WO2010098308A1 - 有機化合物蒸気発生装置及び有機薄膜製造装置 - Google Patents
有機化合物蒸気発生装置及び有機薄膜製造装置 Download PDFInfo
- Publication number
- WO2010098308A1 WO2010098308A1 PCT/JP2010/052734 JP2010052734W WO2010098308A1 WO 2010098308 A1 WO2010098308 A1 WO 2010098308A1 JP 2010052734 W JP2010052734 W JP 2010052734W WO 2010098308 A1 WO2010098308 A1 WO 2010098308A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- organic compound
- connecting pipe
- tank
- tubular insertion
- insertion portion
- Prior art date
Links
- 150000002894 organic compounds Chemical class 0.000 title claims abstract description 84
- 239000010409 thin film Substances 0.000 title claims abstract description 26
- 239000011368 organic material Substances 0.000 claims abstract description 36
- 238000003780 insertion Methods 0.000 claims description 59
- 230000037431 insertion Effects 0.000 claims description 59
- 239000010408 film Substances 0.000 claims description 20
- 230000015572 biosynthetic process Effects 0.000 claims description 18
- 238000001816 cooling Methods 0.000 claims description 18
- 238000004519 manufacturing process Methods 0.000 claims description 16
- 239000007788 liquid Substances 0.000 claims description 10
- 239000000843 powder Substances 0.000 claims description 7
- 239000002826 coolant Substances 0.000 claims description 6
- 230000008021 deposition Effects 0.000 claims description 2
- 238000010438 heat treatment Methods 0.000 abstract description 14
- 239000010453 quartz Substances 0.000 abstract description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 3
- 239000007789 gas Substances 0.000 description 27
- 239000002245 particle Substances 0.000 description 15
- 239000000758 substrate Substances 0.000 description 14
- 239000012159 carrier gas Substances 0.000 description 13
- 229940126208 compound 22 Drugs 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 230000002093 peripheral effect Effects 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
- C23C14/243—Crucibles for source material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D1/00—Processes for applying liquids or other fluent materials
- B05D1/60—Deposition of organic layers from vapour phase
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/12—Organic material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/228—Gas flow assisted PVD deposition
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
- C23C14/246—Replenishment of source material
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/10—Deposition of organic active material
- H10K71/16—Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
- H10K71/164—Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using vacuum deposition
Definitions
- the present invention relates to an evaporation source and an organic EL manufacturing apparatus used for manufacturing an organic EL.
- the conventional steam generator 130 shown in FIG. 3 has a storage tank 131, a transport device 132, and a generation tank 133.
- a funnel-shaped funnel container 134 is vertically arranged inside the storage tank 131.
- the funnel container 134 has a funnel slope 129 having an inverted conical shape and a tubular insertion portion 128 that is a tube connected to a hole at the center position of the funnel shape.
- the tubular insertion portion 128 extends vertically downward, and the measuring rod 135 is vertically inserted from a position above the upper end of the tubular insertion portion 128 to the inside of the tubular insertion portion 128.
- a generation tank 133 is disposed below the storage tank 131, and the transport device 132 is disposed between the storage tank 131 and the generation tank 133.
- the transport device 132 has an outer connecting pipe 137, the upper end of the outer connecting pipe 137 is attached to the bottom surface of the storage tank 131, and the lower end is attached to the ceiling of the generating tank 133.
- the inside of the tank 133 is connected by an outer connecting pipe 137.
- the tubular insertion portion 128 is inserted into the outer connecting pipe 137.
- the organic material is heated by the heating element 139 disposed on the bottom surface of the generation tank 133 by dropping into the generation tank 133, and organic material vapor is generated.
- This organic material vapor is supplied to the outside of the generation tank 133 by the carrier gas introduced into the generation tank 133 from the gas introduction system 141 connected to the generation tank 133.
- the conventional steam generator 130 has a problem that the organic material vapor generated in the generation tank 133 flows back into the tubular insertion portion 128.
- the present invention was created to solve the above-mentioned disadvantages of the prior art, and an object of the present invention is to provide an apparatus in which the organic compound vapor generated in the generation tank does not flow back to the connection pipe that supplies the organic compound vapor to the generation tank. Is to provide.
- the present invention provides a storage tank in which an organic material is disposed, a generation tank that heats the organic material to generate vapor of the organic material, and the organic material in the storage tank.
- An organic compound vapor generator having a transport device for supplying to the tank, wherein the transport device hermetically connects an internal atmosphere of the storage tank and an internal atmosphere of the generation tank, and the organic in the storage tank
- a connection pipe that passes the material and moves into the generation tank, and a gas introduction port that is formed in the connection pipe and connected to a gas introduction system that supplies gas, the gas is introduced into the connection pipe Is an organic compound vapor generator.
- a funnel-shaped container in the storage tank, has a tubular tubular insertion portion connected to a hole located in the center of the funnel shape with the funnel-shaped inclined surface facing upward.
- the lower end of the tubular insertion portion is located in the connection pipe, and an organic material powder is disposed on the slope, and the organic material in the funnel is
- the pipe is supplied from the lower end of the tubular insertion portion to the generation tank through the inside of the connection pipe, and the introduction port is located between the tubular insertion portion and the connection pipe in the connection pipe.
- An organic compound vapor generating apparatus configured to supply gas, wherein the supplied gas is introduced into the generation tank through a gap between the tubular insertion portion and the connection pipe. .
- the measuring rod in which a screw groove having an open lower end is spirally formed on a side surface is inserted into the funnel-shaped container so that the lower end of the screw groove is positioned in the tubular insertion portion
- the organic compound vapor generating apparatus is configured such that the organic material moves and falls in the screw groove by rotation of a measuring rod, and is supplied into the transport apparatus from the tubular insertion portion.
- the connection pipe includes an outer connection pipe and an inner connection pipe, the inner connection pipe is disposed inside the outer connection pipe, and a lower end is disposed in the generation tank.
- the tubular insertion part is inserted into the inner connection pipe, and the lower end of the tubular insertion part is an organic compound vapor generating device arranged in the inner connection pipe. Furthermore, the present invention is the organic compound vapor generating device in which the thermal conductivity of the inner connecting pipe is lower than the thermal conductivity of the outer connecting pipe.
- the present invention is the organic compound vapor generator in which the outer connecting pipe is provided with a cooling path through which a cooling medium flows.
- the present invention is the organic compound vapor generation device in which the inner connecting pipe is formed with a tapered tip end portion located in the generation tank.
- the tubular insertion portion has a lower end located in the inner connection pipe, a gap is formed between the tubular insertion portion and the inner connection pipe, and the gas enters the gap from the gas inlet.
- the introduced organic gas is an organic compound vapor generator configured to flow from the gas introduction port toward a lower end of the tubular insertion portion.
