WO2010098395A1 - 光通信モジュール及び光通信コネクタ - Google Patents

光通信モジュール及び光通信コネクタ Download PDF

Info

Publication number
WO2010098395A1
WO2010098395A1 PCT/JP2010/052989 JP2010052989W WO2010098395A1 WO 2010098395 A1 WO2010098395 A1 WO 2010098395A1 JP 2010052989 W JP2010052989 W JP 2010052989W WO 2010098395 A1 WO2010098395 A1 WO 2010098395A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
communication module
optical communication
path changing
module according
Prior art date
Application number
PCT/JP2010/052989
Other languages
English (en)
French (fr)
Inventor
裕輝 川合
Original Assignee
矢崎総業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 矢崎総業株式会社 filed Critical 矢崎総業株式会社
Priority to EP10746274.9A priority Critical patent/EP2402804B1/en
Priority to CN201080009416.XA priority patent/CN102334053B/zh
Priority to US13/203,265 priority patent/US8737784B2/en
Publication of WO2010098395A1 publication Critical patent/WO2010098395A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4292Coupling light guides with opto-electronic elements the light guide being disconnectable from the opto-electronic element, e.g. mutually self aligning arrangements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4246Bidirectionally operating package structures

Definitions

  • the present invention relates to an optical communication module and an optical communication connector.
  • the present invention particularly relates to a single-core bidirectional optical communication module for performing bidirectional optical communication using a single optical fiber, and a single-core bidirectional optical communication connector (optical connector) including the single-core bidirectional optical communication module. ) And related.
  • An optical communication connector having a structure in which a light emitting element and a light receiving element are optically connected to two optical fibers is widely known.
  • a single-core bidirectional optical communication connector having a structure in which a light emitting element and a light receiving element are optically connected to one optical fiber is also widely known (see, for example, Patent Document 1 below).
  • the single-core bidirectional optical communication connector disclosed in the following Patent Document 1 has a substantially Y-shaped optical waveguide and an optical wavelength filter provided on one side of the optical waveguide.
  • the optical wavelength filter a filter that transmits the emission wavelength and blocks the reception wavelength is used.
  • the single-core bidirectional optical communication connector disclosed in the following Patent Document 1 includes an optical connector housing having the same structure as the optical connector housing of the two-core optical communication connector used before this connector.
  • the optical fiber connector housing is configured to have a structure in which the insertion / extraction direction of the optical fiber is orthogonal to the direction in which the light emitting element and the light receiving element are arranged (including an optical connector housing whose structure is basically the same as the conventional one). Configured).
  • Patent Documents 2 and 3 listed below disclose techniques regarding a single-core bidirectional optical communication module including an optical filter that transmits a first optical signal and reflects a second optical signal.
  • a single-core bidirectional optical communication module disclosed in the following Patent Document 2 will be described.
  • This module is arranged so that the optical axis of the light emitting element and the optical axis of the light receiving element are orthogonal (orthogonal arrangement).
  • the optical filter is disposed at a position orthogonal to the two optical axes.
  • the optical filter is disposed at the orthogonal position in the predetermined space by a dedicated component.
  • a single-core bidirectional optical communication module disclosed in the following Patent Document 3 has a structure in which the insertion / extraction direction of the optical fiber is parallel to the arrangement direction of the light emitting element and the light receiving element. (It has a structure in which the optical axes of the light emitting element and the light receiving element are orthogonal to the optical axis of the optical fiber).
  • the single-core bidirectional optical communication module disclosed in Patent Document 3 below is configured to include an optical path changing component (optical member) made of resin. The optical filter is fixed to the optical path changing component with an adhesive.
  • the single-core bidirectional optical communication module disclosed in the following Patent Document 3 has a problem that it cannot be assembled to the optical connector housing having the conventional structure. Further, since the optical filter is bonded and fixed to the optical path changing component, there is a problem that the optical filter is damaged due to the difference in thermal expansion coefficient of the material.
  • the present invention has been made in view of the circumstances described above, and does not significantly change the structure of a conventional optical connector housing, and can be reduced in size, and can be downsized.
  • An object is to provide a bidirectional optical communication connector.
  • 1st Example of this invention is an optical communication module, Comprising: It arrange
  • the optical path changing component and the optical filter are optical communication modules that bend the optical path of the second optical signal twice by 90 °.
  • the optical path changing component is made of resin.
  • the first and second optical elements are arranged in one plane of the circuit, and the optical axis of the optical fiber is perpendicular to the plane.
  • the optical fiber can be assembled to an optical connector housing having a structure in which the insertion / extraction direction of the optical fiber is orthogonal to the arrangement direction of the light emitting element and the light receiving element (this). Will be described in detail in the section of Detailed Description of the Invention).
  • the optical path portion of the optical path changing component can be reduced in size by bending the optical path of the second optical signal by 90 ° twice (folding the optical path) by the optical path changing component.
  • the light emitting element and the light receiving element can be mounted close to the same surface of the circuit board by bending the optical path of the second optical signal twice by 90 °. This makes it possible to reduce the size.
  • the optical filter is disposed between the optical filter mounting portion formed by cutting out the side portion of the optical path changing component and the optical filter mounting portion. And an optical filter fixing component that sandwiches and fixes the position of the optical filter.
  • the optical filter since the optical filter is directly mounted on the optical path changing component, the position adjustment process when mounting the optical filter can be simplified. Further, according to the present embodiment, the side portion of the optical path changing component is notched to form the optical filter mounting portion (from forming the optical filter mounting portion without projecting the optical path changing component), the module size Can be reduced in size. Furthermore, according to this embodiment, since the optical filter is sandwiched between the optical filter mounting portion and the optical filter fixing component, the stress due to the difference in thermal expansion coefficient between the optical filter and the optical path changing component at the time of temperature change is released. It becomes possible to prevent breakage and peeling of the optical filter.
  • a sleeve for guiding the ferrule of the optical fiber terminal is formed integrally with the optical path changing component.
  • the position of the ferrule of the optical fiber terminal can be adjusted by the sleeve of the optical path changing component. Therefore, the optical connector housing to which the single-core bidirectional optical communication module is assembled is provided. The structure can be simplified.
  • a space in which the optical element exists in a state where the optical path changing component and the optical transceiver circuit unit are fixed to the optical path changing component A through hole that communicates with the protective resin is formed, and a protective resin is injected into the space through the through hole.
  • a part for closing the through hole is provided.
  • an optical transceiver is obtained.
  • Various components and bonding wires in the circuit portion are covered with the protective resin without being exposed to the space.
  • the through hole can be closed after the protective resin is injected into the space where the optical element is present by the component that closes the through hole. By blocking the through hole, it is possible to avoid contamination by foreign matter.
  • an optical surface protection component 28 (see Example 6) described later corresponds.
  • 5th Example of this invention is an optical communication connector, Comprising: The optical axis of an optical fiber with respect to the optical communication module concerning said 1st thru
  • the structure of the conventional optical connector housing is not greatly changed, and a single-core bidirectional optical communication connector can be made small.
  • the structure of the optical connector housing to which the single-core bidirectional optical communication module is assembled can be made unnecessary to be greatly changed compared to the structure of the conventional optical connector housing. There is an effect. Further, according to the present invention, there is an effect that the module can be reduced in size.
  • the optical filter since the optical filter is sandwiched between the optical filter mounting portion of the optical path changing component and the optical filter fixing component, it depends on the difference in thermal expansion coefficient between the optical filter and the optical path changing component when the temperature changes. The stress can be released, and as a result, the optical filter can be prevented from being broken or peeled off.
  • the third embodiment of the present invention it is possible to simplify the structure of the optical connector housing to which the single-core bidirectional optical communication module is assembled by integrally forming the sleeve on the optical path changing component. There is an effect. Moreover, according to this invention, there exists an effect that an optical coupling state can be made favorable.
  • the protective resin is injected into the space where the optical element is present through the through hole, thereby protecting various parts and bonding wires in the optical transceiver circuit portion without exposing to the space. It is covered with resin, and as a result, there is an effect that it can be protected. According to the present invention, there is an effect that it is possible to prevent deterioration and dropout of parts due to the influence of humidity and vibration during use, peeling of bonding wires, and the like. In addition, according to the present invention, since the protective resin is injected into the space where the optical element is present in a state where the optical path changing component and the optical transceiver circuit unit are fixed, the protective resin can be stored in the space.
  • the surface of the protective resin that covers the optical element can be made flat. Thereby, there is an effect that an optical design can be easily performed in consideration of the protective resin. Further, by blocking the through hole, there is an effect that foreign matter can be prevented from being mixed through the through hole.
  • the fifth embodiment of the present invention it is possible to provide a single-core bidirectional optical communication connector that does not greatly change the structure of a conventional optical connector housing and can be downsized.
  • FIG. 5 is an exploded perspective view of the single-core bidirectional optical communication module when viewed from an angle different from that in FIG. 4. It is a perspective view of an optical path changing component. It is sectional drawing of the optical part which can see the state which mounts the optical filter. It is a module sectional view showing an optical path of transmission ( ⁇ 1) and reception ( ⁇ 2).
  • FIG. 18 is a perspective view showing a state where the assembly of the single-core bidirectional optical communication module is completed from the state of FIG. 17. It is sectional drawing of the state of FIG.
  • the single-core bidirectional optical communication module includes an optical transceiver circuit unit in which a light emitting element and a light receiving element are arranged in parallel, and an optical path changing component has a structure in which the optical axis of the optical fiber is substantially perpendicular to the optical transceiver circuit unit. Formed.
  • the optical path changing component is formed in a structure in which the optical fiber insertion / extraction direction is substantially perpendicular to the optical transceiver circuit section.
  • the single-core bidirectional optical communication connector accommodates the single-core bidirectional optical communication module and the single-core bidirectional optical communication module so that the optical axis of the optical fiber is substantially perpendicular to the optical transceiver circuit unit. And an optical connector housing.
  • FIG. 1 is a diagram showing a single-core bidirectional optical communication module and a single-core bidirectional optical communication connector according to the present invention.
  • 2 is a perspective view of a single-core bidirectional optical communication module
  • FIG. 3 is a perspective view of an optical transceiver circuit section and an optical section
  • FIGS. 4 and 5 are exploded perspective views of the single-core bidirectional optical communication module
  • FIG. 7 is a perspective view of an optical path changing component
  • FIG. 7 is a cross-sectional view of an optical part in which an optical filter is mounted
  • FIGS. 8 to 10 are module cross-sectional views showing an optical path.
  • reference numeral 1 indicates a single-core bidirectional optical communication module of the present invention.
  • Reference numeral 2 denotes a single-core bidirectional optical communication connector according to the present invention.
  • the one-core bidirectional optical communication connector 2 includes an optical connector housing 3 made of synthetic resin having insulation properties and a shield case (not shown).
  • the single-fiber bidirectional optical communication module 1 is mounted on the optical connector housing 3.
  • the optical connector housing 3 has a connector fitting portion 4 for fitting a mating optical communication connector (optical connector) on the front side.
  • the optical connector housing 3 has a mounting portion 5 for mounting the single-core bidirectional optical communication module 1 on the rear side.
  • the optical connector housing 3 has basically the same structure as a conventional two-core optical connector housing.
  • the single-core bidirectional optical communication module 1 is attached to the optical connector housing 3 from the arrow direction. Hereinafter, the single-core bidirectional optical communication module 1 will be described.
  • the single-core bidirectional optical communication module 1 includes an optical transceiver circuit unit 21 and an optical unit 22.
  • the optical transceiver circuit unit 21 includes a circuit unit main body 23 and a plurality of lead frames 24 extending from the circuit unit main body 23.
  • the optical unit 22 includes an optical path changing component 25, an optical filter 26, an optical filter fixing component 27, and an optical surface protection component 28.
  • the circuit unit body 23 includes a circuit board 29 made of a hard and inflexible insulator base material, a light emitting element 30 and a light receiving element 31, and a drive circuit 32 for driving these optical elements.
  • the light emitting element 30 and the light receiving element 31 are surface-mounted on the same surface of the circuit board 29 in a close state.
  • the received light and the transmitted light enter and exit perpendicularly to the circuit board 29.
  • Element 31 is used in this embodiment.
  • the light receiving element 31 is a Si-PIN photodiode (assumed as an example).
  • the plurality of lead frames 24 are inserted into a circuit board (not shown) on which the single-core bidirectional optical communication connector 2 is mounted and soldered to a predetermined circuit.
  • the arrow P is defined as the vertical direction
  • the arrow Q is defined as the front-rear direction
  • the arrow R is defined as the left-right direction (see FIGS. 4 and 5).
  • the optical path changing component 25 is a molded part made of transparent resin [epoxy, cycloolefin, PMMA, PC, etc.], and includes a component main body 33 and a sleeve 34 integrally formed at the front end of the component main body 33. Yes.
  • the optical path changing component 25 includes an optical part on the transmission side (a part for coupling the transmission light from the light emitting element 30 to the optical fiber) and an optical part on the reception side (a part for coupling the reception light from the optical fiber to the light receiving element 31).
  • the sleeve 34 are integrally formed (the sleeve 34 is preferably integrated, but the optical connector housing 3 may have a separate body, that is, the function of the sleeve 34). ).
  • the component main body 33 is formed so that the rear end thereof is fixed to the circuit unit main body 23 of the optical transceiver circuit unit 21. Specifically, although not particularly limited, a convex portion 35a is formed at the rear end.
  • the circuit unit body 23 has a recess 35b. For example, when the rear end and the circuit unit main body 23 are fitted to each other in a state where the adhesive is applied to the contact surfaces, the fixing is completed.
  • An optical filter mounting portion 36 and a prism 37 are formed on the left and right sides of the component body 33.
  • the optical filter mounting portion 36 and the prism 37 are formed so as to cut out the left and right side portions.
  • the component main body 33 is formed into a substantially Z-shaped shape (formed into a substantially Z-shaped shape by the notch).
  • the optical filter mounting portion 36 is formed so that the optical filter 26 can be mounted at an inclination of 45 °.
  • a cut-through portion 38 is formed (see FIGS. 6 and 7).
  • the cut-out portion 38 is formed so as to cut through the slope of the optical filter mounting portion 36 corresponding to the central portion of the optical filter 26.
  • the optical path changing component 25 has lenses 39 and 40 before and after the cut-through portion 38.
  • the lenses 39 and 40 are each formed in a convex lens shape.
  • the lens 39 is disposed so as to protrude into the sleeve 34, and the lens 40 is disposed so as to protrude from the rear end of the component body 33.
  • the lenses 39 and 40 are arranged and formed in accordance with the positions of the optical fiber 41 (see FIG. 8) and the light receiving element 31.
  • the prism 37 is formed as a part that bends the optical signal by 90 °.
  • the optical signal bent by 90 ° by the prism 37 is further reflected by the optical filter 26 and bent by 90 °.
  • Reference numeral 42 in the prism 37 indicates a 45 ° prism surface.
  • the 45 ° prism surface 42 is a reflecting surface having an inclination of 45 °, and is formed so as to be in contact with the outside air (another example will be described in Example 3).
  • a lens 43 projects from the rear end of the component main body 33 so as to match the position of the prism 37.
  • the lens 43 has a convex lens shape and is disposed and formed so as to face the light emitting element 30.
  • the sleeve 34 is formed as a cylindrical part. As shown in FIG. 8, the sleeve 34 is formed so as to guide the ferrule 44 of the end of the optical fiber 41. When the ferrule 44 is guided by the sleeve 34, the end face of the optical fiber 41 is separated from the lens 39 by a predetermined distance.
  • PCS Polymer Clad Silica
  • core diameter ⁇ 200 ⁇ m, clad diameter ⁇ 230 ⁇ m is used as the optical fiber 41 (assumed as an example).
  • the optical filter 26 transmits the first optical signal and reflects the second optical signal.
  • the optical filter 26 transmits the received light and reflects the transmitted light.
  • a dielectric multilayer filter [base material: BK7] is used as the optical filter 26.
  • the optical filter fixing component 27 sandwiches the optical filter 26 between the optical filter mounting portion 36 of the optical path changing component 25 and fixes the position of the optical filter 26. It is formed to be able to.
  • the optical filter fixing component 27 is inserted into a notch portion on the side of the component main body 33, and is fixed by any one of adhesion, welding, and press fitting (the optical filter 26 is not bonded or welded). Shall not be).
  • a concave portion 45 for sandwiching the optical filter 26 and a cut-through portion 46 are formed.
  • the cut-out portion 46 is formed so as to cut through the slope of the recess 45 corresponding to the central portion of the optical filter 26.
  • the optical surface protection component 28 is provided to protect the 45 ° prism surface 42 of the optical path changing component 25 and prevent contamination.
  • the optical surface protection component 28 is inserted into a notch portion on the side portion of the component main body 33, and is fixed by any one of adhesion, welding, and press-fitting.
  • a cut-through portion 47 is formed in the optical surface protection component 28 .
  • the cut-out portion 47 is formed so as to cut through a portion corresponding to the central portion of the prism 37 through which the optical signal is transmitted / reflected.
  • the cut-out portion 47 is formed in a shape that does not damage the 45 ° prism surface 42.
  • the optical filter 26 when the optical filter 26 is mounted on the optical filter mounting portion 36 of the optical path changing component 25 and then the optical filter 26 is sandwiched between the optical filter mounting portion 36 and the optical filter fixing component 27, It is formed in a state as shown in FIG.
  • the optical filter 26 is fixed by mere pinching that is not bonding or the like.
  • the optical filter 26 when the optical filter 26 is fixed with an adhesive as in the conventional case, there is a possibility that the following problems may occur. That is, the optical filter 26 made of glass (such as BK7) or ceramics having a low thermal expansion coefficient, and the optical filter of the optical path changing component 25 made of transparent resin (epoxy, cycloolefin, PMMA, PC, etc.) having a large thermal expansion coefficient. If the mounting portion 36 is temporarily bonded and fixed, the optical filter 26 may be destroyed or the optical filter 26 may be peeled off from the optical filter mounting portion 36 due to stress caused by a difference in thermal expansion coefficient (differing by about 100 times) when the temperature changes. There is a risk that problems will occur. In the present invention, since the optical filter 26 is fixed without being bonded, the stress at the time of temperature change can be released. In the present invention, it is possible to prevent characteristic deterioration due to peeling of the optical filter 26 and destruction of the optical filter 26.
  • transparent resin epoxy, cycloolefin
  • the optical portion 22 is formed as shown in FIG. Thereafter, when the optical unit 22 is fixed to the circuit unit body 23 of the optical transceiver circuit unit 21, the assembly of the single-core bidirectional optical communication module 1 is completed as shown in FIG.
  • the optical path of the single-core bidirectional optical communication module 1 specifically, the optical path on the transmission side and the optical path on the reception side will be described. Refer to FIGS. 8 and 9 for the optical path on the transmission side, and refer to FIGS. 8 and 10 for the optical path on the reception side.
  • the light emitted from the light emitting element 30, that is, the transmitted light is collimated by the lens 43 disposed immediately above the light emitting element 30, and then enters the prism 37, and is 45 °. Is totally reflected by a 45 ° prism surface 42 having a slope of 5 °, and the optical path is bent 90 ° upward. Thereafter, the transmitted light is reflected by the optical filter 26 disposed at an inclination of 45 °, and further bent by 90 ° and condensed by the lens 39 facing the optical fiber 41.
  • the optical filter 41 is coupled to the optical fiber 41 (the optical filter 26 reflects the transmission light (wavelength ⁇ 1) and transmits the reception light (wavelength ⁇ 2). The return light of the transmission light (wavelength ⁇ 1) reflected at the far end is reflected by the optical filter 26 and does not enter the light receiving element 31. Therefore, the transmission light of the module itself is received. “Crosstalk” can be prevented).
  • the outgoing light from the optical fiber 41 that is, the received light
  • the lens 39 facing the optical fiber 41 passes through the optical filter 26 disposed at an inclination of 45 °. .
  • the light is condensed by the lens 40 disposed immediately above the light receiving element 31 and coupled to the light receiving element 31.
  • the single-core bidirectional optical communication module 1 can be assembled to the connector housing 3. Accordingly, it is possible to eliminate the need for significant changes compared to the conventional optical connector housing structure.
  • the optical path of the transmission light (wavelength ⁇ 1) is bent 90 ° twice (folds the optical path) by the optical path changing component 25, so that the optical path portion of the optical path changing component 25 can be reduced in size.
  • the single-core bidirectional optical communication module 1 and the single-core bidirectional optical communication connector 2 can be reduced in size.
  • the optical path of the transmission light (wavelength ⁇ 1) is bent twice by 90 °, the light emitting element 30 and the light receiving element 31 can be mounted close to the same surface of the circuit board 29. Therefore, the single-core bidirectional optical communication module 1 and the single-core bidirectional optical communication connector 2 can be reduced in size.
  • the optical filter 26 is directly mounted on the optical path changing component 25, the position adjustment process when mounting the optical filter can be simplified as compared with the conventional case.
  • the optical filter mounting portion 36 is formed by cutting out the side portion of the optical path changing component 25, the module size can be reduced. Therefore, the single-core bidirectional optical communication module 1 and the single-core bidirectional optical communication connector 2 can be reduced in size.
  • the optical filter 26 is sandwiched between the optical filter mounting portion 36 and the optical filter fixing component 27, the difference in thermal expansion coefficient between the optical filter 26 and the optical path changing component 25 when the temperature changes. It is possible to release the stress caused by the above, and to prevent the optical filter 26 from being damaged or peeled off.
  • FIG. 11 is a module cross-sectional view showing optical paths for transmission ( ⁇ 1) and reception ( ⁇ 2).
  • the same components as those in the first embodiment are denoted by the same reference numerals and detailed description thereof is omitted.
  • the arrangement of the light emitting element 30 and the light receiving element 31 is reversed from that of the first embodiment (the positions are switched).
  • the transmission light from the light emitting element 30 is coupled to the optical fiber 41 after passing through the optical filter 26.
  • the received light from the optical fiber 41 is reflected by the optical filter 26 and bent by 90 °, and thereafter further bent by 90 ° by the 45 ° prism surface 42.
  • the optical filter 26 is coupled to the light receiving element 31 (assuming that the optical filter 26 has a characteristic of transmitting the transmission light (wavelength ⁇ 1) and reflecting the reception light (wavelength ⁇ 2)).
  • the second embodiment has the same effect as the first embodiment.
  • FIG. 12 is a perspective view of a single-core bidirectional optical communication module.
  • the same components as those in the first embodiment are denoted by the same reference numerals and detailed description thereof is omitted.
  • the single-core bidirectional optical communication module 51 of the third embodiment is positioned at the 45 ° prism surface 42 without using the optical surface protection component 28 (see FIG. 2) provided in the first embodiment.
  • a mirror 52 is formed.
  • the mirror 52 is formed by “electroless plating” or “deposition of a dielectric multilayer film”.
  • the third embodiment is an example for eliminating the need for the optical surface protection component 28.
  • the optical filter 26 may be mounted and bent by 90 ° by this reflection.
  • FIG. 13 is a perspective view of the single-core bidirectional optical communication module of the present invention.
  • the same components as those in the first embodiment are denoted by the same reference numerals and detailed description thereof is omitted.
  • the single-core bidirectional optical communication module 61 of the fourth embodiment replaces the optical transceiver circuit section 21 (see FIG. 2) provided in the first embodiment with FR-4, FR-5, etc.
  • the optical transceiver circuit unit 63 includes the rigid substrate 62 shown in FIG.
  • FIG. 14 is a perspective view of the single-core bidirectional optical communication module of the present invention.
  • the same components as those in the first embodiment are denoted by the same reference numerals and detailed description thereof is omitted.
  • the single-core bidirectional optical communication module 71 of the fifth embodiment has a flexible-rigid board 72 shown in place of the optical transceiver circuit unit 21 (see FIG. 2) provided in the first embodiment.
  • the optical transceiver circuit unit 73 is included.
  • 15 to 19 are diagrams related to a single-core bidirectional optical communication module as another example.
  • symbol is attached
  • the single-core bidirectional optical communication module 81 of the sixth embodiment is configured to include an optical transceiver circuit unit 63 including a rigid substrate 62 and an optical unit 22 formed by adding a through hole 82. .
  • a light emitting element 30 and a light receiving element 31 are mounted on the rigid substrate 62.
  • the light emitting element 30 and the light receiving element 31 are connected by a bonding wire 83 as shown in FIG.
  • the optical unit 22 includes an optical path changing component 25 having a through hole 82, an optical filter 26 (see FIG. 17), an optical filter fixing component 27, and an optical surface protection component 28.
  • the through-hole 82 in the optical path changing component 25 is formed so as to be a straight hole from the prism 37 to the rear end of the component body 33 as shown in FIG.
  • the through hole 82 is disposed and formed at a position that does not affect the 90 ° bending of the transmission light or the reception light.
  • the through hole 82 is formed so as to communicate with the space 84 where the light emitting element 30 and the light receiving element 31 exist in a state where the optical path changing component 25 and the optical transceiver circuit unit 63 are fixed. Yes.
  • the space 84 is formed by the rear end of the component main body 33 having a frame shape.
  • the through hole 82 is formed in such a size that, for example, a dispenser needle can be inserted into the through hole 82 and liquid protective resin (see the protective resin 85 in FIG. 19 for the cured state) can be injected into the space 84. ing.
  • the optical path changing component 25 is fixed to the optical transceiver circuit unit 63 by a predetermined method such as adhesion. To do.
  • the protective resin is injected through the through hole 82 of the optical path changing component 25 fixed to the optical transceiver circuit portion 63.
  • the protective resin is a transparent and flexible (gel-like) silicone resin.
  • the protective resin is injected into the space 84 to such an extent that the light emitting element 30 and the light receiving element 31 are completely filled, and then cured to become the protective resin 85.
  • the surface of the cured protective resin 85 is a flat surface 86 (the flat surface 86 has an advantage that an optical design with the protective resin 85 can be easily performed).
  • the light emitting element 30 and the light receiving element 31 are covered and protected by a protective resin 85.
  • the optical filter 26 is mounted on the filter mounting portion 36 of the optical path changing component 25 so that the optical filter 26 is sandwiched between the optical filter mounting portion 36 and the optical filter fixing component 27.
  • the optical surface protection component 28 is fixed to the prism 37 of the optical path changing component 25 (at this time, the through hole 82 is covered by the optical surface protection component 28), as shown in FIG. The assembly of the optical communication module 81 is completed.
  • the protective resin 85 since the light emitting element 30, the light receiving element 31, and the like are protected by the protective resin 85, it is possible to prevent deterioration and dropout of parts due to the influence of humidity and vibration during use, peeling of the bonding wire, and the like. There is an effect that can be done.
  • the surface of the protective resin on the optical element is indeterminate due to the surface tension of the resin. Although it is slanted (having a substantially dome-like round shape), there is a sufficient possibility of affecting the optical characteristics, but this is not the case in the present invention.

Abstract

 従来の光コネクタハウジングの構造を大きく変更することがなく、また、小型化をすることが可能な1芯双方向光通信モジュール及び1芯双方向光通信コネクタを提供する。光通信モジュール1は、発光素子及び受光素子を並列配置してなる光トランシーバ回路部21を備えるとともに、光ファイバの挿抜方向が光トランシーバ回路部21に対し略垂直となる構造に光路変更部品25を形成してなる。また、光通信コネクタ2は、1芯双方向光通信モジュール1と、この光トランシーバ回路部21に対し光ファイバの光軸が略垂直となるよう1芯双方向光通信モジュール1を収容する光コネクタハウジング3とを備えてなる。

Description

光通信モジュール及び光通信コネクタ
 本発明は、光通信モジュール及び光通信コネクタに関する。本発明は、特に、1本の光ファイバで双方向の光通信を行うための1芯双方向光通信モジュールと、この1芯双方向光通信モジュールを備える1芯双方向光通信コネクタ(光コネクタ)とに関する。
 2本の光ファイバに発光素子と受光素子とを光学的に接続してなる構造の光通信コネクタは広く知られている。また、1本の光ファイバに対し発光素子及び受光素子を光学的に接続してなる構造の1芯双方向光通信コネクタも広く知られている(例えば下記特許文献1参照)。
 下記特許文献1に開示された1芯双方向光通信コネクタは、略Y字状の光導波路と、この光導波路の分かれた一方に設けられる光波長フィルタとを有している。光波長フィルタは、発光波長を透過し受光波長を遮断するものが用いられている。
 下記特許文献1に開示された1芯双方向光通信コネクタは、このコネクタの以前に用いられていた2芯用の光通信コネクタの光コネクタハウジングと同様の構造となる光コネクタハウジングを備えて構成されている。すなわち、光ファイバの挿抜方向が発光素子及び受光素子の並び方向に対して直交するような構造の光コネクタハウジングを備えて構成されている(構造が従来と基本的に変わらない光コネクタハウジングを備えて構成されている)。
 下記特許文献2、3には、第一の光信号を透過し第二の光信号を反射する光フィルタを備えてなる1芯双方向光通信モジュールについての技術が開示されている。
 先ず、下記特許文献2に開示された1芯双方向光通信モジュールについて説明すると、このモジュールは、発光素子の光軸と受光素子の光軸とが直交するように配置されている(直交配置)。二つの光軸の直交位置には、上記光フィルタが配置されている。光フィルタは、専用の部品によって所定空間の上記直交位置に配置されている。
 下記特許文献2に開示された1芯双方向光通信モジュールにあっては、発光素子と受光素子とが直交配置されていることから、回路部分(デバイス)を含めたモジュールのサイズが大きくなってしまうという問題点を有している(これにより、大型の1芯双方向光通信コネクタになってしまう)。また、発光素子と受光素子とが直交配置されていることから、上記従来構造の光コネクタハウジングに対して組み付けをすることができないという問題点を有している。この他、光フィルタを所定空間の所定位置に配置していることから、専用の部品を必要とする。さらに、この専用の部品に対する組み付けスペースも確保する必要があり、上記同様にモジュールのサイズが大きくなってしまうという問題点を有している。所定空間の所定位置に光フィルタを配置するためには、高精度な位置調整が必要となる。したがって、製作難度が高くなるという問題点も有している。
 次に、下記特許文献3に開示された1芯双方向光通信モジュールについて説明すると、このモジュールは、光ファイバの挿抜方向が発光素子及び受光素子の並び方向に対して平行となる構造を有している(光ファイバの光軸に対して発光素子及び受光素子の各光軸が直交するような構造を有している)。また、下記特許文献3に開示された1芯双方向光通信モジュールは、樹脂製の光路変更部品(光学部材)を備えて構成されている。光路変更部品には、上記光フィルタが接着剤によって固定されている。
 下記特許文献3に開示された1芯双方向光通信モジュールにあっては、上記従来構造の光コネクタハウジングに対して組み付けをすることができないという問題点を有している。また、光路変更部品に対して光フィルタを接着固定していることから、材料の熱膨張係数の違いによって光フィルタが破損してしまうという問題点を有している。
日本国特開2004-138966号公報 日本国特表2008-512694号公報 日本国特開2008-225339号公報
 本発明は、上記した事情に鑑みてなされたもので、従来の光コネクタハウジングの構造を大きく変更することがなく、また、小型化をすることが可能な1芯双方向光通信モジュール及び1芯双方向光通信コネクタを提供することを目的とする。
 本発明の第一の実施例は、光通信モジュールであって、光ファイバと;前記光ファイバの光軸と光軸が略平行となるように配置され、第一の光信号を送信又は受信する第一の光学素子と;前記光ファイバの光軸と光軸が略平行となるように配置され、第二の光信号を送信又は受信する第二の光学素子と;前記光ファイバと前記第二の光学素子の間に設けられた光路変更部品と;前記光ファイバと前記第一の光学素子の間に設けられ、前記第一の光信号を透過し前記第二の信号を反射する光フィルタと;を有し、前記光路変更部品と前記光フィルタは前記第二の光信号の光路を2回90°曲げる光通信モジュールである。
 好ましくは、前記光路変更部品は樹脂製である。
 好ましくは、前記第一及び第二の光学素子は回路の一平面に配置され、前記光ファイバの光軸は前記平面に垂直である。
 このような特徴を有する本発明の実施例によれば、光ファイバの挿抜方向が発光素子及び受光素子の並び方向に対して直交するような構造の光コネクタハウジングに組み付けることが可能になる(これに関しては発明を実施するための形態の欄で詳細に説明する)。また、本実施例によれば、光路変更部品によって第二の光信号の光路を2回90°曲げする(光路を折りたたむ)ことにより、光路変更部品の光路部分を小型化することが可能になる。さらに、本実施例によれば、第二の光信号の光路を2回90°曲げすることにより、発光素子及び受光素子を回路基板の同一面に近接して実装することが可能になる。これにより小型化を図ることが可能になる。
 本発明の第二の実施例は、第一の実施例において、前記光路変更部品の側部を切り欠いて形成された光フィルタ搭載部と、前記光フィルタ搭載部との間に前記光フィルタを挟み込んで該光フィルタの位置を固定する光フィルタ固定部品と、をさらに有する。
 このような特徴を有する本発明の実施例によれば、光路変更部品に直接光フィルタを搭載する構造であることから、光フィルタ搭載時の位置調整工程を簡易化することが可能になる。また、本実施例によれば、光路変更部品の側部を切り欠いて光フィルタ搭載部を形成することから(光路変更部品を突出させずに光フィルタ搭載部を形成することから)、モジュールサイズの小型化を図ることが可能になる。さらに、本実施例によれば、光フィルタ搭載部と光フィルタ固定部品との間に光フィルタを挟み込むことから、温度変化時の光フィルタと光路変更部品との熱膨張係数の違いによる応力を逃がし、光フィルタの破損や剥離を防止することが可能になる。
 本発明の第三の実施例は、第一、第二の実施例において、前記光ファイバ端末のフェルールを案内するスリーブを前記光路変更部品に一体形成する。
 このような特徴を有する本発明によれば、光ファイバ端末のフェルールの位置合わせを光路変更部品のスリーブによって行えるようになることから、1芯双方向光通信モジュールの組み付け先となる光コネクタハウジングの構造を簡素化することが可能になる。
 本発明の第四の実施例は、前記第一から第三の実施例において、前記光路変更部品に、該光路変更部品と前記光トランシーバ回路部とを固定した状態における前記光素子の存在する空間に対して連通するような貫通孔を形成し、該貫通孔を介して前記空間に保護樹脂を注入することを特徴としている。
 好ましくは前記貫通孔を塞ぐ部品を備える。
 このような特徴を有する本実施例によれば、貫通孔に例えばディスペンサニードルを挿入して光素子の存在する空間に保護樹脂を注入し、そして、この注入した保護樹脂を硬化させると、光トランシーバ回路部における各種部品やボンディングワイヤは、保護樹脂によって空間に晒されることなく覆われる。貫通孔を形成し保護樹脂を注入することにより、光トランシーバ回路部における各種部品やボンディングワイヤ等を保護することが可能になる。また、本実施例によれば、前記貫通孔を塞ぐ部品によって、光素子の存在する空間に保護樹脂を注入した後に貫通孔を塞ぐことが可能になる。貫通孔を塞ぐことにより、異物混入を避けることが可能になる。尚、貫通孔を塞ぐ部品の一例としては、後述する光学面保護部品28(実施例6参照)が相当するものとする。
 本発明の第五の実施例は、光通信コネクタであって、前記第一ないし第四の実施例にかかる光通信モジュールと、該光通信モジュールの光トランシーバ回路部に対し光ファイバの光軸が略垂直となるよう光通信モジュールを収容する光コネクタハウジングと、を備えることを特徴としている。
 このような特徴を有する本発明の実施例によれば、従来の光コネクタハウジングの構造を大きく変更することがなく、また、小型となる1芯双方向光通信コネクタにすることが可能になる。
 本発明の第一の実施例によれば、1芯双方向光通信モジュールの組み付け先となる光コネクタハウジングの構造を、従来の光コネクタハウジングの構造と比べて大きく変更する必要のないものにできるという効果を奏する。また、本発明によれば、モジュールを小型化することができるという効果を奏する。
 本発明の第二の実施例によれば、光路変更部品の構造により、光フィルタ搭載時の位置調整工程を簡易化することや、モジュールサイズの小型化を図ることができるという効果を奏する。また、本発明によれば、光路変更部品の光フィルタ搭載部と光フィルタ固定部品との間に光フィルタを挟み込むことから、温度変化時の光フィルタと光路変更部品との熱膨張係数の違いによる応力を逃がすことができ、結果、光フィルタの破損や剥離を防止することができるという効果を奏する。
 本発明の第三の実施例によれば、光路変更部品にスリーブを一体に形成することにより、1芯双方向光通信モジュールの組み付け先となる光コネクタハウジングの構造を簡素化することができるという効果を奏する。また、本発明によれば、光結合状態を良好にすることができるという効果を奏する。
 本発明の第四の実施例によれば、貫通孔を介して光素子の存在する空間に保護樹脂を注入し、これにより光トランシーバ回路部における各種部品やボンディングワイヤ等を空間に晒すことなく保護樹脂によって覆い、結果、保護することができるという効果を奏する。本発明によれば、湿度の影響や使用時の振動による部品の劣化・脱落、ボンディングワイヤの剥がれ等を防ぐことができるという効果を奏する。この他、本発明によれば、光路変更部品と光トランシーバ回路部とを固定した状態で光素子の存在する空間に保護樹脂を注入することから、保護樹脂を空間内に溜めることができ、結果、光素子を覆う保護樹脂の表面を平面にすることができるという効果を奏する。これにより、保護樹脂を加味した光学設計を容易に行うことができるという効果を奏する。また、貫通孔を塞ぐことにより、貫通孔を介しての異物混入を防止することができるという効果を奏する。
 本発明の第5の実施例によれば、従来の光コネクタハウジングの構造を大きく変更することがなく、また、小型となる1芯双方向光通信コネクタを提供することができるという効果を奏する。
第一の実施例の1芯双方向光通信モジュール及び1芯双方向光通信コネクタを示す斜視図である。 1芯双方向光通信モジュールの斜視図である。 光トランシーバ回路部及び光学部の斜視図である。 1芯双方向光通信モジュールの分解斜視図である。 図4とは異なる角度から見た場合の1芯双方向光通信モジュールの分解斜視図である。 光路変更部品の斜視図である。 光フィルタを搭載した状態が見える光学部の断面図である。 送信(λ1)及び受信(λ2)の光経路を示すモジュール断面図である。 送信(λ1)の光経路を示すモジュール断面図である。 受信(λ2)の光経路を示すモジュール断面図である。 他の実施例となる送信(λ1)及び受信(λ2)の光経路を示すモジュール断面図である。 他の実施例(45゜プリズム面の位置にミラーを形成)となる1芯双方向光通信モジュールの斜視図である。 他の実施例(リジッド基板の光トランシーバ回路部)となる1芯双方向光通信モジュールの斜視図である。 他の実施例(フレキシブル-リジッド基板の光トランシーバ回路部)となる1芯双方向光通信モジュールの斜視図である。 他の実施例となる1芯双方向光通信モジュールに係る図であり、光路変更部品と光トランシーバ回路部の斜視図である。 図15の状態から光路変更部品と光トランシーバ回路部とを固定するとともに、保護樹脂を注入した状態を示す斜視図である。 図16の状態から光フィルタ、光フィルタ固定部品、及び光学面保護部品を固定する直前の状態を示す斜視図である。 図17の状態から1芯双方向光通信モジュールの組み立てが完了した状態を示す斜視図である。 図17の状態の断面図である。
 1芯双方向光通信モジュールは、発光素子及び受光素子を並列配置してなる光トランシーバ回路部を備えるとともに、光ファイバの光軸が光トランシーバ回路部に対し略垂直となる構造に光路変更部品を形成してなる。言い換えれば、光ファイバの挿抜方向が光トランシーバ回路部に対し略垂直となる構造に光路変更部品を形成してなる。
 また、1芯双方向光通信コネクタは、上記1芯双方向光通信モジュールと、この光トランシーバ回路部に対し光ファイバの光軸が略垂直となるよう上記1芯双方向光通信モジュールを収容する光コネクタハウジングとを備えてなる。
 以下、図面を参照しながら第1実施例を説明する。図1は本発明の1芯双方向光通信モジュール及び1芯双方向光通信コネクタを示す図である。また、図2は1芯双方向光通信モジュールの斜視図、図3は光トランシーバ回路部及び光学部の斜視図、図4及び図5は1芯双方向光通信モジュールの分解斜視図、図6は光路変更部品の斜視図、図7は光フィルタを搭載した状態が見える光学部の断面図、図8~図10は光経路を示すモジュール断面図である。
 図1において、引用符号1は本発明の1芯双方向光通信モジュールを示している。また、引用符号2は本発明の1芯双方向光通信コネクタを示している。この1芯双方向光通信コネクタ2は、絶縁性を有する合成樹脂製の光コネクタハウジング3と、図示しないシールドケースとを備えている。光コネクタハウジング3には、1芯双方向光通信モジュール1が装着されるようになっている。
 光コネクタハウジング3は、この前側に相手側光通信コネクタ(光コネクタ)を嵌合させるためのコネクタ嵌合部4を有している。また、光コネクタハウジング3は、この後側に1芯双方向光通信モジュール1を装着するための装着部5を有している。光コネクタハウジング3は、従来の2芯の光コネクタハウジングと基本的に同じ構造で形成されている。
 1芯双方向光通信モジュール1は、光コネクタハウジング3に対し矢印方向から装着されるようになっている。以下、1芯双方向光通信モジュール1について説明する。
 図2ないし図5に示すように、1芯双方向光通信モジュール1は、光トランシーバ回路部21と光学部22とを備えて構成されている。光トランシーバ回路部21は、回路部本体23と、この回路部本体23からのびる複数のリードフレーム24とを備えて構成されている。一方、光学部22は、光路変更部品25と、光フィルタ26と、光フィルタ固定部品27と、光学面保護部品28とを備えて構成されている。
 回路部本体23は、硬く柔軟性のない絶縁体基材からなる回路基板29と、発光素子30及び受光素子31と、これら光素子を駆動する駆動回路32とを有している。発光素子30及び受光素子31は、近接した状態で回路基板29の同一面に面実装されている。受信光及び送信光は、回路基板29に対して垂直に入出射するようになっている。送信/受信光は、2波長(λ1/λ2)が用いられるようになっており(通信相手側の光通信モジュールは送信/受信=λ2/λ1)、これに対応するような発光素子30及び受光素子31が本実施例では使用されている。
 本実施例において、発光素子30は、VCSEL(Vertical Cavity Surface Emitting Laser)[発光波長λ1=850nm、λ2=780nm]が用いられている。また、受光素子31は、Si-PINフォトダイオードが用いられている(一例であるものとする)。複数のリードフレーム24は、1芯双方向光通信コネクタ2の実装先となる図示しない回路基板に差し込まれ、所定の回路に半田付けされるようになっている。
 ここで矢印Pを上下方向、矢印Qを前後方向、矢印Rを左右方向と定義する(図4及び図5参照)。
 光路変更部品25は、透明樹脂製[エポキシ、シクロオレフィン、PMMA、PCなど]の成形部品であって、部品本体33と、この部品本体33の前端に一体成形されるスリーブ34とを有している。光路変更部品25は、送信側の光学部分(発光素子30からの送信光を光ファイバに結合する部分)と、受信側の光学部分(光ファイバからの受信光を受光素子31に結合する部分)と、スリーブ34とが一体に形成されたものとなっている(スリーブ34を一体化することが好ましいが、別体、すなわちスリーブ34の機能を光コネクタハウジング3に持たせても良いものとする)。
 部品本体33は、この後端が光トランシーバ回路部21の回路部本体23に対し固定されるように形成されている。具体的には(特に限定するものでないが)、後端に凸部35aが形成されている。また、回路部本体23には、凹部35bが形成されている。例えば、接触し合う面に接着剤を塗布した状態で後端と回路部本体23とを嵌合させると、これらの固定が完了するようになっている。
 部品本体33の左右両側部には、光フィルタ搭載部36と、プリズム37とが形成されている。光フィルタ搭載部36及びプリズム37は、上記左右両側部をそれぞれ切り欠くようにして形成されている。部品本体33は、これを上方から見た場合、略Z字状となる形状に形成されている(上記切り欠きによって略Z字状となる形状に形成されている)。光フィルタ搭載部36は、光フィルタ26を45゜の傾きで搭載することができるように形成されている。このような光フィルタ搭載部36には、くり貫き部38が形成されている(図6、図7参照)。くり貫き部38は、光フィルタ26の中心部分に対応する光フィルタ搭載部36の斜面をくり貫くようにして形成されている。
 光路変更部品25は、くり貫き部38の前後にレンズ39、40を有している。レンズ39、40は、それぞれ凸レンズ形状に形成されている。レンズ39はスリーブ34内に突出するように、また、レンズ40は部品本体33の後端から突出するように配置形成されている。レンズ39、40は、本実施例において、光ファイバ41(図8参照)及び受光素子31の位置に合わせて配置形成されている。
 プリズム37は、光信号を90゜曲げる部分として形成されている。プリズム37で90゜曲げられた光信号は、更に光フィルタ26で反射され90゜曲げられる。プリズム37における引用符号42は、45゜プリズム面を示している。45゜プリズム面42は、45゜の傾斜となる反射面であって、外気(空気)と接するように形成されている(他の例は実施例3で説明する)。このようなプリズム37の位置に合わせるように、部品本体33の後端にはレンズ43が突出形成されている。レンズ43は、凸レンズ形状であって、発光素子30に対向するように配置形成されている。
 スリーブ34は、筒状となる部分として形成されている。スリーブ34は、図8に示す如く、光ファイバ41端末のフェルール44を案内することができるように形成されている。スリーブ34によりフェルール44を案内すると、光ファイバ41の端面はレンズ39から所定の距離があくようになっている。本実施例において、光ファイバ41はPCS(Polymer Clad Silica)[コア径φ200μm、クラッド径φ230μm]が用いられている(一例であるものとする)。
 光フィルタ26は、第一の光信号を透過し第二の光信号を反射するものであって、本実施例では受信光を透過し送信光を反射するようになっている。光フィルタ26は、誘電体多層膜フィルタ[基材:BK7]が用いられている。
 図2~図5、及び図7において、光フィルタ固定部品27は、光路変更部品25の光フィルタ搭載部36との間に光フィルタ26を挟み込んで、この光フィルタ26の位置を固定することができるように形成されている。光フィルタ固定部品27は、部品本体33の側部の切り欠き部分に差し込まれ、そして、接着、溶着、圧入のいずれかにより固定されるようになっている(光フィルタ26は接着や溶着がなされないものとする)。このような光フィルタ固定部品27には、光フィルタ26を挟み込むための凹部45と、くり貫き部46とが形成されている。くり貫き部46は、光フィルタ26の中心部分に対応する凹部45の斜面をくり貫くようにして形成されている。
 図2ないし図5において、光学面保護部品28は、光路変更部品25の45゜プリズム面42の保護と汚れ防止のために備えられている。光学面保護部品28は、部品本体33の側部の切り欠き部分に対して差し込まれ、そして、接着、溶着、圧入のいずれかにより固定されるようになっている。光学面保護部品28には、くり貫き部47が形成されている。くり貫き部47は、光信号が透過/反射するプリズム37の中心部分に対応する部分をくり貫くようにして形成されている。くり貫き部47は、45゜プリズム面42を傷付けないような形状に形成されている。
 上記構成及び構造において、光路変更部品25の光フィルタ搭載部36に光フィルタ26を被せるようにして搭載し、この後に光フィルタ搭載部36と光フィルタ固定部品27とにより光フィルタ26を挟み込むと、図7に示す如くの状態に形成される。光フィルタ26は、接着等でない単なる挟み込みにより固定される。
 尚、光フィルタ26を従来同様に接着剤で固定した場合、次のような不具合が生じてしまうという虞がある。すなわち、熱膨張係数が小さいガラス(BK7など)やセラミックスでできた光フィルタ26と、熱膨張係数が大きな透明樹脂(エポキシ、シクロオレフィン、PMMA、PCなど)でできた光路変更部品25の光フィルタ搭載部36とを、仮に接着固定した場合、温度変化時に熱膨張係数差(約100倍異なる)による応力で光フィルタ26が破壊されたり、光フィルタ26が光フィルタ搭載部36から剥離したりする不具合が生じてしまうという虞がある。本発明では、光フィルタ26を接着せずに挟み込むことによって固定をしていることから、温度変化時の応力を逃がすことができる。本発明では、光フィルタ26の剥離による特性劣化や光フィルタ26の破壊を防ぐことができる。
 光路変更部品25の45゜プリズム面42を保護するように光学面保護部品28を光路変更部品25に固定すると、図3に示す如くの状態に形成され、これにより光学部22が形成される。この後、光学部22を光トランシーバ回路部21の回路部本体23に固定すると、図2に示す如く1芯双方向光通信モジュール1の組み立てが完了する。
 次に、1芯双方向光通信モジュール1の光経路、具体的には送信側の光経路と、受信側の光経路とについてそれぞれ説明する。送信側の光経路については図8及び図9を参照し、受信側の光経路については図8及び図10を参照するものとする。
 図8及び図9において、発光素子30からの出射光、すなわち送信光は、この発光素子30の直上に配置されたレンズ43により平行光化された後、プリズム37に入射し、そして、45゜の傾斜を有する45゜プリズム面42によって全反射され、光路が上方に90゜曲げられる。この後、送信光は45゜の傾きで配置された光フィルタ26により反射され、更に90゜曲げられて光ファイバ41に面したレンズ39により集光される。そして、光ファイバ41に結合する(光フィルタ26は、送信光(波長λ1)を反射し、受信光(波長λ2)を透過する特性を持つものとする。尚、光ファイバ41の端面(近端、遠端)で反射した送信光(波長λ1)の戻り光は、光フィルタ26によって反射され、受光素子31には入らないようになっている。従って、モジュール自身の送信光を受信するような「混信(クロストーク)」を防止することができる)。
 図8及び図10において、光ファイバ41からの出射光、すなわち受信光は、光ファイバ41に面したレンズ39により平行光化された後に、45゜の傾きで配置された光フィルタ26を透過する。そして、受光素子31の直上に配置されたレンズ40により集光され、受光素子31に結合する。
 以上、図1ないし図10を参照しながら説明してきたように、本発明によれば、光ファイバ41の挿抜方向が発光素子30及び受光素子31の並び方向に対して直交するような構造の光コネクタハウジング3に1芯双方向光通信モジュール1を組み付けることができる。従って、従来の光コネクタハウジング構造と比べて大きく変更する必要のないものにすることができる。
 また、本発明によれば、光路変更部品25によって送信光(波長λ1)の光路を2回90°曲げする(光路を折りたたむ)ことから、光路変更部品25の光路部分を小型化することができ、結果、1芯双方向光通信モジュール1や1芯双方向光通信コネクタ2の小型化を図ることができる。
 さらに、本発明によれば、送信光(波長λ1)の光路を2回90°曲げすることから、発光素子30及び受光素子31を回路基板29の同一面に近接して実装することができる。従って、1芯双方向光通信モジュール1や1芯双方向光通信コネクタ2の小型化を図ることができる。
 さらに、本発明によれば、光路変更部品25に直接光フィルタ26を搭載する構造であることから、光フィルタ搭載時の位置調整工程を従来と比べて簡易化することができる。
 さらに、本発明によれば、光路変更部品25の側部を切り欠いて光フィルタ搭載部36を形成することから、モジュールサイズの小型化を図ることができる。従って、1芯双方向光通信モジュール1や1芯双方向光通信コネクタ2の小型化を図ることができる。
 さらに、本発明によれば、光フィルタ搭載部36と光フィルタ固定部品27との間に光フィルタ26を挟み込むことから、温度変化時の光フィルタ26と光路変更部品25との熱膨張係数の違いによる応力を逃がし、光フィルタ26の破損や剥離を防止することができる。
 以下、図面を参照しながら第2実施例を説明する。図11は送信(λ1)及び受信(λ2)の光経路を示すモジュール断面図である。尚、上記第1実施例と同一の構成部材には同一の符号を付して詳細な説明を省略する。
 図11において、第2実施例では発光素子30及び受光素子31の配置を第1実施例と逆にしている(位置を入れ替えている)。発光素子30からの送信光は、光フィルタ26を透過した後に光ファイバ41に結合する。一方、光ファイバ41からの受信光は、光フィルタ26により反射されて90゜曲げられ、この後に45゜プリズム面42によって更に90゜曲げられる。そして、受光素子31に結合する(尚、光フィルタ26は、送信光(波長λ1)を透過し、受信光(波長λ2)を反射する特性を持つものとする)。第2実施例は第1実施例と同様の効果を奏する。
 以下、図面を参照しながら第3実施例を説明する。図12は1芯双方向光通信モジュールの斜視図である。尚、上記第1実施例と同一の構成部材には同一の符号を付して詳細な説明を省略する。
 図12において、第3実施例の1芯双方向光通信モジュール51は、第1実施例で備えられていた光学面保護部品28(図2参照)を用いずに45゜プリズム面42の位置にミラー52を形成したものである。ミラー52は、「無電解メッキ」や「誘電体多層膜の蒸着」によって形成されている。第3実施例は、光学面保護部品28を不要にするための例であり、この他には光フィルタ26を搭載して、この反射により90゜曲げをするようにしても良いものとする。
 以下、図面を参照しながら第4実施例を説明する。図13は本発明の1芯双方向光通信モジュールの斜視図である。尚、上記第1実施例と同一の構成部材には同一の符号を付して詳細な説明を省略する。
 図13において、第4実施例の1芯双方向光通信モジュール61は、第1実施例で備えられていた光トランシーバ回路部21(図2参照)に替えて、FR-4やFR-5などの図示のリジッド基板62を含む光トランシーバ回路部63にしたものである。
 以下、図面を参照しながら第5実施例を説明する。図14は本発明の1芯双方向光通信モジュールの斜視図である。尚、上記第1実施例と同一の構成部材には同一の符号を付して詳細な説明を省略する。
 図14において、第5実施例の1芯双方向光通信モジュール71は、第1実施例で備えられていた光トランシーバ回路部21(図2参照)に替えて、図示のフレキシブル-リジッド基板72を含む光トランシーバ回路部73にしたものである。
 以下、図面を参照しながら第6実施例を説明する。図15ないし図19は他の例となる1芯双方向光通信モジュールに係る図である。尚、上記第1実施例及び第4実施例と同一の構成部材には同一の符号を付して詳細な説明を省略する。
 図18において、第6実施例の1芯双方向光通信モジュール81は、リジッド基板62を含む光トランシーバ回路部63と、貫通孔82を付加してなる光学部22とを備えて構成されている。リジッド基板62には、発光素子30及び受光素子31(図19参照)が実装されている。発光素子30及び受光素子31は、図19に示すようにボンディングワイヤ83によって接続されている。
 光学部22は、貫通孔82を有する光路変更部品25と、光フィルタ26(図17参照)と、光フィルタ固定部品27と、光学面保護部品28とを備えて構成されている。光路変更部品25における貫通孔82は、図15に示すようにプリズム37から部品本体33の後端にかけて真っ直ぐな穴となるように貫通形成されている。貫通孔82は、送信光又は受信光の90゜曲げに影響を来さない位置に配置形成されている。貫通孔82は、図19に示すように、光路変更部品25と光トランシーバ回路部63とを固定した状態における発光素子30及び受光素子31の存在する空間84に対して連通するように形成されている。空間84は、本実施例において、部品本体33の後端が枠状になることにより形成されている。貫通孔82は、この貫通孔82に例えばディスペンサニードルを挿入して空間84に液状の保護樹脂(硬化させた状態は図19の保護樹脂85を参照)を注入することができる大きさに形成されている。
 上記構成及び構造において、1芯双方向光通信モジュール81の組み立てに関しては、先ず、図15及び図16に示すように光路変更部品25を光トランシーバ回路部63に接着等の所定の方法で固定をする。次に、図16に示すように光トランシーバ回路部63に固定された光路変更部品25の貫通孔82を介して保護樹脂を注入する。保護樹脂は、本実施例において、透明且つ柔軟(ゲル状の)なシリコーン樹脂を用いるものとする。保護樹脂は、図19に示すように発光素子30及び受光素子31などが完全に埋まる程度に空間84に注入され、この後に硬化して保護樹脂85となる。硬化した保護樹脂85は、この表面が平面86になる(平面86になることにより、保護樹脂85を加味した光学設計を容易に行うことができるという利点を有する)。発光素子30及び受光素子31などは、保護樹脂85によって覆われ保護される。
 図17及び図19において、光路変更部品25のフィルタ搭載部36に対し光フィルタ26を被せるようにして搭載し、この後に光フィルタ搭載部36と光フィルタ固定部品27とで光フィルタ26を挟み込むように固定をすると、また、光路変更部品25のプリズム37に光学面保護部品28を固定すると(この時貫通孔82は光学面保護部品28によって覆われる)、図18に示すように1芯双方向光通信モジュール81の組み立てが完了する。
 本発明によれば、発光素子30及び受光素子31などを保護樹脂85によって保護していることから、湿度の影響や使用時の振動による部品の劣化・脱落、ボンディングワイヤの剥がれ等を防ぐことができるという効果を奏する。
 尚、保護樹脂85でこの表面を平面86にしない場合、例えば高粘度の保護樹脂を用いてポッティングする一般的な方法であれば、樹脂の表面張力によって光素子上の保護樹脂表面が不確定に斜めになり(略ドーム状の丸みのある形状になり)、光学特性に影響を来す可能性が十分にあるが、本発明においてはこのようなことはない。
 この他、本発明は本発明の主旨を変えない範囲で種々変更実施可能なことは勿論である。
 本出願は2009年2月25日出願の日本国特許出願2009-041650及び、2009年8月4日出願の日本国特許出願2009-181173に基づくものであり、その内容はここに参照として取り込まれる。
 1、51、61、71、81…1芯双方向光通信モジュール
 2…1芯双方向光通信コネクタ
 3…光コネクタハウジング
 4…コネクタ嵌合部
 5…装着部
 21…光トランシーバ回路部
 22…光学部
 23…回路部本体
 24…リードフレーム
 25…光路変更部品
 26…光フィルタ
 27…光フィルタ固定部品
 28…光学面保護部品
 29…回路基板
 30…発光素子
 31…受光素子
 32…駆動回路
 33…部品本体
 34…スリーブ
 35a…凸部
 35b…凹部
 36…光フィルタ搭載部
 37…プリズム
 38、46、47…くり貫き部
 39、40、43…レンズ
 41…光ファイバ
 42…45゜プリズム面
 44…フェルール
 45…凹部
 52…ミラー
 62…リジッド基板
 63…光トランシーバ回路部
 72…フレキシブル-リジッド基板
 73…光トランシーバ回路部
 82…貫通孔
 83…ボンディングワイヤ
 84…空間
 85…保護樹脂
 86…平面

Claims (14)

  1.  光通信モジュールであって、
     光ファイバと、
     前記光ファイバの光軸と光軸が略平行となるように配置され、第一の光信号を送信又は受信する第一の光学素子と、
     前記光ファイバの光軸と光軸が略平行となるように配置され、第二の光信号を送信又は受信する第二の光学素子と、
     前記光ファイバと前記第二の光学素子の間に設けられた光路変更部品と、
     前記光ファイバと前記第一の光学素子の間に設けられ、前記第一の光信号を透過し前記第二の信号を反射する光フィルタと、
    を有し、
     前記光路変更部品と前記光フィルタは前記第二の光信号の光路を2回90°曲げる光通信モジュール。
  2.  請求項1記載の光通信モジュールであって、前記光路変更部品は樹脂製である光通信モジュール。
  3.  請求項1記載の光通信モジュールであって、前記第一及び第二の光学素子は回路の一平面に配置され、前記光ファイバの光軸は前記平面に垂直である光通信モジュール。
  4.  請求項3記載の光通信モジュールであって、前記回路は光トランシーバ回路である光通信モジュール。
  5.  請求項4記載の光通信モジュールであって、前記光トランシーバ回路はフレキシブル-リジッド基板を備えた光通信モジュール。
  6.  請求項1記載の光通信モジュールにおいて、
     前記光路変更部品の側部を切り欠いて形成された光フィルタ搭載部と、
     前記光フィルタ搭載部との間に前記光フィルタを挟み込んで該光フィルタの位置を固定する光フィルタ固定部品と、
     を有する光通信モジュール。
  7.  請求項1又は請求項6記載の光通信モジュールにおいて、
     前記光ファイバ端末のフェルールを案内するスリーブを前記光路変更部品に一体形成する光通信モジュール。
  8.  請求項5または請求項7記載の光通信モジュールにおいて、
     前記光路変更部品に、該光路変更部品と前記回路とを固定した状態における前記光素子の存在する空間に保護樹脂が充填されている光通信モジュール。
  9.  請求項8記載の光通信モジュールにおいて、
     前記保護樹脂は前記空間に連通する貫通孔から注入され、
     前記貫通孔を塞ぐ部品を備える光通信モジュール。
  10.  請求項1記載の光通信モジュールにおいて、
     前記光路変更部品はプリズム面を備え、前記プリズム面が前記第二の光信号の光路を90°曲げる光通信モジュール。
  11.  請求項1記載の光通信モジュールにおいて、
     前記光路変更部品はミラー面を備え、前記ミラー面が前記第二の光信号の光路を90°曲げる光通信モジュール。
  12.  請求項10記載の光通信モジュールにおいて、前記ミラー面は電解メッキである光通信モジュール。
  13.  請求項11記載の光通信モジュールにおいて、前記ミラー面は誘電体多層膜である光通信モジュール。
  14.  光通信コネクタであって、
     請求項1ないし請求項13いずれか記載の光通信モジュールと、前記光通信モジュールの回路に対し前記光ファイバの光軸が略垂直となるよう前記光通信モジュールを収容する光コネクタハウジングと、を備える光通信コネクタ。
PCT/JP2010/052989 2009-02-25 2010-02-25 光通信モジュール及び光通信コネクタ WO2010098395A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP10746274.9A EP2402804B1 (en) 2009-02-25 2010-02-25 Optical communication module and optical communication connector
CN201080009416.XA CN102334053B (zh) 2009-02-25 2010-02-25 光通信模块以及光通信连接器
US13/203,265 US8737784B2 (en) 2009-02-25 2010-02-25 Optical communication module and optical communication connector

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-041650 2009-02-25
JP2009041650 2009-02-25
JP2009-181173 2009-08-04
JP2009181173A JP5216714B2 (ja) 2009-02-25 2009-08-04 1芯双方向光通信モジュール及び1芯双方向光通信コネクタ

Publications (1)

Publication Number Publication Date
WO2010098395A1 true WO2010098395A1 (ja) 2010-09-02

Family

ID=42665599

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/052989 WO2010098395A1 (ja) 2009-02-25 2010-02-25 光通信モジュール及び光通信コネクタ

Country Status (5)

Country Link
US (1) US8737784B2 (ja)
EP (1) EP2402804B1 (ja)
JP (1) JP5216714B2 (ja)
CN (1) CN102334053B (ja)
WO (1) WO2010098395A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140084190A1 (en) * 2012-09-26 2014-03-27 Hon Hai Precision Industry Co., Ltd. Optical connector with enhancing pins securing shell on circuit board
EP2802917A4 (en) * 2011-12-14 2015-09-09 Finisar Corp OPTICAL SUBASSEMBLY OF CHIP ON FLEXIBLE

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5216714B2 (ja) * 2009-02-25 2013-06-19 矢崎総業株式会社 1芯双方向光通信モジュール及び1芯双方向光通信コネクタ
JP5702596B2 (ja) * 2010-10-28 2015-04-15 株式会社エンプラス レンズアレイおよびこれを備えた光モジュール
JP5708009B2 (ja) 2011-02-17 2015-04-30 セイコーエプソン株式会社 光モジュールおよび電子機器
US8596886B2 (en) * 2011-09-07 2013-12-03 The Boeing Company Hermetic small form factor optical device packaging for plastic optical fiber networks
KR101721851B1 (ko) * 2012-08-30 2017-03-31 한국전자통신연구원 양방향 광모듈
US9784929B2 (en) 2012-10-29 2017-10-10 FCI Asia Pte. Ltd. Board connector
JP6234036B2 (ja) * 2013-02-26 2017-11-22 富士通コンポーネント株式会社 光通信装置
JP6322403B2 (ja) * 2013-12-09 2018-05-09 矢崎総業株式会社 1芯双方向光通信モジュール
JP6356969B2 (ja) * 2014-01-17 2018-07-11 矢崎総業株式会社 1芯双方向光通信モジュール
US9513448B2 (en) * 2014-04-11 2016-12-06 Innolight Technology (Suzhou) Ltd. Optical assembly
US9261660B2 (en) * 2014-07-09 2016-02-16 Hon Hai Precision Industry Co., Ltd. Optical coupling lens, optical communiction device, and method for assembling same
US10175432B2 (en) 2014-11-18 2019-01-08 Konica Minolta, Inc. Optical path change element and optical coupling device
US10317631B2 (en) * 2015-09-30 2019-06-11 Sony Corporation Optical communication connector to restrain direct emission of collimated light
US9541720B1 (en) * 2016-05-06 2017-01-10 Forward Optics Co., Ltd. Optical element with light-splitting function
US9588308B1 (en) * 2016-05-06 2017-03-07 Forward Optics Co., Ltd. Optical element with light-splitting function
IT201600105881A1 (it) * 2016-10-20 2018-04-20 St Microelectronics Srl Sistema di accoppiamento ottico, dispositivo e procedimento corrispondenti
CN107219590B (zh) * 2017-06-05 2018-12-25 峻立科技股份有限公司 具有监控分光路径的光学元件
JP6775783B2 (ja) * 2017-09-21 2020-10-28 矢崎総業株式会社 光コネクタ装置
JP2019184744A (ja) * 2018-04-05 2019-10-24 矢崎総業株式会社 光コネクタ
JP7125309B2 (ja) * 2018-09-03 2022-08-24 株式会社エンプラス 光モジュール
US10983291B2 (en) * 2019-09-05 2021-04-20 Applied Optoelectronics, Inc. Holder element with integrated optical arrangement to offset an output light path
CN116047679A (zh) * 2023-01-30 2023-05-02 讯芸电子科技(中山)有限公司 一种单纤双向200g光模块

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06273641A (ja) * 1993-02-23 1994-09-30 Whitaker Corp:The 光コネクタ及びそれに使用する光結合装置
JPH1164673A (ja) * 1997-08-18 1999-03-05 Alps Electric Co Ltd 光送受信モジュール
JP2003098397A (ja) * 2001-09-21 2003-04-03 Citizen Electronics Co Ltd 双方向光伝送デバイス
JP2003149510A (ja) * 2001-11-08 2003-05-21 Alps Electric Co Ltd 光回路素子及び光送受信装置
JP2004138966A (ja) 2002-10-21 2004-05-13 Yazaki Corp 一芯双方向光送受信コネクタ
JP2008512694A (ja) 2004-06-24 2008-04-24 フォシーナ オプティクス コーポレーション 単芯光ファイバーケーブルを用いる双方向光トランシーバーモジュール
JP2008225339A (ja) 2007-03-15 2008-09-25 Hitachi Cable Ltd 光学系接続構造、光学部材及び光伝送モジュール
JP2008257094A (ja) * 2007-04-09 2008-10-23 Hitachi Cable Ltd 光伝送モジュール及び光パッチケーブル
JP2009041650A (ja) 2007-08-08 2009-02-26 Gkn ドライブライン トルクテクノロジー株式会社 歯車装置
JP2009181173A (ja) 2008-01-29 2009-08-13 Fanuc Ltd 機械操作盤画面表示システム及びシーケンス制御処理機能を備えた表示装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4701010A (en) * 1984-08-30 1987-10-20 Adc Fiber Optics Corporation Unitary body optical coupler
JP3701775B2 (ja) * 1997-07-09 2005-10-05 アルプス電気株式会社 光送受信モジュール
JP3739540B2 (ja) * 1997-08-04 2006-01-25 アルプス電気株式会社 光送受信モジュール
JPH1164674A (ja) * 1997-08-18 1999-03-05 Alps Electric Co Ltd 光送受信モジュール
JP2001074987A (ja) * 1999-09-08 2001-03-23 Yazaki Corp レセプタクルの製造方法、レセプタクル、及び光コネクタ
DE10001679C2 (de) * 2000-01-12 2001-11-29 Infineon Technologies Ag Optische Kopplungsanordnung
JP3762208B2 (ja) * 2000-09-29 2006-04-05 株式会社東芝 光配線基板の製造方法
US6839517B2 (en) * 2001-02-12 2005-01-04 Agere Systems Inc. Apparatus and method for transmitting optical signals through a single fiber optical network
JP2004272061A (ja) * 2003-03-11 2004-09-30 Seiko Epson Corp 光通信モジュール
US20060013541A1 (en) * 2004-07-16 2006-01-19 Infineon Technologies Fiber Optics Gmbh Optoelectronic module
JP4770551B2 (ja) * 2006-03-29 2011-09-14 富士ゼロックス株式会社 光モジュール
WO2007114053A1 (ja) * 2006-04-06 2007-10-11 Nippon Telegraph And Telephone Corporation 一心双方向光送受信モジュール及びその製造方法
JP5216714B2 (ja) * 2009-02-25 2013-06-19 矢崎総業株式会社 1芯双方向光通信モジュール及び1芯双方向光通信コネクタ

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06273641A (ja) * 1993-02-23 1994-09-30 Whitaker Corp:The 光コネクタ及びそれに使用する光結合装置
JPH1164673A (ja) * 1997-08-18 1999-03-05 Alps Electric Co Ltd 光送受信モジュール
JP2003098397A (ja) * 2001-09-21 2003-04-03 Citizen Electronics Co Ltd 双方向光伝送デバイス
JP2003149510A (ja) * 2001-11-08 2003-05-21 Alps Electric Co Ltd 光回路素子及び光送受信装置
JP2004138966A (ja) 2002-10-21 2004-05-13 Yazaki Corp 一芯双方向光送受信コネクタ
JP2008512694A (ja) 2004-06-24 2008-04-24 フォシーナ オプティクス コーポレーション 単芯光ファイバーケーブルを用いる双方向光トランシーバーモジュール
JP2008225339A (ja) 2007-03-15 2008-09-25 Hitachi Cable Ltd 光学系接続構造、光学部材及び光伝送モジュール
JP2008257094A (ja) * 2007-04-09 2008-10-23 Hitachi Cable Ltd 光伝送モジュール及び光パッチケーブル
JP2009041650A (ja) 2007-08-08 2009-02-26 Gkn ドライブライン トルクテクノロジー株式会社 歯車装置
JP2009181173A (ja) 2008-01-29 2009-08-13 Fanuc Ltd 機械操作盤画面表示システム及びシーケンス制御処理機能を備えた表示装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2802917A4 (en) * 2011-12-14 2015-09-09 Finisar Corp OPTICAL SUBASSEMBLY OF CHIP ON FLEXIBLE
US9337932B2 (en) 2011-12-14 2016-05-10 Finisar Corporation Chip on flex optical subassembly
US20140084190A1 (en) * 2012-09-26 2014-03-27 Hon Hai Precision Industry Co., Ltd. Optical connector with enhancing pins securing shell on circuit board
US9074928B2 (en) * 2012-09-26 2015-07-07 Hon Hai Precision Industry Co., Ltd. Optical connector with enhancing pins securing shell on circuit board

Also Published As

Publication number Publication date
US8737784B2 (en) 2014-05-27
CN102334053B (zh) 2015-01-28
EP2402804A4 (en) 2017-12-27
JP5216714B2 (ja) 2013-06-19
JP2010224513A (ja) 2010-10-07
EP2402804A1 (en) 2012-01-04
CN102334053A (zh) 2012-01-25
EP2402804B1 (en) 2020-08-26
US20110305415A1 (en) 2011-12-15

Similar Documents

Publication Publication Date Title
JP5216714B2 (ja) 1芯双方向光通信モジュール及び1芯双方向光通信コネクタ
JP4983703B2 (ja) 光伝送システム
US7539367B2 (en) Optical system connection structure, optical component, and optical communication module
US10261273B2 (en) Bi-directional optical module communicating with single optical fiber and optical transceiver implementing the same
US20160238804A1 (en) Hermetic optical fiber alignment assembly having integrated optical element
JP4515141B2 (ja) 光トランシーバ
JP4977594B2 (ja) 一芯双方向光通信モジュール
WO2013125283A1 (ja) レンズ部品及びそれを備えた光モジュール
JP2008257094A (ja) 光伝送モジュール及び光パッチケーブル
WO2004097481A1 (ja) 光トランシーバおよび光コネクタ
CN106842439B (zh) 数据收发模块的光连接器和光连接器的透镜组
JP2013522689A (ja) 電子装置用スモールフォームファクタ光ファイバインタフェース組立体
JP2010033088A (ja) 光電変換素子
US6854897B2 (en) Ferrule part and optical communications module
CN111679379A (zh) 光收发器
US6873767B2 (en) Wavelength-multiplexing connector, optical transmission device, and optical communication system
JP2010122311A (ja) レンズブロック及びそれを用いた光モジュール
US11656415B2 (en) Optical connector cable
JP2006184680A (ja) 光コネクタ
JP3936330B2 (ja) 光コネクタおよびその製造方法
JP4203837B2 (ja) 光伝送モジュール
JP3926722B2 (ja) 一芯双方向光送受信コネクタ
JP4302623B2 (ja) 光コネクタ、光送受信装置
EP3872546B1 (en) Optical connector and optical connector device
WO2016162943A1 (ja) 光電気回路基板

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080009416.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10746274

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13203265

Country of ref document: US

Ref document number: 2010746274

Country of ref document: EP