WO2010099730A1 - 不要登机梯的水陆两用大飞机 - Google Patents

不要登机梯的水陆两用大飞机 Download PDF

Info

Publication number
WO2010099730A1
WO2010099730A1 PCT/CN2010/070806 CN2010070806W WO2010099730A1 WO 2010099730 A1 WO2010099730 A1 WO 2010099730A1 CN 2010070806 W CN2010070806 W CN 2010070806W WO 2010099730 A1 WO2010099730 A1 WO 2010099730A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuselage
aircraft
cabin
landing gear
wing
Prior art date
Application number
PCT/CN2010/070806
Other languages
English (en)
French (fr)
Inventor
刘世英
Original Assignee
Liu Shiying
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liu Shiying filed Critical Liu Shiying
Priority to EP10748320.8A priority Critical patent/EP2404826B1/en
Priority to US13/146,966 priority patent/US8453963B2/en
Publication of WO2010099730A1 publication Critical patent/WO2010099730A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C1/00Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60FVEHICLES FOR USE BOTH ON RAIL AND ON ROAD; AMPHIBIOUS OR LIKE VEHICLES; CONVERTIBLE VEHICLES
    • B60F3/00Amphibious vehicles, i.e. vehicles capable of travelling both on land and on water; Land vehicles capable of travelling under water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C25/00Alighting gear
    • B64C25/001Devices not provided for in the groups B64C25/02 - B64C25/68
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C35/00Flying-boats; Seaplanes
    • B64C35/005Flying-boats; Seaplanes with propellers, rudders or brakes acting in the water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C35/00Flying-boats; Seaplanes
    • B64C35/008Amphibious sea planes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C1/00Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
    • B64C2001/0045Fuselages characterised by special shapes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/10Drag reduction

Definitions

  • the invention relates to an amphibious large aircraft which does not need to be up and down the traditional boarding ladder.
  • the flat rectangular body has a strong ground effect in addition to lifting force, so it is a kind of smooth takeoff at the airport. And large planes that landed and landed smoothly on wide waters. Background technique
  • the well-known large aircraft of more than 150 seats are elongated and cylindrical.
  • the fuselage does not generate lift when the aircraft is flying.
  • the fuselage is just a container for loading objects.
  • the weight of the aircraft in flight depends on the wings on both sides of the fuselage to generate lift, so the wing area is large, the suspension is long, and the flight efficiency is low.
  • the passenger cabin is on the upper, the cargo hold is on the bottom, and the cargo hold is not easy to use.
  • the height of the cabin floor is higher because of the cargo compartment and the landing gear, so the passengers have to get on and off the aircraft.
  • boarding ladders passengers in an emergency need to rely on inflatable slides to escape.
  • the fuselage profile of the super-large Airbus A-380 is divided into three layers, the lowermost is the cargo compartment, the second-floor cabin is located above the cargo compartment, plus the landing gear height, the second-floor cabin floor is 6.2 meters and 9.0 meters from the ground, respectively.
  • On the third floor and the fourth floor people are not only inconvenient to get on and off the plane. It is also difficult for passengers to escape by inflatable slides in an emergency.
  • Due to the slender body the existing aircraft not only has a cabin like a gallery, but is inconvenient to use.
  • the flight attendant has a long service distance, and the main landing gear has to be installed at the root of the wing. When the aircraft is parked on the ground, the entire weight of the aircraft passes through the aircraft.
  • the root of the wing is transmitted to the main landing gear and then transmitted to the ground.
  • the transmission path is complicated. Not only does the wing have a large bending moment, but in order to wrap the pillar of the main landing gear, the wing root has to be externally drummed to reduce the wing lift.
  • the wing and the fuselage are thin and cross, not only the fuselage is long, the wingspan is large, and the fuselage is also high, and the floor space is large. (For example, the size of the Airbus A-380 aircraft is 72.7 meters long and the wingspan is long. 98.8 meters, the tail is 24.3 meters high, and the land and investment of the corresponding manufacturing plants, maintenance plants, hangars and airports are large.
  • the present invention provides an improved large aircraft which not only generates lift in the fuselage, but also improves flight efficiency, passengers boarding and disembarking, and not boarding ladders, and such aircraft It can take off and land at the airport like the current aircraft. It can also take off and land on the wide sea, the lake and the river. This not only improves the scope of use, but also increases flight safety.
  • the cabin is no longer like a promenade, but like a conference hall, the fuselage will generate lift during flight, improve flight efficiency, and reduce the distance of flight attendants.
  • Existing aircraft cabins and cargo bays are at different levels, The area ratio of the cabin to the cargo hold is fixed.
  • the aircraft cabin and cargo hold of the present invention are on the same floor. Even the world's largest Airbus A380 extra-large passenger aircraft (555 seats in five levels, 840 economic seats in the first level) can also be arranged in one floor, and the cabin is The area ratio to the cargo hold can be changed according to the customer's market demand.
  • the cabin needs to be pneumatically pressurized to 0.8 atmospheres to ensure the structural strength and rigidity of the aircraft after the passengers have comfortable breathing. It can be solved by adding columns and diagonal struts in the flat fuselage. Because the force structure of the octagonal fuselage skeleton can approximate the skeleton of the circular cross section of a conventional aircraft.
  • the width of the fuselage is about twice that of the existing equivalent number of seats, and the space inside the fuselage is high, so the main landing gear does not need to be installed at the root of the wing, but the main landing gear compartment.
  • the front landing gear bay is directly installed in the fuselage, so that the entire weight of the aircraft can be directly transmitted to the ground through the landing gear.
  • the force transmission path is not only beneficial to reduce the weight of the aircraft structure, but also does not damage the fuselage and the root of the wing.
  • the standard shape of the profile is therefore beneficial to increase the lift and lift-to-drag ratio of the aircraft.
  • the fuselage floor of the aircraft of the present invention can be placed on the ground so that passengers can enter and exit.
  • the plane can be as convenient and fast as people enter and exit the bus. In an emergency, the passenger escapes and does not inflate the slide.
  • the fuselage is flat, not the cylindrical shape of the existing aircraft. Therefore, the gliding performance of the aircraft of the present invention in the air is better than that of the existing aircraft, which is advantageous for reducing the approach speed of the aircraft, and not only can smoothly take off and land at the airport.
  • the sprint distance can be shortened compared to existing aircraft.
  • the ground effect of the aircraft of the present invention near the surface of the water will be better than that of the existing seaplane, so the aircraft of the present invention can also be made into a seaplane to take off and land smoothly on the wide water surface.
  • the aircraft of the present invention may lift the unpowered aircraft by the lift generated by the fuselage and the lift generated by the wing due to the inertia speed. Looking for a wide sea surface, river surface or lake surface while gliding in the air, and then maneuvering the aircraft at a small angle, gently rubbing the water surface and landing on the water surface, not only the passengers and crew on the plane can be injured, but also the aircraft will not be damaged. .
  • the fuselage of the existing seaplane is also cylindrical, and the aircraft of the present invention is flat and has a better ground effect, so the aircraft of the present invention will have better flight performance than the existing seaplane.
  • the Airbus A380 extra large passenger aircraft should be vertically and three-layered.
  • the aircraft cabin and cargo compartment of the present invention are in the same layer and only one layer, and the cross section of the fuselage is the same layer of the four-span unit, and the manufacturing and installation are carried out on one floor, and the landing gear is vertically vertically retractable and retractable, so the total assembly can be attached. This is done in a way that greatly facilitates installation and commissioning, so manufacturing costs and manufacturing cycles are reduced.
  • the beneficial effect of the aircraft of the present invention is that under the same load (equivalent number of seats or equivalent load), under the same range conditions, it is estimated that the air flight efficiency of the present invention relative to the existing aircraft can be increased by 30-40%, when the aircraft of the present invention When cruising on the water surface 4 ⁇ 12 meters, its flight efficiency can be increased by 40 ⁇ 45%; manufacturing cost and manufacturing cycle are reduced; the body is placed on the ground to make it easier for people and goods to enter and exit, emergency evacuation is faster and safer. And it can be used in a wide range of areas. It can take off and land at the airport, and it can also take off and land on the water. The seaside city can build an airport, and it can save or save a lot of land.
  • Figure 1 is a plan view of the nacelle of an aircraft (two-span cabin) of the present invention.
  • Fig. 2 is a longitudinal sectional view taken along line B-B of Fig. 1;
  • Fig. 3 is a longitudinal sectional view taken along line A-A of Fig. 1;
  • Figure 4 is an enlarged cross-sectional view taken along line C-C of Figure 1.
  • Figure 5 is a top plan view of the aircraft of the present invention (two-span cabin).
  • Figure 6 is a side elevational view of the aircraft of the present invention (two-span cabin).
  • Figure 7 is a front elevational view of the aircraft of the present invention (two-span cabin).
  • Figure 8 is a cross-sectional view taken along line D-D of Figure 1.
  • Figure 9 is a D-D cross-sectional view of the aircraft of the present invention (three-span cabin).
  • Figure 10 is a D-D cross-sectional view of the aircraft of the present invention (four-span cabin, in the same class as Airbus A-380).
  • Figure 11 is an enlarged view of the transverse cross-section of the passenger cabin of the aircraft of the present invention (three-span cabin).
  • Figure 12 is a plan layout view of an embodiment of the aircraft of the present invention (four-span nacelle, in the same class as Airbus A-380).
  • Figure 13 is a side elevational view of an embodiment of the aircraft of the present invention (four-span nacelle, in the same class as Airbus A-380).
  • 14 to 17 are diagrams showing the process of the aircraft of the present invention being parked from the airport to take-off.
  • 18 to 21 are structural views of a vertical lifting propeller device to be installed when the aircraft of the present invention is operated as a seaplane.
  • 22 to 26 are process diagrams of the aircraft of the present invention when parked from the surface of the water to the surface of the cruise.
  • Figures 27 to 34 are diagrams of the process of the aircraft of the present invention (two-span cabin) taking off from the airport port to the departure from the airport.
  • Figure 35 is a plan view of a nacelle of an embodiment of a cargo aircraft of the present invention (a amphibious type).
  • Figure 36 is a longitudinal sectional view taken along line G-G of Figure 35.
  • Figure 37 is a longitudinal sectional view taken along line H-H of Figure 35.
  • Figure 38 is a plan view of a nacelle of an embodiment of a large cargo aircraft (eight-tailed, land-only) of the present invention.
  • Figure 39 is a longitudinal sectional view taken along line K-K of Figure 38.
  • Figure 40 is a longitudinal sectional view taken along line K' K' of Figure 38.
  • Figure 41 is a longitudinal sectional view of the ⁇ "- ⁇ " of Figure 38.
  • Figure 42 is a cross-sectional view taken along line ⁇ -- of Figure 43.
  • Figure 43 is a plan view of the nacelle of the four-span passenger cabin of the present invention (same level as the Airbus 380, the splayed tail, the cabin and cargo area, and the amphibious type).
  • Figure 44 is a cross-sectional view taken along line ⁇ -- of Figure 43.
  • Figure 45 is a cross-sectional view of the four-span passenger cabin of the present invention (same grade as the Airbus 380, only for land use).
  • Fig. 46 to Fig. 48 are comparison diagrams of the outer dimensions of the four-span cabin aircraft of the present invention (the same class as the Airbus 380, the amphibious type) and the existing Airbus 380 aircraft.
  • Figure 49 and Figure 50 are enlarged views of the front view windward area of the fuselage portion of the four-span cabin aircraft of the present invention (same class as the Airbus 380, amphibious type) and the existing Airbus 380 aircraft.
  • Figure 51 is an enlarged plan view of the transverse cross-section of the passenger cabin with U-shaped grooves of the aircraft of the present invention (three-span cabin).
  • Figure 52 is an enlarged view showing the construction of a U-shaped groove.
  • Figure 53 is a cross-sectional view of an emergency landing of an aircraft (three-span cabin) accident of the present invention.
  • Figure 54 is a side elevational view of an emergency landing of an aircraft (three-span cabin) accident of the present invention.
  • FIG. 1 Cockpit, 2. Electronic instrument bay, 3. Front landing gear bay, 4. Front landing gear, 5. Cabin door, 6. Cabin, 7. Airframe, 8. Wing, 9. Main landing gear 10. Main landing gear compartment, 11. bathroom, 12. catering room, 13. cargo door, 14. fuel engine, 15. propeller, 16. fuselage tail, 17. reversing sleeve, 18. shaft, 19. propeller Cabin, 20. fixed gearbox, 21. cargo hold, 22. seat, 23. column, 24. diagonal strut, 25. stair, 26. machine room, 27. instrument panel, 28. navigation radar cabin, 29. luggage Cabin, 30. Jet engine, 31. Vertical tail, 32. Flat tail, 33. Front and rear sliding hatch, 34. Wing mounted center body, 35. Eight-shaped tail, 36. Cabin window, 37.
  • the aspect ratio of the fuselage (7) is preferably 2.0 ⁇ 4.5:1, and the cockpit (1) protrudes from the fuselage (7).
  • the driver's line of sight is good.
  • the machine room (26), electronic instrument compartment (2) and front landing gear compartment (3) are arranged at the front of the fuselage (7).
  • the fuselage (7) is the passenger cabin (6) in the middle.
  • the seat (22) is arranged after the aisle is inside, and the toilet (11) and the dining room (12) are arranged behind the cabin (6).
  • the main landing gear bay (10) is arranged on the two sides of the passenger aircraft (6) at the rear of the center of gravity of the aircraft, in which the main landing gear (9) is placed, and the passenger cabin (6) has two passenger doors (5).
  • a cargo compartment (21) and a fuselage tail (16) rotatable about the rotating shaft (18) are arranged, and a vertical lifting propeller device (58) is respectively installed at the last two ends of the cargo compartment (21).
  • This device is mainly used for the landing, landing and steering of the aircraft when the seaplane is parked on the water (see Figures 27 to 34). Because the longitudinal section of the fuselage (7) is the shape of the wing profile, the fuselage (7) is wider and the area is larger than the wing area.
  • the aircraft of the present invention when the aircraft of the present invention is propelled by the engine (30), the aircraft The body (7) will produce a larger lift than the wing.
  • the existing aircraft fuselage is cylindrical and cannot generate lift.
  • the aircraft of the present invention can improve flight efficiency by about 30-40% compared with existing civil aircraft, that is, it can save Fuel consumption of 30 to 40% also reduces pollution to the atmosphere.
  • the longitudinal section of the aircraft fuselage (7) of the present invention is a cross-sectional shape of the wing, and the front landing gear in the figure
  • the main landing gear (9) is retracted and retracted by the existing aircraft.
  • the present invention is vertically retractable because the space of the fuselage (7) is relatively large. Landing gear, plus the fuselage of the present invention
  • the longitudinal section of the aircraft fuselage (7) of the present invention at the longitudinal centerline of the fuselage is also the cross-sectional shape of the wing, and the front of the fuselage (7) is the cockpit (1), which is provided therein.
  • Close to the cockpit (1) is the machine room (26), and on both sides is the electronic instrument compartment (2).
  • the staircase (25) is used when the seaplane is docked at the airport (52) for the passengers to enter and exit the passenger cabin (6), because when the seaplane is used, there are appointments on the passenger cabin (6) on the two sides of the cabin (6).
  • the passenger door (5) can not be opened; because the passenger cabin (6) is designed and manufactured according to the structural strength and rigidity of 0.5 ⁇ 0.6 atmospheres inside and outside the 10,000 meters, so the cabin Both the door (5) and the cabin window (36) will not leak water.
  • a catering room (12) and a bathroom (11) are arranged, the location and the circular walkway in the cabin (6), which is beneficial to both the flight attendant and the passengers.
  • the outer wall of the arc in front of the fuselage (7) is caused by the front part of the airfoil type, while the rear arc wall of the dining room (12) and the restroom (11) is due to the external expansion of 0.5 to 0.6 atmospheres.
  • the special requirements of force do this. Because the aircraft of the present invention is to be parked at the airport, so that passengers can not board the flight ladder, and it is convenient and quick to get on and off the plane like a bus. In addition, the aircraft of the present invention is also parked on the water surface when the seaplane is used, so the engine (30) cannot It is hung under the wing like an existing airplane, but is mounted above the rear of the fuselage (7).
  • the fuselage tail (16) can be rotated around the rotating shaft (18) behind the cargo compartment (21).
  • the aircraft of the invention When the aircraft of the invention takes off and land at the airport, it can be used to lift the flat tail and reduce the tail of the fuselage (16).
  • the danger of the ground which is beneficial to increase the angle of attack of the take-off forward; when the aircraft of the invention takes off and land on the surface of the water, it can also be turned up, and under the action of the water flow, the rear of the fuselage (7) is downward, and before At the same time, the department formed an angle of attack that rushed out of the water at the same time. Passengers in the picture continue to enter the cabin (6).
  • the aircraft of the present invention is placed on the ground, the bottom surface of the passenger cabin (6) is about 0.2 meters from the ground, and the floor of the passenger cabin (6) is about 0.32 to 0.36 meters above the ground, so the passenger can not board the flight ladder. Get on and off the plane as quickly and easily as going up and down the bus.
  • the structural skeleton of the flat passenger cabin (6) is divided into two sides by the column (23). The same cabin unit has the same arrangement of seats (22), luggage compartment (29) and aisle.
  • a row of columns is arranged along the longitudinal centerline of the flat passenger cabin (6), except that the two sides of the passenger cabin transverse frame (39) are formed as circular arc walls ( 23) to reduce the structural span of the cabin transverse frame (39).
  • the two sides and the transverse cross-frame of the cabin (39) are provided with diagonal braces (24) at the upper and lower ends of the two side arc walls.
  • Fig. 5 it is a top view of the outer shape of the aircraft of the present invention, and the top surface of the upper surface of the fuselage (7) is provided with two set top cabin doors (37) for the aircraft of the present invention to be used as a seaplane docking airport (52). Passengers enter and exit the cabin (6), and the engine (30) also has two set top security doors (38), which are used for emergency evacuation of passengers when the aircraft of the present invention is used as a seaplane.
  • Fig. 6 it is a side view of the aircraft of the present invention when it is parked at the airport and ready to take off.
  • both the front landing gear (4) and the main landing gear (9) are elongated to bring the body (7) off the ground to reach the technology. height.
  • the wing (8) is mounted on the wing mounting center body (34) above the middle of the fuselage (7).
  • the figure also shows the location of the passenger door (5), cabin window (36) and cargo door (13), which is the traffic door for passengers to enter and exit the aircraft cabin (6) and cargo hold (21) at the airport.
  • Fig. 7 it is a front view of the outer shape of the aircraft of the present invention. Since the fuselage (7) is wider, the nose landing gear (4) and the main landing gear (9) do not have to be installed at the root of the wing (8).
  • FIGs 8, 9, and 10 cross-sectional views of the two-span, three-span, and four-span passenger cabins (6) of the present invention at the position of the main landing gear (9) are shown, respectively.
  • the main landing gear bay (10) Due to the wide and high flatness of the fuselage (7), the main landing gear bay (10) can be placed directly in the passenger cabin (6) to meet the functions of the main landing gear (9) and the nose gear (4) to stably support the aircraft.
  • the main landing gear (9) is installed in the main landing gear bay (10), and its top end is connected to the wing mounting center body (34), and the fuselage (7) is also tightly connected to the wing mounting center body (34).
  • the wing mounting center body (34) serves the dual purpose of reinforcing the overall structural strength and rigidity of the fuselage (7).
  • the wing mounting center body (34) is mounted on the two sides of the wing (8). Due to the high space of the passenger cabin (6), the main landing gear bay (10) does not protrude from the fuselage (7) at all, so the fuselage (7) will not be damaged as a standard body of the lift body, that is, the machine will not be reduced.
  • Body (7) The lift generated during flight.
  • the main landing gear (9) is in the maximum position of vertical elongation, that is, the state in which the aircraft of the present invention is parked at the airport or ready to take off.
  • the entire weight of the aircraft is directly transmitted to the ground through the main landing gear (9), and the force transmission path is good, which is beneficial to reduce the structural weight of the aircraft while satisfying the structural strength and rigidity of the fuselage (7).
  • the three-span passenger cabin (6) is taken as an example to illustrate the structural characteristics of the passenger cabin transverse skeleton (39) of the aircraft (two spans, four spans and three spans), and the three spans are equivalent to three existing empty spaces.
  • the fuselage cross section of the passenger A320 aircraft (single channel, three seats on each side, which is the most economical layout) is laid flat and connected together, and then the cargo compartment under the passenger cabin is removed.
  • the existing civil aviation aircraft cruises at an altitude of more than 10,000 meters, the air is thin, and the atmospheric pressure is only 0.2-0.3 atmospheres (0.2-0.3 atm). If the air pressure is also in the cabin, people will have difficulty breathing and endanger life.
  • the cabin (6) In order to meet the comfort requirements of the people, the cabin (6) must be at least 0.8 atm, which requires mechanical equipment to inflate the cabin (6). In this way, the structure of the passenger cabin (6) must withstand the external expansion force of 0.5 ⁇ 0.6 atmospheric pressure difference inside and outside, that is, the outer casing of the passenger cabin (6) must withstand the pressure of 5 ⁇ 6 tons/m2, which is why the fuselage of the existing aircraft.
  • the main reason for the cross section to be rounded.
  • the cross-section of the fuselage of the existing aircraft is round and brings many of the above-mentioned shortcomings of the existing aircraft, the existing civil aircraft must have a large improvement in performance.
  • the structural layout has made major breakthroughs and improvements.
  • the flat cabin of the aircraft of the present invention (6) can withstand the outward pressure of 5-6 tons/m2, which is the key to the success of the aircraft of the present invention.
  • the two sides of the transverse frame (39) of the passenger cabin cannot be made flat, but the convex arc surface is similar to that of the existing aircraft, because the flat sections on both sides of the passenger cabin (6) are the same size. Therefore, the cabin (6) on the two sides of the arc wall to open the passenger door (5), the cabin window (36) can be exactly the same as the existing aircraft.
  • a column (23) is added to the cabin cross frame (39) to reduce the lateral span of the flat passenger cabin (6). It is not enough to add the column (23).
  • the upper and lower sides of the column (23) are provided with diagonal braces. (twenty four).
  • the length projection of the diagonal strut (24) is about 1/3 (about 1.2 to 1.3 m) of the span of each span in the transverse frame (39) of the passenger cabin, and the height of the diagonal strut (24) is below the column (23).
  • the clearance height under the seat (22) (approx. 0.3 ⁇ 0.35 m), the height of the diagonal strut (24) above the column (23) does not exceed the net height inside the luggage compartment (29).
  • the structure of each span of the passenger cabin (6) can be regarded as an octagonal structure.
  • the force of the octagonal structure is much better than that of the rectangular structure, although it is still worse than the circular structure, but approximates the circular structure.
  • the wing mounting center body (34) above the passenger cabin (6) tightly couples the three spans, which greatly enhances the overall structural strength and rigidity of the passenger cabin transverse frame (39).
  • the longitudinal section of the fuselage (7) is the cross-sectional shape of the wing, and the front side is originally a circular arc shape. As long as the rear wall of the passenger cabin (6) shared with the cargo compartment (21) is also made into a circular arc wall, then The passenger cabin (6) combined with the longitudinal frame of the cabin (39) and the longitudinal frame of the fuselage frame (41) can withstand an outward pressure of 5-6 tons/m2.
  • the planar arrangement and the profile side elevation of the fuselage (7) are shown.
  • the cabin (6) is arranged in four spans, and more than 800 seats (22) can be arranged in one floor.
  • the four longitudinal passages of the four-span cabin unit and the transverse passages of several straight-through passenger doors (5) form a convenient and safe transportation route.
  • four main landing gears (9) are provided; since the fuselage (7) is flat and wide, the four main landing gears (9) can be arranged in a line, so that the aircraft of the invention is taken off and landed.
  • the four main landing gears (9) can be unstressed or stressed at the same time, and the force is even; the four main landing gears (9) are identical in type (the main landing gear of the Airbus A-380 aircraft, one installed in Under the fuselage, the other is installed under the wing root, the height is not the same, so two models of the main landing gear). Since the passenger cabin (6) has only one floor, the cargo compartment (21) is in the same layer as the passenger cabin (6). The landing gear can be placed in the ground after being compressed. This brings a lot of convenience to the assembly and debugging of each system. Manufacturing cycle and reduction of various manufacturing costs.
  • 14 to 17 are diagrams showing the process of the aircraft of the present invention being parked from the airport to take-off.
  • the main landing gear (9) is compressed so that the fuselage floor is only about 0.2 meters from the ground, and the fuselage (7) is placed on the ground. No traditional boarding ladder is required. Passengers can get on and off the plane like a bus. In the picture, passengers are walking into the plane.
  • the jet engine (30) has started the jet, and under the action of the flat tail (32), the nose landing gear (4) is off the ground, and the aircraft of the present invention slid on the airport runway, in a state of being taken off.
  • the jet engine (30) continues to jet, and the angle of attack is further increased under the action of the flat tail (32).
  • the nose gear (4) and the main landing gear (9) are both off the ground, and the aircraft of the present invention is at the airport.
  • the runway is in a state of take-off.
  • the nose gear (4) is retracted into the nose gear bay (3), the main landing gear (9) is retracted into the nose gear bay (10), and then the front and rear sliding doors (33) begin simultaneously.
  • the aircraft of the present invention enters a cruise flight state.
  • FIG 18 to Figure 21 are schematic diagrams showing the structure and operation of the vertical lifting propeller unit (58).
  • a vertical lift propeller device (58) is required to control the docking airport, steering and offshore of the aircraft of the present invention.
  • the propeller (15) is retracted into the propeller bay (19), at which point the front and rear sliding hatch (33) has closed the propeller bay (19), just like closing the front landing gear bay (3) and the main landing gear
  • the fuel engine (14) installed in the cargo compartment (21) on the mounting base (57) is rotated by the coupling (62) and the shaft (48) to drive the bevel gear (45) and the two looper bevel gears (47);
  • the center of the bevel gear (47) has a hexagonal hole and a hexagonal shaft (42).
  • the smaller hydraulic cylinder (44) installed in the fixed gearbox (20) is pushed and replaced by the piston (50).
  • the sleeve (17) allows the two looper gears (47) to move up and down simultaneously on the hexagonal shaft (42), but only one of the movable gears (47) (the lower movable gear in the figure) drives the hexagonal shaft (42) and two bevel gears (45) mounted in the movable gear box (49); the bevel gear (45) then drives the propeller (15) to rotate through the shaft (48).
  • the larger hydraulic cylinder (44) mounted in the fixed gearbox (20) is connected to the housing of the movable gearbox (49) via the piston (50) and enables the movable gearbox (49) to be bolted (46). ) Fasten the fixed gearbox (20) of the fuselage frame (41) and move it up and down.
  • Figure 19 is an E-E cross-sectional view of the movable gearbox (49), reflecting the bevel gear (45) rotating the propeller (15) through the shaft (48).
  • Figure 20 is a cross-sectional view of the FF of the fixed gear box (20).
  • the shaft (48) of the fuel engine (14) drives the bevel gear (45) and the movable gear (47) to rotate, and the center of the movable gear (47) has a hexagonal hole. It is sleeved with a hexagonal shaft ( 42 ).
  • the piston (50) is in the hydraulic cylinder (44).
  • the propeller (15) rotates in the opposite direction to push the water body to flow in the opposite direction, thereby driving the aircraft of the present invention parked on the water surface in the opposite direction.
  • the driver operates two vertical lifting propeller units (58) installed at the rear corners of the cargo hold (21) as required by the program, as long as the two fixed gear boxes (20) are controlled.
  • the pistons (50) in the smaller hydraulic cylinder (44) move up and down in an orderly manner to control the forward, reverse and left and right steering of the aircraft of the invention on the surface of the airport.
  • 22 to 26 are process diagrams of the aircraft of the present invention when parked from the surface of the water to the surface of the cruising flight, in which the front and rear sliding compartments (3) and the front and rear sliding doors (33) of the main landing gear compartment (10) are closed. status.
  • Fig. 23 after the passengers all enter the passenger cabin (6), the top passenger cabin door (37) is closed, and the driver operates two vertical lifting propeller devices (58) installed in the cargo compartment (21) according to the program requirements, so that the aircraft of the present invention is separated. The port and the turn, then lie on the water and prepare to take off.
  • the jet engine (30) starts to make a jet, and the driver manipulates the fuselage tail (16) to turn up.
  • the front of the fuselage (7) rises up, and the aircraft of the present invention will rush out. water surface.
  • Fig. 25 the aircraft of the present invention has already rushed out of the water surface and moved forward by the thrust and ground effect of the jet engine (30).
  • the aircraft of the present invention cruises on the surface of the water 4 to 12 meters by the thrust of the jet engine (30) and the effect of the water surface; because of the ground effect, this is higher than the aircraft of the present invention at a height of 10,000 meters. Save 5-10% of aviation fuel; In addition, because the seaplane always flies over 4 ⁇ 12 meters above the water surface, the passengers feel psychologically safer than the 10,000-meter high-altitude flight; but the premise is that the weather is good, the visibility is more than a few kilometers, and There are not many ships on the sea, so it is especially suitable for flights flying across the ocean ( Pacific, Atlantic, etc.).
  • the aircraft of the present invention can increase the thrust of the jet engine (30), and the flat tail (32) is turned up, so that the aircraft quickly climbs to an altitude of over 10,000 meters to perform the same as the existing civil aircraft. Cruise flight.
  • FIG. 27 to 34 are views showing a process of the aircraft of the present invention (two-span cabin) taking off from a parking port to taking off from an air port.
  • the aircraft of the present invention is docked at the terminal (54) of the airport (52), and the passengers in the airport are landed.
  • the shelter of the airport (52) is required (55)
  • the cantilever span is large, so the roof pillar (53) supporting the canopy (55) should be provided on the dock (54).
  • Figure 28 is a plan view of the aircraft of the present invention as it is slowly pushed into the airport by the two vertical lifting propeller units (58).
  • Figure 29 is a top plan view of the aircraft of the present invention docked at the terminal (54) of the airport (52) after the two vertical lifting propeller units (58) are closed.
  • Figure 30 is a top plan view of the aircraft of the present invention with two vertical lifting propeller units (58) left at a distance from the airport.
  • Figure 31 and Figure 32 are top views of the aircraft of the present invention leaving the airport at a distance, two vertical lifting propeller devices (58), one on the right and one on the left, and the aircraft of the present invention turned on the water.
  • Figure 33 is a top plan view of the aircraft of the present invention as it has been turned over the surface of the water to the airport (52) and ready to take off.
  • Figure 34 is a plan view of the jet engine (30) having started and jetted, the aircraft of the present invention taking off from the surface of the water under the impulsion of the jet engine (30).
  • Figures 35 to 37 show an embodiment of the aircraft of the present invention (amphibious type) as an amphibious freighter. These three figures are scenarios in which the aircraft is parked at the airport.
  • Fig. 36 when the main landing gear (9) and the nose landing gear (4) are compressed to a height equal to the height of the freight car's deck, they can be shipped from the cargo door (13).
  • the hanging hole (59) at the top of the cargo hold (21) is used when the aircraft of the present invention is used as a seaplane, and it is necessary to open the front and rear sliding doors (33).
  • Figure 37 is a state in which the landing gear is raised and ready to take off at the airport.
  • both the main landing gear bay (10) and the nose landing gear bay (3) are swept back and forth ( 33) Closed; because the cargo compartment (21) has a certain depth of water outside, the cargo door (13) on both sides of the cargo compartment (21) cannot be opened at this time; when the aircraft of the invention is loaded and unloaded by cranes on the surface of the airport (52), Simply open the hanging hole (59) located on the top surface of the cargo compartment (21) to load and unload the cargo.
  • Fig. 36 when the aircraft of the present invention uses a crane to load and unload cargo on the surface of the airport (52), it is only necessary to open the hanging hole (59) provided on the top surface of the cargo compartment (21) to load and unload the cargo.
  • the personnel enter and exit from the top passenger door (37) of the fuselage (7).
  • 38 to 41 are embodiments of the aircraft of the present invention as only a large land freighter.
  • Fig. 40 in order to facilitate various equipment such as equipment trucks capable of walking by itself, the aircraft of the present invention can be placed in the parking compartment (21); then the front part of the cargo compartment (21) is lifted by a hydraulic cylinder (44). And the rear revolving shaft (18) is turned up, and the hydraulic cylinder (44) is retracted after the equipment is in and out, the cargo compartment opening and closing seam (61) is closed, and the cargo compartment (21) Restore.
  • Fig. 41 the cargo has been placed, the hydraulic cylinder (44) is retracted; the cargo compartment opening and closing joint (61) is closed; the cargo compartment (21) is restored; the front landing gear (4) and the main landing gear (9) are simultaneously Ascending, the present invention is only in a state of being ready to take off as a large cargo aircraft for land use.
  • Figure 42 to Figure 44 are another embodiment of the aircraft of the present invention (same class with the Airbus A380, the eight-tailed empennage, the amphibious type) as an amphibious and passenger-cargo transporter, characterized by: cabin and cargo compartment
  • the area ratio can be flexibly changed according to the customer's requirements during the order making, which makes the airlines operate more flexibly.
  • the passengers When the passengers are in a slump, they can load more goods.
  • the freight is low, they are mainly passengers. In short, it is beneficial to reduce the aircraft's no-load rate.
  • the plane arrangement of the fuselage (7) accounts for about half of the area of the passenger cabin and the cargo compartment. Because the cargo compartment (21) is large in size, four cargo doors (13) are opened, which is advantageous for loading and unloading goods. speed.
  • the arc wall between the cabin (6) and the cargo hold (21) is also moved forward to the main landing gear bay (10). There is no external expansion force of the passenger cabin in the cargo compartment (21). Only a small number of columns (23) can be set to reduce the structural weight, or the column (23) can be omitted, which is convenient for loading and unloading, which is determined by the user.
  • the arc wall between the passenger cabin (6) and the cargo hold (21) is located at the main landing gear bay (10), and the ratio of the passenger cabin (6) to the cargo hold (21) is approximately half, and the cargo hold (21) Four cargo doors (13) were opened, and the others were identical to the aircraft of the invention shown in Figures 12 and 13.
  • an embodiment of a large passenger aircraft of the present invention (same grade as the Airbus A380, only land type) is used only for land use and is identically used as existing civil aircraft, jet engine (30) It is also hung under the wing (8) like the existing civil aircraft; because the lower edge of the jet engine (30) is lower than the bottom plate of the fuselage (7), the aircraft cannot be parked and can only be like the existing civil aviation. The aircraft is parked at the same height as the landing gear, and the plane is also boarding the ladder.
  • Figure 46, Figure 47, Figure 48 are the comparison of the dimensions of the large aircraft (same grade and amphibious A380) and the most advanced Airbus A-380 aircraft of the present invention, as can be seen from the figure.
  • the captain, wingspan and height of the large aircraft of the present invention can be reduced by about 25-30% compared to the Airbus A-380 aircraft.
  • Fig. 49 and Fig. 50 are enlarged and contrasted views of the front view windward area of the large aircraft (same grade and amphibious type with the Airbus A380) and the most advanced Airbus A-380 aircraft of the present invention.
  • the front view windward area of the large aircraft of the present invention is reduced by about 10-13% compared to the Airbus A-380 aircraft, so the flight resistance of the large aircraft of the present invention is less than that of the Airbus A-380 aircraft.
  • Figure 51 is an enlarged elevational view of the passenger cabin transverse frame (39) of the aircraft of the present invention (three-span cabin) with U-shaped grooves.
  • the jet engine (30) has an accidental stop to lose power, or the landing gear cannot be put down, and no wide water surface can be found nearby to implement an emergency surface landing.
  • the plane will crash and the plane will be destroyed.
  • a U-shaped groove (63) is added at the intersection of the structural cross-frame of the passenger cabin (39), a strip-shaped air cushion (66) is placed therein, and in the above emergency situation, the landing gear can be opened without opening the aircraft.
  • the valve of the gas cylinder inflates the strip air cushion (66), and the strip air cushion (66) immediately expands, automatically punching the pallet (64) stuck in the U-groove (63) card slot (65), the outer panel of the aircraft (67)
  • strip air cushions (66) are formed shortly below, and these strip air cushions (66) can be from the front landing gear bay (3) to the fuselage tail (16). In this way, the aircraft of the present invention can choose an emergency field for a forced landing. Because the airframe is flat and the strip air cushion (66) is used, the impact force of the ground on the aircraft can be greatly buffered, thereby reducing the accident to the passenger disaster. To the minimum.
  • Figure 52 is an enlarged view of the structure of the U-shaped groove, and the pallet (64) normally placed in the card slot (65) of the U-shaped groove (63) holds the strip-shaped air cushion (66) from falling.
  • the aircraft adds the weight of these strip air cushions (66)
  • the aircraft of the present invention does not have the existing aircraft inflatable slides, it is estimated that the weight of these strip air cushions (66) will not exceed the weight of the general inflatable slides, but more for passengers. A security guarantee for land landing is therefore worthwhile.
  • Figure 53 is a cross-sectional view of the aircraft (three-span cabin) accident emergency landing, in which the opening of these strip air cushions (66) can cushion the impact of the ground on the aircraft and reduce the damage of the accident to the passengers.
  • Figure 54 is a side view of the emergency landing of the aircraft of the present invention (three-span passenger grab) accident.
  • the aircraft touches the ground some strip air cushions (66) will be pierced by the ground debris and the buffer will be invalidated. It is possible that a large number of strip air cushions (66) will not be punctured, and the length of these strip air cushions (66) should be reduced to increase the number.
  • the traditional parachute is placed behind the cargo (21) and is opened at the same time as the strip air cushion (66) during the emergency landing, the speed of the aircraft is further reduced by the parachute; in the strip air cushion (60) and the parachute Together, it further reduces the impact of the ground on the fuselage, thus minimizing the accident-to-passenger disaster.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Body Structure For Vehicles (AREA)

Description

不 普机梯的水陆两用大飞机
技术领域
本发明涉及一种不要传统登机梯上下的水陆两用大飞机, 尤其是其扁平长方形机身 除可以产生升力外, 地效作用也较强, 因此它是一种既可以在飞机场平稳起飞和降落, 又可以在宽阔水面上平稳起飞和降落的大飞机。 背景技术
目前, 公知的 150座以上的大飞机的机身都是细长的圆柱状, 根据空气动力学, 这 样的飞机飞行时机身是不产生升力的, 机身只是一个装人载物的容器, 飞行中飞机的重 量全靠机身两侧的机翼产生升力来托举, 因此机翼面积大, 悬挑长, 飞行效率也较低。 另外由于机身横剖面为圆形, 客舱在上, 货舱在下, 且货舱上大下小不好使用, 客舱地 板距地高度因其下有货舱和起落架而较高, 所以乘客上下飞机不得不采用登机梯, 紧急 情况下乘客逃生要靠充气滑梯。 像特大型空客 A-380客机的机身剖面分三层, 最下层是 货舱, 二层客舱位于货舱上方, 加上起落架高度, 二层客舱地板距地分别是 6.2米和 9.0 米, 相当人们在第三层楼和第四层楼上, 不但上下飞机不方便, 紧急情况下乘客靠充气 滑梯逃生也较困难。 现有飞机由于机身细长, 不但客舱像长廊, 使用不方便, 空姐服务 距离长, 而且主起落架不得不安装在机翼根部, 这样飞机停放在地面时, 飞机的全部重 量要经过机翼根部传至主起落架后再传至地面, 传力路径复杂, 不但翼才艮弯矩大, 而且 为了包住主起落架的支柱, 翼根下面不得不外鼓, 减少了机翼升力。 另外由于机翼和机 身呈瘦十字相交, 不但机身长, 翼展大, 而且机身也高, 占地面积大, (例如空客 A-380 飞机的尺寸机身长 72.7米、 翼展 98.8米、 尾翼高 24.3米,)相应制造厂、 维修厂、 机 库和机场的土地和投资都较大。 现有飞机相交处的起落架舱结构复杂, 外突机身的起落 架舱鼓包很大, 增加了飞行阻力。 现有飞机起飞和降落时的地效作用相对较小, 进场速 度较大, 所以滑跑距离较长。 再由于机身圆柱状, 一般也不好在水面降落, 只能在飞机 场起飞和降落, 在紧急情况下水上迫降损失也大。 例如 2009年 1月 15 日美国航空公司 一架空客 A-320客机从机场起飞不久二个发动机都遭到飞鸟撞击,幸好驾驶员技术熟练 而果断迫降在哈德孙河的水面上, 才免于机毁人亡, 被世界公认为哈德孙河奇迹。 虽然 155人无人死亡, 但是机上还是有 87人受伤, 飞机损害严重, 除水淹飞机外, 二个发动 机都掉到河里去了。 发明内容
为了克服上述现有大飞机存在的这些缺点, 本发明提供了一种改进型大飞机, 该飞 机不但机身产生升力, 提高了飞行效率、 乘客上下飞机也不要登机梯、 而且这种飞机既 可以像现^"飞机在飞机场起飞和降落,还可以在宽阔的海面、湖面和江面上起飞和降落, 这样不但提高了使用范围, 而且增加了飞行安全性。
本发明解决其技术问题所采用的技术方案构思如下:
将现有飞机细长的机身从中截断成二段, 再将这二段机身平放在一起, 还将现有飞 机机身横剖面中客舱以下的货舱也取消, 然后再将机身纵剖面做成飞机机翼剖面形状, 这样长条形机身就变成为扁平长方形状; 驾驶舱突出机身是为了使驾驶员前方和二侧方 向视线好; 机翼安装在翼型剖面机身上高出客舱使用空间的机翼安装中心体二侧; 宽机 身后部安装双垂尾支撑平尾。 这样客舱就不再像长廊, 而像会议厅, 机身在飞行中会产 生升力, 提高了飞行效率, 空姐服务距离也减少。 现有飞机客舱和货舱在不同的高度层, 客舱和货舱的面积比是固定不变的。 而本发明飞机客舱和货舱同在一层, 即使目前世界 上最大的空客 A380特大客机的 (五级布局 555个座位, 一级布局 840个经济座位)也 可以一层就安排完, 而且客舱和货舱的面积比可以根据客户的市场需求而改变。 至于飞 机在万米高空大气压力小, 客舱需要充气加压至 0.8个大气压来确保乘客呼吸舒适性后 的飞机结构强度和刚度, 则可以通过在扁平机身内加设立柱和斜撑杆来解决, 因为这种 八角形机身骨架的受力结构能够近似传统飞机的圆形横断面的骨架。
因本发明飞机的机身扁平, 机身宽度约为现有同等座位数飞机的二倍, 而且机身内 空间较高, 因此主起落架不需要安装在机翼根部, 而是主起落架舱和前起落架舱都直接 安装在机身内, 这样飞机的全部重量可以通过起落架直接传至地面, 传力路径筒捷, 不 仅有利减轻飞机结构重量, 而且不破坏机身和机翼根部横剖面的标准形状, 因此有利提 高飞机的升力和升阻比。
将发动机安装在扁平矩形机身的后部的上方或吊挂在平尾的下方, 由于机身扁平、 其下方又无货舱、 起落架又安装在机身内, 若再将起落架的收放方式由现有的旋转收放 方式改为垂直伸缩收放, 起落架舱的舱门也由传统的上下翻转改为前后滑动舱门, 则本 发明飞机的机身底板可以贴地停放, 这样乘客进出飞机就可以像人们进出公共汽车一样 方便快捷, 紧急情况下乘客逃生也不要充气滑梯。
也正是由于机身扁平, 不是现有飞机的圆柱形, 因此本发明飞机在空中的滑翔性能 会比现有飞机较好, 有利减少飞机的进场速度, 不仅可以在飞机场平稳起飞和降落, 相 对现有飞机其滑跑距离还可以缩短。 同理, 本发明飞机靠近水面飞行的地效作用也将会 比现有的水上飞机较好, 所以本发明飞机也可以做成水上飞机在宽阔的水面上平稳起飞 和降落。 若是本发明飞机遇到上述美国航空公司相同的那次飞机遭遇撞鸟的事故, 则本 飞机由于惯性速度使机身产生的升力和机翼产生的的升力共同托举无动力的飞机, 可以 在空中边滑翔边寻找宽阔的海面、 江面或湖面, 然后再操纵飞机小角度、 轻擦水面而平 稳降落在水面上, 不但机上全部乘客和机组人员可以无一受伤, 而且飞机也不会丝毫受 损。 现有水上飞机的机身也是圆柱形, 而本发明飞机机身扁平, 地效作用更好, 所以本 发明飞机将比现有水上飞机的飞行性能更好。
从制造和安装的角度看, 空客 A380特大客机要竖向立体三层进行。 但本发明飞机 客舱和货舱同层而且只有一层, 机身横剖面是四跨单元同一层, 制造和安装都在一层进 行, 加之起落架是竖向垂直伸缩收放, 所以总装配可以贴地进行, 这样就给安装和调试 带来极大的方便, 所以制造成本和制造周期都将有所减少。
总之, 本发明飞机的有益效果是在同等荷载(同等座位数或同等货载), 同等航程条 件下, 估计本发明相对现有飞机的空中飞行效率将可以提高 30~40%, 当本发明飞机在 水面 4~12米上巡航飞行时, 其飞行效率约可以提高 40~45%; 制造成本和制造周期都有 所减少; 机身贴地停放使人员和货物进出更方便, 紧急疏散更快捷安全, 而且使用范围 广, 既可在飞机场起飞降落, 也可以在水面上起飞降落, 海边城市建航空港, 可以不建 或少建飞机场, 从而节约大量土地。 附图说明
下面结合附图和实施例对本发明进一步说明。
图 1是本发明飞机(二跨客舱) 的机舱平面布置图。
图 2是图 1的 B-B纵剖视图。
图 3是图 1的 A-A纵剖视图。
图 4是图 1的 C-C横剖视放大图。
图 5是本发明飞机(二跨客舱 )外形俯视图。 图 6是本发明飞机(二跨客舱 ) 的外形侧视图。
图 7是本发明飞机(二跨客舱 ) 的外形前视图。
图 8是图 1的 D-D横剖视图。
图 9是本发明飞机(三跨客舱 ) 的 D-D横剖视图。
图 10是本发明飞机(四跨客舱、 与空客 A-380同等级) 的 D-D横剖视图。
图 11是本发明飞机(三跨客舱) 的客舱横骨架立面放大图。
图 12是本发明飞机(四跨机舱、 与空客 A-380同等级) 实施例的平面布置图。 图 13是本发明飞机(四跨机舱、 与空客 A-380同等级) 实施例的外形侧视图。 图 14至图 17是本发明飞机从机场贴地停放到起飞的过程图。
图 18至图 21是本发明飞机做水上飞机运行时所需要安装的垂直升降螺旋桨装置的 结构图。
图 22至图 26是本发明飞机从水面停放到水面巡航飞行时的过程图。
图 27至图 34是本发明飞机(二跨客舱)从停放航空港到从航空港起飞的过程图。 图 35是本发明货运飞机实施例 (水陆两用型) 的机舱平面布置图。
图 36是图 35的 G-G纵剖视图。
图 37是图 35的 H-H纵剖视图。
图 38是本发明大型货运飞机(八字尾翼、 仅陆用型) 实施例的机舱平面布置图。 图 39是图 38的 K— K纵剖视图。
图 40是图 38的 K' K'纵剖视图。
图 41是图 38的 Κ"— Κ"纵剖视图。
图 42是图 43的 Μ--Μ剖视图。
图 43是本发明飞机四跨客舱(与空客 Α380同等级、 八字尾翼、 客舱和货舱面积对 半、 水陆两用型) 的机舱平面图。
图 44是图 43的 Ν--Ν剖视图。
图 45是本发明飞机四跨客舱 (与空客 Α380同等级、 仅陆用型) 的横剖面图。
图 46至图 48是本发明四跨客舱飞机(与空客 Α380同等级、 水陆两用型) 与现有 空客 Α380飞机的外形尺寸对比图。
图 49、 图 50是本发明四跨客舱飞机(与空客 Α380同等级、 水陆两用型)与现有空 客 Α380飞机的机身部分的前视迎风面积对比放大图。
图 51是本发明飞机(三跨客舱) 带 U形槽的客舱横骨架立面放大图。
图 52是 U形槽的构造放大图。
图 53是本发明飞机(三跨客舱) 事故紧急陆降的横剖视图。
图 54是本发明飞机(三跨客舱) 事故紧急陆降的侧视图。
图中 1. 驾驶舱, 2.电子仪表舱, 3.前起落架舱, 4.前起落架, 5.客舱门, 6.客舱, 7. 机身, 8.机翼, 9.主起落架, 10.主起落架舱, 11.卫生间, 12.配餐室, 13.货舱门, 14.燃 油发动机, 15.螺旋桨, 16.机身尾, 17.换向套, 18.转轴, 19.螺旋桨舱, 20.固定齿轮箱, 21.货舱, 22.座椅, 23.立柱, 24.斜撑杆, 25.楼梯, 26.机房, 27.仪器仪表盘, 28.导航雷 达舱, 29.行李舱, 30.喷气发动机, 31.垂尾, 32.平尾, 33.前后滑动舱门, 34.机翼安装中 心体, 35.八字型尾翼, 36.客舱窗, 37.机顶客舱门, 38. 机顶安全门, 39.客舱横骨架, 40.副翼, 41. 机身骨架, 42.六角形轴, 43.孔, 44.液压作用筒, 45.锥齿轮, 46.螺栓, 47. 活套锥齿轮, 48.轴, 49.活动齿轮箱, 50.活塞, 51.防水轴套, 52.航空港, 53.屋顶支柱, 54.码头, 55.挡雨棚, 56.水面, 57.安装底座, 58.垂直升降螺旋桨装置, 59.吊物孔, 60. 八字尾翼, 61.货舱开闭缝, 62.联轴器, 63. U形槽, 64.托板, 65.卡槽, 66.条形气垫 。 具体实施方式
在图 1所示客机(相当空客 A-320系列)实施例中,机身(7)的平面长宽比以 2.0~4.5 : 1为宜, 驾驶舱(1) 突出机身 (7)使驾驶员视线好, 机身 (7)前部布置了机房(26)、 电子仪表舱 (2)和前起落架舱(3)。 机身 (7) 中部为客舱 (6), 其内设过道后就安排 座椅(22), 客舱 (6)后面安排卫生间 (11)和配餐室 (12)。 在客舱 (6) 的全飞机重 心的偏后处的二侧安排主起落架舱(10), 其内安放主起落架(9), 客舱 (6)二侧开客 舱门 (5)。 机身 (7)后部则布置货舱(21)和可以绕转轴(18)转动的机身尾(16), 货舱(21) 内最后面的二端分别安装一台垂直升降螺旋桨装置(58), 这个装置主要用于 本发明飞机当水上飞机停放在水面上时, 用来操纵飞机的靠岸、 离岸和转向(详见图 27 至图 34)。 因为机身 (7)纵剖面是机翼剖面形状, 机身 (7) 又比较宽, 且面积比机翼 面积还大, 因此本发明飞机在发动机(30)的推动下向前飞行时, 机身 (7)就会产生比 机翼还大的升力。 而现有飞机机身都是圆筒型不能产生升力, 这样综合分析, 在相同座 位数和相同航程条件下,本发明飞机可以比现有民航飞机提高飞行效率约 30~40%, 即可 以节约燃油 30~40%,也减少了对大气层的污染。
在图 2中, 可以看出本发明飞机机身(7)纵剖面是机翼剖面形状, 图中的前起落架
(4)和主起落架(9) 的收放方式和现有飞机不同, 现有飞机是采用旋转方式收放起落 架, 而本发明因为机身 (7)空间较高大, 可以采用垂直伸缩的起落架, 加上本发明机身
(7)扁平, 客舱 (6) 下方无货舱, 而且喷气式发动机(30) 不是吊挂在机翼下方, 而 是安装在机身 (7)后部的顶面上, 所以机身 (7)可以贴地停放。 为了贴地停放, 起落 架舱的舱门不能采用现有飞机那种竖向翻转方式,而是采用前后滑动舱门( 33 )。货舱 (21 ) 内靠机身尾( 16 )的二端各安装一台垂直升降螺旋桨装置( 58 )。 图中所有起落架舱的前 后滑动舱门 (33)都打开, 起落架都压缩至机身贴地停放的高度, 客舱(6) 已经为乘客 上飞机做好了准备。
在图 3中, 可以看出本发明飞机机身(7)在机身纵向中心线处的纵剖面也是机翼剖 面形状,机身( 7 )最前面是驾驶舱 ( 1 ), 其内设有仪器仪表盘 ( 27 )和导航雷达舱 ( 28 )。 紧靠驾驶舱 ( 1)是机房(26), 其二侧是电子仪表舱(2)。 图中楼梯(25)是当本发明 做水上飞机停靠航空港( 52 )时供乘客进出客舱 ( 6 )时所用, 因为当水上飞机使用时客 舱(6)二侧的 客舱门 (5)外有约 0.4~1.0米深的水, 客舱门 (5)是不能打开的; 因 为客舱 (6)是按万米高空要承受舱内外 0.5~0.6个大气压的结构强度和刚度来设计和制 造的,所以客舱门( 5 )和客舱窗( 36 )都不会渗漏水。在座椅( 22 )上方设有行李舱 ( 29 )。 客舱 (6)的最后面安排了配餐室( 12)和卫生间 ( 11 ), 其位置和客舱 (6) 内的环形走 道, 既有利空姐对乘客的服务, 也方便乘客的使用。 机身(7)前面的圆弧外墙是机翼型 的前部要求所致, 而配餐室( 12)及卫生间( 11 )的后圆弧墙是因为要承受 0.5~0.6个大 气压的外胀力的特殊要求而这样做的。 因为本发明飞机要在机场贴地停放, 以便乘客能 不要登机梯, 像上下公共汽车一样方便快捷上下飞机; 另外本发明飞机当水上飞机用时 还要停放在水面上, 因此发动机(30) 不能像现有飞机那样吊挂在机翼下方, 而是安装 在机身 (7)后部的上方。 机身尾( 16)可以在货舱(21 )的后面绕转轴( 18)旋转, 当 本发明飞机在机场起飞和降落时, 它可以上翻起平尾的作用, 同时减少机身尾(16)擦 地的危险, 有利增加起飞向前冲的迎角; 当本发明飞机在水面上起飞和降落时, 它也可 以上翻, 在水流作用下有利机身(7)后部向下, 而其前部却同时向上形成起飞时向前冲 出水面的迎角。 图中乘客在陆陆续续走进客舱(6)。
在图 4中, 本发明飞机贴地停放, 客舱 (6) 的底面距地约 0.2米, 客舱 (6) 的地 板高于地面也就约 0.32~0.36 米, 因此乘客可以不要登机梯, 就像上下公共汽车一样方 便快捷地上下飞机。 扁平客舱(6)的结构骨架是由立柱(23)分为左右对称的二跨完全 相同的客舱单元, 其内座椅(22)、 行李舱(29)和走道的安排完全一样。 因为客舱(6) 要承受 0.5~0.6 个大气压的外胀力, 除客舱横骨架(39) 的二侧做成圆弧墙外, 沿扁平 客舱 (6)的纵向中心线还设置一排立柱(23)来减少客舱横骨架(39)的结构跨度。 另 外, 为了进一步减少结构跨度, 改善结构受力, 减少结构弯矩达到减轻机身 (7)结构重 量, 利用座椅(22) 下方和行李舱(29) 内的空间高度, 在立柱(23) 的二侧和客舱横 骨架(39)二侧圆弧墙的上下二端增设斜撑杆(24)。 参见图 1, 若在设计时使图 4所示 客舱 (6)的客舱横骨架(39)沿纵向排列的间距等于座椅(22)的纵向排列间距, 且座 椅(22)就安排在客舱横骨架 (39) 中心线的二边, 这样安装座椅(22) 并不影响乘客 乘坐的舒适性, 人们在客舱 (6) 内是看不见隐藏在座椅(22)下方和行李舱 (29) 内的 斜撑杆(24), 因此客舱内的景观仍然像现有民航飞机一样美观; 而客舱(6)二侧的边 座却没有现有飞机因向内倾斜的圆弧墙而感到的碰头感; 另外现有飞机因向内倾斜的圆 弧墙而使行李舱 (29) 内的空间小而只能放小行李箱, 本飞机行李舱( 29 ) 宽大, 方便 乘客放足够大的行李箱。
在图 5中, 是本发明飞机的外形俯视图, 机身(7)的上表面前部设有二个机顶客舱 门 (37), 供本发明飞机平时做水上飞机停靠航空港(52) 时供乘客进出客舱(6)用, 而靠发动机( 30 )还有二个机顶安全门( 38 ), 它们是本发明飞机做水上飞机时做乘客紧 急逃生用。
在图 6中,是本发明飞机在机场停放和准备起飞时的外形侧视图,此时前起落架(4) 和主起落架(9)都伸长使机身 (7) 的离地达到技术高度。 机翼(8)安装在机身 (7) 的中部上方的机翼安装中心体(34)上。 图中还表示了客舱门 (5)、 客舱窗 (36)和货 舱门 (13) 的位置, 是乘客在机场进出本飞机客舱 (6)和货舱(21) 的交通门。
在图 7中, 是本发明飞机的外形前视图。 由于机身 (7)较宽, 前起落架(4)和主 起落架(9) 不必安装在机翼(8) 的根部。
在图 8、 图 9、 和图 10中, 分别表示了本发明飞机二跨、 三跨和四跨客舱 (6)在主 起落架(9)位置处的横剖视情况。 由于机身 (7)扁平较宽和较高, 使主起落架舱( 10) 直接安放在客舱( 6 )内就可以满足主起落架( 9 )与前起落架( 4 )稳定支撑飞机的功能。 主起落架(9)安装在主起落架舱(10) 内, 而且其顶端与机翼安装中心体(34)相连, 机身 (7) 内也与机翼安装中心体(34) 紧紧相连, 因此机翼安装中心体(34)起了加强 机身 (7)整体结构强度和刚度的双重作用。 机翼安装中心体(34)二侧安装机翼(8)。 由于客舱 (6)空间较高, 使主起落架舱(10)完全不会突出机身 (7), 因此不会破坏机 身 (7)作为升力体的的标准形体, 也即不会减少机身 (7)在飞行中产生的升力。 图中 主起落架(9)处于垂直伸长的最大位置, 也就是本发明飞机处于机场停放或准备起飞时 的状态。 从图中可以看出, 飞机的全部重量是通过主起落架(9)直接传至地面, 传力路 径筒捷, 有利在满足机身 (7) 的结构强度和刚度情况下减少飞机结构重量的要求。
在图 11中, 以三跨客舱(6)为例来说明本发明飞机(二跨、 四跨与三跨大同小异) 客舱横骨架( 39 )的结构特征, 三跨相当于把三个现有空客 A320飞机的机身横剖面(单 通道、 二侧各安装 3个座位, 这是最经济实用的布局)平放并联接在一起, 然后把其客 舱下的货舱去掉。 现有民航飞机巡航飞行在一万多米的高空时, 空气稀薄, 大气压只有 0.2-0.3个大气压 (即 0.2~0.3 atm),若客舱内也是这种气压, 人们就会呼吸困难而危及 生命。 为了满足人们的舒适要求, 客舱(6) 内至少要达到 0.8 atm,这就需要用机械设备 向客舱 (6) 内充气。 这样客舱 (6) 的结构就必须要承受内外 0.5~0.6 个大气压差的外 胀力, 即客舱 (6)外壳要承受 5~6吨 /平方米的压力, 这就是为什么现有飞机的机身横 断面要做成圆形的主要原因。 但也就是因为现有飞机的机身横断面做成圆形又带来现有 飞机不可避免的上述很多缺点, 因此现有民用飞机要在性能上有较大的提高, 就必须对 其结构布局进行较大的突破和改进。
本发明飞机扁平的客舱 (6)外壳结构能否承受 5~6吨 /平方米的向外压力是本发明 飞机成败的关键。 为此, 首先客舱横骨架(39)二侧面不能做成平面, 而要做成外凸的 圆弧面,与现有飞机的客舱相似, 因为客舱(6)二侧的平直段尺寸都一样, 因此客舱(6) 二侧圆弧墙面开客舱门 ( 5 )、 客舱窗( 36 )的做法可以和现有飞机完全一样。 然后在客 舱横骨架(39) 内加设立柱(23), 减少扁平客舱 (6) 的横向跨度, 光加设立柱(23) 还不够, 立柱(23)上下二侧都要加设斜撑杆(24)。 斜撑杆(24)长度投影约是客舱横 骨架(39) 中每一跨的跨度的 1/3 (约 1.2~1.3米), 而斜撑杆(24) 高度在立柱(23) 下方约为座椅(22) 下的净空高 (约 0.3~0.35 米), 立柱(23)上方的斜撑杆( 24 ) 高 度不超过行李舱(29) 内部的净高。 这样客舱(6)的每一跨的结构可以看成是八角形结 构, 这种八角形结构的受力情况比矩形结构好多了, 虽然还是比圆形结构差一些, 但是 近似于圆形结构了,加之客舱 ( 6 )上方的机翼安装中心体( 34 )把三跨紧紧联结在一起, 这就大大加强了客舱横骨架(39)整体的结构强度和刚度。 机身(7)纵剖面形状是机翼 剖面形状, 其前面本来就是圆弧形, 只要再把与货舱(21 )共有的客舱(6)的后面墙也 做成圆弧面墙, 那么由这样的客舱横骨架(39)和机身骨架(41)纵向的构件组合而成 的客舱 (6)就能够承受 5~6吨 /平方米的向外的压力。
在图 12和图 13所示本发明客机(四跨机舱、 与空客 A-380同等级) 实施例中, 表 示了机身(7)的平面布置和外形侧立面。 图中客舱(6)按四跨布置, 800多个座位(22) 一层即可全部安排完。 四跨客舱单元四条纵向通道与几条直通客舱门(5)的横向通道形 成便捷循环安全的交通线路。 由于飞机重量特大,设置四个主起落架(9); 由于机身(7) 扁平较宽, 四个主起落架(9), 可以一字排开, 这样本发明飞机在起飞和降落时, 这四 个主起落架(9)可以同时不受力或同时受力, 受力均匀; 四个主起落架(9)型号完全 一样 (空客 A-380飞机的主起落架, 一种安装在机身下, 另一种安装在翼根下, 高度不 一样, 所以要二种型号的主起落架)。 由于客舱(6)只有一层, 货舱(21 )又和客舱(6) 同一层, 起落架压缩后又能贴地停放, 这对总装配和各系统的调试都带来很多的方便, 有利缩短制造周期和减少各种制造成本。
图 14至图 17是本发明飞机从机场贴地停放到起飞的过程图。
在图 14中, 主起落架(9)压缩至使机身底板距地面只有 0.2米左右, 机身 (7)贴 地停放, 不需要传统登机梯, 乘客能像上下公共汽车一样上下本飞机, 图中乘客正在步 行进入飞机。
在图 15中, 乘客全部到齐, 航班可以起航, 前起落架(4)和主起落架(9) 同时垂 直伸长, 机身 (7)升起到技术高度, 使本发明飞机进入准备起飞的状态。
在图 16中, 喷气发动机(30) 已经发动喷气, 而且在平尾(32)的作用下, 前起落 架(4) 离地, 本发明飞机在机场跑道上滑跑, 处于正在起飞的状态。
在图 17中, 喷气发动机(30)持续喷气, 而且在平尾(32)的作用下迎角进一步加 大, 前起落架(4)和主起落架(9)都离地, 本发明飞机在机场跑道上处于腾飞的状态。
经过几分钟, 前起落架(4)缩回到前起落架舱(3) 内, 主起落架(9)缩回到前起 落架舱( 10 ) 内, 然后前后滑动舱门 ( 33 )开始同时滑动关闭前起落架舱( 3 )和主起落 架舱(10), 本发明飞机就进入巡航飞行状态。
图 18至图 21是垂直升降螺旋桨装置 (58) 的结构和动作原理图。 当本发明飞机用 来做水上飞机运行而停放在水面时, 需要用垂直升降螺旋桨装置 (58)来控制本发明飞 机的停靠航空港、 转向和离岸。
在图 18中, 螺旋桨(15) 回缩至螺旋桨舱(19) 内, 此时前后滑动舱门 (33) 已经 关闭螺旋桨舱(19), 就像关闭前起落架舱 (3)和主起落架舱 ( 10)一样, 有利减少飞 机飞行时的阻力。货舱( 21 )内安装在安装底座( 57 )的燃油发动机( 14 )用联轴器( 62 ) 和轴(48) 带动锥齿轮(45)及二个活套锥齿轮(47)转动; 这二个活套锥齿轮(47) 的中心有六角孔与六角形轴(42)活动相套; 安装在固定齿轮箱 (20) 内较小的液压作 用筒(44)通过活塞(50)去推拉换向套( 17), 使这二个活套锥齿轮(47)可以在六角 形轴(42) 同时上下移动, 但只有一个活 齿轮(47) (图中是下面的活 齿轮)带 动六角形轴(42)和安装在活动齿轮箱 (49) 内的二个锥齿轮(45)转动; 锥齿轮(45) 再通过轴(48) 带动螺旋桨(15)转动。 反之, 安装在固定齿轮箱 (20) 中较大的液压 作用筒(44)则通过活塞(50)与活动齿轮箱 (49)外壳相连, 并能使活动齿轮箱 (49) 相对用螺栓(46) 紧固在机身骨架(41) 的固定齿轮箱 (20) 而上下移动。
图 19是活动齿轮箱 (49) 的 E-E剖视图, 反映锥齿轮(45)通过轴(48) 带动螺 旋桨(15)转动。
图 20是固定齿轮箱 ( 20 )的 F-F剖视图, 燃油发动机( 14 )的轴( 48 )带动锥齿轮 ( 45 )及活^ ^齿轮( 47 )转动,活^^齿轮( 47 )中心有六角孔与六角形轴( 42 )相套。 活塞(50)在液压作用筒 (44) 内。
在图 21中, 前后滑动舱门 (33)向前滑动使螺旋桨舱( 19)的下口打开, 图中较大 的液压作用筒(44)通过活塞(50)的向下伸长, 将活动齿轮箱(49)连同六角形轴(42) 及螺旋桨(15)伸出螺旋桨舱(19)外的水中, 此时若燃油发动机(14) 启动, 则螺旋 桨( 15)就转动而推动水体流动, 从而对停放在水面上的本发明飞机产生推动作用。 当 较小的液压作用筒 (44)通过活塞(50) 的向下伸长推换向套(17) 向下运动, 使上面 的那个活套锥齿轮(47) 与燃油发动机(14) 的轴(48) 带动的锥齿轮(45)接触, 则 螺旋桨(15)就反向转动而推动水体反向流动, 从而对停放在水面上的本发明飞机产生 反方向的推动作用。 当螺旋桨( 15)在水下转动时, 驾驶员按程序要求操纵安装在货舱 (21)后面两角处的二台垂直升降螺旋桨装置 (58), 只要控制这二台固定齿轮箱 (20) 内较小的液压作用筒 ( 44 ) 内的活塞( 50 )有序上下运动, 就可以控制本发明飞机在航 空港水面上的前进、 后退和左右转向。
图 22至图 26是本发明飞机从水面停放到水面巡航飞行时的过程图, 此过程中前起 落架舱(3)和主起落架舱(10) 的前后滑动舱门 (33)都处于关闭状态。
在图 22中, 航空港内的乘客有序进入客舱 ( 6 )。
在图 23中, 乘客全部进入客舱(6)后关闭机顶客舱门 (37), 驾驶员按程序要求操 纵安装在货舱(21) 内二台垂直升降螺旋桨装置(58), 使本发明飞机离港和转向, 然后 静躺在水面上准备起飞。
在图 24中, 喷气发动机(30)开始喷气, 驾驶员操纵机身尾( 16)向上翻, 本发明 飞机在向前运动时, 机身 (7)前部上仰, 本发明飞机将冲出水面。
在图 25中, 本发明飞机已经冲出水面, 并靠喷气发动机(30)的推力和地效作用向 前运动。
在图 26中, 本发明飞机在水面 4~12米上空依靠喷气发动机(30) 的推力和水面的 地效作用而巡航飞行; 因为有地效作用, 这比本发明飞机在万米高空飞行要节约 5~10% 的航空燃油; 另外因为水上飞机总是在水面 4~12米上空飞行, 乘客心理上感觉比万米 高空飞行更安全; 但前提是要天气好, 能见度达到几公里以上, 而且海面行驶的船只不 多, 因此特别适用于跨洋 (太平洋、 大西洋等) 飞行的航班。 当在海面飞行中途突然遭 遇天气变坏, 本发明飞机可以加大喷气发动机(30) 的推力, 平尾(32)上翻, 使飞机 很快爬升到万米以上高空进行与现有民航飞机一样的巡航飞行。
图 27至图 34是本发明飞机(二跨客舱)从停放航空港到从航空港起飞的过程图。 在图 27中, 是本发明飞机停靠在航空港(52)的码头(54)上, 航空港内的乘客陆 续通过机顶客舱门 ( 37 )进入客舱 ( 6 ); 因为机顶客舱门 ( 37 )是朝天空开的, 为了雨 天雨水不进入客舱 (6), 要求航空港(52)的挡雨棚(55)悬挑跨度大, 所以码头(54) 上要设支撑挡雨棚 (55) 的屋顶支柱(53)。
图 28是本发明飞机在二台垂直升降螺旋桨装置( 58 )的推动下徐徐开进航空港时的 俯视图。
图 29是本发明飞机在二台垂直升降螺旋桨装置 (58) 关闭后, 停靠在航空港(52) 的码头 (54)上的俯视图。
图 30是本发明飞机开启二台垂直升降螺旋桨装置(58)离开在航空港一段距离时的 俯视图。
图 31和图 32是本发明飞机离开航空港一段距离, 二台垂直升降螺旋桨装置 (58) 中, 右边一台往前推, 左边一台往后拉, 本发明飞机在水面上转向时的俯视图。
图 33是本发明飞机在水面上已经转动到背向航空港( 52 )且准备起飞时的俯视图。 图 34是喷气发动机(30) 已经启动和喷气, 本发明飞机在喷气发动机(30)的推动 下从水面上向前起飞时的俯视图。
图 35至图 37是本发明飞机(水陆两用型)作为水陆两用货运机的实施例, 这三个 图是飞机停放在机场时的使用情景。
在图 35中,大部分结构布置与水陆两用客运机相同,因为是货运机不装人,货舱(21 ) 内不需要充气, 所以货舱(21) 的机身骨架(41) 不要承受向外的压力, 所以机身骨架 (41) 的货载较小, 货舱(21) 内不需要加设立柱(23)。 但是驾驶舱 ( 1) 内为了驾驶 员的呼吸, 驾驶舱(1)的结构还是要考虑承受向外的压力。 在机场使用时, 打开二侧的 货舱门 (13) 即可装卸货物;
在图 36中, 将主起落架(9)和前起落架(4)压缩高度等于货运汽车的车厢板的高 度时, 就可以从货舱门 (13)进出货。 货舱(21)顶部开设的吊物孔(59)是本发明飞 机作为水上飞机时才使用的, 使用时需要打开前后滑动舱门 ( 33 )。
图 37是的起落架升起, 在机场上准备起飞的状态。
当本发明货运飞机在水面上装运货物时, 这上面三个图应有下面一些变化: 在图 35中, 主起落架舱 ( 10)和前起落架舱 (3)都被前后滑动舱门 (33) 关闭; 因为货舱(21) 外面有一定深度的水, 所以此时货舱 (21)二侧的货舱门 (13) 不能打 开; 本发明飞机在航空港(52)水面上使用起重机装卸货物时, 只要打开设在货舱(21) 顶面的吊物孔(59)装卸货物即可。
在图 36中, 本发明飞机在航空港(52)水面上使用起重机装卸货物时, 只要打开设 在货舱(21)顶面的吊物孔(59)装卸货物即可。 人员则从机身 (7)上门开设的机顶客 舱门 (37)进出。
图 38至突 41是本发明飞机仅作为陆用大型货运机的实施例。
在图 38中, 因为载货重, 需要安装 4个主起落架(9)。 为了使货舱(21) 内部更宽 敞,有利装卸货物,货舱( 21 )二侧各安装二个主起落架( 9 ),且纵向排列紧贴货舱( 21 ) 的二侧面。 为了方便运输大型货物, 货舱(21) 的前、 后二头都可以上翻, 因此将货舱 ( 21 )分成三段, 货舱( 21 )地板上设有二条货舱开闭缝( 61 )。
在图 39中, 为了将集装箱放进货舱(21)内, 先用液压作用筒(44)顶起货舱(21) 的后部, 然后调节前起落架(4)和主起落架(9) 的高度, 使货舱(21) 的地板与集装 箱装载车的车箱板一样高, 这样, 集装箱就可以很方便进入货舱(21) 内。
在图 40中, 为了使各种能够自己行走的装备车等设备很方便进出货舱( 21 )内, 本 发明飞机可以贴地停放; 然后用液压作用筒( 44 )顶货舱 ( 21 )的前部和后部绕转轴( 18 ) 翻起, 装备车进出后再使液压作用筒 (44)缩回, 货舱开闭缝(61) 闭合, 货舱(21) 恢复原状。
在图 41中, 货物已经安放好, 液压作用筒(44)缩回; 货舱开闭缝(61)闭合; 货 舱( 21 )恢复原状; 前起落架 ( 4 )和主起落架( 9 ) 的同时升起, 本发明仅作为陆用的 大型货运机进入准备起飞的状态。
图 42〜图 44是本发明飞机(与空客 A380同等级、 八字尾翼、 水陆两用型)作为水 陆两用和客货两用运输机的另一种实施例, 其特征是: 客舱和货舱的面积比例可以根据 客户的要求在制造订货时灵活改变, 这样使航空公司经营更灵活, 客运萧条时, 可以多 装货; 货运少时, 以客运为主; 总之对减少飞机空载率有利。
在图 42中, 因为机身 (7)较宽, 可以安装像现代战斗机一样的八字形尾翼。
在图 43中, 机身 (7) 的平面布置, 客舱和货舱的面积比例约各占一半, 因为货舱 (21) 面积大了, 所以开了 4个货舱门 (13), 有利提高装卸货物的速度。 客舱(6)和 货舱(21)之间的圆弧墙也往前移至主起落架舱(10)处。 货舱(21) 内无客舱的外胀 力, 可以只设少量立柱(23)来减少结构重量, 也可以不设立柱(23), 方便装卸货物, 由用户确定。
在图 44中, 客舱 (6)和货舱(21 )之间的圆弧墙位于主起落架舱( 10)处, 客舱 (6)和货舱(21) 的比例约各占一半, 货舱(21)开了 4个货舱门 (13), 其他则和图 12、 图 13所示本发明飞机一样。
在图 45中, 是本发明飞机(与空客 A380同等级、 仅陆用型)仅作为陆用、 且与现 有的民航飞机完全一样使用的大型客运机的实施例, 喷气发动机( 30 )也像现有的民航 飞机一样吊挂在机翼(8) 下方; 因为喷气发动机(30) 下缘比机身 (7) 的底板还低, 所以飞机不能贴地停放,只能像现有民航飞机一样高起落架停放,上下飞机也要登机梯。
图 46、 图 47、 图 48是本发明大型飞机(与空客 A380同等级、 水陆两用型) 与现 有最先进的空客 A-380飞机的外形尺寸对比图, 从图中可以看出, 本发明大型飞机的机 长、 翼展和机高均可以比空客 A-380飞机减少约 25~30%
图 49、 图 50是本发明大型飞机(与空客 A380同等级、 水陆两用型)与现有最先进 的空客 A-380飞机的机身前视迎风面积放大对比图。 从图中可以看出, 本发明大型飞机 的机身前视迎风面积比空客 A-380飞机减少约 10~13%, 因此本发明大型飞机的飞行阻 力比空客 A-380飞机也要少约 10~13%
图 51是本发明飞机(三跨客舱) 带 U形槽的客舱横骨架(39) 的立面放大图。 当 飞机在高空飞行途中喷气发动机(30)都发生事故停车失去动力, 或者起落架放不下来 时, 而附近又找不到宽阔的水面实施水面紧急降落, 飞机紧急迫降地面就会机毁人亡。 但若在客舱横骨架(39)的结构交点处增设 U形槽(63), 其内安放条形气垫(66), 再 遇到上述紧急情况, 可以不放下起落架, 打开飞机内压缩空气储气罐的阀门向条形气垫 (66)充气, 条形气垫(66)立即膨胀, 自动冲开卡在 U形槽(63)卡槽(65) 内的托 板(64), 飞机的外板(67) 下方很快就形成几根条形气垫(66), 这些条形气垫(66) 长度可以从前起落架舱 (3)到机身尾(16)。 这样本发明飞机可以选择平坦的田野紧急 迫降, 因为机身扁平, 又有了这些条形气垫(66), 就可以大大緩冲地面对飞机的反冲击 力, 从而把事故对乘客的灾难减至最小。
图 52是 U形槽的构造放大图, 平时放在 U形槽( 63 )的卡槽( 65 ) 内的托板( 64 ) 托住条形气垫(66) 不掉下来。 虽然飞机增加了这些条形气垫(66) 的重量, 由于本发 明飞机没有现有飞机的充气滑梯, 估计这些条形气垫(66) 的重量不会超过一般充气滑 梯的重量, 但是对乘客多了一种陆地迫降的安全保障, 因此是值得的。
图 53是本发明飞机(三跨客舱 )事故紧急陆降时的横剖视图, 此时打开这些条形气 垫(66) 可以緩冲地面对飞机的冲击力, 减轻事故对乘客的伤害。 图 54是本发明飞机(三跨客抢)事故紧急陆降的侧视图, 因飞机碰触地面的时候有 些条形气垫(66)会被地面的杂物刺破而緩冲失效, 为了使尽可能多的条形气垫(66) 不会被刺破, 应将这些条形气垫(66) 的长度减少而增加其数量。 若在靠货抢(21 )后 边再安放传统的降落伞, 并在事故紧急陆降时与条形气垫(66) 同时打开, 用降落伞进 一步减少飞机的速度; 在条形气垫(60)和降落伞的共同作用下, 更进一步减緩地面对 机身的冲击力, 从而把事故对乘客的灾难减至最小。

Claims

权 利 要 求 书
1、 一种不要登机梯的水陆两用大飞机, 它由机身、 驾驶舱、 机翼、 尾翼、 发动机、 起落架和垂直升降螺旋桨装置有序组合而成, 其特征是: 驾驶舱从扁平长方形机身前部 突出, 机身各纵剖面是机翼剖面形状, 机翼从机身的中顶部的机翼安装中心体向二侧悬 挑, 喷气发动机安装在长方形机身后部上方并靠尾翼, 起落架全部安装在客舱内, 垂直 升降螺旋桨装置安装在靠机身后部的二角处。
2、 根据权利要求 1 所述的一种不要登机梯的水陆两用大飞机, 其特征是: 机身平 面呈纵向长的扁平长方形, 驾驶舱从机身中前部突出, 且机身各纵剖面都是机翼剖面形 状, 机身下部满足乘客舒适高度的空间做客舱, 机身客舱以上的中顶部做机翼安装中心 体,机身后部越来越低的空间做货舱和机身尾,机身尾可以绕货舱后边的转轴上下翻转, 机身二侧为圆弧面, 客舱内各扁平的客舱横骨架内由数根立柱分成几跨客舱单元, 各立 柱上下二端的二侧在行李舱和座椅下方的空间内分别对立柱加设斜撑杆, 同时在机身二 侧圆弧墙的相同部位空间也对客舱横骨架的圆弧段骨架加设斜撑杆, 各跨客舱单元的斜 撑杆水平投影长为 1/3客舱单元跨度, 客舱横骨架沿客舱纵向的排列间距与客舱内的座 位纵向排列间距对齐, 并使客舱内各排座位既对应客舱横骨架, 又横跨所对应的斜撑杆 而前后居中安装, 机身上表面前方。
3、 根据权利要求 1 所述的一种不要登机梯的水陆两用大飞机, 其特征是: 二个前 起落架舱和若干个主起落架舱都安装在机身内, 前起落架安装在前起落架舱内, 主起落 架安装在主起落架舱内, 前起落架和主起落架都采用垂直伸缩起落架, 前起落架舱和主 起落架舱都安装前后滑动舱门。
4、 根据权利要求 1 所述的一种不要登机梯的水陆两用大飞机, 其特征是: 一种垂 直升降螺旋桨装置是由安装在货舱内的燃油发动机与安装在螺旋桨舱的固定齿轮箱和 活动齿轮箱及螺旋桨有序连接而成, 螺旋桨舱也安装有前后滑动舱门。
5、 根据权利要求 4所述的一种垂直升降螺旋桨装置, 其特征是: 固定齿轮箱中一 大一小的液压作用筒分别固定在固定齿轮箱的外壳顶面, 大的液压作用筒的活塞往下连 接活动齿轮箱的顶面, 小的液压作用筒的活塞连接换向套的顶面, 换向套的双槽在上下 各套一个活套锥齿轮, 不论何时只有其中一个活套锥齿轮能与锥齿轮相合, 该锥齿轮的 轴穿过固定齿轮箱和机身骨架并通过联轴节与燃油发动机相连, 二个活套锥齿轮和换向 套的四层板又被来自活动齿轮箱的六角形轴从中穿过, 该六角形轴还穿过固定齿轮箱的 上下外壳直穿机身顶面的孔到机身上面。
6、 根据权利要求 3 所述的一种垂直升降螺旋桨装置, 其特征是: 活动齿轮箱内二 个锥齿轮垂直相连, 其中竖向安装的锥齿轮的轴伸出活动齿轮箱与螺旋桨连接, 水平的 锥齿轮上方的六角形轴则穿过固定齿轮箱机壳穿过其内的二个活套锥齿轮中心的六角 形孔, 活动齿轮箱顶面又与大的液压作用筒的活塞连接。
7、 根据权利要求 1 所述的一种不要登机梯的水陆两用大飞机, 其特征是: 客舱横 骨架下边框在与立柱和二侧圆弧段骨架的交点处设带卡槽的 U形槽, 托板安装在卡槽 内, 条形气藝放在 U形槽内, 由托板托住。
PCT/CN2010/070806 2009-03-04 2010-03-01 不要登机梯的水陆两用大飞机 WO2010099730A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP10748320.8A EP2404826B1 (en) 2009-03-04 2010-03-01 Amphibious large aircraft without airstairs
US13/146,966 US8453963B2 (en) 2009-03-04 2010-03-01 Amphibious large aircraft without airstairs

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910060955.5 2009-03-04
CN2009100609555A CN101693468B (zh) 2009-03-04 2009-03-04 不要登机梯的水陆两用大飞机

Publications (1)

Publication Number Publication Date
WO2010099730A1 true WO2010099730A1 (zh) 2010-09-10

Family

ID=42092484

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/070806 WO2010099730A1 (zh) 2009-03-04 2010-03-01 不要登机梯的水陆两用大飞机

Country Status (4)

Country Link
US (1) US8453963B2 (zh)
EP (1) EP2404826B1 (zh)
CN (1) CN101693468B (zh)
WO (1) WO2010099730A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109383796A (zh) * 2018-12-13 2019-02-26 南京航空航天大学 一种地效飞行器
CN111547238A (zh) * 2020-05-22 2020-08-18 吉林大学 可划水推进的跨介质飞行器

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8827200B2 (en) * 2011-09-16 2014-09-09 Bogdan Radu Flying vehicle
FR2998868B1 (fr) * 2012-11-30 2016-02-05 Airbus Operations Sas Dispositif de fixation intermediaire entre un fuselage d'aeronef et un train d'atterrissage d'aeronef
EP3000190B1 (en) 2013-05-23 2018-10-17 BAE Systems PLC Data retrieval system in an aircraft with data stored during a flight and wirelessly transmitted to a ground system after landing using a transmission element in an external panel of an avionic bay.
TR201807293T4 (tr) 2013-05-23 2018-06-21 Bae Systems Plc Uçuş sırasında saklanan ve açılabilen veya kapatılabilen elektromanyetik olarak sızdırmazlığı sağlanan bir cihaz kullanılarak inişten sonra bir kara sistemine kablosuz olarak iletilen veri ile bir uçakta veri geri kazanım sistemi.
EP2806578A1 (en) * 2013-05-23 2014-11-26 BAE Systems PLC Data retrieval system in a military aircraft with data stored during a flight and wirelessly transmitted to a ground system after landing using a electromagnetically sealed device which can be opened or closed.
US9139283B1 (en) 2013-08-15 2015-09-22 The Boeing Company Cargo aircraft for transporting intermodal containers in transverse orientation
CN103693197A (zh) * 2013-11-29 2014-04-02 南京航空航天大学 一种潜射无人机
US10081424B2 (en) 2013-12-31 2018-09-25 Bogdan Radu Flying car or drone
CN103786881A (zh) * 2014-02-28 2014-05-14 武汉蓝天翔航空科技有限公司 倾转旋翼直升机
CN103770589B (zh) * 2014-02-28 2018-07-06 武汉蓝天翔航空科技有限公司 飞行汽车
CN103770937B (zh) * 2014-03-03 2016-06-22 武汉蓝天翔航空科技有限公司 垂直和短距起降的飞机
US11027584B1 (en) * 2015-07-22 2021-06-08 Taras Kiceniuk, Jr. Flying car with fore and aft lifting surfaces
CN105667759B (zh) * 2015-12-28 2018-12-04 武汉蓝天翔航空科技有限公司 柔性起飞降落的活动翼大飞机
CN107792096B (zh) * 2016-08-28 2024-05-24 中车青岛四方机车车辆股份有限公司 一种轨道车辆车厢结构及轨道车辆
CN106184750B (zh) * 2016-09-23 2018-08-17 蒋钱 一种可承载多人的垂直起降飞行器
CN108248847A (zh) * 2018-02-09 2018-07-06 北京白米科技有限公司 动力翼身多旋翼无人机
WO2020142337A1 (en) * 2018-12-31 2020-07-09 DZYNE Technologies Incorporated Emergency egress in a blended wing body aircraft

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB506719A (en) * 1937-11-29 1939-05-30 Gen Aircraft Ltd Improvements relating to aircraft undercarriages
US4579300A (en) * 1981-12-14 1986-04-01 Carr Robert J Internal wing aircraft
US5086992A (en) * 1987-02-12 1992-02-11 Gosen Martinus C Aeroplane or model aeroplane
US5893535A (en) * 1997-06-19 1999-04-13 Mcdonnell Douglas Corporation Rib for blended wing-body aircraft
CN1351944A (zh) * 2001-11-30 2002-06-05 武汉大学 一种喷气式飞机
CN2504194Y (zh) * 2001-09-29 2002-08-07 杨林坚 船舶升降式螺旋桨
CN1439573A (zh) * 2002-08-05 2003-09-03 武汉大学 一种喷气式飞机

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3010424A (en) * 1958-12-19 1961-11-28 Curtiss Wright Corp Vehicle propulsion mechanism
US2989269A (en) * 1959-04-06 1961-06-20 Bel John P Le Convertible aircraft
DE1756689A1 (de) 1968-06-27 1970-07-23 Pleuger Friedrich Wilhelm Manoevrierhilfseinrichtung fuer Schiffe
FR2575723B1 (fr) * 1985-01-04 1989-06-02 Chaneac Henri Aile volante
CN1186757A (zh) 1996-04-05 1998-07-08 唐成刚 磁动力航空航天飞行器
DE10043863C1 (de) * 2000-09-04 2001-12-13 Blum Albert Bodeneffektfahrzeug
CN2642674Y (zh) * 2003-10-17 2004-09-22 吴征 纵列双座船身式两栖超轻型飞机
CN1686758A (zh) * 2005-03-03 2005-10-26 刘世英 园形直升飞机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB506719A (en) * 1937-11-29 1939-05-30 Gen Aircraft Ltd Improvements relating to aircraft undercarriages
US4579300A (en) * 1981-12-14 1986-04-01 Carr Robert J Internal wing aircraft
US5086992A (en) * 1987-02-12 1992-02-11 Gosen Martinus C Aeroplane or model aeroplane
US5893535A (en) * 1997-06-19 1999-04-13 Mcdonnell Douglas Corporation Rib for blended wing-body aircraft
CN2504194Y (zh) * 2001-09-29 2002-08-07 杨林坚 船舶升降式螺旋桨
CN1351944A (zh) * 2001-11-30 2002-06-05 武汉大学 一种喷气式飞机
CN1439573A (zh) * 2002-08-05 2003-09-03 武汉大学 一种喷气式飞机

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109383796A (zh) * 2018-12-13 2019-02-26 南京航空航天大学 一种地效飞行器
CN111547238A (zh) * 2020-05-22 2020-08-18 吉林大学 可划水推进的跨介质飞行器
CN111547238B (zh) * 2020-05-22 2022-06-24 吉林大学 可划水推进的跨介质飞行器

Also Published As

Publication number Publication date
CN101693468A (zh) 2010-04-14
EP2404826A4 (en) 2014-04-02
EP2404826A1 (en) 2012-01-11
US20110284683A1 (en) 2011-11-24
US8453963B2 (en) 2013-06-04
EP2404826B1 (en) 2016-05-04
CN101693468B (zh) 2012-06-20

Similar Documents

Publication Publication Date Title
WO2010099730A1 (zh) 不要登机梯的水陆两用大飞机
RU2337855C1 (ru) Летательный аппарат аварийно-спасательный
US8899520B2 (en) Mid-wing airplane
US8500070B2 (en) Personal spacecraft
US9108719B2 (en) Aircraft with AFT split-level multi-deck fusealge
US20190168877A1 (en) Passenger compartment
WO2012135876A2 (de) Neue art von zukünftigen luftschiffen
EP2840023A1 (en) Aircraft with aft split-level multi-deck fusealge
CN114945509A (zh) 包括中央翼和两个可旋转侧翼的电动推进飞行器
CN1137998A (zh) 无翼和垂直起落的翼身喷气式飞机
RU2196707C2 (ru) Двухмоторный многоцелевой самолет наземного и водного базирования с укороченным и вертикальным взлетом и посадкой "ладога-9 ув"
RU2317220C1 (ru) Способ создания системы сил летательного аппарата и летательный аппарат - наземно-воздушная амфибия для его осуществления
WO2013137915A1 (en) Mid-wing airplane
CN1351944A (zh) 一种喷气式飞机
CN110949666A (zh) 一种机身横截面积大小可变的低噪声多用途超声速飞机
RU112154U1 (ru) Многоцелевой самолет
RU2255025C2 (ru) Многоцелевой самолет-амфибия с вертикальным взлетом и посадкой
RU2791582C1 (ru) Пятнадцатиместное трёхсредное транспортное средство
RU2752810C1 (ru) Многоцелевой вертолет и топливная система вертолета
RU2254250C2 (ru) Экраноплан
RU2308399C1 (ru) Самолет
RU2273572C2 (ru) Экраноплан
RU2678180C1 (ru) Гибридный летательный аппарат
RU2179135C1 (ru) Многоцелевой самолет-амфибия
RU2680586C1 (ru) Грузопассажирский самолет местных и региональных линий с расширенными возможностями базирования

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10748320

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13146966

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010748320

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE