においても燃 焼不良と誤判定することなく適切に燃焼動作を開始することができる。
つまり、脱硫器 4の交換後初めての燃焼動作での着火動作において、脱硫器 4内 を通過し、燃焼器 5に供給される原料に対する着火器 103の着火トライ毎の着火動 作時間を多くすれば、上限着火回数「ΝΜΑΧ」の回数を増やす場合と同じ効果が発 揮される。なお、この場合、着火器 103の「着火確認時間」の上限として、タイマー時 間「Y秒」に、上限着火回数「ΝΜΑΧ」を乗じた数値が採用される。
(変形例 2)
図 11は、燃焼器の着火シーケンスの他の一変形例を示したフローチャートである。 本実施の形態の水素生成装置 100等では、着火器 103の上限着火回数「ΝΜΑΧ 」を変更する例を述べた。これに代えて、図 11に示す如ぐ上限着火回数「ΝΜΑΧ」 を変更するとともに、脱硫器 4を通過し、燃焼器 5へ供給される原料に対して着火器 1 03が動作して!/、る時間(ステップ SI 113からステップ SI 115までの時間)であるステ ップ S 1114のタイマー時間「Υ秒」を変更してもよい。なお、ここでは、通常の燃焼動 作での着火動作を標準動作と見做して、上限着火回数「ΝΜΑΧ」の初期値は、「5回 」に設定され、タイマー時間「Υ秒」の初期値は、「20秒」に設定されて!、る。
図 11によれば、脱硫器交換時に作業者により図 7 (c)の操作がなされた後、水素生 成装置もしくはこれを備える燃料電池システムの起動指令が入力され、ステップ S11 01において脱硫器交換信号が ONとなった場合、制御器 8の CPUは、この脱硫器交 換信号に基づいて、タイマー時間「Y秒」を「20秒」から「30秒」に上げ、かつ、上限 着火回数「ΝΜΑΧ」を「5回」から「10回」に上げる(ステップ S1102、 S1103)。
[0096] 一方、ステップ SI 102でタイマー時間及び上限着火回数が変更された後、脱硫器 交換信号は OFFされるので、次回以降の起動動作では、ステップ S1101において 脱硫器交換信号が OFFと判断され、制御器 8の CPUは、タイマー時間「Y秒」を「20 秒」、かつ、上限着火回数「ΝΜΑΧ」を「5回」にして(ステップ S1104、 S1105)、ス テツプ SI 105以降の動作を実行する。
[0097] これにより、吸着型脱硫器 4を通した原料を用いて燃焼器 5の燃焼開始がなされる 水素生成装置 100等において、脱硫器 4の交換後初めての起動動作においても燃 焼不良と誤判定することなく適切に燃焼動作を開始することができる。
つまり、脱硫器 4の交換後初めての燃焼動作での着火動作において、脱硫器 4内 を通過し、燃焼器 5に供給される原料に対する着火器 103の着火トライ毎の着火動 作時間を多くするとともに、上限着火回数「NMAX」の回数を増やすことにより、上述 の効果が発揮される。なお、この場合、着火器 103の「着火確認時間」の上限として、 タイマー時間「Y秒」に、上限着火回数「ΝΜΑΧ」を乗じた数値が採用される。
(変形例 3)
上述の実施の形態では、交換信号取得器として、タツチパネル式の操作画面を例 示した。しかし、このようなタツチパネルによる脱硫器 4の交換信号取得は飽くまで一 例に過ぎない。本変形例では、例えば、交換信号取得器として、脱硫器 4の交換を 機械的な接点スィッチで検知するセンサであってもよい。また、 ICタグや ICタグリーダ 等を用いて脱硫器 4が交換されたことを検出する方式であってもよ ヽ。
上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らか である。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行 する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を 逸脱することなぐその構造及び Ζ又は機能の詳細を実質的に変更できる。
産業上の利用可能性
本発明の水素生成装置は、脱硫器の交換後の起動動作においても燃焼不良と誤 判定することなく脱硫器を通過した原料を用いた燃焼動作を適切に開始することが 可能になる、例えば、この水素生成装置を備えた家庭用燃料電池コージエネシステ ム等として有用である。

Claims

請求の範囲
[1] 原料中の硫黄化合物を吸着除去する脱硫剤を有する脱硫器と、
原料から水素含有ガスを生成する改質触媒を有する改質器と、
前記改質器を加熱する燃焼器と、
前記燃焼器にぉ ヽて前記原料への着火を起こす着火器と、を備え、
前記脱硫器を通過した前記原料を用いて前記燃焼器の燃焼を開始するよう構成さ れた水素生成装置であって、
前記着火器の着火確認時間の上限を変更する上限変更器と、前記変更の指示に 関連する信号を取得する変更指示取得器とを備えることを特徴とする水素生成装置
[2] 前記変更指示取得器が、前記脱硫器の交換に関連する信号を取得する交換信号 取得器であり、前記交換信号取得器により前記脱硫器の交換に関連する信号が取 得された場合、前記上限変更器が前記着火確認時間の上限を上げることを特徴とす る請求項 1記載の水素生成装置。
[3] 請求項 1または 2記載の水素生成装置と、前記水素生成装置より供給される水素含 有ガスを用いて発電する燃料電池とを備えることを特徴とする燃料電池システム。
[4] 原料中の硫黄化合物を吸着除去する脱硫剤を有する脱硫器と、
前記脱硫器を通過した原料から水素含有ガスを生成する改質触媒を有する改質器 と、
前記改質器を加熱する燃焼器と、
前記燃焼器にぉ ヽて前記原料への着火を起こす着火器と、を備え、
前記脱硫器を通過した前記原料を用いて前記燃焼器の燃焼を開始するよう構成さ れた水素生成装置の運転方法であって、
前記脱硫器の交換後に、前記着火器の着火確認時間の上限を上げるとともに、前 記上げられた着火確認時間の上限に基づき前記着火器の着火動作を行うことを特 徴とする水素生成装置の運転方法。
[5] 原料中の硫黄化合物を吸着除去する脱硫剤を有する脱硫器と、前記脱硫器を通 過した原料から水素含有ガスを生成する改質触媒を有する改質器と、前記改質器を 加熱する燃焼器と、前記燃焼器において前記原料への着火を起こす着火器と、を備 え、前記脱硫器を通過した前記原料を用いて前記燃焼器の燃焼を開始するよう構成 された水素生成装置と、
前記水素生成装置より供給される水素含有ガスを用いて発電を行う燃料電池と、 を備える燃料電池システムの運転方法であって、
前記脱硫器の交換後に、前記着火器の着火確認時間の上限を上げるとともに、前 記上げられた着火確認時間の上限に基づき前記着火器の着火動作を行うことを特 徴とする燃料電池システムの運転方法。
PCT/JP2007/062344 2006-06-20 2007-06-19 水素生成装置および燃料電池システム並びにこれらの運転方法 WO2007148699A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/304,159 US8304124B2 (en) 2006-06-20 2007-06-19 Hydrogen generator, fuel cell system, and methods for operating them
CN2007800232914A CN101472837B (zh) 2006-06-20 2007-06-19 氢生成装置和燃料电池系统及其运转方法
JP2008522476A JP4904348B2 (ja) 2006-06-20 2007-06-19 水素生成装置および燃料電池システム並びにこれらの運転方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-170006 2006-06-20
JP2006170006 2006-06-20

Publications (1)

Publication Number Publication Date
WO2007148699A1 true WO2007148699A1 (ja) 2007-12-27

Family

ID=38833441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/062344 WO2007148699A1 (ja) 2006-06-20 2007-06-19 水素生成装置および燃料電池システム並びにこれらの運転方法

Country Status (4)

Country Link
US (1) US8304124B2 (ja)
JP (1) JP4904348B2 (ja)
CN (1) CN101472837B (ja)
WO (1) WO2007148699A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008074674A (ja) * 2006-09-22 2008-04-03 Matsushita Electric Ind Co Ltd 水素生成装置および燃料電池システム
EP2034549A2 (de) * 2007-09-07 2009-03-11 Vaillant GmbH Brennstoffzellenanlage mit Reformer
WO2009031271A1 (ja) * 2007-09-06 2009-03-12 Panasonic Corporation 燃料電池発電システムおよび燃料電池発電システムの運転方法
CN101580735A (zh) * 2008-05-14 2009-11-18 新日本石油株式会社 脱硫装置、燃料电池系统和重整系统
US20110039172A1 (en) * 2009-03-02 2011-02-17 Yukimune Kani Hydrogen generator, fuel cell system including hydrogen generator, and method for operating hydrogen generator
US8435684B2 (en) 2007-07-04 2013-05-07 Panasonic Corporation Hydrogen producing apparatus, method of operating hydrogen producing apparatus and fuel cell power generating system
JP5276018B2 (ja) * 2008-06-04 2013-08-28 パナソニック株式会社 燃料電池発電システム、及び燃料電池発電システムの運転方法
CN103588169A (zh) * 2008-05-14 2014-02-19 吉坤日矿日石能源株式会社 重整系统和燃料电池系统
JP2019129052A (ja) * 2018-01-24 2019-08-01 アイシン精機株式会社 燃料電池システム

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013007437A1 (de) * 2013-04-30 2014-10-30 Linde Aktiengesellschaft Verfahren zum Betreiben eines Dampfreformers und Dampfreformer
US10155661B2 (en) * 2017-01-27 2018-12-18 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude System and methods for improving natural gas usage in steam methane reformers

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002358992A (ja) * 2001-05-30 2002-12-13 Tokyo Gas Co Ltd 燃料電池発電システム
JP2006008459A (ja) * 2004-06-28 2006-01-12 Matsushita Electric Ind Co Ltd 水素生成装置、および燃料電池システム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020071976A1 (en) * 2000-11-03 2002-06-13 Edlund David J. Sulfur-absorbent bed and fuel processing assembly incorporating the same
JP3994825B2 (ja) * 2002-08-28 2007-10-24 ダイキン工業株式会社 燃料電池発電システム
JP4156321B2 (ja) * 2002-09-27 2008-09-24 アイシン精機株式会社 燃料電池用改質器バーナの着火方法およびこの方法による燃料電池システム
US7008711B2 (en) * 2003-01-27 2006-03-07 Gas Technology Institute Thermally integrated fuel cell power system
JP3875193B2 (ja) 2003-01-27 2007-01-31 東京瓦斯株式会社 固体高分子形燃料電池システム及びその運転方法
JP2005206395A (ja) 2004-01-20 2005-08-04 Matsushita Electric Ind Co Ltd 水素生成装置およびその起動方法
JP4922565B2 (ja) 2005-03-29 2012-04-25 株式会社Eneosセルテック 燃料電池発電システムの起動準備方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002358992A (ja) * 2001-05-30 2002-12-13 Tokyo Gas Co Ltd 燃料電池発電システム
JP2006008459A (ja) * 2004-06-28 2006-01-12 Matsushita Electric Ind Co Ltd 水素生成装置、および燃料電池システム

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008074674A (ja) * 2006-09-22 2008-04-03 Matsushita Electric Ind Co Ltd 水素生成装置および燃料電池システム
US8435684B2 (en) 2007-07-04 2013-05-07 Panasonic Corporation Hydrogen producing apparatus, method of operating hydrogen producing apparatus and fuel cell power generating system
US8313869B2 (en) 2007-09-06 2012-11-20 Panasonic Corporation Fuel cell power generating system and fuel cell power generating system operating method
WO2009031271A1 (ja) * 2007-09-06 2009-03-12 Panasonic Corporation 燃料電池発電システムおよび燃料電池発電システムの運転方法
EP2034549A2 (de) * 2007-09-07 2009-03-11 Vaillant GmbH Brennstoffzellenanlage mit Reformer
EP2034549A3 (de) * 2007-09-07 2011-04-27 Vaillant GmbH Brennstoffzellenanlage mit Reformer
CN101580735A (zh) * 2008-05-14 2009-11-18 新日本石油株式会社 脱硫装置、燃料电池系统和重整系统
CN103588169A (zh) * 2008-05-14 2014-02-19 吉坤日矿日石能源株式会社 重整系统和燃料电池系统
JP5276018B2 (ja) * 2008-06-04 2013-08-28 パナソニック株式会社 燃料電池発電システム、及び燃料電池発電システムの運転方法
US9099709B2 (en) 2008-06-04 2015-08-04 Panasonic Intellectual Property Management Co., Ltd. Fuel cell power generation system, and method for operating fuel cell power generation system
US20110039172A1 (en) * 2009-03-02 2011-02-17 Yukimune Kani Hydrogen generator, fuel cell system including hydrogen generator, and method for operating hydrogen generator
US8951683B2 (en) * 2009-03-02 2015-02-10 Panasonic Intellectual Property Management Co., Ltd. Hydrogen generator, fuel cell system including hydrogen generator, and method for operating hydrogen generator
JP2019129052A (ja) * 2018-01-24 2019-08-01 アイシン精機株式会社 燃料電池システム
JP7010022B2 (ja) 2018-01-24 2022-02-10 株式会社アイシン 燃料電池システム

Also Published As

Publication number Publication date
JP4904348B2 (ja) 2012-03-28
CN101472837B (zh) 2011-07-27
JPWO2007148699A1 (ja) 2009-11-19
US20090269629A1 (en) 2009-10-29
CN101472837A (zh) 2009-07-01
US8304124B2 (en) 2012-11-06

Similar Documents

Publication Publication Date Title
JP4904348B2 (ja) 水素生成装置および燃料電池システム並びにこれらの運転方法
KR100929721B1 (ko) 온도-기반 파과 탐지 그리고 압력 변동 흡착 시스템 및이를 포함하는 연료 처리 시스템
JP2002124286A (ja) 燃料電池の改質装置
JP2008171815A (ja) 燃料処理装置の動作を制御するための装置及び方法
EP2767506B1 (en) Hydrogen producing device and control method therefor, and fuel cell system
JP2009179487A (ja) 水素製造システム
EP2455335A1 (en) Hydrogen generator, fuel cell system comprising the same, and method for operating hydrogen generator
JP2005174745A (ja) 燃料電池システムの運転方法及び燃料電池システム
JP2008010369A (ja) 燃料電池システムの起動方法および燃料電池システム
US10096851B2 (en) Solid oxide fuel cell system and method of stopping the same
JP3947742B2 (ja) 燃料ガス製造装置の異常停止方法
JP5050662B2 (ja) 燃料改質装置および燃料電池システム
JP5045045B2 (ja) 水素生成装置および燃料電池システム
JP4830567B2 (ja) 水素生成装置
EP2172421A1 (en) Hydrogen production device, and fuel cell system provided with the same
JP5647909B2 (ja) 水素生成装置および燃料電池システムの運転方法
JP2016122629A (ja) 燃料電池システムおよび燃料電池システムの制御方法
JPWO2009031271A1 (ja) 燃料電池発電システムおよび燃料電池発電システムの運転方法
JP2017152250A (ja) 燃料電池システム
JP2010195623A (ja) 水素生成装置、及び水素生成装置の運転方法
JP6458252B2 (ja) 水素生成装置と、それを備えた燃料電池システム、および、それらの運転方法
JP2005332834A (ja) 燃料電池発電システムおよび燃料電池発電システムの制御方法
JP4041085B2 (ja) 燃料ガス製造システム及びその停止方法
JP5936491B2 (ja) 水素製造装置
JP2003257461A (ja) 燃料電池システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780023291.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07767202

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008522476

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12304159

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07767202

Country of ref document: EP

Kind code of ref document: A1