- the present invention is configured such that each funnel-shaped container moves up and down with respect to the inner connecting pipe and can be inserted and removed from the inner connecting pipe, and the tubular insertion portion is provided between the storage tank and the transport device. It is a compound vapor generator provided with an open / close valve capable of shutting off the inside of the storage tank and the inside of the transport device when removed from the inside of the inner connecting pipe.
- the storage tank is provided with a liquid supply container in which the liquid of the organic compound is disposed, and a discharge device that supplies the organic compound in the liquid supply container to the transport device.
- Compound vapor generator Moreover, this invention has a film-forming tank, the discharge
- connection valve connects the inside of the generation tank to a fixing device that fixes the organic compound vapor when the connection valve shuts off the inside of the discharge device and the inside of the generation tank. It is an organic thin film manufacturing apparatus.
- the organic compound vapor it is difficult for the organic compound vapor to enter the connection pipe for supplying the organic compound to the generation tank.
- the inner connection pipe is difficult for organic compound vapor generated in the generation tank to enter the inner connection pipe, and even if the lower part of the inner connection pipe is heated in the generation tank, the upper end of the inner connection pipe is heated. It is possible to provide an organic thin film manufacturing apparatus that is difficult to conduct.
- Reference numeral 1 in FIG. 1 denotes an organic thin film manufacturing apparatus (vapor deposition apparatus) as an example of the present invention.
- the organic thin film manufacturing apparatus 1 includes a film formation tank 10, a steam generation device 30, and a vapor release device 50.
- the vapor release device 50 is disposed inside the film formation tank 10.
- the steam generator 30 is connected to the steam release device 50 via the connection valve 20.
- the connection valve 20 becomes conductive, the vapor of the organic compound generated in the steam generation device 30 enters the steam release device 50. It is configured to be supplied.
- the organic compound vapor supplied to the vapor discharge device 50 is discharged from the plurality of discharge ports 51 of the vapor discharge device 50 into the film formation tank 10 in a vacuum atmosphere.
- the steam generator 30 shown in FIG. 2 is an example of the present invention, and includes a storage tank 31, a transport device 32, and a generation tank 33. Inside the storage tank 31, a funnel-shaped funnel container 34 is arranged vertically.
- the funnel container 34 has a large diameter opening portion at the upper end, and has an inverted conical funnel slope 29 that is inclined downward as it approaches the center, and a funnel-shaped center that is the lower end of the funnel slope 29. It has a hole, and has a tubular insertion portion 28 that is a tube having an upper end connected to the hole.
- Reference numeral 22 in FIGS. 1 and 2 indicates an organic compound powder disposed on the funnel slope 29 in the funnel container 34.
- the tubular insertion portion 28 of the funnel container 34 extends vertically downward, and a measuring rod 35 is vertically inserted into the tubular insertion portion 28 from a position above the upper end of the tubular insertion portion 28.
- a spiral thread groove is formed on the side surface of the measuring rod 35 from the upper end of the tubular insertion portion 28 to the inside of the tubular insertion portion 28.
- the top of the screw thread between the screw grooves on the side surface of the measuring rod 35 is disposed so as to contact the inner wall surface of the tubular insertion portion 28 or with a slight gap, and the measuring rod 35 is centered on the central axis thereof. It can be rotated.
- a transport device 32 is disposed below the storage tank 31.
- An open / close valve 25 is disposed between the bottom surface of the storage tank 31 and the upper end of the transport device 32, and the inside of the storage tank 31 and the inside of the transport device 32 are connected via the open / close valve 25.
- the generation tank 33 is disposed below the transport device 32, and the lower end of the transport device 32 is attached to the ceiling of the generation tank 33.
- the transport device 32 has a connection pipe.
- the connection pipe is composed of an outer connection pipe 37 and an inner connection pipe 38 disposed inside the outer connection pipe 37, and the upper end of the outer connection pipe 37 is connected to the storage tank 31 via the opening / closing valve 25. It is attached to the bottom of the. Holes are formed in the bottom surface of the storage tank 31 and the ceiling of the generation tank 33 where the outer connecting pipe 37 is attached, and the holes are located inside the outer connecting pipe 37.
- the opening / closing valve 25 is in an open state, the inside of the storage tank 31 and the inside of the generation tank 33 are connected to each other by a hole and an outer connecting pipe 37.
- connection between the storage tank 31 and the outer connection pipe 37 via the opening / closing valve 25 and the connection between the generation tank 33 and the outer connection pipe 37 are hermetically sealed.
- the inside of the tank 31 or the generation tank 33 is evacuated, the inside of the storage tank 31, the inside of the outer connecting pipe 37, and the inside of the generation tank 33 can be made into a vacuum atmosphere.
- the tubular insertion portion 28 passes through the opening / closing valve 25 after the opening / closing valve 25 is opened, and the upper end of the tubular insertion portion 28 is located in the storage tank 31 and the lower end is located in the inner connection tube 38. is doing.
- the opening / closing valve 25 can be closed.
- the atmosphere can be introduced into the storage tank 31 while maintaining the vacuum atmosphere inside the generation tank 33 and the vacuum atmosphere inside the transport device 32.
- the inner connection pipe 38 is vertically arranged inside the outer connection pipe 37, and the upper end thereof is directed toward the storage tank 31, and the lower end is inserted into the generation tank 33 from the hole in the ceiling of the generation tank 33.
- the opening / closing valve 25 is in an open state in a normal apparatus operation state, and the lower portion of the tubular insertion portion 28 extends through the opening / closing valve 25 into the inner connection pipe 38 located in the outer connection pipe 37.
- the lower end of the tubular insertion portion 28 is located in the inner connection pipe 38.
- the lower end of the tubular insertion portion 28 can also be located in the storage tank 31, and in this case, the inner connection pipe 38 is provided. What is necessary is just to extend the upper end of the inside of the storage tank 31.
- the size of the thread groove of the measuring rod 35 is made larger than the particle diameter (powder diameter) of the organic compound, and the organic compound can enter the thread groove.
- the organic compound moves downward in the screw groove.
- the thread groove ends at the lower end or midway of the measuring bar 35, and the measuring bar 35 ends at the midway position of the tubular insertion portion 28.
- Reference numeral 27 in FIG. 2 denotes an extended portion located below the measuring bar 35 in the tubular insertion portion 28.
- the screw groove is not closed at the position of the lower end of the screw groove, the space in the screw groove is connected to the space in the tubular insertion portion 28, and the hole in the lower end of the extension portion 27 of the tubular insertion portion 28 The space inside the tubular insertion portion 28 is connected to the space inside the inner connecting pipe 38.
- a spout 49 is formed at the lower end of the inner connecting pipe 38, and the spout 49 is positioned inside the generation tank 33 at a height that has a gap from the bottom surface of the generation tank 33.
- the edge of the spout 49 is circular and has a diameter of 0.5 mm to 3 mm.
- a heating element 39 is disposed at a position of the bottom surface of the generation tank 33 facing the ejection port 49, and the height of the gap between the ejection port 49 and the heating element 39 is 1 mm to 2 mm.
- the diameter of the ejection port 49 is 0.5 mm
- the height of the gap is 1 mm.
- the organic compound that has moved in the screw groove to its lower end position falls downward from the lower end of the screw groove in the space in the extension portion 27. Then, it enters into the inner connecting pipe 38 from the extended portion 27, passes through the inner connecting pipe 38, and falls from the ejection port 49 onto the heating element 39 located on the bottom surface of the generating tank 33.
- the amount of the organic compound dropped is proportional to the amount of rotation of the measuring rod 35, and a desired amount can be dropped.
- the heating element 39 is energized in advance and heated to a temperature of 300 ° C. or higher and 400 ° C. or lower. Note that the generation tank 33 is disposed in the reflector case, and the heat generated by the heating element 39 is not radiated to the outside of the reflector case.
- the organic compound particles dropped on the bottom surface of the generation tank 33 are heated by heat conduction from the heating element 39 and radiant heat irradiated from the side wall, and are vaporized when the temperature rises above the evaporation temperature of the organic compound.
- An organic compound vapor is generated in 33.
- a gas introduction system 41 is disposed outside the steam generator 30.
- the inner connecting pipe 38 has a portion in contact with the external atmosphere of the transport device 32 at a position above the lower end of the tubular insertion portion 28, and a gas inlet 42 is formed in that portion.
- a gap 36 is formed between the inner connecting pipe 38 and the extended portion 27 of the tubular insertion portion 28 inserted into the inner connecting pipe 38.
- the gap 36 between the inner connecting pipe 38 and the extended portion 27 is closed at the upper end.
- the gas inlet 42 is connected to the gap 36 and is disposed at a position higher than the lower end of the extended portion 27.
- the gas introduction port 42 is connected to a gas introduction system 41 so that the gas supplied by the gas introduction system 41 can be introduced into the gap 36 inside the inner connection pipe 38.
- the inside of the generation tank 33 can be connected to the vapor discharge device 50 by a pipe 43 having a connection valve 20.
- the connection valve 20 is configured to connect or shut off the inside of the generation tank 33 and the inside of the vapor discharge device 50.
- the inside of the film formation tank 10 is connected to a vacuum exhaust system 55, and the inside of the film formation tank 10 is evacuated by the vacuum exhaust system 55 in a state where the inside of the vapor discharge device 50 and the inside of the generation tank 33 are connected by a connection valve. Then, the inside of the generation tank 33 and the inside of the storage tank 31 are evacuated through the vapor discharge device 50 and the connection valve 20.
- the carrier gas and organic compound particles carried by the carrier gas are ejected from the ejection port 49 toward the heating element 39, and the organic compound particles are scattered on the heating element 39. Therefore, the organic compound particles do not harden in one place on the heating element 39, each particle is heated uniformly, and the organic compound particles are vaporized and disappear in a short time.
- the organic compound vapor generated in the generation tank 33 moves to the vapor discharge device 50 through the connection valve 20 by the flow of the carrier gas, and the film formation tank 10 in the vacuum atmosphere from the discharge port 51 of the vapor discharge apparatus 50. Is released inside.
- a film formation target (substrate 5) is disposed at a position facing the discharge port 51 of the vapor discharge device 50, and the organic compound vapor released from the discharge port 51 reaches the surface of the film formation target (substrate 5). As a result, a thin film of an organic compound is formed.
- the organic compound vapor generated in the generation tank 33 enters the inner connecting pipe 38, the organic compound vapor passes through the inner connecting pipe 38 and reaches the lower end of the screw groove, and the organic compound vapor is near the lower end of the screw groove. The organic compound is melted and the particles are fused. This closes the lower end of the thread groove.
- the lower part of the inner connecting pipe 38 that supplies the organic compound 22 into the generation tank 33 is narrowed, and the jet port 49 located at the lower end of the inner connecting pipe 38 has a smaller diameter than the upper side of the inner connecting pipe 38. Since the carrier gas is introduced into the connecting pipe 38 and blown out from the jet outlet 49, the organic compound vapor generated in the generating tank 33 is difficult to enter the inner connecting pipe 38.
- the carrier gas supplied into the inner connecting pipe 38 is supplied at a flow rate that makes the inside connecting pipe 38 have a viscous flow pressure (in the range of 10 Pa to 150 Pa) (as an example, When the jet port 49 at the lower end is 0.5 mm in diameter and supplied with 0.5 to 2 SCCM, the pressure range of the viscous flow is obtained.)
- the carrier gas is in the inner connecting pipe 38 and the lower end of the tubular insertion portion 28. A flow is formed from the upper position toward the jet port 49.
- the pressure in the generation tank 33 is set to a pressure of 1 ⁇ 10 ⁇ 5 Pa or more and 1 ⁇ 10 ⁇ 2 Pa or less. It is larger than the pressure of the atmosphere in the generation tank 33 outside the connection pipe 38.
- the constricted portion of the inner connecting pipe 38 is located in the generation tank 33 and is heated by radiant heat from the wall surface of the generation tank 33.
- the organic compound particles falling in the inner connecting pipe 38 come into contact with the wall surface of the inner connecting pipe 38 in the vicinity of the lower end of the portion where the inner connecting pipe 38 is narrowed, and adhere and melt on the wall of the inner connecting pipe 38. End up.
- the carrier gas flows out from the ejection port 49 as a viscous flow, the molten organic compound 22 is pushed out from the ejection port 49 into the generation tank 33 and the ejection port 49 is not blocked.
- the outer peripheral side surface of the inner connecting pipe 38 and the inner peripheral side surface of the outer connecting pipe 37 are in close contact, and the outer connecting pipe 37 is provided with a cooling passage 52 through which liquid flows.
- the cooling path 52 is a metal pipe, and is wound and fixed by being wound once or a plurality of times on the outer peripheral side surface of the metal outer connecting pipe 37.
- the cooling path 52 is connected to a temperature control / circulation device 53, and a liquid cooling medium cooled to about room temperature is supplied from the temperature control / circulation device 53 to the cooling path 52, and the temperature of the outer connecting pipe 37 is adjusted.
- the cooling medium that has been lowered and raised in temperature returns to the temperature control / circulation device 53.
- the temperature-controlled cooling medium is circulated through the outer connecting pipe 37 so as not to increase the temperature to a high temperature. Therefore, even if the temperature of the wall surface of the generation tank 33 rises, the heat of the generation tank 33 is not conducted to the storage tank 31.
- the inner connecting pipe 38 When the outer connecting pipe 37 is cooled, the inner connecting pipe 38 that is in contact with the outer connecting pipe 37 is indirectly cooled, and even if the organic compound particles contact the inner wall surface of the inner connecting pipe 38, the organic compound particles Does not melt.
- the outer connecting pipe 37 is made of metal
- the inner connecting pipe 38 is made of ceramics (here, quartz) having a lower thermal conductivity than metal. Therefore, even if the lower part of the inner connecting pipe 38 is heated in the generation tank 33, heat is hardly conducted to the upper end part of the inner connecting pipe 38.
- the vacuum exhaust system 54 connected to the storage tank 31 and the vacuum exhaust system 55 connected to the film formation tank 10 are operated in advance.
- the inside of the storage tank 31, the transport device 32, the generation tank 33, and the film formation tank 10 is evacuated to a predetermined pressure. Further, the heating element 39 in the generation tank 33 is energized to raise the temperature.
- the organic thin film manufacturing apparatus 1 has a cooling trap 60, and when the connection valve 20 blocks between the inside of the steam generator 30 and the inside of the steam release apparatus 50, the steam generator 30 is connected by the pipe 44. The inside is connected to the inside of the cooling trap 60.
- a predetermined amount is supplied from the inside of the storage tank 31 onto the heating element 39 while supplying the carrier gas into the inner connection pipe 38 by the gas introduction system 41.
- the organic compound is dropped and an organic compound vapor is generated in the generation tank 33.
- the generated organic compound vapor passes through the connection valve 20, is introduced into the vapor discharge device 50, and is discharged from the discharge port 51 of the vapor discharge device 50 into the film formation tank 10.
- the emitted organic compound vapor reaches the surface of the substrate 5 disposed opposite to the discharge port 51 of the vapor discharge device 50, and an organic thin film is formed.
- the substrate 5 on which the organic thin film is formed is unloaded from the film formation tank 10, an undeposited substrate is loaded, and the organic thin film is formed by the above procedure. If it repeats, the organic thin film of the same composition can be formed one by one on a some board
- a plurality of funnel containers 34 are arranged inside the storage tank 31, and the measuring rods 35 are inserted into the respective funnel containers 34.
- an organic thin film having a predetermined thickness is formed on the substrate by the organic compound 22 in the first funnel container 34, and then the generation tank 33 and the vapor are connected by the connection valve 20.
- the connection of the discharge device 50 is cut off, and the generation tank 33 is connected to the cooling trap 60.
- a cooling plate 62 that is cooled to a temperature of 35 ° C.
- the storage tank 31 is provided with a motor 23, and the plurality of funnel containers 34 are configured to be movable in the vertical direction together with the measuring rod 35 while maintaining the vacuum atmosphere in the storage tank 31 and the transport device 32. Yes.
- the funnel container 34 is moved upward, the extended portion 27 of the tubular insertion portion 28 is extracted from the inner connecting pipe 38, and the open / close valve 25 is closed to store the storage tank 31.
- the storage tank 31 can be opened to the atmosphere while maintaining the vacuum atmosphere inside the transport device 32 and the generation tank 33, and the organic compound powder can be placed in the funnel container 34.
- the inner connecting pipe 38 of the present invention is not limited to quartz, but may be ceramic.
- the organic thin film manufacturing apparatus 1 of the present invention connects a plurality of steam generators 30 to one film formation tank 10 via connection valves 20, and the inside of any one of the steam generators 30. Is connected to the film formation tank 10 to form a film, and the connection valve 20 to be connected is changed, whereby a thin film made of an organic compound vapor purified in each vapor generating device 30 is laminated on the surface of one substrate. Can be made. When films are formed on a plurality of substrates in this way, a desired organic thin film can be laminated on each substrate.
- the said organic material was particle
- liquid organic material will be arrange
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physical Vapour Deposition (AREA)
- Electroluminescent Light Sources (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
Description
貯蔵槽131の内部には、漏斗形状の漏斗容器134が鉛直に配置されている。漏斗容器134は、逆円錐形状の漏斗斜面129と、漏斗形状の中央位置の孔に接続された管である管状挿入部128とを有している。管状挿入部128は鉛直下方に伸びており、管状挿入部128の上端よりも上方位置から管状挿入部128の内部に亘って、計量棒135が鉛直に挿通されている。
貯蔵槽131の下方には発生槽133が配置されており、輸送装置132は貯蔵槽131と発生槽133との間に配置されている。
輸送装置132は外側接続管137を有しており、外側接続管137の上端は貯蔵槽131の底面に取り付けられ、下端は発生槽133の天井に取り付けられており、貯蔵槽131の内部と発生槽133の内部は、外側接続管137によって接続されている。管状挿入部128は外側接続管137に挿入されている。
漏斗容器134に有機材料を供給し、有機材料を計量棒135に形成されたネジ溝の下端から下方に落下させると、漏斗容器134の管状挿入部128内を通って、発生槽133の底面上に落下して発生槽133の底面上に配置された発熱体139によって有機材料が加熱され、有機材料蒸気が発生する。
この有機材料蒸気は、発生槽133に接続されたガス導入系141から発生槽133内に導入されるキャリアガスによって発生槽133の外部へ供給される。
従来の蒸気発生装置130では、発生槽133内で発生した有機材料蒸気が管状挿入部128内に逆流してしまうという問題が生じていた。
また、本発明は、前記貯蔵槽内には、漏斗形状の漏斗状容器が、前記漏斗形状の斜面を上に向け、漏斗形状の中央に位置する孔に接続された管状の管状挿入部を下に向けて前記接続配管に挿入され、前記管状挿入部の下端は前記接続配管内に位置し、前記斜面上には、有機材料の粉体が配置され、前記漏斗状容器内の前記有機材料は、前記管状挿入部の下端から前記接続配管の内部を通って前記発生槽に供給されるようにされ、前記導入口は、前記接続配管内で、前記管状挿入部と前記接続配管の間に前記気体を供給するように形成され、供給される前記気体は、前記管状挿入部と前記接続配管の間の隙間を通って前記発生槽に導入されるように構成された有機化合物蒸気発生装置である。
本発明は、前記漏斗状容器には、下端が開放されたネジ溝が側面に螺旋状に形成された計量棒が、前記ネジ溝の下端が前記管状挿入部内に位置するように挿通され、前記計量棒の回転によって前記有機材料が前記ネジ溝内を移動して落下し、前記管状挿入部から前記輸送装置内に供給されるように構成された有機化合物蒸気発生装置である。
さらに、本発明は、前記接続配管は、外側接続管と、内側接続管を有し、前記内側接続管は、前記外側接続管の内部に配置され、下端が前記発生槽内に配置され、前記管状挿入部は、前記内側接続管内に挿入され、前記管状挿入部の下端は前記内側接続管内に配置された有機化合物蒸気発生装置である。
さらに、本発明は、前記内側接続管の熱導伝率は、前記外側接続管の熱導伝率よりも低くされた有機化合物蒸気発生装置である。
本発明は、前記外側接続管には、冷却媒体が流通する冷却路が設けられた有機化合物蒸気発生装置である。
本発明は、前記内側接続管は、前記発生槽内に位置する先端部分が先窄まりに形成された有機化合物蒸気発生装置である。
本発明は、前記管状挿入部は、下端が前記内側接続管内に位置し、前記管状挿入部と前記内側接続管との間には隙間が形成され、前記気体は前記ガス導入口から前記隙間に導入され、導入された前記気体は、前記ガス導入口から前記管状挿入部の下端に向かって流れるように構成された有機化合物蒸気発生装置である。
本発明は、各前記漏斗状容器は前記内側接続管に対して上下移動して前記内側接続管内から挿抜可能に構成され、前記貯蔵槽と前記輸送装置との間には、前記管状挿入部を前記内側接続管内から抜去したときに、前記貯蔵槽内部と前記輸送装置内部とを遮断可能な開閉バルブが設けられた化合物蒸気発生装置である。
本発明は、前記貯蔵槽の内部には、前記有機化合物の液体が配置される液体供給容器と、前記液体供給容器内の前記有機化合物を前記輸送装置に供給する吐出装置とが設けられた有機化合物蒸気発生装置である。
また、本発明は、成膜槽と、前記成膜槽内に配置された放出装置と、上記に記載の有機化合物蒸気発生装置とを有し、前記放出装置の内部と前記有機化合物蒸気発生装置の内部とは、前記有機化合物蒸気の導通・遮断を切換える接続バルブを介して接続され、前記貯蔵槽から前記輸送装置を通って前記発生槽に移動した有機材料は、前記発生槽で加熱されて有機材料ガスを発生させ、発生した前記有機材料ガスは前記放出装置から前記成膜槽内に放出される有機薄膜製造装置である。
さらに、本発明は、前記接続バルブは、前記接続バルブが前記放出装置内部と前記発生槽内部とを遮断状態にするときに、前記発生槽内部を、有機化合物蒸気を固着させる固着装置に接続する有機薄膜製造装置である。
5……基板
10……成膜槽
20……接続バルブ
27……延長部分
28……管状挿入部
29……漏斗斜面
30……蒸気発生装置
31……貯蔵槽
32……輸送装置
33……発生槽
34……漏斗容器
35……計量棒
36……隙間
37……外側接続管
38……内側接続管
39……発熱体
41……ガス導入系
42……ガス導入口
49……噴出口
50……蒸気放出装置
51……放出口
52……冷却路
53……温度制御・循環装置
54,55……真空排気系
60……冷却トラップ
61……冷却装置
62……冷却板
この有機薄膜製造装置1は、成膜槽10と、蒸気発生装置30と、蒸気放出装置50とを有している。
蒸気放出装置50は成膜槽10の内部に配置されている。蒸気発生装置30は、蒸気放出装置50と接続バルブ20を介して接続されており、接続バルブ20が導通状態になると、蒸気発生装置30内で生成された有機化合物の蒸気が蒸気放出装置50に供給されるように構成されている。蒸気放出装置50に供給された有機化合物蒸気は、蒸気放出装置50の複数の放出口51から真空雰囲気にされた成膜槽10内に放出される。
貯蔵槽31の内部には、漏斗形状の漏斗容器34が鉛直に配置されている。漏斗容器34は、上端の漏斗開口部分が大径であり、中央に近づくにつれて小径になりながら下方に傾斜する逆円錐形状の漏斗斜面29と、その漏斗斜面29の下端である漏斗形状の中央に孔を有しており、この孔に上端が接続された管である管状挿入部28とを有している。図1、2の符号22は、この漏斗容器34内の漏斗斜面29上に配置された有機化合物の粉体を示している。
計量棒35には、その側面に、管状挿入部28の上端よりも上方から管状挿入部28の内部に到るまで螺旋状のネジ溝が形成されている。
計量棒35側面のネジ溝の間のネジ山の頂上は、管状挿入部28の内壁面と接触するか、又は僅かな隙間を開けて配置されており、計量棒35がその中心軸線を中心として回転できるようにされている。
貯蔵槽31の下方には輸送装置32が配置されている。貯蔵槽31の底面と輸送装置32の上端の間には開閉バルブ25が配置されており、貯蔵槽31の内部と輸送装置32の内部とは開閉バルブ25を介して接続されている。
発生槽33は、輸送装置32の下方に配置されており、輸送装置32の下端は発生槽33の天井に取り付けられている。
この接続配管は、外側接続管37と、外側接続管37の内部に配置された内側接続管38とで構成されており、外側接続管37の上端は、開閉バルブ25を介して、貯蔵槽31の底面に取り付けられている。
貯蔵槽31の底面と発生槽33の天井の、外側接続管37が取り付けられた位置には、それぞれ孔が形成され、孔は外側接続管37の内側に位置している。開閉バルブ25が開状態では、貯蔵槽31の内部と発生槽33の内部は、孔と外側接続管37によって接続されている。
管状挿入部28は、開閉バルブ25が開状態にされた後に、開閉バルブ25を貫通しており、管状挿入部28の上端は貯蔵槽31内に位置し、下端は内側接続管38内に位置している。
開閉バルブ25が閉状態では、発生槽33内部の真空雰囲気と、輸送装置32内部の真空雰囲気を維持しながら、貯蔵槽31の内部に大気を導入することができる。
この例では、通常の装置運転状態では開閉バルブ25は開状態であり、管状挿入部28の下部は、開閉バルブ25を通って外側接続管37内に位置する内側接続管38の内部に延びており、管状挿入部28の下端が内側接続管38内に位置するようにされている なお、管状挿入部28の下端は貯蔵槽31内に位置することもでき、その場合は、内側接続管38の上端が貯蔵槽31の内部に延びればよい。
ネジ溝の下端の位置ではネジ溝は閉塞されておらず、ネジ溝内の空間は管状挿入部28内の空間に接続されており、管状挿入部28の延長部分27の下端が有する孔によって、管状挿入部28内部の空間は内側接続管38内部の空間に接続されている。
従って、ネジ溝内をその下端位置まで移動した有機化合物は、ネジ溝の下端から延長部分27内の空間を下方に落下する。そして、延長部分27から内側接続管38内に入り、内側接続管38内を通って、噴出口49から発生槽33の底面上に位置する発熱体39上に落下する。有機化合物の落下量は計量棒35の回転量に比例しており、所望量を落下させることができる。
蒸気発生装置30の外部には、ガス導入系41が配置されている。
内側接続管38は、管状挿入部28の下端よりも上方位置に、輸送装置32の外部雰囲気に接する部分を有しており、その部分にはガス導入口42が形成されている。
ガス導入口42は、隙間36に接続されており延長部分27の下端よりも高い位置に配置されている。
このガス導入口42はガス導入系41に接続されており、ガス導入系41が供給する気体を内側接続管38の内部の隙間36内に導入できるようにされている。
接続バルブ20は発生槽33の内部と蒸気放出装置50の内部を接続又は遮断のいずれかにするように構成されている。成膜槽10内部は真空排気系55に接続されており、接続バルブによって蒸気放出装置50内部と発生槽33内部とを接続した状態で、真空排気系55によって成膜槽10内部が真空排気されると、蒸気放出装置50と接続バルブ20を介して、発生槽33の内部と貯蔵槽31の内部が真空排気される。
ネジ溝下端位置から落下した有機化合物粒子は、延長部分27の下端から内側接続管38内に落下すると、キャリアガスの流れに乗って噴出口49に向かって流れ、内側接続管38の内壁面に付着しないようになっている。
発生槽33内で生成された有機化合物蒸気は、キャリアガスの流れによって接続バルブ20を介して蒸気放出装置50に移動し、蒸気放出装置50の放出口51から、真空雰囲気にある成膜槽10内に放出される。
蒸気放出装置50の放出口51と対面する位置には成膜対象物(基板5)が配置されており、放出口51から放出された有機化合物蒸気は成膜対象物(基板5)表面に到達し、有機化合物の薄膜が形成される。
発生槽33内で発生した有機化合物蒸気が内側接続管38内に侵入すると、有機化合物蒸気は内側接続管38内を通ってネジ溝の下端に到達し、有機化合物蒸気はネジ溝の下端付近の有機化合物を溶融させ、粒子同士を融着させる。これではネジ溝の下端が閉塞してしまう。
また、内側接続管38内に供給されるキャリアガスは、内側接続管38内を粘性流の圧力(10Pa以上150Pa以下の範囲)にする流量で供給されており(一例として、内側接続管38の下端の噴出口49が直径0.5mmのとき、0.5~2SCCMで供給すると、上記粘性流の圧力範囲になる。)、キャリアガスは、内側接続管38内で、管状挿入部28の下端よりも上方位置から噴出口49に向かって流れを形成している。
成膜槽10の真空排気により、発生槽33内の圧力は1×10-5Pa以上1×10-2Pa以下の圧力にされており、従って、内側接続管38の内部の圧力は、内側接続管38の外部の発生槽33内の雰囲気の圧力よりも大きい。
内側接続管38の窄まった部分は発生槽33内に位置しており、発生槽33の壁面からの放射熱によって加熱されている。
内側接続管38内を落下する有機化合物の粒子が内側接続管38の窄まった部分の下端付近で内側接続管38の壁面と接触し、そこに付着して溶融すると噴出口49が閉塞してしまう。本発明はキャリアガスが粘性流で噴出口49から流出しているため、溶融した有機化合物22は噴出口49から発生槽33内に押し出され、噴出口49が閉塞することはない。
冷却路52は、温度制御・循環装置53に接続されており、温度制御・循環装置53から、室温程度に冷却された液状の冷却媒体が冷却路52に供給され、外側接続管37の温度を低下させて昇温した冷却媒体が温度制御・循環装置53に戻る。このように、外側接続管37には、温度制御された冷却媒体が循環され、高温に昇温しないようにされている。
従って、発生槽33の壁面が昇温しても、発生槽33の熱は貯蔵槽31に伝導されない。
また、外側接続管37が金属で構成されているのに対し、内側接続管38は金属よりも熱伝導率の低いセラミックス(ここでは石英)で形成されている。
従って、内側接続管38の下部が発生槽33内で加熱されても、内側接続管38の上端部には熱が伝導されにくいようになっている。
また、有機薄膜製造装置1は、冷却トラップ60を有しており、接続バルブ20が蒸気発生装置30内部と蒸気放出装置50内部との間を遮断するときに、配管44によって、蒸気発生装置30内部が冷却トラップ60内部に接続されるようになっている。
接続バルブ20によって発生槽33内部を蒸気放出装置50内部に接続した状態で、ガス導入系41によって内側接続管38内にキャリアガスを供給しながら貯蔵槽31内から発熱体39上に所定量の有機化合物を落下させ、発生槽33内で有機化合物蒸気を発生させる。
発生した有機化合物の蒸気は、接続バルブ20を通過して蒸気放出装置50に導入され、蒸気放出装置50の放出口51から成膜槽10内に放出される。放出された有機化合物蒸気は、蒸気放出装置50の放出口51と対向配置された基板5の表面に到達し、有機薄膜が形成される。
上記の有機薄膜が基板5の表面に形成された後、有機薄膜が形成された基板5を成膜槽10から搬出し、未成膜の基板を搬入し、上記手順で有機薄膜を形成することを繰り返すと、複数の基板に同じ組成の有機薄膜を一層ずつ形成することができる。
複数の基板に多層の有機薄膜を形成する場合は、先ず、最初の漏斗容器34内の有機化合物22によって基板上に所定膜厚の有機薄膜を形成した後、接続バルブ20によって発生槽33と蒸気放出装置50の接続を遮断し、発生槽33を冷却トラップ60に接続する。
冷却トラップ60内には、冷却媒体を循環させる冷却装置61によって35℃以下の温度に冷却される冷却板62が配置されており、冷却トラップ60内に侵入した有機化合物蒸気は冷却板62上に固着されて排気され、有機化合物蒸気は発生槽33内や配管内から除去される。
貯蔵槽31にはモータ23が設けられており、複数の漏斗容器34は、貯蔵槽31内や輸送装置32内の真空雰囲気を維持したまま、計量棒35と共に上下方向に移動可能に構成されている。
漏斗容器34内の有機化合物の粉体が消費されると、漏斗容器34を上方に移動させ、管状挿入部28の延長部分27を内側接続管38から抜き出し、開閉バルブ25を閉じると貯蔵槽31の内部が輸送装置32及や発生槽33の内部から切り離される。輸送装置32や発生槽33の内部の真空雰囲気を維持したまま、貯蔵槽31を大気に開放し、漏斗容器34内に有機化合物の粉体を配置することができる。
また、本発明の有機薄膜製造装置1は、1個の成膜槽10に、複数の蒸気発生装置30を、それぞれ接続バルブ20を介して接続し、いずれか1個の蒸気発生装置30の内部を成膜槽10に接続して成膜を行い、接続状態になる接続バルブ20を変更することで、各蒸気発生装置30内で精製される有機化合物蒸気による薄膜を一枚の基板表面に積層させることができる。
このように複数の基板に対して成膜すると、各基板に所望の有機薄膜を積層させることができる。
なお、上記有機材料は粒子であったが、所望量を所望時に発生槽33に供給することができれば、貯蔵槽31に液体状の有機材料を配置しておき、内側接続管38内に気体を導入しながら、液体状の有機材料を貯蔵槽31から発生槽33に供給するようにしてもよい。
Claims (12)
- 有機材料が配置された貯蔵槽と、
前記有機材料を加熱して前記有機材料の蒸気を発生させる発生槽と
前記貯蔵槽内の前記有機材料を前記発生槽に供給する輸送装置とを有する有機化合物蒸気発生装置であって、
前記輸送装置は、
前記貯蔵槽の内部雰囲気と前記発生槽の内部雰囲気とを気密に接続し、前記貯蔵槽内の前記有機材料を通過させ、前記発生槽内に移動させる接続配管と、
前記接続配管に形成され、気体を供給するガス導入系に接続されると前記気体は、前記接続配管内に導入されるガス導入口とを有する有機化合物蒸気発生装置。 - 前記貯蔵槽内には、漏斗形状の漏斗状容器が、前記漏斗形状の斜面を上に向け、漏斗形状の中央に位置する孔に接続された管状の管状挿入部を下に向けて前記接続配管に挿入され、
前記管状挿入部の下端は前記接続配管内に位置し、
前記斜面上には、有機材料の粉体が配置され、前記漏斗状容器内の前記有機材料は、前記管状挿入部の下端から前記接続配管の内部を通って前記発生槽に供給されるように構成され、
前記導入口は、前記接続配管内で、前記管状挿入部と前記接続配管の間に前記気体を供給するように形成され、供給される前記気体は、前記管状挿入部と前記接続配管の間の隙間を通って前記発生槽に導入されるように構成された請求項1記載の有機化合物蒸気発生装置。 - 前記漏斗状容器には、下端が開放されたネジ溝が側面に螺旋状に形成された計量棒が、前記ネジ溝の下端が前記管状挿入部内に位置するように挿通され、前記計量棒の回転によって前記有機材料が前記ネジ溝内を移動して落下し、前記管状挿入部から前記輸送装置内に供給されるように構成された請求項2記載の有機化合物蒸気発生装置。
- 前記接続配管は、外側接続管と、内側接続管を有し、
前記内側接続管は、前記外側接続管の内部に配置され、下端が前記発生槽内に配置され、
前記管状挿入部は、前記内側接続管内に挿入され、前記管状挿入部の下端は前記内側接続管内に配置された請求項2記載の有機化合物蒸気発生装置。 - 前記内側接続管の熱導伝率は、前記外側接続管の熱導伝率よりも低くされた請求項4記載の有機化合物蒸気発生装置。
- 前記外側接続管には、冷却媒体が流通する冷却路が設けられた請求項4記載の有機化合物蒸気発生装置。
- 前記内側接続管は、前記発生槽内に位置する先端部分が先窄まりに形成された請求項4記載の有機化合物蒸気発生装置。
- 前記管状挿入部は、下端が前記内側接続管内に位置し、前記管状挿入部と前記内側接続管との間には隙間が形成され、
前記気体は前記ガス導入口から前記隙間に導入され、導入された前記気体は、前記ガス導入口から前記管状挿入部の下端に向かって流れるように構成された請求項4記載の有機化合物蒸気発生装置。 - 各前記漏斗状容器は前記内側接続管に対して上下移動して前記内側接続管内から挿抜可能に構成され、
前記貯蔵槽と前記輸送装置との間には、前記管状挿入部を前記内側接続管内から抜去したときに、前記貯蔵槽内部と前記輸送装置内部とを遮断可能な開閉バルブが設けられた請求項4記載の有機化合物蒸気発生装置。 - 前記貯蔵槽の内部には、前記有機化合物の液体が配置される液体供給容器と、
前記液体供給容器内の前記有機化合物を前記輸送装置に供給する吐出装置とが設けられた請求項1記載の有機化合物蒸気発生装置。 - 成膜槽と、
前記成膜槽内に配置された放出装置と、
請求項1乃至10のいずれか1項記載の有機化合物蒸気発生装置とを有し、
前記放出装置の内部と前記有機化合物蒸気発生装置の内部とは、前記有機化合物蒸気の導通・遮断を切換える接続バルブを介して接続され、
前記貯蔵槽から前記輸送装置を通って前記発生槽に移動した有機材料は、前記発生槽で加熱されて有機材料ガスを発生させ、発生した前記有機材料ガスは前記放出装置から前記成膜槽内に放出される有機薄膜製造装置。 - 前記接続バルブは、前記接続バルブが前記放出装置内部と前記発生槽内部とを遮断状態にするときに、前記発生槽内部を、有機化合物蒸気を固着させる固着装置に接続する請求項11記載の有機薄膜製造装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020117012698A KR101286803B1 (ko) | 2009-02-24 | 2010-02-23 | 유기 화합물 증기 발생 장치 및 유기 박막 제조 장치 |
JP2011501595A JP5186591B2 (ja) | 2009-02-24 | 2010-02-23 | 有機化合物蒸気発生装置及び有機薄膜製造装置 |
CN201080003478XA CN102239275B (zh) | 2009-02-24 | 2010-02-23 | 有机化合物蒸汽发生装置及有机薄膜制造装置 |
EP10746189.9A EP2402480A4 (en) | 2009-02-24 | 2010-02-23 | DEVICE FOR GENERATING ORGANIC COMPOUND VAPOR AND DEVICE FOR MAKING ORGANIC FINE MEMBRANE |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009041071 | 2009-02-24 | ||
JP2009-041071 | 2009-02-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010098308A1 true WO2010098308A1 (ja) | 2010-09-02 |
Family
ID=42665515
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/052734 WO2010098308A1 (ja) | 2009-02-24 | 2010-02-23 | 有機化合物蒸気発生装置及び有機薄膜製造装置 |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP2402480A4 (ja) |
JP (1) | JP5186591B2 (ja) |
KR (1) | KR101286803B1 (ja) |
CN (1) | CN102239275B (ja) |
TW (1) | TWI438292B (ja) |
WO (1) | WO2010098308A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8986598B2 (en) | 2012-03-30 | 2015-03-24 | Korea Institute Of Science And Technology | Alumina-coated spinel-silicon carbide refractory composition with high corrosion resistance to coal slag and method for manufacturing the same |
JP2016098417A (ja) * | 2014-11-21 | 2016-05-30 | 株式会社カネカ | 蒸着装置、及び有機el装置の製造方法 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101364835B1 (ko) * | 2012-06-20 | 2014-02-25 | 주식회사 야스 | 고온 증발원 및 그 제조방법 |
CN104711514B (zh) * | 2015-04-07 | 2017-05-31 | 合肥京东方光电科技有限公司 | 一种成膜装置及方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1133390A (ja) * | 1997-07-17 | 1999-02-09 | Matsushita Electric Ind Co Ltd | 粉末原料気化装置 |
JP2003226961A (ja) | 2002-02-04 | 2003-08-15 | Sanyo Shinku Kogyo Kk | 連続蒸着装置 |
JP2005259723A (ja) * | 2004-02-13 | 2005-09-22 | Utec:Kk | 原料溶液吐出器、cvd用気化器、溶液気化式cvd装置、流量制御方法及び薄膜形成方法 |
JP2005328085A (ja) * | 2005-07-26 | 2005-11-24 | Watanabe Shoko:Kk | Mocvd用気化器及び原料溶液の気化方法 |
JP2006307239A (ja) | 2005-04-26 | 2006-11-09 | Hitachi Zosen Corp | 蒸着材料の蒸発装置 |
JP2007100207A (ja) * | 2005-09-09 | 2007-04-19 | Lintec Co Ltd | 低温度で液体原料を気化させることのできる液体原料の気化方法および該方法を用いた気化器 |
JP2008244017A (ja) * | 2007-03-26 | 2008-10-09 | Ulvac Japan Ltd | 半導体装置の製造方法 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01133390A (ja) * | 1987-11-18 | 1989-05-25 | Hitachi Ltd | 電子装置 |
US5820678A (en) * | 1997-05-30 | 1998-10-13 | The Regents Of The University Of California | Solid source MOCVD system |
JP2001247967A (ja) * | 1999-12-30 | 2001-09-14 | Applied Materials Inc | ジルコン酸チタン酸鉛膜の有機メタル化学気相堆積 |
JP4044515B2 (ja) * | 2003-11-28 | 2008-02-06 | 富士通株式会社 | エアロゾルデポジッション成膜装置 |
US7213347B2 (en) * | 2005-05-03 | 2007-05-08 | Eastman Kodak Company | Metering material to promote rapid vaporization |
US20070098891A1 (en) * | 2005-10-31 | 2007-05-03 | Eastman Kodak Company | Vapor deposition apparatus and method |
WO2007135870A1 (ja) * | 2006-05-19 | 2007-11-29 | Ulvac, Inc. | 有機蒸着材料用蒸着装置、有機薄膜の製造方法 |
WO2008105287A1 (ja) * | 2007-02-28 | 2008-09-04 | Ulvac, Inc. | 蒸着源、蒸着装置、有機薄膜の成膜方法 |
JP5081899B2 (ja) * | 2007-03-26 | 2012-11-28 | 株式会社アルバック | 蒸着源、蒸着装置、成膜方法 |
JP5114288B2 (ja) * | 2008-05-16 | 2013-01-09 | 株式会社アルバック | 成膜装置、有機薄膜形成方法 |
-
2010
- 2010-02-23 JP JP2011501595A patent/JP5186591B2/ja active Active
- 2010-02-23 KR KR1020117012698A patent/KR101286803B1/ko active IP Right Grant
- 2010-02-23 CN CN201080003478XA patent/CN102239275B/zh active Active
- 2010-02-23 WO PCT/JP2010/052734 patent/WO2010098308A1/ja active Application Filing
- 2010-02-23 EP EP10746189.9A patent/EP2402480A4/en not_active Withdrawn
- 2010-02-24 TW TW099105358A patent/TWI438292B/zh active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1133390A (ja) * | 1997-07-17 | 1999-02-09 | Matsushita Electric Ind Co Ltd | 粉末原料気化装置 |
JP2003226961A (ja) | 2002-02-04 | 2003-08-15 | Sanyo Shinku Kogyo Kk | 連続蒸着装置 |
JP2005259723A (ja) * | 2004-02-13 | 2005-09-22 | Utec:Kk | 原料溶液吐出器、cvd用気化器、溶液気化式cvd装置、流量制御方法及び薄膜形成方法 |
JP2006307239A (ja) | 2005-04-26 | 2006-11-09 | Hitachi Zosen Corp | 蒸着材料の蒸発装置 |
JP2005328085A (ja) * | 2005-07-26 | 2005-11-24 | Watanabe Shoko:Kk | Mocvd用気化器及び原料溶液の気化方法 |
JP2007100207A (ja) * | 2005-09-09 | 2007-04-19 | Lintec Co Ltd | 低温度で液体原料を気化させることのできる液体原料の気化方法および該方法を用いた気化器 |
JP2008244017A (ja) * | 2007-03-26 | 2008-10-09 | Ulvac Japan Ltd | 半導体装置の製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2402480A4 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8986598B2 (en) | 2012-03-30 | 2015-03-24 | Korea Institute Of Science And Technology | Alumina-coated spinel-silicon carbide refractory composition with high corrosion resistance to coal slag and method for manufacturing the same |
JP2016098417A (ja) * | 2014-11-21 | 2016-05-30 | 株式会社カネカ | 蒸着装置、及び有機el装置の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
KR20110083705A (ko) | 2011-07-20 |
TW201100568A (en) | 2011-01-01 |
CN102239275B (zh) | 2013-10-30 |
JP5186591B2 (ja) | 2013-04-17 |
KR101286803B1 (ko) | 2013-07-17 |
CN102239275A (zh) | 2011-11-09 |
JPWO2010098308A1 (ja) | 2012-08-30 |
EP2402480A1 (en) | 2012-01-04 |
TWI438292B (zh) | 2014-05-21 |
EP2402480A4 (en) | 2013-11-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6639580B2 (ja) | 蒸発器、堆積アレンジメント、堆積装置及びこれらを操作する方法 | |
KR102137181B1 (ko) | 증착 배열체, 증착 장치 및 그의 동작 방법들 | |
JP4871833B2 (ja) | 蒸着源、蒸着装置 | |
TWI781929B (zh) | 瀉流單元和含有瀉流單元的沉積系統以及相關方法 | |
EP2025773A1 (en) | Vacuum evaporation apparatus for solid materials | |
JP5186591B2 (ja) | 有機化合物蒸気発生装置及び有機薄膜製造装置 | |
JP2009299081A (ja) | 蒸発装置、成膜装置、有機薄膜形成方法 | |
JPWO2009034916A1 (ja) | 蒸気放出装置、有機薄膜蒸着装置及び有機薄膜蒸着方法 | |
JP2007284788A (ja) | 蒸着源および蒸着装置 | |
US20090020070A1 (en) | Vacuum evaporation apparatus for solid materials | |
CN105861991A (zh) | 一种线性加热源 | |
CN101688290A (zh) | 用于固态材料的真空蒸发设备 | |
KR20090015324A (ko) | 금속성 박막 증착용 선형 하향식 고온 증발원 | |
JP4974877B2 (ja) | 成膜源、成膜装置 | |
JP4344631B2 (ja) | 有機物薄膜堆積用分子線源 | |
JP7044542B2 (ja) | 有機薄膜製造装置、蒸発源 | |
JP4996452B2 (ja) | 成膜源、成膜装置 | |
JP2020143315A (ja) | 固体材料容器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080003478.X Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10746189 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2011501595 Country of ref document: JP Kind code of ref document: A Ref document number: 20117012698 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010746189 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |