WO2010098069A1 - ヒートポンプシステム - Google Patents
ヒートポンプシステム Download PDFInfo
- Publication number
- WO2010098069A1 WO2010098069A1 PCT/JP2010/001179 JP2010001179W WO2010098069A1 WO 2010098069 A1 WO2010098069 A1 WO 2010098069A1 JP 2010001179 W JP2010001179 W JP 2010001179W WO 2010098069 A1 WO2010098069 A1 WO 2010098069A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat
- usage
- refrigerant
- heat source
- source side
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B30/00—Heat pumps
- F25B30/02—Heat pumps of the compression type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24D—DOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
- F24D3/00—Hot-water central heating systems
- F24D3/08—Hot-water central heating systems in combination with systems for domestic hot-water supply
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24D—DOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
- F24D3/00—Hot-water central heating systems
- F24D3/18—Hot-water central heating systems using heat pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24H—FLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
- F24H6/00—Combined water and air heaters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B13/00—Compression machines, plants or systems, with reversible cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B29/00—Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B47/00—Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
- F25B47/02—Defrosting cycles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B7/00—Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24D—DOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
- F24D2200/00—Heat sources or energy sources
- F24D2200/12—Heat pump
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2313/00—Compression machines, plants or systems with reversible cycle not otherwise provided for
- F25B2313/003—Indoor unit with water as a heat sink or heat source
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2313/00—Compression machines, plants or systems with reversible cycle not otherwise provided for
- F25B2313/007—Compression machines, plants or systems with reversible cycle not otherwise provided for three pipes connecting the outdoor side to the indoor side with multiple indoor units
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2313/00—Compression machines, plants or systems with reversible cycle not otherwise provided for
- F25B2313/023—Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
- F25B2313/0231—Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2313/00—Compression machines, plants or systems with reversible cycle not otherwise provided for
- F25B2313/027—Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
- F25B2313/02741—Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2313/00—Compression machines, plants or systems with reversible cycle not otherwise provided for
- F25B2313/029—Control issues
- F25B2313/0294—Control issues related to the outdoor fan, e.g. controlling speed
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/13—Pump speed control
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/12—Hot water central heating systems using heat pumps
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/70—Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating
Definitions
- the present invention relates to a heat pump system, and more particularly to a heat pump system capable of heating an aqueous medium using a heat pump cycle.
- Such a heat pump water heater mainly includes a compressor, a refrigerant-water heat exchanger, and a heat source side heat exchanger, and heats the water by the heat radiation of the refrigerant in the refrigerant-water heat exchanger. It is comprised so that the warm water produced may be supplied to a hot water tank.
- the subject of this invention is aiming at the energy-saving of the heat pump system which can heat an aqueous medium using a heat pump cycle.
- the heat pump system includes a heat source unit, a first usage unit, and a second usage unit.
- the heat source unit includes a heat source side compressor, a heat source side heat exchanger, a heat source side blower, and a heat source side switching mechanism.
- the heat source side compressor compresses the heat source side refrigerant.
- the heat source side blower is a variable capacity blower capable of adjusting the heat exchange efficiency of the heat source side heat exchanger.
- the heat source side switching mechanism switches between a heat source side heat radiation operation state in which the heat source side heat exchanger functions as a heat source side refrigerant radiator and a heat source side evaporation operation state in which the heat source side heat exchanger functions as an evaporator of the heat source side refrigerant.
- the first usage unit includes a first usage-side heat exchanger, a heat radiation amount adjusting means, and a first usage-side flow rate adjustment valve.
- the 1st utilization side heat exchanger can function as a heat radiator of the heat source side refrigerant compressed by the heat source side compressor.
- the heat radiation amount adjusting means adjusts the heat radiation amount to the aqueous medium due to the heat radiation of the heat source side refrigerant in the first usage side heat exchanger.
- the first usage side flow rate adjustment valve is a valve capable of adjusting the flow rate of the heat source side refrigerant flowing through the first usage side heat exchanger.
- the first usage unit can also perform an aqueous medium heating operation, which is an operation of heating the aqueous medium by heat radiation of the heat source side refrigerant in the first usage side heat exchanger.
- the second usage unit has a second usage-side heat exchanger and a second usage-side flow rate adjustment valve.
- the heat source side switching mechanism can at least function as an evaporator of the heat source side refrigerant in the heat source side heat radiation operation state.
- the second usage side flow rate adjustment valve can adjust the flow rate of the heat source side refrigerant flowing through the second usage side heat exchanger.
- the second usage unit can also perform at least a cooling operation for cooling the air medium by evaporation of the heat source side refrigerant in the second usage side heat exchanger.
- the heat radiation amount of the heat radiation amount adjusting means depends on the state of the first usage side flow rate adjustment valve and the second usage side flow rate adjustment valve. Or the operation capacity of the heat source side blower is controlled.
- the aqueous medium can be removed by the heat radiation of the heat source side refrigerant in the first usage side heat exchanger.
- the cooling heat obtained by the heat source side refrigerant by heating the aqueous medium can be used for the operation of cooling the air medium by evaporation of the heat source side refrigerant in the second usage side heat exchanger. Therefore, the conventional heat pump water heater is used such that the aqueous medium heated in the first usage unit is used for hot water supply and the air medium cooled in the second usage unit is used for indoor cooling.
- the heat pump Using the cycle and therefore energy savings can be made of a heat pump system capable of heating the aqueous medium.
- the first usage-side flow rate adjustment valve and the second usage flow are used.
- the control of the heat release amount of the heat release amount adjusting means or the operation capacity of the heat source side blower is performed. Therefore, for example, when the heat source side refrigerant accumulates in the heat source side heat exchanger and the amount of refrigerant flowing into the second usage unit is insufficient, the opening degree of the second usage side flow rate adjustment valve is at least larger than the predetermined opening degree.
- the heat source side refrigerant accumulated in the heat source side heat exchanger is The shortage of the refrigerant amount in the second usage unit can be solved by guiding to the second usage unit. Further, for example, when the load (for example, hot water supply load) required for heating the aqueous medium in the first usage unit is large, the heat source side refrigerant accumulates in the first usage side heat exchanger and the first usage side flow rate adjustment valve is opened. However, the heat source side refrigerant is controlled by controlling the heat release amount of the heat release amount adjusting means according to the state of the first use side flow rate adjustment valve. Can be made difficult to accumulate in the first usage-side heat exchanger.
- the load for example, hot water supply load
- a heat pump system is the heat pump system according to the first aspect of the present invention, wherein the second usage-side flow rate adjustment valve adjusts the opening degree of the heat source-side refrigerant in the second usage-side heat exchanger.
- Superheat degree constant control is performed with the superheat degree as a predetermined superheat degree.
- control which reduces the air volume of a heat source side air blower is performed.
- the opening of the second usage-side flow rate adjustment valve is at least opened beyond a predetermined opening.
- the heat source side refrigerant accumulated in the heat source side heat exchanger is transferred to the second usage unit.
- the shortage of the refrigerant amount in the second usage unit can be eliminated. Therefore, the heat source side refrigerant can be prevented from accumulating in the heat source side heat exchanger functioning as a radiator. For this reason, the fall of the heat exchange efficiency of the heat source side heat exchanger can be prevented.
- a heat pump system is the heat pump system according to the first aspect or the second aspect, wherein the first use side heat exchanger is a heat exchanger that performs heat exchange between the heat source side refrigerant and the aqueous medium. .
- the heat pump system according to the fourth aspect of the present invention is the heat pump system according to the third aspect of the present invention, further comprising an aqueous medium circuit.
- an aqueous medium that performs heat exchange with the heat source side refrigerant in the first usage side heat exchanger circulates.
- the heat radiation amount adjusting means is a variable capacity circulation pump.
- the first usage-side flow rate adjustment valve performs supercooling degree constant control by adjusting the degree of opening thereof so that the degree of supercooling of the heat source side refrigerant in the first usage-side heat exchanger is a predetermined degree of supercooling.
- the capacity control of the circulation pump is performed so that the flow rate of the aqueous medium circulating in the aqueous medium circuit becomes small.
- a radiator is used for cooling the second usage unit by heating the aqueous medium without using heat (for example, using hot water) via the aqueous medium.
- the waste heat generated on the side can be used.
- the cooling operation of the second usage unit is mainly performed as described above, and the exhaust heat recovery accompanying the cooling operation of the second usage unit is performed in order to improve the energy efficiency of the heating operation of the aqueous medium in the first usage unit.
- the load on the heating of the aqueous medium because the temperature of the aqueous medium is low Is often larger than the cooling load.
- the cooling operation of the second usage unit is continued in accordance with the load applied to the heating of the aqueous medium, the operation requires excessive energy with respect to the cooling load, resulting in poor efficiency. Therefore, in order to prevent this, it is necessary to match the load applied to the heating of the aqueous medium to the cooling load applied to the second usage unit.
- the degree of supercooling of the heat source side refrigerant in the first usage side heat exchanger is controlled to be a predetermined degree of supercooling by adjusting the opening of the first usage side flow rate adjustment valve. ing. Therefore, the opening degree of the first usage-side flow rate adjustment valve increases when the load on the heating of the aqueous medium in the first usage unit is larger than the cooling load in the second usage unit. Therefore, in this heat pump system, a variable capacity circulation pump is provided, and when the opening of the first usage-side flow rate adjustment valve reaches a predetermined opening or more, the first usage pressure for the cooling load in the second usage unit is increased. It is determined that the load applied to the aqueous medium in the utilization unit is large, and the capacity control of the circulation pump is performed so that the flow rate of the aqueous medium circulating in the aqueous medium circuit becomes small.
- the load applied to the heating of the aqueous medium in the first usage unit can be suppressed, and the load applied to the heating of the aqueous medium in the first usage unit can be made smaller than the cooling load in the second usage unit. Therefore, it is possible to prevent the operation efficiency of performing exhaust heat recovery in the first usage unit from being lowered while performing the cooling operation of the second usage unit.
- a heat pump system is the heat pump system according to the first aspect of the present invention or the second aspect of the present invention, wherein the first usage-side heat exchanger heats the heat from the heat-source-side refrigerant and the heat-source-side refrigerant different from the heat-source-side refrigerant. It is a heat exchanger that performs exchange.
- the first usage unit further includes a usage-side compressor and a refrigerant-water heat exchanger.
- the use side compressor compresses the use side refrigerant.
- the refrigerant-water heat exchanger can function as a radiator for the use-side refrigerant to heat the aqueous medium.
- the first usage unit also constitutes a usage side refrigerant circuit in which the usage side refrigerant circulates together with the first usage side heat exchanger.
- the usage-side refrigerant circulating in the usage-side refrigerant circuit is heated by the heat radiation of the heat-source-side refrigerant.
- the refrigeration cycle having a higher temperature than the refrigeration cycle in the refrigerant circuit in which the heat source side refrigerant circulates can be obtained using the heat obtained from Can be obtained.
- the heat pump system according to the sixth aspect of the present invention is the heat pump system according to the fifth aspect of the present invention, further comprising an aqueous medium circuit.
- the aqueous medium circuit has a variable capacity circulation pump.
- the aqueous medium circuit also circulates an aqueous medium that performs heat exchange with the use-side refrigerant in the refrigerant-water heat exchanger.
- the heat radiation amount adjusting means is a variable capacity circulation pump.
- the first usage-side flow rate adjustment valve performs supercooling degree constant control by adjusting the degree of opening thereof so that the degree of supercooling of the heat source side refrigerant in the first usage-side heat exchanger is a predetermined degree of supercooling. When the first usage-side flow rate adjustment valve reaches a predetermined opening or more, the capacity control of the circulation pump is performed so that the flow rate of the aqueous medium circulating in the aqueous medium circuit becomes small.
- a radiator is used for cooling the second usage unit by heating the aqueous medium without using heat (for example, using hot water) via the aqueous medium.
- the waste heat generated on the side can be used.
- the cooling operation of the second usage unit is mainly performed as described above, and the exhaust heat recovery accompanying the cooling operation of the second usage unit is performed in order to improve the energy efficiency of the heating operation of the aqueous medium in the first usage unit.
- the load on the heating of the aqueous medium because the temperature of the aqueous medium is low Is often larger than the cooling load.
- the cooling operation of the second usage unit is continued in accordance with the load required to heat the aqueous medium, the operation requires excessive energy with respect to the cooling load, resulting in poor efficiency. Therefore, in order to prevent this, it is necessary to match the load applied to the heating of the aqueous medium to the cooling load applied to the second usage unit.
- the degree of supercooling of the heat source side refrigerant in the first usage side heat exchanger is controlled to be a predetermined degree of supercooling by adjusting the opening of the first usage side flow rate adjustment valve. ing. Therefore, the opening degree of the first usage-side flow rate adjustment valve increases when the load on the heating of the aqueous medium in the first usage unit is larger than the cooling load in the second usage unit. Therefore, in this heat pump system, a variable capacity circulation pump is provided, and when the opening of the first usage-side flow rate adjustment valve reaches a predetermined opening or more, the first usage pressure for the cooling load in the second usage unit is increased. It is determined that the load applied to the aqueous medium in the utilization unit is large, and the capacity control of the circulation pump is performed so that the flow rate of the aqueous medium circulating in the aqueous medium circuit becomes small.
- the load applied to the heating of the aqueous medium in the first usage unit can be suppressed, and the load applied to the heating of the aqueous medium in the first usage unit can be made smaller than the cooling load in the second usage unit. Therefore, it is possible to prevent the operation efficiency of performing exhaust heat recovery in the first usage unit from being lowered while performing the cooling operation of the second usage unit.
- a heat pump system is the heat pump system according to any of the first to sixth aspects of the present invention, further comprising a discharge refrigerant communication pipe, a liquid refrigerant communication pipe, and a gas refrigerant communication pipe.
- the discharge refrigerant communication pipe can lead the heat source side refrigerant out of the heat source unit from the discharge of the heat source side compressor, regardless of whether the heat source side switching mechanism is in the heat source side heat radiation operation state or the heat source side evaporation operation state.
- the liquid refrigerant communication pipe is capable of leading the heat source side refrigerant out of the heat source unit from the outlet of the heat source side heat exchanger functioning as a heat source side refrigerant radiator in the heat source side heat radiation operation state in the heat source side switching mechanism, and
- the heat source side switching mechanism can introduce the heat source side refrigerant from the outside of the heat source unit to the inlet of the heat source side heat exchanger that functions as the evaporator of the heat source side refrigerant in the heat source side evaporation operation state.
- the gas refrigerant communication pipe can introduce the heat source side refrigerant from outside the heat source unit to the suction of the heat source side compressor.
- the aqueous medium can be removed by the heat radiation of the heat source side refrigerant in the first usage side heat exchanger.
- the cooling heat obtained by the heat source side refrigerant by heating the aqueous medium can be used for the operation of cooling the air medium by evaporation of the heat source side refrigerant in the second usage side heat exchanger.
- the conventional heat pump uses an aqueous medium heated in the first usage unit for hot water supply and an air medium cooled in the second usage unit for indoor cooling.
- the heat source side heat exchanger can effectively use the cooling heat that has not been effectively used just by cooling the outside air. More, it is possible to achieve energy saving heat pump system capable of using a heat pump cycle for heating the aqueous medium.
- the following effects can be obtained.
- the operation of heating the aqueous medium be performed by the heat radiation of the heat source side refrigerant in the first usage side heat exchanger, but also the heat radiation of the heat source side refrigerant in the first usage side heat exchanger.
- the cooling heat obtained by the heat source side refrigerant by heating the aqueous medium is used for the operation of cooling the air medium by evaporation of the heat source side refrigerant in the second usage side heat exchanger. Since the aqueous medium heated in the first usage unit is used for hot water supply and the air medium cooled in the second usage unit is used for indoor cooling, etc.
- the heat pump water heater of this type it is possible to effectively use the cooling heat that was not effectively used simply by cooling the outside air in the heat source side heat exchanger. It can be provided using the energy saving of possible heat pump system to heat the aqueous medium.
- the first usage-side flow rate adjustment valve and the second usage flow are used.
- the control of the heat release amount of the heat release amount adjusting means or the operation capacity of the heat source side blower is performed. Therefore, for example, when the heat source side refrigerant accumulates in the heat source side heat exchanger and the amount of refrigerant flowing into the second usage unit is insufficient, the opening degree of the second usage side flow rate adjustment valve is at least larger than the predetermined opening degree.
- the heat source side refrigerant accumulated in the heat source side heat exchanger is The shortage of the refrigerant amount in the second usage unit can be solved by guiding to the second usage unit. Further, for example, when the load (for example, hot water supply load) required for heating the aqueous medium in the first usage unit is large, the heat source side refrigerant accumulates in the first usage side heat exchanger and the first usage side flow rate adjustment valve is opened. However, the heat source side refrigerant is controlled by controlling the heat release amount of the heat release amount adjusting means according to the state of the first use side flow rate adjustment valve. Can be made difficult to accumulate in the first usage-side heat exchanger.
- the load for example, hot water supply load
- the load concerning the heating of the aqueous medium in a 1st utilization unit can be suppressed, and the load concerning the heating of the aqueous medium in a 1st utilization unit can be made smaller than the cooling load in a 2nd utilization unit. it can. Therefore, it is possible to prevent the operation efficiency of performing exhaust heat recovery in the first usage unit from being lowered while performing the cooling operation of the second usage unit.
- the usage side refrigerant circulating in the usage side refrigerant circuit is heated by the heat radiation of the heat source side refrigerant, and the usage side refrigerant circuit is connected to the heat source side. Since the heat obtained from the refrigerant can be used to obtain a refrigeration cycle having a higher temperature than the refrigeration cycle in the refrigerant circuit in which the heat-source-side refrigerant circulates, A medium can be obtained.
- the load concerning the heating of the aqueous medium in a 1st utilization unit can be suppressed, and the load concerning the heating of the aqueous medium in a 1st utilization unit can be made smaller than the cooling load in a 2nd utilization unit. it can. Therefore, it is possible to prevent the operation efficiency of performing exhaust heat recovery in the first usage unit from being lowered while performing the cooling operation of the second usage unit.
- the conventional heat pump hot water supply is used such that the aqueous medium heated in the first usage unit is used for hot water supply and the air medium cooled in the second usage unit is used for indoor cooling.
- Heat pump system that can effectively use the cooling heat that was not used effectively just by cooling the outside air in the heat source side heat exchanger, and can heat the aqueous medium using the heat pump cycle Energy saving.
- FIG. 1 is a schematic configuration diagram of a heat pump system according to a first embodiment of the present invention. It is a schematic block diagram of the heat pump system concerning the modification 1 of 1st Embodiment. It is a schematic block diagram of the heat pump system concerning the modification 2 of 1st Embodiment. It is a schematic block diagram of the heat pump system concerning the modification 2 of 1st Embodiment. It is a schematic block diagram of the heat pump system concerning the modification 2 of 1st Embodiment. It is a schematic block diagram of the heat pump system concerning the modification 2 of 1st Embodiment. It is a schematic block diagram of the heat pump system concerning the modification 3 of 1st Embodiment. It is a schematic block diagram of the heat pump system concerning 2nd Embodiment of this invention.
- FIG. 1 is a schematic configuration diagram of a heat pump system 1 according to the first embodiment of the present invention.
- the heat pump system 1 is an apparatus capable of performing an operation for heating an aqueous medium using a vapor compression heat pump cycle.
- the heat pump system 1 mainly includes a heat source unit 2, a first usage unit 4a, a second usage unit 10a, a discharge refrigerant communication tube 12, a liquid refrigerant communication tube 13, a gas refrigerant communication tube 14, and a hot water storage unit 8a.
- a hot water heating unit 9a, an aqueous medium communication pipe 15a, and an aqueous medium communication pipe 16a The heat source unit 2, the first usage unit 4a, and the second usage unit 10a are connected to the refrigerant communication pipes 12, 13, 14, the heat source side refrigerant circuit 20 is configured, and the first usage unit 4a, the hot water storage unit 8a, and the hot water heating unit 9a are connected via the aqueous medium communication pipes 15a and 16a.
- the aqueous medium circuit 80a is configured.
- HFC-410A which is a kind of HFC type refrigerant
- ester or ether type refrigeration oil having compatibility with the HFC type refrigerant is used as the heat source. It is enclosed for lubrication of the side compressor 22 (described later). Further, water as an aqueous medium circulates in the aqueous medium circuit 80a.
- the heat source unit 2 is installed outdoors and is connected to the utilization units 4 a and 10 a via the refrigerant communication pipes 12, 13 and 14 and constitutes a part of the heat source side refrigerant circuit 20.
- the heat source unit 2 mainly includes a heat source side compressor 21, an oil separation mechanism 22, a heat source side switching mechanism 23, a heat source side heat exchanger 24, a heat source side expansion mechanism 25, a suction return pipe 26, and a supercooling.
- the heat source side compressor 21 is a mechanism that compresses the heat source side refrigerant.
- a rotary type or scroll type volumetric compression element housed in a casing (not shown)
- a hermetic compressor driven by a heat source side compressor motor 21a accommodated in the casing is employed.
- a high-pressure space (not shown) filled with the heat-source-side refrigerant after being compressed by the compression element is formed in the casing of the heat-source-side compressor 21, and refrigerating machine oil is stored in the high-pressure space.
- the heat source side compressor motor 21a can change the rotation speed (that is, the operating frequency) by an inverter device (not shown), thereby enabling capacity control of the heat source side compressor 21.
- the oil separation mechanism 22 is a mechanism for separating the refrigeration oil contained in the heat source side refrigerant discharged from the heat source side compressor 21 and returning it to the suction of the heat source side compressor.
- An oil separator 22a provided in the heat source side discharge pipe 21b, and an oil return pipe 22b connecting the oil separator 22a and the heat source side suction pipe 21c of the heat source side compressor 21 are provided.
- the oil separator 22 a is a device that separates the refrigeration oil contained in the heat source side refrigerant discharged from the heat source side compressor 21.
- the oil return pipe 22 b has a capillary tube, and is a refrigerant pipe that returns the refrigeration oil separated from the heat source side refrigerant in the oil separator 22 a to the heat source side suction pipe 21 c of the heat source side compressor 21.
- the heat source side switching mechanism 23 is a heat source side heat radiation operation state in which the heat source side heat exchanger 24 functions as a heat source side refrigerant radiator and a heat source side evaporation operation state in which the heat source side heat exchanger 24 functions as an evaporator of the heat source side refrigerant.
- the heat source side switching mechanism 23 communicates the heat source side discharge pipe 21b and the first heat source side gas refrigerant pipe 23a, and communicates the second heat source side gas refrigerant pipe 23b and the heat source side suction pipe 21c (heat source side heat dissipation). 1) (refer to the solid line of the heat source side switching mechanism 23 in FIG.
- the heat source side switching mechanism 23 is not limited to the four-way switching valve, and has a function of switching the flow direction of the heat source side refrigerant as described above, for example, by combining a plurality of electromagnetic valves. It may be configured.
- the heat source side heat exchanger 24 is a heat exchanger that functions as a heat source side refrigerant radiator or an evaporator by exchanging heat between the heat source side refrigerant and outdoor air, and a heat source side liquid refrigerant tube 24a on the liquid side thereof. Are connected, and the first heat source side gas refrigerant pipe 23a is connected to the gas side thereof.
- the outdoor air that exchanges heat with the heat source side refrigerant in the heat source side heat exchanger 24 is supplied by the heat source side fan 32 driven by the heat source side fan motor 32a.
- the heat source side expansion valve 25 is an electric expansion valve that depressurizes the heat source side refrigerant flowing through the heat source side heat exchanger 24, and is provided in the heat source side liquid refrigerant pipe 24a.
- the suction return pipe 26 is a refrigerant pipe that branches a part of the heat source side refrigerant flowing through the heat source side liquid refrigerant pipe 24a and returns it to the suction of the heat source side compressor 21, and here, one end thereof is the heat source side liquid refrigerant pipe 24a. The other end is connected to the heat source side suction pipe 21c.
- the suction return pipe 26 is provided with a suction return expansion valve 26a whose opening degree can be controlled.
- the suction return expansion valve 26a is an electric expansion valve.
- the subcooler 27 heats the heat source side refrigerant flowing through the heat source side liquid refrigerant pipe 24a and the heat source side refrigerant flowing through the suction return pipe 26 (more specifically, the refrigerant after being decompressed by the suction return expansion valve 26a). It is a heat exchanger that performs exchange.
- the heat source side accumulator 28 is provided in the heat source side suction pipe 21c, and temporarily accumulates the heat source side refrigerant circulating in the heat source side refrigerant circuit 20 before being sucked into the heat source side compressor 21 from the heat source side suction pipe 21c. It is a container for.
- the liquid side closing valve 29 is a valve provided at a connection portion between the heat source side liquid refrigerant pipe 24 a and the liquid refrigerant communication pipe 13.
- the gas side shut-off valve 30 is a valve provided at a connection portion between the second heat source side gas refrigerant pipe 23 b and the gas refrigerant communication pipe 14.
- the discharge side shut-off valve 31 is a valve provided at a connection portion between the heat source side discharge branch pipe 21d branched from the heat source side discharge pipe 21b and the gas refrigerant communication pipe 14.
- the heat source unit 2 is provided with various sensors. Specifically, the heat source unit 2 includes a heat source side suction pressure sensor 33 that detects a heat source side suction pressure Ps 1 that is a pressure of the heat source side refrigerant in the suction of the heat source side compressor 21, and a discharge in the heat source side compressor 21.
- the heat source side discharge pressure sensor 34 that detects the heat source side discharge pressure Pd1 that is the pressure of the heat source side refrigerant, and the heat source side heat exchanger temperature Thx that is the temperature of the heat source side refrigerant on the liquid side of the heat source side heat exchanger 24 are detected.
- a heat source side heat exchange temperature sensor 35 and an outside air temperature sensor 36 for detecting the outside air temperature To are provided.
- the discharge refrigerant communication pipe 12 is connected to the heat source side discharge branch pipe 21d via the discharge side closing valve 31, and the heat source side switching mechanism 23 is on the heat source side in both the heat source side heat radiation operation state and the heat source side evaporation operation state.
- This is a refrigerant pipe capable of leading the heat source side refrigerant out of the heat source unit 2 from the discharge of the compressor 21.
- the liquid refrigerant communication tube 13 is connected to the heat source side liquid refrigerant tube 24a via the liquid side shut-off valve 29, and the heat source side switching mechanism 23 functions as a heat source side refrigerant radiator in the heat source side heat radiation operation state.
- the heat source side refrigerant can be led out of the heat source unit 2 from the outlet of the heat exchanger 24, and the heat source side switching mechanism 23 functions as an evaporator of the heat source side refrigerant from the outside of the heat source unit 2 in the heat source side evaporation operation state.
- This is a refrigerant tube capable of introducing the heat source side refrigerant into the inlet of the heat source side heat exchanger 24.
- the gas refrigerant communication pipe 14 is connected to the second heat source side gas refrigerant pipe 23b via the gas side shutoff valve 30, and the heat source side switching mechanism 23 from outside the heat source unit 2 in the heat source side heat radiation operation state. It is possible to introduce the heat source side refrigerant into the suction of the heat source 21, and the heat source side switching mechanism 23 may lead the heat source side refrigerant out of the heat source unit 2 from the discharge of the heat source side compressor 21 in the heat source side evaporation operation state. Possible refrigerant pipe.
- the first usage unit 4a is installed indoors, is connected to the heat source unit 2 and the second usage unit 10a via the refrigerant communication pipes 12 and 13, and constitutes a part of the heat source side refrigerant circuit 20. Yes. Moreover, the 1st utilization unit 4a is connected to the hot water storage unit 8a and the hot water heating unit 9a via the aqueous medium communication pipes 15a and 16a, and comprises a part of aqueous medium circuit 80a.
- the first usage unit 4a mainly includes a first usage-side heat exchanger 41a, a first usage-side flow rate adjustment valve 42a, and a circulation pump 43a.
- the first use side heat exchanger 41a is a heat exchanger that functions as a heat radiator for the heat source side refrigerant by exchanging heat between the heat source side refrigerant and the aqueous medium, and the liquid side of the flow path through which the heat source side refrigerant flows.
- a first usage side water outlet pipe 47a is connected to the inlet side of the flow path, and a first usage side water outlet pipe 48a is connected to the outlet side of the flow path through which the aqueous medium flows.
- the liquid refrigerant communication pipe 13 is connected to the first usage-side liquid refrigerant pipe 45a, the discharge refrigerant communication pipe 12 is connected to the first usage-side discharge refrigerant pipe 46a, and the first usage-side water inlet.
- An aqueous medium communication pipe 15a is connected to the pipe 47a, and an aqueous medium communication pipe 16a is connected to the first usage-side water outlet pipe 48a.
- the first usage-side flow rate adjustment valve 42a is an electric expansion valve capable of changing the flow rate of the heat source-side refrigerant flowing through the first usage-side heat exchanger 41a by performing opening degree control. It is provided in the refrigerant pipe 45a.
- the first use side discharge refrigerant pipe 46a allows the flow of the heat source side refrigerant from the discharge refrigerant communication pipe 12 toward the first use side heat exchanger 41a, and is discharged from the first use side heat exchanger 41a to the discharge refrigerant communication pipe 12.
- a first usage-side discharge check valve 49a that prohibits the flow of the heat source side refrigerant toward the first side is provided.
- the circulation pump 43a is a mechanism for boosting the aqueous medium.
- a pump in which a centrifugal or positive displacement pump element (not shown) is driven by a circulation pump motor 44a is employed.
- the circulation pump 43a is provided in the first usage-side water outlet pipe 48a.
- the circulation pump motor 44a can vary the rotation speed (that is, the operating frequency) by an inverter device (not shown), thereby enabling capacity control of the circulation pump 43a.
- the 1st utilization side 4a makes the 1st utilization side heat exchanger 41a function as a heat radiator of the heat-source side refrigerant
- the first usage unit 4a is provided with various sensors.
- the first usage unit 4a includes a first usage-side heat exchange temperature sensor that detects a first usage-side refrigerant temperature Tsc1, which is the temperature of the heat-source-side refrigerant on the liquid side of the first usage-side heat exchanger 41a.
- a first usage-side heat exchange temperature sensor that detects a first usage-side refrigerant temperature Tsc1, which is the temperature of the heat-source-side refrigerant on the liquid side of the first usage-side heat exchanger 41a.
- an aqueous medium outlet temperature sensor 51a that detects an aqueous medium inlet temperature Twr that is the temperature of the aqueous medium at the inlet of the first usage-side heat exchanger 41a, and the aqueous medium at the outlet of the first usage-side heat exchanger 41a
- An aqueous medium outlet temperature sensor 52a that detects an aqueous medium outlet temperature Twl, which is a temperature, is provided.
- the hot water storage unit 8a is installed indoors, is connected to the first usage unit 4a via the aqueous medium communication pipes 15a and 16a, and constitutes a part of the aqueous medium circuit 80a.
- the hot water storage unit 8a mainly includes a hot water storage tank 81a and a heat exchange coil 82a.
- the hot water storage tank 81a is a container for storing water as an aqueous medium supplied for hot water supply, and a hot water supply pipe 83a is connected to the upper part of the hot water storage tank 81a for sending hot water to a faucet or a shower.
- a water supply pipe 84a for replenishing the aqueous medium consumed by the hot water supply pipe 83a is connected to the lower part.
- the heat exchange coil 82a is provided in the hot water storage tank 81a, and heats the aqueous medium in the hot water storage tank 81a by exchanging heat between the aqueous medium circulating in the aqueous medium circuit 80a and the aqueous medium in the hot water storage tank 81a.
- a water medium communication pipe 16a is connected to an inlet of the heat exchanger, and an aqueous medium communication pipe 15a is connected to an outlet of the heat exchanger.
- the hot water storage unit 8a can heat the aqueous medium in the hot water storage tank 81a by the aqueous medium circulating in the aqueous medium circuit 80a heated in the first usage unit 4a and store it as hot water.
- a hot water storage unit of a type in which an aqueous medium heated by heat exchange with the aqueous medium heated in the first usage unit 4a is stored in a hot water storage tank is used as the hot water storage unit 8a.
- the hot water storage unit 8a is provided with various sensors.
- the hot water storage unit 8a is provided with a hot water storage temperature sensor 85a for detecting the hot water storage temperature Twh which is the temperature of the aqueous medium stored in the hot water storage tank 81a.
- -Hot water heating unit The hot water heating unit 9a is installed indoors, is connected to the first usage unit 4a via the aqueous medium communication pipes 15a and 16a, and constitutes a part of the aqueous medium circuit 80a.
- the hot water heating unit 9a mainly has a heat exchange panel 91a, and constitutes a radiator, a floor heating panel, and the like.
- the heat exchange panel 91a is provided near the wall of the room, and in the case of a floor heating panel, the heat exchange panel 91a is provided under the floor of the room, and the water medium radiator circulating in the water medium circuit 80a.
- the aqueous medium communication pipe 16a is connected to the inlet of the heat exchanger, and the aqueous medium communication pipe 15a is connected to the outlet of the heat exchanger.
- the aqueous medium communication pipe 15a is connected to the outlet of the heat exchange coil 82a of the hot water storage unit 8a and the outlet of the heat exchange panel 91a of the hot water heating unit 9a.
- the aqueous medium communication pipe 16a is connected to the inlet of the heat exchange coil 82a of the hot water storage unit 8a and the inlet of the heat exchange panel 91a of the hot water heating unit 9a.
- the aqueous medium communication pipe 16a is switched to supply the aqueous medium circulating in the aqueous medium circuit 80a to both the hot water storage unit 8a and the hot water heating unit 9a, or to either the hot water storage unit 8a or the hot water heating unit 9a.
- An aqueous medium side switching mechanism 161a that can be performed is provided.
- the aqueous medium side switching mechanism 161a is a three-way valve.
- the second usage unit 10 a is installed indoors, is connected to the heat source unit 2 via the refrigerant communication tubes 13 and 14, and constitutes a part of the heat source side refrigerant circuit 20.
- the second usage unit 10a mainly includes a second usage-side heat exchanger 101a and a second usage-side flow rate adjustment valve 102a.
- the second usage-side heat exchanger 101a is a heat exchanger that functions as a heat-source-side refrigerant radiator or evaporator by exchanging heat between the heat-source-side refrigerant and room air as an air medium.
- a second usage-side liquid refrigerant tube 103a is connected, and a second usage-side gas refrigerant tube 104a is connected to the gas side thereof.
- a liquid refrigerant communication tube 13 is connected to the second usage side liquid refrigerant tube 103a, and a gas refrigerant communication tube 14 is connected to the second usage side gas refrigerant tube 104a.
- the air medium that exchanges heat with the heat source side refrigerant in the second usage side heat exchanger 101a is supplied by the usage side fan 105a driven by the usage side fan motor 106a.
- the second usage side flow rate adjustment valve 102a is an electric expansion valve capable of varying the flow rate of the heat source side refrigerant flowing through the second usage side heat exchanger 101a by performing opening degree control. It is provided in the refrigerant pipe 103a.
- the second usage unit 10a causes the second usage-side heat exchanger 101a to function as an evaporator of the heat-source-side refrigerant introduced from the liquid refrigerant communication tube 13 when the heat-source-side switching mechanism 23 is in the heat-source-side heat radiation operation state.
- the second use side heat exchanger 101a functions as a heat source side refrigerant radiator introduced from the gas refrigerant communication tube 14 in the heat source side evaporation operation state when the heat source side switching mechanism 23 is
- the heat source side refrigerant radiated in the second usage side heat exchanger 101a is led out to the liquid refrigerant communication tube 13, and the air medium is released by the heat dissipation of the heat source side refrigerant in the second usage side heat exchanger 101a. It becomes possible to perform the heating operation for heating.
- the operation mode of the heat pump system 1 includes a hot water supply operation mode in which only the hot water supply operation of the first usage unit 4a (that is, the operation of the hot water storage unit 8a and / or the hot water heating unit 9a) and the cooling operation of the second usage unit 10a are performed.
- a cooling operation mode for performing the heating operation mode for performing only the heating operation of the second usage unit 10a a hot water supply / heating operation mode for performing the hot water supply operation of the first usage unit 4a and performing the heating operation of the second usage unit 10a, There is a hot water supply / cooling operation mode in which the hot water supply operation of the first usage unit 4a is performed and the cooling operation of the second usage unit 10a is performed.
- -Hot water operation mode When only the hot water supply operation of the first usage unit 4a is performed, in the heat source side refrigerant circuit 20, the heat source side switching mechanism 23 is in the heat source side evaporation operation state (the state shown by the broken line of the heat source side switching mechanism 23 in FIG. 1). ), And the suction return expansion valve 26a and the second usage-side flow rate adjustment valve 102a are closed. In the aqueous medium circuit 80a, the aqueous medium switching mechanism 161a is switched to a state in which the aqueous medium is supplied to the hot water storage unit 8a and / or the hot water heating unit 9a.
- the low pressure heat source side refrigerant in the refrigeration cycle is sucked into the heat source side compressor 21 through the heat source side suction pipe 21c and compressed to a high pressure in the refrigeration cycle, and then the heat source side refrigerant circuit 20 is cooled. It is discharged to the discharge pipe 21b.
- the high pressure heat source side refrigerant discharged to the heat source side discharge pipe 21b is separated from the refrigerating machine oil in the oil separator 22a.
- the refrigerating machine oil separated from the heat source side refrigerant in the oil separator 22a is returned to the heat source side suction pipe 21c through the oil return pipe 22b.
- the high-pressure heat-source-side refrigerant from which the refrigeration oil has been separated is sent from the heat-source unit 2 to the discharge refrigerant communication tube 12 through the heat-source-side discharge branch pipe 21d and the discharge-side shut-off valve 31.
- the high-pressure heat source side refrigerant sent to the discharge refrigerant communication tube 12 is sent to the first usage unit 4a.
- the high-pressure heat-source-side refrigerant sent to the first usage unit 4a is sent to the first usage-side heat exchanger 41a through the first usage-side discharge refrigerant tube 46a and the first usage-side discharge check valve 49a.
- the high-pressure heat-source-side refrigerant sent to the first usage-side heat exchanger 41a radiates heat by exchanging heat with the aqueous medium circulating in the aqueous-medium circuit 80a by the circulation pump 43a in the first usage-side heat exchanger 41a. .
- the high-pressure heat-source-side refrigerant radiated in the first usage-side heat exchanger 41a is sent from the first usage unit 4a to the liquid refrigerant communication tube 13 through the first usage-side flow rate adjustment valve 42a and the first usage-side liquid refrigerant tube 45a. It is done.
- the first usage-side flow rate adjustment valve 42a is a heat-source-side refrigerant at the outlet of the first usage-side heat exchanger 41a (that is, the liquid side of the first usage-side heat exchanger 41a).
- the degree of opening is controlled so that the heat source side subcool degree SC1 of the heat source side refrigerant subcool degree SC1s becomes the target heat source side refrigerant subcool degree SC1s.
- the heat source side refrigerant subcooling degree SC1 of the heat source side refrigerant at the outlet of the first usage side heat exchanger 41a is a value obtained by subtracting the first usage side refrigerant temperature Tsc1 from the heat source side discharge saturation temperature Tc1.
- the heat source side subcool degree SC1 of the heat source side refrigerant at the outlet of the first use side heat exchanger 41a is the pressure value of the heat source side discharge pressure Pd1 that is the pressure of the heat source side refrigerant in the discharge of the heat source side compressor 21. May be detected by subtracting the refrigerant temperature value detected by the first use side heat exchange temperature sensor 50a from the saturation temperature of the refrigerant.
- the heat source side refrigerant sent to the liquid refrigerant communication tube 13 is sent to the heat source unit 2.
- the heat source side refrigerant sent to the heat source unit 2 is sent to the supercooler 27 through the liquid side shut-off valve 29.
- the heat source side refrigerant sent to the subcooler 27 is sent to the heat source side expansion valve 25 without performing heat exchange because the heat source side refrigerant does not flow through the suction return pipe 26.
- the heat source side refrigerant sent to the heat source side expansion valve 25 is depressurized by the heat source side expansion valve 25 to be in a low-pressure gas-liquid two-phase state, and sent to the heat source side heat exchanger 24 through the heat source side liquid refrigerant tube 24a. It is done.
- the low-pressure refrigerant sent to the heat source side heat exchanger 24 evaporates by exchanging heat with outdoor air supplied by the heat source side fan 32 in the heat source side heat exchanger 24.
- the low-pressure heat source side refrigerant evaporated in the heat source side heat exchanger 24 is sent to the heat source side accumulator 28 through the first heat source side gas refrigerant tube 23a and the heat source side switching mechanism 23.
- the low-pressure heat source side refrigerant sent to the heat source side accumulator 28 is again sucked into the heat source side compressor 21 through the heat source side suction pipe 21c.
- the aqueous medium circulating in the aqueous medium circuit 80a is heated by the heat radiation of the heat source side refrigerant in the first usage-side heat exchanger 41a.
- the aqueous medium heated in the first usage-side heat exchanger 41a is sucked into the circulation pump 43a through the first usage-side water outlet pipe 48a, and after the pressure is increased, from the first usage unit 4a to the aqueous medium communication pipe 16a.
- the aqueous medium sent to the aqueous medium communication pipe 16a is sent to the hot water storage unit 8a and / or the hot water heating unit 9a through the aqueous medium side switching mechanism 161a.
- the aqueous medium sent to the hot water storage unit 8a exchanges heat with the aqueous medium in the hot water storage tank 81a in the heat exchange coil 82a to radiate heat, thereby heating the aqueous medium in the hot water storage tank 81a.
- the aqueous medium sent to the hot water heating unit 9a dissipates heat in the heat exchange panel 91a, thereby heating the indoor wall or the like or heating the indoor floor.
- the operation in the hot water supply operation mode in which only the hot water supply operation of the first usage unit 4a is performed is performed.
- -Cooling operation mode When only the cooling operation of the second usage unit 10a is performed, in the heat source side refrigerant circuit 20, the heat source side switching mechanism 23 is in the heat source side heat radiation operation state (the state shown by the solid line of the heat source side switching mechanism 23 in FIG. 1). ) And the first usage-side flow rate adjustment valve 42a is closed.
- the low pressure heat source side refrigerant in the refrigeration cycle is sucked into the heat source side compressor 21 through the heat source side suction pipe 21c and compressed to a high pressure in the refrigeration cycle, and then the heat source side refrigerant circuit 20 is cooled. It is discharged to the discharge pipe 21b.
- the high pressure heat source side refrigerant discharged to the heat source side discharge pipe 21b is separated from the refrigerating machine oil in the oil separator 22a.
- the refrigerating machine oil separated from the heat source side refrigerant in the oil separator 22a is returned to the heat source side suction pipe 21c through the oil return pipe 22b.
- the high-pressure heat-source-side refrigerant from which the refrigerating machine oil has been separated is sent to the heat-source-side heat exchanger 24 through the heat-source-side switching mechanism 23 and the first heat-source-side gas refrigerant tube 23a.
- the high-pressure heat-source-side refrigerant sent to the heat-source-side heat exchanger 24 radiates heat by exchanging heat with outdoor air supplied by the heat-source-side fan 32 in the heat source-side heat exchanger 24.
- the high-pressure heat-source-side refrigerant that has radiated heat in the heat-source-side heat exchanger is sent to the supercooler 27 through the heat source-side expansion valve 25.
- the heat source side refrigerant sent to the subcooler 27 is cooled so as to be in a supercooled state by exchanging heat with the heat source side refrigerant branched from the heat source side liquid refrigerant tube 24a to the suction return tube 26.
- the heat source side refrigerant flowing through the suction return pipe 26 is returned to the heat source side suction pipe 21c.
- the heat source side refrigerant cooled in the subcooler 27 is sent from the heat source unit 2 to the liquid refrigerant communication tube 13 through the heat source side liquid refrigerant tube 24a and the liquid side shut-off valve 29.
- the high-pressure heat-source-side refrigerant sent to the liquid refrigerant communication tube 13 is sent to the second usage unit 10a.
- the high-pressure heat source-side refrigerant sent to the second usage unit 10a is sent to the second usage-side flow rate adjustment valve 102a.
- the high-pressure heat-source-side refrigerant sent to the second usage-side flow rate adjustment valve 102a is depressurized by the second usage-side flow rate adjustment valve 102a to become a low-pressure gas-liquid two-phase state, and the second usage-side liquid refrigerant tube 103a. And sent to the second usage side heat exchanger 101a.
- the second usage-side flow rate adjustment valve 102a is a heat-source-side refrigerant at the outlet of the second usage-side heat exchanger 101a (that is, the gas side of the second usage-side heat exchanger 101a).
- the opening degree is controlled so that the heat source side superheat degree SH1 becomes constant at the target superheat degree SH1s.
- the heat source side superheat degree SH1 is calculated from the refrigerant temperature value detected by the second usage side liquid side temperature sensor 108a (the heat source side evaporation temperature) from the refrigerant temperature value detected by the second usage side gas side temperature sensor 109a.
- the heat source side suction pressure Ps1 of the compressor 21 detected by subtracting (corresponding to Te) or detected by the heat source side suction pressure sensor 33 is converted into a saturation temperature value corresponding to the heat source side evaporation temperature Te1, It is detected by subtracting the saturation temperature value of the refrigerant from the refrigerant temperature value detected by the two usage side gas side temperature sensor 109a.
- a temperature sensor for detecting the temperature of the refrigerant flowing in the second usage side heat exchanger 101a is provided, and the refrigerant temperature value corresponding to the heat source side evaporation temperature Te1 detected by the temperature sensor is set as the second usage side gas.
- the heat source side superheat degree SH1 of the heat source side refrigerant at the outlet of the second usage side heat exchanger 101a may be detected by subtracting from the refrigerant temperature value detected by the side temperature sensor 109a.
- the low-pressure heat-source-side refrigerant sent to the second usage-side heat exchanger 101a evaporates by exchanging heat with the air medium supplied by the usage-side fan 105a in the second usage-side heat exchanger 101a. To cool the room.
- the low-pressure heat-source-side refrigerant evaporated in the second usage-side heat exchanger 101a is sent from the second usage unit 10a to the gas refrigerant communication tube 14 through the second usage-side gas refrigerant tube 104a.
- the low-pressure heat source side refrigerant sent to the gas refrigerant communication tube 14 is sent to the heat source unit 2.
- the low-pressure heat source side refrigerant sent to the heat source unit 2 is sent to the heat source side accumulator 28 through the gas side shut-off valve 30, the second heat source side gas refrigerant tube 23b, and the heat source side switching mechanism 23.
- the low-pressure heat source side refrigerant sent to the heat source side accumulator 28 is again sucked into the heat source side compressor 21 through the heat source side suction pipe 21c.
- the operation in the cooling operation mode in which only the cooling operation of the second usage unit 10a is performed is performed.
- -Heating operation mode When only the heating operation of the second usage unit 10a is performed, in the heat source side refrigerant circuit 20, the heat source side switching mechanism 23 is in the heat source side heat radiation operation state (the state indicated by the broken line of the heat source side switching mechanism 23 in FIG. 1). ), And the suction return expansion valve 26a and the first usage-side flow rate adjustment valve 42a are closed.
- the low pressure heat source side refrigerant in the refrigeration cycle is sucked into the heat source side compressor 21 through the heat source side suction pipe 21c and compressed to a high pressure in the refrigeration cycle, and then the heat source side refrigerant circuit 20 is cooled. It is discharged to the discharge pipe 21b.
- the high pressure heat source side refrigerant discharged to the heat source side discharge pipe 21b is separated from the refrigerating machine oil in the oil separator 22a.
- the refrigerating machine oil separated from the heat source side refrigerant in the oil separator 22a is returned to the heat source side suction pipe 21c through the oil return pipe 22b.
- the high-pressure heat source side refrigerant from which the refrigerating machine oil is separated is sent from the heat source unit 2 to the gas refrigerant communication tube 14 through the heat source side switching mechanism 23, the second heat source side gas refrigerant tube 23b, and the gas side shut-off valve 30.
- the high-pressure heat-source-side refrigerant sent to the gas refrigerant communication tube 14 is sent to the second usage unit 10a.
- the high-pressure heat-source-side refrigerant sent to the second usage unit 10a is sent to the second usage-side heat exchanger 101a through the second usage-side gas refrigerant tube 104a.
- the high-pressure heat-source-side refrigerant sent to the second usage-side heat exchanger 101a performs heat exchange with the air medium supplied by the usage-side fan 105a in the second usage-side heat exchanger 101a, thereby radiating heat. , Heating the room.
- the high-pressure heat-source-side refrigerant radiated in the second usage-side heat exchanger 101a is sent from the second usage unit 10a to the liquid refrigerant communication tube 13 through the second usage-side flow rate adjustment valve 102a and the second usage-side liquid refrigerant tube 103a. It is done.
- the second usage-side flow rate adjustment valve 102a is a heat source side refrigerant heat source side at the outlet of the second usage side heat exchanger 101a (that is, the liquid side of the second usage side heat exchanger 101a).
- the degree of opening is controlled so that the degree of supercooling SC11 is constant at the target heat source side subcooling degree SC11s.
- the heat source side refrigerant cooling degree SC11 of the heat source side refrigerant at the outlet of the second usage side heat exchanger 101a is obtained by setting the heat source side discharge pressure Pd of the heat source side compressor 21 detected by the heat source side discharge pressure sensor 34. This is detected by converting to a saturation temperature value corresponding to the condensation temperature Tc and subtracting the refrigerant temperature value detected by the second usage side liquid side temperature sensor 108a from the saturation temperature value of the heat source side refrigerant.
- a temperature sensor for detecting the temperature of the refrigerant flowing in the second usage side heat exchanger 101a is provided, and the refrigerant temperature value corresponding to the condensation temperature Tc detected by this temperature sensor is set as the second usage side liquid side temperature.
- the subcooling degree SC11 of the refrigerant at the outlet of the second usage side heat exchanger 101a may be detected by subtracting from the refrigerant temperature value detected by the sensor 108a.
- the heat source side refrigerant sent to the liquid refrigerant communication tube 13 is sent to the heat source unit 2.
- the heat source side refrigerant sent to the heat source unit 2 is sent to the supercooler 27 through the liquid side shut-off valve 29.
- the heat source side refrigerant sent to the subcooler 27 is sent to the heat source side expansion valve 25 without performing heat exchange because the heat source side refrigerant does not flow through the suction return pipe 26.
- the heat source side refrigerant sent to the heat source side expansion valve 25 is depressurized by the heat source side expansion valve 25 to be in a low-pressure gas-liquid two-phase state, and sent to the heat source side heat exchanger 24 through the heat source side liquid refrigerant tube 24a. It is done.
- the low-pressure refrigerant sent to the heat source side heat exchanger 24 evaporates by exchanging heat with outdoor air supplied by the heat source side fan 32 in the heat source side heat exchanger 24.
- the low-pressure heat source side refrigerant evaporated in the heat source side heat exchanger 24 is sent to the heat source side accumulator 28 through the first heat source side gas refrigerant tube 23a and the heat source side switching mechanism 23.
- the low-pressure heat source side refrigerant sent to the heat source side accumulator 28 is again sucked into the heat source side compressor 21 through the heat source side suction pipe 21c.
- movement in the heating operation mode which performs only the heating operation of the 2nd utilization unit 10a is performed.
- -Hot water heating / heating mode When the hot water supply operation of the first usage unit 4a is performed and the heating operation of the second usage unit 10a is performed, in the heat source side refrigerant circuit 20, the heat source side switching mechanism 23 is in the heat source side evaporation operation state (the heat source side in FIG. 1). (The state indicated by the broken line of the switching mechanism 23), and the suction return expansion valve 26a is closed.
- the aqueous medium switching mechanism 161a is switched to a state in which the aqueous medium is supplied to the hot water storage unit 8a and / or the hot water heating unit 9a.
- the heat source side refrigerant circuit 20 in such a state, the low pressure heat source side refrigerant in the refrigeration cycle is sucked into the heat source side compressor 21 through the heat source side suction pipe 21c and compressed to a high pressure in the refrigeration cycle, and then the heat source side refrigerant circuit 20 is cooled. It is discharged to the discharge pipe 21b.
- the high pressure heat source side refrigerant discharged to the heat source side discharge pipe 21b is separated from the refrigerating machine oil in the oil separator 22a.
- the refrigerating machine oil separated from the heat source side refrigerant in the oil separator 22a is returned to the heat source side suction pipe 21c through the oil return pipe 22b.
- a part of the high-pressure heat source side refrigerant from which the refrigerating machine oil has been separated is sent from the heat source unit 2 to the discharge refrigerant communication pipe 12 through the heat source side discharge branch pipe 21d and the discharge side shut-off valve 31, and the rest is used as the heat source. It is sent from the heat source unit 2 to the gas refrigerant communication pipe 14 through the side switching mechanism 23, the second heat source side gas refrigerant pipe 23 b, and the gas side closing valve 30.
- the high-pressure heat-source-side refrigerant sent to the gas refrigerant communication tube 14 is sent to the second usage unit 10a.
- the high-pressure heat-source-side refrigerant sent to the second usage unit 10a is sent to the second usage-side heat exchanger 101a through the second usage-side gas refrigerant tube 104a.
- the high-pressure heat-source-side refrigerant sent to the second usage-side heat exchanger 101a performs heat exchange with the air medium supplied by the usage-side fan 105a in the second usage-side heat exchanger 101a, thereby radiating heat. , Heating the room.
- the high-pressure heat-source-side refrigerant radiated in the second usage-side heat exchanger 101a is sent from the second usage unit 10a to the liquid refrigerant communication tube 13 through the second usage-side flow rate adjustment valve 102a and the second usage-side liquid refrigerant tube 103a. It is done.
- the second usage-side flow rate adjustment valve 102a is a heat-source-side refrigerant at the outlet of the second usage-side heat exchanger 101a (that is, the liquid side of the second usage-side heat exchanger 101a).
- the degree of opening is controlled so that the heat source side subcooling degree SC11 becomes constant at the supercooling degree target value SC11s.
- the high-pressure heat source side refrigerant sent to the discharge refrigerant communication tube 12 is sent to the first usage unit 4a.
- the high-pressure heat-source-side refrigerant sent to the first usage unit 4a is sent to the first usage-side heat exchanger 41a through the first usage-side discharge refrigerant tube 46a and the first usage-side discharge check valve 49a.
- the high-pressure heat-source-side refrigerant sent to the first usage-side heat exchanger 41a radiates heat by exchanging heat with the aqueous medium circulating in the aqueous-medium circuit 80a by the circulation pump 43a in the first usage-side heat exchanger 41a. .
- the high-pressure heat-source-side refrigerant radiated in the first usage-side heat exchanger 41a is sent from the first usage unit 4a to the liquid refrigerant communication tube 13 through the first usage-side flow rate adjustment valve 42a and the first usage-side liquid refrigerant tube 45a. It is done.
- the first usage-side flow rate adjustment valve 42a is a heat-source-side refrigerant at the outlet of the first usage-side heat exchanger 41a (that is, the liquid side of the first usage-side heat exchanger 41a).
- the degree of opening is controlled so that the heat source side subcooling degree SC1 becomes constant at the supercooling degree target value SC1s.
- the heat-source-side refrigerant sent from the second usage unit 10a and the first usage unit 4a to the liquid refrigerant communication tube 13 merges in the liquid refrigerant communication tube 13 and is sent to the heat source unit 2.
- the heat source side refrigerant sent to the heat source unit 2 is sent to the supercooler 27 through the liquid side shut-off valve 29.
- the heat source side refrigerant sent to the subcooler 27 is sent to the heat source side expansion valve 25 without performing heat exchange because the heat source side refrigerant does not flow through the suction return pipe 26.
- the heat source side refrigerant sent to the heat source side expansion valve 25 is depressurized by the heat source side expansion valve 25 to be in a low-pressure gas-liquid two-phase state, and sent to the heat source side heat exchanger 24 through the heat source side liquid refrigerant tube 24a. It is done.
- the low-pressure refrigerant sent to the heat source side heat exchanger 24 evaporates by exchanging heat with outdoor air supplied by the heat source side fan 32 in the heat source side heat exchanger 24.
- the low-pressure heat source side refrigerant evaporated in the heat source side heat exchanger 24 is sent to the heat source side accumulator 28 through the first heat source side gas refrigerant tube 23a and the heat source side switching mechanism 23.
- the low-pressure heat source side refrigerant sent to the heat source side accumulator 28 is again sucked into the heat source side compressor 21 through the heat source side suction pipe 21c.
- the aqueous medium circulating in the aqueous medium circuit 80a is heated by the heat radiation of the heat source side refrigerant in the first usage-side heat exchanger 41a.
- the aqueous medium heated in the first usage-side heat exchanger 41a is sucked into the circulation pump 43a through the first usage-side water outlet pipe 48a, and after the pressure is increased, from the first usage unit 4a to the aqueous medium communication pipe 16a.
- the aqueous medium sent to the aqueous medium communication pipe 16a is sent to the hot water storage unit 8a and / or the hot water heating unit 9a through the aqueous medium side switching mechanism 161a.
- the aqueous medium sent to the hot water storage unit 8a exchanges heat with the aqueous medium in the hot water storage tank 81a in the heat exchange coil 82a to radiate heat, thereby heating the aqueous medium in the hot water storage tank 81a.
- the aqueous medium sent to the hot water heating unit 9a dissipates heat in the heat exchange panel 91a, thereby heating the indoor wall or the like or heating the indoor floor.
- the operation in the hot water supply and heating operation mode in which the hot water supply operation of the first usage unit 4a is performed and the heating operation of the second usage unit 10a is performed is performed.
- -Hot water supply / cooling operation mode When the hot water supply operation of the first usage unit 4a is performed and the cooling operation of the second usage unit 10a is performed, in the heat source side refrigerant circuit 20, the heat source side switching mechanism 23 is in the heat source side heat radiation operation state (the heat source side in FIG. 1). The switching mechanism 23 is switched to the state indicated by the solid line).
- the aqueous medium switching mechanism 161a is switched to a state of supplying the aqueous medium to the hot water storage unit 8a.
- the low pressure heat source side refrigerant in the refrigeration cycle is sucked into the heat source side compressor 21 through the heat source side suction pipe 21c and compressed to a high pressure in the refrigeration cycle, and then the heat source side refrigerant circuit 20 is cooled. It is discharged to the discharge pipe 21b.
- the high pressure heat source side refrigerant discharged to the heat source side discharge pipe 21b is separated from the refrigerating machine oil in the oil separator 22a.
- the refrigerating machine oil separated from the heat source side refrigerant in the oil separator 22a is returned to the heat source side suction pipe 21c through the oil return pipe 22b.
- a part of the high-pressure heat source side refrigerant from which the refrigerating machine oil is separated is sent from the heat source unit 2 to the discharge refrigerant communication pipe 12 through the heat source side discharge branch pipe 21d and the discharge side shut-off valve 31, and the rest is used as the heat source. It is sent to the heat source side heat exchanger 24 through the side switching mechanism 23 and the first heat source side gas refrigerant tube 23a.
- the high-pressure heat-source-side refrigerant sent to the heat-source-side heat exchanger 24 radiates heat by exchanging heat with outdoor air supplied by the heat-source-side fan 32 in the heat source-side heat exchanger 24.
- the high-pressure heat-source-side refrigerant that has radiated heat in the heat-source-side heat exchanger is sent to the supercooler 27 through the heat source-side expansion valve 25.
- the heat source side refrigerant sent to the subcooler 27 is cooled so as to be in a supercooled state by exchanging heat with the heat source side refrigerant branched from the heat source side liquid refrigerant tube 24a to the suction return tube 26.
- the heat source side refrigerant flowing through the suction return pipe 26 is returned to the heat source side suction pipe 21c.
- the heat source side refrigerant cooled in the subcooler 27 is sent from the heat source unit 2 to the liquid refrigerant communication tube 13 through the heat source side liquid refrigerant tube 24a and the liquid side shut-off valve 29.
- the high-pressure heat source side refrigerant sent to the discharge refrigerant communication tube 12 is sent to the first usage unit 4a.
- the high-pressure heat-source-side refrigerant sent to the first usage unit 4a is sent to the first usage-side heat exchanger 41a through the first usage-side discharge refrigerant tube 46a and the first usage-side discharge check valve 49a.
- the high-pressure heat-source-side refrigerant sent to the first usage-side heat exchanger 41a radiates heat by exchanging heat with the aqueous medium circulating in the aqueous-medium circuit 80a by the circulation pump 43a in the first usage-side heat exchanger 41a. .
- the high-pressure heat-source-side refrigerant radiated in the first usage-side heat exchanger 41a is sent from the first usage unit 4a to the liquid refrigerant communication tube 13 through the first usage-side flow rate adjustment valve 42a and the first usage-side liquid refrigerant tube 45a. It is done.
- the first usage-side flow rate adjustment valve 42a is a heat-source-side refrigerant at the outlet of the first usage-side heat exchanger 41a (that is, the liquid side of the first usage-side heat exchanger 41a).
- the degree of opening is controlled so that the heat source side subcooling degree SC1 becomes constant at the supercooling degree target value SC1s.
- the heat-source-side refrigerant sent from the heat source unit 2 and the first usage unit 4a to the liquid refrigerant communication tube 13 merges in the liquid refrigerant communication tube 13 and is sent to the second usage unit 10a.
- the heat-source-side refrigerant sent to the second usage unit 10a is sent to the second usage-side flow rate adjustment valve 102a.
- the heat-source-side refrigerant sent to the second usage-side flow rate adjustment valve 102a is depressurized by the second usage-side flow rate adjustment valve 102a to be in a low-pressure gas-liquid two-phase state, and through the second usage-side liquid refrigerant tube 103a, It is sent to the second usage side heat exchanger 101a.
- the low-pressure heat source side refrigerant sent to the second usage side heat exchanger 101a evaporates by exchanging heat with the air medium supplied by the usage side fan 105a in the second usage side heat exchanger 101a. Cool the room.
- the low-pressure heat-source-side refrigerant evaporated in the second usage-side heat exchanger 101a is sent from the second usage unit 10a to the gas refrigerant communication tube 14 through the second usage-side gas refrigerant tube 104a.
- the second usage-side flow rate adjustment valve 102a is connected to the heat source side superheat degree SH1 (specifically, the second usage-side liquid temperature sensor 108a of the second usage-side heat exchanger 101a.
- the opening degree is controlled based on the temperature difference between the heat source side refrigerant temperature detected by the second use side gas side temperature sensor 109a) and the cooling load of the second usage unit 10a. The opening is controlled.
- the low-pressure heat source side refrigerant sent to the gas refrigerant communication tube 14 is sent to the heat source unit 2.
- the low-pressure heat source side refrigerant sent to the heat source unit 2 is sent to the heat source side accumulator 28 through the gas side shut-off valve 30, the second heat source side gas refrigerant tube 23b, and the heat source side switching mechanism 23.
- the low-pressure heat source side refrigerant sent to the heat source side accumulator 28 is again sucked into the heat source side compressor 21 through the heat source side suction pipe 21c.
- the aqueous medium circulating in the aqueous medium circuit 80a is heated by the heat radiation of the heat source side refrigerant in the first usage-side heat exchanger 41a.
- the aqueous medium heated in the first usage-side heat exchanger 41a is drawn into the circulation pump 43a through the first usage-side water outlet pipe 48a, and after the pressure is increased, the first usage unit 4a supplies the aqueous medium communication pipe 16a. Sent.
- the aqueous medium sent to the aqueous medium communication pipe 16a is sent to the hot water storage unit 8a through the aqueous medium side switching mechanism 161a.
- the aqueous medium sent to the hot water storage unit 8a exchanges heat with the aqueous medium in the hot water storage tank 81a in the heat exchange coil 82a to radiate heat, thereby heating the aqueous medium in the hot water storage tank 81a.
- the operation in the hot water supply / cooling operation mode in which the hot water supply operation of the first usage unit 4a is performed and the cooling operation of the second usage unit 10a is performed is performed.
- the load (hot water supply load) applied to the heating of the aqueous medium in the first usage unit is the cooling load in the second usage unit.
- the hot water supply load is larger than the cooling load
- the water medium is heated without using the heat through the aqueous medium (for example, using hot water).
- the cooling operation of the second usage unit 10a is performed in accordance with the hot water supply load, the operation requires excessive energy with respect to the cooling load, resulting in poor efficiency. Therefore, in order to prevent this, it is necessary to match the hot water supply load with the cooling load.
- the heat source side heat exchanger 24 and the first usage side heat exchanger 41a function as a radiator
- the second usage side heat exchanger 101a functions as an evaporator. Therefore, there are two heat exchangers that function as radiators, and the heat exchangers 24 and 41a that function as radiators are in parallel with the second usage-side heat exchanger 101a that functions as an evaporator. Become.
- the heat exchanger that functions as a radiator. Since the pressure of the heat source side refrigerant in the first use side heat exchanger 41a is lower than the pressure of the heat source side refrigerant in the heat source side heat exchanger 24, the heat source side refrigerant flowing into the heat source side heat exchanger 41a is supplied to the first use side heat exchanger 41a. It will be easy to collect.
- the heat source side subcool degree SC1 of the heat source side refrigerant at the outlet of the first use side heat exchanger 41a that is, the liquid side of the first use side heat exchanger 41a. Since the opening degree of the first use side flow rate adjustment valve 42a is controlled so that the supercooling degree target value SC1s becomes constant, if the heat source side refrigerant accumulates in the first use side heat exchanger 41a, the first use side The flow rate adjustment valve 42a is opened.
- the heat source side refrigerant flowing into the heat exchanger functioning as a radiator has a higher pressure of the heat source side refrigerant in the first use heat exchanger 41a than the pressure of the heat source side refrigerant in the heat source side heat exchanger 24.
- the heat source side heat exchanger 24 is likely to accumulate. In this state, the heat exchange capacity of the heat source side heat exchanger 24 becomes excessive, and the amount of the heat source side refrigerant flowing through the second usage side heat exchanger 101a is reduced.
- the heat source side superheat degree SH1 of the second usage side heat exchanger 101a (specifically, the heat source side refrigerant temperature detected by the second usage side liquid side temperature sensor 108a) Since the opening degree of the second usage-side flow rate adjustment valve 102a is controlled based on the temperature difference from the heat-source-side refrigerant temperature detected by the second usage-side gas-side temperature sensor 109a, the heat source side heat exchanger 24 is supplied with a heat source. When the side refrigerant accumulates, the second usage side flow rate adjustment valve 102a is opened.
- This heat pump system 1 has the following features. -A- When the heat-source-side refrigerant accumulates in the heat-source-side heat exchanger 24 and the amount of refrigerant flowing into the second usage unit 10a is insufficient, the opening of the second usage-side flow rate adjustment valve 102a is opened at least beyond a predetermined opening. However, when the operation capacity of the heat source side fan 32 is controlled according to the state of the second usage side flow rate adjustment valve 102a, the heat source side refrigerant accumulated in the heat source side heat exchanger 24 is changed to the first state. The shortage of the refrigerant amount in the second usage unit 10a can be solved by guiding to the second usage unit 10a.
- the heat source side refrigerant accumulates in the first usage side heat exchanger 41a, and the opening degree of the first usage side flow rate adjustment valve 42a is at least larger than the predetermined opening degree.
- the capacity of the circulation pump 43a is controlled according to the state of the first usage-side flow rate adjustment valve 42a, thereby making it difficult for the heat-source-side refrigerant to accumulate in the first usage-side heat exchanger 41a. be able to.
- the exhaust heat accompanying the cooling operation of the second usage unit 10a In the case of performing recovery, hot water supply is performed because the temperature of the aqueous medium is low under operating conditions where the temperature of the aqueous medium is low, such as immediately after the cooling operation of the second usage unit 10a and the operation of the first usage unit 4a are started.
- the load is often larger than the cooling load.
- the cooling operation of the second usage unit 10a is continued in accordance with the hot water supply load, the operation requires excessive energy with respect to the cooling load, resulting in poor efficiency. Therefore, in order to prevent this, it is necessary to match the hot water supply load with the cooling load applied to the second usage unit 10a.
- the degree of supercooling is constant with the degree of subcooling of the heat source side refrigerant in the first user side heat exchanger 41 a being a predetermined degree of subcooling by adjusting the opening of the first user side flow rate adjusting valve 42 a. Control is being performed. Therefore, when the hot water supply load in the first usage unit 4a is larger than the cooling load in the second usage unit 10a, the opening degree of the first usage-side flow rate adjustment valve 42a is increased. Therefore, in the heat pump system 1, the capacity variable type circulation pump 43a is provided, and when the opening degree of the first usage side flow rate adjustment valve 42a reaches a predetermined opening degree or more, the cooling load in the second usage unit 10a is increased. On the other hand, it is determined that the hot water supply load in the first usage unit 4a is large, and the capacity control of the circulation pump 43a is performed so that the flow rate of the aqueous medium circulating in the aqueous medium circuit 80a becomes small.
- the hot water supply load in the 1st utilization unit 4a can be suppressed, and the hot water supply load in the 1st utilization unit 4a can be made smaller than the cooling load in the 2nd utilization unit 10a. Therefore, it is possible to prevent the operation efficiency of performing exhaust heat recovery in the first usage unit 4a from being lowered while performing the cooling operation of the second usage unit 10a.
- the first usage-side heat exchanger 41a functions as a heat-source-side refrigerant radiator so that a hot water supply operation for heating the aqueous medium can be performed. In addition to this, as shown in FIG.
- the first usage unit 4 a is further connected to the gas refrigerant communication tube 14, and the first usage side heat exchanger 41 a is introduced from the discharge refrigerant communication tube 12. Switching between an aqueous medium heating operation state that functions as a refrigerant radiator and an aqueous medium cooling operation state that causes the first usage side heat exchanger 41a to function as an evaporator of a heat source side refrigerant introduced from the liquid refrigerant communication tube 13 is possible.
- a possible first usage-side switching mechanism 53a is further provided, and when the first usage-side switching mechanism 53a is in the aqueous medium heating operation state, the heat-source-side refrigerant radiated in the first usage-side heat exchanger 41a is connected to the liquid refrigerant.
- the operation (hot water supply operation) of heating the aqueous medium by the heat radiation of the heat source side refrigerant in the first usage side heat exchanger 41 a can be performed, and the first usage side switching mechanism 53 a can perform the aqueous medium cooling operation.
- the heat source side refrigerant evaporated in the first usage side heat exchanger 41a is led out to the gas refrigerant communication pipe 14, and the operation of cooling the aqueous medium by evaporation of the heat source side refrigerant in the first usage side heat exchanger 41a is performed. It may be possible to do so.
- the first usage side gas refrigerant tube 54a is connected to the gas side of the flow path through which the heat source side refrigerant of the first usage side heat exchanger 41a flows together with the first usage side discharge refrigerant tube 46a.
- the first refrigerant gas refrigerant pipe 54a is connected to the gas refrigerant communication pipe 14.
- the first usage-side switching mechanism 53a includes a first usage-side discharge opening / closing valve 55a (here, the first usage-side discharge check valve 49a is omitted) provided in the first usage-side discharge refrigerant pipe 46a, A first use side gas on / off valve 56a provided in the side gas refrigerant pipe 54a, by opening the first use side discharge on / off valve 55a and closing the first use side gas on / off valve 56a.
- the aqueous medium heating operation state is set, the first usage side discharge on / off valve 55a is closed, and the first usage side gas on / off valve 56a is opened to enter the aqueous medium cooling operation state.
- Each of the first usage-side discharge on-off valve 55a and the first usage-side gas on-off valve 56a is an electromagnetic valve that can be controlled to open and close.
- the first usage side switching mechanism 53a may be configured by a three-way valve or the like.
- the first usage-side switching mechanism 53a includes a first refrigerant recovery mechanism 57a that allows the discharge refrigerant communication pipe 12 and the gas refrigerant communication pipe 14 to communicate with each other in both the aqueous medium heating operation state and the aqueous medium cooling operation state.
- a second refrigerant recovery mechanism 58a that allows the first usage side heat exchanger 41a and the gas refrigerant communication tube 14 to communicate with each other is provided.
- the first usage-side gas refrigerant pipe 54a is further provided with a first usage-side gas check valve 59a and a first usage-side bypass refrigerant pipe 60a, and the first usage-side discharge on-off valve 55a and the first usage-side gas on-off valve are provided.
- the first use side switching mechanism 53a is configured together with 56a.
- recovery mechanism 57a is a refrigerant
- the other end is connected to a portion of the first usage-side gas refrigerant pipe 54a that connects the first usage-side gas on-off valve 56a and the gas refrigerant communication pipe 14, and the first usage-side discharge
- the discharge refrigerant communication pipe 12 and the gas refrigerant communication pipe 14 are communicated with each other regardless of the open / close state of the on-off valve 55a and the first use side gas on-off valve 56a.
- the second refrigerant recovery mechanism 58a is a refrigerant tube having a capillary tube, one end of which is a gas side of the first usage side heat exchanger 41a and a first usage side gas on-off valve of the first usage side gas refrigerant tube 54a.
- the other end is connected to a portion of the first usage-side gas refrigerant pipe 54a that connects the first usage-side gas on-off valve 56a and the gas refrigerant communication pipe 14. Even when the operation of the first usage unit 4a is stopped, the gas side of the first usage side heat exchanger 41a and the gas refrigerant communication pipe 14 are bypassed by bypassing the first usage side gas on-off valve 56a. It is designed to communicate.
- the 1st utilization side gas check valve 59a is provided in the part which connects the 1st utilization side gas on-off valve 56a and the gas refrigerant communication pipe
- the first usage-side gas check valve 59a allows the flow of the heat source side refrigerant from the first usage-side heat exchanger 41a toward the gas refrigerant communication tube 14, and from the gas refrigerant communication tube 14 to the first usage-side heat exchanger 41a.
- This is a check valve that prohibits the flow of the heat source side refrigerant toward the heat source side, whereby the flow of the heat source side refrigerant toward the first use side heat exchanger 41a from the gas refrigerant communication tube 14 through the first use side gas on-off valve 56a. Is now prohibited.
- the first usage-side bypass refrigerant pipe 60a is connected to the first usage-side gas refrigerant pipe 54a so as to bypass the first usage-side gas on-off valve 56a and the first usage-side gas check valve 59a.
- a part of the side gas refrigerant pipe 54a is constituted.
- the first usage-side bypass refrigerant pipe 60a allows the flow of the heat source-side refrigerant from the gas refrigerant communication pipe 14 toward the first usage-side heat exchanger 41a, and the first usage-side heat exchanger 41a passes the gas refrigerant communication pipe 14.
- a first usage-side bypass check valve 59a that prohibits the flow of the heat-source-side refrigerant toward the first usage-side heat exchange from the gas refrigerant communication tube 14 through the first usage-side bypass refrigerant tube 60a is provided.
- the flow of the heat source side refrigerant toward the container 41a is allowed.
- the first usage side switching mechanism 53a is in an aqueous medium heating operation state (that is, the first usage side discharge on / off valve 55a is opened and the first usage side gas on / off valve 56a is closed).
- movement in the hot water supply heating mode are possible.
- the heat pump system 1 can be operated in the cooling / cooling operation mode in which the cooling water operation of the first usage unit 4a is performed and the cooling operation of the second usage unit 10a is performed.
- the operation in this cooling / cooling water cooling operation mode will be described.
- the heat source side switching mechanism 23 is in the heat source side heat radiation operation state (the heat source in FIG. 2).
- the first usage side switching mechanism 53a closes the aqueous medium cooling operation state (that is, the first usage side discharge on-off valve 55a and the first usage side).
- the gas switching valve 56a is opened).
- the aqueous medium switching mechanism 161a is switched to a state in which the aqueous medium is supplied to the hot water heating unit 9a.
- the low pressure heat source side refrigerant in the refrigeration cycle is sucked into the heat source side compressor 21 through the heat source side suction pipe 21c and compressed to a high pressure in the refrigeration cycle, and then the heat source side refrigerant circuit 20 is cooled. It is discharged to the discharge pipe 21b.
- the high pressure heat source side refrigerant discharged to the heat source side discharge pipe 21b is separated from the refrigerating machine oil in the oil separator 22a.
- the refrigerating machine oil separated from the heat source side refrigerant in the oil separator 22a is returned to the heat source side suction pipe 21c through the oil return pipe 22b.
- the high-pressure heat-source-side refrigerant from which the refrigeration oil is separated is sent to the heat-source-side heat exchanger 24 through the heat-source-side switching mechanism 23 and the first heat-source-side gas refrigerant tube 23a.
- the high-pressure heat-source-side refrigerant sent to the heat-source-side heat exchanger 24 radiates heat by exchanging heat with outdoor air supplied by the heat-source-side fan 32 in the heat source-side heat exchanger 24.
- the high-pressure heat-source-side refrigerant that has radiated heat in the heat-source-side heat exchanger is sent to the supercooler 27 through the heat source-side expansion valve 25.
- the heat source side refrigerant sent to the subcooler 27 is cooled so as to be in a supercooled state by exchanging heat with the heat source side refrigerant branched from the heat source side liquid refrigerant tube 24a to the suction return tube 26.
- the heat source side refrigerant flowing through the suction return pipe 26 is returned to the heat source side suction pipe 21c.
- the heat source side refrigerant cooled in the subcooler 27 is sent from the heat source unit 2 to the liquid refrigerant communication tube 13 through the heat source side liquid refrigerant tube 24a and the liquid side shut-off valve 29.
- the heat-source-side refrigerant sent to the liquid refrigerant communication tube 13 branches in the liquid refrigerant communication tube 13 and is sent to the first usage unit 4a and the second usage unit 10a.
- the heat-source-side refrigerant sent to the second usage unit 10a is sent to the second usage-side flow rate adjustment valve 102a.
- the heat-source-side refrigerant sent to the second usage-side flow rate adjustment valve 102a is depressurized by the second usage-side flow rate adjustment valve 102a to become a low-pressure gas-liquid two-phase state, and through the second usage-side liquid refrigerant tube 103a, It is sent to the second usage side heat exchanger 101a.
- the low-pressure heat-source-side refrigerant sent to the second usage-side heat exchanger 101a evaporates by exchanging heat with the air medium supplied by the usage-side fan 105a in the second usage-side heat exchanger 101a. Cool the room.
- the low-pressure heat-source-side refrigerant evaporated in the second usage-side heat exchanger 101a is sent from the second usage unit 10a to the gas refrigerant communication tube 14 through the second usage-side gas refrigerant tube 104a.
- the heat-source-side refrigerant sent to the first usage unit 4a is sent to the first usage-side flow rate adjustment valve 42a.
- the heat-source-side refrigerant sent to the first usage-side flow rate adjustment valve 42a is depressurized in the first usage-side flow rate adjustment valve 42a to become a low-pressure gas-liquid two-phase state, and through the first usage-side liquid refrigerant tube 45a, It is sent to the first usage side heat exchanger 41a.
- the low-pressure heat-source-side refrigerant sent to the first usage-side heat exchanger 41a evaporates in the first usage-side heat exchanger 41a by exchanging heat with the aqueous medium circulating in the aqueous medium circuit 80a by the circulation pump 43a. .
- the low-pressure heat-source-side refrigerant evaporated in the first usage-side heat exchanger 41a passes through the first usage-side gas on-off valve 56a and the first usage-side gas refrigerant pipe 54a constituting the first usage-side switching mechanism 53a. It is sent from the unit 4 a to the gas refrigerant communication pipe 14.
- the heat-source-side refrigerant sent from the second usage unit 10a and the first usage unit 4a to the gas refrigerant communication tube 14 merges in the gas refrigerant communication tube 14 and is sent to the heat source unit 2.
- the low-pressure heat source side refrigerant sent to the heat source unit 2 is sent to the heat source side accumulator 28 through the gas side shut-off valve 30, the second heat source side gas refrigerant tube 23b, and the heat source side switching mechanism 23.
- the low-pressure heat source side refrigerant sent to the heat source side accumulator 28 is again sucked into the heat source side compressor 21 through the heat source side suction pipe 21c.
- the aqueous medium circulating in the aqueous medium circuit 80a is cooled by evaporation of the heat source side refrigerant in the first usage-side heat exchanger 41a.
- the aqueous medium cooled in the first usage-side heat exchanger 41a is drawn into the circulation pump 43a through the first usage-side water outlet pipe 48a, and after the pressure is increased, the first usage unit 4a supplies the aqueous medium communication pipe 16a.
- the aqueous medium sent to the aqueous medium communication pipe 16a is sent to the hot water heating unit 9a through the aqueous medium side switching mechanism 161a.
- the aqueous medium sent to the hot water heating unit 9a absorbs heat in the heat exchange panel 91a, thereby cooling the indoor wall or the like or cooling the indoor floor.
- the operation in the hot water supply / cooling operation mode in which the cooling water operation of the first usage unit 4a is performed and the cooling operation of the second usage unit 10a is performed is performed.
- movement hot-water supply operation which heats an aqueous medium by the thermal radiation of the heat source side refrigerant
- the operation for cooling the aqueous medium (cooling water supply operation) can be performed by switching, and the operation for cooling the air medium by the evaporation of the heat source side refrigerant in the second usage side heat exchanger 101a (cooling). Operation) and an operation of cooling the aqueous medium by evaporation of the heat source side refrigerant in the first usage side heat exchanger 41a (cooling water operation) can be performed.
- the air medium cooled in the second usage unit 10a while using the aqueous medium cooled in the first usage unit 4a for the radiator or the floor heating panel It is possible to perform a comfortable air conditioning of such, a combination of the first usage unit 4a and the second usage unit 10a as such for use in the room is cooled.
- the configuration of the first usage unit 4b is the same as that of the first usage unit 4a, the configuration of the first usage unit 4b is indicated by a suffix “a” indicating each part of the first usage unit 4a. Subscript “b” is attached instead of “,” and description of each part is omitted.
- the configuration of the second usage unit 10b is indicated by a subscript “a” indicating each part of the second usage unit 10a. Subscript “b” is attached instead of “,” and description of each part is omitted.
- the pressure of the heat source side refrigerant in the discharge of the heat source side compressor 21 is set. It is necessary to perform the operation under conditions with low operation efficiency such as increasing the operating efficiency, which is not preferable. Therefore, in the heat pump system 200, in the configuration of the heat pump system 1 (see FIG. 1) in the first embodiment described above, the first usage-side heat exchanger 41a is connected from the discharge refrigerant communication pipe 12 as shown in FIG.
- a heat exchanger that exchanges heat between the heat-source-side refrigerant and the heat-source-side refrigerant that is introduced is used as a heat exchanger, and a first-side use unit 4a uses a use-side compressor 62a (described later) that compresses the use-side refrigerant.
- a refrigerant-water heat exchanger 65a (described later) that functions as a heat radiator for the use side refrigerant and can heat the aqueous medium
- the use side refrigerant circulates together with the first use side heat exchanger 41a.
- the use side refrigerant circuit 40a is configured.
- the configuration of the heat pump system 200 will be described.
- FIG. 7 is a schematic configuration diagram of a heat pump system 200 according to the second embodiment of the present invention.
- the heat pump system 200 is an apparatus that can perform an operation of heating an aqueous medium using a vapor compression heat pump cycle.
- the heat pump system 200 mainly includes a heat source unit 2, a first usage unit 4a, a second usage unit 10a, a discharge refrigerant communication tube 12, a liquid refrigerant communication tube 13, a gas refrigerant communication tube 14, and a hot water storage unit 8a.
- the heat source unit 2, the first usage unit 4a, and the second usage unit 10a are connected to the refrigerant communication pipes 12, 13, 14, the heat source side refrigerant circuit 20 is constituted, the first usage unit 4a constitutes the usage side refrigerant circuit 40a, and the first usage unit 4a, the hot water storage unit 8a, and the hot water heating unit 9a are connected.
- the aqueous medium circuit 80a is configured by being connected via the aqueous medium communication pipes 15a and 16a.
- HFC-410A which is a kind of HFC type refrigerant
- ester or ether type refrigeration oil having compatibility with the HFC type refrigerant
- the side compressor 22 is sealed for lubrication.
- HFC-134a which is a kind of HFC refrigerant
- HFC-134a is sealed in the use side refrigerant circuit 40a as a use side refrigerant, and ester or ether type refrigerating machine oil having compatibility with the HFC refrigerant. Is enclosed for lubrication of the use side compressor 62a.
- the pressure corresponding to saturation gas temperature 65 degreeC is 2.8 Mpa or less at the maximum at a gauge pressure, Preferably, it is 2.0 Mpa.
- the following refrigerants are preferably used.
- HFC-134a is a kind of refrigerant having such saturation pressure characteristics.
- water as an aqueous medium circulates in the aqueous medium circuit 80a.
- the heat source unit 2 the second usage unit 10a, the hot water storage unit 8a, the hot water heating unit 9a, and the discharged refrigerant communication having the same configuration as the heat pump system 1 (see FIG. 1) in the first embodiment.
- tube 12 the liquid refrigerant
- tube 13 the gas refrigerant
- tube 14 the aqueous medium communication pipe
- symbol is attached
- the first usage unit 4a is installed indoors, is connected to the heat source unit 2 and the second usage unit 10a via the refrigerant communication pipes 12 and 13, and constitutes a part of the heat source side refrigerant circuit 20. Yes. Moreover, the 1st utilization unit 4a comprises the utilization side refrigerant circuit 40a. Furthermore, the 1st utilization unit 4a is connected to the hot water storage unit 8a and the hot water heating unit 9a via the aqueous medium communication pipes 15a and 16a, and constitutes a part of the aqueous medium circuit 80a.
- the first usage unit 4a mainly includes a first usage-side heat exchanger 41a, a first usage-side flow rate adjustment valve 42a, a usage-side compressor 62a, a refrigerant-water heat exchanger 65a, and a refrigerant-hydrothermal exchange. It has a side flow rate adjustment valve 66a, a use side accumulator 67a, and a circulation pump 43a.
- the first usage-side heat exchanger 41a is a heat exchanger that functions as a radiator for the heat-source-side refrigerant by performing heat exchange between the heat-source-side refrigerant and the usage-side refrigerant, and is a liquid in a flow path through which the heat-source-side refrigerant flows.
- a first usage side liquid refrigerant tube 45a is connected to the side, and a first usage side discharge refrigerant tube 46a is connected to the gas side of the flow path through which the heat source side refrigerant flows.
- a cascade side liquid refrigerant pipe 68a is connected to the liquid side of the flow path through which the refrigerant flows, and a second cascade side gas refrigerant pipe 69a is connected to the gas side of the flow path through which the use side refrigerant flows.
- the liquid refrigerant communication pipe 13 is connected to the first usage side liquid refrigerant pipe 45a, the discharge refrigerant communication pipe 12 is connected to the first usage side discharge refrigerant pipe 46a, and the cascade side liquid refrigerant pipe 68a.
- the refrigerant-water heat exchanger 65a is connected to the second cascade side gas refrigerant pipe 69a, and the use side compressor 62a is connected to the second cascade side gas refrigerant pipe 69a.
- the first usage-side flow rate adjustment valve 42a is an electric expansion valve capable of changing the flow rate of the heat source-side refrigerant flowing through the first usage-side heat exchanger 41a by performing opening degree control. It is provided in the refrigerant pipe 45a.
- the first use side discharge refrigerant pipe 46a allows the flow of the heat source side refrigerant from the discharge refrigerant communication pipe 12 toward the first use side heat exchanger 41a, and is discharged from the first use side heat exchanger 41a to the discharge refrigerant communication pipe 12.
- a first usage-side discharge check valve 49a that prohibits the flow of the heat source side refrigerant toward the first side is provided.
- the use side compressor 62a is a mechanism for compressing the use side refrigerant.
- a rotary type or scroll type volumetric compression element housed in a casing (not shown) is used.
- a hermetic compressor driven by a use side compressor motor 63a accommodated in the casing is employed.
- a high-pressure space (not shown) filled with the heat-source-side refrigerant after being compressed by the compression element is formed in the casing of the use-side compressor 62a, and refrigeration oil is stored in the high-pressure space.
- the use-side compressor motor 63a can vary the rotation speed (that is, the operating frequency) by an inverter device (not shown), thereby enabling capacity control of the use-side compressor 62a.
- a cascade side discharge pipe 70a is connected to the discharge of the use side compressor 62a, and a cascade side intake pipe 71a is connected to the intake of the use side compressor 62a.
- the cascade side suction pipe 71a is connected to the second cascade side gas refrigerant pipe 69a.
- the refrigerant-water heat exchanger 65a is a heat exchanger that functions as a heat radiator for the usage-side refrigerant by exchanging heat between the usage-side refrigerant and the aqueous medium.
- the cascade side liquid refrigerant pipe 68a is connected to the gas side of the flow path through which the use side refrigerant flows, and the first cascade side gas refrigerant pipe 72a is connected to the flow path through which the aqueous medium flows.
- a first usage-side water inlet pipe 47a is connected to the inlet side, and a first usage-side water outlet pipe 48a is connected to the outlet side of the flow path through which the aqueous medium flows.
- the first cascade side gas refrigerant pipe 72a is connected to the cascade side discharge pipe 70a, the aqueous medium communication pipe 15a is connected to the first use side water inlet pipe 47a, and the first use side water outlet pipe is connected.
- the aqueous medium communication pipe 16a is connected to 48a.
- the refrigerant-water heat exchange side flow rate adjustment valve 66a is an electric expansion valve capable of varying the flow rate of the use side refrigerant flowing through the refrigerant-water heat exchanger 65a by controlling the opening degree. It is provided in the pipe 68a.
- the use side accumulator 67a is provided in the cascade side suction pipe 71a, and temporarily stores the use side refrigerant circulating in the use side refrigerant circuit 40a before being sucked from the cascade side suction pipe 71a into the use side compressor 62a. It is a container for.
- the use side compressor 62a, the refrigerant-water heat exchanger 65a, the refrigerant-water heat exchange side flow rate adjustment valve 66a, and the first use side heat exchanger 41a connect the refrigerant pipes 71a, 70a, 72a, 68a, 69a.
- the use-side refrigerant circuit 40a is configured by being connected to each other.
- the circulation pump 43a is a mechanism for boosting the aqueous medium.
- a pump in which a centrifugal or positive displacement pump element (not shown) is driven by a circulation pump motor 44a is employed.
- the circulation pump 43a is provided in the first usage-side water outlet pipe 48a.
- the circulation pump motor 44a can vary the rotation speed (that is, the operating frequency) by an inverter device (not shown), thereby enabling capacity control of the circulation pump 43a.
- the 1st utilization side 4a makes the 1st utilization side heat exchanger 41a function as a heat radiator of the heat-source side refrigerant
- the used heat source side refrigerant is led out to the liquid refrigerant communication pipe 13, and the use side refrigerant circulating in the use side refrigerant circuit 40a is heated by the heat radiation of the heat source side refrigerant in the first use side heat exchanger 41a, and this heated use side After the refrigerant is compressed in the use side compressor 62a, it is possible to perform a hot water supply operation for heating the aqueous medium by radiating heat in the refrigerant-water heat exchanger 65a.
- the first usage unit 4a is provided with various sensors.
- the first usage unit 4a includes a first usage-side heat exchange temperature sensor that detects the first usage-side refrigerant temperature Tsc1, which is the temperature of the heat-source-side refrigerant on the liquid side of the first usage-side heat exchanger 41a.
- a first refrigerant-water heat exchanger temperature sensor 73a for detecting a cascade-side refrigerant temperature Tsc2 which is a temperature of a use-side refrigerant on the liquid side of the refrigerant-water heat exchanger 65a, and an inlet of the refrigerant-water heat exchanger 65a
- An aqueous medium outlet temperature sensor 51a that detects an aqueous medium inlet temperature Twr that is the temperature of the aqueous medium in the water medium, and an aqueous medium outlet that detects an aqueous medium outlet temperature Twl that is the temperature of the aqueous medium at the outlet of the refrigerant-water heat exchanger 65a
- a temperature sensor 52a, a use side suction pressure sensor 74a that detects a use side suction pressure Ps2 that is a pressure of the use side refrigerant in the suction of the use side compressor 62a, and a discharge of the use side compressor 62a
- the operation of the heat pump system 200 will be described.
- the hot water supply operation mode in which only the hot water supply operation of the first usage unit 4a (that is, the operation of the hot water storage unit 8a and / or the hot water heating unit 9a) and the cooling operation of the second usage unit 10a are performed.
- a cooling operation mode for performing the heating operation mode for performing only the heating operation of the second usage unit 10a a hot water supply / heating operation mode for performing the hot water supply operation of the first usage unit 4a and performing the heating operation of the second usage unit 10a, There is a hot water supply / cooling operation mode in which the hot water supply operation of the first usage unit 4a is performed and the cooling operation of the second usage unit 10a is performed.
- a hot water supply / cooling operation mode in which the hot water supply operation of the first usage unit 4a is performed and the cooling operation of the second usage unit 10a is performed.
- the heat source side switching mechanism 23 is in the heat source side evaporation operation state (the state indicated by the broken line of the heat source side switching mechanism 23 in FIG. 7). ) And the suction return expansion valve 26a and the second use side flow rate adjustment valve 102a are closed.
- the aqueous medium circuit 80a the aqueous medium switching mechanism 161a is switched to a state in which the aqueous medium is supplied to the hot water storage unit 8a and / or the hot water heating unit 9a.
- the low pressure heat source side refrigerant in the refrigeration cycle is sucked into the heat source side compressor 21 through the heat source side suction pipe 21c and compressed to a high pressure in the refrigeration cycle, and then the heat source side refrigerant circuit 20 is cooled. It is discharged to the discharge pipe 21b.
- the high pressure heat source side refrigerant discharged to the heat source side discharge pipe 21b is separated from the refrigerating machine oil in the oil separator 22a.
- the refrigerating machine oil separated from the heat source side refrigerant in the oil separator 22a is returned to the heat source side suction pipe 21c through the oil return pipe 22b.
- the high-pressure heat-source-side refrigerant from which the refrigeration oil has been separated is sent from the heat-source unit 2 to the discharge refrigerant communication tube 12 through the heat-source-side discharge branch pipe 21d and the discharge-side shut-off valve 31.
- the high-pressure heat source side refrigerant sent to the discharge refrigerant communication tube 12 is sent to the first usage unit 4a.
- the high-pressure heat-source-side refrigerant sent to the first usage unit 4a is sent to the first usage-side heat exchanger 41a through the first usage-side discharge refrigerant tube 46a and the first usage-side discharge check valve 49a.
- the high-pressure heat-source-side refrigerant sent to the first usage-side heat exchanger 41a exchanges heat with the low-pressure usage-side refrigerant in the refrigeration cycle circulating in the usage-side refrigerant circuit 40a in the first usage-side heat exchanger 41a. To dissipate heat.
- the high-pressure heat-source-side refrigerant radiated in the first usage-side heat exchanger 41a is sent from the first usage unit 4a to the liquid refrigerant communication tube 13 through the first usage-side flow rate adjustment valve 42a and the first usage-side liquid refrigerant tube 45a. It is done.
- the first usage-side flow rate adjustment valve 42a is a heat-source-side refrigerant at the outlet of the first usage-side heat exchanger 41a (that is, the liquid side of the first usage-side heat exchanger 41a).
- the degree of opening is controlled so that the heat source side subcool degree SC1 of the heat source side refrigerant subcool degree SC1s becomes the target heat source side refrigerant subcool degree SC1s.
- the heat source side refrigerant subcooling degree SC1 of the heat source side refrigerant at the outlet of the first usage side heat exchanger 41a is a value obtained by subtracting the first usage side refrigerant temperature Tsc1 from the heat source side discharge saturation temperature Tc1.
- the heat source side subcool degree SC1 of the heat source side refrigerant at the outlet of the first use side heat exchanger 41a is the pressure value of the heat source side discharge pressure Pd1 that is the pressure of the heat source side refrigerant in the discharge of the heat source side compressor 21. May be detected by subtracting the refrigerant temperature value detected by the first use side heat exchange temperature sensor 50a from the saturation temperature of the refrigerant.
- the heat source side refrigerant sent to the liquid refrigerant communication tube 13 is sent to the heat source unit 2.
- the heat source side refrigerant sent to the heat source unit 2 is sent to the supercooler 27 through the liquid side shut-off valve 29.
- the heat source side refrigerant sent to the subcooler 27 is sent to the heat source side expansion valve 25 without performing heat exchange because the heat source side refrigerant does not flow through the suction return pipe 26.
- the heat source side refrigerant sent to the heat source side expansion valve 25 is depressurized by the heat source side expansion valve 25 to be in a low-pressure gas-liquid two-phase state, and sent to the heat source side heat exchanger 24 through the heat source side liquid refrigerant tube 24a. It is done.
- the low-pressure refrigerant sent to the heat source side heat exchanger 24 evaporates by exchanging heat with outdoor air supplied by the heat source side fan 32 in the heat source side heat exchanger 24.
- the low-pressure heat source side refrigerant evaporated in the heat source side heat exchanger 24 is sent to the heat source side accumulator 28 through the first heat source side gas refrigerant tube 23a and the heat source side switching mechanism 23.
- the low-pressure heat source side refrigerant sent to the heat source side accumulator 28 is again sucked into the heat source side compressor 21 through the heat source side suction pipe 21c.
- the low-pressure usage-side refrigerant in the refrigeration cycle circulating in the usage-side refrigerant circuit 40a is heated and evaporated by the heat radiation of the heat source-side refrigerant in the first usage-side heat exchanger 41a.
- the low-pressure usage-side refrigerant evaporated in the first usage-side heat exchanger 41a is sent to the usage-side accumulator 67a through the second cascade-side gas refrigerant tube 69a.
- the low-pressure use-side refrigerant sent to the use-side accumulator 67a is sucked into the use-side compressor 62a through the cascade-side suction pipe 71a, compressed to a high pressure in the refrigeration cycle, and then discharged to the cascade-side discharge pipe 70a.
- the high-pressure use-side refrigerant discharged to the cascade-side discharge pipe 70a is sent to the refrigerant-water heat exchanger 65a through the first cascade-side gas refrigerant pipe 72a.
- the high-pressure use-side refrigerant sent to the refrigerant-water heat exchanger 65a radiates heat by exchanging heat with the aqueous medium circulating in the aqueous medium circuit 80a by the circulation pump 43a in the refrigerant-water heat exchanger 65a.
- the high-pressure use-side refrigerant that has radiated heat in the refrigerant-water heat exchanger 65a is decompressed in the refrigerant-water heat exchange side flow rate control valve 66a to become a low-pressure gas-liquid two-phase state, and passes through the cascade-side liquid refrigerant pipe 68a. Again, it is sent to the 1st utilization side heat exchanger 41a.
- the aqueous medium circulating in the aqueous medium circuit 80a is heated by the heat radiation of the use-side refrigerant in the refrigerant-water heat exchanger 65a.
- the aqueous medium heated in the refrigerant-water heat exchanger 65a is drawn into the circulation pump 43a through the first usage-side water outlet pipe 48a, and after being pressurized, is sent from the first usage unit 4a to the aqueous medium communication pipe 16a. It is done.
- the aqueous medium sent to the aqueous medium communication pipe 16a is sent to the hot water storage unit 8a and / or the hot water heating unit 9a through the aqueous medium side switching mechanism 161a.
- the aqueous medium sent to the hot water storage unit 8a exchanges heat with the aqueous medium in the hot water storage tank 81a in the heat exchange coil 82a to radiate heat, thereby heating the aqueous medium in the hot water storage tank 81a.
- the aqueous medium sent to the hot water heating unit 9a dissipates heat in the heat exchange panel 91a, thereby heating the indoor wall or the like or heating the indoor floor.
- the operation in the hot water supply operation mode in which only the hot water supply operation of the first usage unit 4a is performed is performed.
- -Cooling operation mode When only the cooling operation of the second usage unit 10a is performed, in the heat source side refrigerant circuit 20, the heat source side switching mechanism 23 is in the heat source side heat dissipation operation state (the state shown by the solid line of the heat source side switching mechanism 23 in FIG. 7). ) And the first usage-side flow rate adjustment valve 42a is closed.
- the low pressure heat source side refrigerant in the refrigeration cycle is sucked into the heat source side compressor 21 through the heat source side suction pipe 21c and compressed to a high pressure in the refrigeration cycle, and then the heat source side refrigerant circuit 20 is cooled. It is discharged to the discharge pipe 21b.
- the high pressure heat source side refrigerant discharged to the heat source side discharge pipe 21b is separated from the refrigerating machine oil in the oil separator 22a.
- the refrigerating machine oil separated from the heat source side refrigerant in the oil separator 22a is returned to the heat source side suction pipe 21c through the oil return pipe 22b.
- the high-pressure heat-source-side refrigerant from which the refrigerating machine oil has been separated is sent to the heat-source-side heat exchanger 24 through the heat-source-side switching mechanism 23 and the first heat-source-side gas refrigerant tube 23a.
- the high-pressure heat-source-side refrigerant sent to the heat-source-side heat exchanger 24 radiates heat by exchanging heat with outdoor air supplied by the heat-source-side fan 32 in the heat source-side heat exchanger 24.
- the high-pressure heat-source-side refrigerant that has radiated heat in the heat-source-side heat exchanger is sent to the supercooler 27 through the heat source-side expansion valve 25.
- the heat source side refrigerant sent to the subcooler 27 is cooled so as to be in a supercooled state by exchanging heat with the heat source side refrigerant branched from the heat source side liquid refrigerant tube 24a to the suction return tube 26.
- the heat source side refrigerant flowing through the suction return pipe 26 is returned to the heat source side suction pipe 21c.
- the heat source side refrigerant cooled in the subcooler 27 is sent from the heat source unit 2 to the liquid refrigerant communication tube 13 through the heat source side liquid refrigerant tube 24a and the liquid side shut-off valve 29.
- the high-pressure heat-source-side refrigerant sent to the liquid refrigerant communication tube 13 is sent to the second usage unit 10a.
- the high-pressure heat source-side refrigerant sent to the second usage unit 10a is sent to the second usage-side flow rate adjustment valve 102a.
- the high-pressure heat-source-side refrigerant sent to the second usage-side flow rate adjustment valve 102a is depressurized by the second usage-side flow rate adjustment valve 102a to become a low-pressure gas-liquid two-phase state, and the second usage-side liquid refrigerant tube 103a. To the second usage-side heat exchanger 101a.
- the second usage-side flow rate adjustment valve 102a is a heat-source-side refrigerant at the outlet of the second usage-side heat exchanger 101a (that is, the gas side of the second usage-side heat exchanger 101a).
- the opening degree is controlled so that the heat source side superheat degree SH1 becomes constant at the target superheat degree SH1s.
- the heat source side superheat degree SH1 is calculated from the refrigerant temperature value detected by the second usage side liquid side temperature sensor 108a (the heat source side evaporation temperature) from the refrigerant temperature value detected by the second usage side gas side temperature sensor 109a.
- the heat source side suction pressure Ps1 of the compressor 21 detected by subtracting (corresponding to Te) or detected by the heat source side suction pressure sensor 33 is converted into a saturation temperature value corresponding to the heat source side evaporation temperature Te1, It is detected by subtracting the saturation temperature value of the refrigerant from the refrigerant temperature value detected by the two usage side gas side temperature sensor 109a.
- a temperature sensor for detecting the temperature of the refrigerant flowing in the second usage side heat exchanger 101a is provided, and the refrigerant temperature value corresponding to the heat source side evaporation temperature Te1 detected by the temperature sensor is set as the second usage side gas.
- the heat source side superheat degree SH1 of the heat source side refrigerant at the outlet of the second usage side heat exchanger 101a may be detected by subtracting from the refrigerant temperature value detected by the side temperature sensor 109a.
- the low-pressure heat-source-side refrigerant sent to the second usage-side heat exchanger 101a evaporates by exchanging heat with the air medium supplied by the usage-side fan 105a in the second usage-side heat exchanger 101a. Thereby, the room is cooled.
- the low-pressure heat-source-side refrigerant evaporated in the second usage-side heat exchanger 101a is sent from the second usage unit 10a to the gas refrigerant communication tube 14 through the second usage-side gas refrigerant tube 104a.
- the low-pressure heat source side refrigerant sent to the gas refrigerant communication tube 14 is sent to the heat source unit 2.
- the low-pressure heat source side refrigerant sent to the heat source unit 2 is sent to the heat source side accumulator 28 through the gas side shut-off valve 30, the second heat source side gas refrigerant tube 23b, and the heat source side switching mechanism 23.
- the low-pressure heat source side refrigerant sent to the heat source side accumulator 28 is again sucked into the heat source side compressor 21 through the heat source side suction pipe 21c.
- the operation in the cooling operation mode in which only the cooling operation of the second usage unit 10a is performed is performed.
- -Heating operation mode When only the heating operation of the second usage unit 10a is performed, in the heat source side refrigerant circuit 20, the heat source side switching mechanism 23 is in the heat source side heat radiation operation state (the state indicated by the broken line of the heat source side switching mechanism 23 in FIG. 7). ), And the suction return expansion valve 26a and the first usage-side flow rate adjustment valve 42a are closed.
- the low pressure heat source side refrigerant in the refrigeration cycle is sucked into the heat source side compressor 21 through the heat source side suction pipe 21c and compressed to a high pressure in the refrigeration cycle, and then the heat source side refrigerant circuit 20 is cooled. It is discharged to the discharge pipe 21b.
- the high pressure heat source side refrigerant discharged to the heat source side discharge pipe 21b is separated from the refrigerating machine oil in the oil separator 22a.
- the refrigerating machine oil separated from the heat source side refrigerant in the oil separator 22a is returned to the heat source side suction pipe 21c through the oil return pipe 22b.
- the high-pressure heat source side refrigerant from which the refrigerating machine oil is separated is sent from the heat source unit 2 to the gas refrigerant communication tube 14 through the heat source side switching mechanism 23, the second heat source side gas refrigerant tube 23b, and the gas side shut-off valve 30.
- the high-pressure heat-source-side refrigerant sent to the gas refrigerant communication tube 14 is sent to the second usage unit 10a.
- the high-pressure heat-source-side refrigerant sent to the second usage unit 10a is sent to the second usage-side heat exchanger 101a through the second usage-side gas refrigerant tube 104a.
- the high-pressure heat-source-side refrigerant sent to the second usage-side heat exchanger 101a performs heat exchange with the air medium supplied by the usage-side fan 105a in the second usage-side heat exchanger 101a, thereby radiating heat. , Heating the room.
- the high-pressure heat-source-side refrigerant radiated in the second usage-side heat exchanger 101a is sent from the second usage unit 10a to the liquid refrigerant communication tube 13 through the second usage-side flow rate adjustment valve 102a and the second usage-side liquid refrigerant tube 103a. It is done.
- the second usage-side flow rate adjustment valve 102a is a heat source side refrigerant heat source side at the outlet of the second usage side heat exchanger 101a (that is, the liquid side of the second usage side heat exchanger 101a).
- the degree of opening is controlled so that the degree of supercooling SC11 is constant at the target heat source side subcooling degree SC11s.
- the heat source side refrigerant cooling degree SC11 of the heat source side refrigerant at the outlet of the second usage side heat exchanger 101a is obtained by setting the heat source side discharge pressure Pd of the heat source side compressor 21 detected by the heat source side discharge pressure sensor 34. This is detected by converting to a saturation temperature value corresponding to the condensation temperature Tc and subtracting the refrigerant temperature value detected by the second usage side liquid side temperature sensor 108a from the saturation temperature value of the heat source side refrigerant.
- a temperature sensor for detecting the temperature of the refrigerant flowing in the second usage side heat exchanger 101a is provided, and the refrigerant temperature value corresponding to the condensation temperature Tc detected by the temperature sensor is set as the second usage side liquid side temperature.
- the subcooling degree SCr of the refrigerant at the outlet of the second usage side heat exchanger 101a may be detected by subtracting from the refrigerant temperature value detected by the sensor 108a.
- the heat source side refrigerant sent to the liquid refrigerant communication tube 13 is sent to the heat source unit 2.
- the heat source side refrigerant sent to the heat source unit 2 is sent to the supercooler 27 through the liquid side shut-off valve 29.
- the heat source side refrigerant sent to the subcooler 27 is sent to the heat source side expansion valve 25 without performing heat exchange because the heat source side refrigerant does not flow through the suction return pipe 26.
- the heat source side refrigerant sent to the heat source side expansion valve 25 is depressurized by the heat source side expansion valve 25 to be in a low-pressure gas-liquid two-phase state, and sent to the heat source side heat exchanger 24 through the heat source side liquid refrigerant tube 24a. It is done.
- the low-pressure refrigerant sent to the heat source side heat exchanger 24 evaporates by exchanging heat with outdoor air supplied by the heat source side fan 32 in the heat source side heat exchanger 24.
- the low-pressure heat source side refrigerant evaporated in the heat source side heat exchanger 24 is sent to the heat source side accumulator 28 through the first heat source side gas refrigerant tube 23a and the heat source side switching mechanism 23.
- the low-pressure heat source side refrigerant sent to the heat source side accumulator 28 is again sucked into the heat source side compressor 21 through the heat source side suction pipe 21c.
- movement in the heating operation mode which performs only the heating operation of the 2nd utilization unit 10a is performed.
- -Hot water heating / heating mode When the hot water supply operation of the first usage unit 4a is performed and the heating operation of the second usage unit 10a is performed, in the heat source side refrigerant circuit 20, the heat source side switching mechanism 23 is in the heat source side evaporation operation state (the heat source side in FIG. 7). (The state indicated by the broken line of the switching mechanism 23), and the suction return expansion valve 26a is closed.
- the aqueous medium switching mechanism 161a is switched to a state in which the aqueous medium is supplied to the hot water storage unit 8a and / or the hot water heating unit 9a.
- the heat source side refrigerant circuit 20 in such a state, the low pressure heat source side refrigerant in the refrigeration cycle is sucked into the heat source side compressor 21 through the heat source side suction pipe 21c and compressed to a high pressure in the refrigeration cycle, and then the heat source side refrigerant circuit 20 is cooled. It is discharged to the discharge pipe 21b.
- the high pressure heat source side refrigerant discharged to the heat source side discharge pipe 21b is separated from the refrigerating machine oil in the oil separator 22a.
- the refrigerating machine oil separated from the heat source side refrigerant in the oil separator 22a is returned to the heat source side suction pipe 21c through the oil return pipe 22b.
- a part of the high-pressure heat source side refrigerant from which the refrigerating machine oil has been separated is sent from the heat source unit 2 to the discharge refrigerant communication pipe 12 through the heat source side discharge branch pipe 21d and the discharge side shut-off valve 31, and the rest is used as the heat source. It is sent from the heat source unit 2 to the gas refrigerant communication pipe 14 through the side switching mechanism 23, the second heat source side gas refrigerant pipe 23 b, and the gas side closing valve 30.
- the high-pressure heat-source-side refrigerant sent to the gas refrigerant communication tube 14 is sent to the second usage unit 10a.
- the high-pressure heat-source-side refrigerant sent to the second usage unit 10a is sent to the second usage-side heat exchanger 101a through the second usage-side gas refrigerant tube 104a.
- the high-pressure heat-source-side refrigerant sent to the second usage-side heat exchanger 101a performs heat exchange with the air medium supplied by the usage-side fan 105a in the second usage-side heat exchanger 101a, thereby radiating heat. , Heating the room.
- the high-pressure heat-source-side refrigerant radiated in the second usage-side heat exchanger 101a is sent from the second usage unit 10a to the liquid refrigerant communication tube 13 through the second usage-side flow rate adjustment valve 102a and the second usage-side liquid refrigerant tube 103a. It is done.
- the second usage-side flow rate adjustment valve 102a is a heat-source-side refrigerant at the outlet of the second usage-side heat exchanger 101a (that is, the liquid side of the second usage-side heat exchanger 101a).
- the degree of opening is controlled so that the heat source side subcooling degree SC11 becomes constant at the supercooling degree target value SC11s.
- the high-pressure heat source side refrigerant sent to the discharge refrigerant communication tube 12 is sent to the first usage unit 4a.
- the high-pressure heat-source-side refrigerant sent to the first usage unit 4a is sent to the first usage-side heat exchanger 41a through the first usage-side discharge refrigerant tube 46a and the first usage-side discharge check valve 49a.
- the high-pressure heat-source-side refrigerant sent to the first usage-side heat exchanger 41a exchanges heat with the low-pressure usage-side refrigerant in the refrigeration cycle circulating in the usage-side refrigerant circuit 40a in the first usage-side heat exchanger 41a. To dissipate heat.
- the high-pressure heat-source-side refrigerant radiated in the first usage-side heat exchanger 41a is sent from the first usage unit 4a to the liquid refrigerant communication tube 13 through the first usage-side flow rate adjustment valve 42a and the first usage-side liquid refrigerant tube 45a. It is done.
- the first usage-side flow rate adjustment valve 42a is a heat-source-side refrigerant at the outlet of the first usage-side heat exchanger 41a (that is, the liquid side of the first usage-side heat exchanger 41a).
- the degree of opening is controlled so that the heat source side subcooling degree SC1 becomes constant at the supercooling degree target value SC1s.
- the heat-source-side refrigerant sent from the second usage unit 10a and the first usage unit 4a to the liquid refrigerant communication tube 13 merges in the liquid refrigerant communication tube 13 and is sent to the heat source unit 2.
- the heat source side refrigerant sent to the heat source unit 2 is sent to the supercooler 27 through the liquid side shut-off valve 29.
- the heat source side refrigerant sent to the subcooler 27 is sent to the heat source side expansion valve 25 without performing heat exchange because the heat source side refrigerant does not flow through the suction return pipe 26.
- the heat source side refrigerant sent to the heat source side expansion valve 25 is depressurized by the heat source side expansion valve 25 to be in a low-pressure gas-liquid two-phase state, and sent to the heat source side heat exchanger 24 through the heat source side liquid refrigerant tube 24a. It is done.
- the low-pressure refrigerant sent to the heat source side heat exchanger 24 evaporates by exchanging heat with outdoor air supplied by the heat source side fan 32 in the heat source side heat exchanger 24.
- the low-pressure heat source side refrigerant evaporated in the heat source side heat exchanger 24 is sent to the heat source side accumulator 28 through the first heat source side gas refrigerant tube 23a and the heat source side switching mechanism 23.
- the low-pressure heat source side refrigerant sent to the heat source side accumulator 28 is again sucked into the heat source side compressor 21 through the heat source side suction pipe 21c.
- the low-pressure usage-side refrigerant in the refrigeration cycle circulating in the usage-side refrigerant circuit 40a is heated and evaporated by the heat radiation of the heat source-side refrigerant in the first usage-side heat exchanger 41a.
- the low-pressure usage-side refrigerant evaporated in the first usage-side heat exchanger 41a is sent to the usage-side accumulator 67a through the second cascade-side gas refrigerant tube 69a.
- the low-pressure use-side refrigerant sent to the use-side accumulator 67a is sucked into the use-side compressor 62a through the cascade-side suction pipe 71a, compressed to a high pressure in the refrigeration cycle, and then discharged to the cascade-side discharge pipe 70a.
- the high-pressure use-side refrigerant discharged to the cascade-side discharge pipe 70a is sent to the refrigerant-water heat exchanger 65a through the first cascade-side gas refrigerant pipe 72a.
- the high-pressure use-side refrigerant sent to the refrigerant-water heat exchanger 65a radiates heat by exchanging heat with the aqueous medium circulating in the aqueous medium circuit 80a by the circulation pump 43a in the refrigerant-water heat exchanger 65a.
- the high-pressure use-side refrigerant that has radiated heat in the refrigerant-water heat exchanger 65a is decompressed in the refrigerant-water heat exchange side flow rate control valve 66a to become a low-pressure gas-liquid two-phase state, and passes through the cascade-side liquid refrigerant pipe 68a. Again, it is sent to the 1st utilization side heat exchanger 41a.
- the aqueous medium circulating in the aqueous medium circuit 80a is heated by the heat radiation of the use-side refrigerant in the refrigerant-water heat exchanger 65a.
- the aqueous medium heated in the refrigerant-water heat exchanger 65a is drawn into the circulation pump 43a through the first usage-side water outlet pipe 48a, and after being pressurized, is sent from the first usage unit 4a to the aqueous medium communication pipe 16a. It is done.
- the aqueous medium sent to the aqueous medium communication pipe 16a is sent to the hot water storage unit 8a and / or the hot water heating unit 9a through the aqueous medium side switching mechanism 161a.
- the aqueous medium sent to the hot water storage unit 8a exchanges heat with the aqueous medium in the hot water storage tank 81a in the heat exchange coil 82a to radiate heat, thereby heating the aqueous medium in the hot water storage tank 81a.
- the aqueous medium sent to the hot water heating unit 9a dissipates heat in the heat exchange panel 91a, thereby heating the indoor wall or the like or heating the indoor floor.
- the operation in the hot water supply and heating operation mode in which the hot water supply operation of the first usage unit 4a is performed and the heating operation of the second usage unit 10a is performed is performed.
- -Hot water supply / cooling operation mode When the hot water supply operation of the first usage unit 4a is performed and the cooling operation of the second usage unit 10a is performed, in the heat source side refrigerant circuit 20, the heat source side switching mechanism 23 is in the heat source side heat radiation operation state (the heat source side in FIG. 7). It is switched to the state indicated by the solid line of the switching mechanism 23). In the aqueous medium circuit 80a, the aqueous medium switching mechanism 161a is switched to a state of supplying the aqueous medium to the hot water storage unit 8a.
- the low pressure heat source side refrigerant in the refrigeration cycle is sucked into the heat source side compressor 21 through the heat source side suction pipe 21c and compressed to a high pressure in the refrigeration cycle, and then discharged from the heat source side. It is discharged to the tube 21b.
- the high pressure heat source side refrigerant discharged to the heat source side discharge pipe 21b is separated from the refrigerating machine oil in the oil separator 22a.
- the refrigerating machine oil separated from the heat source side refrigerant in the oil separator 22a is returned to the heat source side suction pipe 21c through the oil return pipe 22b.
- a part of the high-pressure heat source side refrigerant from which the refrigerating machine oil is separated is sent from the heat source unit 2 to the discharge refrigerant communication pipe 12 through the heat source side discharge branch pipe 21d and the discharge side shut-off valve 31, and the rest is used as the heat source. It is sent to the heat source side heat exchanger 24 through the side switching mechanism 23 and the first heat source side gas refrigerant tube 23a.
- the high-pressure heat-source-side refrigerant sent to the heat-source-side heat exchanger 24 radiates heat by exchanging heat with outdoor air supplied by the heat-source-side fan 32 in the heat source-side heat exchanger 24.
- the high-pressure heat-source-side refrigerant that has radiated heat in the heat-source-side heat exchanger is sent to the supercooler 27 through the heat source-side expansion valve 25.
- the heat source side refrigerant sent to the subcooler 27 is cooled so as to be in a supercooled state by exchanging heat with the heat source side refrigerant branched from the heat source side liquid refrigerant tube 24a to the suction return tube 26.
- the heat source side refrigerant flowing through the suction return pipe 26 is returned to the heat source side suction pipe 21c.
- the heat source side refrigerant cooled in the subcooler 27 is sent from the heat source unit 2 to the liquid refrigerant communication tube 13 through the heat source side liquid refrigerant tube 24a and the liquid side shut-off valve 29.
- the high-pressure heat source side refrigerant sent to the discharge refrigerant communication tube 12 is sent to the first usage unit 4a.
- the high-pressure heat-source-side refrigerant sent to the first usage unit 4a is sent to the first usage-side heat exchanger 41a through the first usage-side discharge refrigerant tube 46a and the first usage-side discharge check valve 49a.
- the high-pressure heat-source-side refrigerant sent to the first usage-side heat exchanger 41a exchanges heat with the low-pressure usage-side refrigerant in the refrigeration cycle circulating in the usage-side refrigerant circuit 40a in the first usage-side heat exchanger 41a. To dissipate heat.
- the high-pressure heat-source-side refrigerant radiated in the first usage-side heat exchanger 41a is sent from the first usage unit 4a to the liquid refrigerant communication tube 13 through the first usage-side flow rate adjustment valve 42a and the first usage-side liquid refrigerant tube 45a. It is done.
- the first usage-side flow rate adjustment valve 42a is a heat-source-side refrigerant at the outlet of the first usage-side heat exchanger 41a (that is, the liquid side of the first usage-side heat exchanger 41a).
- the degree of opening is controlled so that the heat source side subcooling degree SC1 becomes constant at the supercooling degree target value SC1s.
- the heat-source-side refrigerant sent from the heat source unit 2 and the first usage unit 4a to the liquid refrigerant communication tube 13 merges in the liquid refrigerant communication tube 13 and is sent to the second usage unit 10a.
- the heat-source-side refrigerant sent to the second usage unit 10a is sent to the second usage-side flow rate adjustment valve 102a.
- the heat-source-side refrigerant sent to the second usage-side flow rate adjustment valve 102a is depressurized by the second usage-side flow rate adjustment valve 102a to be in a low-pressure gas-liquid two-phase state, and is passed through the second usage-side liquid refrigerant tube 103a. 2 is sent to the use side heat exchanger 101a.
- the low-pressure heat source side refrigerant sent to the second usage side heat exchanger 101a evaporates by exchanging heat with the air medium supplied by the usage side fan 105a in the second usage side heat exchanger 101a. Cool the room.
- the low-pressure heat-source-side refrigerant evaporated in the second usage-side heat exchanger 101a is sent from the second usage unit 10a to the gas refrigerant communication tube 14 through the second usage-side gas refrigerant tube 104a.
- the second usage-side flow rate adjustment valve 102a is connected to the heat source side superheat degree SH1 (specifically, the second usage-side liquid temperature sensor 108a of the second usage-side heat exchanger 101a.
- the opening degree is controlled based on the temperature difference between the heat source side refrigerant temperature detected by the second use side gas side temperature sensor 109a) and the cooling load of the second usage unit 10a. The opening is controlled.
- the low-pressure heat source side refrigerant sent to the gas refrigerant communication tube 14 is sent to the heat source unit 2.
- the low-pressure heat source side refrigerant sent to the heat source unit 2 is sent to the heat source side accumulator 28 through the gas side shut-off valve 30, the second heat source side gas refrigerant tube 23b, and the heat source side switching mechanism 23.
- the low-pressure heat source side refrigerant sent to the heat source side accumulator 28 is again sucked into the heat source side compressor 21 through the heat source side suction pipe 21c.
- the low-pressure usage-side refrigerant in the refrigeration cycle circulating in the usage-side refrigerant circuit 40a is heated and evaporated by the heat radiation of the heat source-side refrigerant in the first usage-side heat exchanger 41a.
- the low-pressure usage-side refrigerant evaporated in the first usage-side heat exchanger 41a is sent to the usage-side accumulator 67a through the second cascade-side gas refrigerant tube 69a.
- the low-pressure use-side refrigerant sent to the use-side accumulator 67a is sucked into the use-side compressor 62a through the cascade-side suction pipe 71a, compressed to a high pressure in the refrigeration cycle, and then discharged to the cascade-side discharge pipe 70a.
- the high-pressure use-side refrigerant discharged to the cascade-side discharge pipe 70a is sent to the refrigerant-water heat exchanger 65a through the first cascade-side gas refrigerant pipe 72a.
- the high-pressure use-side refrigerant sent to the refrigerant-water heat exchanger 65a radiates heat by exchanging heat with the aqueous medium circulating in the aqueous medium circuit 80a by the circulation pump 43a in the refrigerant-water heat exchanger 65a.
- the high-pressure use-side refrigerant that has radiated heat in the refrigerant-water heat exchanger 65a is decompressed in the refrigerant-water heat exchange side flow rate control valve 66a to become a low-pressure gas-liquid two-phase state, and passes through the cascade-side liquid refrigerant pipe 68a. Again, it is sent to the 1st utilization side heat exchanger 41a.
- the aqueous medium circulating in the aqueous medium circuit 80a is heated by the heat radiation of the use-side refrigerant in the refrigerant-water heat exchanger 65a.
- the aqueous medium heated in the refrigerant-water heat exchanger 65a is drawn into the circulation pump 43a through the first usage-side water outlet pipe 48a, and after being pressurized, is sent from the first usage unit 4a to the aqueous medium communication pipe 16a. It is done.
- the aqueous medium sent to the aqueous medium communication pipe 16a is sent to the hot water storage unit 8a through the aqueous medium side switching mechanism 161a.
- the aqueous medium sent to the hot water storage unit 8a exchanges heat with the aqueous medium in the hot water storage tank 81a in the heat exchange coil 82a to radiate heat, thereby heating the aqueous medium in the hot water storage tank 81a.
- the operation in the hot water supply / cooling operation mode in which the hot water supply operation of the first usage unit 4a is performed and the cooling operation of the second usage unit 10a is performed is performed.
- the load (hot water supply load) applied to the heating of the aqueous medium in the first usage unit is the cooling load in the second usage unit.
- the hot water supply load is larger than the cooling load
- the water medium is heated without using the heat through the aqueous medium (for example, using hot water).
- the cooling operation of the second usage unit 10a is performed in accordance with the hot water supply load, the operation requires excessive energy with respect to the cooling load, resulting in poor efficiency. Therefore, in order to prevent this, it is necessary to match the hot water supply load with the cooling load.
- the heat source side heat exchanger 24 and the first usage side heat exchanger 41a function as a radiator
- the second usage side heat exchanger 101a functions as an evaporator. Therefore, there are two heat exchangers that function as radiators, and the heat exchangers 24 and 41a that function as radiators are in parallel with the second usage-side heat exchanger 101a that functions as an evaporator. Become.
- the heat exchanger that functions as a radiator. Since the pressure of the heat source side refrigerant in the first use side heat exchanger 41a is lower than the pressure of the heat source side refrigerant in the heat source side heat exchanger 24, the heat source side refrigerant flowing into the heat source side heat exchanger 41a is supplied to the first use side heat exchanger 41a. It will be easy to collect.
- the heat source side subcool degree SC1 of the heat source side refrigerant at the outlet of the first use side heat exchanger 41a that is, the liquid side of the first use side heat exchanger 41a. Since the opening degree of the first use side flow rate adjustment valve 42a is controlled so that the supercooling degree target value SC1s becomes constant, if the heat source side refrigerant accumulates in the first use side heat exchanger 41a, the first use side The flow rate adjustment valve 42a is opened.
- the heat source side refrigerant flowing into the heat exchanger functioning as a radiator has a higher pressure of the heat source side refrigerant in the first use heat exchanger 41a than the pressure of the heat source side refrigerant in the heat source side heat exchanger 24.
- the heat source side heat exchanger 24 is likely to accumulate. In this state, the heat exchange capacity of the heat source side heat exchanger 24 becomes excessive, and the amount of the heat source side refrigerant flowing through the second usage side heat exchanger 101a is reduced.
- the heat source side superheat degree SH1 of the second usage side heat exchanger 101a (specifically, the heat source side refrigerant temperature detected by the second usage side liquid side temperature sensor 108a) Since the opening degree of the second usage-side flow rate adjustment valve 102a is controlled based on the temperature difference from the heat-source-side refrigerant temperature detected by the second usage-side gas-side temperature sensor 109a, the heat source side heat exchanger 24 is supplied with a heat source. When the side refrigerant accumulates, the second usage side flow rate adjustment valve 102a is opened.
- the heat pump system 200 has the following characteristics. -A- The heat pump system 200 is different from the heat pump system 1 in the first embodiment in that the use side refrigerant circuit 40a is interposed between the heat source side refrigerant circuit 20 and the aqueous medium circuit 80a. Similar to the heat pump system 1, when the amount of refrigerant flowing into the second usage unit 10a is insufficient because the heat source side refrigerant is accumulated in the heat source side heat exchanger 24, the opening degree of the second usage side flow rate adjustment valve 102a is at least However, if the operating capacity of the heat source side fan 32 is controlled according to the state of the second usage side flow rate adjustment valve 102a, the heat source side heat exchanger 24 accumulates.
- the heat pump system 200 is different from the heat pump system 1 in the first embodiment in that the use side refrigerant circuit 40a is interposed between the heat source side refrigerant circuit 20 and the aqueous medium circuit 80a. Similar to the heat pump system 1, when performing cooling operation of the second usage unit 10 a, the second usage unit 10 a can be obtained by heating the aqueous medium without using the heat (utilizing hot water) via the aqueous medium.
- the degree of supercooling is constant with the degree of subcooling of the heat source side refrigerant in the first user side heat exchanger 41 a being a predetermined degree of subcooling by adjusting the opening of the first user side flow rate adjusting valve 42 a. Control is being performed. Therefore, when the hot water supply load in the first usage unit 4a is larger than the cooling load in the second usage unit 10a, the opening degree of the first usage-side flow rate adjustment valve 42a is increased. Therefore, in the heat pump system 1, the capacity variable type circulation pump 43a is provided, and when the opening degree of the first usage side flow rate adjustment valve 42a reaches a predetermined opening degree or more, the cooling load in the second usage unit 10a is increased. On the other hand, it is determined that the hot water supply load in the first usage unit 4a is large, and the capacity control of the circulation pump 43a is performed so that the flow rate of the aqueous medium circulating in the aqueous medium circuit 80a becomes small.
- a second usage side switching mechanism 64a capable of switching between the evaporation operation states is further provided in the usage side refrigerant circuit 40a, the first usage unit 4a is further connected to the gas refrigerant communication pipe 14, and the first usage side heat exchanger is provided.
- the aqueous medium heating operation state in which 41a functions as a heat radiator for the heat source side refrigerant introduced from the discharge refrigerant communication pipe 12 and the first usage side heat exchanger 41a from the liquid refrigerant communication pipe 13 are used. It may be further provided a first usage-side switching mechanism 53a capable of switching between the aqueous medium cooling operation state to function as an evaporator of the heat-source-side refrigerant being input.
- the second usage side switching mechanism 64a is a four-way switching valve, and includes a cascade side discharge pipe 70a, a cascade side suction pipe 71a, a first cascade side gas refrigerant pipe 72a, and a second cascade side gas refrigerant pipe. 69a.
- the second usage-side switching mechanism 64a allows the cascade-side discharge pipe 70a and the first cascade-side gas refrigerant pipe 72a to communicate with each other, and allows the second cascade-side gas refrigerant pipe 69a and the cascade-side suction pipe 71a to communicate (use).
- the side heat radiation operation state see the solid line of the second use side switching mechanism 64a in FIG.
- the cascade side discharge pipe 70a and the second cascade side gas refrigerant pipe 69a are in communication, and the first cascade side gas It is possible to perform switching by connecting the refrigerant pipe 72a and the cascade side suction pipe 71a (corresponding to the use side evaporation operation state, see the broken line of the second use side switching mechanism 64a in FIG. 8).
- the second usage-side switching mechanism 64a is not limited to the four-way switching valve, and has a function of switching the direction of the usage-side refrigerant flow as described above, for example, by combining a plurality of electromagnetic valves. It may be configured as described above.
- the first usage side gas refrigerant tube 54a is connected to the gas side of the flow path through which the heat source side refrigerant of the first usage side heat exchanger 41a flows together with the first usage side discharge refrigerant tube 46a.
- the first refrigerant gas refrigerant pipe 54a is connected to the gas refrigerant communication pipe 14.
- the first usage-side switching mechanism 53a includes a first usage-side discharge opening / closing valve 55a (here, the first usage-side discharge check valve 49a is omitted) provided in the first usage-side discharge refrigerant pipe 46a, A first use side gas on / off valve 56a provided in the side gas refrigerant pipe 54a, by opening the first use side discharge on / off valve 55a and closing the first use side gas on / off valve 56a.
- the aqueous medium heating operation state is set, the first usage side discharge on / off valve 55a is closed, and the first usage side gas on / off valve 56a is opened to enter the aqueous medium cooling operation state.
- Each of the first usage-side discharge on-off valve 55a and the first usage-side gas on-off valve 56a is an electromagnetic valve that can be controlled to open and close.
- the first usage side switching mechanism 53a may be configured by a three-way valve or the like.
- the first usage-side switching mechanism 53a includes a first refrigerant recovery mechanism 57a that allows the discharge refrigerant communication pipe 12 and the gas refrigerant communication pipe 14 to communicate with each other in both the aqueous medium heating operation state and the aqueous medium cooling operation state.
- a second refrigerant recovery mechanism 58a that allows the first usage side heat exchanger 41a and the gas refrigerant communication tube 14 to communicate with each other is provided.
- the first usage-side gas refrigerant pipe 54a is further provided with a first usage-side gas check valve 59a and a first usage-side bypass refrigerant pipe 60a, and the first usage-side discharge on-off valve 55a and the first usage-side gas on-off valve are provided.
- the first use side switching mechanism 53a is configured together with 56a.
- recovery mechanism 57a is a refrigerant
- the other end is connected to a portion of the first usage-side gas refrigerant pipe 54a that connects the first usage-side gas on-off valve 56a and the gas refrigerant communication pipe 14, and the first usage-side discharge
- the discharge refrigerant communication pipe 12 and the gas refrigerant communication pipe 14 are communicated with each other regardless of the open / close state of the on-off valve 55a and the first use side gas on-off valve 56a.
- the second refrigerant recovery mechanism 58a is a refrigerant tube having a capillary tube, one end of which is a gas side of the first usage side heat exchanger 41a and a first usage side gas on-off valve of the first usage side gas refrigerant tube 54a.
- the other end is connected to a portion of the first usage-side gas refrigerant pipe 54a that connects the first usage-side gas on-off valve 56a and the gas refrigerant communication pipe 14. Even when the operation of the first usage unit 4a is stopped, the gas side of the first usage side heat exchanger 41a and the gas refrigerant communication pipe 14 are bypassed by bypassing the first usage side gas on-off valve 56a. It is designed to communicate.
- the 1st utilization side gas check valve 59a is provided in the part which connects the 1st utilization side gas on-off valve 56a and the gas refrigerant communication pipe
- the first usage-side gas check valve 59a allows the flow of the heat source side refrigerant from the first usage-side heat exchanger 41a toward the gas refrigerant communication tube 14, and from the gas refrigerant communication tube 14 to the first usage-side heat exchanger 41a.
- This is a check valve that prohibits the flow of the heat source side refrigerant toward the heat source side, whereby the flow of the heat source side refrigerant toward the first use side heat exchanger 41a from the gas refrigerant communication tube 14 through the first use side gas on-off valve 56a. Is now prohibited.
- the first usage-side bypass refrigerant pipe 60a is connected to the first usage-side gas refrigerant pipe 54a so as to bypass the first usage-side gas on-off valve 56a and the first usage-side gas check valve 59a.
- a part of the side gas refrigerant pipe 54a is constituted.
- the first usage-side bypass refrigerant pipe 60a allows the flow of the heat source-side refrigerant from the gas refrigerant communication pipe 14 toward the first usage-side heat exchanger 41a, and the first usage-side heat exchanger 41a passes the gas refrigerant communication pipe 14.
- a first usage-side bypass check valve 59a that prohibits the flow of the heat-source-side refrigerant toward the first usage-side heat exchange from the gas refrigerant communication tube 14 through the first usage-side bypass refrigerant tube 60a is provided.
- the flow of the heat source side refrigerant toward the container 41a is allowed.
- the configuration of the first usage unit 4b is the same as that of the first usage unit 4a, the configuration of the first usage unit 4b is indicated by a suffix “a” indicating each part of the first usage unit 4a. Subscript “b” is attached instead of “,” and description of each part is omitted.
- the configuration of the second usage unit 10b is indicated by a subscript “a” indicating each part of the second usage unit 10a. Subscript “b” is attached instead of “,” and description of each part is omitted.
- the second usage-side flow rate adjustment valves 102a and 102b are provided in the second usage units 10a and 10b, but as shown in FIG. Then, the hot water heating unit, the hot water storage unit, the aqueous medium circuit 80a, etc. are not shown), the second usage side flow rate adjustment valves 102a, 102b are omitted from the second usage units 10a, 10b, and the second usage side flow rate adjustment valve is omitted.
- An expansion valve unit 17 having 102a and 102b may be provided.
- the gas refrigerant communication pipe 14 is connected to the low-pressure heat source side in the refrigeration cycle by communicating the second heat source side gas refrigerant pipe 23b and the heat source side suction pipe 21c.
- the refrigerant is used as a refrigerant pipe through which the refrigerant flows, whereby the second usage-side heat exchangers 101a and 101b function only as an evaporator for the heat-source-side refrigerant, and the second usage units 10a and 10b are usage units dedicated to cooling. It may be. Also in this case, operation in the hot water supply / cooling operation mode is possible, and energy saving can be achieved.
- the gas refrigerant communication pipe 14 is connected to the low-pressure heat source side in the refrigeration cycle by communicating the second heat source side gas refrigerant pipe 23b and the heat source side suction pipe 21c.
- the second usage units 10a and 10b are used only for cooling so that the second usage-side heat exchangers 101a and 101b function only as an evaporator for the heat source-side refrigerant. It may be. Also in this case, operation in the hot water supply / cooling operation mode is possible, and energy saving can be achieved.
- the second usage units 10a and 10b are not usage units used for indoor air conditioning and are different from air conditioning such as refrigeration and freezing. It may be used for a purpose.
- the HFC-134a is used as the usage-side refrigerant, but is not limited to this, for example, HFO-1234yf (2, 3, 3, 3-
- the pressure corresponding to a saturated gas temperature of 65 ° C., such as tetrafluoro-1-propene, may be at most 2.8 MPa or less, preferably 2.0 MPa or less.
- Heat pump system 2 Heat source unit 4a, 4b 1st utilization unit 10a, 10b 2nd utilization unit 12 Discharge refrigerant
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Water Supply & Treatment (AREA)
- Heat-Pump Type And Storage Water Heaters (AREA)
- Other Air-Conditioning Systems (AREA)
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
- Steam Or Hot-Water Central Heating Systems (AREA)
Abstract
Description
本発明の課題は、ヒートポンプサイクルを利用して水媒体を加熱することが可能なヒートポンプシステムの省エネルギー化を図ることにある。
したがって、例えば、熱源側熱交換器に熱源側冷媒が溜まり込んで第2利用ユニットへ流入する冷媒量が不足する場合に、第2利用側流量調節弁の開度が少なくとも所定開度よりも開いた状態になりやすくなるが、これを利用して第2利用側流量調節弁の状態に応じて熱源側送風機の運転容量の制御を行うと熱源側熱交換器に溜まり込んだ熱源側冷媒を第2利用ユニットへ導いて第2利用ユニットにおける冷媒量の不足を解消することができる。また、例えば、第1利用ユニットにおける水媒体の加熱にかかる負荷(例えば給湯負荷)が大きい場合に、第1利用側熱交換器に熱源側冷媒が溜まり込んで第1利用側流量調節弁の開度が少なくとも所定開度よりも開いた状態になりやすくなるが、これを利用して第1利用側流量調節弁の状態に応じて放熱量調節手段の放熱量の制御を行うことにより熱源側冷媒が第1利用側熱交換器に溜まりにくくすることができる。
熱源側熱交換器に熱源側冷媒が溜まり込んで第2利用ユニットへ流入する冷媒量が不足する場合に、第2利用側流量調節弁の開度が少なくとも所定開度よりも開いた状態になりやすくなるが、これを利用して第2利用側流量調節弁の状態に応じて熱源側送風機の運転容量の制御を行うと熱源側熱交換器に溜まり込んだ熱源側冷媒を第2利用ユニットへ導いて第2利用ユニットにおける冷媒量の不足を解消することができる。
したがって、熱源側冷媒が放熱器として機能する熱源側熱交換器に溜まり込むことを防止することができる。このため、熱源側熱交換器の熱交換効率の低下を防ぐことができる。
そこで、このヒートポンプシステムでは、容量可変型の循環ポンプを設けるとともに、第1利用側流量調節弁の開度が所定開度以上に達した場合に、第2利用ユニットにおける冷房負荷に対して第1利用ユニットにおける水媒体の加熱にかかる負荷が大きいと判断して、水媒体回路を循環する水媒体の流量が小さくなるように循環ポンプの容量制御を行う。
そこで、このヒートポンプシステムでは、容量可変型の循環ポンプを設けるとともに、第1利用側流量調節弁の開度が所定開度以上に達した場合に、第2利用ユニットにおける冷房負荷に対して第1利用ユニットにおける水媒体の加熱にかかる負荷が大きいと判断して、水媒体回路を循環する水媒体の流量が小さくなるように循環ポンプの容量制御を行う。
第1または第3の発明では、第1利用側熱交換器における熱源側冷媒の放熱によって水媒体を加熱する運転を行うことができるだけでなく、第1利用側熱交換器における熱源側冷媒の放熱によって水媒体を加熱する運転を行うとともに、水媒体を加熱することによって熱源側冷媒が得た冷却熱を、第2利用側熱交換器における熱源側冷媒の蒸発によって空気媒体を冷却する運転に利用することができるようになっているため、第1利用ユニットにおいて加熱された水媒体を給湯に使用するとともに第2利用ユニットにおいて冷却された空気媒体を室内の冷房に使用する等のように、従来のヒートポンプ給湯機では熱源側熱交換器において外気を冷却するだけで有効利用されていなかった冷却熱を有効利用することができ、ヒートポンプサイクルを利用して水媒体を加熱することが可能なヒートポンプシステムの省エネルギー化を図ることができる。
したがって、例えば、熱源側熱交換器に熱源側冷媒が溜まり込んで第2利用ユニットへ流入する冷媒量が不足する場合に、第2利用側流量調節弁の開度が少なくとも所定開度よりも開いた状態になりやすくなるが、これを利用して第2利用側流量調節弁の状態に応じて熱源側送風機の運転容量の制御を行うと熱源側熱交換器に溜まり込んだ熱源側冷媒を第2利用ユニットへ導いて第2利用ユニットにおける冷媒量の不足を解消することができる。また、例えば、第1利用ユニットにおける水媒体の加熱にかかる負荷(例えば給湯負荷)が大きい場合に、第1利用側熱交換器に熱源側冷媒が溜まり込んで第1利用側流量調節弁の開度が少なくとも所定開度よりも開いた状態になりやすくなるが、これを利用して第1利用側流量調節弁の状態に応じて放熱量調節手段の放熱量の制御を行うことにより熱源側冷媒が第1利用側熱交換器に溜まりにくくすることができる。
第2の発明では、熱源側冷媒が放熱器として機能する熱源側熱交換器に溜まり込むことを防止することができる。このため、熱源側熱交換器の熱交換効率の低下を防ぐことができる。
第4の発明では、第1利用ユニットにおける水媒体の加熱にかかる負荷を抑えることができ、第2利用ユニットにおける冷房負荷よりも第1利用ユニットにおける水媒体の加熱にかかる負荷を小さくすることができる。したがって、第2利用ユニットの冷房運転を行いつつ第1利用ユニットにおいて排熱回収を行う運転効率が低下することを防ぐことができる。
第6の発明では、第1利用ユニットにおける水媒体の加熱にかかる負荷を抑えることができ、第2利用ユニットにおける冷房負荷よりも第1利用ユニットにおける水媒体の加熱にかかる負荷を小さくすることができる。したがって、第2利用ユニットの冷房運転を行いつつ第1利用ユニットにおいて排熱回収を行う運転効率が低下することを防ぐことができる。
(第1実施形態)
<構成>
-全体-
図1は、本発明の第1実施形態にかかるヒートポンプシステム1の概略構成図である。ヒートポンプシステム1は、蒸気圧縮式のヒートポンプサイクルを利用して水媒体を加熱する運転等を行うことが可能な装置である。
ヒートポンプシステム1は、主として、熱源ユニット2と、第1利用ユニット4aと、第2利用ユニット10aと、吐出冷媒連絡管12と、液冷媒連絡管13と、ガス冷媒連絡管14と、貯湯ユニット8aと、温水暖房ユニット9aと、水媒体連絡管15aと、水媒体連絡管16aとを備えており、熱源ユニット2と第1利用ユニット4aと第2利用ユニット10aとが冷媒連絡管12、13、14を介して接続されることによって、熱源側冷媒回路20を構成し、第1利用ユニット4aと貯湯ユニット8aと温水暖房ユニット9aとが水媒体連絡管15a、16aを介して接続されることによって、水媒体回路80aを構成している。熱源側冷媒回路20には、HFC系冷媒の一種であるHFC-410Aが熱源側冷媒として封入されており、また、HFC系冷媒に対して相溶性を有するエステル系又はエーテル系の冷凍機油が熱源側圧縮機22(後述)の潤滑のために封入されている。また、水媒体回路80aには、水媒体としての水が循環するようになっている。
熱源ユニット2は、屋外に設置されており、冷媒連絡管12、13、14を介して利用ユニット4a、10aに接続されており、熱源側冷媒回路20の一部を構成している。
熱源ユニット2は、主として、熱源側圧縮機21と、油分離機構22と、熱源側切換機構23と、熱源側熱交換器24と、熱源側膨張機構25と、吸入戻し管26と、過冷却器27と、熱源側アキュムレータ28と、液側閉鎖弁29と、ガス側閉鎖弁30と、吐出側閉鎖弁31とを有している。
熱源側圧縮機21は、熱源側冷媒を圧縮する機構であり、ここでは、ケーシング(図示せず)内に収容されたロータリ式やスクロール式等の容積式の圧縮要素(図示せず)が、同じくケーシング内に収容された熱源側圧縮機モータ21aによって駆動される密閉式圧縮機が採用されている。この熱源側圧縮機21のケーシング内には、圧縮要素において圧縮された後の熱源側冷媒が充満する高圧空間(図示せず)が形成されており、この高圧空間には、冷凍機油が溜められている。熱源側圧縮機モータ21aは、インバータ装置(図示せず)によって、その回転数(すなわち、運転周波数)を可変でき、これにより、熱源側圧縮機21の容量制御が可能になっている。
熱源側切換機構23は、熱源側熱交換器24を熱源側冷媒の放熱器として機能させる熱源側放熱運転状態と熱源側熱交換器24を熱源側冷媒の蒸発器として機能させる熱源側蒸発運転状態とを切り換え可能な四路切換弁であり、熱源側吐出管21bと、熱源側吸入管21cと、熱源側熱交換器24のガス側に接続された第1熱源側ガス冷媒管23aと、ガス側閉鎖弁30に接続された第2熱源側ガス冷媒管23bとに接続されている。そして、熱源側切換機構23は、熱源側吐出管21bと第1熱源側ガス冷媒管23aとを連通させるとともに、第2熱源側ガス冷媒管23bと熱源側吸入管21cとを連通(熱源側放熱運転状態に対応、図1の熱源側切換機構23の実線を参照)したり、熱源側吐出管21bと第2熱源側ガス冷媒管23bとを連通させるとともに、第1熱源側ガス冷媒管23aと熱源側吸入管21cとを連通(熱源側蒸発運転状態に対応、図1の熱源側切換機構23の破線を参照)する切り換えを行うことが可能である。尚、熱源側切換機構23は、四路切換弁に限定されるものではなく、例えば、複数の電磁弁を組み合わせる等によって、上述と同様の熱源側冷媒の流れの方向を切り換える機能を有するように構成したものであってもよい。
熱源側膨張弁25は、熱源側熱交換器24を流れる熱源側冷媒の減圧等を行う電動膨張弁であり、熱源側液冷媒管24aに設けられている。
吸入戻し管26は、熱源側液冷媒管24aを流れる熱源側冷媒の一部を分岐して熱源側圧縮機21の吸入に戻す冷媒管であり、ここでは、その一端が熱源側液冷媒管24aに接続されており、その他端が熱源側吸入管21cに接続されている。そして、吸入戻し管26には、開度制御が可能な吸入戻し膨張弁26aが設けられている。この吸入戻し膨張弁26aは、電動膨張弁からなる。
熱源側アキュムレータ28は、熱源側吸入管21cに設けられており、熱源側冷媒回路20を循環する熱源側冷媒を熱源側吸入管21cから熱源側圧縮機21に吸入される前に一時的に溜めるための容器である。
液側閉鎖弁29は、熱源側液冷媒管24aと液冷媒連絡管13との接続部に設けられた弁である。ガス側閉鎖弁30は、第2熱源側ガス冷媒管23bとガス冷媒連絡管14との接続部に設けられた弁である。吐出側閉鎖弁31は、熱源側吐出管21bから分岐された熱源側吐出分岐管21dとガス冷媒連絡管14との接続部に設けられた弁である。
-吐出冷媒連絡管-
吐出冷媒連絡管12は、吐出側閉鎖弁31を介して熱源側吐出分岐管21dに接続されており、熱源側切換機構23が熱源側放熱運転状態及び熱源側蒸発運転状態のいずれにおいても熱源側圧縮機21の吐出から熱源ユニット2外に熱源側冷媒を導出することが可能な冷媒管である。
液冷媒連絡管13は、液側閉鎖弁29を介して熱源側液冷媒管24aに接続されており、熱源側切換機構23が熱源側放熱運転状態において熱源側冷媒の放熱器として機能する熱源側熱交換器24の出口から熱源ユニット2外に熱源側冷媒を導出することが可能で、かつ、熱源側切換機構23が熱源側蒸発運転状態において熱源ユニット2外から熱源側冷媒の蒸発器として機能する熱源側熱交換器24の入口に熱源側冷媒を導入することが可能な冷媒管である。
-ガス冷媒連絡管-
ガス冷媒連絡管14は、ガス側閉鎖弁30を介して第2熱源側ガス冷媒管23bに接続されており、熱源側切換機構23が熱源側放熱運転状態において熱源ユニット2外から熱源側圧縮機21の吸入に熱源側冷媒を導入することが可能で、かつ、熱源側切換機構23が熱源側蒸発運転状態において熱源側圧縮機21の吐出から熱源ユニット2外に熱源側冷媒を導出することが可能な冷媒管である。
第1利用ユニット4aは、屋内に設置されており、冷媒連絡管12、13を介して熱源ユニット2及び第2利用ユニット10aに接続されており、熱源側冷媒回路20の一部を構成している。また、第1利用ユニット4aは、水媒体連絡管15a、16aを介して貯湯ユニット8a及び温水暖房ユニット9aに接続されており、水媒体回路80aの一部を構成している。
第1利用ユニット4aは、主として、第1利用側熱交換器41aと、第1利用側流量調節弁42aと、循環ポンプ43aとを有している。
第1利用側熱交換器41aは、熱源側冷媒と水媒体との熱交換を行うことで熱源側冷媒の放熱器として機能する熱交換器であり、その熱源側冷媒が流れる流路の液側には、第1利用側液冷媒管45aが接続されており、その熱源側冷媒が流れる流路のガス側には、第1利用側吐出冷媒管46aが接続されており、その水媒体が流れる流路の入口側には、第1利用側水入口管47aが接続されており、その水媒体が流れる流路の出口側には、第1利用側水出口管48aが接続されている。第1利用側液冷媒管45aには、液冷媒連絡管13が接続されており、第1利用側吐出冷媒管46aには、吐出冷媒連絡管12が接続されており、第1利用側水入口管47aには、水媒体連絡管15aが接続されており、第1利用側水出口管48aには、水媒体連絡管16aが接続されている。
第1利用側吐出冷媒管46aには、吐出冷媒連絡管12から第1利用側熱交換器41aへ向かう熱源側冷媒の流れを許容し、第1利用側熱交換器41aから吐出冷媒連絡管12へ向かう熱源側冷媒の流れを禁止する第1利用側吐出逆止弁49aが設けられている。
循環ポンプ43aは、水媒体の昇圧を行う機構であり、ここでは、遠心式や容積式のポンプ要素(図示せず)が循環ポンプモータ44aによって駆動されるポンプが採用されている。循環ポンプ43aは、第1利用側水出口管48aに設けられている。循環ポンプモータ44aは、インバータ装置(図示せず)によって、その回転数(すなわち、運転周波数)を可変でき、これにより、循環ポンプ43aの容量制御が可能になっている。
また、第1利用ユニット4aには、各種のセンサが設けられている。具体的には、第1利用ユニット4aには、第1利用側熱交換器41aの液側における熱源側冷媒の温度である第1利用側冷媒温度Tsc1を検出する第1利用側熱交温度センサ50aと、第1利用側熱交換器41aの入口における水媒体の温度である水媒体入口温度Twrを検出する水媒体出口温度センサ51aと、第1利用側熱交換器41aの出口における水媒体の温度である水媒体出口温度Twlを検出する水媒体出口温度センサ52aとが設けられている。
貯湯ユニット8aは、屋内に設置されており、水媒体連絡管15a、16aを介して第1利用ユニット4aに接続されており、水媒体回路80aの一部を構成している。
貯湯ユニット8aは、主として、貯湯タンク81aと、熱交換コイル82aとを有している。
貯湯タンク81aは、給湯に供される水媒体としての水を溜める容器であり、その上部には、蛇口やシャワー等に温水となった水媒体を送るための給湯管83aが接続されており、その下部には、給湯管83aによって消費された水媒体の補充を行うための給水管84aが接続されている。
熱交換コイル82aは、貯湯タンク81a内に設けられており、水媒体回路80aを循環する水媒体と貯湯タンク81a内の水媒体との熱交換を行うことで貯湯タンク81a内の水媒体の加熱器として機能する熱交換器であり、その入口には、水媒体連絡管16aが接続されており、その出口には、水媒体連絡管15aが接続されている。
また、貯湯ユニット8aには、各種のセンサが設けられている。具体的には、貯湯ユニット8aには、貯湯タンク81aに溜められる水媒体の温度である貯湯温度Twhを検出するための貯湯温度センサ85aが設けられている。
-温水暖房ユニット-
温水暖房ユニット9aは、屋内に設置されており、水媒体連絡管15a、16aを介して第1利用ユニット4aに接続されており、水媒体回路80aの一部を構成している。
熱交換パネル91aは、ラジエータの場合には、室内の壁際等に設けられ、床暖房パネルの場合には、室内の床下等に設けられており、水媒体回路80aを循環する水媒体の放熱器として機能する熱交換器であり、その入口には、水媒体連絡管16aが接続されており、その出口には、水媒体連絡管15aが接続されている。
-水媒体連絡管-
水媒体連絡管15aは、貯湯ユニット8aの熱交換コイル82aの出口及び温水暖房ユニット9aの熱交換パネル91aの出口に接続されている。水媒体連絡管16aは、貯湯ユニット8aの熱交換コイル82aの入口及び温水暖房ユニット9aの熱交換パネル91aの入口に接続されている。水媒体連絡管16aには、水媒体回路80aを循環する水媒体を貯湯ユニット8a及び温水暖房ユニット9aの両方、又は、貯湯ユニット8a及び温水暖房ユニット9aのいずれか一方に供給するかの切り換えを行うことが可能な水媒体側切換機構161aが設けられている。この水媒体側切換機構161aは、三方弁からなる。
第2利用ユニット10aは、屋内に設置されており、冷媒連絡管13、14を介して熱源ユニット2に接続されており、熱源側冷媒回路20の一部を構成している。
第2利用ユニット10aは、主として、第2利用側熱交換器101aと第2利用側流量調節弁102aとを有している。
第2利用側熱交換器101aは、熱源側冷媒と空気媒体としての室内空気との熱交換を行うことで熱源側冷媒の放熱器又は蒸発器として機能する熱交換器であり、その液側に第2利用側液冷媒管103aが接続されており、そのガス側に第2利用側ガス冷媒管104aが接続されている。第2利用側液冷媒管103aには、液冷媒連絡管13が接続されており、第2利用側ガス冷媒管104aには、ガス冷媒連絡管14が接続されている。この第2利用側熱交換器101aにおいて熱源側冷媒と熱交換を行う空気媒体は、利用側ファンモータ106aによって駆動される利用側ファン105aによって供給されるようになっている。
これにより、第2利用ユニット10aは、熱源側切換機構23が熱源側放熱運転状態において、第2利用側熱交換器101aを液冷媒連絡管13から導入される熱源側冷媒の蒸発器として機能させることで、第2利用側熱交換器101aにおいて蒸発した熱源側冷媒をガス冷媒連絡管14に導出し、第2利用側熱交換器101aにおける熱源側冷媒の蒸発によって空気媒体を冷却する冷房運転を行うことが可能になっており、熱源側切換機構23が熱源側蒸発運転状態において第2利用側熱交換器101aがガス冷媒連絡管14から導入される熱源側冷媒の放熱器として機能して、第2利用側熱交換器101aにおいて放熱した熱源側冷媒を液冷媒連絡管13に導出し、第2利用側熱交換器101aにおける熱源側冷媒の放熱によって空気媒体を加熱する暖房運転を行うことが可能になっている。
<動作>
次に、ヒートポンプシステム1の動作について説明する。
ヒートポンプシステム1の運転モードとしては、第1利用ユニット4aの給湯運転(すなわち、貯湯ユニット8a及び/又は温水暖房ユニット9aの運転)のみを行う給湯運転モードと、第2利用ユニット10aの冷房運転のみを行う冷房運転モードと、第2利用ユニット10aの暖房運転のみを行う暖房運転モードと、第1利用ユニット4aの給湯運転を行うとともに第2利用ユニット10aの暖房運転を行う給湯暖房運転モードと、第1利用ユニット4aの給湯運転を行うとともに第2利用ユニット10aの冷房運転を行う給湯冷房運転モードとがある。
-給湯運転モード-
第1利用ユニット4aの給湯運転のみを行う場合には、熱源側冷媒回路20においては、熱源側切換機構23が熱源側蒸発運転状態(図1の熱源側切換機構23の破線で示された状態)に切り換えられ、吸入戻し膨張弁26a及び第2利用側流量調節弁102aが閉止された状態になる。また、水媒体回路80aにおいては、水媒体切換機構161aが貯湯ユニット8a及び/又は温水暖房ユニット9aに水媒体を供給する状態に切り換えられる。
このような状態の熱源側冷媒回路20において、冷凍サイクルにおける低圧の熱源側冷媒は、熱源側吸入管21cを通じて、熱源側圧縮機21に吸入され、冷凍サイクルにおける高圧まで圧縮された後に、熱源側吐出管21bに吐出される。熱源側吐出管21bに吐出された高圧の熱源側冷媒は、油分離器22aにおいて冷凍機油が分離される。油分離器22aにおいて熱源側冷媒から分離された冷凍機油は、油戻し管22bを通じて、熱源側吸入管21cに戻される。冷凍機油が分離された高圧の熱源側冷媒は、熱源側吐出分岐管21d及び吐出側閉鎖弁31を通じて、熱源ユニット2から吐出冷媒連絡管12に送られる。
このとき、第1利用ユニット4aにおいては、第1利用側流量調節弁42aは、第1利用側熱交換器41aの出口(すなわち、第1利用側熱交換器41aの液側)における熱源側冷媒の熱源側過冷却度SC1が目標熱源側冷媒過冷却度SC1sになるように開度制御されるようになっている。本実施形態において、第1利用側熱交換器41aの出口における熱源側冷媒の熱源側冷媒過冷却度SC1は、熱源側吐出飽和温度Tc1から第1利用側冷媒温度Tsc1を差し引いた値である。なお、第1利用側熱交換器41aの出口における熱源側冷媒の熱源側過冷却度SC1は、熱源側圧縮機21の吐出における熱源側冷媒の圧力である熱源側吐出圧力Pd1を、この圧力値に相当する飽和温度に換算し、この冷媒の飽和温度から第1利用側熱交温度センサ50aにより検出される冷媒温度値を差し引くことによって検出するようにしてもよい。
-冷房運転モード-
第2利用ユニット10aの冷房運転のみを行う場合には、熱源側冷媒回路20においては、熱源側切換機構23が熱源側放熱運転状態(図1の熱源側切換機構23の実線で示された状態)に切り換えられ、第1利用側流量調節弁42aが閉止された状態になる。
このような状態の熱源側冷媒回路20において、冷凍サイクルにおける低圧の熱源側冷媒は、熱源側吸入管21cを通じて、熱源側圧縮機21に吸入され、冷凍サイクルにおける高圧まで圧縮された後に、熱源側吐出管21bに吐出される。熱源側吐出管21bに吐出された高圧の熱源側冷媒は、油分離器22aにおいて冷凍機油が分離される。油分離器22aにおいて熱源側冷媒から分離された冷凍機油は、油戻し管22bを通じて、熱源側吸入管21cに戻される。冷凍機油が分離された高圧の熱源側冷媒は、熱源側切換機構23及び第1熱源側ガス冷媒管23aを通じて、熱源側熱交換器24に送られる。熱源側熱交換器24に送られた高圧の熱源側冷媒は、熱源側熱交換器24において、熱源側ファン32によって供給される室外空気と熱交換を行って放熱する。熱源側熱交換器において放熱した高圧の熱源側冷媒は、熱源側膨張弁25を通じて、過冷却器27に送られる。過冷却器27に送られた熱源側冷媒は、熱源側液冷媒管24aから吸入戻し管26に分岐された熱源側冷媒と熱交換を行って過冷却状態になるように冷却される。吸入戻し管26を流れる熱源側冷媒は、熱源側吸入管21cに戻される。過冷却器27において冷却された熱源側冷媒は、熱源側液冷媒管24a及び液側閉鎖弁29を通じて、熱源ユニット2から液冷媒連絡管13に送られる。
このとき、第2利用ユニット10aにおいては、第2利用側流量調節弁102aは、第2利用側熱交換器101aの出口(すなわち、第2利用側熱交換器101aのガス側)における熱源側冷媒の熱源側過熱度SH1が目標過熱度目SH1sで一定になるように開度制御されるようになっている。本実施形態において、熱源側過熱度SH1は、第2利用側ガス側温度センサ109aにより検出される冷媒温度値から第2利用側液側温度センサ108aにより検出される冷媒温度値(熱源側蒸発温度Teに対応)を差し引くことによって検出される、または、熱源側吸入圧力センサ33により検出される圧縮機21の熱源側吸入圧力Ps1を熱源側蒸発温度Te1に対応する飽和温度値に換算し、第2利用側ガス側温度センサ109aにより検出される冷媒温度値からこの冷媒の飽和温度値を差し引くことによって検出される。なお、第2利用側熱交換器101a内を流れる冷媒の温度を検出する温度センサを設けて、この温度センサにより検出される熱源側蒸発温度Te1に対応する冷媒温度値を、第2利用側ガス側温度センサ109aにより検出される冷媒温度値から差し引くことによって、第2利用側熱交換器101aの出口における熱源側冷媒の熱源側過熱度SH1を検出するようにしてもよい。
ガス冷媒連絡管14に送られた低圧の熱源側冷媒は、熱源ユニット2に送られる。熱源ユニット2に送られた低圧の熱源側冷媒は、ガス側閉鎖弁30、第2熱源側ガス冷媒管23b及び熱源側切換機構23を通じて、熱源側アキュムレータ28に送られる。熱源側アキュムレータ28に送られた低圧の熱源側冷媒は、熱源側吸入管21cを通じて、再び、熱源側圧縮機21に吸入される。
-暖房運転モード-
第2利用ユニット10aの暖房運転のみを行う場合には、熱源側冷媒回路20においては、熱源側切換機構23が熱源側放熱運転状態(図1の熱源側切換機構23の破線で示された状態)に切り換えられ、吸入戻し膨張弁26a及び第1利用側流量調節弁42aが閉止された状態になる。
このような状態の熱源側冷媒回路20において、冷凍サイクルにおける低圧の熱源側冷媒は、熱源側吸入管21cを通じて、熱源側圧縮機21に吸入され、冷凍サイクルにおける高圧まで圧縮された後に、熱源側吐出管21bに吐出される。熱源側吐出管21bに吐出された高圧の熱源側冷媒は、油分離器22aにおいて冷凍機油が分離される。油分離器22aにおいて熱源側冷媒から分離された冷凍機油は、油戻し管22bを通じて、熱源側吸入管21cに戻される。冷凍機油が分離された高圧の熱源側冷媒は、熱源側切換機構23、第2熱源側ガス冷媒管23b及びガス側閉鎖弁30を通じて、熱源ユニット2からガス冷媒連絡管14に送られる。
第2利用ユニット10aにおいては、第2利用側流量調節弁102aは、第2利用側熱交換器101aの出口(すなわち、第2利用側熱交換器101aの液側)における熱源側冷媒の熱源側過冷却度SC11が目標熱源側過冷却度SC11sで一定になるように開度制御されるようになっている。本実施形態において、第2利用側熱交換器101aの出口における熱源側冷媒の熱源側過冷却度SC11は、熱源側吐出圧力センサ34により検出される熱源側圧縮機21の熱源側吐出圧力Pdを凝縮温度Tcに対応する飽和温度値に換算し、この熱源側冷媒の飽和温度値から第2利用側液側温度センサ108aにより検出される冷媒温度値を差し引くことによって検出される。なお、第2利用側熱交換器101a内を流れる冷媒の温度を検出する温度センサを設けて、この温度センサにより検出される凝縮温度Tcに対応する冷媒温度値を、第2利用側液側温度センサ108aにより検出される冷媒温度値から差し引くことによって第2利用側熱交換器101aの出口における冷媒の過冷却度SC11を検出するようにしてもよい。
-給湯暖房運転モード-
第1利用ユニット4aの給湯運転を行うとともに第2利用ユニット10aの暖房運転を行う場合には、熱源側冷媒回路20においては、熱源側切換機構23が熱源側蒸発運転状態(図1の熱源側切換機構23の破線で示された状態)に切り換えられ、吸入戻し膨張弁26aが閉止された状態になる。また、水媒体回路80aにおいては、水媒体切換機構161aが貯湯ユニット8a及び/又は温水暖房ユニット9aに水媒体を供給する状態に切り換えられる。
このような状態の熱源側冷媒回路20において、冷凍サイクルにおける低圧の熱源側冷媒は、熱源側吸入管21cを通じて、熱源側圧縮機21に吸入され、冷凍サイクルにおける高圧まで圧縮された後に、熱源側吐出管21bに吐出される。熱源側吐出管21bに吐出された高圧の熱源側冷媒は、油分離器22aにおいて冷凍機油が分離される。油分離器22aにおいて熱源側冷媒から分離された冷凍機油は、油戻し管22bを通じて、熱源側吸入管21cに戻される。冷凍機油が分離された高圧の熱源側冷媒は、その一部が、熱源側吐出分岐管21d及び吐出側閉鎖弁31を通じて、熱源ユニット2から吐出冷媒連絡管12に送られ、その残りが、熱源側切換機構23、第2熱源側ガス冷媒管23b及びガス側閉鎖弁30を通じて、熱源ユニット2からガス冷媒連絡管14に送られる。
このとき、第2利用ユニット10aにおいては、第2利用側流量調節弁102aは、第2利用側熱交換器101aの出口(すなわち、第2利用側熱交換器101aの液側)における熱源側冷媒の熱源側過冷却度SC11が過冷却度目標値SC11sで一定になるように開度制御されるようになっている。
このとき、第1利用ユニット4aにおいては、第1利用側流量調節弁42aは、第1利用側熱交換器41aの出口(すなわち、第1利用側熱交換器41aの液側)における熱源側冷媒の熱源側過冷却度SC1が過冷却度目標値SC1sで一定になるように開度制御されるようになっている。
-給湯冷房運転モード-
第1利用ユニット4aの給湯運転を行うとともに第2利用ユニット10aの冷房運転を行う場合には、熱源側冷媒回路20においては、熱源側切換機構23が熱源側放熱運転状態(図1の熱源側切換機構23の実線で示された状態)に切り換えられる。また、水媒体回路80aにおいては、水媒体切換機構161aが貯湯ユニット8aに水媒体を供給する状態に切り換えられる。
このような状態の熱源側冷媒回路20において、冷凍サイクルにおける低圧の熱源側冷媒は、熱源側吸入管21cを通じて、熱源側圧縮機21に吸入され、冷凍サイクルにおける高圧まで圧縮された後に、熱源側吐出管21bに吐出される。熱源側吐出管21bに吐出された高圧の熱源側冷媒は、油分離器22aにおいて冷凍機油が分離される。油分離器22aにおいて熱源側冷媒から分離された冷凍機油は、油戻し管22bを通じて、熱源側吸入管21cに戻される。冷凍機油が分離された高圧の熱源側冷媒は、その一部が、熱源側吐出分岐管21d及び吐出側閉鎖弁31を通じて、熱源ユニット2から吐出冷媒連絡管12に送られ、その残りが、熱源側切換機構23及び第1熱源側ガス冷媒管23aを通じて、熱源側熱交換器24に送られる。熱源側熱交換器24に送られた高圧の熱源側冷媒は、熱源側熱交換器24において、熱源側ファン32によって供給される室外空気と熱交換を行って放熱する。熱源側熱交換器において放熱した高圧の熱源側冷媒は、熱源側膨張弁25を通じて、過冷却器27に送られる。過冷却器27に送られた熱源側冷媒は、熱源側液冷媒管24aから吸入戻し管26に分岐された熱源側冷媒と熱交換を行って過冷却状態になるように冷却される。吸入戻し管26を流れる熱源側冷媒は、熱源側吸入管21cに戻される。過冷却器27において冷却された熱源側冷媒は、熱源側液冷媒管24a及び液側閉鎖弁29を通じて、熱源ユニット2から液冷媒連絡管13に送られる。
このとき、第1利用ユニット4aにおいては、第1利用側流量調節弁42aは、第1利用側熱交換器41aの出口(すなわち、第1利用側熱交換器41aの液側)における熱源側冷媒の熱源側過冷却度SC1が過冷却度目標値SC1sで一定になるように開度制御されるようになっている。
ガス冷媒連絡管14に送られた低圧の熱源側冷媒は、熱源ユニット2に送られる。熱源ユニット2に送られた低圧の熱源側冷媒は、ガス側閉鎖弁30、第2熱源側ガス冷媒管23b及び熱源側切換機構23を通じて、熱源側アキュムレータ28に送られる。熱源側アキュムレータ28に送られた低圧の熱源側冷媒は、熱源側吸入管21cを通じて、再び、熱源側圧縮機21に吸入される。
このようにして、第1利用ユニット4aの給湯運転を行うとともに第2利用ユニット10aの冷房運転を行う給湯冷房運転モードにおける動作が行われる。
次に、上述の給湯冷房運転モードにおける熱源側冷媒回路20を流れる熱源側冷媒の冷媒循環制御について、第1利用ユニットにおける水媒体の加熱にかかる負荷(給湯負荷)が第2利用ユニットにおける冷房負荷よりも大きい場合と、第2利用ユニットにおいて冷媒不足が発生する場合とに分けて説明する。
(1)給湯負荷が冷房負荷よりも大きい場合
上述の給湯冷房運転モードを行う場合に、水媒体を介しての熱の利用(例えば給湯の利用)が無くとも水媒体を加熱することにより、第2利用ユニットを冷房運転する際に放熱器側で発生する排熱を利用する場合が考えられる。しかしながら、このように第2利用ユニット10aの冷房運転を主目的とし、第1利用ユニット4aの給湯運転をエネルギー効率を向上させるための第2利用ユニット10aの冷房運転に伴う排熱回収として行う場合には、第2利用ユニット10aの冷房運転および第1利用ユニット4aの給湯運転が開始した直後等のような水媒体の温度が低い運転条件において、水媒体の温度が低いために給湯負荷が冷房負荷よりも大きい場合が多い。
ところで、このヒートポンプシステム1において給湯冷房運転モードを行うと、熱源側熱交換器24および第1利用側熱交換器41aが放熱器として機能し、第2利用側熱交換器101aが蒸発器として機能することになり、放熱器として機能する熱交換器が2つとなり、蒸発器として機能する第2利用側熱交換器101aに対して放熱器として機能する熱交換器24、41aが並列の関係となる。
したがって、第1利用ユニット4aの運転が開始した直後のような水媒体の温度が低い運転条件(例えば、水媒体の温度が外気温度よりも低い条件)においては、放熱器として機能する熱交換器に流入する熱源側冷媒は、第1利用側熱交換器41aにおける熱源側冷媒の圧力が熱源側熱交換器24における熱源側冷媒の圧力よりも低くなるため、第1利用側熱交換器41aに溜まりやすい状態となる。この場合に、第1利用側熱交換器41aでは、第1利用側熱交換器41aの出口(すなわち、第1利用側熱交換器41aの液側)における熱源側冷媒の熱源側過冷却度SC1が過冷却度目標値SC1sで一定になるように第1利用側流量調節弁42aが開度制御されているため、第1利用側熱交換器41aに熱源側冷媒が溜まり込むと第1利用側流量調節弁42aが開くことになる。このことを利用して、ヒートポンプシステム1では、第1利用側流量調節弁42aが所定開度よりも開く状態になると、給湯負荷が大きいと判断し、水媒体回路80aを循環する水媒体の流量が小さくなるように循環ポンプ43aの容量制御が行われる。
上述した(1)の運転は、水媒体の温度が低い条件の場合にのみ行われるため、少なくとも給湯運転の起動時に行われることが多い。上述したような循環ポンプ43aのよう両制御が行われる状態であっても第2利用ユニット10aの冷房運転を行うと少なからず水媒体への加熱を行うことになるため徐々に水媒体の温度が上昇して、水媒体の温度が高い運転条件(例えば、水媒体の温度が外気温度よりも高い条件)となる。このとき、放熱器として機能する熱交換器に流入する熱源側冷媒は、第1利用熱交換器41aにおける熱源側冷媒の圧力が熱源側熱交換器24における熱源側冷媒の圧力よりも高くなるため、熱源側熱交換器24に溜まりやすい状態となる。この状態では、熱源側熱交換器24の熱交換能力が過多となり、第2利用側熱交換器101aを流れる熱源側冷媒の量が少なくなる。この場合に、第2利用ユニット10aにおいては、第2利用側熱交換器101aの熱源側過熱度SH1(具体的には、第2利用側液側温度センサ108aで検出される熱源側冷媒温度と第2利用側ガス側温度センサ109aで検出される熱源側冷媒温度との温度差)に基づいて第2利用側流量調節弁102aが開度制御されているため、熱源側熱交換器24に熱源側冷媒が溜まり込むと第2利用側流量調節弁102aが開くことになる。このことを利用して、ヒートポンプシステム1では、第2利用側流量調節弁102aが所定開度よりも開く状態になると、熱源側熱交換器24にかかる熱交換機能力が過多であると判断し、熱源側ファン32の風量が小さくなるように熱源側ファンモータ32aの回転数制御が行われる。
このヒートポンプシステム1には、以下のような特徴がある。
-A-
熱源側熱交換器24に熱源側冷媒が溜まり込んで第2利用ユニット10aへ流入する冷媒量が不足する場合に、第2利用側流量調節弁102aの開度が少なくとも所定開度よりも開いた状態になりやすくなるが、このように第2利用側流量調節弁102aの状態に応じて熱源側ファン32の運転容量の制御を行うと熱源側熱交換器24に溜まり込んだ熱源側冷媒を第2利用ユニット10aへ導いて第2利用ユニット10aにおける冷媒量の不足を解消することができる。また、第1利用ユニット4aにおける給湯負荷が大きい場合に、第1利用側熱交換器41aに熱源側冷媒が溜まり込んで第1利用側流量調節弁42aの開度が少なくとも所定開度よりも開いた状態になりやすくなるが、このように第1利用側流量調節弁42aの状態に応じて循環ポンプ43aの容量制御を行うことにより熱源側冷媒が第1利用側熱交換器41aに溜まりにくくすることができる。
-B-
第2利用ユニット10aの冷房運転を行う場合に、水媒体を介しての熱の利用(給湯の利用)が無くとも水媒体を加熱することにより、第2利用ユニット10aを冷房運転する際に放熱器側で発生する排熱を利用することができる。しかしながら、このように第2利用ユニット10aの冷房運転を主目的とし、第1利用ユニット4aにおける水媒体の加熱運転をエネルギー効率を向上させるために、第2利用ユニット10aの冷房運転に伴う排熱回収を行う場合には、第2利用ユニット10aの冷房運転および第1利用ユニット4aの運転が開始した直後等のような水媒体の温度が低い運転条件において、水媒体の温度が低いために給湯負荷が冷房負荷よりも大きい場合が多い。このときに、給湯負荷にあわせて、第2利用ユニット10aの冷房運転を続けてしまうと冷房負荷に対して過大なエネルギーを要する運転となってしまい効率が悪い。したがって、これを防止するために、第2利用ユニット10aにかかる冷房負荷に、給湯負荷を合わせる必要がある。
そこで、このヒートポンプシステム1では、容量可変型の循環ポンプ43aを設けるとともに、第1利用側流量調節弁42aの開度が所定開度以上に達した場合に、第2利用ユニット10aにおける冷房負荷に対して第1利用ユニット4aにおける給湯負荷が大きいと判断して、水媒体回路80aを循環する水媒体の流量が小さくなるように循環ポンプ43aの容量制御を行う。
(1)変形例1
上述のヒートポンプシステム1(図1参照)では、第1利用側熱交換器41aが熱源側冷媒の放熱器として機能することで水媒体を加熱する給湯運転を行うことができるようになっているが、これに加えて、図2に示されるように、第1利用ユニット4aをガス冷媒連絡管14にさらに接続し、第1利用側熱交換器41aを吐出冷媒連絡管12から導入される熱源側冷媒の放熱器として機能させる水媒体加熱運転状態と第1利用側熱交換器41aを液冷媒連絡管13から導入される熱源側冷媒の蒸発器として機能させる水媒体冷却運転状態とを切り換えることが可能な第1利用側切換機構53aをさらに設けて、第1利用側切換機構53aが水媒体加熱運転状態において、第1利用側熱交換器41aにおいて放熱した熱源側冷媒を液冷媒連絡管13に導出するとともに、第1利用側熱交換器41aにおける熱源側冷媒の放熱によって水媒体を加熱する運転(給湯運転)を行うことを可能にし、第1利用側切換機構53aが水媒体冷却運転状態において、第1利用側熱交換器41aにおいて蒸発した熱源側冷媒をガス冷媒連絡管14に導出するとともに、第1利用側熱交換器41aにおける熱源側冷媒の蒸発によって水媒体を冷却する運転を行うことを可能にしてもよい。
第1冷媒回収機構57aは、キャピラリチューブを有する冷媒管であり、その一端が、第1利用側吐出冷媒管46aのうち第1利用側吐出開閉弁55aと吐出冷媒連絡管12とを接続する部分に接続されており、その他端が、第1利用側ガス冷媒管54aのうち第1利用側ガス開閉弁56aとガス冷媒連絡管14とを接続する部分に接続されており、第1利用側吐出開閉弁55aや第1利用側ガス開閉弁56aの開閉状態によらず、吐出冷媒連絡管12とガス冷媒連絡管14とを連通させるようになっている。これにより、このヒートポンプシステム1では、熱源側冷媒が吐出冷媒連絡管12に溜まり込みにくくなるため、熱源側冷媒回路20における冷媒循環量不足の発生を抑えることができる。
第1利用側ガス逆止弁59aは、第1利用側ガス冷媒管54aのうち第1利用側ガス開閉弁56aとガス冷媒連絡管14とを接続する部分に設けられている。第1利用側ガス逆止弁59aは、第1利用側熱交換器41aからガス冷媒連絡管14へ向かう熱源側冷媒の流れを許容し、ガス冷媒連絡管14から第1利用側熱交換器41aへ向かう熱源側冷媒の流れを禁止する逆止弁であり、これにより、第1利用側ガス開閉弁56aを通じて、ガス冷媒連絡管14から第1利用側熱交換器41aへ向かう熱源側冷媒の流れが禁止されるようになっている。
以下、この給冷水冷房運転モードにおける動作について説明する。
第1利用ユニット4aの給冷水運転を行うとともに第2利用ユニット10aの冷房運転を行う場合には、熱源側冷媒回路20においては、熱源側切換機構23が熱源側放熱運転状態(図2の熱源側切換機構23の実線で示された状態)に切り換えられ、第1利用側切換機構53aが水媒体冷却運転状態(すなわち、第1利用側吐出開閉弁55aを閉止し、かつ、第1利用側ガス開閉弁56aを開けた状態)に切り換えられる。また、水媒体回路80aにおいては、水媒体切換機構161aが温水暖房ユニット9aに水媒体を供給する状態に切り換えられる。
第2利用ユニット10aに送られた熱源側冷媒は、第2利用側流量調節弁102aに送られる。第2利用側流量調節弁102aに送られた熱源側冷媒は、第2利用側流量調節弁102aにおいて減圧されて、低圧の気液二相状態になり、第2利用側液冷媒管103aを通じて、第2利用側熱交換器101aに送られる。第2利用側熱交換器101aに送られた低圧の熱源側冷媒は、第2利用側熱交換器101aにおいて、利用側ファン105aによって供給される空気媒体と熱交換を行って蒸発し、これにより、室内の冷房を行う。第2利用側熱交換器101aにおいて蒸発した低圧の熱源側冷媒は、第2利用側ガス冷媒管104aを通じて、第2利用ユニット10aからガス冷媒連絡管14に送られる。
第2利用ユニット10a及び第1利用ユニット4aからガス冷媒連絡管14に送られた熱源側冷媒は、ガス冷媒連絡管14において合流して、熱源ユニット2に送られる。熱源ユニット2に送られた低圧の熱源側冷媒は、ガス側閉鎖弁30、第2熱源側ガス冷媒管23b及び熱源側切換機構23を通じて、熱源側アキュムレータ28に送られる。熱源側アキュムレータ28に送られた低圧の熱源側冷媒は、熱源側吸入管21cを通じて、再び、熱源側圧縮機21に吸入される。
このようにして、第1利用ユニット4aの給冷水運転を行うとともに第2利用ユニット10aの冷房運転を行う給湯冷房運転モードにおける動作が行われる。
これにより、このヒートポンプシステム1では、第1利用側熱交換器41aにおける熱源側冷媒の放熱によって水媒体を加熱する運転(給湯運転)と第1利用側熱交換器41aにおける熱源側冷媒の蒸発によって水媒体を冷却する運転(給冷水運転)とを切り換えて行うことができるようになっており、しかも、第2利用側熱交換器101aにおける熱源側冷媒の蒸発によって空気媒体を冷却する運転(冷房運転)を行うとともに、第1利用側熱交換器41aにおける熱源側冷媒の蒸発によって水媒体を冷却する運転(給冷水運転)を行うことができるようになっているため、上述のように、第1利用ユニット4aにおいて冷却された水媒体をラジエータや床暖房パネルに使用しながら、第2利用ユニット10aにおいて冷却された空気媒体を室内の冷房に使用する等のような、第1利用ユニット4aと第2利用ユニット10aとを組み合わせた快適な空気調和を行うことができる。
上述のヒートポンプシステム1(図2参照)では、熱源ユニット2に1つの第1利用ユニット4aと1つの第2利用ユニット10aとが冷媒連絡管12、13、14を介して接続されているが、図3~図5に示されるように(ここでは、温水暖房ユニット、貯湯ユニット及び水媒体回路80a、80b等の図示を省略)、複数(ここでは、2つ)の第1利用ユニット4a、4bを、冷媒連絡管12、13、14を介して、互いが並列に接続されるようにしたり、及び/又は、複数(ここでは、2つ)の第2利用ユニット10a、10bを、冷媒連絡管13、14を介して、互いが並列に接続されるようにしてもよい。尚、第1利用ユニット4bの構成は、第1利用ユニット4aの構成と同様であるため、第1利用ユニット4bの構成については、それぞれ、第1利用ユニット4aの各部を示す符号の添字「a」の代わりに添字「b」を付して、各部の説明を省略する。また、第2利用ユニット10bの構成は、第2利用ユニット10aの構成と同様であるため、第2利用ユニット10bの構成については、それぞれ、第2利用ユニット10aの各部を示す符号の添字「a」の代わりに添字「b」を付して、各部の説明を省略する。
(3)変形例3
上述のヒートポンプシステム1(図2~図5参照)では、第2利用ユニット10a、10b内に第2利用側流量調節弁102a、102bが設けられているが、図6に示されるように(ここでは、温水暖房ユニット、貯湯ユニット及び水媒体回路80a等の図示を省略)、第2利用ユニット10a、10bから第2利用側流量調節弁102a、102bを省略して、第2利用側流量調節弁102a、102bを有する膨張弁ユニット17を設けるようにしてもよい。
上述の第1実施形態及びその変形例におけるヒートポンプシステム1では、例えば、65℃以上の温水のような高温の水媒体を得るためには、熱源側圧縮機21の吐出における熱源側冷媒の圧力を高くする等の運転効率の悪い条件で運転を行う必要があり、好ましいものとはいえない。
そこで、このヒートポンプシステム200では、上述の第1実施形態におけるヒートポンプシステム1(図1参照)の構成において、図7に示されるように、第1利用側熱交換器41aを吐出冷媒連絡管12から導入される熱源側冷媒と熱源側冷媒とは別の利用側冷媒との熱交換を行う熱交換器とし、第1利用ユニット4aに、利用側冷媒を圧縮する利用側圧縮機62a(後述)や利用側冷媒の放熱器として機能して水媒体を加熱することが可能な冷媒-水熱交換器65a(後述)等をさらに設けることで、第1利用側熱交換器41aとともに利用側冷媒が循環する利用側冷媒回路40aを構成するようにしている。以下、このヒートポンプシステム200の構成について説明する。
-全体-
図7は、本発明の第2実施形態にかかるヒートポンプシステム200の概略構成図である。ヒートポンプシステム200は、蒸気圧縮式のヒートポンプサイクルを利用して水媒体を加熱する運転等を行うことが可能な装置である。
ヒートポンプシステム200は、主として、熱源ユニット2と、第1利用ユニット4aと、第2利用ユニット10aと、吐出冷媒連絡管12と、液冷媒連絡管13と、ガス冷媒連絡管14と、貯湯ユニット8aと、温水暖房ユニット9aと、水媒体連絡管15aと、水媒体連絡管16aとを備えており、熱源ユニット2と第1利用ユニット4aと第2利用ユニット10aとが冷媒連絡管12、13、14を介して接続されることによって、熱源側冷媒回路20を構成し、第1利用ユニット4aが利用側冷媒回路40aを構成し、第1利用ユニット4aと貯湯ユニット8aと温水暖房ユニット9aとが水媒体連絡管15a、16aを介して接続されることによって、水媒体回路80aを構成している。熱源側冷媒回路20には、HFC系冷媒の一種であるHFC-410Aが熱源側冷媒として封入されており、また、HFC系冷媒に対して相溶性を有するエステル系又はエーテル系の冷凍機油が熱源側圧縮機22の潤滑のために封入されている。また、利用側冷媒回路40aには、HFC系冷媒の一種であるHFC-134aが利用側冷媒として封入されており、また、HFC系冷媒に対して相溶性を有するエステル系又はエーテル系の冷凍機油が利用側圧縮機62aの潤滑のために封入されている。尚、利用側冷媒としては、高温の冷凍サイクルに有利な冷媒を使用されるという観点から、飽和ガス温度65℃に相当する圧力がゲージ圧で高くとも2.8MPa以下、好ましくは、2.0MPa以下の冷媒を使用することが好ましい。そして、HFC-134aは、このような飽和圧力特性を有する冷媒の一種である。また、水媒体回路80aには、水媒体としての水が循環するようになっている。
-第1利用ユニット-
第1利用ユニット4aは、屋内に設置されており、冷媒連絡管12、13を介して熱源ユニット2及び第2利用ユニット10aに接続されており、熱源側冷媒回路20の一部を構成している。また、第1利用ユニット4aは、利用側冷媒回路40aを構成している。さらに、第1利用ユニット4aは、水媒体連絡管15a、16aを介して貯湯ユニット8a及び温水暖房ユニット9aに接続されており、水媒体回路80aの一部を構成している。
第1利用側熱交換器41aは、熱源側冷媒と利用側冷媒との熱交換を行うことで熱源側冷媒の放熱器として機能する熱交換器であり、その熱源側冷媒が流れる流路の液側には、第1利用側液冷媒管45aが接続されており、その熱源側冷媒が流れる流路のガス側には、第1利用側吐出冷媒管46aが接続されており、その利用側冷媒が流れる流路の液側には、カスケード側液冷媒管68aが接続されており、その利用側冷媒が流れる流路のガス側には、第2カスケード側ガス冷媒管69aが接続されている。第1利用側液冷媒管45aには、液冷媒連絡管13が接続されており、第1利用側吐出冷媒管46aには、吐出冷媒連絡管12が接続されており、カスケード側液冷媒管68aには、冷媒-水熱交換器65aが接続されており、第2カスケード側ガス冷媒管69aには、利用側圧縮機62aが接続されている。
第1利用側吐出冷媒管46aには、吐出冷媒連絡管12から第1利用側熱交換器41aへ向かう熱源側冷媒の流れを許容し、第1利用側熱交換器41aから吐出冷媒連絡管12へ向かう熱源側冷媒の流れを禁止する第1利用側吐出逆止弁49aが設けられている。
利用側圧縮機62aは、利用側冷媒を圧縮する機構であり、ここでは、ケーシング(図示せず)内に収容されたロータリ式やスクロール式等の容積式の圧縮要素(図示せず)が、同じくケーシング内に収容された利用側圧縮機モータ63aによって駆動される密閉式圧縮機が採用されている。この利用側圧縮機62aのケーシング内には、圧縮要素において圧縮された後の熱源側冷媒が充満する高圧空間(図示せず)が形成されており、この高圧空間には、冷凍機油が溜められている。利用側圧縮機モータ63aは、インバータ装置(図示せず)によって、その回転数(すなわち、運転周波数)を可変でき、これにより、利用側圧縮機62aの容量制御が可能になっている。また、利用側圧縮機62aの吐出には、カスケード側吐出管70aが接続されており、利用側圧縮機62aの吸入には、カスケード側吸入管71aが接続されている。このカスケード側吸入管71aは、第2カスケード側ガス冷媒管69aに接続されている。
冷媒-水熱交側流量調節弁66aは、開度制御を行うことで冷媒-水熱交換器65aを流れる利用側冷媒の流量を可変することが可能な電動膨張弁であり、カスケード側液冷媒管68aに設けられている。
このように、利用側圧縮機62a、冷媒-水熱交換器65a、冷媒-水熱交側流量調節弁66a及び第1利用側熱交換器41aが冷媒管71a、70a、72a、68a、69aを介して接続されることによって、利用側冷媒回路40aが構成されている。
循環ポンプ43aは、水媒体の昇圧を行う機構であり、ここでは、遠心式や容積式のポンプ要素(図示せず)が循環ポンプモータ44aによって駆動されるポンプが採用されている。循環ポンプ43aは、第1利用側水出口管48aに設けられている。循環ポンプモータ44aは、インバータ装置(図示せず)によって、その回転数(すなわち、運転周波数)を可変でき、これにより、循環ポンプ43aの容量制御が可能になっている。
また、第1利用ユニット4aには、各種のセンサが設けられている。具体的には、第1利用ユニット4aには、第1利用側熱交換器41aの液側における熱源側冷媒の温度である第1利用側冷媒温度Tsc1を検出する第1利用側熱交温度センサ50aと、冷媒-水熱交換器65aの液側における利用側冷媒の温度であるカスケード側冷媒温度Tsc2を検出する第1冷媒-水熱交温度センサ73aと、冷媒-水熱交換器65aの入口における水媒体の温度である水媒体入口温度Twrを検出する水媒体出口温度センサ51aと、冷媒-水熱交換器65aの出口における水媒体の温度である水媒体出口温度Twlを検出する水媒体出口温度センサ52aと、利用側圧縮機62aの吸入における利用側冷媒の圧力である利用側吸入圧力Ps2を検出する利用側吸入圧力センサ74aと、利用側圧縮機62aの吐出における利用側冷媒の圧力である利用側吐出圧力Pd2を検出する利用側吐出圧力センサ75aと、利用側圧縮機62aの吐出における利用側冷媒の温度である利用側吐出温度Td2を検出する利用側吐出温度センサ76aとが設けられている。
次に、ヒートポンプシステム200の動作について説明する。
ヒートポンプシステム200の運転モードとしては、第1利用ユニット4aの給湯運転(すなわち、貯湯ユニット8a及び/又は温水暖房ユニット9aの運転)のみを行う給湯運転モードと、第2利用ユニット10aの冷房運転のみを行う冷房運転モードと、第2利用ユニット10aの暖房運転のみを行う暖房運転モードと、第1利用ユニット4aの給湯運転を行うとともに第2利用ユニット10aの暖房運転を行う給湯暖房運転モードと、第1利用ユニット4aの給湯運転を行うとともに第2利用ユニット10aの冷房運転を行う給湯冷房運転モードとがある。
以下、ヒートポンプシステム200の5つの運転モードにおける動作について説明する。
第1利用ユニット4aの給湯運転のみを行う場合には、熱源側冷媒回路20においては、熱源側切換機構23が熱源側蒸発運転状態(図7の熱源側切換機構23の破線で示された状態)に切り換えられ、吸入戻し膨張弁26a及び第2利用側流量調節弁102aが閉止された状態になる。また、水媒体回路80aにおいては、水媒体切換機構161aが貯湯ユニット8a及び/又は温水暖房ユニット9aに水媒体を供給する状態に切り換えられる。
このような状態の熱源側冷媒回路20において、冷凍サイクルにおける低圧の熱源側冷媒は、熱源側吸入管21cを通じて、熱源側圧縮機21に吸入され、冷凍サイクルにおける高圧まで圧縮された後に、熱源側吐出管21bに吐出される。熱源側吐出管21bに吐出された高圧の熱源側冷媒は、油分離器22aにおいて冷凍機油が分離される。油分離器22aにおいて熱源側冷媒から分離された冷凍機油は、油戻し管22bを通じて、熱源側吸入管21cに戻される。冷凍機油が分離された高圧の熱源側冷媒は、熱源側吐出分岐管21d及び吐出側閉鎖弁31を通じて、熱源ユニット2から吐出冷媒連絡管12に送られる。
このとき、第1利用ユニット4aにおいては、第1利用側流量調節弁42aは、第1利用側熱交換器41aの出口(すなわち、第1利用側熱交換器41aの液側)における熱源側冷媒の熱源側過冷却度SC1が目標熱源側冷媒過冷却度SC1sになるように開度制御されるようになっている。本実施形態において、第1利用側熱交換器41aの出口における熱源側冷媒の熱源側冷媒過冷却度SC1は、熱源側吐出飽和温度Tc1から第1利用側冷媒温度Tsc1を差し引いた値である。なお、第1利用側熱交換器41aの出口における熱源側冷媒の熱源側過冷却度SC1は、熱源側圧縮機21の吐出における熱源側冷媒の圧力である熱源側吐出圧力Pd1を、この圧力値に相当する飽和温度に換算し、この冷媒の飽和温度から第1利用側熱交温度センサ50aにより検出される冷媒温度値を差し引くことによって検出するようにしてもよい。
-冷房運転モード-
第2利用ユニット10aの冷房運転のみを行う場合には、熱源側冷媒回路20においては、熱源側切換機構23が熱源側放熱運転状態(図7の熱源側切換機構23の実線で示された状態)に切り換えられ、第1利用側流量調節弁42aが閉止された状態になる。
このような状態の熱源側冷媒回路20において、冷凍サイクルにおける低圧の熱源側冷媒は、熱源側吸入管21cを通じて、熱源側圧縮機21に吸入され、冷凍サイクルにおける高圧まで圧縮された後に、熱源側吐出管21bに吐出される。熱源側吐出管21bに吐出された高圧の熱源側冷媒は、油分離器22aにおいて冷凍機油が分離される。油分離器22aにおいて熱源側冷媒から分離された冷凍機油は、油戻し管22bを通じて、熱源側吸入管21cに戻される。冷凍機油が分離された高圧の熱源側冷媒は、熱源側切換機構23及び第1熱源側ガス冷媒管23aを通じて、熱源側熱交換器24に送られる。熱源側熱交換器24に送られた高圧の熱源側冷媒は、熱源側熱交換器24において、熱源側ファン32によって供給される室外空気と熱交換を行って放熱する。熱源側熱交換器において放熱した高圧の熱源側冷媒は、熱源側膨張弁25を通じて、過冷却器27に送られる。過冷却器27に送られた熱源側冷媒は、熱源側液冷媒管24aから吸入戻し管26に分岐された熱源側冷媒と熱交換を行って過冷却状態になるように冷却される。吸入戻し管26を流れる熱源側冷媒は、熱源側吸入管21cに戻される。過冷却器27において冷却された熱源側冷媒は、熱源側液冷媒管24a及び液側閉鎖弁29を通じて、熱源ユニット2から液冷媒連絡管13に送られる。
このとき、第2利用ユニット10aにおいては、第2利用側流量調節弁102aは、第2利用側熱交換器101aの出口(すなわち、第2利用側熱交換器101aのガス側)における熱源側冷媒の熱源側過熱度SH1が目標過熱度目SH1sで一定になるように開度制御されるようになっている。本実施形態において、熱源側過熱度SH1は、第2利用側ガス側温度センサ109aにより検出される冷媒温度値から第2利用側液側温度センサ108aにより検出される冷媒温度値(熱源側蒸発温度Teに対応)を差し引くことによって検出される、または、熱源側吸入圧力センサ33により検出される圧縮機21の熱源側吸入圧力Ps1を熱源側蒸発温度Te1に対応する飽和温度値に換算し、第2利用側ガス側温度センサ109aにより検出される冷媒温度値からこの冷媒の飽和温度値を差し引くことによって検出される。なお、第2利用側熱交換器101a内を流れる冷媒の温度を検出する温度センサを設けて、この温度センサにより検出される熱源側蒸発温度Te1に対応する冷媒温度値を、第2利用側ガス側温度センサ109aにより検出される冷媒温度値から差し引くことによって、第2利用側熱交換器101aの出口における熱源側冷媒の熱源側過熱度SH1を検出するようにしてもよい。
ガス冷媒連絡管14に送られた低圧の熱源側冷媒は、熱源ユニット2に送られる。熱源ユニット2に送られた低圧の熱源側冷媒は、ガス側閉鎖弁30、第2熱源側ガス冷媒管23b及び熱源側切換機構23を通じて、熱源側アキュムレータ28に送られる。熱源側アキュムレータ28に送られた低圧の熱源側冷媒は、熱源側吸入管21cを通じて、再び、熱源側圧縮機21に吸入される。
-暖房運転モード-
第2利用ユニット10aの暖房運転のみを行う場合には、熱源側冷媒回路20においては、熱源側切換機構23が熱源側放熱運転状態(図7の熱源側切換機構23の破線で示された状態)に切り換えられ、吸入戻し膨張弁26a及び第1利用側流量調節弁42aが閉止された状態になる。
このような状態の熱源側冷媒回路20において、冷凍サイクルにおける低圧の熱源側冷媒は、熱源側吸入管21cを通じて、熱源側圧縮機21に吸入され、冷凍サイクルにおける高圧まで圧縮された後に、熱源側吐出管21bに吐出される。熱源側吐出管21bに吐出された高圧の熱源側冷媒は、油分離器22aにおいて冷凍機油が分離される。油分離器22aにおいて熱源側冷媒から分離された冷凍機油は、油戻し管22bを通じて、熱源側吸入管21cに戻される。冷凍機油が分離された高圧の熱源側冷媒は、熱源側切換機構23、第2熱源側ガス冷媒管23b及びガス側閉鎖弁30を通じて、熱源ユニット2からガス冷媒連絡管14に送られる。
第2利用ユニット10aにおいては、第2利用側流量調節弁102aは、第2利用側熱交換器101aの出口(すなわち、第2利用側熱交換器101aの液側)における熱源側冷媒の熱源側過冷却度SC11が目標熱源側過冷却度SC11sで一定になるように開度制御されるようになっている。本実施形態において、第2利用側熱交換器101aの出口における熱源側冷媒の熱源側過冷却度SC11は、熱源側吐出圧力センサ34により検出される熱源側圧縮機21の熱源側吐出圧力Pdを凝縮温度Tcに対応する飽和温度値に換算し、この熱源側冷媒の飽和温度値から第2利用側液側温度センサ108aにより検出される冷媒温度値を差し引くことによって検出される。なお、第2利用側熱交換器101a内を流れる冷媒の温度を検出する温度センサを設けて、この温度センサにより検出される凝縮温度Tcに対応する冷媒温度値を、第2利用側液側温度センサ108aにより検出される冷媒温度値から差し引くことによって第2利用側熱交換器101aの出口における冷媒の過冷却度SCrを検出するようにしてもよい。
-給湯暖房運転モード-
第1利用ユニット4aの給湯運転を行うとともに第2利用ユニット10aの暖房運転を行う場合には、熱源側冷媒回路20においては、熱源側切換機構23が熱源側蒸発運転状態(図7の熱源側切換機構23の破線で示された状態)に切り換えられ、吸入戻し膨張弁26aが閉止された状態になる。また、水媒体回路80aにおいては、水媒体切換機構161aが貯湯ユニット8a及び/又は温水暖房ユニット9aに水媒体を供給する状態に切り換えられる。
このような状態の熱源側冷媒回路20において、冷凍サイクルにおける低圧の熱源側冷媒は、熱源側吸入管21cを通じて、熱源側圧縮機21に吸入され、冷凍サイクルにおける高圧まで圧縮された後に、熱源側吐出管21bに吐出される。熱源側吐出管21bに吐出された高圧の熱源側冷媒は、油分離器22aにおいて冷凍機油が分離される。油分離器22aにおいて熱源側冷媒から分離された冷凍機油は、油戻し管22bを通じて、熱源側吸入管21cに戻される。冷凍機油が分離された高圧の熱源側冷媒は、その一部が、熱源側吐出分岐管21d及び吐出側閉鎖弁31を通じて、熱源ユニット2から吐出冷媒連絡管12に送られ、その残りが、熱源側切換機構23、第2熱源側ガス冷媒管23b及びガス側閉鎖弁30を通じて、熱源ユニット2からガス冷媒連絡管14に送られる。
このとき、第2利用ユニット10aにおいては、第2利用側流量調節弁102aは、第2利用側熱交換器101aの出口(すなわち、第2利用側熱交換器101aの液側)における熱源側冷媒の熱源側過冷却度SC11が過冷却度目標値SC11sで一定になるように開度制御されるようになっている。
このとき、第1利用ユニット4aにおいては、第1利用側流量調節弁42aは、第1利用側熱交換器41aの出口(すなわち、第1利用側熱交換器41aの液側)における熱源側冷媒の熱源側過冷却度SC1が過冷却度目標値SC1sで一定になるように開度制御されるようになっている。
-給湯冷房運転モード-
第1利用ユニット4aの給湯運転を行うとともに第2利用ユニット10aの冷房運転を行う場合には、熱源側冷媒回路20においては、熱源側切換機構23が熱源側放熱運転状態(図7の熱源側切換機構23の実線で示された状態)に切り換えられる。また、水媒体回路80aにおいては、水媒体切換機構161aが貯湯ユニット8aに水媒体を供給する状態に切り換えられる。
このような状態の熱源側冷媒回路20において、冷凍サイクルにおける低圧の熱源側冷媒は、熱源側吸入管21cを通じて熱源側圧縮機21に吸入され、冷凍サイクルにおける高圧まで圧縮された後に、熱源側吐出管21bに吐出される。熱源側吐出管21bに吐出された高圧の熱源側冷媒は、油分離器22aにおいて冷凍機油が分離される。油分離器22aにおいて熱源側冷媒から分離された冷凍機油は、油戻し管22bを通じて、熱源側吸入管21cに戻される。冷凍機油が分離された高圧の熱源側冷媒は、その一部が、熱源側吐出分岐管21d及び吐出側閉鎖弁31を通じて、熱源ユニット2から吐出冷媒連絡管12に送られ、その残りが、熱源側切換機構23及び第1熱源側ガス冷媒管23aを通じて、熱源側熱交換器24に送られる。熱源側熱交換器24に送られた高圧の熱源側冷媒は、熱源側熱交換器24において、熱源側ファン32によって供給される室外空気と熱交換を行って放熱する。熱源側熱交換器において放熱した高圧の熱源側冷媒は、熱源側膨張弁25を通じて、過冷却器27に送られる。過冷却器27に送られた熱源側冷媒は、熱源側液冷媒管24aから吸入戻し管26に分岐された熱源側冷媒と熱交換を行って過冷却状態になるように冷却される。吸入戻し管26を流れる熱源側冷媒は、熱源側吸入管21cに戻される。過冷却器27において冷却された熱源側冷媒は、熱源側液冷媒管24a及び液側閉鎖弁29を通じて、熱源ユニット2から液冷媒連絡管13に送られる。
このとき、第1利用ユニット4aにおいては、第1利用側流量調節弁42aは、第1利用側熱交換器41aの出口(すなわち、第1利用側熱交換器41aの液側)における熱源側冷媒の熱源側過冷却度SC1が過冷却度目標値SC1sで一定になるように開度制御されるようになっている。
ガス冷媒連絡管14に送られた低圧の熱源側冷媒は、熱源ユニット2に送られる。熱源ユニット2に送られた低圧の熱源側冷媒は、ガス側閉鎖弁30、第2熱源側ガス冷媒管23b及び熱源側切換機構23を通じて、熱源側アキュムレータ28に送られる。熱源側アキュムレータ28に送られた低圧の熱源側冷媒は、熱源側吸入管21cを通じて、再び、熱源側圧縮機21に吸入される。
このようにして、第1利用ユニット4aの給湯運転を行うとともに第2利用ユニット10aの冷房運転を行う給湯冷房運転モードにおける動作が行われる。
次に、上述の給湯冷房運転モードにおける熱源側冷媒回路20を流れる熱源側冷媒の冷媒循環制御について、第1利用ユニットにおける水媒体の加熱にかかる負荷(給湯負荷)が第2利用ユニットにおける冷房負荷よりも大きい場合と、第2利用ユニットにおいて冷媒不足が発生する場合とに分けて説明する。
(1)給湯負荷が冷房負荷よりも大きい場合
上述の給湯冷房運転モードを行う場合に、水媒体を介しての熱の利用(例えば給湯の利用)が無くとも水媒体を加熱することにより、第2利用ユニットを冷房運転する際に放熱器側で発生する排熱を利用する場合が考えられる。しかしながら、このように第2利用ユニット10aの冷房運転を主目的とし、第1利用ユニット4aの給湯運転をエネルギー効率を向上させるための第2利用ユニット10aの冷房運転に伴う排熱回収として行う場合には、第2利用ユニット10aの冷房運転および第1利用ユニット4aの給湯運転が開始した直後等のような水媒体の温度が低い運転条件において、水媒体の温度が低いために給湯負荷が冷房負荷よりも大きい場合が多い。
ところで、このヒートポンプシステム1において給湯冷房運転モードを行うと、熱源側熱交換器24および第1利用側熱交換器41aが放熱器として機能し、第2利用側熱交換器101aが蒸発器として機能することになり、放熱器として機能する熱交換器が2つとなり、蒸発器として機能する第2利用側熱交換器101aに対して放熱器として機能する熱交換器24、41aが並列の関係となる。
したがって、第1利用ユニット4aの運転が開始した直後のような水媒体の温度が低い運転条件(例えば、水媒体の温度が外気温度よりも低い条件)においては、放熱器として機能する熱交換器に流入する熱源側冷媒は、第1利用側熱交換器41aにおける熱源側冷媒の圧力が熱源側熱交換器24における熱源側冷媒の圧力よりも低くなるため、第1利用側熱交換器41aに溜まりやすい状態となる。この場合に、第1利用側熱交換器41aでは、第1利用側熱交換器41aの出口(すなわち、第1利用側熱交換器41aの液側)における熱源側冷媒の熱源側過冷却度SC1が過冷却度目標値SC1sで一定になるように第1利用側流量調節弁42aが開度制御されているため、第1利用側熱交換器41aに熱源側冷媒が溜まり込むと第1利用側流量調節弁42aが開くことになる。このことを利用して、ヒートポンプシステム1では、第1利用側流量調節弁42aが所定開度よりも開く状態になると、給湯負荷が大きいと判断し、水媒体回路80aを循環する水媒体の流量が小さくなるように循環ポンプ43aの容量制御が行われる。
上述した(1)の運転は、水媒体の温度が低い条件の場合にのみ行われるため、少なくとも給湯運転の起動時に行われることが多い。上述したような循環ポンプ43aのよう両制御が行われる状態であっても第2利用ユニット10aの冷房運転を行うと少なからず水媒体への加熱を行うことになるため徐々に水媒体の温度が上昇して、水媒体の温度が高い運転条件(例えば、水媒体の温度が外気温度よりも高い条件)となる。このとき、放熱器として機能する熱交換器に流入する熱源側冷媒は、第1利用熱交換器41aにおける熱源側冷媒の圧力が熱源側熱交換器24における熱源側冷媒の圧力よりも高くなるため、熱源側熱交換器24に溜まりやすい状態となる。この状態では、熱源側熱交換器24の熱交換能力が過多となり、第2利用側熱交換器101aを流れる熱源側冷媒の量が少なくなる。この場合に、第2利用ユニット10aにおいては、第2利用側熱交換器101aの熱源側過熱度SH1(具体的には、第2利用側液側温度センサ108aで検出される熱源側冷媒温度と第2利用側ガス側温度センサ109aで検出される熱源側冷媒温度との温度差)に基づいて第2利用側流量調節弁102aが開度制御されているため、熱源側熱交換器24に熱源側冷媒が溜まり込むと第2利用側流量調節弁102aが開くことになる。このことを利用して、ヒートポンプシステム1では、第2利用側流量調節弁102aが所定開度よりも開く状態になると、熱源側熱交換器24にかかる熱交換機能力が過多であると判断し、熱源側ファン32の風量が小さくなるように熱源側ファンモータ32aの回転数制御が行われる。
このヒートポンプシステム200には、以下のような特徴がある。
-A-
このヒートポンプシステム200では、熱源側冷媒回路20と水媒体回路80aとの間に利用側冷媒回路40aが介在している点が第1実施形態におけるヒートポンプシステム1とは異なるが、第1実施形態におけるヒートポンプシステム1と同様に、熱源側熱交換器24に熱源側冷媒が溜まり込んで第2利用ユニット10aへ流入する冷媒量が不足する場合に、第2利用側流量調節弁102aの開度が少なくとも所定開度よりも開いた状態になりやすくなるが、このように第2利用側流量調節弁102aの状態に応じて熱源側ファン32の運転容量の制御を行うと熱源側熱交換器24に溜まり込んだ熱源側冷媒を第2利用ユニット10aへ導いて第2利用ユニット10aにおける冷媒量の不足を解消することができる。また、第1利用ユニット4aにおける給湯負荷が大きい場合に、第1利用側熱交換器41aに熱源側冷媒が溜まり込んで第1利用側流量調節弁42aの開度が少なくとも所定開度よりも開いた状態になりやすくなるが、このように第1利用側流量調節弁42aの状態に応じて循環ポンプ43aの容量制御を行うことにより熱源側冷媒が第1利用側熱交換器41aに溜まりにくくすることができる。
-B-
このヒートポンプシステム200では、熱源側冷媒回路20と水媒体回路80aとの間に利用側冷媒回路40aが介在している点が第1実施形態におけるヒートポンプシステム1とは異なるが、第1実施形態におけるヒートポンプシステム1と同様に、第2利用ユニット10aの冷房運転を行う場合に、水媒体を介しての熱の利用(給湯の利用)が無くとも水媒体を加熱することにより、第2利用ユニット10aを冷房運転する際に放熱器側で発生する排熱を利用することができる。しかしながら、このように第2利用ユニット10aの冷房運転を主目的とし、第1利用ユニット4aにおける水媒体の加熱運転をエネルギー効率を向上させるために、第2利用ユニット10aの冷房運転に伴う排熱回収を行う場合には、第2利用ユニット10aの冷房運転および第1利用ユニット4aの運転が開始した直後等のような水媒体の温度が低い運転条件において、水媒体の温度が低いために給湯負荷が冷房負荷よりも大きい場合が多い。このときに、給湯負荷にあわせて、第2利用ユニット10aの冷房運転を続けてしまうと冷房負荷に対して過大なエネルギーを要する運転となってしまい効率が悪い。したがって、これを防止するために、第2利用ユニット10aにかかる冷房負荷に、給湯負荷を合わせる必要がある。
そこで、このヒートポンプシステム1では、容量可変型の循環ポンプ43aを設けるとともに、第1利用側流量調節弁42aの開度が所定開度以上に達した場合に、第2利用ユニット10aにおける冷房負荷に対して第1利用ユニット4aにおける給湯負荷が大きいと判断して、水媒体回路80aを循環する水媒体の流量が小さくなるように循環ポンプ43aの容量制御を行う。
(1)変形例1
上述のヒートポンプシステム200(図7参照)において、図8に示されるように、冷媒-水熱交換器65aを利用側冷媒の放熱器として機能させるとともに第1利用側熱交換器41aを利用側冷媒の蒸発器として機能させる利用側放熱運転状態と冷媒-水熱交換器65aを利用側冷媒の蒸発器として機能させるとともに第1利用側熱交換器41aを利用側冷媒の放熱器として機能させる利用側蒸発運転状態とを切り換えることが可能な第2利用側切換機構64aを利用側冷媒回路40aにさらに設け、第1利用ユニット4aをガス冷媒連絡管14にさらに接続し、第1利用側熱交換器41aを吐出冷媒連絡管12から導入される熱源側冷媒の放熱器として機能させる水媒体加熱運転状態と第1利用側熱交換器41aを液冷媒連絡管13から導入される熱源側冷媒の蒸発器として機能させる水媒体冷却運転状態とを切り換えることが可能な第1利用側切換機構53aをさらに設けるようにしてもよい。
第1冷媒回収機構57aは、キャピラリチューブを有する冷媒管であり、その一端が、第1利用側吐出冷媒管46aのうち第1利用側吐出開閉弁55aと吐出冷媒連絡管12とを接続する部分に接続されており、その他端が、第1利用側ガス冷媒管54aのうち第1利用側ガス開閉弁56aとガス冷媒連絡管14とを接続する部分に接続されており、第1利用側吐出開閉弁55aや第1利用側ガス開閉弁56aの開閉状態によらず、吐出冷媒連絡管12とガス冷媒連絡管14とを連通させるようになっている。これにより、このヒートポンプシステム1では、熱源側冷媒が吐出冷媒連絡管12に溜まり込みにくくなるため、熱源側冷媒回路20における冷媒循環量不足の発生を抑えることができる。
第1利用側ガス逆止弁59aは、第1利用側ガス冷媒管54aのうち第1利用側ガス開閉弁56aとガス冷媒連絡管14とを接続する部分に設けられている。第1利用側ガス逆止弁59aは、第1利用側熱交換器41aからガス冷媒連絡管14へ向かう熱源側冷媒の流れを許容し、ガス冷媒連絡管14から第1利用側熱交換器41aへ向かう熱源側冷媒の流れを禁止する逆止弁であり、これにより、第1利用側ガス開閉弁56aを通じて、ガス冷媒連絡管14から第1利用側熱交換器41aへ向かう熱源側冷媒の流れが禁止されるようになっている。
上述のヒートポンプシステム200(図8参照)では、熱源ユニット2に1つの第1利用ユニット4aと1つの第2利用ユニット10aとが冷媒連絡管12、13、14を介して接続されているが、第1実施形態の変形例10(図3~図5参照)と同様に、図9~図11に示されるように(ここでは、温水暖房ユニット、貯湯ユニット及び水媒体回路80a、80b等の図示を省略)、複数(ここでは、2つ)の第1利用ユニット4a、4bを、冷媒連絡管12、13、14を介して、互いが並列に接続されるようにしたり、及び/又は、複数(ここでは、2つ)の第2利用ユニット10a、10bを、冷媒連絡管12、14を介して、互いが並列に接続されるようにしてもよい。尚、第1利用ユニット4bの構成は、第1利用ユニット4aの構成と同様であるため、第1利用ユニット4bの構成については、それぞれ、第1利用ユニット4aの各部を示す符号の添字「a」の代わりに添字「b」を付して、各部の説明を省略する。また、第2利用ユニット10bの構成は、第2利用ユニット10aの構成と同様であるため、第2利用ユニット10bの構成については、それぞれ、第2利用ユニット10aの各部を示す符号の添字「a」の代わりに添字「b」を付して、各部の説明を省略する。
(3)変形例3
上述のヒートポンプシステム200(図8~図11参照)では、第2利用ユニット10a、10b内に第2利用側流量調節弁102a、102bが設けられているが、図12に示されるように(ここでは、温水暖房ユニット、貯湯ユニット及び水媒体回路80a等の図示を省略)、第2利用ユニット10a、10bから第2利用側流量調節弁102a、102bを省略して、第2利用側流量調節弁102a、102bを有する膨張弁ユニット17を設けるようにしてもよい。
以上、本発明の実施形態及びその変形例について図面に基づいて説明したが、具体的な構成は、これらの実施形態及びその変形例に限られるものではなく、発明の要旨を逸脱しない範囲で変更可能である。
<A>
第1実施形態及びその変形例にかかるヒートポンプシステム1において、例えば、第2熱源側ガス冷媒管23bと熱源側吸入管21cとを連通させることによってガス冷媒連絡管14を冷凍サイクルにおける低圧の熱源側冷媒が流れる冷媒管として使用し、これにより、第2利用側熱交換器101a、101bを熱源側冷媒の蒸発器としてのみ機能させるようにして、第2利用ユニット10a、10bを冷房専用の利用ユニットにしてもよい。この場合においても、給湯冷房運転モードにおける運転が可能であり、省エネルギー化を図ることができる。
第2実施形態及びその変形例にかかるヒートポンプシステム200において、例えば、第2熱源側ガス冷媒管23bと熱源側吸入管21cとを連通させることによってガス冷媒連絡管14を冷凍サイクルにおける低圧の熱源側冷媒が流れる冷媒管として使用し、これにより、第2利用側熱交換器101a、101bを熱源側冷媒の蒸発器としてのみ機能させるようにして、第2利用ユニット10a、10bを冷房専用の利用ユニットにしてもよい。この場合においても、給湯冷房運転モードにおける運転が可能であり、省エネルギー化を図ることができる。
<C>
第1、第2実施形態及びそれらの変形例にかかるヒートポンプシステム1、200において、第2利用ユニット10a、10bが室内の冷暖房に使用される利用ユニットではなく、冷蔵や冷凍等の冷暖房とは異なる用途に使用されるものであってもよい。
第2実施形態及びその変形例にかかるヒートポンプシステム200においては、利用側冷媒としてHFC-134aが使用されているが、これに限定されず、例えば、HFO-1234yf(2、3、3、3-テトラフルオロ-1-プロペン)等、飽和ガス温度65℃に相当する圧力がゲージ圧で高くとも2.8MPa以下、好ましくは、2.0MPa以下の冷媒であればよい。
2 熱源ユニット
4a、4b 第1利用ユニット
10a、10b 第2利用ユニット
12 吐出冷媒連絡管
13 液冷媒連絡管
14 ガス冷媒連絡管
21 熱源側圧縮機
23 熱源側切換機構
24 熱源側熱交換器
41a、41b 第1利用側熱交換器
42a、42b 第1利用側流量調節弁
43a、43b循環ポンプ
57a、57b 第1冷媒回収機構
58a、58b 第2冷媒回収機構
62a、62b 利用側圧縮機
65a、65b 冷媒-水熱交換器
80a、80b 水媒体回路
101a、101b 第2利用側熱交換器
Claims (7)
- 熱源側冷媒を圧縮する熱源側圧縮機(21)と、熱源側熱交換器(24)と、前記熱源側熱交換器の熱交換効率を調整可能な容量可変式の熱源側送風機(32)と、前記熱源側熱交換器を熱源側冷媒の放熱器として機能させる熱源側放熱運転状態と前記熱源側熱交換器を熱源側冷媒の蒸発器として機能させる熱源側蒸発運転状態とを切り換えることが可能な熱源側切換機構(23)と、を有する熱源ユニット(2)と、
前記熱源側圧縮機により圧縮された熱源側冷媒の放熱器として機能することが可能な第1利用側熱交換器(41a、41b)と、前記第1利用側熱交換器における熱源側冷媒の放熱による水媒体への放熱量を調節する放熱量調節手段(43a、43b)と、前記第1利用側熱交換器を流れる熱源側冷媒の流量を調節することが可能な第1利用側流量調節弁(42a、42b)とを有し、前記第1利用側熱交換器における熱源側冷媒の放熱によって水媒体を加熱する運転である水媒体加熱運転を行うことが可能な第1利用ユニット(4a、4b)と、
前記熱源側切換機構が前記熱源側放熱運転状態において熱源側冷媒の蒸発器として少なくとも機能することが可能な第2利用側熱交換器(101a、101b)と、前記第2利用側熱交換器を流れる熱源側冷媒の流量を調節することが可能な第2利用側流量調節弁(102a、102b)と、を有し、前記第2利用側熱交換器において蒸発した熱源側冷媒を前記ガス冷媒連絡管に導出し、前記第2利用側熱交換器における熱源側冷媒の蒸発によって空気媒体を冷却する冷房運転を少なくとも行うことが可能な第2利用ユニット(10a、10b)と、
を備え、
前記第2利用ユニットを前記冷房運転するとともに前記第1利用ユニットを前記水媒体加熱運転する場合において、前記第1利用側流量調節弁および前記第2利用側流量調節弁の状態に応じて、前記放熱量調節手段の放熱量の制御または前記熱源側送風機の運転容量の制御を行う、
ヒートポンプシステム(1、200)。 - 前記第2利用側流量調節弁は、その開度を調節することにより、前記第2利用側熱交換器における前記熱源側冷媒の過熱度を所定過熱度とする過熱度一定制御を行い、
前記第2利用側流量調節弁が所定開度以上に達した場合には、前記熱源側送風機の風量を下げる制御を行う、
請求項1または2に記載のヒートポンプシステム。 - 前記第1利用側熱交換器(41a、41b)は、熱源側冷媒と水媒体との熱交換を行う熱交換器である、請求項1または2に記載のヒートポンプシステム(1)。
- 前記第1利用側熱交換器(41a、41b)において熱源側冷媒との間で熱交換を行う水媒体が循環する水媒体回路(80a、80b)をさらに備え、
前記放熱量調節手段は、容量可変型の循環ポンプ(43a、43b)であり、
前記第1利用側流量調節弁は、その開度を調節することにより前記第1利用側熱交換器における前記熱源側冷媒の過冷却度を所定過冷却度とする過冷却度一定制御を行い、
前記第1利用側流量調節弁が所定開度以上に達した場合には、前記水媒体回路を循環する水媒体の流量が小さくなるように前記循環ポンプの容量制御を行う、
請求項3に記載のヒートポンプシステム(1)。 - 前記第1利用側熱交換器(41a、41b)は、熱源側冷媒と熱源側冷媒とは別の利用側冷媒との熱交換を行う熱交換器であり、
前記第1利用ユニット(4a、4b)は、利用側冷媒を圧縮する利用側圧縮機(62a、62b)と、利用側冷媒の放熱器として機能して水媒体を加熱することが可能な冷媒-水熱交換器(65a、65b)とをさらに有しており、前記第1利用側熱交換器とともに利用側冷媒が循環する利用側冷媒回路(40a、40b)を構成している、
請求項1または2に記載のヒートポンプシステム(200)。 - 容量可変型の循環ポンプ(43a、43b)を有し、前記冷媒-水熱交換器(65a、65b)において利用側冷媒との間で熱交換を行う水媒体が循環する水媒体回路(80a、80b)をさらに備え、
前記放熱量調節手段は、容量可変型の循環ポンプ(43a、43b)であり、
前記第1利用側流量調節弁は、その開度を調節することにより前記第1利用側熱交換器における前記熱源側冷媒の過冷却度を所定過冷却度とする過冷却度一定制御を行い、
前記第1利用側流量調節弁が所定開度以上に達した場合には、前記水媒体回路を循環する水媒体の流量が小さくなるように前記循環ポンプの容量制御を行う、
請求項5に記載のヒートポンプシステム(200)。 - 前記熱源側切換機構が前記熱源側放熱運転状態及び前記熱源側蒸発運転状態のいずれにおいても前記熱源側圧縮機の吐出から前記熱源ユニット外に熱源側冷媒を導出することが可能な吐出冷媒連絡管(12)と、
前記熱源側切換機構が前記熱源側放熱運転状態において熱源側冷媒の放熱器として機能する前記熱源側熱交換器の出口から前記熱源ユニット外に熱源側冷媒を導出することが可能で、かつ、前記熱源側切換機構が前記熱源側蒸発運転状態において前記熱源ユニット外から熱源側冷媒の蒸発器として機能する前記熱源側熱交換器の入口に熱源側冷媒を導入することが可能な液冷媒連絡管(13)と、
前記熱源ユニット外から前記熱源側圧縮機の吸入に熱源側冷媒を導入することが可能なガス冷媒連絡管(14)と、
をさらに備える請求項1から6のいずれかに記載のヒートポンプシステム(200)。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201080009593.8A CN102326040B (zh) | 2009-02-24 | 2010-02-23 | 热泵系统 |
US13/202,608 US8769974B2 (en) | 2009-02-24 | 2010-02-23 | Heat pump system |
KR1020117022138A KR101305871B1 (ko) | 2009-02-24 | 2010-02-23 | 히트 펌프 시스템 |
EP10745956.2A EP2402687B1 (en) | 2009-02-24 | 2010-02-23 | Heat pump system |
AU2010219252A AU2010219252B2 (en) | 2009-02-24 | 2010-02-23 | Heat pump system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-040892 | 2009-02-24 | ||
JP2009040892A JP5316074B2 (ja) | 2009-02-24 | 2009-02-24 | ヒートポンプシステム |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010098069A1 true WO2010098069A1 (ja) | 2010-09-02 |
Family
ID=42665287
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/001179 WO2010098069A1 (ja) | 2009-02-24 | 2010-02-23 | ヒートポンプシステム |
Country Status (7)
Country | Link |
---|---|
US (1) | US8769974B2 (ja) |
EP (1) | EP2402687B1 (ja) |
JP (1) | JP5316074B2 (ja) |
KR (1) | KR101305871B1 (ja) |
CN (1) | CN102326040B (ja) |
AU (1) | AU2010219252B2 (ja) |
WO (1) | WO2010098069A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012081052A1 (ja) * | 2010-12-15 | 2012-06-21 | 三菱電機株式会社 | 空調給湯複合システム |
US20120280052A1 (en) * | 2010-03-05 | 2012-11-08 | Mitsubishi Heavy Industries, Ltd. | Hot-water heat pump and method of controlling the same |
CN103348200A (zh) * | 2011-02-22 | 2013-10-09 | 株式会社日立制作所 | 空气调节热水供给系统 |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8011191B2 (en) | 2009-09-30 | 2011-09-06 | Thermo Fisher Scientific (Asheville) Llc | Refrigeration system having a variable speed compressor |
GB201102473D0 (en) * | 2011-02-11 | 2011-03-30 | Esg Pool Ventilation Ltd | Heating and cooling system and related methods |
KR101507454B1 (ko) * | 2011-06-23 | 2015-03-31 | 삼성전자 주식회사 | 히트펌프 및 그 제어 방법 |
JP5594267B2 (ja) * | 2011-09-12 | 2014-09-24 | ダイキン工業株式会社 | 冷凍装置 |
JP2013148330A (ja) * | 2011-12-21 | 2013-08-01 | Daikin Industries Ltd | ヒートポンプ |
KR101985810B1 (ko) * | 2012-10-25 | 2019-09-03 | 삼성전자주식회사 | 히트펌프 및 그 제어방법 |
JP5914307B2 (ja) | 2012-12-03 | 2016-05-11 | リンナイ株式会社 | ヒートポンプ暖房システム |
JP5781060B2 (ja) * | 2012-12-25 | 2015-09-16 | 三菱電機株式会社 | 空気調和装置 |
JP6609417B2 (ja) * | 2015-04-03 | 2019-11-20 | 日立ジョンソンコントロールズ空調株式会社 | 空気調和機 |
CN106152263B (zh) * | 2015-04-07 | 2020-03-17 | 大金工业株式会社 | 空调系统及其控制方法 |
JP2017020672A (ja) * | 2015-07-08 | 2017-01-26 | パナソニックIpマネジメント株式会社 | ヒートポンプ式温水装置 |
AU2018223354B2 (en) * | 2017-02-27 | 2023-09-21 | Zinniatek Limited | A system for conditioning air in a living space |
EP3655718A4 (en) | 2017-07-17 | 2021-03-17 | Alexander Poltorak | SYSTEM AND PROCESS FOR MULTI-FRACTAL HEAT SINK |
JP6521018B2 (ja) * | 2017-09-29 | 2019-05-29 | ダイキン工業株式会社 | 冷凍装置 |
CN111197786B (zh) * | 2019-12-23 | 2021-04-02 | 山西省工业设备安装集团有限公司 | 一种大容量梯度增温型多级耦合热泵供热系统 |
KR20210085443A (ko) | 2019-12-30 | 2021-07-08 | 엘지전자 주식회사 | 공기조화장치 |
KR20210098783A (ko) * | 2020-02-03 | 2021-08-11 | 엘지전자 주식회사 | 공기조화장치 |
EP4224093A1 (en) * | 2022-02-07 | 2023-08-09 | Daikin Europe N.V. | Refrigeration device |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6048468A (ja) * | 1983-08-24 | 1985-03-16 | 株式会社日立製作所 | 冷暖房給湯装置 |
JPS60164157A (ja) | 1984-02-07 | 1985-08-27 | Matsushita Electric Ind Co Ltd | ヒ−トポンプ給湯機 |
JPH01210771A (ja) * | 1988-02-19 | 1989-08-24 | Hitachi Ltd | ヒートポンプ給湯暖冷房装置 |
JPH02169968A (ja) * | 1988-12-21 | 1990-06-29 | Mitsubishi Electric Corp | ヒートポンプ式冷暖房給湯装置 |
JPH07225064A (ja) * | 1994-02-15 | 1995-08-22 | Hitachi Ltd | ヒートポンプ給湯装置 |
JPH10141796A (ja) * | 1996-11-07 | 1998-05-29 | Daikin Ind Ltd | ヒートポンプシステム |
JP2004132647A (ja) * | 2002-10-11 | 2004-04-30 | Daikin Ind Ltd | 給湯装置、空調給湯システム、及び給湯システム |
JP2007232225A (ja) * | 2006-02-27 | 2007-09-13 | Sanyo Electric Co Ltd | 冷凍サイクル装置 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH116665A (ja) * | 1997-06-17 | 1999-01-12 | Kyushu Electric Power Co Inc | 蓄熱式空気調和機 |
CN1981165A (zh) * | 2004-07-01 | 2007-06-13 | 大金工业株式会社 | 冷冻装置及空调装置 |
JP4599910B2 (ja) * | 2004-07-01 | 2010-12-15 | ダイキン工業株式会社 | 給湯装置 |
EP2131122B1 (en) * | 2007-03-27 | 2014-11-12 | Mitsubishi Electric Corporation | Heat pump device |
-
2009
- 2009-02-24 JP JP2009040892A patent/JP5316074B2/ja active Active
-
2010
- 2010-02-23 KR KR1020117022138A patent/KR101305871B1/ko not_active IP Right Cessation
- 2010-02-23 US US13/202,608 patent/US8769974B2/en active Active
- 2010-02-23 CN CN201080009593.8A patent/CN102326040B/zh not_active Expired - Fee Related
- 2010-02-23 WO PCT/JP2010/001179 patent/WO2010098069A1/ja active Application Filing
- 2010-02-23 EP EP10745956.2A patent/EP2402687B1/en active Active
- 2010-02-23 AU AU2010219252A patent/AU2010219252B2/en not_active Ceased
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6048468A (ja) * | 1983-08-24 | 1985-03-16 | 株式会社日立製作所 | 冷暖房給湯装置 |
JPS60164157A (ja) | 1984-02-07 | 1985-08-27 | Matsushita Electric Ind Co Ltd | ヒ−トポンプ給湯機 |
JPH01210771A (ja) * | 1988-02-19 | 1989-08-24 | Hitachi Ltd | ヒートポンプ給湯暖冷房装置 |
JPH02169968A (ja) * | 1988-12-21 | 1990-06-29 | Mitsubishi Electric Corp | ヒートポンプ式冷暖房給湯装置 |
JPH07225064A (ja) * | 1994-02-15 | 1995-08-22 | Hitachi Ltd | ヒートポンプ給湯装置 |
JPH10141796A (ja) * | 1996-11-07 | 1998-05-29 | Daikin Ind Ltd | ヒートポンプシステム |
JP2004132647A (ja) * | 2002-10-11 | 2004-04-30 | Daikin Ind Ltd | 給湯装置、空調給湯システム、及び給湯システム |
JP2007232225A (ja) * | 2006-02-27 | 2007-09-13 | Sanyo Electric Co Ltd | 冷凍サイクル装置 |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120280052A1 (en) * | 2010-03-05 | 2012-11-08 | Mitsubishi Heavy Industries, Ltd. | Hot-water heat pump and method of controlling the same |
US9664415B2 (en) * | 2010-03-05 | 2017-05-30 | Mitsubishi Heavy Industries, Ltd. | Hot-water heat pump and method of controlling the same |
WO2012081052A1 (ja) * | 2010-12-15 | 2012-06-21 | 三菱電機株式会社 | 空調給湯複合システム |
CN103221761A (zh) * | 2010-12-15 | 2013-07-24 | 三菱电机株式会社 | 空调热水供给复合系统 |
EP2653805A1 (en) * | 2010-12-15 | 2013-10-23 | Mitsubishi Electric Corporation | Combined air-conditioning and hot water supply system |
EP2653805A4 (en) * | 2010-12-15 | 2014-06-04 | Mitsubishi Electric Corp | COMBINED SYSTEM OF AIR CONDITIONING AND HOT WATER DISTRIBUTION |
JP5511983B2 (ja) * | 2010-12-15 | 2014-06-04 | 三菱電機株式会社 | 空調給湯複合システム |
US9625187B2 (en) | 2010-12-15 | 2017-04-18 | Mitsubishi Electric Corporation | Combined air-conditioning and hot-water supply system |
CN103348200A (zh) * | 2011-02-22 | 2013-10-09 | 株式会社日立制作所 | 空气调节热水供给系统 |
EP2679933A1 (en) * | 2011-02-22 | 2014-01-01 | Hitachi, Ltd. | Air conditioning and hot-water supplying system |
EP2679933A4 (en) * | 2011-02-22 | 2014-07-30 | Hitachi Ltd | AIR CONDITIONING AND HOT WATER SUPPLY SYSTEM |
CN103348200B (zh) * | 2011-02-22 | 2015-05-06 | 株式会社日立制作所 | 空气调节热水供给系统 |
Also Published As
Publication number | Publication date |
---|---|
JP2010196944A (ja) | 2010-09-09 |
EP2402687B1 (en) | 2018-05-09 |
US20110302948A1 (en) | 2011-12-15 |
EP2402687A1 (en) | 2012-01-04 |
US8769974B2 (en) | 2014-07-08 |
CN102326040A (zh) | 2012-01-18 |
AU2010219252B2 (en) | 2013-05-02 |
KR20110129426A (ko) | 2011-12-01 |
EP2402687A4 (en) | 2014-12-24 |
JP5316074B2 (ja) | 2013-10-16 |
KR101305871B1 (ko) | 2013-09-09 |
CN102326040B (zh) | 2014-02-12 |
AU2010219252A1 (en) | 2011-10-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5316074B2 (ja) | ヒートポンプシステム | |
JP5711448B2 (ja) | ヒートポンプシステム | |
JP5200996B2 (ja) | ヒートポンプシステム | |
JP5551882B2 (ja) | ヒートポンプシステム | |
JP5312613B2 (ja) | ヒートポンプシステム | |
JP5806940B2 (ja) | ヒートポンプシステム | |
WO2010098070A1 (ja) | ヒートポンプシステム | |
JP5627606B2 (ja) | ヒートポンプシステム | |
JP5428381B2 (ja) | ヒートポンプシステム | |
JP5913402B2 (ja) | ヒートポンプシステム | |
JP5500292B2 (ja) | ヒートポンプシステム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080009593.8 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10745956 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13202608 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010219252 Country of ref document: AU |
|
ENP | Entry into the national phase |
Ref document number: 20117022138 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010745956 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2010219252 Country of ref document: AU Date of ref document: 20100223 Kind code of ref document: A |