WO2010098250A1 - パッケージの製造方法、圧電振動子の製造方法、発振器、電子機器および電波時計 - Google Patents

パッケージの製造方法、圧電振動子の製造方法、発振器、電子機器および電波時計 Download PDF

Info

Publication number
WO2010098250A1
WO2010098250A1 PCT/JP2010/052456 JP2010052456W WO2010098250A1 WO 2010098250 A1 WO2010098250 A1 WO 2010098250A1 JP 2010052456 W JP2010052456 W JP 2010052456W WO 2010098250 A1 WO2010098250 A1 WO 2010098250A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate wafer
hole
forming substrate
core
electrode
Prior art date
Application number
PCT/JP2010/052456
Other languages
English (en)
French (fr)
Inventor
理志 沼田
一義 須釜
浩 樋口
Original Assignee
セイコーインスツル株式会社
エヌ・エス・ジー・プレシジョン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セイコーインスツル株式会社, エヌ・エス・ジー・プレシジョン株式会社 filed Critical セイコーインスツル株式会社
Priority to CN2010800106650A priority Critical patent/CN102356546A/zh
Priority to JP2011501565A priority patent/JPWO2010098250A1/ja
Publication of WO2010098250A1 publication Critical patent/WO2010098250A1/ja
Priority to US13/215,734 priority patent/US20110305119A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/10Mounting in enclosures
    • H03H9/1007Mounting in enclosures for bulk acoustic wave [BAW] devices
    • H03H9/1014Mounting in enclosures for bulk acoustic wave [BAW] devices the enclosure being defined by a frame built on a substrate and a cap, the frame having no mechanical contact with the BAW device
    • H03H9/1021Mounting in enclosures for bulk acoustic wave [BAW] devices the enclosure being defined by a frame built on a substrate and a cap, the frame having no mechanical contact with the BAW device the BAW device being of the cantilever type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/42Piezoelectric device making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing

Definitions

  • the present invention relates to a method of manufacturing a package comprising a plurality of substrates bonded to each other, a cavity formed inside the plurality of substrates, and a through electrode that conducts between the inside of the cavity and the outside of the plurality of substrates.
  • the present invention relates to a piezoelectric vibrator in which a vibrating piece is mounted on a through electrode and disposed inside a cavity, an oscillator having a piezoelectric vibrator, an electronic device, and a radio timepiece.
  • a piezoelectric vibrator using a crystal or the like as a timing source such as a time source or a control signal, a reference signal source, or the like is used in a mobile phone or a portable information terminal device.
  • Various piezoelectric vibrators of this type are known, and one of them is a surface-mount type piezoelectric vibrator.
  • As this main piezoelectric vibrator a three-layer structure type in which a piezoelectric substrate on which a piezoelectric vibrating piece is formed is joined so as to be sandwiched from above and below by a base substrate and a lid substrate is known. In this case, the piezoelectric vibrating piece is accommodated in a cavity (sealed chamber) formed between the base substrate and the lid substrate.
  • This type of piezoelectric vibrator has a two-layer structure in which a package is directly bonded to a base substrate and a lid substrate, and a piezoelectric vibrating piece is accommodated in a cavity formed between the two substrates. .
  • This two-layer structure type piezoelectric vibrator is excellent in that it can be made thinner than the three-layer structure, and is preferably used.
  • a through electrode is formed by filling a conductive material such as silver paste into a through hole formed in a glass base substrate and firing it,
  • a crystal resonator and an external electrode provided on the outside of a base substrate are electrically connected.
  • the organic matter such as resin in the silver paste is removed by firing to reduce the volume, so that a recess is formed on the surface of the through electrode or a hole is formed in the through electrode.
  • the recessed part and hole of this penetration electrode may cause the fall of the airtightness in a cavity, and the deterioration of electroconductivity with a piezoelectric vibrating piece and an external electrode.
  • a method of forming a through electrode using a metal pin made of a metal material has been developed.
  • metal pins are inserted into the through holes formed in the through electrode forming wafer, the through holes are filled with glass frit, and the glass frit is baked to integrate the base substrate wafer and the metal pins. I am letting.
  • a metal pin for the through electrode, stable conductivity can be ensured.
  • the organic binder contained in the glass frit is removed by firing, a concave portion due to volume reduction may occur on the surface of the glass frit. The concave portion of the glass frit sometimes causes disconnection in the subsequent step of forming the electrode film.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to provide a package manufacturing method capable of preventing a recess from being formed around a through electrode.
  • the present invention employs the following means. That is, in the package manufacturing method according to the present invention, a plurality of substrates bonded to each other, a cavity formed inside the plurality of substrates, and a through hole that conducts between the inside of the cavity and the outside of the plurality of substrates.
  • An electrode, and the through electrode is a manufacturing method of a package formed by disposing a conductive core portion made of a metal material in a hole portion of a through electrode forming substrate made of a glass material, A hole forming step for forming the hole portion for inserting the core portion into the formation substrate wafer, and a core portion insertion for inserting the core portion into the hole portion formed in the through electrode formation substrate wafer.
  • a cooling step of cooling the through electrode forming substrate wafer by heating and welding the through electrode forming substrate wafer to the core member, and in the welding step, the through electrode Formation By placing a pressure mold on the surface of the plate wafer and pressing the through electrode formation substrate wafer with the pressure mold, and heating the through electrode formation substrate wafer to a temperature higher than the softening point of the glass material, The through electrode forming substrate wafer is welded to the core member.
  • the through electrode forming substrate wafer and the core material portion are pressed with a pressure mold, and the through electrode forming substrate wafer is heated to weld the through electrode forming substrate wafer to the core material portion.
  • the through electrode can be formed of a material that does not contain the binder. Therefore, there is no volume reduction associated with the removal of the organic substance, and it is possible to prevent a recess from being formed around the through electrode.
  • the manufacturing method of the package which concerns on this invention is more than the cooling rate from the heating temperature in the said welding process to the strain point +50 degreeC of the said glass material which comprises the said wafer for through-electrode formation board
  • the cooling rate from the strain point + 50 ° C. to the strain point ⁇ 50 ° C. is slow.
  • the cooling rate from the strain point + 50 ° C. to the strain point ⁇ 50 ° C. is set lower than the cooling rate from the heating temperature in the welding step to the strain point + 50 ° C. of the glass material constituting the through electrode forming substrate wafer. ing.
  • the through-electrode forming substrate wafer is heated to a softening point higher than the strain point. Therefore, if the cooling is rapidly performed in the cooling process, the through-electrode forming substrate wafer may remain strained. Therefore, by reducing the cooling rate in the range of strain point ⁇ 50 ° C., it is possible to prevent distortion from occurring in the through electrode forming substrate wafer.
  • a through hole is formed as the hole portion, and the pressurizing die has a concave portion into which an upper end portion of the core member portion can be inserted,
  • the bottom portion of the concave portion is formed so as to be separated from the upper end portion of the core member portion when the through-electrode forming substrate wafer is pressed by the pressurizing die.
  • the bottom portion of the pressurizing die is formed so as to be separated from the upper end portion of the core member when the through electrode forming substrate wafer is pressed by the pressurizing die, so that the expansion of the core member due to heating is released. Can do.
  • no pressure is applied from the pressure die to the core member during pressing, and cracks and chips can be prevented from being generated in the through hole forming substrate wafer due to deformation and displacement of the core member.
  • the pressurizing mold is formed of a material mainly containing any of carbon, aluminum oxide, zirconia, boron nitride, and silicon nitride.
  • the pressurization mold is made of a material mainly composed of any of carbon, aluminum oxide, zirconia, boron nitride, and silicon nitride, so that the pressurization mold can be prevented from being deformed at a high temperature.
  • the mold release from the pressurization type through electrode forming substrate wafer is good and the workability is good.
  • the through electrode forming substrate wafer is pressed with a hole forming mold made of a carbon material and having a convex portion corresponding to the hole.
  • the hole portion is formed by heating the through electrode forming substrate wafer.
  • the hole since the hole is formed using the hole forming mold, the hole can be formed easily and accurately.
  • the hole forming mold is formed of a carbon material, the glass material of the softened through electrode forming substrate wafer does not adhere to the hole forming mold, and the cured through electrode forming substrate wafer is not bonded to the hole forming mold. Easy to remove from the mold and good workability.
  • the hole forming die adsorbs the gas generated from the through electrode forming substrate wafer, Since it is possible to prevent the porous electrode forming substrate wafer from being porous, airtightness in the cavity can be ensured.
  • a conductive casing having a flat base portion and the core portion erected on the surface of the base portion in the core material portion insertion step, a conductive casing having a flat base portion and the core portion erected on the surface of the base portion.
  • the core part is inserted into a hole formed in the through electrode forming substrate wafer, and a base portion of the casing is brought into contact with the through electrode forming substrate wafer. It is characterized by polishing and removing the base portion of the body.
  • the core part of the conductive casing having the flat base part and the core part standing on the surface of the base part is inserted into the hole part, the core part is used as the hole part. Easy to install and good workability.
  • the core part is formed in a truncated cone shape, and in the hole forming step, an inner peripheral surface of the hole is formed in a tapered shape.
  • the core material portion is formed in a truncated cone shape, and the inner peripheral surface of the hole portion is formed in a tapered shape, so that the core material portion can be easily installed in the hole portion in the core material portion insertion step. Good sex.
  • the hole in the hole forming step, the hole is formed as a recess in the through electrode forming substrate wafer, and the through electrode on the bottom side of the recess is formed after the cooling step.
  • the forming substrate wafer is polished to expose the core member.
  • the hole portion since the concave portion is formed in the through electrode substrate forming substrate wafer in the hole forming step, the hole portion is compared with the case of forming the through hole in the through electrode substrate forming substrate wafer in the hole forming step.
  • the shape of the convex part of the forming mold is good.
  • the method for manufacturing a piezoelectric vibrator according to the present invention includes a step of performing any one of the above-described package manufacturing methods, and a step of disposing the piezoelectric vibrating reed on the through electrode and disposing it inside the cavity. It is characterized by that.
  • the conductivity between the piezoelectric vibrating piece and the through electrode can be ensured.
  • the through electrode forming substrate wafer is welded to the core member, the airtightness in the cavity can be secured. As a result, a highly reliable piezoelectric vibrator can be provided.
  • the oscillator according to the present invention is characterized in that the piezoelectric vibrator manufactured by the above-described method is electrically connected to an integrated circuit as an oscillator. Furthermore, the electronic apparatus according to the present invention is characterized in that the piezoelectric vibrator manufactured by the above-described method is electrically connected to the time measuring unit.
  • the radio timepiece according to the present invention is characterized in that the piezoelectric vibrator manufactured by the above-described method is electrically connected to the filter unit.
  • the through electrode forming substrate wafer is pressed with a pressurization mold and heated to weld the through electrode forming substrate wafer to the core portion, and therefore, the cause of the disconnection in the step of forming the electrode film It can prevent that the recessed part used as a surroundings of a penetration electrode arises. Further, stable conductivity between the piezoelectric vibrating piece and the external electrode can be secured, and stable airtightness in the cavity of the piezoelectric vibrator can be secured, so that the performance of the piezoelectric vibrator can be made uniform.
  • FIG. 2 is a perspective view of a housing used when manufacturing the piezoelectric vibrator shown in FIG. 1.
  • 2 is a flowchart showing a flow of manufacturing the piezoelectric vibrator shown in FIG. 1.
  • FIG. 2 is a perspective view illustrating a state in which a through hole is formed in a base substrate wafer that is a base substrate provided in the piezoelectric vibrator illustrated in FIG. 1. It is a figure explaining the through-hole formation process of the flowchart shown in FIG.
  • FIG. 5 is a diagram for explaining a through hole forming step of the flowchart shown in FIG. 4, and shows a state in which a through hole forming mold forms a through hole in a base substrate wafer. It is a figure explaining the core part insertion process of the flowchart shown in FIG. It is a figure explaining the welding process of the flowchart shown in FIG. It is a figure explaining the grinding
  • the piezoelectric vibrator 1 according to the first embodiment is formed in a box shape in which a base substrate 2 and a lid substrate 3 are laminated in two layers.
  • the piezoelectric vibrating reed 5 and the external electrodes 6 and 7 installed outside the base substrate 2 are electrically connected by a pair of through electrodes 8 and 9 that penetrate the base substrate 2.
  • the base substrate 2 is formed in a plate shape with a transparent insulating substrate made of a glass material such as soda lime glass.
  • the base substrate 2 is formed with a pair of through holes (through holes) 21 and 22 in which a pair of through electrodes 8 and 9 are formed.
  • the lid substrate 3 is a transparent insulating substrate made of a glass material, for example, soda-lime glass, and is formed in a plate shape that can be superimposed on the base substrate 2.
  • the lid substrate 3 includes a rectangular recess 3 a in which the piezoelectric vibrating reed 5 is accommodated on the joint surface side to be joined to the base substrate 2.
  • the recess 3a becomes a cavity 4 that accommodates the piezoelectric vibrating reed 5 when the base substrate 2 and the lid substrate 3 are overlaid.
  • the lid substrate 3 is anodically bonded to the base substrate 2 via the bonding material 23 with the recess 3a facing the base substrate 2 side.
  • the piezoelectric vibrating piece 5 is a tuning fork type vibrating piece formed from a piezoelectric material such as quartz, lithium tantalate, or lithium niobate, and vibrates when a predetermined voltage is applied.
  • the piezoelectric vibrating reed 5 is substantially U-shaped in a plan view including a pair of vibrating arm portions 24 and 25 arranged in parallel and a base portion 26 that integrally fixes the base end sides of the pair of vibrating arm portions 24 and 25.
  • an excitation electrode made up of a pair of first and second excitation electrodes (not shown) that vibrates the vibrating arm portions 24, 25; And a pair of mount electrodes electrically connected to the first excitation electrode and the second excitation electrode.
  • the first excitation electrode of the piezoelectric vibrating piece 5 is electrically connected to one external electrode 6 through one mount electrode and one through electrode 8, and the second excitation electrode of the piezoelectric vibrating piece 5 is
  • the other external electrode 7 is electrically connected through the other mount electrode, the routing electrode 27 and the other through electrode 9.
  • the piezoelectric vibrating reed 5 and the mount electrode are connected by an adhesive 28 made of a conductive material.
  • the external electrodes 6 and 7 are installed at both ends in the longitudinal direction of the bottom surface of the base substrate 2.
  • the through electrodes 8 and 9 are formed by disposing a core material portion 31 made of a conductive metal material in the through holes 21 and 22, and stable electrical conductivity is ensured through the core material portion 31.
  • One penetration electrode 8 is located above the external electrode 6 and below the base portion 26, and the other penetration electrode 9 is located above the external electrode 7 and below the lead electrode 27.
  • the core member 31 is fixed by welding to the base substrate wafer 41, and the core member 31 completely closes the through holes 21 and 22 to maintain the airtightness in the cavity 4.
  • the core portion 31 is a conductive material formed in a cylindrical shape by a material having a thermal expansion coefficient close to (preferably equal to or lower than) the glass material of the base substrate 2 such as, for example, Kovar or Fe—Ni alloy (42 alloy). These metal cores are flat at both ends and have the same thickness as the base substrate 2.
  • the core portion 31 is formed in a columnar shape and has the same thickness as the base substrate 2 as described above.
  • a housing 37 is formed together with a flat base portion 36 connected to one end portion of the core portion 31.
  • the thickness of the core portion 31 is thicker than the thickness of the base substrate wafer 41 to be the base substrate 2 later, and when inserted into the through holes 21 and 22 as shown in FIG.
  • the leading end portion 31 protrudes from the surface 41 a of the base substrate wafer 41.
  • the tip portion of the core portion 31 protruding from the base portion 36 and the surface 41a of the base substrate wafer 41 is polished and removed in the manufacturing process.
  • a step of manufacturing a base substrate wafer 41 to be the base substrate 2 later is performed (S10).
  • a base substrate wafer 41 as shown in FIG. 5 is formed. Specifically, after polishing and cleaning soda-lime glass to a predetermined thickness, the work-affected layer on the outermost surface is removed by etching or the like (S11).
  • FIG. 5 shows a part of the base substrate wafer 41, and the base substrate wafer 41 is actually disk-shaped.
  • a dotted line M in FIG. 5 illustrates a cutting line for cutting the base substrate wafer 41 in a subsequent cutting process.
  • the through holes 21 and 22 in FIG. 5 are formed in a process of forming the through electrodes 8 and 9 in the base substrate wafer 41 described later.
  • a through electrode forming process for forming the through electrodes 8 and 9 on the base substrate wafer 41 is performed (S10A).
  • (Through hole forming process) First, through holes (holes) 21 and 22 penetrating the base substrate wafer 41 are formed (S12). As shown in FIGS. 6A and 6B, the through holes 21 and 22 are formed as a through hole forming mold (hole) made of a carbon material having a flat plate portion 52 and a convex portion 53 formed on one surface of the flat plate portion 52.
  • the base substrate wafer 41 is heated by pressing the base substrate wafer 41 with the part forming mold 51).
  • the flat plate portion 52 is a flat member that contacts the surface 41 a of the base substrate wafer 41 when the base substrate wafer 41 is pressed.
  • the convex portion 53 is a member that forms the through holes 21 and 22 through the base substrate wafer 41 when the base substrate wafer 41 is pressed.
  • a taper for mold release is formed on the side surface of the convex portion 53, and the shape of the convex portion 53 is transferred to the through holes 21 and 22.
  • the through holes 21 and 22 are formed so as to have an inner diameter that is 20 to 30 ⁇ m larger than the diameter of the core member 31.
  • the through holes 21 and 22 are closed by the core material portion 31 by welding the base substrate wafer 41 to the core material portion 31 in a later manufacturing process.
  • the through-hole forming mold 51 is set so that the convex portion 53 is on the upper side, and the base substrate wafer 41 is set thereon. And it arrange
  • the flat plate portion 52 and the convex portion 53 are made of a carbon material, the base substrate wafer 41 softened by heating does not adhere to the flat plate portion 52 and the convex portion 53. Therefore, the through-hole forming mold 51 can be easily removed from the base substrate wafer 41. Further, since the flat plate portion 52 and the convex portion 53 are made of a carbon material, the gas generated from the base substrate wafer 41 in a high temperature state is adsorbed to prevent the base substrate wafer 41 from being porous, The porosity can be lowered. Thereby, the airtightness of the cavity 4 can be ensured.
  • the through-hole forming mold 51 may be formed of a material mainly containing any of aluminum oxide, zirconia, boron nitride, and silicon nitride instead of the carbon material.
  • the heat resistance is high, the thermal deformation is small, the mold separation is good, and the workability is good and easy to handle.
  • the base substrate wafer 41 is cooled while gradually lowering the temperature.
  • This cooling method will be described in detail in the description of the cooling step performed after the welding step.
  • the process of inserting the core part 31 in the through holes 21 and 22 is performed (S13).
  • the base substrate wafer 41 is placed on a pressure die 63 of a welding die 61 described later, and the core portion 31 of the casing 37 is inserted into the through holes 21 and 22 from above,
  • the base portion 36 of the housing 37 and the base substrate wafer 41 are brought into contact with each other, and the base substrate wafer 41 and the core portion 31 are sandwiched between the pressing die 63 and a receiving die 62 of a welding die 61 described later, and FIG. Invert as shown.
  • the process of inserting the core part 31 into the through holes 21 and 22 is performed using a transfer machine.
  • the base portion 36 has a planar shape that is larger than the openings of the through holes 21 and 22 and can close the openings. Since the core part 31 is a casing 37 connected to the base part 36, it is easy to insert into the through holes 21 and 22 and the workability is good.
  • the base substrate wafer 41 is heated to perform a step of welding the base substrate wafer 41 to the core portion 31 (S14).
  • the welding process includes a receiving mold 62 installed on the lower side of the base substrate wafer 41, a pressing mold 63 installed on the upper side of the base substrate wafer 41, a receiving mold 62, and a pressing mold.
  • the base substrate wafers 41 are placed one by one on a welding die 61 made of a carbon material provided with a side plate 64 installed on the side of 63 and pressed against the base substrate wafer 41. Is performed by heating.
  • the welding mold 61 may be formed of a material mainly containing any of aluminum oxide, zirconia, boron nitride, and silicon nitride instead of the carbon material. By forming the welding mold 61 from the material as described above, heat resistance is high and thermal deformation is small. Further, when removing the mold, the mold is easily separated and the workability is good. In addition, the surface finish of the pressurized base substrate wafer 41 is good.
  • the receiving mold 62 is a mold that holds the lower side of the base substrate wafer 41 and the housing 37 and is larger than the planar shape of the base substrate wafer 41, and the core portion 31 of the housing 37 in the through holes 21 and 22. Is inserted, and has a shape along the lower side of the base substrate wafer 41 from which the base portion 36 protrudes from the surface 41 a of the base substrate wafer 41.
  • the receiving mold 62 includes a receiving flat plate portion 65 that is in contact with the surface 41 a of the base substrate wafer 41 when holding the base substrate wafer 41, and a receiving recess portion 66 that is in contact with the base portion 36 and corresponds to the base portion 36. It has.
  • the receiving recess 66 is formed in accordance with the position of the base portion 36 of the housing 37 installed on the base substrate wafer 41. Since the base portion 36 is fitted in the receiving recess 66, the receiving die 62 can hold the housing 37, and the housing 37 can be prevented from being detached or the core member 31 can be prevented from being displaced.
  • the pressing die 63 is a die that presses the base substrate wafer 41, has the same planar shape as the receiving die 62, and the core portion 31 of the housing 37 is inserted into the through holes 21 and 22. It has a shape along the upper side of the base substrate wafer 41 from which the tip of the core part 31 protrudes from the surface 41a.
  • the pressing mold 63 includes a pressing mold flat plate portion 67 that is in contact with the surface 41a of the base substrate wafer 41 when the upper side of the base substrate wafer 41 is pressed, and a pressing mold recess 68 into which the tip of the core member 31 is inserted. It has.
  • the pressurization-type recess 68 is a recess having a depth of about 0.2 mm from the height of the core member 31 protruding from the base substrate wafer 41, and is between the tip of the core member 31 and the bottom of the recess 68.
  • a gap 69 is provided. Since there is a gap 69 between the tip of the core member 31 and the bottom of the recess 68, the expansion of the core member 31 due to heating can be released.
  • the pressure-type recess 68 is formed in accordance with the position of the core member 31 protruding from the base substrate wafer 41.
  • the pressure die 63 is provided with a slit 70 penetrating the pressure die 63 at the end.
  • the slit 70 can be used as a relief hole for air when the base substrate wafer 41 is heated and pressed or for excess glass material of the base substrate wafer 41.
  • the base substrate wafer 41 and the casing 37 set on the welding mold 61 are placed on a metal mesh belt and heated in a heating furnace. Then, the base substrate wafer 41 is pressed with a pressure of, for example, 30 to 50 g / cm 2 by the pressing die 63 using a press machine or the like disposed in the heating furnace.
  • the heating temperature is higher than the softening point (for example, 545 ° C.) of the glass of the base substrate wafer 41, for example, about 900 ° C.
  • the heating temperature is gradually increased, and once the temperature is about 5 ° C. higher than the softening point of the glass, for example, 550 ° C., the increase is temporarily stopped and held, and then the temperature is increased again to about 900 ° C.
  • the softening of the base substrate wafer 41 can be made uniform.
  • the base substrate wafer 41 flows and closes the gap between the core portion 31 and the through holes 21 and 22, and the base substrate wafer 41 becomes the core portion.
  • the core material portion 31 is in a state of closing the through holes 21 and 22.
  • the base substrate wafer 41 is cooled (S15).
  • the base substrate wafer 41 is cooled by gradually lowering the temperature from about 900 ° C. during heating in the welding process.
  • the cooling rate is set so that the cooling rate between strain point + 50 ° C. and strain point ⁇ 50 ° C. is slower than the cooling rate from about 900 ° C. to the strain point + 50 ° C. of the glass forming the base substrate wafer 41.
  • the glass material forming the base substrate wafer 41 is gradually cooled from the annealing point to the strain point. Cooling between the strain point + 50 ° C. and the strain point ⁇ 50 ° C. is performed, for example, by moving the base substrate wafer 41 to another furnace.
  • the cooling rate from the strain point ⁇ 50 ° C. to room temperature may be faster than the cooling rate between the strain point + 50 ° C. and the strain point ⁇ 50 ° C. to shorten the cooling time.
  • the base substrate wafer 41 in a state where the core portion 31 of the casing 37 closes the through holes 21 and 22 as shown in FIG. 7C is formed.
  • the heated base substrate wafer 41 is also cooled by the above-described cooling method.
  • polishing of the base portion 36 of the casing 37 and the protruding portions of the core portion 31 are polished and removed (S16). Polishing of the base portion 36 and the core portion 31 of the housing 37 is performed by a known method. Then, as shown in FIG. 7D, the surface 41a of the base substrate wafer 41 and the surfaces of the through electrodes 8 and 9 (core member 31) are substantially flush with each other. In this way, the through electrodes 8 and 9 are formed on the base substrate wafer 41. In addition, you may use as it is, without removing the part which the base part 36 and the core part 31 protruded. For example, the protruding part of the base part 36 and the core part 31 can be used as a heat sink.
  • a conductive material is patterned on the upper surface of the base substrate wafer 41 to perform a bonding film forming process for forming a bonding film (S17), and a routing electrode forming process is performed (S18). In this way, the manufacturing process of the base substrate wafer 41 is completed.
  • a lid substrate wafer to be the lid substrate 3 later is manufactured at the same time as or before and after the manufacture of the base substrate 2 (S30).
  • a disk-shaped lid substrate wafer to be the lid substrate 3 is formed first. Specifically, after polishing and washing soda-lime glass to a predetermined thickness, the outermost work-affected layer is removed by etching or the like (S31). Next, the recess 3a for the cavity 4 is formed on the lid substrate wafer by etching or pressing (S32).
  • the piezoelectric vibrating reed 5 is disposed in the cavity 4 formed by the base substrate wafer 41 and the lid substrate wafer formed as described above and mounted on the through electrodes 8 and 9.
  • a wafer body is formed by anodically bonding the lid substrate wafer.
  • a pair of external electrodes 6 and 7 that are electrically connected to the pair of through electrodes 8 and 9 are formed, and the frequency of the piezoelectric vibrator 1 is finely adjusted.
  • a package (piezoelectric vibrator 1) containing the piezoelectric vibrating reed 5 is formed by cutting the wafer body into small pieces and conducting an internal electrical property inspection.
  • the core material portion 31 of the casing 37 is formed in the through holes 21 and 22.
  • the base substrate wafer 41 into which the substrate is inserted is held by the receiving die 62, and the base substrate wafer 41 is heated to a temperature higher than the softening point of the glass material and pressed by the pressing die 63.
  • the through electrodes 8 and 9 are formed by welding to the material part 31. And since the organic substance is not contained in the formation material of the penetration electrodes 8 and 9, there is no volume reduction accompanying removal of an organic substance, and it can prevent that a recessed part arises around the penetration electrodes 8 and 9.
  • the recesses that cause disconnection in the electrode film forming process do not occur around the through electrodes 8 and 9. Stable conductivity with the electrodes 6 and 7 can be secured.
  • the base substrate wafer 41 can be welded to the core member 31, stable airtightness in the cavity 4 of the piezoelectric vibrator 1 can be secured, and the performance of the piezoelectric vibrator 1 can be made uniform. Play.
  • the piezoelectric vibrator 201 according to the second embodiment has a core portion 231 that becomes the through electrodes 8 and 9 formed in a truncated cone shape, and the through holes 221 and 222 have inner peripheries.
  • the surface is a tapered surface.
  • the core part 231 constitutes a housing 237 together with the base part 236 in the manufacturing process, as in the first embodiment.
  • the through holes 221 and 222 are first formed as recesses (holes) 221a and 222a (see FIG. 11B) in the base substrate wafer 41 in the manufacturing process. Then, in a later step, the base substrate wafer 41 on the bottom side of the recesses 221a and 222a is polished and removed, and the through holes 221 and 222 become through holes that penetrate the base substrate wafer 41 as shown in FIG. .
  • a step of manufacturing a base substrate wafer 41 to be the base substrate 2 later is performed (S20).
  • the base substrate wafer 41 is manufactured in the same manner as in the first embodiment (S21), and then a through electrode forming step for forming the through electrodes 8 and 9 on the base substrate wafer 41 is performed (S20A).
  • S21 first embodiment
  • S20A through electrode forming step for forming the through electrodes 8 and 9 on the base substrate wafer 41
  • recesses 221 a and 222 a are formed in the base substrate wafer 41.
  • the recesses 221a and 222a are formed by heating while pressing the base substrate wafer 41 with the recess forming mold (hole forming mold) 251 shown in FIG.
  • the concave portion forming die 251 is configured to include a flat plate portion 252 and a convex portion 253 similarly to the through hole forming die 51 according to the first embodiment (see FIG. 6A), but the convex portion 253 is a through hole.
  • the frustoconical shapes corresponding to 221 and 222 are formed so that the height thereof is lower than the thickness of the base substrate wafer 41.
  • the base substrate wafer 41 is placed on the recess forming mold 251 and pressure is applied in a high temperature state, as in the through hole forming process of the first embodiment. Do it.
  • the convex portion 253 of the concave portion forming die 251 does not penetrate the base substrate wafer 41, the concave portions 221 a and 222 a are formed in the base substrate wafer 41.
  • the recesses 221a and 222a are formed to be, for example, about 20 to 30 ⁇ m larger than the outer shape of the core member 231.
  • the concave forming die 251 having the truncated convex portion 253 having a truncated cone shape is used, the columnar tall convex portion in the first embodiment shown in FIG. 6A is used. Compared with the through-hole forming mold 51 provided with 53, the mold is better. Since the concave portions 221a and 222a are tapered, the concave portion forming mold 251 is preferably separated from the mold in the concave portion forming step. In the recess forming step, the through holes 21 and 22 (see FIG. 6B) penetrating the base substrate wafer 41 do not have to be formed as in the first embodiment, so the through hole forming step according to the first embodiment. This can be done more easily than
  • a step of inserting the core member 231 into the recesses 221a and 222a is performed (S23).
  • the base substrate wafer 41 is placed so that the concave portions 221a and 222a are on the upper surface, the core member portion 231 is inserted from above, and the base portion 236 and the base substrate wafer 41 are brought into contact with each other.
  • the core member 231 since the core member 231 has a truncated cone shape and the tapered surfaces are formed in the recesses 221a and 222a, the core member 231 can be easily inserted.
  • a step of welding the base substrate wafer 41 to the core member 231 is performed (S24).
  • a pressure die 263 is installed on the upper side of the base substrate wafer 41 into which the housing 237 is inserted.
  • the pressure mold 263 is formed with a pressure mold recess 268 corresponding to the base part 236 of the housing 237, and the base part 236 is inserted into the pressure mold recess 268.
  • the base part 236 and the bottom part of the pressurization mold recess 268 are not separated from each other, and the base part 236 is pressed from the pressurization mold 263 during pressurization in the welding process.
  • a flat plate-shaped receiving mold 262 is installed below the base substrate wafer 41 to hold the base substrate wafer 41.
  • the pressurization mold 263 and the receiving mold 262 are formed of the same material as the welding mold 61 (see FIGS. 7A and 7B) according to the first embodiment.
  • the base substrate wafer 41 flows, and the core portion 231 and the recess 221a, The base substrate wafer 41 is welded to the core portion 231 while closing the gap with the 222a. Even if one end of the core member 231 is pressed from the pressure die 263 side, the other end is not pressed by being inserted into the recesses 221a and 222a of the base substrate wafer 41. The expansion of the core member 231 due to heating can be released, and deformation and damage of the core member 231 can be prevented. Further, it is possible to prevent the base substrate wafer 41 from being cracked or chipped due to the deformation or displacement of the core portion 231. Subsequently, a step of cooling the base substrate wafer 41 is performed as in the first embodiment (S25).
  • the base portion 236 of the housing 237 shown in FIG. 12C is polished and removed (S26). Further, before and after the base portion polishing step, the base substrate wafer 41 is polished to form the recesses 221a and 222a as through holes (S27). In the base substrate wafer polishing step, the base substrate wafer 41 on the bottom side of the recesses 221a and 222a is polished by a known method. Then, as shown in FIG. 12D, the recesses 221 a and 222 a are penetrated to form through holes 221 and 222, and the end of the core part 231 is exposed from the base substrate wafer 41.
  • the process after the base part polishing process and the base substrate wafer polishing process is performed in the same manner as in the first embodiment, and the package (piezoelectric vibrator 201) is manufactured.
  • the package manufacturing method according to the second embodiment has the same effects as those of the first embodiment.
  • the core member 231 is pressed from the end on the pressing die 263 side by pressing the base substrate wafer 41 with the core member 231 inserted into the recesses 221a and 222a. Since pressure is not applied from the other end, damage to the core member 231 can be prevented.
  • the core member 231 has a truncated cone shape and the concave portions 221a and 222a are tapered, the core member 231 can be easily inserted into the concave portions 221a and 222a.
  • the concave portions 221a and 222a are tapered, the concave portion forming mold 251 can be easily separated in the concave portion forming step.
  • the core member 75 that forms the through electrodes 8 and 9 has a thickness of the base substrate wafer 41 in the manufacturing process. It is a cylindrical metal pin thicker than the thickness.
  • the core part 75 is not connected to the base part.
  • the receiving die 62 b that holds the base substrate wafer 41 with the core member 75 inserted in the through holes 21 and 22 corresponds to the receiving flat plate portion 65 b and the tip of the core member 31. And a recess 66b.
  • the tip of the core member 75 protrudes from the base substrate wafer 41.
  • the tip of the core member 75 may be removed by polishing as shown in FIG. 13C or may be used as it is.
  • a truncated cone-shaped core member instead of the columnar core member, a truncated cone-shaped core member may be used, and the through holes 21 and 22 may be tapered. Good.
  • the concave portions 221a and 222a of the base substrate wafer 41 are not formed with tapered surfaces, and the core portion 231b is formed in a cylindrical shape. It is said. Similar to the second embodiment, the base substrate wafer 41 on the bottom side of the recesses 221a and 222a is polished and removed to form the through electrodes 8 and 9. Further, as shown in FIG. 15, in the package manufacturing method according to another modification of the second embodiment, the core member 231c is a metal pin formed in a truncated cone shape.
  • the end part 231d inserted in the pressurization type recessed part 268 of an upper end part is formed in the core part 231c in the column shape. Since the end portion 231d is formed in a columnar shape, there is a gap between the pressure-type recess 268 and the end portion 231d of the core portion 231c as compared with the case where the entire core portion is formed in a truncated cone shape. Therefore, the core material portion 231c can be prevented from wobbling in the welding process, and the base substrate wafer 41 can be prevented from entering the gap between the end portion 231d of the core material portion 231c and the pressure-type recess 268. Can do.
  • the core member 231c may be a cylindrical metal pin instead of the frustoconical metal pin.
  • the oscillator 100 is configured such that the piezoelectric vibrator 1 is an oscillator electrically connected to the integrated circuit 101.
  • the oscillator 100 includes a substrate 103 on which an electronic component 102 such as a capacitor is mounted. On the substrate 103, the integrated circuit 101 for the oscillator is mounted, and the piezoelectric vibrator 1 is mounted in the vicinity of the integrated circuit 101.
  • the electronic component 102, the integrated circuit 101, and the piezoelectric vibrator 1 are electrically connected by a wiring pattern (not shown). Each component is molded with a resin (not shown).
  • the piezoelectric vibrating piece 5 in the piezoelectric vibrator 1 vibrates. This vibration is converted into an electric signal by the piezoelectric characteristics of the piezoelectric vibrating piece 5 and input to the integrated circuit 101 as an electric signal.
  • the input electrical signal is subjected to various processes by the integrated circuit 101 and is output as a frequency signal.
  • the piezoelectric vibrator 1 functions as an oscillator.
  • an RTC real-time clock
  • a function for controlling the time, providing a time, a calendar, and the like can be added.
  • the inside of the cavity 4 is surely airtight, the electrical conductivity between the piezoelectric vibrating piece 5 and the external electrodes 6 and 7 is stably secured, and the operation reliability is ensured. Since the improved high-quality piezoelectric vibrator 1 is provided, the oscillator 100 itself is similarly stably secured, and the operation reliability can be improved and the quality can be improved. In addition to this, it is possible to obtain a highly accurate frequency signal that is stable over a long period of time.
  • the portable information device 110 having the above-described piezoelectric vibrator 1 will be described as an example of the electronic device.
  • the portable information device 110 according to the present embodiment is represented by, for example, a mobile phone, and is a development and improvement of a wrist watch in the related art. The appearance is similar to that of a wristwatch, and a liquid crystal display is arranged in a portion corresponding to a dial so that the current time and the like can be displayed on this screen.
  • the portable information device 110 includes the piezoelectric vibrator 1 and a power supply unit 111 for supplying power.
  • the power supply unit 111 is made of, for example, a lithium secondary battery.
  • the power supply unit 111 includes a control unit 112 that performs various controls, a clock unit 113 that counts time, a communication unit 114 that communicates with the outside, a display unit 115 that displays various types of information, A voltage detection unit 116 that detects the voltage of the functional unit is connected in parallel.
  • the power unit 111 supplies power to each functional unit.
  • the control unit 112 controls each function unit to control operation of the entire system such as transmission and reception of voice data, measurement and display of the current time, and the like.
  • the control unit 112 includes a ROM in which a program is written in advance, a CPU that reads and executes the program written in the ROM, and a RAM that is used as a work area of the CPU.
  • the clock unit 113 includes an integrated circuit including an oscillation circuit, a register circuit, a counter circuit, an interface circuit, and the like, and the piezoelectric vibrator 1.
  • the piezoelectric vibrator 1 When a voltage is applied to the piezoelectric vibrator 1, the piezoelectric vibrating piece 5 vibrates, and the vibration is converted into an electric signal by the piezoelectric characteristics of the crystal, and is input to the oscillation circuit as an electric signal.
  • the output of the oscillation circuit is binarized and counted by a register circuit and a counter circuit. Then, signals are transmitted to and received from the control unit 112 via the interface circuit, and the current time, current date, calendar information, or the like is displayed on the display unit 115.
  • the communication unit 114 has functions similar to those of a conventional mobile phone, and includes a radio unit 117, a voice processing unit 118, a switching unit 119, an amplification unit 120, a voice input / output unit 121, a telephone number input unit 122, and a ring tone generation unit. 123 and a call control memory unit 124.
  • the wireless unit 117 exchanges various data such as audio data with the base station via the antenna 125.
  • the audio processing unit 118 encodes and decodes the audio signal input from the radio unit 117 or the amplification unit 120.
  • the amplifying unit 120 amplifies the signal input from the audio processing unit 118 or the audio input / output unit 121 to a predetermined level.
  • the voice input / output unit 121 includes a speaker, a microphone, and the like, and amplifies a ringtone and a received voice or collects a voice.
  • the ring tone generator 123 generates a ring tone in response to a call from the base station.
  • the switching unit 119 switches the amplifying unit 120 connected to the voice processing unit 118 to the ringing tone generating unit 123 only when an incoming call is received, so that the ringing tone generated in the ringing tone generating unit 123 is transmitted via the amplifying unit 120.
  • the call control memory unit 124 stores a program related to incoming / outgoing call control of communication.
  • the telephone number input unit 122 includes, for example, a number key from 0 to 9 and other keys. By pressing these number keys and the like, a telephone number of a call destination is input.
  • the voltage detection unit 116 detects the voltage drop and notifies the control unit 112 of the voltage drop.
  • the predetermined voltage value at this time is a value set in advance as a minimum voltage necessary for stably operating the communication unit 114, and is, for example, about 3V.
  • the control unit 112 prohibits the operations of the radio unit 117, the voice processing unit 118, the switching unit 119, and the ring tone generation unit 123. In particular, it is essential to stop the operation of the wireless unit 117 with high power consumption. Further, the display unit 115 displays that the communication unit 114 has become unusable due to insufficient battery power.
  • the operation of the communication unit 114 can be prohibited by the voltage detection unit 116 and the control unit 112, and that effect can be displayed on the display unit 115.
  • This display may be a text message, but as a more intuitive display, a x (X) mark may be attached to the telephone icon displayed at the top of the display surface of the display unit 115.
  • the function of the communication part 114 can be stopped more reliably by providing the power supply cutoff part 126 that can selectively cut off the power of the part related to the function of the communication part 114.
  • the airtightness in the cavity 4 is reliable, the electrical connection between the piezoelectric vibrating piece 5 and the external electrodes 6 and 7 is stably ensured, and the operation is reliable. Since the high-quality piezoelectric vibrator 1 with improved performance is provided, the continuity of the portable information device itself can be ensured in the same manner, and the operation reliability can be improved and the quality can be improved. In addition to this, it is possible to display highly accurate clock information that is stable over a long period of time.
  • the radio timepiece 130 includes the piezoelectric vibrator 1 electrically connected to the filter unit 131.
  • the radio timepiece 130 receives a standard radio wave including timepiece information and is accurate. It is a clock with a function of automatically correcting and displaying the correct time.
  • transmitting stations transmitting stations that transmit standard radio waves in Fukushima Prefecture (40 kHz) and Saga Prefecture (60 kHz), each transmitting standard radio waves.
  • Long waves such as 40 kHz or 60 kHz have the property of propagating the surface of the earth and the property of propagating while reflecting the ionosphere and the surface of the earth, so the propagation range is wide, and the above two transmitting stations cover all of Japan. is doing.
  • the antenna 132 receives a long standard wave of 40 kHz or 60 kHz.
  • the long-wave standard radio wave is obtained by subjecting time information called a time code to AM modulation on a 40 kHz or 60 kHz carrier wave.
  • the received long standard wave is amplified by the amplifier 133 and filtered and tuned by the filter unit 131 having the plurality of piezoelectric vibrators 1.
  • the piezoelectric vibrator 1 according to this embodiment includes crystal vibrator portions 138 and 139 having resonance frequencies of 40 kHz and 60 kHz that are the same as the carrier frequency.
  • the filtered signal having a predetermined frequency is detected and demodulated by the detection and rectification circuit 134. Subsequently, the time code is taken out via the waveform shaping circuit 135 and counted by the CPU 136.
  • the CPU 136 reads information such as the current year, accumulated date, day of the week, and time. The read information is reflected in the RTC 137, and accurate time information is displayed. Since the carrier wave is 40 kHz or 60 kHz, the crystal vibrator units 138 and 139 are preferably vibrators having the tuning fork type structure described above.
  • the frequency of the long standard radio wave is different overseas.
  • a standard radio wave of 77.5 KHz is used. Accordingly, when the radio timepiece 130 that can be used overseas is incorporated in a portable device, the piezoelectric vibrator 1 having a frequency different from that in Japan is required.
  • the radio-controlled timepiece 130 of the present embodiment airtightness in the cavity 4 is ensured, the electrical connection between the piezoelectric vibrating piece 5 and the external electrodes 6 and 7 is stably ensured, and the operation reliability is ensured. Since the high-quality piezoelectric vibrator 1 with improved quality is provided, the radio-controlled timepiece itself can be stably secured in the same manner, and the operation reliability can be improved and the quality can be improved. In addition to this, it is possible to count time stably and with high accuracy over a long period of time.
  • the through holes 21 and 22 are formed by pressing the through hole forming mold 51 against the base substrate wafer 41 and heating the base substrate wafer 41.
  • the through holes 21 and 22 may be formed in the base substrate wafer 41 by a sandblast method or the like.
  • the recesses 221a and 222a are formed by pressing the recess forming die 251 against the base substrate wafer 41 and heating the base substrate wafer 41.
  • the concave portions 221a and 222a may be formed in the base substrate wafer 41 by a sandblast method or the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
  • Oscillators With Electromechanical Resonators (AREA)

Abstract

 互いに接合された複数の基板と、複数の基板の内側に形成されたキャビティと、キャビティの内部と複数の基板の外側とを導通する貫通電極とを備え、貫通電極は、ガラス材料からなる貫通電極形成基板の孔部に、金属材料からなる導電性の芯材部を配置して形成されたパッケージの製造方法であって、貫通電極形成基板用ウエハに芯材部を挿入する孔部を形成する孔部形成工程と、貫通電極形成基板用ウエハに形成された孔部に芯材部を挿入する芯材部挿入工程と、貫通電極形成基板用ウエハを加熱して芯材部に溶着させる溶着工程と、貫通電極形成基板用ウエハを冷却する冷却工程とを有し、溶着工程では、貫通電極形成基板用ウエハの表面に加圧型を設置して加圧型で貫通電極形成基板用ウエハを押圧すると共に、ガラス材料の軟化点より高温に貫通電極形成基板用ウエハを加熱することにより、貫通電極形成基板用ウエハを前記芯材部に溶着させる。

Description

パッケージの製造方法、圧電振動子の製造方法、発振器、電子機器および電波時計
 本発明は、互いに接合された複数の基板と、複数の基板の内側に形成されたキャビティと、キャビティの内部と複数の基板の外側とを導通する貫通電極とを備えたパッケージの製造方法、圧電振動片が貫通電極に実装されると共にキャビティの内部に配置された圧電振動子、圧電振動子を有する発振器、電子機器および電波時計に関する。
 近年、携帯電話や携帯情報端末機器には、時刻源や制御信号等のタイミング源、リファレンス信号源等として水晶等を利用した圧電振動子が用いられている。この種の圧電振動子は、様々なものが知られているが、その1つとして、表面実装型の圧電振動子が知られている。この主の圧電振動子として、一般的に圧電振動片が形成された圧電基板を、ベース基板とリッド基板とで上下から挟み込むように接合した3層構造タイプのものが知られている。この場合、圧電振動片は、ベース基板とリッド基板との間に形成されたキャビティ(密閉室)内に収容されている。
 また、近年では、上述した3層構造タイプのものではなく、2層構造タイプのものも開発されている。このタイプの圧電振動子は、パッケージがベース基板とリッド基板とが直接接合されることで2層構造になっており、両基板の間に形成されたキャビティ内に圧電振動片が収容されている。この2層構造タイプの圧電振動子は、3層構造のものに比べて薄型化を図ることができる等の点において優れており、好適に使用されている。
 このような2層構造タイプの圧電振動子のパッケージの1つとして、ガラス製のベース基板に形成された貫通孔に、銀ペーストなどの導電部材を充填し焼成することで貫通電極を形成し、水晶振動子と、ベース基板の外側に設けられた外部電極とを電気的に接続したものが知られている(例えば、特許文献1参照)。
特開2002-124845号公報
 しかしながら、銀ペーストによって形成された貫通電極では、焼成により銀ペースト中の樹脂などの有機物が除去されて体積が減少するので、貫通電極の表面に凹部が生じたり、貫通電極に穴が開いたりすることがあった。そして、この貫通電極の凹部や穴がキャビティ内の気密性の低下や、圧電振動片と外部電極との導電性の悪化の原因となることがあった。
 そこで、最近では、金属材料からなる金属ピンを用いて貫通電極を形成する方法が開発されている。この方法では、まず、貫通電極形成用ウエハに形成された貫通孔に金属ピンを挿通して、貫通孔にガラスフリットを充填し、ガラスフリットを焼成してベース基板用ウエハと金属ピンとを一体化させている。貫通電極に金属ピンを使用することにより、安定した導電性を確保することができる。
 しかしながら、ガラスフリットに含まれる有機物のバインダが焼成により除去されるので、ガラスフリットの表面には体積減少による凹部が生じることがあった。そして、このガラスフリットの凹部が、後に行う電極膜を形成する工程で断線の原因となることがあった。
 本発明は、上述する問題点に鑑みてなされたもので、貫通電極の周囲に凹部が生じることを防ぐことができるパッケージの製造方法を提供することを目的とする。
 上記の課題を解決するために、本発明は以下の手段を採用した。
 すなわち、本発明に係るパッケージの製造方法では、互いに接合された複数の基板と、前記複数の基板の内側に形成されたキャビティと、前記キャビティの内部と前記複数の基板の外側とを導通する貫通電極とを備え、前記貫通電極は、ガラス材料からなる貫通電極形成基板の孔部に、金属材料からなる導電性の芯材部を配置して形成されたパッケージの製造方法であって、貫通電極形成基板用ウエハに前記芯材部を挿入する前記孔部を形成する孔部形成工程と、前記貫通電極形成基板用ウエハに形成された前記孔部に前記芯材部を挿入する芯材部挿入工程と、前記貫通電極形成基板用ウエハを加熱して前記芯材部に溶着させる溶着工程と、前記貫通電極形成基板用ウエハを冷却する冷却工程とを有し、前記溶着工程では、前記貫通電極形成基板用ウエハの表面に加圧型を設置して前記加圧型で前記貫通電極形成基板用ウエハを押圧すると共に、前記ガラス材料の軟化点より高温に前記貫通電極形成基板用ウエハを加熱することにより、前記貫通電極形成基板用ウエハを前記芯材部に溶着させることを特徴とする。
 本発明では、貫通電極形成基板用ウエハおよび芯材部を加圧型で押圧すると共に、貫通電極形成基板用ウエハを加熱して貫通電極形成基板用ウエハを芯材部に溶着させているので、有機物のバインダを含まない材料で貫通電極を形成することができる。そのため、有機物の除去に伴う体積減少がなく、貫通電極周囲に凹部が生じることを防ぐことができる。
 また、本発明に係るパッケージの製造方法は、前記冷却工程では、前記溶着工程における加熱温度から前記貫通電極形成基板用ウエハを構成する前記ガラス材料の歪点+50℃までの冷却速度よりも、前記歪点+50℃から前記歪点-50℃までの冷却速度を遅くすることを特徴とする。
 本発明では、溶着工程における加熱温度から貫通電極形成基板用ウエハを構成するガラス材料の歪点+50℃までの冷却速度よりも、歪点+50℃から歪点-50℃までの冷却速度を遅くしている。溶着工程では歪点より高温の軟化点まで貫通電極形成基板用ウエハを加熱するので、冷却工程において急速に冷却すると、貫通電極形成基板用ウエハに歪みが残る可能性がある。そこで、歪点±50℃の範囲で冷却速度を低下させることにより、貫通電極形成基板用ウエハに歪が生じることを防ぐことができる。
 また、本発明に係るパッケージの製造方法では、前記孔部形成工程では、前記孔部として貫通孔を形成し、前記加圧型は、前記芯材部の上端部を挿入可能な凹部を有し、前記凹部の底部は、前記加圧型による前記貫通電極形成基板用ウエハの押圧時に、前記芯材部の上端部から離間するように形成されていることを特徴とする。
 本発明では、加圧型の底部は、加圧型による貫通電極形成基板用ウエハの押圧時に、芯材部の上端部から離間するように形成されているので、加熱による芯材部の膨張を逃がすことができる。また、押圧時に加圧型から芯材部へ圧力がかからず、芯材部の変形や変位により貫通孔形成基板用ウエハにクラックや欠けが生じることを防ぐことができる。
 また、本発明に係るパッケージの製造方法では、前記加圧型は、カーボン、酸化アルミニウム、ジルコニア、窒化ホウ素、窒化ケイ素のうちいずれかを主成分とする材料から形成されていることを特徴とする。
 本発明では、加圧型は、カーボン、酸化アルミニウム、ジルコニア、窒化ホウ素、窒化ケイ素のうちいずれかを主成分とする材料から形成されていることにより、加圧型が高温で変形することを抑制できると共に、加圧型の貫通電極形成基板用ウエハからの型離れがよく作業性がよい。
 また、本発明に係るパッケージの製造方法は、前記孔部形成工程では、カーボン材料からなり前記孔部に相当する凸部を有する孔部形成用型で前記貫通電極形成基板用ウエハを押圧しつつ、前記貫通電極形成基板用ウエハを加熱することにより前記孔部を形成することを特徴とする。
 本発明では、孔部形成用型を使用して孔部を形成するので、孔部を簡単かつ精度良く形成することができる。また、孔部形成用型はカーボン材料で形成されているので、軟化した貫通電極形成基板用ウエハのガラス材料が孔部形成用型に接着せず、硬化した貫通電極形成基板用ウエハを孔部形成用型からはずしやすく作業性がよい。また、孔部形成用型で貫通電極形成基板用ウエハを押圧しつつ、貫通電極形成基板用ウエハを加熱する時に、孔部形成用型は貫通電極形成基板用ウエハから発生するガスを吸着し、貫通電極形成基板用ウエハにポーラスが生じることを防ぐことができるので、キャビティ内の気密性を確保することができる。
 また、本発明に係るパッケージの製造方法は、前記芯材部挿入工程では、平板状の土台部と、前記土台部の表面に立設された前記芯材部とを有する導電性の鋲体の前記芯材部を前記貫通電極形成基板用ウエハに形成された孔部に挿入して、前記貫通電極形成基板用ウエハに前記鋲体の土台部を当接させ、前記冷却工程の後に、前記鋲体の土台部を研磨して除去することを特徴とする。
 本発明では、平板状の土台部と、土台部の表面に立設された芯材部とを有する導電性の鋲体の芯材部を孔部に挿入するので、芯材部を孔部に設置しやすく作業性がよい。
 また、本発明に係るパッケージの製造方法では、前記芯材部は円錐台状に形成されていて、前記孔部形成工程では、前記孔部の内周面をテーパー状に形成することを特徴とする。
 本発明では、芯材部は円錐台状に形成されていて、前記孔部の内周面をテーパー状に形成することにより、芯材部挿入工程において芯材部を孔部に設置しやすく作業性がよい。
 また、本発明に係るパッケージの製造方法は、前記孔部形成工程では、前記孔部を前記貫通電極形成基板用ウエハに凹部として形成し、前記冷却工程の後に、前記凹部の底部側の貫通電極形成基板用ウエハを研磨し、前記芯材部を露出させることを特徴とする。
 本発明では、孔部形成工程で貫通電極基板形成基板用ウエハに凹部を形成しているので、孔部形成工程で貫通電極基板形成基板用ウエハに貫通孔を形成する場合と比べて、孔部形成用型の凸部の型もちがよい。
 また、本発明に係る圧電振動子の製造方法では、上述したいずれかのパッケージの製造方法を実施する工程と、圧電振動片を前記貫通電極に実装しつつキャビティの内部に配置する工程とを有することを特徴とする。
 本発明では、貫通電極周囲に凹部が生じることを防ぐことができるので、圧電振動片と貫通電極との導電性を確保することができる。また、貫通電極形成基板用ウエハを芯材部に溶着させているので、キャビティ内の気密性を確保することができる。その結果、信頼性の高い圧電振動子を提供することができる。
 また、本発明に係る発振器は、上述した方法で製造された圧電振動子が、発振子として集積回路に電気的に接続されていることを特徴とする。
 さらに、本発明に係る電子機器は、上述した方法で製造された圧電振動子が、計時部に電気的に接続されていることを特徴とする。
 そして、本発明に係る電波時計は、上述した方法で製造された圧電振動子が、フィルタ部に電気的に接続されていることを特徴とする。
 本発明に係る発振器、電子機器および電波時計においては、圧電振動片と貫通電極との導通性が安定して確保されている圧電振動子を用いているため、信頼性の高い発振器、電子機器および電波時計を提供することができる。
 本発明によれば、貫通電極形成基板用ウエハを加圧型で押圧すると共に、加熱して貫通電極形成基板用ウエハを芯材部に溶着させているので、電極膜を形成する工程で断線の原因となる凹部が貫通電極周囲に生じることを防ぐことができる。そして、圧電振動片と外部電極との安定した導電性を確保でき、圧電振動子のキャビティ内の安定した気密性も確保できるので、圧電振動子の性能を均一にすることができる。
本発明の第一の実施の形態による圧電振動子の一例を示す外観斜視図である。 図2BのA-A線断面図である。 図2AのB-B線断面図である。 図1に示す圧電振動子を製造する際に使用する鋲体の斜視図である。 図1に示す圧電振動子を製造する流れを示すフローチャートである。 図1に示す圧電振動子に備えるベース基板の元となるベース基板用ウエハにスルーホールを形成した状態を示す斜視図である。 図4に示すフローチャートの貫通孔形成工程を説明する図であって、スルーホール形成用型とベース基板用ウエハを示す図である。 図4に示すフローチャートの貫通孔形成工程を説明する図であって、スルーホール形成用型がベース基板用ウエハにスルーホールを形成している状態を示す図である。 図4に示すフローチャートの芯材部挿入工程を説明する図である。 図4に示すフローチャートの溶着工程を説明する図である。 図4に示すフローチャートの研磨工程を説明する図であって、研磨工程前の様子を示す図である。 図4に示すフローチャートの研磨工程を説明する図であって、研磨工程後の様子を示す図である。 本発明の第二の実施の形態による圧電振動子の一例を示す図である。 図8に示す圧電振動子を製造する際に使用する鋲体の斜視図である。 図8に示す圧電振動子を製造する流れを示すフローチャートである。 図8に示すフローチャートの貫通孔形成工程を説明する図であって、スルーホール形成用型とベース基板用ウエハを示す図である。 図8に示すフローチャートの貫通孔形成工程を説明する図であって、スルーホール形成用型がベース基板用ウエハにスルーホールを形成している状態を示す図である。 図8に示すフローチャートの芯材部挿入工程を説明する図である。 図8に示すフローチャートの溶着工程を説明する図である。 図8に示すフローチャートの研磨工程を説明する図であって、研磨工程前の様子を示す図である。 図8に示すフローチャートの研磨工程を説明する図であって、研磨工程後の様子を示す図である。 第一の実施の形態の変形例による溶着工程を説明図である。 第一の実施の形態の変形例による研磨工程を説明する図であって、研磨工程前の様子を示す図である。 第一の実施の形態の変形例による研磨工程を説明する図であって、研磨工程後の様子を示す図である。 第二の実施の形態の変形例による芯材部挿入工程および溶着工程を説明する図である。 第二の実施の形態の他の変形例による芯材部挿入工程および溶着工程を説明する図である。 本発明に係る発振器の一実施形態を示す構成図である。 本発明に係る電子機器の一実施形態を示す構成図である。 本発明に係る電波時計の一実施形態を示す構成図である。
(第一の実施の形態)
 以下、本発明の第一の実施の形態によるパッケージの製造方法について、図1乃至図7Dに基づいて説明する。
 図1及び図2A、図2Bに示すように、第一の実施の形態による圧電振動子1はベース基板2とリッド基板3とで2層に積層された箱状に形成されており、内部のキャビティ4内に圧電振動片5が収納された表面実装型の圧電振動子1である。そして、圧電振動片5とベース基板2の外側に設置された外部電極6、7とが、ベース基板2を貫通する一対の貫通電極8、9によって電気的に接続されている。
 ベース基板2は、ガラス材料、例えばソーダ石灰ガラスからなる透明な絶縁基板で板状に形成されている。ベース基板2には、一対の貫通電極8、9が形成される一対のスルーホール(貫通孔)21、22が形成されている。
 リッド基板3は、ベース基板2と同様に、ガラス材料、例えばソーダ石灰ガラスからなる透明の絶縁基板であり、ベース基板2に重ね合わせ可能な大きさの板状に形成されている。そして、リッド基板3はベース基板2と接合される接合面側に、圧電振動片5が収容される矩形状の凹部3aを備えている。
 凹部3aは、ベース基板2およびリッド基板3が重ね合わされたときに、圧電振動片5を収容するキャビティ4となる。そして、リッド基板3は、凹部3aをベース基板2側に対向させた状態で、接合材23を介してベース基板2と陽極接合されている。
 圧電振動片5は、水晶、タンタル酸リチウムやニオブ酸リチウム等の圧電材料から形成された音叉型の振動片であり、所定の電圧が印加されたときに振動するものである。
 圧電振動片5は、平行に配置された一対の振動腕部24、25と、一対の振動腕部24、25の基端側を一体的に固定する基部26と、からなる平面視略U字状で、一対の振動腕部24、25の外表面上には、振動腕部24、25を振動させる図示しない一対の第1の励振電極と第2の励振電極とからなる励振電極と、第1の励振電極及び第2の励振電極に電気的に接続された一対のマウント電極とを有している。
 そして、圧電振動片5の第1の励振電極が、一方のマウント電極および一方の貫通電極8を介して一方の外部電極6に電気的に接続され、圧電振動片5の第2の励振電極が、他方のマウント電極、引き回し電極27および他方の貫通電極9を介して、他方の外部電極7に電気的に接続されている。圧電振動片5とマウント電極とは、導電性材料の接着剤28等によって接続されている。
 外部電極6、7は、ベース基板2底面の長手方向の両端に設置されている。
 貫通電極8、9は、スルーホール21、22の中に導電性の金属材料からなる芯材部31を配設して形成され、芯材部31を通して安定した電気導通性が確保されている。
 一方の貫通電極8は、外部電極6の上方で基部26の下方に位置しており、他方の貫通電極9は、外部電極7の上方で引き回し電極27の下方に位置している。
 芯材部31は、ベース基板用ウエハ41との溶着によって固定されており、芯材部31がスルーホール21、22を完全に塞いでキャビティ4内の気密を維持している。
 芯材部31は、例えば、コバールやFe-Ni合金(42アロイ)などの、熱膨張係数がベース基板2のガラス材料と近い(好ましくは同等か低め)材料により円柱状に形成された導電性の金属芯材で、両端が平坦で且つベース基板2の厚さと同じ厚さである。
 なお、貫通電極8、9が完成品として形成された場合には、上述したように芯材部31は、円柱状でベース基板2の厚さと同じ厚さとなるように形成されているが、製造過程では、図3に示すように、芯材部31の一方の端部に連結された平板状の土台部36と共に鋲体37を形成している。また、芯材部31の厚さは、後にベース基板2となるベース基板用ウエハ41の厚さよりも厚く、図7Aに示すように、スルーホール21、22に挿入された状態では、芯材部31の先端部がベース基板用ウエハ41の表面41aから突出している。
 土台部36およびベース基板用ウエハ41の表面41aから突出した芯材部31の先端部は、製造過程において、研磨され除去されている。
(パッケージの製造方法)
 次に上述した圧電振動片を収容したパッケージ(圧電振動子1)の製造方法について図4に示すフローチャートを参照しながら説明する。
 まず、後にベース基板2となるベース基板用ウエハ41を製作する工程を行う(S10)。まず、図5に示すようなベース基板用ウエハ41を形成する。具体的には、ソーダ石灰ガラスを所定の厚さまで研磨加工して洗浄した後に、エッチング等により最表面の加工変質層を除去する(S11)。
 なお、図5では、ベース基板用ウエハ41の一部分を示しており、実際にはベース基板用ウエハ41は円板状である。また、図5中の点線Mは、後の切断工程においてベース基板用ウエハ41を切断する切断線を図示している。また、図5中のスルーホール21、22は、後述するベース基板用ウエハ41に貫通電極8、9を形成する工程にて形成される。
 続いて、ベース基板用ウエハ41に貫通電極8、9を形成する貫通電極形成工程を行う(S10A)。
(貫通孔形成工程)
 まず、ベース基板用ウエハ41を貫通するスルーホール(孔部)21、22を形成する(S12)。
 スルーホール21、22の形成は、図6Aおよび図6Bに示すように、平板部52と平板部52の片面に形成された凸部53とを備えたカーボン材料からなるスルーホール形成用型(孔部形成用型)51で、ベース基板用ウエハ41を押圧しつつ、ベース基板用ウエハ41を加熱して行う。
 平板部52は、ベース基板用ウエハ41を押圧する時に、ベース基板用ウエハ41の表面41aに接するフラットな部材である。
 凸部53は、ベース基板用ウエハ41を押圧する時に、ベース基板用ウエハ41を貫通してスルーホール21、22を形成する部材である。凸部53の側面には型抜き用のテーパーが形成され、凸部53の形状がスルーホール21、22に転写される。このとき、スルーホール21、22は、芯材部31の径よりも20~30μm程大きい内径となるように形成される。
 なお、後の製造工程でベース基板用ウエハ41が芯材部31に溶着することで、スルーホール21、22は芯材部31に塞がれる。
 貫通孔形成工程は、まず、スルーホール形成用型51を凸部53が上側となるように設置し、その上にベース基板用ウエハ41を設置する。そして、加熱炉内に配置し、約900℃程の高温状態で圧力をかけ、ベース基板用ウエハ41に凸部53を貫通させる。
 このとき、平板部52および凸部53は、カーボン材料からなるので、加熱されて軟化したベース基板用ウエハ41が平板部52および凸部53に接着することがない。そのため、ベース基板用ウエハ41からスルーホール形成用型51を簡単に取り外すことができる。
 また、平板部52および凸部53はカーボン材料からなるので、高温状態のベース基板用ウエハ41から生じるガスを吸着し、ベース基板用ウエハ41にポーラスが生じることを防ぎ、ベース基板用ウエハ41の気孔率を下げることができる。これにより、キャビティ4の気密性を確保することができる。
 なお、スルーホール形成用型51は、カーボン材料に代わって、酸化アルミニウム、ジルコニア、窒化ホウ素、窒化ケイ素のいずれかを主成分とする材料から形成されていてもよい。スルーホール形成用型51が上記のような材料から形成されることによって、耐熱性が高く熱変形が少なく、型離れがよいので、作業性がよく扱い易い。
 次に、ベース基板用ウエハ41を徐々に温度を下げながら冷却する。この冷却方法は、溶着工程後に行う冷却工程の説明において詳述する。
(芯材部挿入工程)
 続いて、スルーホール21、22に芯材部31を挿入する工程を行う(S13)。
 図7Aに示すように、ベース基板用ウエハ41を後述する溶着型61の加圧型63の上に設置して、スルーホール21、22内に鋲体37の芯材部31を上側から挿入し、鋲体37の土台部36とベース基板用ウエハ41とを接触させて、加圧型63と後述する溶着型61の受型62とでベース基板用ウエハ41および芯材部31をはさみ、図7Bに示すように、上下反転させる。
 芯材部31をスルーホール21、22に挿入する工程は、振り込み機を使用して行う。
 このとき、土台部36は、スルーホール21、22の開口よりも大きく、開口を塞ぐことができる平面形状とする。芯材部31は土台部36と連結した鋲体37なので、スルーホール21、22に挿入しやすく作業性がよい。
(溶着工程)
 続いて、ベース基板用ウエハ41を加熱し、芯材部31にベース基板用ウエハ41を溶着させる工程を行う(S14)。
 溶着工程は、図7Bに示すように、ベース基板用ウエハ41の下側に設置される受型62と、ベース基板用ウエハ41の上側に設置される加圧型63と、受型62と加圧型63の側方に設置される側板64と、を備えたカーボン材料からなる溶着型61にベース基板用ウエハ41を1枚ずつ設置し、ベース基板用ウエハ41を押圧しつつ、ベース基板用ウエハ41を加熱して行う。
 なお、溶着型61は、カーボン材料に代わって、酸化アルミニウム、ジルコニア、窒化ホウ素、窒化ケイ素のいずれかを主成分とする材料から形成されていてもよい。溶着型61が上記のような材料から形成されることによって、耐熱性が高く熱変形が少ない。また、型を外す際に型離れがよく作業性がよい。加えて、加圧されたベース基板用ウエハ41の表面の仕上がりがよい。
 受型62は、ベース基板用ウエハ41の下側をおよび鋲体37を保持する型で、ベース基板用ウエハ41の平面形状よりも大きく、スルーホール21、22に鋲体37の芯材部31が挿通されて、ベース基板用ウエハ41の表面41aから土台部36が突出するベース基板用ウエハ41の下側に沿った形状をしている。
 受型62は、ベース基板用ウエハ41を保持する時にベース基板用ウエハ41の表面41aに接する受型平板部65と、土台部36に接して土台部36に相当する凹部の受型凹部66とを備えている。
 受型凹部66は、ベース基板用ウエハ41に設置された鋲体37の土台部36の位置に合わせて形成されている。受型凹部66に土台部36がはめ込まれることで、受型62は鋲体37を保持できて、鋲体37がはずれたり、芯材部31がずれたりすることを防ぐことができる。
 加圧型63は、ベース基板用ウエハ41を押圧する型で、受型62と同じ平面形状で、スルーホール21、22に鋲体37の芯材部31が挿通されて、ベース基板用ウエハ41の表面41aから芯材部31の先端部が突出するベース基板用ウエハ41の上側に沿った形状をしている。
 加圧型63は、ベース基板用ウエハ41の上側を押圧する時に、ベース基板用ウエハ41の表面41aに接する加圧型平板部67と、芯材部31の先端部が挿入される加圧型凹部68とを備えている。
 加圧型凹部68は、ベース基板用ウエハ41から突出する芯材部31の高さよりも約0.2mm深さのある凹部で、芯材部31の先端部と凹部68の底部との間には隙間69を備えている。
 芯材部31の先端部と凹部68の底部との間に隙間69があることにより、加熱による芯材部31の膨張を逃がすことができる。また、加圧型63でベース基板用ウエハ41押圧する時に、加圧型63から芯材部31へ圧力がかからず、芯材部31の変形や変位を防ぐことができる。
 加圧型凹部68は、ベース基板用ウエハ41から突出する芯材部31の位置に合わせて形成されている。
 また、加圧型63は、端部に加圧型63を貫通するスリット70を備えている。スリット70は、ベース基板用ウエハ41を加熱し押圧した時の空気やベース基板用ウエハ41の余剰なガラス材料の逃げ穴とすることができる。
 溶着工程は、まず、溶着型61にセットされたベース基板用ウエハ41および鋲体37を金属製のメッシュベルトの上に乗せた状態で加熱炉内に入れて加熱する。そして、加熱炉内に配置されたプレス機等を利用して、加圧型63によって、ベース基板用ウエハ41を例えば30~50g/cm2の圧力で加圧する。
 加熱温度は、ベース基板用ウエハ41のガラスの軟化点(例えば545℃)よりも高い温度とし、例えば約900℃とする。
 加熱温度は、徐々に上昇させ、ガラスの軟化点より約5℃ほど高い、例えば550℃の時点で上昇を一旦停止して保持し、その後、約900℃まで再上昇させる。このようにガラスの軟化点よりも約5℃ほど高い温度で温度上昇をいったん停止して保持することにより、ベース基板用ウエハ41の軟化を均一にすることができる。
 そして、ベース基板用ウエハ41を高温状態で加圧することによって、ベース基板用ウエハ41が流動して芯材部31とスルーホール21、22との隙間を塞ぎ、ベース基板用ウエハ41が芯材部31に溶着して、芯材部31がスルーホール21、22を塞ぐ状態となる。
 なお、溶着型61に他の凸部や凹部を形成しておくことにより、ベース基板用ウエハ41を芯材部31に溶着させると共にベース基板用ウエハ41に凹部や凸部を形成することも可能である。
(冷却工程)
 次に、ベース基板用ウエハ41を冷却する(S15)。
 ベース基板用ウエハ41の冷却は、溶着工程の加熱時の約900℃から徐々に温度を下げる。冷却速度は、約900℃からベース基板用ウエハ41を形成するガラスの歪点+50℃までの冷却速度よりも、歪点+50℃から歪点-50℃間の冷却速度が遅くなるようにする。特に、ベース基板用ウエハ41を形成するガラス材料の徐冷点から歪点までを徐冷する。
 歪点+50℃から歪点-50℃間の冷却は、例えば、ベース基板用ウエハ41を別の炉に移動させて行う。
 このように、歪点±50℃間を徐冷することで、ベース基板用ウエハ41に歪が生じることを防ぐことができる。また、ベース基板用ウエハ41のガラス材料と芯材部31の金属材料との熱膨張係数が異なるため、ベース基板用ウエハ41に歪が生じるとスルーホール21、22と芯材部31との間に隙間が生じたり、芯材部31付近にクラックが生じたりすることがある。ベース基板用ウエハ41の歪を防ぐことにより、ベース基板用ウエハ41が芯材部31に確実に溶着された状態を保つことができる。
 なお、歪点-50℃から常温までの冷却速度は、歪点+50℃から歪点-50℃間の冷却速度よりも速くして、冷却時間を短縮させてもよい。
 このようにして、図7Cに示すような、鋲体37の芯材部31がスルーホール21、22を塞いだ状態のベース基板用ウエハ41が形成される。
 なお、貫通孔形成工程において、加熱したベース基板用ウエハ41を冷却する方法も、上述した冷却方法で行う。
 (研磨工程)
 続いて、鋲体37の土台部36および芯材部31の突出部分を研磨して除去する(S16)。
 鋲体37の土台部36および芯材部31の研磨は公知の方法で行う。そして、図7Dに示すように、ベース基板用ウエハ41の表面41aと貫通電極8、9(芯材部31)の表面とが、略面一な状態となる。このようにして、ベース基板用ウエハ41に貫通電極8、9が形成される。
 なお、土台部36や芯材部31の突出した部分は除去せずに、そのまま使用してもよい。例えば、土台部36や芯材部31の突出した部分は放熱板などとして使用することができる。
 次に、ベース基板用ウエハ41の上面に導電性材料をパターニングして、接合膜を形成する接合膜形成工程を行う(S17)と共に、引き回し電極形成工程を行う(S18)。
このようにして、ベース基板用ウエハ41の製作工程が終了する。
 次に、ベース基板2の製作と同時または前後のタイミングで、後にリッド基板3となるリッド基板用ウエハを製作する(S30)。リッド基板3を製作する工程では、まず、のちにリッド基板3となる円板状のリッド基板用ウエハを形成する。具体的には、ソーダ石灰ガラスを所定の厚さまで研磨加工して洗浄した後に、エッチング等により最表面の加工変質層を除去する(S31)。次いで、リッド基板用ウエハにエッチングやプレス加工などによりキャビティ4用の凹部3aを形成する(S32)。
 そして、このように形成されたベース基板用ウエハ41及びリッド基板用ウエハとで形成するキャビティ4内に、圧電振動片5を配置して貫通電極8、9に実装し、ベース基板用ウエハ41とリッド基板用ウエハとを陽極接合しウエハ体を形成する。
 そして、一対の貫通電極8、9にそれぞれ電気的に接続された一対の外部電極6、7を形成し、圧電振動子1の周波数を微調整する。そして、ウエハ体を小片化する切断を行い、内部の電気特性検査を行うことで圧電振動片5を収容したパッケージ(圧電振動子1)が形成される。
 上述した第一の実施の形態による圧電振動子のパッケージの製造方法では、ベース基板用ウエハ41に貫通電極8、9を形成する工程において、スルーホール21、22に鋲体37の芯材部31を挿入したベース基板用ウエハ41を受型62で保持し、ベース基板用ウエハ41をガラス材料の軟化点よりも高温に加熱して加圧型63で押圧することで、ベース基板用ウエハ41を芯材部31に溶着させて、貫通電極8、9を形成している。そして、貫通電極8、9の形成材料には有機物が含まれていないので、有機物の除去に伴う体積減少がなく、貫通電極8、9の周囲に凹部が生じることを防ぐことができる。
 そして、本実施の形態による圧電振動子のパッケージの製造方法では、貫通電極8、9の周囲に、電極膜を形成する工程で断線の原因となる凹部が生じないので、圧電振動片5と外部電極6、7との安定した導電性を確保できる。また、ベース基板用ウエハ41を芯材部31に溶着させることができるので、圧電振動子1のキャビティ4内の安定した気密性も確保できて、圧電振動子1の性能を均一にできる効果を奏する。
(第二の実施の形態)
 次に、本発明の第二の実施の形態によるパッケージの製造方法ついて、図8乃至図12に基づいて説明するが、上述の第一の実施の形態と同一又は同様な部材、部分には同一の符号を用いて説明を省略し、第一の実施の形態と異なる構成について説明する。
 図8に示すように、第二の実施の形態による圧電振動子201は、貫通電極8、9となる芯材部231が円錐台状に形成されていて、スルーホール221、222は、内周面がテーパー面である。
 図9に示すように、芯材部231は、第一の実施の形態と同様に製造過程において土台部236と共に鋲体237を構成している。
 また、スルーホール221、222は、製造工程においてまずベース基板用ウエハ41に凹部(孔部)221a、222a(図11B参照)として形成される。そして、後の工程で凹部221a、222aの底部側のベース基板用ウエハ41が研磨されて除去され、図8に示すようにスルーホール221、222はベース基板用ウエハ41を貫通する貫通孔となる。
 次に、上述したパッケージ(圧電振動子)の製造方法について図10に示すフローチャートを参照しながら説明する。
 まず、後にベース基板2となるベース基板用ウエハ41を製作する工程を行う(S20)。
 第一の実施の形態と同様にベース基板用ウエハ41を製作し(S21)、続いてベース基板用ウエハ41に貫通電極8、9を形成する貫通電極形成工程を行う(S20A)。
 (凹部形成工程)
 まず、ベース基板用ウエハ41に凹部221a、222aを形成する。
 凹部221a、222aの形成は、図11Aに示す凹部形成用型(孔部形成用型)251でベース基板用ウエハ41を押圧しつつ加熱して行う。
 凹部形成用型251は、第一の実施の形態によるスルーホール形成用型51(図6A参照)と同様に平板部252と凸部253とを備える構成であるが、凸部253は、スルーホール221、222に相当する円錐台状で、その高さがベース基板用ウエハ41の厚さよりも低く形成されている。
 図11Bに示すように、凹部形成工程では、第一の実施の形態の貫通孔形成工程と同様に、凹部形成用型251の上にベース基板用ウエハ41を設置し、高温状態で圧力をかけて行う。このとき、凹部形成用型251の凸部253はベース基板用ウエハ41を貫通しないので、ベース基板用ウエハ41に凹部221a、222aが形成される。凹部221a、222aは、芯材部231の外形よりも、例えば20~30μm程大きく形成される。
 第二の実施の形態では、円錐台状の背低の凸部253を備えた凹部形成用型251を使用するので、図6Aに示す第一の実施の形態における円柱状の背高の凸部53を備えたスルーホール形成用型51に比べて、型もちがよい。なお、凹部221a、222aは、テーパーが形成された形状なので、凹部形成工程において凹部形成用型251の型離れがよい。
 凹部形成工程は、第一の実施の形態のようにベース基板用ウエハ41貫通するスルーホール21、22(図6B参照)を形成しなくてよいので、第一の実施の形態による貫通孔形成工程と比べて容易に行うことができる。
(芯材部挿入工程)
 続いて、凹部221a、222aに芯材部231を挿入する工程を行う(S23)
 図12Aに示すように、凹部221a、222aが上面となるようにベース基板用ウエハ41を設置し、上方から芯材部231を挿入し、土台部236とベース基板用ウエハ41とを接触させる。このとき、芯材部231が円錐台状であると共に、凹部221a、222aにテーパー面が形成されているので、芯材部231の挿入が行いやすい。
(溶着工程、冷却工程)
 続いて、ベース基板用ウエハ41を芯材部231に溶着させる工程を行う(S24)
 鋲体237が挿入されたベース基板用ウエハ41の上側に加圧型263を設置する。加圧型263には、鋲体237の土台部236に相当する加圧型凹部268が形成されていて、この加圧型凹部268に土台部236が挿入される。土台部236と加圧型凹部268の底部とは離間しておらず、溶着工程の加圧時に土台部236は加圧型263から押圧される。
 そして、ベース基板用ウエハ41の下側に平板状の受型262を設置し、ベース基板用ウエハ41を保持する。加圧型263および受型262は、第一の実施の形態による溶着型61(図7A、図7B参照)と同様の材料で形成されている。
 そして、図12Bに示すように、第一の実施の形態と同様にベース基板用ウエハ41を高温状態で加圧することで、ベース基板用ウエハ41が流動して、芯材部231と凹部221a、222aとの隙間を塞ぎ、ベース基板用ウエハ41が芯材部231に溶着する。芯材部231は一方の端部が加圧型263側から押圧されても、他方の端部がベース基板用ウエハ41の凹部221a、222aに挿入されていることにより押圧されることが無いので、加熱による芯材部231の膨張を逃がすことが可能であり、芯材部231の変形や損傷を防ぐことができる。また、芯材部231の変形や変位によりベース基板用ウエハ41にクラックや欠けが生じることを防ぐことができる。
 続いて、第一の実施の形態と同様にベース基板用ウエハ41を冷却する工程を行う(S25)。
(土台部研磨工程、ベース基板用ウエハ研磨工程)
 続いて、第一の実施の形態と同様に、図12Cに示す鋲体237の土台部236を研磨して除去する(S26)。
 また、土台部研磨工程と前後して、ベース基板用ウエハ41を研磨して凹部221a、222aを貫通孔にする(S27)。
 ベース基板用ウエハ研磨工程では、凹部221a、222aの底部側のベース基板用ウエハ41を公知の方法で研磨する。そして、図12Dに示すように、凹部221a、222aを貫通させスルーホール221、222とし、ベース基板用ウエハ41から芯材部231の端部を露出させる。
 続いて、土台部研磨工程、ベース基板用ウエハ研磨工程後の工程を第一の実施の形態と同様に行い、パッケージ(圧電振動子201)が製造される。
 第二の実施の形態によるパッケージの製造方法では、第一の実施の形態と同様の効果を奏する。そして、溶着工程では、芯材部231を凹部221a、222aに挿入した状態でベース基板用ウエハ41を加圧することにより、芯材部231は加圧型263側の端部から加圧されるが、他方の端部からは加圧されないので、芯材部231の損傷を防ぐことができる。
 また、芯材部231が円錐台状であり、凹部221a、222aにテーパー面が形成されているので、凹部221a、222aに芯材部231を挿入しやすい。
 また、凹部221a、222aは、テーパーが形成された形状なので、凹部形成工程において凹部形成用型251の型離れがよい。
(変形例)
 次に、上述した実施の形態の変形例について、図13A乃至図15に基づいて説明するが、上述の実施の形態と同一又は同様な部材、部分には同一の符号を用いて説明を省略し、実施の形態と異なる構成について説明する。
 図13Aおよび図13Bに示すように、第一の実施の形態の変形例によるパッケージの製造方法では、貫通電極8、9を形成する芯材部75は、製造過程ではベース基板用ウエハ41の厚さよりも厚い円柱状の金属ピンとする。この芯材部75は土台部と連結されていない。
 図13Aに示すように、スルーホール21、22内に芯材部75が挿入されたベース基板用ウエハ41を保持する受型62bは、受型平板部65bと芯材部31の先端部に相当する凹部66bとを備えている。溶着工程の後、図13Bに示すように、ベース基板用ウエハ41から芯材部75の先端部が突出している。この芯材部75の先端部を図13Cに示すように研磨して除去してもよいし、そのまま使用してもよい。
 なお、第一の実施の形態および第一の実施の形態の変形例において、円柱状の芯材部に代わって円錐台状の芯材部とし、スルーホール21、22にテーパーを形成してもよい。
 また、図14に示すように、第二の実施の形態の変形例によるパッケージの製造方法では、ベース基板用ウエハ41の凹部221a、222aにテーパー面を形成せず、芯材部231bを円柱状としている。第二の実施の形態と同様に、凹部221a、222aの底部側のベース基板用ウエハ41を研磨して除去し、貫通電極8、9を形成している。
 また、図15に示すように、第二の実施の形態の他の変形例によるパッケージの製造方法では、芯材部231cは円錐台状に形成された金属ピンとする。
 この場合、芯材部231cは、上端部の加圧型凹部268に挿入される端部231dが円柱状に形成されていることが好ましい。端部231dが円柱状に形成されていることにより、芯材部全体が円錐台状に形成されている場合と比べて、加圧型凹部268と芯材部231cの端部231dとの間に隙間が生じないので、溶着工程において芯材部231cがぐらつくことを防ぐことができると共に、芯材部231cの端部231dと加圧型凹部268との隙間にベース基板用ウエハ41が入り込むことを防ぐことができる。
 なお、第二の実施の形態の他の変形例において、芯材部231cを円錐台状の金属ピンに変わって円柱状の金属ピンとしてもよい。
 これらの変形例においても、上述した実施形態と同様の効果を奏することができる。すなわち、圧電振動片5と外部電極6、7との安定した導電性と、圧電振動子1のキャビティ4内の安定した気密性とを確保できて、圧電振動子1の性能を均一にできる。
(発振器)
 次に、本発明に係る発振器の一実施形態について、図16を参照しながら説明する。
 本実施形態の発振器100は、図16に示すように、圧電振動子1を、集積回路101に電気的に接続された発振子として構成したものである。この発振器100は、コンデンサ等の電子部品102が実装された基板103を備えている。基板103には、発振器用の上記集積回路101が実装されており、この集積回路101の近傍に、圧電振動子1が実装されている。これら電子部品102、集積回路101及び圧電振動子1は、図示しない配線パターンによってそれぞれ電気的に接続されている。なお、各構成部品は、図示しない樹脂によりモールドされている。
 このように構成された発振器100において、圧電振動子1に電圧を印加すると、該圧電振動子1内の圧電振動片5が振動する。この振動は、圧電振動片5が有する圧電特性により電気信号に変換されて、集積回路101に電気信号として入力される。入力された電気信号は、集積回路101によって各種処理がなされ、周波数信号として出力される。これにより、圧電振動子1が発振子として機能する。
 また、集積回路101の構成を、例えば、RTC(リアルタイムクロック)モジュール等を要求に応じて選択的に設定することで、時計用単機能発振器等の他、当該機器や外部機器の動作日や時刻を制御したり、時刻やカレンダー等を提供したりする機能を付加することができる。
 上述したように、本実施形態の発振器100によれば、キャビティ4内の気密が確実で、圧電振動片5と外部電極6、7との導通性が安定して確保され、作動の信頼性が向上した高品質な圧電振動子1を備えているため、発振器100自体も同様に導通性が安定して確保され、作動の信頼性を高めて高品質化を図ることができる。さらにこれに加え、長期にわたって安定した高精度な周波数信号を得ることができる。
(電子機器)
 次に、本発明に係る電子機器の一実施形態について、図17を参照して説明する。なお電子機器として、上述した圧電振動子1を有する携帯情報機器110を例にして説明する。
 始めに本実施形態の携帯情報機器110は、例えば、携帯電話に代表されるものであり、従来技術における腕時計を発展、改良したものである。外観は腕時計に類似し、文字盤に相当する部分に液晶ディスプレイを配し、この画面上に現在の時刻等を表示させることができるものである。また、通信機として利用する場合には、手首から外し、バンドの内側部分に内蔵されたスピーカ及びマイクロフォンによって、従来技術の携帯電話と同様の通信を行うことが可能である。しかしながら、従来の携帯電話と比較して、格段に小型化及び軽量化されている。
 次に、本実施形態の携帯情報機器110の構成について説明する。この携帯情報機器110は、図17に示すように、圧電振動子1と、電力を供給するための電源部111とを備えている。電源部111は、例えば、リチウム二次電池からなっている。この電源部111には、各種制御を行う制御部112と、時刻等のカウントを行う計時部113と、外部との通信を行う通信部114と、各種情報を表示する表示部115と、それぞれの機能部の電圧を検出する電圧検出部116とが並列に接続されている。そして、電源部111によって、各機能部に電力が供給されるようになっている。
 制御部112は、各機能部を制御して音声データの送信及び受信、現在時刻の計測や表示等、システム全体の動作制御を行う。また、制御部112は、予めプログラムが書き込まれたROMと、該ROMに書き込まれたプログラムを読み出して実行するCPUと、該CPUのワークエリアとして使用されるRAM等とを備えている。
 計時部113は、発振回路、レジスタ回路、カウンタ回路及びインターフェース回路等を内蔵する集積回路と、圧電振動子1とを備えている。圧電振動子1に電圧を印加すると圧電振動片5が振動し、該振動が水晶の有する圧電特性により電気信号に変換されて、発振回路に電気信号として入力される。発振回路の出力は二値化され、レジスタ回路とカウンタ回路とにより計数される。そして、インターフェース回路を介して、制御部112と信号の送受信が行われ、表示部115に、現在時刻や現在日付或いはカレンダー情報等が表示される。
 通信部114は、従来の携帯電話と同様の機能を有し、無線部117、音声処理部118、切替部119、増幅部120、音声入出力部121、電話番号入力部122、着信音発生部123及び呼制御メモリ部124を備えている。
 無線部117は、音声データ等の各種データを、アンテナ125を介して基地局と送受信のやりとりを行う。音声処理部118は、無線部117又は増幅部120から入力された音声信号を符号化及び複号化する。増幅部120は、音声処理部118又は音声入出力部121から入力された信号を、所定のレベルまで増幅する。音声入出力部121は、スピーカやマイクロフォン等からなり、着信音や受話音声を拡声したり、音声を集音したりする。
 また、着信音発生部123は、基地局からの呼び出しに応じて着信音を生成する。切替部119は、着信時に限って、音声処理部118に接続されている増幅部120を着信音発生部123に切り替えることによって、着信音発生部123において生成された着信音が増幅部120を介して音声入出力部121に出力される。
 なお、呼制御メモリ部124は、通信の発着呼制御に係るプログラムを格納する。また、電話番号入力部122は、例えば、0から9の番号キー及びその他のキーを備えており、これら番号キー等を押下することにより、通話先の電話番号等が入力される。
 電圧検出部116は、電源部111によって制御部112等の各機能部に対して加えられている電圧が、所定の値を下回った場合に、その電圧降下を検出して制御部112に通知する。このときの所定の電圧値は、通信部114を安定して動作させるために必要な最低限の電圧として予め設定されている値であり、例えば、3V程度となる。電圧検出部116から電圧降下の通知を受けた制御部112は、無線部117、音声処理部118、切替部119及び着信音発生部123の動作を禁止する。特に、消費電力の大きな無線部117の動作停止は、必須となる。更に、表示部115に、通信部114が電池残量の不足により使用不能になった旨が表示される。
 即ち、電圧検出部116と制御部112とによって、通信部114の動作を禁止し、その旨を表示部115に表示することができる。この表示は、文字メッセージであっても良いが、より直感的な表示として、表示部115の表示面の上部に表示された電話アイコンに、×(バツ)印を付けるようにしても良い。
 なお、通信部114の機能に係る部分の電源を、選択的に遮断することができる電源遮断部126を備えることで、通信部114の機能をより確実に停止することができる。
 上述したように、本実施形態の携帯情報機器110によれば、キャビティ4内の気密が確実で、圧電振動片5と外部電極6、7との導通性が安定して確保され、作動の信頼性が向上した高品質な圧電振動子1を備えているため、携帯情報機器自体も同様に導通性が安定して確保され、作動の信頼性を高めて高品質化を図ることができる。さらにこれに加え、長期にわたって安定した高精度な時計情報を表示することができる。
(電波時計)
 次に、本発明に係る電波時計の一実施形態について、図18を参照して説明する。
 本実施形態の電波時計130は、図18に示すように、フィルタ部131に電気的に接続された圧電振動子1を備えたものであり、時計情報を含む標準の電波を受信して、正確な時刻に自動修正して表示する機能を備えた時計である。
 日本国内には、福島県(40kHz)と佐賀県(60kHz)とに、標準の電波を送信する送信所(送信局)があり、それぞれ標準電波を送信している。40kHz若しくは60kHzのような長波は、地表を伝播する性質と、電離層と地表とを反射しながら伝播する性質とを併せもつため、伝播範囲が広く、上述した2つの送信所で日本国内を全て網羅している。
 以下、電波時計130の機能的構成について詳細に説明する。
 アンテナ132は、40kHz若しくは60kHzの長波の標準電波を受信する。長波の標準電波は、タイムコードと呼ばれる時刻情報を、40kHz若しくは60kHzの搬送波にAM変調をかけたものである。受信された長波の標準電波は、アンプ133によって増幅され、複数の圧電振動子1を有するフィルタ部131によって濾波、同調される。
 本実施形態における圧電振動子1は、上記搬送周波数と同一の40kHz及び60kHzの共振周波数を有する水晶振動子部138、139をそれぞれ備えている。
 更に、濾波された所定周波数の信号は、検波、整流回路134により検波復調される。
続いて、波形整形回路135を介してタイムコードが取り出され、CPU136でカウントされる。CPU136では、現在の年、積算日、曜日、時刻等の情報を読み取る。読み取られた情報は、RTC137に反映され、正確な時刻情報が表示される。
 搬送波は、40kHz若しくは60kHzであるから、水晶振動子部138、139は、上述した音叉型の構造を持つ振動子が好適である。
 なお、上述の説明は、日本国内の例で示したが、長波の標準電波の周波数は、海外では異なっている。例えば、ドイツでは77.5KHzの標準電波が用いられている。従って、海外でも対応可能な電波時計130を携帯機器に組み込む場合には、さらに日本の場合とは異なる周波数の圧電振動子1を必要とする。
 上述したように、本実施形態の電波時計130によれば、キャビティ4内の気密が確実で、圧電振動片5と外部電極6、7との導通性が安定して確保され、作動の信頼性が向上した高品質な圧電振動子1を備えているため、電波時計自体も同様に導通性が安定して確保され、作動の信頼性を高めて高品質化を図ることができる。さらにこれに加え、長期にわたって安定して高精度に時刻をカウントすることができる。
 以上、本発明によるパッケージの製造方法の実施の形態について説明したが、本発明は上記の実施の形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。
 上述した第一の実施の形態では、スルーホール21、22は、スルーホール形成用型51をベース基板用ウエハ41に押圧し、ベース基板用ウエハ41を加熱することで形成しているが、他にサンドブラスト法などでベース基板用ウエハ41にスルーホール21、22を形成してもよい。
 また、上述した第二の実施の形態では、凹部221a、222aは、凹部形成用型251をベース基板用ウエハ41に押圧し、ベース基板用ウエハ41を加熱することで形成しているが、他にサンドブラスト法などでベース基板用ウエハ41に凹部221a、222aを形成してもよい。
 ベース基板用ウエハ41を芯材部31に溶着させることにより、貫通電極8、9の周囲のベース基板用ウエハ41には凹部が生じないので、圧電振動子1のキャビティ4内の安定した気密性と、圧電振動片5と外部電極6、7との安定した導電性を確保でき、圧電振動子1の性能を均一にできる。
 1、201 圧電振動子
 2 ベース基板(基板)
 3 リッド基板(基板)
 4 キャビティ
 5 圧電振動片
 6、7 外部電極
 8、9 貫通電極
 21、22、221、222 スルーホール(孔部)
 221a、222a 凹部(孔部)
 31、75、231、231b、231c 芯材部
 36、236 土台部
 37、237 鋲体
 41 ベース基板用ウエハ(貫通電極形成用ウエハ)
 51 スルーホール形成用型(孔部形成用型)
 53、253 凸部
 63、263 加圧型
 68、268 加圧型凹部(凹部)
 69 隙間
 100 発振器
 101 集積回路
 110 携帯情報機器(電子機器)
 113 計時部
 130 電波時計
 131 フィルタ部
 251 凹部形成用型(孔部形成用型)
 

Claims (12)

  1.  互いに接合された複数の基板と、前記複数の基板の内側に形成されたキャビティと、前記キャビティの内部と前記複数の基板の外側とを導通する貫通電極とを備え、
     前記貫通電極は、ガラス材料からなる貫通電極形成基板の孔部に、金属材料からなる導電性の芯材部を配置して形成されたパッケージの製造方法であって、
     貫通電極形成基板用ウエハに前記芯材部を挿入する前記孔部を形成する孔部形成工程と、
     前記貫通電極形成基板用ウエハに形成された前記孔部に前記芯材部を挿入する芯材部挿入工程と、
     前記貫通電極形成基板用ウエハを加熱して前記芯材部に溶着させる溶着工程と、
     前記貫通電極形成基板用ウエハを冷却する冷却工程とを有し、
     前記溶着工程では、前記貫通電極形成基板用ウエハの表面に加圧型を設置して前記加圧型で前記貫通電極形成基板用ウエハを押圧すると共に、前記ガラス材料の軟化点より高温に前記貫通電極形成基板用ウエハを加熱することにより、前記貫通電極形成基板用ウエハを前記芯材部に溶着させることを特徴とするパッケージの製造方法。
  2.  請求項1に記載のパッケージの製造方法であって、
     前記冷却工程では、前記溶着工程における加熱温度から前記貫通電極形成基板用ウエハを構成する前記ガラス材料の歪点+50℃までの冷却速度よりも、前記歪点+50℃から前記歪点-50℃までの冷却速度を遅くする。
  3.  請求項1または2に記載のパッケージの製造方法であって、
     前記孔部形成工程では、前記孔部として貫通孔を形成し、前記加圧型は、前記芯材部の上端部を挿入可能な凹部を有し、前記凹部の底部は、前記加圧型による前記貫通電極形成基板用ウエハの押圧時に、前記芯材部の上端部から離間するように形成されている。
  4.  請求項1乃至3のいずれか1項に記載のパッケージの製造方法であって、
     前記加圧型は、カーボン、酸化アルミニウム、ジルコニア、窒化ホウ素、窒化ケイ素のうちいずれかを主成分とする材料から形成されている。
  5.  請求項1乃至4のいずれか1項に記載のパッケージの製造方法であって、
     前記孔部形成工程では、カーボン材料からなり前記孔部に相当する凸部を有する孔部形成用型で前記貫通電極形成基板用ウエハを押圧しつつ、前記貫通電極形成基板用ウエハを加熱することにより前記孔部を形成する。
  6.  請求項1乃至5のいずれか1項に記載のパッケージの製造方法であって、
     前記芯材部挿入工程では、平板状の土台部と、前記土台部の表面に立設された前記芯材部とを有する導電性の鋲体の前記芯材部を前記貫通電極形成基板用ウエハに形成された孔部に挿入して、前記貫通電極形成基板用ウエハに前記鋲体の土台部を当接させ、前記冷却工程の後に、前記鋲体の土台部を研磨して除去する。
  7.  請求項1乃至6のいずれか1項に記載のパッケージの製造方法であって、
     前記芯材部は円錐台状に形成されていて、前記孔部形成工程では、前記孔部の内周面をテーパー状に形成する。
  8.  請求項1、2、4、5、6、7のいずれか1項に記載のパッケージの製造方法であって、
     前記孔部形成工程では、前記孔部を前記貫通電極形成基板用ウエハに凹部として形成し、前記冷却工程の後に、前記凹部の底部側の貫通電極形成基板用ウエハを研磨し、前記芯材部を露出させる。
  9.  請求項1乃至8のいずれか1項に記載のパッケージの製造方法を実施する工程と、圧電振動片を前記貫通電極に実装しつつ前記キャビティの内部に配置する工程とを有する圧電振動子の製造方法。
  10.  請求項9に記載の方法で製造された圧電振動子が、発振子として集積回路に電気的に接続されている発振器。
  11.  請求項9に記載の方法で製造された圧電振動子が、計時部に電気的に接続されている電子機器。
  12.  請求項9に記載の方法で製造された圧電振動子が、フィルタ部に電気的に接続されている電波時計。
PCT/JP2010/052456 2009-02-25 2010-02-18 パッケージの製造方法、圧電振動子の製造方法、発振器、電子機器および電波時計 WO2010098250A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2010800106650A CN102356546A (zh) 2009-02-25 2010-02-18 封装件的制造方法、压电振动器的制造方法、振荡器、电子设备及电波钟
JP2011501565A JPWO2010098250A1 (ja) 2009-02-25 2010-02-18 パッケージの製造方法、圧電振動子の製造方法、発振器、電子機器および電波時計
US13/215,734 US20110305119A1 (en) 2009-02-25 2011-08-23 Package manufacturing method, piezoelectric vibrator manufacturing method, oscillator, electronic device and radio timepiece

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2009/053328 WO2010097899A1 (ja) 2009-02-25 2009-02-25 パッケージ製品の製造方法、圧電振動子の製造方法、発振器、電子機器および電波時計
JPPCT/JP2009/053328 2009-02-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/215,734 Continuation US20110305119A1 (en) 2009-02-25 2011-08-23 Package manufacturing method, piezoelectric vibrator manufacturing method, oscillator, electronic device and radio timepiece

Publications (1)

Publication Number Publication Date
WO2010098250A1 true WO2010098250A1 (ja) 2010-09-02

Family

ID=42665125

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2009/053328 WO2010097899A1 (ja) 2009-02-25 2009-02-25 パッケージ製品の製造方法、圧電振動子の製造方法、発振器、電子機器および電波時計
PCT/JP2010/052456 WO2010098250A1 (ja) 2009-02-25 2010-02-18 パッケージの製造方法、圧電振動子の製造方法、発振器、電子機器および電波時計

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/053328 WO2010097899A1 (ja) 2009-02-25 2009-02-25 パッケージ製品の製造方法、圧電振動子の製造方法、発振器、電子機器および電波時計

Country Status (4)

Country Link
US (1) US20110305119A1 (ja)
JP (1) JPWO2010098250A1 (ja)
CN (1) CN102356546A (ja)
WO (2) WO2010097899A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110299233B (zh) * 2018-03-22 2021-08-17 国巨电子(中国)有限公司 分流电阻器的制造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH054830A (ja) * 1991-02-21 1993-01-14 Shinetsu Quartz Prod Co Ltd 光学用シリカガラスの製造方法
JPH06767U (ja) * 1992-06-17 1994-01-11 東京電気株式会社 インクリボン装置
JPH104152A (ja) * 1996-06-17 1998-01-06 Matsushita Electric Ind Co Ltd 電子部品
JP2001230546A (ja) * 2000-02-15 2001-08-24 Ngk Insulators Ltd プリント回路用基板材の製造方法
JP2003209198A (ja) * 2001-11-09 2003-07-25 Nippon Sheet Glass Co Ltd 電子部品パッケージ
JP2007288024A (ja) * 2006-04-19 2007-11-01 Dainippon Printing Co Ltd センサーチップおよびその製造方法
JP2008096312A (ja) * 2006-10-12 2008-04-24 Elpida Memory Inc 積層型半導体装置及びそのテスト方法
JP2008239441A (ja) * 2007-03-28 2008-10-09 Hoya Corp ガラス光学素子の製造方法及びガラス光学素子

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2790262B2 (ja) * 1991-07-19 1998-08-27 キヤノン株式会社 光学素子のプレス成形方法
JP2739916B2 (ja) * 1992-02-18 1998-04-15 キヤノン株式会社 光学素子製造用ガラスブランク及びこれを用いた光学素子の製造方法
JPH06283951A (ja) * 1993-03-26 1994-10-07 Citizen Watch Co Ltd 水晶部品の製造方法
JP2002121037A (ja) * 2000-08-07 2002-04-23 Nippon Sheet Glass Co Ltd 電子部品パッケージ用多数個取りガラス板の製造方法
US6823694B2 (en) * 2000-09-01 2004-11-30 Hoya Corporation Method of manufacturing glass optical elements
JP4517992B2 (ja) * 2005-09-14 2010-08-04 セイコーエプソン株式会社 導通孔形成方法、並びに圧電デバイスの製造方法、及び圧電デバイス
JP2007228443A (ja) * 2006-02-25 2007-09-06 Seiko Instruments Inc 電子部品及びその製造方法、圧電デバイス及びその製造方法、電波時計並びに電子機器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH054830A (ja) * 1991-02-21 1993-01-14 Shinetsu Quartz Prod Co Ltd 光学用シリカガラスの製造方法
JPH06767U (ja) * 1992-06-17 1994-01-11 東京電気株式会社 インクリボン装置
JPH104152A (ja) * 1996-06-17 1998-01-06 Matsushita Electric Ind Co Ltd 電子部品
JP2001230546A (ja) * 2000-02-15 2001-08-24 Ngk Insulators Ltd プリント回路用基板材の製造方法
JP2003209198A (ja) * 2001-11-09 2003-07-25 Nippon Sheet Glass Co Ltd 電子部品パッケージ
JP2007288024A (ja) * 2006-04-19 2007-11-01 Dainippon Printing Co Ltd センサーチップおよびその製造方法
JP2008096312A (ja) * 2006-10-12 2008-04-24 Elpida Memory Inc 積層型半導体装置及びそのテスト方法
JP2008239441A (ja) * 2007-03-28 2008-10-09 Hoya Corp ガラス光学素子の製造方法及びガラス光学素子

Also Published As

Publication number Publication date
JPWO2010098250A1 (ja) 2012-08-30
CN102356546A (zh) 2012-02-15
WO2010097899A1 (ja) 2010-09-02
US20110305119A1 (en) 2011-12-15

Similar Documents

Publication Publication Date Title
JP5103297B2 (ja) 圧電振動子の製造方法
JP5135510B2 (ja) 圧電振動子の製造方法、圧電振動子、発振器、電子機器及び電波時計
JP5147868B2 (ja) 圧電振動子の製造方法、圧電振動子、発振器、電子機器及び電波時計
JP5065494B2 (ja) 圧電振動子、発振器、電子機器及び電波時計並びに圧電振動子の製造方法
JP5180975B2 (ja) 圧電振動子の製造方法および圧電振動子
WO2010097906A1 (ja) 圧電振動子の製造方法、圧電振動子、発振器、電子機器および電波時計
JP5184648B2 (ja) 圧電振動子の製造方法
JP5468940B2 (ja) パッケージの製造方法
US8362846B2 (en) Package manufacturing method and apparatus for piezoelectric oscillator
WO2010098250A1 (ja) パッケージの製造方法、圧電振動子の製造方法、発振器、電子機器および電波時計
JPWO2010082329A1 (ja) パッケージの製造方法及びウエハ接合体、圧電振動子、発振器、電子機器、並びに電波時計
JP2013074517A (ja) パッケージの製造方法、圧電振動子、発振器、電子機器および電波時計
JP2011228962A (ja) パッケージの製造方法、パッケージ、圧電振動子、発振器、電子機器、及び電波時計
JP2013030958A (ja) パッケージ、パッケージの製造方法、圧電振動子、発振器、電子機器および電波時計
JP2012039511A (ja) パッケージの製造方法、パッケージ、圧電振動子、発振器、電子機器、及び電波時計
JP2011199674A (ja) ガラス基板の製造方法、パッケージの製造方法、パッケージ、圧電振動子、発振器、電子機器及び電波時計
JP2011250370A (ja) パッケージの製造方法、パッケージ、圧電振動子、発振器、電子機器、及び電波時計
JP2011049993A (ja) パッケージの製造方法、圧電振動子の製造方法、圧電振動子、発振器、電子機器および電波時計
JP2012039510A (ja) パッケージの製造方法、パッケージ、圧電振動子、発振器、電子機器、及び電波時計
JP2012039374A (ja) パッケージの製造方法、パッケージ、圧電振動子、発振器、電子機器、及び電波時計
JP2011228961A (ja) パッケージの製造方法、パッケージ、圧電振動子、発振器、電子機器、及び電波時計
JP2013162170A (ja) ガラス基板の製造方法、パッケージの製造方法、圧電振動子、発振器、電子機器及び電波時計
JP2013131854A (ja) パッケージの製造方法、パッケージ、圧電振動子、発振器、電子機器、及び電波時計
JP2012186533A (ja) パッケージの製造方法、パッケージ、圧電振動子、発振器、電子機器、及び電波時計
JP2011119350A (ja) パッケージの製造方法、圧電振動子、発振器、電子機器及び電波時計

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080010665.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10746131

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011501565

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10746131

Country of ref document: EP

Kind code of ref document: A1