WO2010098070A1 - ヒートポンプシステム - Google Patents

ヒートポンプシステム Download PDF

Info

Publication number
WO2010098070A1
WO2010098070A1 PCT/JP2010/001181 JP2010001181W WO2010098070A1 WO 2010098070 A1 WO2010098070 A1 WO 2010098070A1 JP 2010001181 W JP2010001181 W JP 2010001181W WO 2010098070 A1 WO2010098070 A1 WO 2010098070A1
Authority
WO
WIPO (PCT)
Prior art keywords
usage
heat
heat source
refrigerant
source side
Prior art date
Application number
PCT/JP2010/001181
Other languages
English (en)
French (fr)
Inventor
本田雅裕
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN2010800095942A priority Critical patent/CN102326038B/zh
Priority to EP10745957.0A priority patent/EP2402685B1/en
Priority to AU2010219253A priority patent/AU2010219253B2/en
Priority to KR1020117022100A priority patent/KR101372594B1/ko
Priority to US13/202,628 priority patent/US8650897B2/en
Publication of WO2010098070A1 publication Critical patent/WO2010098070A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/08Hot-water central heating systems in combination with systems for domestic hot-water supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/18Hot-water central heating systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H6/00Combined water and air heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • F25B29/003Combined heating and refrigeration systems, e.g. operating alternately or simultaneously of the compression type system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/12Heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/003Indoor unit with water as a heat sink or heat source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/006Compression machines, plants or systems with reversible cycle not otherwise provided for two pipes connecting the outdoor side to the indoor side with multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/007Compression machines, plants or systems with reversible cycle not otherwise provided for three pipes connecting the outdoor side to the indoor side with multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/12Hot water central heating systems using heat pumps

Definitions

  • the present invention relates to a heat pump system, and more particularly, to a heat pump system in which a utilization unit for performing a hot water supply operation for heating an aqueous medium and a utilization unit for cooling and heating an air medium are connected to a common heat source unit.
  • a heat pump type hot water floor heating apparatus having a hot water heat exchanger to which a floor heating panel is connected and an indoor heat exchanger for performing room heating, as disclosed in Patent Document 1 (Japanese Patent Laid-Open No. 2000-46417).
  • Such a heat pump type hot water floor heating apparatus is mainly configured by connecting a hot water heat exchanger and an indoor heat exchanger to a compressor, a four-way valve, an outdoor heat exchanger and the like common to both. .
  • the conventional heat pump type hot water floor heating device is used for indoor air conditioning by an indoor heat exchanger, and is also used for hot water supply by connecting a hot water storage unit to the hot water heat exchanger together with or instead of the floor heating panel. It is possible.
  • an indoor air conditioning controller and hot water controller are provided, Provide one controller with a function to operate the four-way valve, or provide a centralized controller to operate the four-way valve, and switch the four-way valve when switching between indoor cooling, indoor heating, or hot water supply. It is necessary to perform the operation.
  • An object of the present invention is suitable for a desired operation in a heat pump system in which a use unit for performing a hot water supply operation for heating an aqueous medium and a use unit for cooling and heating an air medium are connected to a common heat source unit. The purpose is to switch the temperature control mode.
  • the heat pump system includes a heat source unit, and a first usage unit and a second usage unit connected to the heat source unit.
  • the heat source unit includes a compressor that compresses the refrigerant, a heat source side heat exchanger, a heat radiation operation state in which the heat source side heat exchanger functions as a refrigerant radiator, and an evaporation in which the heat source side heat exchanger functions as a refrigerant evaporator.
  • a heat source side switching mechanism capable of switching between operating states.
  • the first usage unit has a first usage-side heat exchanger in which the heat source side switching mechanism functions as a refrigerant radiator in the evaporation operation state, and the aqueous medium is removed by the heat radiation of the refrigerant in the first usage-side heat exchanger. It is possible to perform a hot water supply operation for heating.
  • the second usage unit includes a second usage-side heat exchanger in which the heat source side switching mechanism functions as a refrigerant evaporator in the heat dissipation operation state, and the heat source side switching mechanism functions as a refrigerant radiator in the evaporation operation state.
  • the first usage unit and the second usage unit cannot be operated by individually selecting a hot water supply operation, a cooling operation, or a heating operation, and the first usage side that gives a command to the first usage unit Of the heat source side switching mechanism as the temperature control mode commanded by the controller, the second usage side controller that commands the second usage unit, or the centralized controller different from the first usage side controller and the second usage side controller It is possible to operate by switching to a temperature control mode different from the switching state.
  • the first usage side controller that commands the first usage unit the second usage side controller that commands the second usage unit, or the first usage side controller and the second usage side controller are different.
  • the temperature control mode is switched to the evaporation operation state, and then the operation of the first usage unit is performed by the command of the first usage side controller, and only the cooling operation is performed.
  • the temperature control mode is switched to the heat radiation operation state, and then the operation of the second usage unit is performed according to the command of the second usage side controller.
  • the temperature control mode is evaporated.
  • the operation of the second usage unit is performed according to the command of the second usage side controller, and heating is performed together with the hot water supply operation.
  • the temperature control mode is switched to the evaporation operation state, and then the first usage unit is operated according to the command from the first usage side controller, and the second usage unit is controlled according to the command from the second usage side controller. Is operated. Then, the hot water supply operation and the heating operation cannot be performed while the temperature control mode is switched to the heat radiation operation state, and the cooling operation cannot be performed while the temperature control mode is switched to the evaporation operation state.
  • a hot water supply operation command from the first usage side controller to the first usage unit or from the second usage side controller to the second usage unit. It is necessary to switch the temperature control mode, which is a switching state of the heat source side switching mechanism that determines the operation state in the heat source unit common to the first and second usage units, as well as a command for cooling operation or heating operation to In that sense, in the heat pump system, the first usage unit and the second usage unit cannot be operated by individually selecting a hot water supply operation, a cooling operation, or a heating operation.
  • the first usage side controller that commands the first usage unit the second usage side controller that commands the second usage unit, or the first usage side controller and the second usage side controller It is possible to operate by switching to a temperature control mode different from the switching state of the heat source side switching mechanism as the temperature control mode commanded by another centralized controller.
  • the user when the hot water supply operation is performed in a state where the temperature control mode is switched to the heat dissipation operation state, the user can adjust the temperature control such that the temperature control mode is switched to the evaporation operation state. Switching to a temperature control mode suitable for a desired operation can be performed without performing an operation (command) for switching the mode.
  • the hot water supply operation is commanded from the first usage side controller to the first usage unit when the temperature control mode is in the heat dissipation operation state. If this happens, the temperature control mode is switched to the evaporation operation state, and the priority hot water supply operation, which is the operation of performing the hot water supply operation of the first usage unit, is performed.
  • the temperature control mode when the temperature control mode is in the heat dissipation operation state, when the hot water supply operation is instructed from the first usage side controller to the first usage unit, the temperature control mode is changed from the heat dissipation operation state to the evaporation operation.
  • the hot water supply operation of the first usage unit can be performed by switching to the state, the user can perform an operation (command) for switching the temperature control mode to the evaporation operation state even in an operation condition that requires a cooling operation such as summer.
  • a hot water supply operation can be performed as necessary without performing the operation.
  • the heat pump system according to the second aspect prohibits the cooling operation of the second usage unit during the priority hot water supply operation.
  • the second usage unit is switched to the heating operation state, and the second hot water supply operation is started until the priority hot water supply operation is started.
  • the usage unit is performing the cooling operation
  • the second usage unit is in a state of performing the heating operation, and during the priority hot water supply operation, the second usage unit is instructed to perform the cooling operation.
  • the heating operation is started, which is not preferable because the indoor comfort is impaired. Therefore, in this heat pump system, the cooling operation of the second usage unit is prohibited when the priority hot water supply operation is performed. Thereby, in this heat pump system, when performing priority hot water supply operation, it can prevent that indoor comfort is impaired.
  • a heat pump system is the heat pump system according to the third aspect, wherein the second usage unit further includes a usage-side fan that supplies an air medium to the second usage-side heat exchanger,
  • the usage-side fan is operated with the cooling operation stopped during the priority hot water supply operation.
  • the cooling operation of the second usage unit is prohibited in the priority hot water supply operation.
  • the operation of the usage-side fan is performed for the second usage unit for which the cooling operation is commanded from the second usage-side controller. If the operation stops, the user may misunderstand that the second usage unit has failed.
  • the usage-side fan is operated with the cooling operation stopped during the priority hot water supply operation.
  • the heat pump system according to the fifth aspect is the heat pump system according to the fourth aspect, wherein the second usage-side controller is in the cooling operation even when the cooling operation of the second usage unit in the priority hot water supply operation is stopped. Keep the display.
  • the second usage-side controller is in the cooling operation even when the cooling operation of the second usage unit in the priority hot water supply operation is stopped. Keep the display.
  • the display of the operation state of the second usage unit in the second usage side controller is changed in conjunction with stopping the cooling operation of the second usage unit, the user There is a risk of misunderstanding that the second usage unit has failed.
  • the temperature control mode is switched based on at least one of the commanded temperature control mode and the outside air temperature. Is called. In this heat pump system, switching of the temperature control mode is performed based on at least one of the commanded temperature control mode and the outside air temperature, so that the temperature control mode can be switched appropriately.
  • a heat pump system is the heat pump system according to any of the first to sixth aspects, wherein the first usage unit includes the second usage-side heat exchanger when the heat source side switching mechanism is in the heat radiation operation state. While functioning as a refrigerant evaporator, the first use side heat exchanger is connected to the heat source unit so that it can function as a refrigerant radiator. In this heat pump system, even if the temperature control mode is in the heat radiation operation state, the second usage side heat exchanger functions as a refrigerant evaporator and the first usage side heat exchanger functions as a refrigerant radiator.
  • the temperature control mode is switched to the heat radiation operation state, and then the first usage side
  • the first usage unit is operated by a command from the controller and the second usage unit is operated by a command from the second usage side controller.
  • a first usage side controller that commands the first usage unit makes it possible to switch to a temperature control mode different from the switching state of the heat source side switching mechanism as a temperature control mode commanded by another centralized controller.
  • a temperature control mode suitable for a desired operation without the user performing an operation (command) for switching the temperature control mode.
  • the temperature control mode is switched by the second usage-side controller.
  • the temperature controller mode may be switched by any of the centralized controllers. However, if the central controller is made to switch the temperature control mode, for example, if the temperature control mode is left switched to the evaporating operation state, the operation will be performed under the operating conditions that require cooling operation such as summer. 2 Each time the cooling operation of the unit used is performed, the temperature control mode is switched to the heat dissipation operation state, and if the temperature control mode is left switched to the heat dissipation operation state, the heating operation in the winter season etc.
  • the temperature control mode In the operation conditions that require the temperature control mode, the temperature control mode is switched to the evaporation operation state every time the heating operation of the second usage unit is performed, and the temperature control mode is frequently switched. .
  • the temperature control mode is almost always left switched to the evaporation operation state, so that a cooling operation in summer or the like is necessary.
  • the temperature control mode is switched to the heat dissipation operation state, and the temperature control mode is frequently switched.
  • the first use side controller or the centralized controller is allowed to switch the temperature adjustment mode, the temperature adjustment mode may be frequently switched, which is not preferable.
  • the temperature control mode is switched to the heat dissipation operation state in an operation condition that requires a cooling operation such as in the summer by switching the temperature control mode by the second usage-side controller.
  • the state is maintained, and the state where the temperature control mode is switched to the evaporation operation state is maintained in an operation condition that requires a heating operation such as winter.
  • FIG. 1 is a schematic configuration diagram of a heat pump system according to a first embodiment of the present invention. It is a control logic of the temperature control mode switching control in 1st Embodiment and 2nd Embodiment. It is a schematic block diagram of the heat pump system concerning 2nd Embodiment of this invention. It is a schematic block diagram of the heat pump system concerning 3rd Embodiment of this invention. It is a control logic of the temperature control mode switching control in 3rd Embodiment and 4th Embodiment. It is a schematic block diagram of the heat pump system concerning 4th Embodiment of this invention. It is a schematic block diagram of the heat pump system concerning other embodiment of this invention.
  • FIG. 1 is a schematic configuration diagram of a heat pump system 1 according to the first embodiment of the present invention.
  • the heat pump system 1 is an apparatus capable of performing an operation for heating an aqueous medium using a vapor compression heat pump cycle.
  • the heat pump system 1 mainly includes a heat source unit 2, a first usage unit 4a, second usage units 10a and 10b, a liquid refrigerant communication tube 13, a gas refrigerant communication tube 14, a hot water storage unit 8a, and a hot water heating unit.
  • the heat source side refrigerant circuit 20 is configured, and the first usage unit 4a, the hot water storage unit 8a, and the hot water heating unit 9a are connected via the aqueous medium communication pipes 15a and 16a, whereby the aqueous medium circuit 80a. Is configured.
  • HFC-410A which is a kind of HFC refrigerant
  • HFC-410A is sealed as a heat source refrigerant, and an ester or ether refrigerating machine oil compatible with the HFC refrigerant is used as the heat source. It is enclosed for lubrication of the side compressor 21 (described later). Further, water as an aqueous medium circulates in the aqueous medium circuit 80a.
  • the heat source unit 2 is installed outdoors and connected to the utilization units 4a, 10a, and 10b via the refrigerant communication tubes 13 and 14, and constitutes a part of the heat source side refrigerant circuit 20.
  • the heat source unit 2 mainly includes a heat source side compressor 21, an oil separation mechanism 22, a heat source side switching mechanism 23, a heat source side heat exchanger 24, a heat source side expansion mechanism 25, a suction return pipe 26, and a supercooling.
  • the heat source side compressor 21 is a mechanism that compresses the heat source side refrigerant.
  • a rotary type or scroll type volumetric compression element housed in a casing (not shown)
  • a hermetic compressor driven by a heat source side compressor motor 21a accommodated in the casing is employed.
  • a high-pressure space (not shown) filled with the heat-source-side refrigerant after being compressed by the compression element is formed in the casing of the heat-source-side compressor 21, and refrigerating machine oil is stored in the high-pressure space.
  • the heat source side compressor motor 21a can change the rotation speed (that is, the operating frequency) by an inverter device (not shown), thereby enabling capacity control of the heat source side compressor 21.
  • the oil separation mechanism 22 is a mechanism for separating the refrigeration oil contained in the heat source side refrigerant discharged from the heat source side compressor 21 and returning it to the suction of the heat source side compressor 21, and mainly the heat source side compressor 21.
  • the oil separator 22a provided in the heat source side discharge pipe 21b, and the oil return pipe 22b connecting the oil separator 22a and the heat source side suction pipe 21c of the heat source side compressor 21 are provided.
  • the oil separator 22 a is a device that separates the refrigeration oil contained in the heat source side refrigerant discharged from the heat source side compressor 21.
  • the oil return pipe 22 b has a capillary tube, and is a refrigerant pipe that returns the refrigeration oil separated from the heat source side refrigerant in the oil separator 22 a to the heat source side suction pipe 21 c of the heat source side compressor 21.
  • the heat source side switching mechanism 23 is a heat source side heat radiation operation state in which the heat source side heat exchanger 24 functions as a heat source side refrigerant radiator and a heat source side evaporation operation state in which the heat source side heat exchanger 24 functions as an evaporator of the heat source side refrigerant.
  • the heat source side switching mechanism 23 communicates the heat source side discharge pipe 21b and the first heat source side gas refrigerant pipe 23a, and communicates the second heat source side gas refrigerant pipe 23b and the heat source side suction pipe 21c (heat source side heat dissipation). 1) (refer to the solid line of the heat source side switching mechanism 23 in FIG.
  • the heat source side switching mechanism 23 is not limited to the four-way switching valve, and has a function of switching the flow direction of the heat source side refrigerant as described above, for example, by combining a plurality of electromagnetic valves. It may be configured.
  • the heat source side heat exchanger 24 is a heat exchanger that functions as a heat source side refrigerant radiator or an evaporator by exchanging heat between the heat source side refrigerant and outdoor air, and a heat source side liquid refrigerant tube 24a on the liquid side thereof. Are connected, and the first heat source side gas refrigerant pipe 23a is connected to the gas side thereof.
  • the outdoor air that exchanges heat with the heat source side refrigerant in the heat source side heat exchanger 24 is supplied by the heat source side fan 32 driven by the heat source side fan motor 32a.
  • the heat source side expansion mechanism 25 is an electric expansion valve that performs decompression of the heat source side refrigerant flowing through the heat source side heat exchanger 24, and is provided in the heat source side liquid refrigerant tube 24a.
  • the suction return pipe 26 is a refrigerant pipe that branches a part of the heat source side refrigerant flowing through the heat source side liquid refrigerant pipe 24a and returns it to the suction of the heat source side compressor 21, and here, one end thereof is the heat source side liquid refrigerant pipe 24a. The other end is connected to the heat source side suction pipe 21c.
  • the suction return pipe 26 is provided with a suction return expansion valve 26a capable of opening degree control.
  • the suction return expansion valve 26a is an electric expansion valve.
  • the subcooler 27 heats the heat source side refrigerant flowing through the heat source side liquid refrigerant pipe 24a and the heat source side refrigerant flowing through the suction return pipe 26 (more specifically, the refrigerant after being decompressed by the suction return expansion valve 26a). It is a heat exchanger that performs exchange.
  • the heat source side accumulator 28 is provided in the heat source side suction pipe 21c, and temporarily accumulates the heat source side refrigerant circulating in the heat source side refrigerant circuit 20 before being sucked into the heat source side compressor 21 from the heat source side suction pipe 21c. It is a container for.
  • the liquid side closing valve 29 is a valve provided at a connection portion between the heat source side liquid refrigerant pipe 24 a and the liquid refrigerant communication pipe 13.
  • the gas side shut-off valve 30 is a valve provided at a connection portion between the second heat source side gas refrigerant pipe 23 b and the gas refrigerant communication pipe 14.
  • the heat source unit 2 is provided with various sensors. Specifically, the heat source unit 2 includes a heat source side suction pressure sensor 33 that detects a heat source side suction pressure Ps 1 that is a pressure of the heat source side refrigerant in the suction of the heat source side compressor 21, and a discharge in the heat source side compressor 21.
  • the heat source side discharge pressure sensor 34 that detects the heat source side discharge pressure Pd1 that is the pressure of the heat source side refrigerant, and the heat source side heat exchanger temperature Thx that is the temperature of the heat source side refrigerant on the liquid side of the heat source side heat exchanger 24 are detected.
  • a heat source side heat exchange temperature sensor 35 and an outside air temperature sensor 36 for detecting the outside air temperature To are provided.
  • the liquid refrigerant communication tube 13 is connected to the heat source side liquid refrigerant tube 24a via the liquid side shut-off valve 29, and the heat source side switching mechanism 23 functions as a heat source side refrigerant radiator in the heat source side heat radiation operation state.
  • the heat source side refrigerant can be led out of the heat source unit 2 from the outlet of the heat exchanger 24, and the heat source side switching mechanism 23 functions as an evaporator of the heat source side refrigerant from the outside of the heat source unit 2 in the heat source side evaporation operation state.
  • This is a refrigerant tube capable of introducing the heat source side refrigerant into the inlet of the heat source side heat exchanger 24.
  • the gas refrigerant communication pipe 14 is connected to the second heat source side gas refrigerant pipe 23b via the gas side shutoff valve 30, and the heat source side switching mechanism 23 from outside the heat source unit 2 in the heat source side heat radiation operation state. It is possible to introduce the heat source side refrigerant into the suction of the heat source 21, and the heat source side switching mechanism 23 may lead the heat source side refrigerant out of the heat source unit 2 from the discharge of the heat source side compressor 21 in the heat source side evaporation operation state. Possible refrigerant pipe.
  • the first usage unit 4a is installed indoors, and is connected to the heat source unit 2 and the second usage units 10a and 10b via the refrigerant communication tubes 13 and 14, and constitutes a part of the heat source side refrigerant circuit 20. is doing. Moreover, the 1st utilization unit 4a is connected to the hot water storage unit 8a and the hot water heating unit 9a via the aqueous medium communication pipes 15a and 16a, and comprises a part of aqueous medium circuit 80a.
  • the first usage unit 4a mainly includes a first usage-side heat exchanger 41a, a first usage-side flow rate adjustment valve 42a, and a circulation pump 43a.
  • the first usage-side heat exchanger 41a is a heat exchanger that functions as a heat-source-side refrigerant radiator by performing heat exchange between the heat-source-side refrigerant and the aqueous medium, and the liquid side of the flow path through which the heat-source-side refrigerant flows Is connected to the first use side liquid refrigerant pipe 45a, and the first use side gas refrigerant pipe 54a is connected to the gas side of the flow path through which the heat source side refrigerant flows, and the aqueous medium flows.
  • a first usage-side water inlet pipe 47a is connected to the inlet side of the flow path, and a first usage-side water outlet pipe 48a is connected to the outlet side of the flow path through which the aqueous medium flows.
  • the liquid refrigerant communication tube 13 is connected to the first usage side liquid refrigerant tube 45a, the gas refrigerant communication tube 14 is connected to the first usage side gas refrigerant tube 54a, and the first usage side water inlet port.
  • An aqueous medium communication pipe 15a is connected to the pipe 47a, and an aqueous medium communication pipe 16a is connected to the first usage-side water outlet pipe 48a.
  • the first usage-side flow rate adjustment valve 42a is an electric expansion valve capable of changing the flow rate of the heat source-side refrigerant flowing through the first usage-side heat exchanger 41a by performing opening degree control. It is provided in the refrigerant pipe 45a.
  • the circulation pump 43a is a mechanism for boosting the aqueous medium. Here, a pump in which a centrifugal or positive displacement pump element (not shown) is driven by a circulation pump motor 44a is employed.
  • the circulation pump 43a is provided in the first usage-side water outlet pipe 48a.
  • the circulation pump motor 44a can vary the rotation speed (that is, the operating frequency) by an inverter device (not shown), thereby enabling capacity control of the circulation pump 43a.
  • the 1st utilization side 4a makes the 1st utilization side heat exchanger 41a function as a heat radiator of the heat source side refrigerant
  • the first usage unit 4a is provided with various sensors. Specifically, the first usage unit 4a includes a first usage-side heat exchange temperature sensor that detects a first usage-side refrigerant temperature Tsc1, which is the temperature of the heat-source-side refrigerant on the liquid side of the first usage-side heat exchanger 41a.
  • Tsc1 a first usage-side refrigerant temperature
  • the hot water storage unit 8a is installed indoors, is connected to the first usage unit 4a via the aqueous medium communication pipes 15a and 16a, and constitutes a part of the aqueous medium circuit 80a.
  • the hot water storage unit 8a mainly includes a hot water storage tank 81a and a heat exchange coil 82a.
  • the hot water storage tank 81a is a container for storing water as an aqueous medium supplied for hot water supply, and a hot water supply pipe 83a is connected to the upper part of the hot water storage tank 81a for sending hot water to a faucet or a shower.
  • a water supply pipe 84a for replenishing the aqueous medium consumed by the hot water supply pipe 83a is connected to the lower part.
  • the heat exchange coil 82a is provided in the hot water storage tank 81a, and heats the aqueous medium in the hot water storage tank 81a by exchanging heat between the aqueous medium circulating in the aqueous medium circuit 80a and the aqueous medium in the hot water storage tank 81a.
  • a water medium communication pipe 16a is connected to an inlet of the heat exchanger, and an aqueous medium communication pipe 15a is connected to an outlet of the heat exchanger.
  • the hot water storage unit 8a can heat the aqueous medium in the hot water storage tank 81a by the aqueous medium circulating in the aqueous medium circuit 80a heated in the first usage unit 4a and store it as hot water.
  • a hot water storage unit of a type in which an aqueous medium heated by heat exchange with the aqueous medium heated in the first usage unit 4a is stored in a hot water storage tank is used as the hot water storage unit 8a hot water storage unit of a type in which an aqueous medium heated by heat exchange with the aqueous medium heated in the first usage unit 4a is stored in a hot water storage tank is used. You may employ
  • the hot water storage unit 8a is provided with various sensors. Specifically, the hot water storage unit 8a is provided with a hot water storage temperature sensor 85a for detecting the hot water storage temperature Twh which is the temperature of the aqueous medium stored in the hot water storage tank 81a.
  • -Hot water heating unit The hot water heating unit 9a is installed indoors, is connected to the first usage unit 4a via the aqueous medium communication pipes 15a and 16a, and constitutes a part of the aqueous medium circuit 80a.
  • the hot water heating unit 9a mainly has a heat exchange panel 91a, and constitutes a radiator, a floor heating panel, and the like.
  • the heat exchange panel 91a In the case of a radiator, the heat exchange panel 91a is provided near the wall of the room, and in the case of a floor heating panel, the heat exchange panel 91a is provided under the floor of the room, and the water medium radiator circulating in the water medium circuit 80a.
  • the aqueous medium communication pipe 16a is connected to the inlet of the heat exchanger, and the aqueous medium communication pipe 15a is connected to the outlet of the heat exchanger.
  • the aqueous medium communication pipe 15a is connected to the outlet of the heat exchange coil 82a of the hot water storage unit 8a and the outlet of the heat exchange panel 91a of the hot water heating unit 9a.
  • the aqueous medium communication pipe 16a is connected to the inlet of the heat exchange coil 82a of the hot water storage unit 8a and the inlet of the heat exchange panel 91a of the hot water heating unit 9a.
  • the aqueous medium communication pipe 16a is switched to supply the aqueous medium circulating in the aqueous medium circuit 80a to both the hot water storage unit 8a and the hot water heating unit 9a, or to either the hot water storage unit 8a or the hot water heating unit 9a.
  • the aqueous medium side switching mechanism 161a that can be performed is provided.
  • the aqueous medium side switching mechanism 161a is a three-way valve.
  • the second usage units 10 a and 10 b are installed indoors and connected to the heat source unit 2 via the refrigerant communication tubes 13 and 14 and constitute a part of the heat source side refrigerant circuit 20.
  • the second usage unit 10a mainly includes a second usage-side heat exchanger 101a and a second usage-side flow rate adjustment valve 102a.
  • the second usage-side heat exchanger 101a is a heat exchanger that functions as a heat-source-side refrigerant radiator or evaporator by exchanging heat between the heat-source-side refrigerant and room air as an air medium.
  • a second usage-side liquid refrigerant tube 103a is connected, and a second usage-side gas refrigerant tube 104a is connected to the gas side thereof.
  • a liquid refrigerant communication tube 13 is connected to the second usage side liquid refrigerant tube 103a, and a gas refrigerant communication tube 14 is connected to the second usage side gas refrigerant tube 104a.
  • the air medium that exchanges heat with the heat source side refrigerant in the second usage side heat exchanger 101a is supplied by the usage side fan 105a driven by the usage side fan motor 106a.
  • the use-side fan motor 106a can vary the rotation speed (that is, the operating frequency) by an inverter device (not shown), thereby enabling capacity control of the use-side fan 105a.
  • the second usage side flow rate adjustment valve 102a is an electric expansion valve capable of varying the flow rate of the heat source side refrigerant flowing through the second usage side heat exchanger 101a by performing opening degree control. It is provided in the refrigerant pipe 103a.
  • the second usage unit 10a causes the second usage-side heat exchanger 101a to function as an evaporator of the heat-source-side refrigerant introduced from the liquid refrigerant communication tube 13 when the heat-source-side switching mechanism 23 is in the heat-source-side heat radiation operation state.
  • the second use side heat exchanger 101a functions as a heat source side refrigerant radiator introduced from the gas refrigerant communication tube 14 in the heat source side evaporation operation state when the heat source side switching mechanism 23 is
  • the heat source side refrigerant radiated in the second usage side heat exchanger 101a is led out to the liquid refrigerant communication tube 13, and the air medium is released by the heat dissipation of the heat source side refrigerant in the second usage side heat exchanger 101a. It becomes possible to perform the heating operation for heating.
  • the second usage unit 10a is provided with an indoor temperature sensor 107a that detects the indoor temperature Tr. Since the configuration of the second usage unit 10b is the same as the configuration of the second usage unit 10a, the configuration of the second usage unit 10b is indicated by the subscript “a” indicating the parts of the second usage unit 10a. Instead, the subscript “b” is added and description of each part is omitted.
  • the heat pump system 1 is provided with a first usage-side controller 77a that performs control settings and control commands for hot water supply operation of the first usage unit 4a.
  • the first usage unit 4a is communicably connected. ing.
  • the heat pump system 1 is provided with a second usage-side controller 108a that performs control settings and operation commands for the cooling operation and heating operation of the second usage unit 10a, and the cooling operation and heating operation of the second usage unit 10b.
  • the second usage side controller 108b for performing the control setting and the operation command is provided, and is connected to the second usage units 10a and 10b so as to be communicable.
  • the heat pump system 1 is provided with a control unit (not shown) that performs the following operation and various controls according to the settings and commands of the first and second usage-side controllers. ⁇ Operation> Next, the operation of the heat pump system 1 will be described.
  • the operation of the heat pump system 1 includes a hot water supply operation in which only the hot water supply operation of the first usage unit 4a (that is, the operation of the hot water storage unit 8a and / or the hot water heating unit 9a), the second usage unit 10a and / or the second usage.
  • operations in the four operations of the heat pump system 1 will be described.
  • the heat source side switching mechanism 23 is in the heat source side evaporation operation state (the state indicated by the broken line of the heat source side switching mechanism 23 in FIG. 1). ), And the suction return expansion valve 26a and the second usage-side flow rate adjustment valves 102a and 102b are closed.
  • the aqueous medium circuit 80a the aqueous medium switching mechanism 161a is switched to a state in which the aqueous medium is supplied to the hot water storage unit 8a and / or the hot water heating unit 9a.
  • the switching state of the heat source side switching mechanism 23 as the temperature control mode is switched to the heat source side evaporation operation state by one of the second usage side controllers 108a and 108b, and then the first usage side controller 77a.
  • the operation (hot water supply operation) of the first usage unit 4a (and the hot water storage unit 8a and / or the hot water heating unit 9a) is performed according to the operation command.
  • the low pressure heat source side refrigerant in the refrigeration cycle is sucked into the heat source side compressor 21 through the heat source side suction pipe 21c and compressed to a high pressure in the refrigeration cycle, and then the heat source side refrigerant circuit 20 is cooled. It is discharged to the discharge pipe 21b.
  • the high pressure heat source side refrigerant discharged to the heat source side discharge pipe 21b is separated from the refrigerating machine oil in the oil separator 22a.
  • the refrigerating machine oil separated from the heat source side refrigerant in the oil separator 22a is returned to the heat source side suction pipe 21c through the oil return pipe 22b.
  • the high-pressure heat source side refrigerant from which the refrigerating machine oil is separated is sent from the heat source unit 2 to the gas refrigerant communication tube 14 through the heat source side switching mechanism 23, the second heat source side gas refrigerant tube 23b, and the gas side shut-off valve 30.
  • the high-pressure heat-source-side refrigerant sent to the gas refrigerant communication tube 14 is sent to the first usage unit 4a.
  • the high-pressure heat-source-side refrigerant sent to the first usage unit 4a is sent to the first usage-side heat exchanger 41a through the first usage-side gas refrigerant tube 54a.
  • the high-pressure heat-source-side refrigerant sent to the first usage-side heat exchanger 41a radiates heat by exchanging heat with the aqueous medium circulating in the aqueous-medium circuit 80a by the circulation pump 43a in the first usage-side heat exchanger 41a.
  • the high-pressure heat-source-side refrigerant radiated in the first usage-side heat exchanger 41a is sent from the first usage unit 4a to the liquid refrigerant communication tube 13 through the first usage-side flow rate adjustment valve 42a and the first usage-side liquid refrigerant tube 45a. It is done.
  • the heat source side refrigerant sent to the liquid refrigerant communication tube 13 is sent to the heat source unit 2.
  • the heat source side refrigerant sent to the heat source unit 2 is sent to the supercooler 27 through the liquid side shut-off valve 29.
  • the heat source side refrigerant sent to the subcooler 27 is sent to the heat source side expansion valve 25 without performing heat exchange because the heat source side refrigerant does not flow through the suction return pipe 26.
  • the heat source side refrigerant sent to the heat source side expansion valve 25 is depressurized by the heat source side expansion valve 25 to be in a low-pressure gas-liquid two-phase state, and sent to the heat source side heat exchanger 24 through the heat source side liquid refrigerant tube 24a. It is done.
  • the low-pressure refrigerant sent to the heat source side heat exchanger 24 evaporates by exchanging heat with outdoor air supplied by the heat source side fan 32 in the heat source side heat exchanger 24.
  • the low-pressure heat source side refrigerant evaporated in the heat source side heat exchanger 24 is sent to the heat source side accumulator 28 through the first heat source side gas refrigerant tube 23a and the heat source side switching mechanism 23.
  • the low-pressure heat source side refrigerant sent to the heat source side accumulator 28 is again sucked into the heat source side compressor 21 through the heat source side suction pipe 21c.
  • the aqueous medium circulating in the aqueous medium circuit 80a is heated by the heat radiation of the heat source side refrigerant in the first usage-side heat exchanger 41a.
  • the aqueous medium heated in the first usage-side heat exchanger 41a is sucked into the circulation pump 43a through the first usage-side water outlet pipe 48a, and after the pressure is increased, from the first usage unit 4a to the aqueous medium communication pipe 16a.
  • the aqueous medium sent to the aqueous medium communication pipe 16a is sent to the hot water storage unit 8a and / or the hot water heating unit 9a through the aqueous medium side switching mechanism 161a.
  • the aqueous medium sent to the hot water storage unit 8a exchanges heat with the aqueous medium in the hot water storage tank 81a in the heat exchange coil 82a to radiate heat, thereby heating the aqueous medium in the hot water storage tank 81a.
  • the aqueous medium sent to the hot water heating unit 9a dissipates heat in the heat exchange panel 91a, thereby heating the indoor wall or the like or heating the indoor floor.
  • movement in the hot water supply operation which performs only the hot water supply operation of the 1st utilization unit 4a is performed.
  • -Cooling operation When only the cooling operation of the second usage unit 10a and / or the second usage unit 10b is performed, in the heat source side refrigerant circuit 20, the heat source side switching mechanism 23 is in the heat source side heat dissipation operation state (the heat source side switching mechanism in FIG. 1). 23, the first use side flow rate adjustment valve 42a is closed.
  • the second usage side controller 108a and The operation (cooling operation) of the second usage unit 10a and / or the second usage unit 10b is performed according to the operation command of the second usage side controller 108b.
  • the low pressure heat source side refrigerant in the refrigeration cycle is sucked into the heat source side compressor 21 through the heat source side suction pipe 21c and compressed to a high pressure in the refrigeration cycle, and then the heat source side refrigerant circuit 20 is cooled. It is discharged to the discharge pipe 21b.
  • the high pressure heat source side refrigerant discharged to the heat source side discharge pipe 21b is separated from the refrigerating machine oil in the oil separator 22a.
  • the refrigerating machine oil separated from the heat source side refrigerant in the oil separator 22a is returned to the heat source side suction pipe 21c through the oil return pipe 22b.
  • the high-pressure heat-source-side refrigerant from which the refrigeration oil is separated is sent to the heat-source-side heat exchanger 24 through the heat-source-side switching mechanism 23 and the first heat-source-side gas refrigerant tube 23a.
  • the high-pressure heat-source-side refrigerant sent to the heat-source-side heat exchanger 24 radiates heat by exchanging heat with outdoor air supplied by the heat-source-side fan 32 in the heat source-side heat exchanger 24.
  • the high-pressure heat-source-side refrigerant that has radiated heat in the heat-source-side heat exchanger 24 is sent to the supercooler 27 through the heat-source-side expansion valve 25.
  • the heat-source-side refrigerant sent to the subcooler 27 is cooled so as to be in a supercooled state by exchanging heat with the heat-source-side refrigerant branched from the heat source-side liquid refrigerant tube 24a to the suction return tube 26.
  • the heat source side refrigerant flowing through the suction return pipe 26 is returned to the heat source side suction pipe 21c.
  • the heat source side refrigerant cooled in the subcooler 27 is sent from the heat source unit 2 to the liquid refrigerant communication tube 13 through the heat source side liquid refrigerant tube 24a and the liquid side shut-off valve 29.
  • the high-pressure heat-source-side refrigerant sent to the liquid refrigerant communication tube 13 is sent to the second usage units 10a and 10b (here, it is assumed that both the second usage units 10a and 10b are in cooling operation).
  • the high-pressure heat-source-side refrigerant sent to the second usage units 10a and 10b is sent to the second usage-side flow rate adjustment valves 102a and 102b.
  • the high-pressure heat-source-side refrigerant sent to the second usage-side flow rate adjustment valves 102a and 102b is depressurized by the second usage-side flow rate adjustment valves 102a and 102b to be in a low-pressure gas-liquid two-phase state.
  • the liquid refrigerant pipes 103a and 103b are sent to the second usage side heat exchangers 101a and 101b.
  • the low-pressure heat-source-side refrigerant sent to the second usage-side heat exchangers 101a and 1010b exchanges heat with the air medium supplied by the usage-side fans 105a and 105b in the second usage-side heat exchangers 101a and 101b. Evaporates, thereby cooling the room.
  • the low-pressure heat-source-side refrigerant evaporated in the second usage-side heat exchangers 101a and 101b is sent from the second usage units 10a and 10b to the gas refrigerant communication tube 14 through the second usage-side gas refrigerant tubes 104a and 104b.
  • the low-pressure heat source side refrigerant sent to the gas refrigerant communication tube 14 is sent to the heat source unit 2.
  • the low-pressure heat source side refrigerant sent to the heat source unit 2 is sent to the heat source side accumulator 28 through the gas side shut-off valve 30, the second heat source side gas refrigerant tube 23b, and the heat source side switching mechanism 23.
  • the low-pressure heat source side refrigerant sent to the heat source side accumulator 28 is again sucked into the heat source side compressor 21 through the heat source side suction pipe 21c.
  • the second usage side controller 108a and The operation (heating operation) of the second usage unit 10a and / or the second usage unit 10b is performed according to the operation command of the second usage side controller 108b.
  • the low pressure heat source side refrigerant in the refrigeration cycle is sucked into the heat source side compressor 21 through the heat source side suction pipe 21c and compressed to a high pressure in the refrigeration cycle, and then the heat source side refrigerant circuit 20 is cooled. It is discharged to the discharge pipe 21b.
  • the high pressure heat source side refrigerant discharged to the heat source side discharge pipe 21b is separated from the refrigerating machine oil in the oil separator 22a.
  • the refrigerating machine oil separated from the heat source side refrigerant in the oil separator 22a is returned to the heat source side suction pipe 21c through the oil return pipe 22b.
  • the high-pressure heat source side refrigerant from which the refrigerating machine oil is separated is sent from the heat source unit 2 to the gas refrigerant communication tube 14 through the heat source side switching mechanism 23, the second heat source side gas refrigerant tube 23b, and the gas side shut-off valve 30.
  • the high-pressure heat-source-side refrigerant sent to the gas refrigerant communication tube 14 is sent to the second usage units 10a and 10b (here, it is assumed that both the second usage units 10a and 10b are operated for heating).
  • the high-pressure heat-source-side refrigerant sent to the second usage units 10a, 10b is sent to the second usage-side heat exchangers 101a, 101b through the second usage-side gas refrigerant tubes 104a, 104b.
  • the high-pressure heat-source-side refrigerant sent to the second usage-side heat exchangers 101a and 101b exchanges heat with the air medium supplied by the usage-side fans 105a and 105b in the second usage-side heat exchangers 101a and 101b. To dissipate heat, thereby heating the room.
  • the high-pressure heat-source-side refrigerant radiated in the second usage-side heat exchangers 101a and 101b passes through the second usage-side flow rate adjustment valves 102a and 102b and the second usage-side liquid refrigerant tubes 103a and 103b, and the second usage units 10a and 10b.
  • the heat source side refrigerant sent to the liquid refrigerant communication tube 13 is sent to the heat source unit 2.
  • the heat source side refrigerant sent to the heat source unit 2 is sent to the supercooler 27 through the liquid side shut-off valve 29.
  • the heat source side refrigerant sent to the subcooler 27 is sent to the heat source side expansion valve 25 without performing heat exchange because the heat source side refrigerant does not flow through the suction return pipe 26.
  • the heat source side refrigerant sent to the heat source side expansion valve 25 is depressurized by the heat source side expansion valve 25 to be in a low-pressure gas-liquid two-phase state, and sent to the heat source side heat exchanger 24 through the heat source side liquid refrigerant tube 24a. It is done.
  • the low-pressure refrigerant sent to the heat source side heat exchanger 24 evaporates by exchanging heat with outdoor air supplied by the heat source side fan 32 in the heat source side heat exchanger 24.
  • the low-pressure heat source side refrigerant evaporated in the heat source side heat exchanger 24 is sent to the heat source side accumulator 28 through the first heat source side gas refrigerant tube 23a and the heat source side switching mechanism 23.
  • the low-pressure heat source side refrigerant sent to the heat source side accumulator 28 is again sucked into the heat source side compressor 21 through the heat source side suction pipe 21c.
  • movement in the heating operation which performs only the heating operation of the 2nd usage unit 10a and / or the 2nd usage unit 10b is performed.
  • -Hot water heater operation When the hot water supply operation of the first usage unit 4a and the heating operation of the second usage unit 10a and / or the second usage unit 10b are performed, in the heat source side refrigerant circuit 20, the heat source side switching mechanism 23 is heat source side evaporation. The operation state is switched to the operation state (the state indicated by the broken line of the heat source side switching mechanism 23 in FIG. 1), and the suction return expansion valve 26a is closed.
  • the aqueous medium switching mechanism 161a is switched to a state in which the aqueous medium is supplied to the hot water storage unit 8a and / or the hot water heating unit 9a.
  • the switching state of the heat source side switching mechanism 23 as the temperature control mode is switched to the heat source side evaporation operation state by one of the second usage side controllers 108a and 108b, and then the first usage side controller 77a.
  • the operation (hot water supply operation) of the first usage unit 4a (and the hot water storage unit 8a and / or the hot water heating unit 9a) and the operation command of the second usage side controller 108a and / or the second usage side controller 108b The operation (heating operation) of the second usage unit 10a and / or the second usage unit 10b is performed.
  • the low pressure heat source side refrigerant in the refrigeration cycle is sucked into the heat source side compressor 21 through the heat source side suction pipe 21c and compressed to a high pressure in the refrigeration cycle, and then the heat source side refrigerant circuit 20 is cooled. It is discharged to the discharge pipe 21b.
  • the high pressure heat source side refrigerant discharged to the heat source side discharge pipe 21b is separated from the refrigerating machine oil in the oil separator 22a.
  • the refrigerating machine oil separated from the heat source side refrigerant in the oil separator 22a is returned to the heat source side suction pipe 21c through the oil return pipe 22b.
  • the high-pressure heat source side refrigerant from which the refrigerating machine oil is separated is sent from the heat source unit 2 to the gas refrigerant communication tube 14 through the heat source side switching mechanism 23, the second heat source side gas refrigerant tube 23b, and the gas side shut-off valve 30.
  • the high-pressure heat-source-side refrigerant sent to the gas refrigerant communication tube 14 will be described on the assumption that the first usage unit 4a and the second usage units 10a and 10b (here, both the second usage units 10a and 10b are heated). ).
  • the high-pressure heat-source-side refrigerant sent to the second usage units 10a, 10b is sent to the second usage-side heat exchangers 101a, 101b through the second usage-side gas refrigerant tubes 104a, 104b.
  • the high-pressure heat-source-side refrigerant sent to the second usage-side heat exchangers 101a and 101b exchanges heat with the air medium supplied by the usage-side fans 105a and 105b in the second usage-side heat exchangers 101a and 101b. To dissipate heat, thereby heating the room.
  • the high-pressure heat-source-side refrigerant radiated in the second usage-side heat exchangers 101a and 101b passes through the second usage-side flow rate adjustment valves 102a and 102b and the second usage-side liquid refrigerant tubes 103a and 103b, and the second usage units 10a and 10b.
  • the high-pressure heat-source-side refrigerant sent to the first usage unit 4a is sent to the first usage-side heat exchanger 41a through the first usage-side gas refrigerant tube 54a.
  • the high-pressure heat-source-side refrigerant sent to the first usage-side heat exchanger 41a exchanges heat with the low-pressure usage-side refrigerant in the refrigeration cycle circulating in the usage-side refrigerant circuit 40a in the first usage-side heat exchanger 41a. To dissipate heat.
  • the high-pressure heat-source-side refrigerant radiated in the first usage-side heat exchanger 41a is sent from the first usage unit 4a to the liquid refrigerant communication tube 13 through the first usage-side flow rate adjustment valve 42a and the first usage-side liquid refrigerant tube 45a. It is done.
  • the heat-source-side refrigerant sent from the second usage units 10a and 10b and the first usage unit 4a to the liquid refrigerant communication tube 13 merges in the liquid refrigerant communication tube 13 and is sent to the heat source unit 2.
  • the heat source side refrigerant sent to the heat source unit 2 is sent to the supercooler 27 through the liquid side shut-off valve 29.
  • the heat source side refrigerant sent to the subcooler 27 is sent to the heat source side expansion valve 25 without performing heat exchange because the heat source side refrigerant does not flow through the suction return pipe 26.
  • the heat source side refrigerant sent to the heat source side expansion valve 25 is depressurized by the heat source side expansion valve 25 to be in a low-pressure gas-liquid two-phase state, and sent to the heat source side heat exchanger 24 through the heat source side liquid refrigerant tube 24a. It is done.
  • the low-pressure refrigerant sent to the heat source side heat exchanger 24 evaporates by exchanging heat with outdoor air supplied by the heat source side fan 32 in the heat source side heat exchanger 24.
  • the low-pressure heat source side refrigerant evaporated in the heat source side heat exchanger 24 is sent to the heat source side accumulator 28 through the first heat source side gas refrigerant tube 23a and the heat source side switching mechanism 23.
  • the low-pressure heat source side refrigerant sent to the heat source side accumulator 28 is again sucked into the heat source side compressor 21 through the heat source side suction pipe 21c.
  • the aqueous medium circulating in the aqueous medium circuit 80a is heated by the heat radiation of the heat source side refrigerant in the first usage-side heat exchanger 41a.
  • the aqueous medium heated in the first usage-side heat exchanger 41a is drawn into the circulation pump 43a through the first usage-side water outlet pipe 48a, and after the pressure is increased, the first usage unit 4a supplies the aqueous medium communication pipe 16a.
  • the aqueous medium sent to the aqueous medium communication pipe 16a is sent to the hot water storage unit 8a and / or the hot water heating unit 9a through the aqueous medium side switching mechanism 161a.
  • the aqueous medium sent to the hot water storage unit 8a exchanges heat with the aqueous medium in the hot water storage tank 81a in the heat exchange coil 82a to radiate heat, thereby heating the aqueous medium in the hot water storage tank 81a.
  • the aqueous medium sent to the hot water heating unit 9a dissipates heat in the heat exchange panel 91a, thereby heating the indoor wall or the like or heating the indoor floor.
  • the hot water supply operation of the first usage unit 4a and the heating operation of the second usage unit 10a and / or the second usage unit 10b are performed.
  • the hot water supply operation and the heating operation cannot be performed while the temperature control mode is switched to the heat source side heat radiation operation state, and the temperature control mode is switched to the heat source side evaporation operation state. If it is left alone, the cooling operation cannot be performed. That is, in order to perform a desired operation in the first usage unit 4a and the second usage unit 10a, 10b, a hot water supply operation command from the first usage side controller 77a to the first usage unit 4a or a second usage side controller 108a.
  • the heat pump system 1 includes the first usage unit 4a and the second usage unit 10a, 10b individually supplied with hot water supply operation, cooling operation or heating. You can not drive by selecting driving.
  • the temperature control mode is in the heat source side heat radiation operation state (that is, even if the second usage units 10a and 10b are in the cooling operation or not in the cooling operation, the second usage
  • the side controller 108a commands the temperature control mode to enter the heat source side heat radiation operation state
  • the priority hot water supply operation steps S7 to S9, which is an operation for switching the temperature control mode to the heat source side evaporation operation state and performing the hot water supply operation of the first usage unit 4a.
  • the commanded temperature control mode in this case, the second user side controller 108a specifies the temperature control mode). Operation in the temperature control mode) (step S1, S4) is to be carried out being.
  • step S1 the operation state in step S1
  • step S2 it is determined whether or not the condition A is satisfied.
  • the hot water supply operation is performed in the first usage unit 4a.
  • the time tm3 is a time set in step S10 described later.
  • the temperature control mode is on the heat source side.
  • the hot water supply operation is instructed, that is, the first use in accordance with the hot water supply operation command from the first use side controller 77a. Since in a state where it is not possible to heat the aqueous medium be started the operation of the knitting 4a, towards the priority hot-water supply operation (step S7 ⁇ S9), the process proceeds to step S3 and subsequent steps.
  • steps S3 and S4 although the condition A is satisfied, the process does not immediately shift to the preferential hot water supply operation (steps S7 to S9), but in step S3, a predetermined first time tm1 is counted.
  • the first time tm1 corresponds to a time interval from the end of the processing of step S2 to the processing of steps S5 and S6, and is set to about several minutes to 10 minutes.
  • step S5 it is determined whether or not the condition B is satisfied.
  • the low temperature condition temperature Tol corresponds to the highest temperature assumed to perform the heating operation of the second usage units 10a and 10b, and is set to about 15 ° C.
  • Step S5 when it is determined that the condition B is not satisfied, that is, when the temperature control mode is the heat source side evaporation operation state (that is, “temperature control mode ⁇ cooling”), or the first usage side
  • the condition D of Step S6 is satisfied
  • the second usage of Step S1 is performed.
  • step S7 the process proceeds to the priority hot-water supply operation (step S7 ⁇ S9).
  • step S7 counting of a predetermined second time tm2 is started.
  • the second time tm2 corresponds to the time for performing the priority hot water supply operation, and is set to about 10 to 30 minutes.
  • the circulation pump 43a is started and the first usage-side flow rate adjustment valve 41a is opened to start the hot water supply operation (that is, priority hot water supply operation) of the first usage unit 4a.
  • the second usage units 10a and 10b are switched to a state in which heating operation is performed.
  • the second usage units 10a and 10b are performing the cooling operation until the priority hot water supply operation is started, the second usage units 10a and 10b are in a state of performing the heating operation, and the priority hot water supply operation is being performed.
  • the heating operation is started when the second usage-side controllers 108a and 108b are instructed to the second usage units 10a and 10b, the indoor comfort is impaired, which is not preferable. Therefore, in the heat pump system 1, the cooling operation of the second usage units 10a and 10b is prohibited during the priority hot water supply operation.
  • the second usage unit 10a to which the cooling operation is instructed from the second usage-side controllers 108a and 108b If the operation of the use side fans 105a and 105b is also stopped for 10b, the user may misunderstand that the failure of the second use units 10a and 10b has occurred. Therefore, in the heat pump system 1, the second usage-side flow rate adjustment valves 102a and 102b of the second usage units 10a and 10b for which the cooling operation is commanded from the second usage-side controllers 108a and 108b during the priority hot water supply operation.
  • the use-side fans 105a and 105b are operated in a state where the cooling operation is stopped by performing a closing operation or the like.
  • the operating frequency of the use side fans 105a and 105b is preferably set to the lowest frequency in order to prevent indoor drafts.
  • the operating state of the second usage units 10a and 10b in the second usage-side controllers 108a and 108b in conjunction with stopping the cooling operation of the second usage units 10a and 10b, the operating state of the second usage units 10a and 10b in the second usage-side controllers 108a and 108b. If the display is changed (that is, the cooling operation is changed to stop), the user may misunderstand that the failure of the second usage units 10a and 10b has occurred. Therefore, in this heat pump system 1, even when the cooling operation of the second usage units 10a and 10b in the priority hot water supply operation is stopped, the display indicating that the second usage-side controllers 108a and 108b are in the cooling operation is maintained. ing. This priority hot water supply operation is continued until the condition C is satisfied in step S9.
  • the high temperature condition temperature Toh corresponds to the lowest temperature at which the cooling operation of the second usage units 10a and 10b is assumed, and is set to about 20 ° C.
  • the priority hot water supply operation is in a state in which it is determined in step S9 that the condition C is satisfied, that is, the hot water supply operation can be performed without performing the priority hot water supply operation, or the hot water supply operation becomes unnecessary.
  • the priority hot water supply operation is continued until the second time tm2 is continued, and thereafter, the process shifts to the process (steps S10 and S1) for returning to the operation in the temperature control mode commanded by the second usage-side controller 108a.
  • step S10 counting of a predetermined third time tm3 is started, and in step S1, the operation in the temperature control mode commanded by the second usage-side controller 108a is started. Processing to return is performed.
  • the third time tm3 corresponds to the time during which the operation in the temperature control mode commanded by the second use side controller 108a is performed without performing the priority hot water supply operation when the priority hot water supply operation is requested. It is set to about 5 to 25 minutes. For example, when the hot water supply operation of the first usage unit 4a is requested during the cooling operation of the second usage units 10a and 10b, the priority hot water supply operation is performed for the second time tm2, and the cooling operation is performed for the third time tm3.
  • This heat pump system 1 has the following features. -A- In this heat pump system 1, as in the temperature control mode switching control described above, the second usage side controllers 108 a and 108 b (in this case, the second usage side controller 108 a) that commands the second usage units 10 a and 10 b are provided. It is possible to operate by switching to a temperature control mode different from the switching state of the heat source side switching mechanism 23 as the commanded temperature control mode. For example, the temperature control mode is switched to the heat source side heat radiation operation state. When the hot water supply operation is performed in the above state, the user is not required to perform an operation (command) for switching the temperature control mode, for example, the temperature control mode is switched to the heat source side evaporation operation state. Switching to temperature control mode can be performed.
  • the temperature control mode is switched as in the commanded temperature control mode (here, the second usage-side controller 108 a) as in steps S 2, S 5, S 6, and S 9 in the temperature control mode switching control described above. Is switched based on at least one of the switching state of the heat source side switching mechanism 23 as the temperature control mode commanded by the engine and the outside air temperature To, so that the temperature control mode can be switched appropriately. Further, in this heat pump system 1, whether or not the temperature control mode needs to be switched in two stages as in steps S1 to S6 in the temperature control mode switching control described above (in this case, whether or not the priority hot water supply operation needs to be performed). ) Is determined, it is difficult for temperature control mode hunting to occur.
  • -C- In this heat pump system 1, when the temperature adjustment mode is in the heat source side heat radiation operation state, when the first use side controller 77a instructs the first use unit 4a to perform the hot water supply operation, the temperature adjustment mode is set to the heat source mode. By switching from the side heat radiation operation state to the heat source side evaporation operation state, the hot water supply operation (that is, the priority hot water supply operation) of the first usage unit 4a can be performed. The user can perform hot water supply operation as necessary without performing an operation (command) for switching the temperature control mode to the heat source side evaporation operation state.
  • -D- In this heat pump system 1, when performing the priority hot water supply operation, the cooling operation of the second usage units 10 a and 10 b is prohibited.
  • the temperature control mode for performing the priority hot water supply operation is evaporated from the heat dissipation operation state.
  • the second usage units 10a and 10b that have been performing the cooling operation enter a state in which the heating operation is performed.
  • the cooling operation is commanded to 10b, the heating operation is not started, and this can prevent the indoor comfort from being impaired when the priority hot water supply operation is performed.
  • the second usage units 10a and 10b for which the cooling operation is instructed from the second usage-side controllers 108a and 108b are used in the state where the cooling operation is stopped during the priority hot water supply operation. Since 105a and 105b are operated, when the cooling operation of the second usage units 10a and 10b is prohibited, the operation of the usage-side fans 105a and 105b of the second usage units 10a and 10b during the cooling operation is stopped. Thus, it is possible to prevent the user from misunderstanding that the failure of the second usage units 10a and 10b has occurred by performing the priority hot water supply operation.
  • a heat exchanger that exchanges heat between the heat-source-side refrigerant and the heat-source-side refrigerant that is introduced is used as a heat exchanger, and a first-side use unit 4a uses a use-side compressor 62a (described later) that compresses the use-side refrigerant.
  • a refrigerant-water heat exchanger 65a (described later) that functions as a heat radiator for the use side refrigerant and can heat the aqueous medium
  • the use side refrigerant circulates together with the first use side heat exchanger 41a.
  • the use side refrigerant circuit 40a is configured.
  • the configuration of the heat pump system 200 will be described.
  • FIG. 3 is a schematic configuration diagram of a heat pump system 200 according to the second embodiment of the present invention.
  • the heat pump system 200 is an apparatus that can perform an operation of heating an aqueous medium using a vapor compression heat pump cycle.
  • the heat pump system 200 mainly includes a heat source unit 2, a first usage unit 4a, second usage units 10a and 10b, a liquid refrigerant communication tube 13, a gas refrigerant communication tube 14, a hot water storage unit 8a, and a hot water heating unit.
  • the heat source side refrigerant circuit 20 is constituted, the first usage unit 4a constitutes the usage side refrigerant circuit 40a, and the first usage unit 4a, the hot water storage unit 8a, and the hot water heating unit 9a are connected to the aqueous medium communication pipe 15a. , 16a to form an aqueous medium circuit 80a.
  • HFC-410A which is a kind of HFC refrigerant
  • ester or ether refrigerating machine oil compatible with the HFC refrigerant is used as the heat source. It is enclosed for lubrication of the side compressor 21.
  • HFC-134a which is a kind of HFC refrigerant
  • HFC-134a is sealed in the use side refrigerant circuit 40a as a use side refrigerant, and ester or ether type refrigerating machine oil having compatibility with the HFC refrigerant. Is enclosed for lubrication of the use side compressor 62a.
  • the pressure corresponding to saturation gas temperature 65 degreeC is 2.8 Mpa or less at the maximum at a gauge pressure, Preferably, it is 2.0 Mpa.
  • the following refrigerants are preferably used.
  • HFC-134a is a kind of refrigerant having such saturation pressure characteristics.
  • water as an aqueous medium circulates in the aqueous medium circuit 80a.
  • the heat source unit 2, the second usage unit 10a, the hot water storage unit 8a, the hot water heating unit 9a, and the liquid refrigerant communication having the same configuration as the heat pump system 1 (see FIG. 1) in the first embodiment.
  • the configurations of the pipe 13, the gas refrigerant communication pipe 14, the aqueous medium communication pipes 15a and 16a, the first usage side controller 77a, and the second usage side controllers 108a and 108b are denoted by the same reference numerals, and description thereof is omitted. Only the configuration of the first usage unit 4a will be described.
  • the first usage unit 4 a is installed indoors and connected to the heat source unit 2 via the refrigerant communication tubes 13 and 14 and constitutes a part of the heat source side refrigerant circuit 20. Moreover, the 1st utilization unit 4a comprises the utilization side refrigerant circuit 40a. Furthermore, the 1st utilization unit 4a is connected to the hot water storage unit 8a and the hot water heating unit 9a via the aqueous medium communication pipes 15a and 16a, and constitutes a part of the aqueous medium circuit 80a.
  • the first usage unit 4a mainly includes a first usage-side heat exchanger 41a, a first usage-side flow rate adjustment valve 42a, a usage-side compressor 62a, a refrigerant-water heat exchanger 65a, and a refrigerant-hydrothermal exchange. It has a side flow rate adjustment valve 66a, a use side accumulator 67a, and a circulation pump 43a.
  • the first usage-side heat exchanger 41a is a heat exchanger that functions as a radiator for the heat-source-side refrigerant by performing heat exchange between the heat-source-side refrigerant and the usage-side refrigerant, and is a liquid in a flow path through which the heat-source-side refrigerant flows.
  • a first use side liquid refrigerant tube 45a is connected to the side, and a first use side gas refrigerant tube 54a is connected to the gas side of the flow path through which the heat source side refrigerant flows, and the use side refrigerant.
  • a cascade side liquid refrigerant pipe 68a is connected to the liquid side of the flow path through which the refrigerant flows, and a second cascade side gas refrigerant pipe 69a is connected to the gas side of the flow path through which the use side refrigerant flows.
  • the liquid refrigerant communication pipe 13 is connected to the first usage side liquid refrigerant pipe 45a, the gas refrigerant communication pipe 14 is connected to the first usage side gas refrigerant pipe 54a, and the cascade side liquid refrigerant pipe 68a.
  • the refrigerant-water heat exchanger 65a is connected to the second cascade side gas refrigerant pipe 69a, and the use side compressor 62a is connected to the second cascade side gas refrigerant pipe 69a.
  • the first usage-side flow rate adjustment valve 42a is an electric expansion valve capable of changing the flow rate of the heat source-side refrigerant flowing through the first usage-side heat exchanger 41a by performing opening degree control. It is provided in the refrigerant pipe 45a.
  • the use side compressor 62a is a mechanism for compressing the use side refrigerant.
  • a rotary type or scroll type volumetric compression element housed in a casing (not shown) is used.
  • a hermetic compressor driven by a use side compressor motor 63a accommodated in the casing is employed.
  • a high-pressure space (not shown) filled with the heat-source-side refrigerant after being compressed by the compression element is formed in the casing of the use-side compressor 62a, and refrigeration oil is stored in the high-pressure space.
  • the use-side compressor motor 63a can vary the rotation speed (that is, the operating frequency) by an inverter device (not shown), thereby enabling capacity control of the use-side compressor 62a.
  • a cascade side discharge pipe 70a is connected to the discharge of the use side compressor 62a, and a cascade side intake pipe 71a is connected to the intake of the use side compressor 62a.
  • the cascade side suction pipe 71a is connected to the second cascade side gas refrigerant pipe 69a.
  • the refrigerant-water heat exchanger 65a is a heat exchanger that functions as a heat radiator for the usage-side refrigerant by exchanging heat between the usage-side refrigerant and the aqueous medium.
  • the cascade side liquid refrigerant pipe 68a is connected to the gas side of the flow path through which the use side refrigerant flows, and the first cascade side gas refrigerant pipe 72a is connected to the flow path through which the aqueous medium flows.
  • a first usage-side water inlet pipe 47a is connected to the inlet side, and a first usage-side water outlet pipe 48a is connected to the outlet side of the flow path through which the aqueous medium flows.
  • the first cascade side gas refrigerant pipe 72a is connected to the cascade side discharge pipe 70a, the aqueous medium communication pipe 15a is connected to the first use side water inlet pipe 47a, and the first use side water outlet pipe is connected.
  • the aqueous medium communication pipe 16a is connected to 48a.
  • the refrigerant-water heat exchange side flow rate adjustment valve 66a is an electric expansion valve capable of varying the flow rate of the use side refrigerant flowing through the refrigerant-water heat exchanger 65a by controlling the opening degree. It is provided in the pipe 68a.
  • the use side accumulator 67a is provided in the cascade side suction pipe 71a, and temporarily stores the use side refrigerant circulating in the use side refrigerant circuit 40a before being sucked from the cascade side suction pipe 71a into the use side compressor 62a. It is a container for.
  • the use side compressor 62a, the refrigerant-water heat exchanger 65a, the refrigerant-water heat exchange side flow rate adjustment valve 66a, and the first use side heat exchanger 41a connect the refrigerant pipes 71a, 70a, 72a, 68a, 69a.
  • the use-side refrigerant circuit 40a is configured by being connected to each other.
  • the circulation pump 43a is a mechanism for boosting the aqueous medium.
  • a pump in which a centrifugal or positive displacement pump element (not shown) is driven by a circulation pump motor 44a is employed.
  • the circulation pump 43a is provided in the first usage-side water outlet pipe 48a.
  • the circulation pump motor 44a can vary the rotation speed (that is, the operating frequency) by an inverter device (not shown), thereby enabling capacity control of the circulation pump 43a.
  • the first usage unit 4a causes the first usage-side heat exchanger 41a to radiate heat by causing the first usage-side heat exchanger 41a to function as a heat radiator for the heat-source-side refrigerant introduced from the gas refrigerant communication tube 14.
  • the used heat source side refrigerant is led out to the liquid refrigerant communication pipe 13, and the use side refrigerant circulating in the use side refrigerant circuit 40a is heated by the heat radiation of the heat source side refrigerant in the first use side heat exchanger 41a, and this heated use side After the refrigerant is compressed in the use side compressor 62a, it is possible to perform a hot water supply operation for heating the aqueous medium by radiating heat in the refrigerant-water heat exchanger 65a.
  • the first usage unit 4a is provided with various sensors.
  • the first usage unit 4a includes a first usage-side heat exchange temperature sensor that detects the first usage-side refrigerant temperature Tsc1, which is the temperature of the heat-source-side refrigerant on the liquid side of the first usage-side heat exchanger 41a.
  • a first refrigerant-water heat exchanger temperature sensor 73a for detecting a cascade-side refrigerant temperature Tsc2 which is a temperature of a use-side refrigerant on the liquid side of the refrigerant-water heat exchanger 65a, and an inlet of the refrigerant-water heat exchanger 65a
  • An aqueous medium outlet temperature sensor 51a that detects an aqueous medium inlet temperature Twr that is the temperature of the aqueous medium in the water medium, and an aqueous medium outlet that detects an aqueous medium outlet temperature Twl that is the temperature of the aqueous medium at the outlet of the refrigerant-water heat exchanger 65a
  • a temperature sensor 52a, a use side suction pressure sensor 74a that detects a use side suction pressure Ps2 that is a pressure of the use side refrigerant in the suction of the use side compressor 62a, and a discharge of the use side compressor 62a
  • the heat pump system 200 is provided with a control unit (not shown) that performs the following operations and various controls according to the settings and commands of the first and second usage-side controllers. ⁇ Operation> Next, the operation of the heat pump system 200 will be described. As the operation of the heat pump system 200, similarly to the heat pump system 1 of the first embodiment, a hot water supply operation in which only the hot water supply operation of the first usage unit 4a (that is, the operation of the hot water storage unit 8a and / or the hot water heating unit 9a) is performed.
  • the cooling operation that performs only the cooling operation of the second usage unit 10a and / or the second usage unit 10b, the heating operation that performs only the heating operation of the second usage unit 10a and / or the second usage unit 10b, and the first usage There is a hot water supply and heating operation in which the hot water supply operation of the unit 4a and the heating operation of the second usage unit 10a and / or the second usage unit 10b are performed.
  • the switching state of the heat source side switching mechanism 23 as the temperature control mode is switched to the heat source side evaporation operation state by one of the second usage side controllers 108a and 108b, and then the first usage side controller 77a.
  • the operation (hot water supply operation) of the first usage unit 4a (and the hot water storage unit 8a and / or the hot water heating unit 9a) is performed according to the operation command.
  • the low pressure heat source side refrigerant in the refrigeration cycle is sucked into the heat source side compressor 21 through the heat source side suction pipe 21c and compressed to a high pressure in the refrigeration cycle, and then the heat source side refrigerant circuit 20 is cooled. It is discharged to the discharge pipe 21b.
  • the high pressure heat source side refrigerant discharged to the heat source side discharge pipe 21b is separated from the refrigerating machine oil in the oil separator 22a.
  • the refrigerating machine oil separated from the heat source side refrigerant in the oil separator 22a is returned to the heat source side suction pipe 21c through the oil return pipe 22b.
  • the high-pressure heat source side refrigerant from which the refrigerating machine oil is separated is sent from the heat source unit 2 to the gas refrigerant communication tube 14 through the heat source side switching mechanism 23, the second heat source side gas refrigerant tube 23b, and the gas side shut-off valve 30.
  • the high-pressure heat-source-side refrigerant sent to the gas refrigerant communication tube 14 is sent to the first usage unit 4a.
  • the high-pressure heat-source-side refrigerant sent to the first usage unit 4a is sent to the first usage-side heat exchanger 41a through the first usage-side gas refrigerant tube 54a.
  • the high-pressure heat-source-side refrigerant sent to the first usage-side heat exchanger 41a exchanges heat with the low-pressure usage-side refrigerant in the refrigeration cycle circulating in the usage-side refrigerant circuit 40a in the first usage-side heat exchanger 41a. To dissipate heat.
  • the high-pressure heat-source-side refrigerant radiated in the first usage-side heat exchanger 41a is sent from the first usage unit 4a to the liquid refrigerant communication tube 13 through the first usage-side flow rate adjustment valve 42a and the first usage-side liquid refrigerant tube 45a. It is done.
  • the heat source side refrigerant sent to the liquid refrigerant communication tube 13 is sent to the heat source unit 2.
  • the heat source side refrigerant sent to the heat source unit 2 is sent to the supercooler 27 through the liquid side shut-off valve 29.
  • the heat source side refrigerant sent to the subcooler 27 is sent to the heat source side expansion valve 25 without performing heat exchange because the heat source side refrigerant does not flow through the suction return pipe 26.
  • the heat source side refrigerant sent to the heat source side expansion valve 25 is depressurized by the heat source side expansion valve 25 to be in a low-pressure gas-liquid two-phase state, and sent to the heat source side heat exchanger 24 through the heat source side liquid refrigerant tube 24a. It is done.
  • the low-pressure refrigerant sent to the heat source side heat exchanger 24 evaporates by exchanging heat with outdoor air supplied by the heat source side fan 32 in the heat source side heat exchanger 24.
  • the low-pressure heat source side refrigerant evaporated in the heat source side heat exchanger 24 is sent to the heat source side accumulator 28 through the first heat source side gas refrigerant tube 23a and the heat source side switching mechanism 23.
  • the low-pressure heat source side refrigerant sent to the heat source side accumulator 28 is again sucked into the heat source side compressor 21 through the heat source side suction pipe 21c.
  • the low-pressure usage-side refrigerant in the refrigeration cycle circulating in the usage-side refrigerant circuit 40a is heated and evaporated by the heat radiation of the heat source-side refrigerant in the first usage-side heat exchanger 41a.
  • the low-pressure usage-side refrigerant evaporated in the first usage-side heat exchanger 41a is sent to the usage-side accumulator 67a through the second cascade-side gas refrigerant tube 69a.
  • the low-pressure use-side refrigerant sent to the use-side accumulator 67a is sucked into the use-side compressor 62a through the cascade-side suction pipe 71a, compressed to a high pressure in the refrigeration cycle, and then discharged to the cascade-side discharge pipe 70a.
  • the high-pressure use-side refrigerant discharged to the cascade-side discharge pipe 70a is sent to the refrigerant-water heat exchanger 65a through the first cascade-side gas refrigerant pipe 72a.
  • the high-pressure use-side refrigerant sent to the refrigerant-water heat exchanger 65a radiates heat by exchanging heat with the aqueous medium circulating in the aqueous medium circuit 80a by the circulation pump 43a in the refrigerant-water heat exchanger 65a.
  • the high-pressure use-side refrigerant that has radiated heat in the refrigerant-water heat exchanger 65a is decompressed in the refrigerant-water heat exchange side flow rate control valve 66a to become a low-pressure gas-liquid two-phase state, and passes through the cascade-side liquid refrigerant pipe 68a. Again, it is sent to the 1st utilization side heat exchanger 41a.
  • the aqueous medium circulating in the aqueous medium circuit 80a is heated by the heat radiation of the use-side refrigerant in the refrigerant-water heat exchanger 65a.
  • the aqueous medium heated in the refrigerant-water heat exchanger 65a is drawn into the circulation pump 43a through the first usage-side water outlet pipe 48a, and after being pressurized, is sent from the first usage unit 4a to the aqueous medium communication pipe 16a. It is done.
  • the aqueous medium sent to the hot water storage unit 8a exchanges heat with the aqueous medium in the hot water storage tank 81a in the heat exchange coil 82a to radiate heat, thereby heating the aqueous medium in the hot water storage tank 81a.
  • the aqueous medium sent to the hot water heating unit 9a dissipates heat in the heat exchange panel 91a, thereby heating the indoor wall or the like or heating the indoor floor.
  • the heat source side switching mechanism 23 is in the heat source side heat radiation operation state (the heat source side switching mechanism of FIG. 3).
  • the first use side flow rate adjustment valve 42a is closed.
  • the second usage side controller 108a after switching the switching state of the heat source side switching mechanism 23 as the temperature control mode to the heat source side heat radiation operation state by one of the second usage side controllers 108a and 108b, the second usage side controller 108a and The operation (cooling operation) of the second usage unit 10a and / or the second usage unit 10b is performed according to the operation command of the second usage side controller 108b. Since the cooling operation is the same as the cooling operation in the heat pump system 1 of the first embodiment, the description thereof is omitted here.
  • the second usage side controller 108a and The operation (heating operation) of the second usage unit 10a and / or the second usage unit 10b is performed according to the operation command of the second usage side controller 108b. Since the heating operation is the same as the heating operation in the heat pump system 1 of the first embodiment, the description thereof is omitted here.
  • the heat source side switching mechanism 23 is heat source side evaporation.
  • the operation state is switched to the operation state (the state indicated by the broken line of the heat source side switching mechanism 23 in FIG. 3), and the suction return expansion valve 26a is closed.
  • the aqueous medium circuit 80a the aqueous medium switching mechanism 161a is switched to a state in which the aqueous medium is supplied to the hot water storage unit 8a and / or the hot water heating unit 9a.
  • the switching state of the heat source side switching mechanism 23 as the temperature control mode is switched to the heat source side evaporation operation state by one of the second usage side controllers 108a and 108b, and then the first usage side controller 77a.
  • the operation command the operation (hot water supply operation) of the first usage unit 4a (and the hot water storage unit 8a and / or the hot water heating unit 9a) and the operation command of the second usage side controller 108a and / or the second usage side controller 108b
  • the operation (heating operation) of the second usage unit 10a and / or the second usage unit 10b is performed.
  • the low pressure heat source side refrigerant in the refrigeration cycle is sucked into the heat source side compressor 21 through the heat source side suction pipe 21c and compressed to a high pressure in the refrigeration cycle, and then the heat source side refrigerant circuit 20 is cooled. It is discharged to the discharge pipe 21b.
  • the high pressure heat source side refrigerant discharged to the heat source side discharge pipe 21b is separated from the refrigerating machine oil in the oil separator 22a.
  • the refrigerating machine oil separated from the heat source side refrigerant in the oil separator 22a is returned to the heat source side suction pipe 21c through the oil return pipe 22b.
  • the high-pressure heat source side refrigerant from which the refrigerating machine oil is separated is sent from the heat source unit 2 to the gas refrigerant communication tube 14 through the heat source side switching mechanism 23, the second heat source side gas refrigerant tube 23b, and the gas side shut-off valve 30.
  • the high-pressure heat-source-side refrigerant sent to the gas refrigerant communication tube 14 will be described on the assumption that the first usage unit 4a and the second usage units 10a and 10b (here, both the second usage units 10a and 10b are heated). ).
  • the high-pressure heat-source-side refrigerant sent to the second usage units 10a, 10b is sent to the second usage-side heat exchangers 101a, 101b through the second usage-side gas refrigerant tubes 104a, 104b.
  • the high-pressure heat-source-side refrigerant sent to the second usage-side heat exchangers 101a and 101b exchanges heat with the air medium supplied by the usage-side fans 105a and 105b in the second usage-side heat exchangers 101a and 101b. To dissipate heat, thereby heating the room.
  • the high-pressure heat-source-side refrigerant radiated in the second usage-side heat exchangers 101a and 101b passes through the second usage-side flow rate adjustment valves 102a and 102b and the second usage-side liquid refrigerant tubes 103a and 103b, and the second usage units 10a and 10b.
  • the high-pressure heat-source-side refrigerant sent to the first usage unit 4a is sent to the first usage-side heat exchanger 41a through the first usage-side gas refrigerant tube 54a.
  • the high-pressure heat-source-side refrigerant sent to the first usage-side heat exchanger 41a exchanges heat with the low-pressure usage-side refrigerant in the refrigeration cycle circulating in the usage-side refrigerant circuit 40a in the first usage-side heat exchanger 41a. To dissipate heat.
  • the high-pressure heat-source-side refrigerant radiated in the first usage-side heat exchanger 41a is sent from the first usage unit 4a to the liquid refrigerant communication tube 13 through the first usage-side flow rate adjustment valve 42a and the first usage-side liquid refrigerant tube 45a. It is done.
  • the heat-source-side refrigerant sent from the second usage units 10a and 10b and the first usage unit 4a to the liquid refrigerant communication tube 13 merges in the liquid refrigerant communication tube 13 and is sent to the heat source unit 2.
  • the heat source side refrigerant sent to the heat source unit 2 is sent to the supercooler 27 through the liquid side shut-off valve 29.
  • the heat source side refrigerant sent to the subcooler 27 is sent to the heat source side expansion valve 25 without performing heat exchange because the heat source side refrigerant does not flow through the suction return pipe 26.
  • the heat source side refrigerant sent to the heat source side expansion valve 25 is depressurized by the heat source side expansion valve 25 to be in a low-pressure gas-liquid two-phase state, and sent to the heat source side heat exchanger 24 through the heat source side liquid refrigerant tube 24a. It is done.
  • the low-pressure refrigerant sent to the heat source side heat exchanger 24 evaporates by exchanging heat with outdoor air supplied by the heat source side fan 32 in the heat source side heat exchanger 24.
  • the low-pressure heat source side refrigerant evaporated in the heat source side heat exchanger 24 is sent to the heat source side accumulator 28 through the first heat source side gas refrigerant tube 23a and the heat source side switching mechanism 23.
  • the low-pressure heat source side refrigerant sent to the heat source side accumulator 28 is again sucked into the heat source side compressor 21 through the heat source side suction pipe 21c.
  • the low-pressure usage-side refrigerant in the refrigeration cycle circulating in the usage-side refrigerant circuit 40a is heated and evaporated by the heat radiation of the heat source-side refrigerant in the first usage-side heat exchanger 41a.
  • the low-pressure usage-side refrigerant evaporated in the first usage-side heat exchanger 41a is sent to the usage-side accumulator 67a through the second cascade-side gas refrigerant tube 69a.
  • the low-pressure use-side refrigerant sent to the use-side accumulator 67a is sucked into the use-side compressor 62a through the cascade-side suction pipe 71a, compressed to a high pressure in the refrigeration cycle, and then discharged to the cascade-side discharge pipe 70a.
  • the high-pressure use-side refrigerant discharged to the cascade-side discharge pipe 70a is sent to the refrigerant-water heat exchanger 65a through the first cascade-side gas refrigerant pipe 72a.
  • the high-pressure use-side refrigerant sent to the refrigerant-water heat exchanger 65a radiates heat by exchanging heat with the aqueous medium circulating in the aqueous medium circuit 80a by the circulation pump 43a in the refrigerant-water heat exchanger 65a.
  • the high-pressure use-side refrigerant that has radiated heat in the refrigerant-water heat exchanger 65a is decompressed in the refrigerant-water heat exchange side flow rate control valve 66a to become a low-pressure gas-liquid two-phase state, and passes through the cascade-side liquid refrigerant pipe 68a. Again, it is sent to the 1st utilization side heat exchanger 41a.
  • the aqueous medium circulating in the aqueous medium circuit 80a is heated by the heat radiation of the use-side refrigerant in the refrigerant-water heat exchanger 65a.
  • the aqueous medium heated in the refrigerant-water heat exchanger 65a is drawn into the circulation pump 43a through the first usage-side water outlet pipe 48a, and after being pressurized, is sent from the first usage unit 4a to the aqueous medium communication pipe 16a. It is done.
  • the aqueous medium sent to the hot water storage unit 8a exchanges heat with the aqueous medium in the hot water storage tank 81a in the heat exchange coil 82a to radiate heat, thereby heating the aqueous medium in the hot water storage tank 81a.
  • the aqueous medium sent to the hot water heating unit 9a dissipates heat in the heat exchange panel 91a, thereby heating the indoor wall or the like or heating the indoor floor. In this way, the hot water supply operation of the first usage unit 4a and the heating operation of the second usage unit 10a and / or the second usage unit 10b are performed.
  • the hot water supply operation and the heating operation cannot be performed without switching the temperature control mode to the heat source side heat radiation operation state. If the temperature control mode is switched to the heat source side evaporation operation state, the cooling operation cannot be performed. That is, in order to perform a desired operation in the first usage unit 4a and the second usage unit 10a, 10b, a hot water supply operation command from the first usage side controller 77a to the first usage unit 4a or a second usage side controller 108a.
  • the heat pump system 200 has the first usage unit 4a and the second usage unit 10a, 10b individually supplied with hot water, cooling or heating. You can not drive by selecting driving.
  • this heat pump system 200 like the heat pump system 1 of the first embodiment, one of the second usage-side controllers 108a, 108b that commands the second usage units 10a, 10b (here, the first Temperature control mode switching control that can be operated by switching to a temperature control mode different from the switching state of the heat source side switching mechanism 23 as the temperature control mode commanded by the 2 use side controller 108a). ing. Since the temperature control mode switching control is the same as the temperature control mode switching control in the heat pump system 1 of the first embodiment (see FIG. 2 and the like), description thereof is omitted here. Thereby, also in this heat pump system 200, the effect similar to the heat pump system 1 of 1st Embodiment can be acquired.
  • the first Temperature control mode switching control that can be operated by switching to a temperature control mode different from the switching state of the heat source side switching mechanism 23 as the temperature control mode commanded by the 2 use side controller 108a.
  • the hot water supply operation of the first usage unit 4a cannot be performed and the cooling operation of the second usage units 10a and 10b cannot be performed. If it can be performed (hereinafter referred to as “exhaust heat hot water supply operation”), the evaporative load (that is, the cooling load) in the second usage-side heat exchangers 101a and 101b in the operation state in which the cooling operation is performed such as summer. ),
  • the hot water supply operation can be performed by the heat radiation load (that is, the hot water supply load) in the first usage-side heat exchanger 4a, which is preferable from the viewpoint of energy saving.
  • FIG. 4 is a schematic configuration diagram of a heat pump system 300 according to the third embodiment of the present invention.
  • the heat pump system 300 is an apparatus capable of performing an operation for heating an aqueous medium using a vapor compression heat pump cycle.
  • the heat pump system 300 mainly includes a heat source unit 2, a first usage unit 4a, second usage units 10a and 10b, a discharge refrigerant communication tube 12, a liquid refrigerant communication tube 13, a gas refrigerant communication tube 14, and hot water storage.
  • the unit 8a, the hot water heating unit 9a, the aqueous medium communication pipe 15a, and the aqueous medium communication pipe 16a are provided, and the heat source unit 2, the first usage unit 4a, and the second usage unit 10a are connected to the refrigerant communication pipe 12, 13 and 14 constitutes the heat source side refrigerant circuit 20, the first usage unit 4a constitutes the usage side refrigerant circuit 40a, the first usage unit 4a, the hot water storage unit 8a, and the hot water heating unit 9a.
  • the aqueous medium communication pipes 15a and 16a to constitute an aqueous medium circuit 80a.
  • HFC-410A which is a kind of HFC refrigerant
  • HFC-134a which is a kind of HFC refrigerant
  • HFC-134a is sealed in the use side refrigerant circuit 40a as a use side refrigerant, and ester or ether type refrigerating machine oil having compatibility with the HFC refrigerant. Is enclosed for lubrication of the use side compressor 62a.
  • the pressure corresponding to saturation gas temperature 65 degreeC is 2.8 Mpa or less at a gauge pressure at most, Preferably, it is 2.0 Mpa
  • the following refrigerants are preferably used.
  • HFC-134a is a kind of refrigerant having such saturation pressure characteristics.
  • water as an aqueous medium circulates in the aqueous medium circuit 80a.
  • the second usage units 10a and 10b, the hot water storage unit 8a, the hot water heating unit 9a, and the liquid refrigerant communication tube 13 having the same configuration as the heat pump system 1 (see FIG. 1) in the first embodiment.
  • the configuration of the gas refrigerant communication pipe 14, the aqueous medium communication pipes 15a and 16a, the first usage-side controller 77a, and the second usage-side controllers 108a and 108b will be given the same reference numerals, and the description thereof will be omitted. 2, only the configuration of the discharge refrigerant communication tube 12 and the first usage unit 4a will be described.
  • the heat source unit 2 is installed outdoors and is connected to the utilization units 4 a and 10 a via the refrigerant communication pipes 12, 13 and 14 and constitutes a part of the heat source side refrigerant circuit 20.
  • the heat source unit 2 mainly includes a heat source side compressor 21, an oil separation mechanism 22, a heat source side switching mechanism 23, a heat source side heat exchanger 24, a heat source side expansion mechanism 25, a suction return pipe 26, and a supercooling.
  • the discharge side shut-off valve 31 is formed between the heat source side discharge branch pipe 21d branched from the heat source side discharge pipe 21b connecting the discharge of the heat source side compressor 21 and the heat source side switching mechanism 23 and the gas refrigerant communication pipe 14. It is the valve provided in the connection part.
  • the heat source unit 2 is the same as the heat pump system 1 (see FIG. 1) in the first embodiment except for the configuration except that the heat source unit 2 has the discharge side shut-off valve 31 and the heat source side discharge branch pipe 21d.
  • the same reference numerals are given and the description is omitted.
  • the discharge refrigerant communication pipe 12 is connected to the heat source side discharge branch pipe 21d via the discharge side closing valve 31, and the heat source side switching mechanism 23 is on the heat source side in both the heat source side heat radiation operation state and the heat source side evaporation operation state.
  • This is a refrigerant pipe capable of leading the heat source side refrigerant out of the heat source unit 2 from the discharge of the compressor 21.
  • the first usage unit 4a is installed indoors, is connected to the heat source unit 2 and the second usage unit 10a via the refrigerant communication pipes 12 and 13, and constitutes a part of the heat source side refrigerant circuit 20. Yes. Moreover, the 1st utilization unit 4a is connected to the hot water storage unit 8a and the hot water heating unit 9a via the aqueous medium communication pipes 15a and 16a, and comprises a part of aqueous medium circuit 80a.
  • the first usage unit 4a mainly includes a first usage-side heat exchanger 41a, a first usage-side flow rate adjustment valve 42a, and a circulation pump 43a.
  • the first use side heat exchanger 41a is connected to the gas refrigerant communication tube 14 like the heat pump system 1 (see FIG. 1) in the first embodiment on the gas side of the flow path through which the heat source side refrigerant flows.
  • a first use side discharge refrigerant pipe 46a to which the discharge refrigerant communication pipe 12 is connected is connected.
  • the first use side discharge refrigerant pipe 46a allows the flow of the heat source side refrigerant from the discharge refrigerant communication pipe 12 toward the first use side heat exchanger 41a, and is discharged from the first use side heat exchanger 41a to the discharge refrigerant communication pipe 12.
  • a first usage-side discharge check valve 49a that prohibits the flow of the heat source side refrigerant toward the first side is provided.
  • the usage unit 4a has a configuration excluding the point where the first usage-side discharge refrigerant pipe 46a is connected instead of the first usage-side gas refrigerant pipe 54a. 1), the same reference numerals are given here, and description thereof is omitted. Further, the heat pump system 300 is provided with a control unit (not shown) that performs the following operations and various controls according to the settings and commands of the first and second usage-side controllers. ⁇ Operation> Next, the operation of the heat pump system 300 will be described.
  • the operation of the heat pump system 300 includes a hot water supply operation in which only the hot water supply operation of the first usage unit 4a (that is, the operation of the hot water storage unit 8a and / or the hot water heating unit 9a), the second usage unit 10a and / or the second usage.
  • the switching state of the heat source side switching mechanism 23 as the temperature control mode is switched to the heat source side evaporation operation state by one of the second usage side controllers 108a and 108b, and then the first usage side controller 77a.
  • the operation (hot water supply operation) of the first usage unit 4a (and the hot water storage unit 8a and / or the hot water heating unit 9a) is performed according to the operation command.
  • the low pressure heat source side refrigerant in the refrigeration cycle is sucked into the heat source side compressor 21 through the heat source side suction pipe 21c and compressed to a high pressure in the refrigeration cycle, and then the heat source side refrigerant circuit 20 is cooled. It is discharged to the discharge pipe 21b.
  • the high pressure heat source side refrigerant discharged to the heat source side discharge pipe 21b is separated from the refrigerating machine oil in the oil separator 22a.
  • the refrigerating machine oil separated from the heat source side refrigerant in the oil separator 22a is returned to the heat source side suction pipe 21c through the oil return pipe 22b.
  • the high-pressure heat-source-side refrigerant from which the refrigeration oil has been separated is sent from the heat-source unit 2 to the discharge refrigerant communication tube 12 through the heat-source-side discharge branch pipe 21d and the discharge-side shut-off valve 31.
  • the high-pressure heat source side refrigerant sent to the discharge refrigerant communication tube 12 is sent to the first usage unit 4a.
  • the high-pressure heat-source-side refrigerant sent to the first usage unit 4a is sent to the first usage-side heat exchanger 41a through the first usage-side discharge refrigerant tube 46a and the first usage-side discharge check valve 49a.
  • the high-pressure heat-source-side refrigerant sent to the first usage-side heat exchanger 41a radiates heat by exchanging heat with the aqueous medium circulating in the aqueous-medium circuit 80a by the circulation pump 43a in the first usage-side heat exchanger 41a.
  • the high-pressure heat-source-side refrigerant radiated in the first usage-side heat exchanger 41a is sent from the first usage unit 4a to the liquid refrigerant communication tube 13 through the first usage-side flow rate adjustment valve 42a and the first usage-side liquid refrigerant tube 45a. It is done.
  • the heat source side refrigerant sent to the liquid refrigerant communication tube 13 is sent to the heat source unit 2.
  • the heat source side refrigerant sent to the heat source unit 2 is sent to the supercooler 27 through the liquid side shut-off valve 29.
  • the heat source side refrigerant sent to the subcooler 27 is sent to the heat source side expansion valve 25 without performing heat exchange because the heat source side refrigerant does not flow through the suction return pipe 26.
  • the heat source side refrigerant sent to the heat source side expansion valve 25 is depressurized by the heat source side expansion valve 25 to be in a low-pressure gas-liquid two-phase state, and sent to the heat source side heat exchanger 24 through the heat source side liquid refrigerant tube 24a. It is done.
  • the low-pressure refrigerant sent to the heat source side heat exchanger 24 evaporates by exchanging heat with outdoor air supplied by the heat source side fan 32 in the heat source side heat exchanger 24.
  • the low-pressure heat source side refrigerant evaporated in the heat source side heat exchanger 24 is sent to the heat source side accumulator 28 through the first heat source side gas refrigerant tube 23a and the heat source side switching mechanism 23.
  • the low-pressure heat source side refrigerant sent to the heat source side accumulator 28 is again sucked into the heat source side compressor 21 through the heat source side suction pipe 21c.
  • the aqueous medium circulating in the aqueous medium circuit 80a is heated by the heat radiation of the heat source side refrigerant in the first usage-side heat exchanger 41a.
  • the aqueous medium heated in the first usage-side heat exchanger 41a is sucked into the circulation pump 43a through the first usage-side water outlet pipe 48a, and after the pressure is increased, from the first usage unit 4a to the aqueous medium communication pipe 16a.
  • the aqueous medium sent to the aqueous medium communication pipe 16a is sent to the hot water storage unit 8a and / or the hot water heating unit 9a through the aqueous medium side switching mechanism 161a.
  • the aqueous medium sent to the hot water storage unit 8a exchanges heat with the aqueous medium in the hot water storage tank 81a in the heat exchange coil 82a to radiate heat, thereby heating the aqueous medium in the hot water storage tank 81a.
  • the aqueous medium sent to the hot water heating unit 9a dissipates heat in the heat exchange panel 91a, thereby heating the indoor wall or the like or heating the indoor floor.
  • movement in the hot water supply operation which performs only the hot water supply operation of the 1st utilization unit 4a is performed.
  • -Cooling operation When only the cooling operation of the second usage unit 10a and / or the second usage unit 10b is performed, in the heat source side refrigerant circuit 20, the heat source side switching mechanism 23 is in the heat source side heat radiation operation state (the heat source side switching mechanism in FIG. 4). 23, the first use side flow rate adjustment valve 42a is closed.
  • the second usage side controller 108a and The operation (cooling operation) of the second usage unit 10a and / or the second usage unit 10b is performed according to the operation command of the second usage side controller 108b. Since the cooling operation is the same as the cooling operation in the heat pump system 1 of the first embodiment, the description thereof is omitted here.
  • the second usage side controller 108a and The operation (heating operation) of the second usage unit 10a and / or the second usage unit 10b is performed according to the operation command of the second usage side controller 108b. Since the heating operation is the same as the heating operation in the heat pump system 1 of the first embodiment, the description thereof is omitted here.
  • the heat source side switching mechanism 23 is heat source side evaporation.
  • the operation state is switched to the operation state (the state indicated by the broken line of the heat source side switching mechanism 23 in FIG. 4), and the suction return expansion valve 26a is closed.
  • the aqueous medium circuit 80a the aqueous medium switching mechanism 161a is switched to a state in which the aqueous medium is supplied to the hot water storage unit 8a and / or the hot water heating unit 9a.
  • the switching state of the heat source side switching mechanism 23 as the temperature control mode is switched to the heat source side evaporation operation state by one of the second usage side controllers 108a and 108b, and then the first usage side controller 77a.
  • the operation command the operation (hot water supply operation) of the first usage unit 4a (and the hot water storage unit 8a and / or the hot water heating unit 9a) and the operation command of the second usage side controller 108a and / or the second usage side controller 108b
  • the operation (heating operation) of the second usage unit 10a and / or the second usage unit 10b is performed.
  • the low pressure heat source side refrigerant in the refrigeration cycle is sucked into the heat source side compressor 21 through the heat source side suction pipe 21c and compressed to a high pressure in the refrigeration cycle, and then the heat source side refrigerant circuit 20 is cooled. It is discharged to the discharge pipe 21b.
  • the high pressure heat source side refrigerant discharged to the heat source side discharge pipe 21b is separated from the refrigerating machine oil in the oil separator 22a.
  • the refrigerating machine oil separated from the heat source side refrigerant in the oil separator 22a is returned to the heat source side suction pipe 21c through the oil return pipe 22b.
  • a part of the high-pressure heat source side refrigerant from which the refrigerating machine oil has been separated is sent from the heat source unit 2 to the discharge refrigerant communication pipe 12 through the heat source side discharge branch pipe 21d and the discharge side shut-off valve 31, and the rest is used as the heat source. It is sent from the heat source unit 2 to the gas refrigerant communication pipe 14 through the side switching mechanism 23, the second heat source side gas refrigerant pipe 23 b, and the gas side closing valve 30.
  • the high-pressure heat-source-side refrigerant sent to the gas refrigerant communication tube 14 is sent to the second usage units 10a and 10b (here, it is assumed that both the second usage units 10a and 10b are operated for heating).
  • the high-pressure heat-source-side refrigerant sent to the second usage units 10a, 10b is sent to the second usage-side heat exchangers 101a, 101b through the second usage-side gas refrigerant tubes 104a, 104b.
  • the high-pressure heat-source-side refrigerant sent to the second usage-side heat exchangers 101a and 101b exchanges heat with the air medium supplied by the usage-side fans 105a and 105b in the second usage-side heat exchangers 101a and 101b. To dissipate heat, thereby heating the room.
  • the high-pressure heat-source-side refrigerant radiated in the second usage-side heat exchangers 101a and 101b passes through the second usage-side flow rate adjustment valves 102a and 102b and the second usage-side liquid refrigerant tubes 103a and 103b, and the second usage units 10a and 10b.
  • the high-pressure heat source side refrigerant sent to the discharge refrigerant communication tube 12 is sent to the first usage unit 4a.
  • the high-pressure heat-source-side refrigerant sent to the first usage unit 4a is sent to the first usage-side heat exchanger 41a through the first usage-side discharge refrigerant tube 46a and the first usage-side discharge check valve 49a.
  • the high-pressure heat-source-side refrigerant sent to the first usage-side heat exchanger 41a radiates heat by exchanging heat with the aqueous medium circulating in the aqueous-medium circuit 80a by the circulation pump 43a in the first usage-side heat exchanger 41a. .
  • the high-pressure heat-source-side refrigerant radiated in the first usage-side heat exchanger 41a is sent from the first usage unit 4a to the liquid refrigerant communication tube 13 through the first usage-side flow rate adjustment valve 42a and the first usage-side liquid refrigerant tube 45a. It is done.
  • the heat source side refrigerant sent from the second usage units 10a and 10b and the first usage unit 4a to the liquid refrigerant communication tube 13 merges in the liquid refrigerant communication tube 13 and is sent to the heat source unit 2.
  • the heat source side refrigerant sent to the heat source unit 2 is sent to the supercooler 27 through the liquid side closing valve 29.
  • the heat source side refrigerant sent to the subcooler 27 is sent to the heat source side expansion valve 25 without performing heat exchange because the heat source side refrigerant does not flow through the suction return pipe 26.
  • the heat source side refrigerant sent to the heat source side expansion valve 25 is depressurized by the heat source side expansion valve 25 to be in a low-pressure gas-liquid two-phase state, and sent to the heat source side heat exchanger 24 through the heat source side liquid refrigerant tube 24a. It is done.
  • the low-pressure refrigerant sent to the heat source side heat exchanger 24 evaporates by exchanging heat with outdoor air supplied by the heat source side fan 32 in the heat source side heat exchanger 24.
  • the low-pressure heat source side refrigerant evaporated in the heat source side heat exchanger 24 is sent to the heat source side accumulator 28 through the first heat source side gas refrigerant tube 23a and the heat source side switching mechanism 23.
  • the low-pressure heat source side refrigerant sent to the heat source side accumulator 28 is again sucked into the heat source side compressor 21 through the heat source side suction pipe 21c.
  • the aqueous medium circulating in the aqueous medium circuit 80a is heated by the heat radiation of the heat source side refrigerant in the first usage-side heat exchanger 41a.
  • the aqueous medium heated in the first usage-side heat exchanger 41a is sucked into the circulation pump 43a through the first usage-side water outlet pipe 48a, and after the pressure is increased, from the first usage unit 4a to the aqueous medium communication pipe 16a.
  • the aqueous medium sent to the aqueous medium communication pipe 16a is sent to the hot water storage unit 8a and / or the hot water heating unit 9a through the aqueous medium side switching mechanism 161a.
  • the aqueous medium sent to the hot water storage unit 8a exchanges heat with the aqueous medium in the hot water storage tank 81a in the heat exchange coil 82a to radiate heat, thereby heating the aqueous medium in the hot water storage tank 81a.
  • the aqueous medium sent to the hot water heating unit 9a dissipates heat in the heat exchange panel 91a, thereby heating the indoor wall or the like or heating the indoor floor.
  • the hot water supply operation of the first usage unit 4a and the heating operation of the second usage unit 10a and / or the second usage unit 10b are performed.
  • -Waste heat hot water operation In the case of performing the exhaust heat hot water supply operation for performing the hot water supply operation of the first usage unit 4a and the cooling operation of the second usage unit 10a and / or the second usage unit 10b, the heat source side refrigerant circuit 20 performs heat source side switching.
  • the mechanism 23 is switched to the heat source side heat radiation operation state (the state indicated by the solid line of the heat source side switching mechanism 23 in FIG. 4).
  • the aqueous medium switching mechanism 161a is switched to a state of supplying the aqueous medium to the hot water storage unit 8a.
  • the switching state of the heat source side switching mechanism 23 as the temperature control mode is switched to the heat source side evaporation operation state by one of the second usage side controllers 108a and 108b, and then the first usage side controller 77a.
  • the second usage unit 10a and / or the second usage unit 10b is operated (cooling operation).
  • the low pressure heat source side refrigerant in the refrigeration cycle is sucked into the heat source side compressor 21 through the heat source side suction pipe 21c and compressed to a high pressure in the refrigeration cycle, and then the heat source side refrigerant circuit 20 is cooled. It is discharged to the discharge pipe 21b.
  • the high pressure heat source side refrigerant discharged to the heat source side discharge pipe 21b is separated from the refrigerating machine oil in the oil separator 22a.
  • the refrigerating machine oil separated from the heat source side refrigerant in the oil separator 22a is returned to the heat source side suction pipe 21c through the oil return pipe 22b.
  • a part of the high-pressure heat source side refrigerant from which the refrigerating machine oil is separated is sent from the heat source unit 2 to the discharge refrigerant communication pipe 12 through the heat source side discharge branch pipe 21d and the discharge side shut-off valve 31, and the rest is used as the heat source. It is sent to the heat source side heat exchanger 24 through the side switching mechanism 23 and the first heat source side gas refrigerant tube 23a.
  • the high-pressure heat-source-side refrigerant sent to the heat-source-side heat exchanger 24 radiates heat by exchanging heat with outdoor air supplied by the heat-source-side fan 32 in the heat source-side heat exchanger 24.
  • the high-pressure heat-source-side refrigerant that has radiated heat in the heat-source-side heat exchanger is sent to the supercooler 27 through the heat source-side expansion valve 25.
  • the heat-source-side refrigerant sent to the subcooler 27 is cooled so as to be in a supercooled state by exchanging heat with the heat-source-side refrigerant branched from the heat source-side liquid refrigerant tube 24a to the suction return tube 26.
  • the heat source side refrigerant flowing through the suction return pipe 26 is returned to the heat source side suction pipe 21c.
  • the heat source side refrigerant cooled in the subcooler 27 is sent from the heat source unit 2 to the liquid refrigerant communication tube 13 through the heat source side liquid refrigerant tube 24a and the liquid side shut-off valve 29.
  • the high-pressure heat source side refrigerant sent to the discharge refrigerant communication tube 12 is sent to the first usage unit 4a.
  • the high-pressure heat-source-side refrigerant sent to the first usage unit 4a is sent to the first usage-side heat exchanger 41a through the first usage-side discharge refrigerant tube 46a and the first usage-side discharge check valve 49a.
  • the high-pressure heat-source-side refrigerant sent to the first usage-side heat exchanger 41a radiates heat by exchanging heat with the aqueous medium circulating in the aqueous-medium circuit 80a by the circulation pump 43a in the first usage-side heat exchanger 41a. .
  • the high-pressure heat-source-side refrigerant radiated in the first usage-side heat exchanger 41a is sent from the first usage unit 4a to the liquid refrigerant communication tube 13 through the first usage-side flow rate adjustment valve 42a and the first usage-side liquid refrigerant tube 45a. It is done.
  • the heat-source-side refrigerant sent from the heat source unit 2 and the first usage unit 4a to the liquid refrigerant communication tube 13 merges in the liquid refrigerant communication tube 13, and the second usage units 10a and 10b (here, the second usage unit 10a). 10b will be described as heating operation).
  • the heat-source-side refrigerant sent to the second usage units 10a and 10b is sent to the second usage-side flow rate adjustment valves 102a and 102b.
  • the heat-source-side refrigerant sent to the second usage-side flow rate adjustment valves 102a, 102b is depressurized by the second usage-side flow rate adjustment valves 102a, 102b to be in a low-pressure gas-liquid two-phase state, and the second usage-side liquid refrigerant. It is sent to the second usage side heat exchangers 101a and 101b through the tubes 103a and 103b.
  • the low-pressure heat source side refrigerant sent to the second usage side heat exchangers 101a and 101b exchanges heat with the air medium supplied by the usage side fans 105a and 105a in the second usage side heat exchangers 101a and 101b. This evaporates and cools the room.
  • the low-pressure heat-source-side refrigerant evaporated in the second usage-side heat exchangers 101a and 101b is sent from the second usage units 10a and 10b to the gas refrigerant communication tube 14 through the second usage-side gas refrigerant tubes 104a and 104b.
  • the low-pressure heat source side refrigerant sent to the gas refrigerant communication tube 14 is sent to the heat source unit 2.
  • the low-pressure heat source side refrigerant sent to the heat source unit 2 is sent to the heat source side accumulator 28 through the gas side shut-off valve 30, the second heat source side gas refrigerant tube 23b, and the heat source side switching mechanism 23.
  • the low-pressure heat source side refrigerant sent to the heat source side accumulator 28 is again sucked into the heat source side compressor 21 through the heat source side suction pipe 21c.
  • the aqueous medium circulating in the aqueous medium circuit 80a is heated by the heat radiation of the heat source side refrigerant in the first usage-side heat exchanger 41a.
  • the aqueous medium heated in the first usage-side heat exchanger 41a is drawn into the circulation pump 43a through the first usage-side water outlet pipe 48a, and after the pressure is increased, the first usage unit 4a supplies the aqueous medium communication pipe 16a.
  • the aqueous medium sent to the aqueous medium communication pipe 16a is sent to the hot water storage unit 8a and / or the hot water heating unit 9a through the aqueous medium side switching mechanism 161a.
  • the aqueous medium sent to the hot water storage unit 8a exchanges heat with the aqueous medium in the hot water storage tank 81a in the heat exchange coil 82a to radiate heat, thereby heating the aqueous medium in the hot water storage tank 81a.
  • the hot water supply operation in which the hot water supply operation of the first usage unit 4a is performed and the cooling operation of the second usage unit 10a and / or the second usage unit 10b is performed.
  • the hot water supply operation can be performed while the temperature control mode is switched to the heat source side heat radiation operation state. Is performed, the hot water supply operation is performed by the heat radiation load in the first usage-side heat exchanger 41a corresponding to the evaporation load in the second usage-side heat exchangers 101a and 101b. In this case, it is necessary to switch the temperature control mode to the heat source side evaporation operation state and perform the hot water supply operation.
  • the temperature control mode In spring and autumn, cooling operation and heating operation may be performed as necessary. In this case, the temperature control mode must be switched. That is, even in a configuration capable of performing the exhaust heat hot water supply operation, such as the heat pump system 300, the temperature control mode needs to be switched. In this sense, the heat pump system 300 is also the first usage unit. 4a and the second usage units 10a and 10b cannot be operated by individually selecting a hot water supply operation, a cooling operation or a heating operation.
  • the temperature control mode is in the heat source side heat radiation operation state (that is, even if the second usage units 10a and 10b are in the cooling operation or not in the cooling operation, the second usage
  • the side controller 108a commands the temperature control mode to enter the heat source side heat radiation operation state
  • the hot water supply operation is commanded from the first usage side controller 77a to the first usage unit 4a (therefore, temperature regulation)
  • the priority hot water supply operation steps S17 to S19
  • the commanded temperature adjustment mode here, the second usage side controller 108a) Operation in the temperature control mode
  • step S11, S14 is to be carried out.
  • step S12 it is determined whether or not the condition A is satisfied.
  • this state is referred to as “tm3 time-up”), and whether or not a hot water supply operation has been commanded to the first usage unit 4a by the first usage-side controller 77a (FIG. 5).
  • the time tm3 is a time set in step S20 described later.
  • the exhaust heat hot water supply operation when the cooling operation is performed, when the hot water storage temperature Twh of the hot water storage unit 8a becomes equal to or lower than a predetermined hot water storage set temperature Twhs, the first usage unit 4a automatically becomes the first use unit 4a.
  • the temperature control mode is on the heat source side.
  • the hot water storage temperature Twh Since that is the state that can not) be above a predetermined hot-water storage temperature setting Twhs, towards the priority hot-water supply operation (steps S17 ⁇ S19), the process proceeds to step S13 and subsequent steps.
  • Step S13 although the condition A is satisfied, the process does not immediately shift to the preferential hot water supply operation (Steps S17 to S19), but in Step S13, the predetermined first time tm1 is counted.
  • the first time tm1 corresponds to a time interval from the end of the process of step S12 to the process of steps S15 and S16, and is set to about several minutes to 10 minutes.
  • step S15 it is determined whether or not the condition B is satisfied.
  • the low temperature condition temperature Tol corresponds to the highest temperature assumed to perform the heating operation of the second usage units 10a and 10b, and is set to about 15 ° C.
  • step S15 when it is determined that the condition B is not satisfied, that is, when the temperature control mode is the heat source side evaporation operation state (that is, “temperature control mode ⁇ cooling”), or the first usage side
  • the exhaust heat hot water supply operation for performing the operation is performed (in FIG.
  • step S17 counting of a predetermined second time tm2 is started.
  • the second time tm2 corresponds to the time for performing the priority hot water supply operation, and is set to about 10 to 30 minutes.
  • the circulation pump 43a is started and the first usage-side flow rate adjustment valve 41a is opened to start the hot water supply operation (that is, priority hot water supply operation) of the first usage unit 4a.
  • the second usage units 10a and 10b are switched to a state in which heating operation is performed.
  • the second usage units 10a and 10b are performing the cooling operation until the priority hot water supply operation is started, the second usage units 10a and 10b are in a state of performing the heating operation, and the priority hot water supply operation is being performed.
  • the heating operation is started when the second usage-side controllers 108a and 108b are instructed to the second usage units 10a and 10b, the indoor comfort is impaired, which is not preferable. Therefore, in the heat pump system 300, as in the heat pump system 1 of the first embodiment, the cooling operation of the second usage units 10a and 10b is prohibited during the priority hot water supply operation.
  • the second usage unit 10a to which the cooling operation is instructed from the second usage-side controllers 108a and 108b If the operation of the use side fans 105a and 105b is also stopped for 10b, the user may misunderstand that the failure of the second use units 10a and 10b has occurred.
  • the second usage units 10a and 10b for which the cooling operation is instructed from the second usage-side controllers 108a and 108b are in the priority hot water supply operation.
  • the operating frequency of the use side fans 105a and 105b is preferably set to the lowest frequency in order to prevent indoor drafts.
  • the operating state of the second usage units 10a and 10b in the second usage-side controllers 108a and 108b in conjunction with stopping the cooling operation of the second usage units 10a and 10b, the operating state of the second usage units 10a and 10b in the second usage-side controllers 108a and 108b. If the display is changed (that is, the cooling operation is changed to stop), the user may misunderstand that the failure of the second usage units 10a and 10b has occurred. Therefore, in the heat pump system 300, as in the heat pump system 1 of the first embodiment, the second usage-side controllers 108a and 108b are operated even when the cooling operation of the second usage units 10a and 10b in the priority hot water supply operation is stopped. An indication that the vehicle is in operation is maintained.
  • step S19 the priority hot-water supply driving
  • the high temperature condition temperature Toh corresponds to the lowest temperature at which the cooling operation of the second usage units 10a and 10b is assumed, and is set to about 20 ° C. Then, the priority hot water supply operation is in a state in which it is determined in step S19 that the condition C is satisfied, that is, the hot water supply operation can be performed without performing the priority hot water supply operation, or the hot water supply operation becomes unnecessary.
  • the priority hot water supply operation is continued until the second time tm2 is continued, and thereafter, the process shifts to the process (steps S20 and S11) for returning to the operation in the temperature control mode commanded by the second usage-side controller 108a.
  • step S20 counting of a predetermined third time tm3 is started, and in step S11, the operation in the temperature control mode commanded by the second usage-side controller 108a is started. Processing to return is performed.
  • the third time tm3 corresponds to the time during which the operation in the temperature control mode commanded by the second use side controller 108a is performed without performing the priority hot water supply operation when the priority hot water supply operation is requested. It is set to about 5 to 25 minutes.
  • the priority hot water supply operation is performed for the second time tm2, and the cooling operation is performed for the third time tm3. Will be done.
  • the operation of the second usage units 10a and 10b is stopped or the cooling operation is being performed by the temperature control mode switching control as described above (that is, the second usage side).
  • the temperature control mode commanded by the controller 108a is the heat source side heat radiation operation state
  • the hot water supply operation is requested from the first usage unit 10a (that is, from the first usage side controller 77a to the first usage unit 4a
  • the second use-side controller 108a commands the temperature control mode to the heat source side heat radiation operation state
  • the temperature control mode is switched to the heat source side evaporation operation state.
  • the priority hot water supply operation can be performed, that is, the heat source side as the temperature control mode commanded by the second usage side controller 108a It becomes possible to operate by switching to a different temperature control mode the switching state of the changeover mechanism 23.
  • the hot water supply operation of the first usage unit 4a cannot be performed and the cooling operation of the second usage units 10a and 10b cannot be performed. If it can be performed (hereinafter referred to as “exhaust heat hot water supply operation”), the evaporation load (that is, the cooling load) in the second usage-side heat exchangers 101a and 101b in the operation state in which the cooling operation is performed in summer or the like. ), The hot water supply operation can be performed by the heat radiation load (that is, the hot water supply load) in the first usage-side heat exchanger 4a, which is preferable from the viewpoint of energy saving.
  • FIG. 6 is a schematic configuration diagram of a heat pump system 400 according to the fourth embodiment of the present invention.
  • the heat pump system 400 is an apparatus capable of performing an operation for heating an aqueous medium using a vapor compression heat pump cycle.
  • the heat pump system 400 mainly includes a heat source unit 2, a first usage unit 4a, second usage units 10a and 10b, a discharge refrigerant communication tube 12, a liquid refrigerant communication tube 13, a gas refrigerant communication tube 14, and hot water storage.
  • the unit 8a, the hot water heating unit 9a, the aqueous medium communication pipe 15a, and the aqueous medium communication pipe 16a are provided, and the heat source unit 2, the first usage unit 4a, and the second usage unit 10a are connected to the refrigerant communication pipe 12, 13 and 14 constitutes the heat source side refrigerant circuit 20, the first usage unit 4a constitutes the usage side refrigerant circuit 40a, the first usage unit 4a, the hot water storage unit 8a, and the hot water heating unit 9a.
  • the aqueous medium communication pipes 15a and 16a to constitute an aqueous medium circuit 80a.
  • HFC-410A which is a kind of HFC refrigerant
  • HFC-134a which is a kind of HFC refrigerant
  • HFC-134a is sealed in the use side refrigerant circuit 40a as a use side refrigerant, and ester or ether type refrigerating machine oil having compatibility with the HFC refrigerant. Is enclosed for lubrication of the use side compressor 62a.
  • the pressure corresponding to saturation gas temperature 65 degreeC is 2.8 Mpa or less at a gauge pressure at most, Preferably, it is 2.0 Mpa
  • the following refrigerants are preferably used.
  • HFC-134a is a kind of refrigerant having such saturation pressure characteristics.
  • water as an aqueous medium circulates in the aqueous medium circuit 80a.
  • the configuration of the heat pump system 400 includes the second usage units 10a and 10b, the hot water storage unit 8a, the hot water heating unit 9a, the liquid refrigerant communication tube 13, the gas refrigerant communication tube 14, the aqueous medium communication tubes 15a and 16a, and the first usage.
  • the configurations of the side controller 77a and the second usage side controllers 108a and 108b are the same as those of the heat pump system 200 (see FIG. 3) in the second embodiment, and the heat source unit 2 and the discharge refrigerant communication pipe 12 are the same. Since the configuration is the same as the configuration of the heat pump system 300 (see FIG.
  • the first usage unit 4a is installed indoors, is connected to the heat source unit 2 and the second usage unit 10a via the refrigerant communication pipes 12 and 13, and constitutes a part of the heat source side refrigerant circuit 20. Yes.
  • the 1st utilization unit 4a comprises the utilization side refrigerant circuit 40a.
  • the 1st utilization unit 4a is connected to the hot water storage unit 8a and the hot water heating unit 9a via the aqueous medium communication pipes 15a and 16a, and constitutes a part of the aqueous medium circuit 80a.
  • the first usage unit 4a mainly includes a first usage-side heat exchanger 41a, a first usage-side flow rate adjustment valve 42a, a usage-side compressor 62a, a refrigerant-water heat exchanger 65a, and a refrigerant-hydrothermal exchange. It has a side flow rate adjustment valve 66a, a use side accumulator 67a, and a circulation pump 43a.
  • the first use side heat exchanger 41a is connected to the gas refrigerant communication pipe 14 like the heat pump system 200 (see FIG. 3) in the second embodiment on the gas side of the flow path through which the heat source side refrigerant flows.
  • a first use side discharge refrigerant pipe 46a to which the discharge refrigerant communication pipe 12 is connected is connected.
  • the first use side discharge refrigerant pipe 46a allows the flow of the heat source side refrigerant from the discharge refrigerant communication pipe 12 toward the first use side heat exchanger 41a, and is discharged from the first use side heat exchanger 41a to the discharge refrigerant communication pipe 12.
  • a first usage-side discharge check valve 49a that prohibits the flow of the heat source side refrigerant toward the first side is provided.
  • the usage unit 4a has a configuration in which the first usage-side discharge refrigerant pipe 46a is connected in place of the first usage-side gas refrigerant pipe 54a except for the heat pump system 200 in the second embodiment (see FIG. 3), the same reference numerals are given here, and description thereof is omitted.
  • the heat pump system 400 is provided with a control unit (not shown) that performs the following operations and various controls according to the settings and commands of the first and second usage-side controllers. ⁇ Operation> Next, the operation of the heat pump system 400 will be described.
  • the operation of the heat pump system 400 includes a hot water supply operation in which only the hot water supply operation of the first usage unit 4a (that is, the operation of the hot water storage unit 8a and / or the hot water heating unit 9a), the second usage unit 10a and / or the second usage.
  • the switching state of the heat source side switching mechanism 23 as the temperature control mode is switched to the heat source side evaporation operation state by one of the second usage side controllers 108a and 108b, and then the first usage side controller 77a.
  • the operation (hot water supply operation) of the first usage unit 4a (and the hot water storage unit 8a and / or the hot water heating unit 9a) is performed according to the operation command.
  • the low pressure heat source side refrigerant in the refrigeration cycle is sucked into the heat source side compressor 21 through the heat source side suction pipe 21c and compressed to a high pressure in the refrigeration cycle, and then the heat source side refrigerant circuit 20 is cooled. It is discharged to the discharge pipe 21b.
  • the high pressure heat source side refrigerant discharged to the heat source side discharge pipe 21b is separated from the refrigerating machine oil in the oil separator 22a.
  • the refrigerating machine oil separated from the heat source side refrigerant in the oil separator 22a is returned to the heat source side suction pipe 21c through the oil return pipe 22b.
  • the high-pressure heat-source-side refrigerant from which the refrigeration oil has been separated is sent from the heat-source unit 2 to the discharge refrigerant communication tube 12 through the heat-source-side discharge branch pipe 21d and the discharge-side shut-off valve 31.
  • the high-pressure heat source side refrigerant sent to the discharge refrigerant communication tube 12 is sent to the first usage unit 4a.
  • the high-pressure heat-source-side refrigerant sent to the first usage unit 4a is sent to the first usage-side heat exchanger 41a through the first usage-side discharge refrigerant tube 46a and the first usage-side discharge check valve 49a.
  • the high-pressure heat-source-side refrigerant sent to the first usage-side heat exchanger 41a exchanges heat with the low-pressure usage-side refrigerant in the refrigeration cycle circulating in the usage-side refrigerant circuit 40a in the first usage-side heat exchanger 41a. To dissipate heat.
  • the high-pressure heat-source-side refrigerant radiated in the first usage-side heat exchanger 41a is sent from the first usage unit 4a to the liquid refrigerant communication tube 13 through the first usage-side flow rate adjustment valve 42a and the first usage-side liquid refrigerant tube 45a. It is done.
  • the heat source side refrigerant sent to the liquid refrigerant communication tube 13 is sent to the heat source unit 2.
  • the heat source side refrigerant sent to the heat source unit 2 is sent to the supercooler 27 through the liquid side shut-off valve 29.
  • the heat source side refrigerant sent to the subcooler 27 is sent to the heat source side expansion valve 25 without performing heat exchange because the heat source side refrigerant does not flow through the suction return pipe 26.
  • the heat source side refrigerant sent to the heat source side expansion valve 25 is depressurized by the heat source side expansion valve 25 to be in a low-pressure gas-liquid two-phase state, and sent to the heat source side heat exchanger 24 through the heat source side liquid refrigerant tube 24a. It is done.
  • the low-pressure refrigerant sent to the heat source side heat exchanger 24 evaporates by exchanging heat with outdoor air supplied by the heat source side fan 32 in the heat source side heat exchanger 24.
  • the low-pressure heat source side refrigerant evaporated in the heat source side heat exchanger 24 is sent to the heat source side accumulator 28 through the first heat source side gas refrigerant tube 23a and the heat source side switching mechanism 23.
  • the low-pressure heat source side refrigerant sent to the heat source side accumulator 28 is again sucked into the heat source side compressor 21 through the heat source side suction pipe 21c.
  • the low-pressure usage-side refrigerant in the refrigeration cycle circulating in the usage-side refrigerant circuit 40a is heated and evaporated by the heat radiation of the heat source-side refrigerant in the first usage-side heat exchanger 41a.
  • the low-pressure usage-side refrigerant evaporated in the first usage-side heat exchanger 41a is sent to the usage-side accumulator 67a through the second cascade-side gas refrigerant tube 69a.
  • the low-pressure use-side refrigerant sent to the use-side accumulator 67a is sucked into the use-side compressor 62a through the cascade-side suction pipe 71a, compressed to a high pressure in the refrigeration cycle, and then discharged to the cascade-side discharge pipe 70a.
  • the high-pressure use-side refrigerant discharged to the cascade-side discharge pipe 70a is sent to the refrigerant-water heat exchanger 65a through the first cascade-side gas refrigerant pipe 72a.
  • the high-pressure use-side refrigerant sent to the refrigerant-water heat exchanger 65a radiates heat by exchanging heat with the aqueous medium circulating in the aqueous medium circuit 80a by the circulation pump 43a in the refrigerant-water heat exchanger 65a.
  • the high-pressure use-side refrigerant that has radiated heat in the refrigerant-water heat exchanger 65a is decompressed in the refrigerant-water heat exchange side flow rate control valve 66a to become a low-pressure gas-liquid two-phase state, and passes through the cascade-side liquid refrigerant pipe 68a. Again, it is sent to the 1st utilization side heat exchanger 41a.
  • the aqueous medium circulating in the aqueous medium circuit 80a is heated by the heat radiation of the use-side refrigerant in the refrigerant-water heat exchanger 65a.
  • the aqueous medium heated in the refrigerant-water heat exchanger 65a is drawn into the circulation pump 43a through the first usage-side water outlet pipe 48a, and after being pressurized, is sent from the first usage unit 4a to the aqueous medium communication pipe 16a. It is done.
  • the aqueous medium sent to the hot water storage unit 8a exchanges heat with the aqueous medium in the hot water storage tank 81a in the heat exchange coil 82a to radiate heat, thereby heating the aqueous medium in the hot water storage tank 81a.
  • the aqueous medium sent to the hot water heating unit 9a dissipates heat in the heat exchange panel 91a, thereby heating the indoor wall or the like or heating the indoor floor.
  • the heat source side switching mechanism 23 is in the heat source side heat dissipation operation state (the heat source side switching mechanism in FIG. 6).
  • the first use side flow rate adjustment valve 42a is closed.
  • the second usage side controller 108a and The operation (cooling operation) of the second usage unit 10a and / or the second usage unit 10b is performed according to the operation command of the second usage side controller 108b. Since the cooling operation is the same as the cooling operation in the heat pump system 200 of the second embodiment, the description thereof is omitted here.
  • the second usage side controller 108a and The operation (heating operation) of the second usage unit 10a and / or the second usage unit 10b is performed according to the operation command of the second usage side controller 108b. Since the heating operation is the same as the heating operation in the heat pump system 200 of the second embodiment, the description thereof is omitted here.
  • the heat source side switching mechanism 23 is heat source side evaporation.
  • the operation state is switched to the operation state (the state indicated by the broken line of the heat source side switching mechanism 23 in FIG. 6), and the suction return expansion valve 26a is closed.
  • the aqueous medium circuit 80a the aqueous medium switching mechanism 161a is switched to a state in which the aqueous medium is supplied to the hot water storage unit 8a and / or the hot water heating unit 9a.
  • the switching state of the heat source side switching mechanism 23 as the temperature control mode is switched to the heat source side evaporation operation state by one of the second usage side controllers 108a and 108b, and then the first usage side controller 77a.
  • the operation command the operation (hot water supply operation) of the first usage unit 4a (and the hot water storage unit 8a and / or the hot water heating unit 9a) and the operation command of the second usage side controller 108a and / or the second usage side controller 108b
  • the operation (heating operation) of the second usage unit 10a and / or the second usage unit 10b is performed.
  • the low pressure heat source side refrigerant in the refrigeration cycle is sucked into the heat source side compressor 21 through the heat source side suction pipe 21c and compressed to a high pressure in the refrigeration cycle, and then the heat source side refrigerant circuit 20 is cooled. It is discharged to the discharge pipe 21b.
  • the high pressure heat source side refrigerant discharged to the heat source side discharge pipe 21b is separated from the refrigerating machine oil in the oil separator 22a.
  • the refrigerating machine oil separated from the heat source side refrigerant in the oil separator 22a is returned to the heat source side suction pipe 21c through the oil return pipe 22b.
  • a part of the high-pressure heat source side refrigerant from which the refrigerating machine oil has been separated is sent from the heat source unit 2 to the discharge refrigerant communication pipe 12 through the heat source side discharge branch pipe 21d and the discharge side shut-off valve 31, and the rest is used as the heat source. It is sent from the heat source unit 2 to the gas refrigerant communication pipe 14 through the side switching mechanism 23, the second heat source side gas refrigerant pipe 23 b, and the gas side closing valve 30.
  • the high-pressure heat-source-side refrigerant sent to the gas refrigerant communication tube 14 is sent to the second usage units 10a and 10b (here, it is assumed that both the second usage units 10a and 10b are operated for heating).
  • the high-pressure heat-source-side refrigerant sent to the second usage units 10a, 10b is sent to the second usage-side heat exchangers 101a, 101b through the second usage-side gas refrigerant tubes 104a, 104b.
  • the high-pressure heat-source-side refrigerant sent to the second usage-side heat exchangers 101a and 101b exchanges heat with the air medium supplied by the usage-side fans 105a and 105b in the second usage-side heat exchangers 101a and 101b. To dissipate heat, thereby heating the room.
  • the high-pressure heat-source-side refrigerant radiated in the second usage-side heat exchangers 101a and 101b passes through the second usage-side flow rate adjustment valves 102a and 102b and the second usage-side liquid refrigerant tubes 103a and 103b, and the second usage units 10a and 10b.
  • the high-pressure heat source side refrigerant sent to the discharge refrigerant communication tube 12 is sent to the first usage unit 4a.
  • the high-pressure heat-source-side refrigerant sent to the first usage unit 4a is sent to the first usage-side heat exchanger 41a through the first usage-side discharge refrigerant tube 46a and the first usage-side discharge check valve 49a.
  • the high-pressure heat-source-side refrigerant sent to the first usage-side heat exchanger 41a exchanges heat with the low-pressure usage-side refrigerant in the refrigeration cycle circulating in the usage-side refrigerant circuit 40a in the first usage-side heat exchanger 41a. To dissipate heat.
  • the high-pressure heat-source-side refrigerant radiated in the first usage-side heat exchanger 41a is sent from the first usage unit 4a to the liquid refrigerant communication tube 13 through the first usage-side flow rate adjustment valve 42a and the first usage-side liquid refrigerant tube 45a. It is done.
  • the heat source side refrigerant sent from the second usage units 10a and 10b and the first usage unit 4a to the liquid refrigerant communication tube 13 merges in the liquid refrigerant communication tube 13 and is sent to the heat source unit 2.
  • the heat source side refrigerant sent to the heat source unit 2 is sent to the supercooler 27 through the liquid side closing valve 29.
  • the heat source side refrigerant sent to the subcooler 27 is sent to the heat source side expansion valve 25 without performing heat exchange because the heat source side refrigerant does not flow through the suction return pipe 26.
  • the heat source side refrigerant sent to the heat source side expansion valve 25 is depressurized by the heat source side expansion valve 25 to be in a low-pressure gas-liquid two-phase state, and sent to the heat source side heat exchanger 24 through the heat source side liquid refrigerant tube 24a. It is done.
  • the low-pressure refrigerant sent to the heat source side heat exchanger 24 evaporates by exchanging heat with outdoor air supplied by the heat source side fan 32 in the heat source side heat exchanger 24.
  • the low-pressure heat source side refrigerant evaporated in the heat source side heat exchanger 24 is sent to the heat source side accumulator 28 through the first heat source side gas refrigerant tube 23a and the heat source side switching mechanism 23.
  • the low-pressure heat source side refrigerant sent to the heat source side accumulator 28 is again sucked into the heat source side compressor 21 through the heat source side suction pipe 21c.
  • the low-pressure usage-side refrigerant in the refrigeration cycle circulating in the usage-side refrigerant circuit 40a is heated and evaporated by the heat radiation of the heat source-side refrigerant in the first usage-side heat exchanger 41a.
  • the low-pressure usage-side refrigerant evaporated in the first usage-side heat exchanger 41a is sent to the usage-side accumulator 67a through the second cascade-side gas refrigerant tube 69a.
  • the low-pressure use-side refrigerant sent to the use-side accumulator 67a is sucked into the use-side compressor 62a through the cascade-side suction pipe 71a, compressed to a high pressure in the refrigeration cycle, and then discharged to the cascade-side discharge pipe 70a.
  • the high-pressure use-side refrigerant discharged to the cascade-side discharge pipe 70a is sent to the refrigerant-water heat exchanger 65a through the first cascade-side gas refrigerant pipe 72a.
  • the high-pressure use-side refrigerant sent to the refrigerant-water heat exchanger 65a radiates heat by exchanging heat with the aqueous medium circulating in the aqueous medium circuit 80a by the circulation pump 43a in the refrigerant-water heat exchanger 65a.
  • the high-pressure use-side refrigerant that has radiated heat in the refrigerant-water heat exchanger 65a is decompressed in the refrigerant-water heat exchange side flow rate control valve 66a to become a low-pressure gas-liquid two-phase state, and passes through the cascade-side liquid refrigerant pipe 68a. Again, it is sent to the 1st utilization side heat exchanger 41a.
  • the aqueous medium circulating in the aqueous medium circuit 80a is heated by the heat radiation of the use-side refrigerant in the refrigerant-water heat exchanger 65a.
  • the aqueous medium heated in the refrigerant-water heat exchanger 65a is drawn into the circulation pump 43a through the first usage-side water outlet pipe 48a, and after being pressurized, is sent from the first usage unit 4a to the aqueous medium communication pipe 16a. It is done.
  • the aqueous medium sent to the hot water storage unit 8a exchanges heat with the aqueous medium in the hot water storage tank 81a in the heat exchange coil 82a to radiate heat, thereby heating the aqueous medium in the hot water storage tank 81a.
  • the aqueous medium sent to the hot water heating unit 9a dissipates heat in the heat exchange panel 91a, thereby heating the indoor wall or the like or heating the indoor floor. In this way, the hot water supply operation of the first usage unit 4a and the heating operation of the second usage unit 10a and / or the second usage unit 10b are performed.
  • the heat source side refrigerant circuit 20 switches the heat source side.
  • the mechanism 23 is switched to the heat source side heat radiation operation state (the state indicated by the solid line of the heat source side switching mechanism 23 in FIG. 6).
  • the aqueous medium switching mechanism 161a is switched to a state of supplying the aqueous medium to the hot water storage unit 8a.
  • the switching state of the heat source side switching mechanism 23 as the temperature control mode is switched to the heat source side evaporation operation state by one of the second usage side controllers 108a and 108b, and then the first usage side controller 77a.
  • the operation command the operation (hot water supply operation) of the first usage unit 4a (and the hot water storage unit 8a and / or the hot water heating unit 9a) and the operation command of the second usage side controller 108a and / or the second usage side controller 108b
  • the second usage unit 10a and / or the second usage unit 10b is operated (cooling operation).
  • the low pressure heat source side refrigerant in the refrigeration cycle is sucked into the heat source side compressor 21 through the heat source side suction pipe 21c and compressed to a high pressure in the refrigeration cycle, and then the heat source side refrigerant circuit 20 is cooled. It is discharged to the discharge pipe 21b.
  • the high pressure heat source side refrigerant discharged to the heat source side discharge pipe 21b is separated from the refrigerating machine oil in the oil separator 22a.
  • the refrigerating machine oil separated from the heat source side refrigerant in the oil separator 22a is returned to the heat source side suction pipe 21c through the oil return pipe 22b.
  • a part of the high-pressure heat source side refrigerant from which the refrigerating machine oil has been separated is sent from the heat source unit 2 to the discharge refrigerant communication pipe 12 through the heat source side discharge branch pipe 21d and the discharge side shut-off valve 31, and the rest is used as the heat source. It is sent to the heat source side heat exchanger 24 through the side switching mechanism 23 and the first heat source side gas refrigerant tube 23a.
  • the high-pressure heat-source-side refrigerant sent to the heat-source-side heat exchanger 24 radiates heat by exchanging heat with outdoor air supplied by the heat-source-side fan 32 in the heat source-side heat exchanger 24.
  • the high-pressure heat-source-side refrigerant that has radiated heat in the heat-source-side heat exchanger is sent to the supercooler 27 through the heat source-side expansion valve 25.
  • the heat source side refrigerant sent to the subcooler 27 is cooled so as to be in a supercooled state by exchanging heat with the heat source side refrigerant branched from the heat source side liquid refrigerant tube 24a to the suction return tube 26.
  • the heat source side refrigerant flowing through the suction return pipe 26 is returned to the heat source side suction pipe 21c.
  • the heat source side refrigerant cooled in the subcooler 27 is sent from the heat source unit 2 to the liquid refrigerant communication tube 13 through the heat source side liquid refrigerant tube 24a and the liquid side shut-off valve 29.
  • the high-pressure heat source side refrigerant sent to the discharge refrigerant communication tube 12 is sent to the first usage unit 4a.
  • the high-pressure heat-source-side refrigerant sent to the first usage unit 4a is sent to the first usage-side heat exchanger 41a through the first usage-side discharge refrigerant tube 46a and the first usage-side discharge check valve 49a.
  • the high-pressure heat-source-side refrigerant sent to the first usage-side heat exchanger 41a exchanges heat with the low-pressure usage-side refrigerant in the refrigeration cycle circulating in the usage-side refrigerant circuit 40a in the first usage-side heat exchanger 41a. To dissipate heat.
  • the high-pressure heat-source-side refrigerant radiated in the first usage-side heat exchanger 41a is sent from the first usage unit 4a to the liquid refrigerant communication tube 13 through the first usage-side flow rate adjustment valve 42a and the first usage-side liquid refrigerant tube 45a. It is done.
  • the heat-source-side refrigerant sent from the heat source unit 2 and the first usage unit 4a to the liquid refrigerant communication tube 13 merges in the liquid refrigerant communication tube 13, and the second usage units 10a and 10b (here, the second usage unit 10a). 10b will be described as heating operation).
  • the heat-source-side refrigerant sent to the second usage units 10a and 10b is sent to the second usage-side flow rate adjustment valves 102a and 102b.
  • the heat-source-side refrigerant sent to the second usage-side flow rate adjustment valves 102a, 102b is depressurized by the second usage-side flow rate adjustment valves 102a, 102b to be in a low-pressure gas-liquid two-phase state, and the second usage-side liquid refrigerant. It is sent to the second usage side heat exchangers 101a and 101b through the tubes 103a and 103b.
  • the low-pressure heat source side refrigerant sent to the second usage side heat exchangers 101a and 101b exchanges heat with the air medium supplied by the usage side fans 105a and 105a in the second usage side heat exchangers 101a and 101b. This evaporates and cools the room.
  • the low-pressure heat-source-side refrigerant evaporated in the second usage-side heat exchangers 101a and 101b is sent from the second usage units 10a and 10b to the gas refrigerant communication tube 14 through the second usage-side gas refrigerant tubes 104a and 104b.
  • the low-pressure heat source side refrigerant sent to the gas refrigerant communication tube 14 is sent to the heat source unit 2.
  • the low-pressure heat source side refrigerant sent to the heat source unit 2 is sent to the heat source side accumulator 28 through the gas side shut-off valve 30, the second heat source side gas refrigerant tube 23b, and the heat source side switching mechanism 23.
  • the low-pressure heat source side refrigerant sent to the heat source side accumulator 28 is again sucked into the heat source side compressor 21 through the heat source side suction pipe 21c.
  • the low-pressure usage-side refrigerant in the refrigeration cycle circulating in the usage-side refrigerant circuit 40a is heated and evaporated by the heat radiation of the heat-source-side refrigerant in the first usage-side heat exchanger 41a.
  • the low-pressure usage-side refrigerant evaporated in the first usage-side heat exchanger 41a is sent to the usage-side accumulator 67a through the second cascade-side gas refrigerant tube 69a.
  • the low-pressure use-side refrigerant sent to the use-side accumulator 67a is sucked into the use-side compressor 62a through the cascade-side suction pipe 71a, compressed to a high pressure in the refrigeration cycle, and then discharged to the cascade-side discharge pipe 70a.
  • the high-pressure use-side refrigerant discharged to the cascade-side discharge pipe 70a is sent to the refrigerant-water heat exchanger 65a through the first cascade-side gas refrigerant pipe 72a.
  • the high-pressure use-side refrigerant sent to the refrigerant-water heat exchanger 65a radiates heat by exchanging heat with the aqueous medium circulating in the aqueous medium circuit 80a by the circulation pump 43a in the refrigerant-water heat exchanger 65a.
  • the high-pressure use-side refrigerant that has radiated heat in the refrigerant-water heat exchanger 65a is decompressed in the refrigerant-water heat exchange side flow rate control valve 66a to become a low-pressure gas-liquid two-phase state, and passes through the cascade-side liquid refrigerant pipe 68a. Again, it is sent to the first usage side heat exchanger 41a.
  • the aqueous medium circulating in the aqueous medium circuit 80a is heated by the heat radiation of the heat source side refrigerant in the first usage-side heat exchanger 41a.
  • the aqueous medium heated in the first usage-side heat exchanger 41a is drawn into the circulation pump 43a through the first usage-side water outlet pipe 48a, and after the pressure is increased, the first usage unit 4a supplies the aqueous medium communication pipe 16a.
  • the aqueous medium sent to the aqueous medium communication pipe 16a is sent to the hot water storage unit 8a and / or the hot water heating unit 9a through the aqueous medium side switching mechanism 161a.
  • the aqueous medium sent to the hot water storage unit 8a exchanges heat with the aqueous medium in the hot water storage tank 81a in the heat exchange coil 82a to radiate heat, thereby heating the aqueous medium in the hot water storage tank 81a. In this way, the operation in the exhaust heat hot water supply operation in which the hot water supply operation of the first usage unit 4a is performed and the cooling operation of the second usage unit 10a and / or the second usage unit 10b is performed.
  • one of the second usage-side controllers 108a and 108b that commands the second usage units 10a and 10b (here, Temperature control mode switching control capable of operating by switching to a temperature control mode different from the switching state of the heat source side switching mechanism 23 as the temperature control mode commanded by the second use side controller 108a).
  • Temperature control mode switching control capable of operating by switching to a temperature control mode different from the switching state of the heat source side switching mechanism 23 as the temperature control mode commanded by the second use side controller 108a.
  • the temperature control mode switching control is the same as the temperature control mode switching control in the heat pump system 300 of the third embodiment (see FIG. 5 and the like), the description thereof is omitted here. Thereby, also in this heat pump system 400, the effect similar to the heat pump system 300 of 3rd Embodiment can be acquired.
  • a centralized controller 37 other than the first usage-side controller 77 a and the second usage-side controllers 108 a and 108 b is provided, and the centralized controller 37 provides the temperature.
  • the adjustment mode may be switched.
  • the centralized controller 37 does not perform control settings or operation commands for individual usage units such as the first usage unit 4a and the second usage units 10a and 10b, but the entire heat pump system including switching of the temperature control mode. Common control settings and operation commands are performed.
  • the central controller 37 is made to switch the temperature control mode, for example, if the temperature control mode is left switched to the heat source side evaporation operation state, the operation is performed in an operating condition that requires a cooling operation such as summer. Each time the cooling operation of the second usage units 10a and 10b is performed, the temperature control mode is switched to the heat source side heat radiation operation state, and the temperature control mode is still switched to the heat source side heat radiation operation state. If left unattended, under the operating conditions that require heating operation, such as in winter, the temperature adjustment mode is switched to the heat source side evaporation operation state each time the second usage unit 10a, 10b is heated. The temperature control mode is frequently switched.
  • the temperature control mode is almost always left switched to the heat source side evaporation operation state. In the operating conditions that require this, every time the second usage units 10a and 10b are cooled, the temperature control mode is switched to the heat source side heat radiation operation state, and the temperature control mode is frequently switched. Will be done. As described above, if the first use side controller 77a or the centralized controller 37 switches the temperature control mode, the temperature control mode may be frequently switched, which is not preferable.
  • the temperature control mode is switched to the heat source side heat radiation operation state in an operation condition that requires cooling operation such as summer.
  • the temperature control mode is switched to the heat source side evaporation operation state, and the temperature control mode is frequently switched. Can be prevented. Therefore, from the viewpoint of enabling operation by switching to a temperature control mode different from the commanded temperature control mode, basically, the first use side controller 77a and the second use side controller 108a are used. 108b or the centralized controller 37, the temperature control mode may be switched.
  • the temperature control mode is preferably switched by the second usage-side controllers 108a and 108b.
  • ⁇ B> In the above-described heat pump systems 1, 200, 300, and 400 (see FIGS. 1, 3, 4, and 6), one first usage unit 4a and two second usage units 10a and 10b in the heat source unit 2 are refrigerant communication tubes. However, the present invention is not limited to this, and there may be a plurality of first usage units, and there may be one or three or more second usage units.
  • ⁇ C> In the heat pump systems 200 and 400 according to the second and fourth embodiments, the HFC-134a is used as the use-side refrigerant, but is not limited to this. (-Tetrafluoro-1-propene) or the like, a refrigerant whose pressure corresponding to a saturated gas temperature of 65 ° C. is at most 2.8 MPa or less, preferably 2.0 MPa or less.
  • the present invention is suitable for a desired operation in a heat pump system in which a use unit for performing a hot water supply operation for heating an aqueous medium and a use unit for cooling or heating an air medium are connected to a common heat source unit.
  • the temperature control mode can be switched.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Water Supply & Treatment (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)
  • Air Conditioning Control Device (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

 ヒートポンプシステム(1)は、水媒体を加熱する給湯運転を行う第1利用ユニット(4a)と空気媒体の冷却又は加熱する冷暖房運転を行う第2利用ユニット(10a)とが、個別に給湯運転、冷房運転又は暖房運転を選択して運転できない状態で、両者に共通の熱源ユニット(2)に接続された構成を有しており、第1利用側コントローラ(77a)が指令している温調モードとしての熱源側切換機構(23)の切換状態とは異なる温調モードに切り換えて運転することが可能である。

Description

ヒートポンプシステム
 本発明は、ヒートポンプシステム、特に、水媒体を加熱する給湯運転を行う利用ユニットと空気媒体の冷却や加熱を行う利用ユニットとが両者に共通の熱源ユニットに接続されたヒートポンプシステムに関する。
 従来より、特許文献1(特開2000-46417号公報)に示されるような、床暖房パネルが接続された温水熱交換器と室内暖房を行う室内熱交換器とを有するヒートポンプ式温水床暖房装置がある。このようなヒートポンプ式温水床暖房装置は、主として、温水熱交換器と室内熱交換器とが両者に共通の圧縮機、四路弁及び室外熱交換器等に接続されることによって構成されている。
 上記従来のヒートポンプ式温水床暖房装置を室内熱交換器による室内の冷暖房として使用するとともに、床暖房パネルとともに又は床暖房パネルに代えて貯湯ユニットを温水熱交換器に接続して給湯にも使用することが考えられる。この場合には、空気の冷却/加熱による室内の冷暖房と水の加熱による床暖房等を含む給湯という目的の違いを考慮して、室内の冷暖房用のコントローラ及び給湯用のコントローラを設けるとともに、両コントローラの一方に四路弁の操作を行う機能を持たせるか、又は、四路弁の操作を行うための集中コントローラを設けて、室内冷房、室内暖房、又は、給湯を切り換える際に四路弁の操作を行う必要がある。しかし、ユーザーは、このようなヒートポンプシステムを、単に、冷暖房装置と給湯装置とが併存したものと受け取ってしまうため、四路弁の操作の必要性を認識できず、四路弁の操作を忘れたり、操作ミスを生じるおそれがあり、また、四路弁の操作も煩雑である。
 このように、水媒体を加熱する給湯運転を行う利用ユニットと空気媒体の冷却や加熱を行う利用ユニットとが両者に共通の熱源ユニットに接続されたヒートポンプシステムでは、各利用ユニット自体の操作だけでなく、四路弁の切換状態というシステム全体の温調モードの切り換えが必要となるため、操作が煩雑になり、また、温調モードの切り換え忘れや切り換えミスによって、所望の運転を行うことができないおそれがある。
 本発明の課題は、水媒体を加熱する給湯運転を行う利用ユニットと空気媒体の冷却や加熱を行う利用ユニットとが両者に共通の熱源ユニットに接続されたヒートポンプシステムにおいて、所望の運転に適した温調モードの切り換えが行われるようにすることにある。
 第1の観点にかかるヒートポンプシステムは、熱源ユニットと、熱源ユニットに接続された第1利用ユニット及び第2利用ユニットとを備えている。熱源ユニットは、冷媒を圧縮する圧縮機と、熱源側熱交換器と、熱源側熱交換器を冷媒の放熱器として機能させる放熱運転状態と熱源側熱交換器を冷媒の蒸発器として機能させる蒸発運転状態とを切り換えることが可能な熱源側切換機構とを有している。第1利用ユニットは、熱源側切換機構が蒸発運転状態において冷媒の放熱器として機能する第1利用側熱交換器を有しており、第1利用側熱交換器における冷媒の放熱によって水媒体を加熱する給湯運転を行うことが可能である。第2利用ユニットは、熱源側切換機構が放熱運転状態において冷媒の蒸発器として機能し、熱源側切換機構が蒸発運転状態において冷媒の放熱器として機能する第2利用側熱交換器を有しており、第2利用側熱交換器における冷媒の蒸発によって空気媒体を冷却する冷房運転を行い、第2利用側熱交換器における冷媒の放熱によって空気媒体を加熱する暖房運転を行うことが可能である。そして、このヒートポンプシステムは、第1利用ユニット及び第2利用ユニットは、個別に給湯運転、冷房運転又は暖房運転を選択して運転できないものであり、第1利用ユニットに指令を行う第1利用側コントローラ、第2利用ユニットに指令を行う第2利用側コントローラ、又は、第1利用側コントローラ及び第2利用側コントローラとは別の集中コントローラが指令している温調モードとしての熱源側切換機構の切換状態とは異なる温調モードに切り換えて運転することが可能である。
 このヒートポンプシステムでは、第1利用ユニットに指令を行う第1利用側コントローラ、第2利用ユニットに指令を行う第2利用側コントローラ、又は、第1利用側コントローラ及び第2利用側コントローラとは別の集中コントローラによって、例えば、給湯運転のみを行う場合には、温調モードを蒸発運転状態に切り換えた上で、第1利用側コントローラの指令によって第1利用ユニットの運転が行われ、冷房運転のみを行う場合には、温調モードを放熱運転状態に切り換えた上で、第2利用側コントローラの指令によって第2利用ユニットの運転が行われ、暖房運転のみを行う場合には、温調モードを蒸発運転状態に切り換えた上で、第2利用側コントローラの指令によって第2利用ユニットの運転が行われ、給湯運転とともに暖房運転を行う場合には、温調モードを蒸発運転状態に切り換えた上で、第1利用側コントローラの指令によって第1利用ユニットの運転が行われるとともに第2利用側コントローラの指令によって第2利用ユニットの運転が行われる。そして、温調モードを放熱運転状態に切り換えたままでは、給湯運転や暖房運転を行うことができず、また、温調モードを蒸発運転状態に切り換えたままでは、冷房運転を行うことができない。
 このように、第1利用ユニット及び第2利用ユニットにおいて所望の運転を行うためには、第1利用側コントローラから第1利用ユニットへの給湯運転の指令や第2利用側コントローラから第2利用ユニットへの冷房運転又は暖房運転の指令だけでなく、第1及び第2利用ユニットに共通の熱源ユニットにおける運転状態を決定する熱源側切換機構の切換状態である温調モードの切り換えが必要であり、その意味において、このヒートポンプシステムは、第1利用ユニット及び第2利用ユニットが個別に給湯運転、冷房運転又は暖房運転を選択して運転できないものとなっている。
 そこで、このヒートポンプシステムでは、第1利用ユニットに指令を行う第1利用側コントローラ、第2利用ユニットに指令を行う第2利用側コントローラ、又は、第1利用側コントローラ及び第2利用側コントローラとは別の集中コントローラが指令している温調モードとしての熱源側切換機構の切換状態とは異なる温調モードに切り換えて運転することを可能にしている。
 これにより、このヒートポンプシステムでは、例えば、温調モードが放熱運転状態に切り換えられた状態において給湯運転を行う場合には、温調モードが蒸発運転状態に切り換えられる等のように、ユーザーが温調モードを切り換える操作(指令)を行うことなく、所望の運転に適した温調モードに切り換えを行うことができる。
 第2の観点にかかるヒートポンプシステムは、第1の観点にかかるヒートポンプシステムにおいて、温調モードが放熱運転状態になっている際において、第1利用側コントローラから第1利用ユニットに給湯運転が指令された場合には、温調モードを蒸発運転状態に切り換えて、第1利用ユニットの給湯運転を行う運転である優先給湯運転を行う。
 このヒートポンプシステムでは、温調モードが放熱運転状態になっている際において、第1利用側コントローラから第1利用ユニットに給湯運転が指令された場合には、温調モードを放熱運転状態から蒸発運転状態に切り換えることで、第1利用ユニットの給湯運転を行うことができるため、夏期等の冷房運転が必要な運転条件においても、ユーザーが温調モードを蒸発運転状態に切り換えする操作(指令)を行うことなく、必要に応じて給湯運転を行うことができる。
 第3の観点にかかるヒートポンプシステムは、第2の観点にかかるヒートポンプシステムにおいて、優先給湯運転中は、第2利用ユニットの冷房運転を禁止する。
 優先給湯運転を行うために、温調モードを放熱運転状態から蒸発運転状態に切り換えると、第2利用ユニットが暖房運転を行う状態に切り換えられることになり、優先給湯運転が開始されるまで第2利用ユニットが冷房運転を行っていた場合には、第2利用ユニットが暖房運転を行う状態になり、また、優先給湯運転中に第2利用側コントローラから第2利用ユニットに冷房運転が指令された場合に暖房運転を開始してしまうため、室内の快適性が損なわれて好ましくない。
 そこで、このヒートポンプシステムでは、優先給湯運転を行う際には、第2利用ユニットの冷房運転を禁止するようにしている。
 これにより、このヒートポンプシステムでは、優先給湯運転を行う際に、室内の快適性が損なわれることを防ぐことができる。
 第4の観点にかかるヒートポンプシステムは、第3の観点にかかるヒートポンプシステムにおいて、第2利用ユニットは、第2利用側熱交換器に空気媒体を供給する利用側ファンをさらに有しており、第2利用側コントローラから冷房運転が指令されている第2利用ユニットについては、優先給湯運転中は、冷房運転を停止した状態で利用側ファンを運転する。
 このヒートポンプシステムでは、優先給湯運転において、第2利用ユニットの冷房運転を禁止するため、この際に、第2利用側コントローラから冷房運転が指令されている第2利用ユニットについて、利用側ファンの運転も停止してしまうと、ユーザーが第2利用ユニットの故障が発生したものと誤解するおそれがある。
 そこで、このヒートポンプシステムでは、第2利用側コントローラから冷房運転が指令されている第2利用ユニットについては、優先給湯運転中は、冷房運転を停止した状態で利用側ファンを運転するようにしている。
 これにより、このヒートポンプシステムでは、優先給湯運転を行うことでユーザーが第2利用ユニットの故障が発生したものと誤解しないようにすることができる。
 第5の観点にかかるヒートポンプシステムは、第4の観点にかかるヒートポンプシステムにおいて、第2利用側コントローラは、優先給湯運転における第2利用ユニットの冷房運転の停止中においても、冷房運転中である旨の表示を維持する。
 このヒートポンプシステムでは、優先給湯運転において、第2利用ユニットの冷房運転を停止することに連動して、第2利用側コントローラにおける第2利用ユニットの運転状態の表示を変更してしまうと、ユーザーが第2利用ユニットの故障が発生したものと誤解するおそれがある。
 そこで、このヒートポンプシステムでは、優先給湯運転における第2利用ユニットの冷房運転の停止中においても、第2利用側コントローラが冷房運転中である旨の表示を維持するようにしている。
 これにより、このヒートポンプシステムでは、優先給湯運転を行うことでユーザーが第2利用ユニットの故障が発生したものと誤解しないようにすることができる。
 第6の観点にかかるヒートポンプシステムは、第1~第5の観点のいずれかにかかるヒートポンプシステムにおいて、温調モードの切り換えは、指令された温調モード及び外気温度の少なくとも1つに基づいて行われる。
 このヒートポンプシステムでは、温調モードの切り換えを指令された温調モード及び外気温度の少なくとも1つに基づいて行うようにしているため、温調モードの切り換えを適切に行うことができる。
 第7の観点にかかるヒートポンプシステムは、第1~第6の観点のいずれかにかかるヒートポンプシステムにおいて、第1利用ユニットは、熱源側切換機構が放熱運転状態において、第2利用側熱交換器を冷媒の蒸発器として機能させるとともに、第1利用側熱交換器を冷媒の放熱器として機能させることが可能となるように、熱源ユニットに接続されている。
 このヒートポンプシステムでは、温調モードが放熱運転状態であっても、第2利用側熱交換器を冷媒の蒸発器として機能させるとともに、第1利用側熱交換器を冷媒の放熱器として機能させることが可能となるように、熱源ユニットに接続されているため、給湯運転とともに冷房運転を行う排熱給湯運転を行う場合には、温調モードを放熱運転状態に切り換えた上で、第1利用側コントローラの指令によって第1利用ユニットの運転が行われるとともに第2利用側コントローラの指令によって第2利用ユニットの運転が行われる。
 しかし、このような排熱給湯運転を行う場合には、第2利用側熱交換器における蒸発負荷に見合う分の第1利用側熱交換器における放熱負荷によって給湯運転が行われることになるため、所望の給湯負荷をまかなうことができないこともあり、この場合には、温調モードを蒸発運転状態に切り換えて給湯運転を行う必要がある。また、春期や秋期等には、必要に応じて冷房運転や暖房運転を行うこともあり、この場合にも、温調モードの切り換えが必要である。
 このように、このヒートポンプシステムのような、排熱給湯運転を行うことが可能な構成であっても、温調モードの切り換えが必要であり、その意味において、このヒートポンプシステムも、第1利用ユニット及び第2利用ユニットが個別に給湯運転、冷房運転又は暖房運転を選択して運転できないものであるといえる。
 そこで、このヒートポンプシステムにおいても、第1利用ユニットに指令を行う第1利用側コントローラ、第2利用ユニットに指令を行う第2利用側コントローラ、又は、第1利用側コントローラ及び第2利用側コントローラとは別の集中コントローラが指令している温調モードとしての熱源側切換機構の切換状態とは異なる温調モードに切り換えて運転することを可能にしている。
 これにより、このヒートポンプシステムでは、ユーザーが温調モードを切り換える操作(指令)を行うことなく、所望の運転に適した温調モードに切り換えを行うことができる。
 第8の観点にかかるヒートポンプシステムは、第1~第7の観点のいずれかにかかるヒートポンプシステムにおいて、温調モードの切り換えは、第2利用側コントローラによって行われる。
 このヒートポンプシステムでは、指令された温調モードとは異なる温調モードに切り換えて運転することを可能にすることができればよいため、基本的には、第1利用側コントローラ、第2利用側コントローラ、又は、集中コントローラのいずれに温調モードの切り換えを行わせるようにしてもよい。
 しかし、集中コントローラに温調モードの切り換えを行わせるようにすると、例えば、温調モードが蒸発運転状態に切り換えられたままで放置されると、夏期等の冷房運転が必要な運転条件においては、第2利用ユニットの冷房運転が行われる毎に、温調モードが放熱運転状態に切り換えられることになり、また、温調モードが放熱運転状態に切り換えられたままで放置されると、冬期等の暖房運転が必要な運転条件においては、第2利用ユニットの暖房運転が行われる毎に、温調モードが蒸発運転状態に切り換えられることになり、温調モードの切り換えが頻繁に行われることになってしまう。また、第1利用側コントローラに温調モードの切り換えを行わせるようにすると、温調モードが蒸発運転状態に切り換えられたままで放置されることがほとんどであるため、夏期等の冷房運転が必要な運転条件においては、第2利用ユニットの冷房運転が行われる毎に、温調モードが放熱運転状態に切り換えられることになってしまい、温調モードの切り換えが頻繁に行われることになってしまう。このように、第1利用側コントローラや集中コントローラに温調モードの切り換えを行わせるようにすると、温調モードの切り換えが頻繁に行われるおそれがあり、好ましくない。
 そこで、このヒートポンプシステムでは、温調モードの切り換えを第2利用側コントローラによって行うようにすることで、夏期等の冷房運転が必要な運転条件においては、温調モードが放熱運転状態に切り換えられた状態が維持され、また、冬期等の暖房運転が必要な運転条件においては、温調モードが蒸発運転状態に切り換えられた状態が維持されるようになる。
 これにより、このヒートポンプシステムでは、温調モードの切り換えが頻繁に行われることを防ぐことができる。
本発明の第1実施形態にかかるヒートポンプシステムの概略構成図である。 第1実施形態及び第2実施形態における温調モード切り換え制御の制御ロジックである。 本発明の第2実施形態にかかるヒートポンプシステムの概略構成図である。 本発明の第3実施形態にかかるヒートポンプシステムの概略構成図である。 第3実施形態及び第4実施形態における温調モード切り換え制御の制御ロジックである。 本発明の第4実施形態にかかるヒートポンプシステムの概略構成図である。 本発明の他の実施形態にかかるヒートポンプシステムの概略構成図である。
 以下、本発明にかかるヒートポンプシステムの実施形態について、図面に基づいて説明する。
 (第1実施形態)
 <構成>
 -全体-
 図1は、本発明の第1実施形態にかかるヒートポンプシステム1の概略構成図である。ヒートポンプシステム1は、蒸気圧縮式のヒートポンプサイクルを利用して水媒体を加熱する運転等を行うことが可能な装置である。
 ヒートポンプシステム1は、主として、熱源ユニット2と、第1利用ユニット4aと、第2利用ユニット10a、10bと、液冷媒連絡管13と、ガス冷媒連絡管14と、貯湯ユニット8aと、温水暖房ユニット9aと、水媒体連絡管15aと、水媒体連絡管16aとを備えており、熱源ユニット2と第1利用ユニット4aと第2利用ユニット10a、10bとが冷媒連絡管13、14を介して接続されることによって、熱源側冷媒回路20を構成し、第1利用ユニット4aと貯湯ユニット8aと温水暖房ユニット9aとが水媒体連絡管15a、16aを介して接続されることによって、水媒体回路80aを構成している。熱源側冷媒回路20には、HFC系冷媒の一種であるHFC-410Aが熱源側冷媒として封入されており、また、HFC系冷媒に対して相溶性を有するエステル系又はエーテル系の冷凍機油が熱源側圧縮機21(後述)の潤滑のために封入されている。また、水媒体回路80aには、水媒体としての水が循環するようになっている。
 -熱源ユニット-
 熱源ユニット2は、屋外に設置されており、冷媒連絡管13、14を介して利用ユニット4a、10a、10bに接続されており、熱源側冷媒回路20の一部を構成している。
 熱源ユニット2は、主として、熱源側圧縮機21と、油分離機構22と、熱源側切換機構23と、熱源側熱交換器24と、熱源側膨張機構25と、吸入戻し管26と、過冷却器27と、熱源側アキュムレータ28と、液側閉鎖弁29と、ガス側閉鎖弁30とを有している。
 熱源側圧縮機21は、熱源側冷媒を圧縮する機構であり、ここでは、ケーシング(図示せず)内に収容されたロータリ式やスクロール式等の容積式の圧縮要素(図示せず)が、同じくケーシング内に収容された熱源側圧縮機モータ21aによって駆動される密閉式圧縮機が採用されている。この熱源側圧縮機21のケーシング内には、圧縮要素において圧縮された後の熱源側冷媒が充満する高圧空間(図示せず)が形成されており、この高圧空間には、冷凍機油が溜められている。熱源側圧縮機モータ21aは、インバータ装置(図示せず)によって、その回転数(すなわち、運転周波数)を可変でき、これにより、熱源側圧縮機21の容量制御が可能になっている。
 油分離機構22は、熱源側圧縮機21から吐出された熱源側冷媒中に含まれる冷凍機油を分離して熱源側圧縮機21の吸入に戻すための機構であり、主として、熱源側圧縮機21の熱源側吐出管21bに設けられた油分離器22aと、油分離器22aと熱源側圧縮機21の熱源側吸入管21cとを接続する油戻し管22bとを有している。油分離器22aは、熱源側圧縮機21から吐出された熱源側冷媒中に含まれる冷凍機油を分離する機器である。油戻し管22bは、キャピラリチューブを有しており、油分離器22aにおいて熱源側冷媒から分離された冷凍機油を熱源側圧縮機21の熱源側吸入管21cに戻す冷媒管である。
 熱源側切換機構23は、熱源側熱交換器24を熱源側冷媒の放熱器として機能させる熱源側放熱運転状態と熱源側熱交換器24を熱源側冷媒の蒸発器として機能させる熱源側蒸発運転状態とを切り換え可能な四路切換弁であり、熱源側吐出管21bと、熱源側吸入管21cと、熱源側熱交換器24のガス側に接続された第1熱源側ガス冷媒管23aと、ガス側閉鎖弁30に接続された第2熱源側ガス冷媒管23bとに接続されている。そして、熱源側切換機構23は、熱源側吐出管21bと第1熱源側ガス冷媒管23aとを連通させるとともに、第2熱源側ガス冷媒管23bと熱源側吸入管21cとを連通(熱源側放熱運転状態に対応、図1の熱源側切換機構23の実線を参照)したり、熱源側吐出管21bと第2熱源側ガス冷媒管23bとを連通させるとともに、第1熱源側ガス冷媒管23aと熱源側吸入管21cとを連通(熱源側蒸発運転状態に対応、図1の熱源側切換機構23の破線を参照)する切り換えを行うことが可能である。尚、熱源側切換機構23は、四路切換弁に限定されるものではなく、例えば、複数の電磁弁を組み合わせる等によって、上述と同様の熱源側冷媒の流れの方向を切り換える機能を有するように構成したものであってもよい。
 熱源側熱交換器24は、熱源側冷媒と室外空気との熱交換を行うことで熱源側冷媒の放熱器又は蒸発器として機能する熱交換器であり、その液側に熱源側液冷媒管24aが接続されており、そのガス側に第1熱源側ガス冷媒管23aが接続されている。この熱源側熱交換器24において熱源側冷媒と熱交換を行う室外空気は、熱源側ファンモータ32aによって駆動される熱源側ファン32によって供給されるようになっている。
 熱源側膨張機構25は、熱源側熱交換器24を流れる熱源側冷媒の減圧等を行う電動膨張弁であり、熱源側液冷媒管24aに設けられている。
 吸入戻し管26は、熱源側液冷媒管24aを流れる熱源側冷媒の一部を分岐して熱源側圧縮機21の吸入に戻す冷媒管であり、ここでは、その一端が熱源側液冷媒管24aに接続されており、その他端が熱源側吸入管21cに接続されている。そして、吸入戻し管26には、開度制御が可能な吸入戻し膨張弁26aが設けられている。この吸入戻し膨張弁26aは、電動膨張弁からなる。
 過冷却器27は、熱源側液冷媒管24aを流れる熱源側冷媒と吸入戻し管26を流れる熱源側冷媒(より具体的には、吸入戻し膨張弁26aによって減圧された後の冷媒)との熱交換を行う熱交換器である。
 熱源側アキュムレータ28は、熱源側吸入管21cに設けられており、熱源側冷媒回路20を循環する熱源側冷媒を熱源側吸入管21cから熱源側圧縮機21に吸入される前に一時的に溜めるための容器である。
 液側閉鎖弁29は、熱源側液冷媒管24aと液冷媒連絡管13との接続部に設けられた弁である。ガス側閉鎖弁30は、第2熱源側ガス冷媒管23bとガス冷媒連絡管14との接続部に設けられた弁である。
 また、熱源ユニット2には、各種のセンサが設けられている。具体的には、熱源ユニット2には、熱源側圧縮機21の吸入における熱源側冷媒の圧力である熱源側吸入圧力Ps1を検出する熱源側吸入圧力センサ33と、熱源側圧縮機21の吐出における熱源側冷媒の圧力である熱源側吐出圧力Pd1を検出する熱源側吐出圧力センサ34と、熱源側熱交換器24の液側における熱源側冷媒の温度である熱源側熱交換器温度Thxを検出する熱源側熱交温度センサ35と、外気温度Toを検出する外気温度センサ36とが設けられている。
 -液冷媒連絡管-
 液冷媒連絡管13は、液側閉鎖弁29を介して熱源側液冷媒管24aに接続されており、熱源側切換機構23が熱源側放熱運転状態において熱源側冷媒の放熱器として機能する熱源側熱交換器24の出口から熱源ユニット2外に熱源側冷媒を導出することが可能で、かつ、熱源側切換機構23が熱源側蒸発運転状態において熱源ユニット2外から熱源側冷媒の蒸発器として機能する熱源側熱交換器24の入口に熱源側冷媒を導入することが可能な冷媒管である。
 -ガス冷媒連絡管-
 ガス冷媒連絡管14は、ガス側閉鎖弁30を介して第2熱源側ガス冷媒管23bに接続されており、熱源側切換機構23が熱源側放熱運転状態において熱源ユニット2外から熱源側圧縮機21の吸入に熱源側冷媒を導入することが可能で、かつ、熱源側切換機構23が熱源側蒸発運転状態において熱源側圧縮機21の吐出から熱源ユニット2外に熱源側冷媒を導出することが可能な冷媒管である。
 -第1利用ユニット-
 第1利用ユニット4aは、屋内に設置されており、冷媒連絡管13、14を介して熱源ユニット2及び第2利用ユニット10a、10bに接続されており、熱源側冷媒回路20の一部を構成している。また、第1利用ユニット4aは、水媒体連絡管15a、16aを介して貯湯ユニット8a及び温水暖房ユニット9aに接続されており、水媒体回路80aの一部を構成している。
 第1利用ユニット4aは、主として、第1利用側熱交換器41aと、第1利用側流量調節弁42aと、循環ポンプ43aとを有している。
 第1利用側熱交換器41aは、熱源側冷媒と水媒体との熱交換を行うことで熱源側冷媒の放熱器として機能する熱交換器であり、その熱源側冷媒が流れる流路の液側には、第1利用側液冷媒管45aが接続されており、その熱源側冷媒が流れる流路のガス側には、第1利用側ガス冷媒管54aが接続されており、その水媒体が流れる流路の入口側には、第1利用側水入口管47aが接続されており、その水媒体が流れる流路の出口側には、第1利用側水出口管48aが接続されている。第1利用側液冷媒管45aには、液冷媒連絡管13が接続されており、第1利用側ガス冷媒管54aには、ガス冷媒連絡管14が接続されており、第1利用側水入口管47aには、水媒体連絡管15aが接続されており、第1利用側水出口管48aには、水媒体連絡管16aが接続されている。
 第1利用側流量調節弁42aは、開度制御を行うことで第1利用側熱交換器41aを流れる熱源側冷媒の流量を可変することが可能な電動膨張弁であり、第1利用側液冷媒管45aに設けられている。
 循環ポンプ43aは、水媒体の昇圧を行う機構であり、ここでは、遠心式や容積式のポンプ要素(図示せず)が循環ポンプモータ44aによって駆動されるポンプが採用されている。循環ポンプ43aは、第1利用側水出口管48aに設けられている。循環ポンプモータ44aは、インバータ装置(図示せず)によって、その回転数(すなわち、運転周波数)を可変でき、これにより、循環ポンプ43aの容量制御が可能になっている。
 これにより、第1利用ユニット4aは、第1利用側熱交換器41aをガス冷媒連絡管13から導入される熱源側冷媒の放熱器として機能させることで、第1利用側熱交換器41aにおいて放熱した熱源側冷媒を液冷媒連絡管13に導出し、第1利用側熱交換器41aにおける熱源側冷媒の放熱によって水媒体を加熱する給湯運転を行うことが可能になっている。
 また、第1利用ユニット4aには、各種のセンサが設けられている。具体的には、第1利用ユニット4aには、第1利用側熱交換器41aの液側における熱源側冷媒の温度である第1利用側冷媒温度Tsc1を検出する第1利用側熱交温度センサ50aと、第1利用側熱交換器41aの入口における水媒体の温度である水媒体入口温度Twrを検出する水媒体出口温度センサ51aと、第1利用側熱交換器41aの出口における水媒体の温度である水媒体出口温度Twlを検出する水媒体出口温度センサ52aとが設けられている。
 -貯湯ユニット-
 貯湯ユニット8aは、屋内に設置されており、水媒体連絡管15a、16aを介して第1利用ユニット4aに接続されており、水媒体回路80aの一部を構成している。
 貯湯ユニット8aは、主として、貯湯タンク81aと、熱交換コイル82aとを有している。
 貯湯タンク81aは、給湯に供される水媒体としての水を溜める容器であり、その上部には、蛇口やシャワー等に温水となった水媒体を送るための給湯管83aが接続されており、その下部には、給湯管83aによって消費された水媒体の補充を行うための給水管84aが接続されている。
 熱交換コイル82aは、貯湯タンク81a内に設けられており、水媒体回路80aを循環する水媒体と貯湯タンク81a内の水媒体との熱交換を行うことで貯湯タンク81a内の水媒体の加熱器として機能する熱交換器であり、その入口には、水媒体連絡管16aが接続されており、その出口には、水媒体連絡管15aが接続されている。
 これにより、貯湯ユニット8aは、第1利用ユニット4aにおいて加熱された水媒体回路80aを循環する水媒体によって貯湯タンク81a内の水媒体を加熱して温水として溜めることが可能になっている。尚、ここでは、貯湯ユニット8aとして、第1利用ユニット4aにおいて加熱された水媒体との熱交換によって加熱された水媒体を貯湯タンクに溜める型式の貯湯ユニットを採用しているが、第1利用ユニット4aにおいて加熱された水媒体を貯湯タンクに溜める型式の貯湯ユニットを採用してもよい。
 また、貯湯ユニット8aには、各種のセンサが設けられている。具体的には、貯湯ユニット8aには、貯湯タンク81aに溜められる水媒体の温度である貯湯温度Twhを検出するための貯湯温度センサ85aが設けられている。
 -温水暖房ユニット-
 温水暖房ユニット9aは、屋内に設置されており、水媒体連絡管15a、16aを介して第1利用ユニット4aに接続されており、水媒体回路80aの一部を構成している。
 温水暖房ユニット9aは、主として、熱交換パネル91aを有しており、ラジエータや床暖房パネル等を構成している。
 熱交換パネル91aは、ラジエータの場合には、室内の壁際等に設けられ、床暖房パネルの場合には、室内の床下等に設けられており、水媒体回路80aを循環する水媒体の放熱器として機能する熱交換器であり、その入口には、水媒体連絡管16aが接続されており、その出口には、水媒体連絡管15aが接続されている。
 -水媒体連絡管-
 水媒体連絡管15aは、貯湯ユニット8aの熱交換コイル82aの出口及び温水暖房ユニット9aの熱交換パネル91aの出口に接続されている。水媒体連絡管16aは、貯湯ユニット8aの熱交換コイル82aの入口及び温水暖房ユニット9aの熱交換パネル91aの入口に接続されている。水媒体連絡管16aには、水媒体回路80aを循環する水媒体を貯湯ユニット8a及び温水暖房ユニット9aの両方、又は、貯湯ユニット8a及び温水暖房ユニット9aのいずれか一方に供給するかの切り換えを行うことが可能な水媒体側切換機構161aが設けられている。この水媒体側切換機構161aは、三方弁からなる。
 -第2利用ユニット-
 第2利用ユニット10a、10bは、屋内に設置されており、冷媒連絡管13、14を介して熱源ユニット2に接続されており、熱源側冷媒回路20の一部を構成している。
 第2利用ユニット10aは、主として、第2利用側熱交換器101aと第2利用側流量調節弁102aとを有している。
 第2利用側熱交換器101aは、熱源側冷媒と空気媒体としての室内空気との熱交換を行うことで熱源側冷媒の放熱器又は蒸発器として機能する熱交換器であり、その液側に第2利用側液冷媒管103aが接続されており、そのガス側に第2利用側ガス冷媒管104aが接続されている。第2利用側液冷媒管103aには、液冷媒連絡管13が接続されており、第2利用側ガス冷媒管104aには、ガス冷媒連絡管14が接続されている。この第2利用側熱交換器101aにおいて熱源側冷媒と熱交換を行う空気媒体は、利用側ファンモータ106aによって駆動される利用側ファン105aによって供給されるようになっている。利用側ファンモータ106aは、インバータ装置(図示せず)によって、その回転数(すなわち、運転周波数)を可変でき、これにより、利用側ファン105aの容量制御が可能になっている。
 第2利用側流量調節弁102aは、開度制御を行うことで第2利用側熱交換器101aを流れる熱源側冷媒の流量を可変することが可能な電動膨張弁であり、第2利用側液冷媒管103aに設けられている。
 これにより、第2利用ユニット10aは、熱源側切換機構23が熱源側放熱運転状態において、第2利用側熱交換器101aを液冷媒連絡管13から導入される熱源側冷媒の蒸発器として機能させることで、第2利用側熱交換器101aにおいて蒸発した熱源側冷媒をガス冷媒連絡管14に導出し、第2利用側熱交換器101aにおける熱源側冷媒の蒸発によって空気媒体を冷却する冷房運転を行うことが可能になっており、熱源側切換機構23が熱源側蒸発運転状態において第2利用側熱交換器101aがガス冷媒連絡管14から導入される熱源側冷媒の放熱器として機能して、第2利用側熱交換器101aにおいて放熱した熱源側冷媒を液冷媒連絡管13に導出し、第2利用側熱交換器101aにおける熱源側冷媒の放熱によって空気媒体を加熱する暖房運転を行うことが可能になっている。
 また、第2利用ユニット10aには、各種のセンサが設けられている。具体的には、第2利用ユニット10aには、室内温度Trを検出する室内温度センサ107aが設けられている。
 尚、第2利用ユニット10bの構成は、第2利用ユニット10aの構成と同様であるため、第2利用ユニット10bの構成については、第2利用ユニット10aの各部を示す符号の添字「a」の代わりに添字「b」を付して、各部の説明を省略する。
 -第1利用側コントローラ-
 また、ヒートポンプシステム1には、第1利用ユニット4aの給湯運転の制御設定や制御指令を行う第1利用側コントローラ77aが設けられており、ここでは、第1利用ユニット4aに通信可能に接続されている。
 -第2利用側コントローラ-
 また、ヒートポンプシステム1には、第2利用ユニット10aの冷房運転や暖房運転の制御設定や運転指令を行う第2利用側コントローラ108aが設けられており、第2利用ユニット10bの冷房運転や暖房運転の制御設定や運転指令を行う第2利用側コントローラ108bが設けられており、ここでは、第2利用ユニット10a、10bに通信可能に接続されている。
 また、ヒートポンプシステム1には、第1及び第2利用側コントローラの設定や指令によって、以下の運転や各種制御を行う制御部(図示せず)が設けられている。
 <動作>
 次に、ヒートポンプシステム1の動作について説明する。
 ヒートポンプシステム1の運転としては、第1利用ユニット4aの給湯運転(すなわち、貯湯ユニット8a及び/又は温水暖房ユニット9aの運転)のみを行う給湯運転と、第2利用ユニット10a及び/又は第2利用ユニット10bの冷房運転のみを行う冷房運転と、第2利用ユニット10a及び/又は第2利用ユニット10bの暖房運転のみを行う暖房運転と、第1利用ユニット4aの給湯運転を行うとともに第2利用ユニット10a及び/又は第2利用ユニット10bの暖房運転を行う給湯暖房運転とがある。
 以下、ヒートポンプシステム1の4つの運転における動作について説明する。
 -給湯運転-
 第1利用ユニット4aの給湯運転のみを行う場合には、熱源側冷媒回路20においては、熱源側切換機構23が熱源側蒸発運転状態(図1の熱源側切換機構23の破線で示された状態)に切り換えられ、吸入戻し膨張弁26a及び第2利用側流量調節弁102a、102bが閉止された状態になる。また、水媒体回路80aにおいては、水媒体切換機構161aが貯湯ユニット8a及び/又は温水暖房ユニット9aに水媒体を供給する状態に切り換えられる。ここでは、第2利用側コントローラ108a、108bのうちの1つによって、温調モードとしての熱源側切換機構23の切換状態を熱源側蒸発運転状態に切り換えた上で、第1利用側コントローラ77aの運転指令によって、第1利用ユニット4a(及び、貯湯ユニット8a及び/又は温水暖房ユニット9a)の運転(給湯運転)が行われる。
 このような状態の熱源側冷媒回路20において、冷凍サイクルにおける低圧の熱源側冷媒は、熱源側吸入管21cを通じて、熱源側圧縮機21に吸入され、冷凍サイクルにおける高圧まで圧縮された後に、熱源側吐出管21bに吐出される。熱源側吐出管21bに吐出された高圧の熱源側冷媒は、油分離器22aにおいて冷凍機油が分離される。油分離器22aにおいて熱源側冷媒から分離された冷凍機油は、油戻し管22bを通じて、熱源側吸入管21cに戻される。冷凍機油が分離された高圧の熱源側冷媒は、熱源側切換機構23、第2熱源側ガス冷媒管23b及びガス側閉鎖弁30を通じて、熱源ユニット2からガス冷媒連絡管14に送られる。
 ガス冷媒連絡管14に送られた高圧の熱源側冷媒は、第1利用ユニット4aに送られる。第1利用ユニット4aに送られた高圧の熱源側冷媒は、第1利用側ガス冷媒管54aを通じて、第1利用側熱交換器41aに送られる。第1利用側熱交換器41aに送られた高圧の熱源側冷媒は、第1利用側熱交換器41aにおいて、循環ポンプ43aによって水媒体回路80aを循環する水媒体と熱交換を行って放熱する。第1利用側熱交換器41aにおいて放熱した高圧の熱源側冷媒は、第1利用側流量調節弁42a及び第1利用側液冷媒管45aを通じて、第1利用ユニット4aから液冷媒連絡管13に送られる。
 液冷媒連絡管13に送られた熱源側冷媒は、熱源ユニット2に送られる。熱源ユニット2に送られた熱源側冷媒は、液側閉鎖弁29を通じて、過冷却器27に送られる。過冷却器27に送られた熱源側冷媒は、吸入戻し管26に熱源側冷媒が流れていないため、熱交換を行うことなく、熱源側膨張弁25に送られる。熱源側膨張弁25に送られた熱源側冷媒は、熱源側膨張弁25において減圧されて、低圧の気液二相状態になり、熱源側液冷媒管24aを通じて、熱源側熱交換器24に送られる。熱源側熱交換器24に送られた低圧の冷媒は、熱源側熱交換器24において、熱源側ファン32によって供給される室外空気と熱交換を行って蒸発する。熱源側熱交換器24において蒸発した低圧の熱源側冷媒は、第1熱源側ガス冷媒管23a及び熱源側切換機構23を通じて、熱源側アキュムレータ28に送られる。熱源側アキュムレータ28に送られた低圧の熱源側冷媒は、熱源側吸入管21cを通じて、再び、熱源側圧縮機21に吸入される。
 一方、水媒体回路80aにおいては、第1利用側熱交換器41aにおける熱源側冷媒の放熱によって水媒体回路80aを循環する水媒体が加熱される。第1利用側熱交換器41aにおいて加熱された水媒体は、第1利用側水出口管48aを通じて、循環ポンプ43aに吸入され、昇圧された後に、第1利用ユニット4aから水媒体連絡管16aに送られる。水媒体連絡管16aに送られた水媒体は、水媒体側切換機構161aを通じて、貯湯ユニット8a及び/又は温水暖房ユニット9aに送られる。貯湯ユニット8aに送られた水媒体は、熱交換コイル82aにおいて貯湯タンク81a内の水媒体と熱交換を行って放熱し、これにより、貯湯タンク81a内の水媒体を加熱する。温水暖房ユニット9aに送られた水媒体は、熱交換パネル91aにおいて放熱し、これにより、室内の壁際等を加熱したり室内の床を加熱する。
 このようにして、第1利用ユニット4aの給湯運転のみを行う給湯運転における動作が行われる。
 -冷房運転-
 第2利用ユニット10a及び/又は第2利用ユニット10bの冷房運転のみを行う場合には、熱源側冷媒回路20においては、熱源側切換機構23が熱源側放熱運転状態(図1の熱源側切換機構23の実線で示された状態)に切り換えられ、第1利用側流量調節弁42aが閉止された状態になる。ここでは、第2利用側コントローラ108a、108bのうちの1つによって、温調モードとしての熱源側切換機構23の切換状態を熱源側放熱運転状態に切り換えた上で、第2利用側コントローラ108a及び/又は第2利用側コントローラ108bの運転指令によって、第2利用ユニット10a及び/又は第2利用ユニット10bの運転(冷房運転)が行われる。
 このような状態の熱源側冷媒回路20において、冷凍サイクルにおける低圧の熱源側冷媒は、熱源側吸入管21cを通じて、熱源側圧縮機21に吸入され、冷凍サイクルにおける高圧まで圧縮された後に、熱源側吐出管21bに吐出される。熱源側吐出管21bに吐出された高圧の熱源側冷媒は、油分離器22aにおいて冷凍機油が分離される。油分離器22aにおいて熱源側冷媒から分離された冷凍機油は、油戻し管22bを通じて、熱源側吸入管21cに戻される。冷凍機油が分離された高圧の熱源側冷媒は、熱源側切換機構23及び第1熱源側ガス冷媒管23aを通じて、熱源側熱交換器24に送られる。熱源側熱交換器24に送られた高圧の熱源側冷媒は、熱源側熱交換器24において、熱源側ファン32によって供給される室外空気と熱交換を行って放熱する。熱源側熱交換器24において放熱した高圧の熱源側冷媒は、熱源側膨張弁25を通じて、過冷却器27に送られる。過冷却器27に送られた熱源側冷媒は、熱源側液冷媒管24aから吸入戻し管26に分岐された熱源側冷媒と熱交換を行って過冷却状態になるように冷却される。吸入戻し管26を流れる熱源側冷媒は、熱源側吸入管21cに戻される。過冷却器27において冷却された熱源側冷媒は、熱源側液冷媒管24a及び液側閉鎖弁29を通じて、熱源ユニット2から液冷媒連絡管13に送られる。
 液冷媒連絡管13に送られた高圧の熱源側冷媒は、第2利用ユニット10a、10b(ここでは、第2利用ユニット10a、10bの両方を冷房運転するものとして説明する)に送られる。第2利用ユニット10a、10bに送られた高圧の熱源側冷媒は、第2利用側流量調節弁102a、102bに送られる。第2利用側流量調節弁102a、102bに送られた高圧の熱源側冷媒は、第2利用側流量調節弁102a、102bにおいて減圧されて、低圧の気液二相状態になり、第2利用側液冷媒管103a、103bを通じて、第2利用側熱交換器101a、101bに送られる。第2利用側熱交換器101a、1010bに送られた低圧の熱源側冷媒は、第2利用側熱交換器101a、101bにおいて、利用側ファン105a、105bによって供給される空気媒体と熱交換を行って蒸発し、これにより、室内の冷房を行う。第2利用側熱交換器101a、101bにおいて蒸発した低圧の熱源側冷媒は、第2利用側ガス冷媒管104a、104bを通じて、第2利用ユニット10a、10bからガス冷媒連絡管14に送られる。
 ガス冷媒連絡管14に送られた低圧の熱源側冷媒は、熱源ユニット2に送られる。熱源ユニット2に送られた低圧の熱源側冷媒は、ガス側閉鎖弁30、第2熱源側ガス冷媒管23b及び熱源側切換機構23を通じて、熱源側アキュムレータ28に送られる。熱源側アキュムレータ28に送られた低圧の熱源側冷媒は、熱源側吸入管21cを通じて、再び、熱源側圧縮機21に吸入される。
 このようにして、第2利用ユニット10a及び/又は第2利用ユニット10bの冷房運転のみを行う冷房運転における動作が行われる。
 -暖房運転-
 第2利用ユニット10a及び/又は第2利用ユニット10bの暖房運転のみを行う場合には、熱源側冷媒回路20においては、熱源側切換機構23が熱源側放熱運転状態(図1の熱源側切換機構23の破線で示された状態)に切り換えられ、吸入戻し膨張弁26a及び第1利用側流量調節弁42aが閉止された状態になる。ここでは、第2利用側コントローラ108a、108bのうちの1つによって、温調モードとしての熱源側切換機構23の切換状態を熱源側蒸発運転状態に切り換えた上で、第2利用側コントローラ108a及び/又は第2利用側コントローラ108bの運転指令によって、第2利用ユニット10a及び/又は第2利用ユニット10bの運転(暖房運転)が行われる。
 このような状態の熱源側冷媒回路20において、冷凍サイクルにおける低圧の熱源側冷媒は、熱源側吸入管21cを通じて、熱源側圧縮機21に吸入され、冷凍サイクルにおける高圧まで圧縮された後に、熱源側吐出管21bに吐出される。熱源側吐出管21bに吐出された高圧の熱源側冷媒は、油分離器22aにおいて冷凍機油が分離される。油分離器22aにおいて熱源側冷媒から分離された冷凍機油は、油戻し管22bを通じて、熱源側吸入管21cに戻される。冷凍機油が分離された高圧の熱源側冷媒は、熱源側切換機構23、第2熱源側ガス冷媒管23b及びガス側閉鎖弁30を通じて、熱源ユニット2からガス冷媒連絡管14に送られる。
 ガス冷媒連絡管14に送られた高圧の熱源側冷媒は、第2利用ユニット10a、10b(ここでは、第2利用ユニット10a、10bの両方を暖房運転するものとして説明する)に送られる。第2利用ユニット10a、10bに送られた高圧の熱源側冷媒は、第2利用側ガス冷媒管104a、104bを通じて、第2利用側熱交換器101a、101bに送られる。第2利用側熱交換器101a、101bに送られた高圧の熱源側冷媒は、第2利用側熱交換器101a、101bにおいて、利用側ファン105a、105bによって供給される空気媒体と熱交換を行って放熱し、これにより、室内の暖房を行う。第2利用側熱交換器101a、101bにおいて放熱した高圧の熱源側冷媒は、第2利用側流量調節弁102a、102b及び第2利用側液冷媒管103a、103bを通じて、第2利用ユニット10a、10bから液冷媒連絡管13に送られる。
 液冷媒連絡管13に送られた熱源側冷媒は、熱源ユニット2に送られる。熱源ユニット2に送られた熱源側冷媒は、液側閉鎖弁29を通じて、過冷却器27に送られる。過冷却器27に送られた熱源側冷媒は、吸入戻し管26に熱源側冷媒が流れていないため、熱交換を行うことなく、熱源側膨張弁25に送られる。熱源側膨張弁25に送られた熱源側冷媒は、熱源側膨張弁25において減圧されて、低圧の気液二相状態になり、熱源側液冷媒管24aを通じて、熱源側熱交換器24に送られる。熱源側熱交換器24に送られた低圧の冷媒は、熱源側熱交換器24において、熱源側ファン32によって供給される室外空気と熱交換を行って蒸発する。熱源側熱交換器24において蒸発した低圧の熱源側冷媒は、第1熱源側ガス冷媒管23a及び熱源側切換機構23を通じて、熱源側アキュムレータ28に送られる。熱源側アキュムレータ28に送られた低圧の熱源側冷媒は、熱源側吸入管21cを通じて、再び、熱源側圧縮機21に吸入される。
 このようにして、第2利用ユニット10a及び/又は第2利用ユニット10bの暖房運転のみを行う暖房運転における動作が行われる。
 -給湯暖房運転-
 第1利用ユニット4aの給湯運転を行うとともに第2利用ユニット10a及び/又は第2利用ユニット10bの暖房運転を行う場合には、熱源側冷媒回路20においては、熱源側切換機構23が熱源側蒸発運転状態(図1の熱源側切換機構23の破線で示された状態)に切り換えられ、吸入戻し膨張弁26aが閉止された状態になる。また、水媒体回路80aにおいては、水媒体切換機構161aが貯湯ユニット8a及び/又は温水暖房ユニット9aに水媒体を供給する状態に切り換えられる。ここでは、第2利用側コントローラ108a、108bのうちの1つによって、温調モードとしての熱源側切換機構23の切換状態を熱源側蒸発運転状態に切り換えた上で、第1利用側コントローラ77aの運転指令によって、第1利用ユニット4a(及び、貯湯ユニット8a及び/又は温水暖房ユニット9a)の運転(給湯運転)と、第2利用側コントローラ108a及び/又は第2利用側コントローラ108bの運転指令によって、第2利用ユニット10a及び/又は第2利用ユニット10bの運転(暖房運転)が行われる。
 このような状態の熱源側冷媒回路20において、冷凍サイクルにおける低圧の熱源側冷媒は、熱源側吸入管21cを通じて、熱源側圧縮機21に吸入され、冷凍サイクルにおける高圧まで圧縮された後に、熱源側吐出管21bに吐出される。熱源側吐出管21bに吐出された高圧の熱源側冷媒は、油分離器22aにおいて冷凍機油が分離される。油分離器22aにおいて熱源側冷媒から分離された冷凍機油は、油戻し管22bを通じて、熱源側吸入管21cに戻される。冷凍機油が分離された高圧の熱源側冷媒は、熱源側切換機構23、第2熱源側ガス冷媒管23b及びガス側閉鎖弁30を通じて、熱源ユニット2からガス冷媒連絡管14に送られる。
 ガス冷媒連絡管14に送られた高圧の熱源側冷媒は、第1利用ユニット4a及び第2利用ユニット10a、10b(ここでは、第2利用ユニット10a、10bの両方を暖房運転するものとして説明する)に送られる。
 第2利用ユニット10a、10bに送られた高圧の熱源側冷媒は、第2利用側ガス冷媒管104a、104bを通じて、第2利用側熱交換器101a、101bに送られる。第2利用側熱交換器101a、101bに送られた高圧の熱源側冷媒は、第2利用側熱交換器101a、101bにおいて、利用側ファン105a、105bによって供給される空気媒体と熱交換を行って放熱し、これにより、室内の暖房を行う。第2利用側熱交換器101a、101bにおいて放熱した高圧の熱源側冷媒は、第2利用側流量調節弁102a、102b及び第2利用側液冷媒管103a、103bを通じて、第2利用ユニット10a、10bから液冷媒連絡管13に送られる。
 第1利用ユニット4aに送られた高圧の熱源側冷媒は、第1利用側ガス冷媒管54aを通じて、第1利用側熱交換器41aに送られる。第1利用側熱交換器41aに送られた高圧の熱源側冷媒は、第1利用側熱交換器41aにおいて、利用側冷媒回路40aを循環する冷凍サイクルにおける低圧の利用側冷媒と熱交換を行って放熱する。第1利用側熱交換器41aにおいて放熱した高圧の熱源側冷媒は、第1利用側流量調節弁42a及び第1利用側液冷媒管45aを通じて、第1利用ユニット4aから液冷媒連絡管13に送られる。
 第2利用ユニット10a、10b及び第1利用ユニット4aから液冷媒連絡管13に送られた熱源側冷媒は、液冷媒連絡管13において合流して、熱源ユニット2に送られる。熱源ユニット2に送られた熱源側冷媒は、液側閉鎖弁29を通じて、過冷却器27に送られる。過冷却器27に送られた熱源側冷媒は、吸入戻し管26に熱源側冷媒が流れていないため、熱交換を行うことなく、熱源側膨張弁25に送られる。熱源側膨張弁25に送られた熱源側冷媒は、熱源側膨張弁25において減圧されて、低圧の気液二相状態になり、熱源側液冷媒管24aを通じて、熱源側熱交換器24に送られる。熱源側熱交換器24に送られた低圧の冷媒は、熱源側熱交換器24において、熱源側ファン32によって供給される室外空気と熱交換を行って蒸発する。熱源側熱交換器24において蒸発した低圧の熱源側冷媒は、第1熱源側ガス冷媒管23a及び熱源側切換機構23を通じて、熱源側アキュムレータ28に送られる。熱源側アキュムレータ28に送られた低圧の熱源側冷媒は、熱源側吸入管21cを通じて、再び、熱源側圧縮機21に吸入される。
 一方、水媒体回路80aにおいては、第1利用側熱交換器41aにおける熱源側冷媒の放熱によって水媒体回路80aを循環する水媒体が加熱される。第1利用側熱交換器41aにおいて加熱された水媒体は、第1利用側水出口管48aを通じて、循環ポンプ43aに吸入され、昇圧された後に、第1利用ユニット4aから水媒体連絡管16aに送られる。水媒体連絡管16aに送られた水媒体は、水媒体側切換機構161aを通じて、貯湯ユニット8a及び/又は温水暖房ユニット9aに送られる。貯湯ユニット8aに送られた水媒体は、熱交換コイル82aにおいて貯湯タンク81a内の水媒体と熱交換を行って放熱し、これにより、貯湯タンク81a内の水媒体を加熱する。温水暖房ユニット9aに送られた水媒体は、熱交換パネル91aにおいて放熱し、これにより、室内の壁際等を加熱したり室内の床を加熱する。
 このようにして、第1利用ユニット4aの給湯運転を行うとともに第2利用ユニット10a及び/又は第2利用ユニット10bの暖房運転を行う給湯暖房運転における動作が行われる。
 このように、このヒートポンプシステム1では、温調モードを熱源側放熱運転状態に切り換えたままでは、給湯運転や暖房運転を行うことができず、また、温調モードを熱源側蒸発運転状態に切り換えたままでは、冷房運転を行うことができない。すなわち、第1利用ユニット4a及び第2利用ユニット10a、10bにおいて所望の運転を行うためには、第1利用側コントローラ77aから第1利用ユニット4aへの給湯運転の指令や第2利用側コントローラ108a、108bから第2利用ユニット10a、10bへの冷房運転又は暖房運転の指令だけでなく、第1及び第2利用ユニット4a、10a、10bに共通の熱源ユニット2における運転状態を決定する熱源側切換機構23の切換状態である温調モードの切り換えが必要であり、その意味において、このヒートポンプシステム1は、第1利用ユニット4a及び第2利用ユニット10a、10bが個別に給湯運転、冷房運転又は暖房運転を選択して運転できないものとなっている。
 -温調モード切り換え制御-
 しかし、ユーザーは、このヒートポンプシステム1を、単に、第2利用ユニット10a、10bによる冷暖房装置と第1利用ユニット4a等による給湯装置とが併存したしたものと受け取ってしまうため、温調モードの切り換えの必要性を認識できず、温調モードの切り換えを忘れたり、切り換えミスを生じるおそれがあり、また、温調モードの切り換えも煩雑である。
 そこで、このヒートポンプシステム1では、第2利用ユニット10a、10bに指令を行う第2利用側コントローラ108a、108bのうちの1つ(ここでは、第2利用側コントローラ108aとする)が指令している温調モードとしての熱源側切換機構23の切換状態とは異なる温調モードに切り換えて運転することが可能な温調モード切り換え制御を行うようにしている。
 以下に、このヒートポンプシステム1における温調モード切り換え制御の制御ロジックについて、図2を用いて説明する。この温調モード切り換え制御では、温調モードが熱源側放熱運転状態になっている(すなわち、第2利用ユニット10a、10bが冷房運転しているか、冷房運転を行っていなくても、第2利用側コントローラ108aが温調モードを熱源側放熱運転状態になるように指令している)際において、第1利用側コントローラ77aから第1利用ユニット4aに給湯運転が指令された場合(したがって、温調モードを熱源側蒸発運転状態しなければならない場合)には、温調モードを熱源側蒸発運転状態に切り換えて、第1利用ユニット4aの給湯運転を行う運転である優先給湯運転(ステップS7~S9)が行われるようになっており、それ以外の場合には、指令されている温調モード(ここでは、第2利用側コントローラ108aによって指令されている温調モード)における運転(ステップS1、S4)が行われるようになっている。
 まず、ステップS1の運転状態、すなわち、第2利用側コントローラ108aによって指令されている温調モードにおける運転(図2では、この運転を「優先給湯運転=OFF」とする)が継続しているものとする。
 次に、ステップS2において、条件Aを満たすかどうかを判定する。ここで、条件Aは、第2利用側コントローラ108aによって指令されている温調モードが熱源側放熱運転状態(図2では、この状態を「温調モード=冷房」とする)であり、かつ、所定の第3時間tm3が経過し(図2では、この状態を「tm3タイムアップ」とする)、かつ、第1利用側コントローラ77aによって第1利用ユニット4aに給湯運転が指令されたかどうか(図2では、この指令がなされた状態を「給湯運転要求=ON」とする)であり、これにより、温調モードが熱源側放熱運転状態になっている際に第1利用ユニット4aに給湯運転が指令されたかどうかを判定する。ここで、時間tm3は、後述のステップS10において設定される時間である。そして、このステップS2において、条件Aを満たさないと判定された場合、すなわち、温調モードが熱源側蒸発運転状態である場合(図2では、この状態を「温調モード≠冷房」とする)、又は、第3時間tm3が経過していない場合、又は、第1利用側コントローラ77aによって第1利用ユニット4aに給湯運転が指令されていない場合(すなわち、「給湯運転要求=OFF」)には、第2利用側コントローラ108aによって指令されている温調モードにおける運転(すなわち、「優先給湯運転=OFF」)を継続し、条件Aを満たすと判定された場合には、温調モードが熱源側放熱運転状態にあるにもかかわらず、給湯運転が指令された状態、すなわち、第1利用側コントローラ77aからの給湯運転の指令にしたがって第1利用ユニット4aの運転を開始しても水媒体を加熱することはできない状態となっているため、優先給湯運転(ステップS7~S9)に向けて、ステップS3以降の処理に移行する。
 次に、ステップS3、S4では、条件Aを満たす場合ではあるが、すぐに、優先給湯運転(ステップS7~S9)に移行するのではなく、ステップS3において、所定の第1時間tm1のカウントを開始し、ステップS1と同じく、第2利用側コントローラ108aによって指令されている温調モードにおける運転(すなわち、「優先給湯運転=OFF」)を継続する。ここで、第1時間tm1は、ステップS2の処理が終了してからステップS5、S6の処理が行われるまでの時間間隔に相当するものであり、数分から10分程度に設定される。
 次に、ステップS5において、条件Bを満たすかどうかを判定する。ここで、条件Bは、第2利用側コントローラ108aによって指令されている温調モードが熱源側放熱運転状態(すなわち、「温調モード=冷房」)であり、かつ、第1利用側コントローラ77aによって第1利用ユニット4aに給湯運転が指令されたかどうか(すなわち、「給湯運転要求=ON」)であり、かつ、第1時間tm1が経過したかどうか(図2では、この状態を「tm1タイムアップ」とする)、又は、外気温度Toが所定の低温条件温度Tolより低いかどうか(図2では、この状態を「To<Tol」とする)であり、これにより、ステップS2において、条件Aを満たす状態が第1時間tm1継続しており給湯運転の要求が確実なものであるか、又は、外気温度Toが低温条件であるにもかかわらず、第2利用側コントローラ108aによって指令されている温調モードが熱源側放熱運転状態(すなわち、「温調モード=冷房」)になっているかを判定する。ここで、低温条件温度Tolは、第2利用ユニット10a、10bの暖房運転を行うことが想定される最も高い温度に相当するものであり、15℃程度に設定される。そして、このステップS5において、条件Bを満たさないと判定された場合、すなわち、温調モードが熱源側蒸発運転状態である場合(すなわち、「温調モード≠冷房」)、又は、第1利用側コントローラ77aによって第1利用ユニット4aに給湯運転が指令されていない場合(すなわち、「給湯運転要求=OFF」)には、ステップS6の条件Dを満たすものと判定して、ステップS1の第2利用側コントローラ108aによって指令されている温調モードにおける運転(すなわち、「優先給湯運転=OFF」)を継続し、条件Bを満たすと判定された場合には、給湯運転の要求が確実なものとなっている状態、又は、外気温度Toが低温条件であるにもかかわらず第2利用側コントローラ108aによって指令されている温調モードが熱源側放熱運転状態(すなわち、「温調モード=冷房」)になっている状態であるため、優先給湯運転(ステップS7~S9)に移行する。
 次に、ステップS7~S9では、まず、ステップS7において、所定の第2時間tm2のカウントを開始する。ここで、第2時間tm2は、優先給湯運転を行う時間に相当するものであり、10分から30分程度に設定される。そして、ステップS8において、第2利用側コントローラ108aが温調モードを熱源側放熱運転状態(すなわち、「温調モード=冷房」)に指令しているにもかかわらず、温調モードを熱源側蒸発運転状態に切り換えるとともに、循環ポンプ43aの起動や第1利用側流量調節弁41aの開操作等を行って第1利用ユニット4aの給湯運転(すなわち、優先給湯運転)を開始する。
 ところで、このような優先給湯運転を行うために、温調モードを熱源側放熱運転状態から熱源側蒸発運転状態に切り換えると、第2利用ユニット10a、10bが暖房運転を行う状態に切り換えられることになり、優先給湯運転が開始されるまで第2利用ユニット10a、10bが冷房運転を行っていた場合には、第2利用ユニット10a、10bが暖房運転を行う状態になり、また、優先給湯運転中に第2利用側コントローラ108a、108bから第2利用ユニット10a、10bに冷房運転が指令された場合に暖房運転を開始してしまうため、室内の快適性が損なわれて好ましくない。そこで、このヒートポンプシステム1では、優先給湯運転中は、第2利用ユニット10a、10bの冷房運転を禁止するようにしている。
 また、上述のように、優先給湯運転において、第2利用ユニット10a、10bの冷房運転を禁止する際に、第2利用側コントローラ108a、108bから冷房運転が指令されている第2利用ユニット10a、10bについて、利用側ファン105a、105bの運転も停止してしまうと、ユーザーが第2利用ユニット10a、10bの故障が発生したものと誤解するおそれがある。そこで、このヒートポンプシステム1では、第2利用側コントローラ108a、108bから冷房運転が指令されている第2利用ユニット10a、10bについては、優先給湯運転中は、第2利用側流量調節弁102a、102bの閉操作等を行って冷房運転を停止した状態で利用側ファン105a、105bを運転するようにしている。ここで、利用側ファン105a、105bの運転周波数は、室内のドラフト防止のために、最低周波数にすることが好ましい。
 さらに、上述のように、優先給湯運転において、第2利用ユニット10a、10bの冷房運転を停止することに連動して、第2利用側コントローラ108a、108bにおける第2利用ユニット10a、10bの運転状態の表示を変更(すなわち、冷房運転を停止に変更)してしまうと、ユーザーが第2利用ユニット10a、10bの故障が発生したものと誤解するおそれがある。そこで、このヒートポンプシステム1では、優先給湯運転における第2利用ユニット10a、10bの冷房運転の停止中においても、第2利用側コントローラ108a、108bが冷房運転中である旨の表示を維持するようにしている。
 そして、この優先給湯運転は、ステップS9において、条件Cを満たすまで継続される。ここで、条件Cは、第2利用側コントローラ108aによって温調モードが熱源側蒸発運転状態に切り換えるように指令されるか(すなわち、「温調モード≠冷房」)、又は、第1利用側コントローラ77aによって第1利用ユニット4aに給湯運転を停止する指令がされるか(すなわち、「給湯運転要求=OFF」)又は、外気温度Toが所定の高温条件温度Tohより高い状態(図2では、この状態を「To>Toh」とする)で第2時間tm2が経過するか(図2では、この状態を「tm2タイムアップ」とする)であり、これにより、ステップS9において、優先給湯運転を行わなくても給湯運転が可能な状態になったか、又は、給湯運転が不要になったか、又は、優先給湯運転が第2時間tm2継続したかを判定する。ここで、高温条件温度Tohは、第2利用ユニット10a、10bの冷房運転を行うことが想定される最も低い温度に相当するものであり、20℃程度に設定される。そして、優先給湯運転は、このステップS9において、条件Cを満たすと判定されるまで、すなわち、優先給湯運転を行わなくても給湯運転が可能な状態になり、又は、給湯運転が不要になり、又は、優先給湯運転が第2時間tm2継続するまで継続され、その後、第2利用側コントローラ108aが指令している温調モードにおける運転に戻す処理(ステップS10、S1)に移行する。
 次に、ステップS10、S1では、まず、ステップS10において、所定の第3時間tm3のカウントを開始し、そして、ステップS1において、第2利用側コントローラ108aが指令している温調モードにおける運転に戻す処理が行われる。ここで、第3時間tm3は、優先給湯運転が要求されている場合において、優先給湯運転を行なわずに第2利用側コントローラ108aが指令している温調モードにおける運転を行う時間に相当するものであり、5分から25分程度に設定される。例えば、第2利用ユニット10a、10bの冷房運転中に第1利用ユニット4aの給湯運転が要求された場合には、優先給湯運転が第2時間tm2だけ行われ、冷房運転が第3時間tm3だけ行われることになる。
 以上のような温調モード切り換え制御によって、このヒートポンプシステム1では、第2利用ユニット10a、10bの運転が停止している場合、又は、冷房運転が行われている場合(すなわち、第2利用側コントローラ108aが指令している温調モードが熱源側放熱運転状態である場合)において、第1利用ユニット10aに給湯運転が要求された場合(すなわち、第1利用側コントローラ77aから第1利用ユニット4aに給湯運転が指令された場合)には、第2利用側コントローラ108aが温調モードを熱源側放熱運転状態に指令しているにもかかわらず、温調モードを熱源側蒸発運転状態に切り換えて優先給湯運転を行うことができる、すなわち、第2利用側コントローラ108aが指令している温調モードとしての熱源側切換機構23の切換状態とは異なる温調モードに切り換えて運転することが可能になっている。
 <特徴>
 このヒートポンプシステム1には、以下のような特徴がある。
 -A-
 このヒートポンプシステム1では、上述の温調モード切り換え制御のように、第2利用ユニット10a、10bに指令を行う第2利用側コントローラ108a、108b(ここでは、第2利用側コントローラ108aとしている)が指令している温調モードとしての熱源側切換機構23の切換状態とは異なる温調モードに切り換えて運転することを可能になっており、例えば、温調モードが熱源側放熱運転状態に切り換えられた状態において給湯運転を行う場合には、温調モードが熱源側蒸発運転状態に切り換えられる等のように、ユーザーが温調モードを切り換える操作(指令)を行うことなく、所望の運転に適した温調モードに切り換えを行うことができる。
 -B-
 このヒートポンプシステム1では、上述の温調モード切り換え制御におけるステップS2、ステップS5、S6、S9のように、温調モードの切り換えは、指令された温調モード(ここでは、第2利用側コントローラ108aが指令している温調モードとしての熱源側切換機構23の切換状態)及び外気温度Toの少なくとも1つに基づいて行うようにしているため、温調モードの切り換えを適切に行うことができる。
 また、このヒートポンプシステム1では、上述の温調モード切り換え制御におけるステップS1~S6のように、2段階で温調モードの切り換えが必要かどうか(ここでは、優先給湯運転を行う必要があるかどうか)を判定するようにしているため、温調モードのハンチングが生じにくくなっている。
 -C-
 このヒートポンプシステム1では、温調モードが熱源側放熱運転状態になっている際において、第1利用側コントローラ77aから第1利用ユニット4aに給湯運転が指令された場合には、温調モードを熱源側放熱運転状態から熱源側蒸発運転状態に切り換えることで、第1利用ユニット4aの給湯運転(すなわち、優先給湯運転)を行うことができるため、夏期等の冷房運転が必要な運転条件においても、ユーザーが温調モードを熱源側蒸発運転状態に切り換えする操作(指令)を行うことなく、必要に応じて給湯運転を行うことができる。
 -D-
 このヒートポンプシステム1では、優先給湯運転を行う際には、第2利用ユニット10a、10bの冷房運転を禁止するようにしているため、優先給湯運転を行うための温調モードを放熱運転状態から蒸発運転状態に切り換えによって、冷房運転を行っていた第2利用ユニット10a、10bが暖房運転を行う状態になったり、また、優先給湯運転中に第2利用側コントローラ108a、108bから第2利用ユニット10a、10bに冷房運転が指令された場合に暖房運転を開始してしまうことがなくなり、これにより、優先給湯運転を行う際に、室内の快適性が損なわれることを防ぐことができる。
 また、このヒートポンプシステム1では、第2利用側コントローラ108a、108bから冷房運転が指令されている第2利用ユニット10a、10bについては、優先給湯運転中は、冷房運転を停止した状態で利用側ファン105a、105bを運転するようにしているため、第2利用ユニット10a、10bの冷房運転を禁止する際に、冷房運転中の第2利用ユニット10a、10bの利用側ファン105a、105bの運転を停止してしまうことがなくなり、これにより、優先給湯運転を行うことでユーザーが第2利用ユニット10a、10bの故障が発生したものと誤解しないようにすることができる。
 さらに、このヒートポンプシステム1では、優先給湯運転における第2利用ユニット10a、10bの冷房運転の停止中においても、第2利用側コントローラ108a、108bが冷房運転中である旨の表示を維持するようにしているため、優先給湯運転において、第2利用ユニット10a、10bの冷房運転を停止することに連動して、第2利用側コントローラ108a、108bにおける第2利用ユニットの運転状態の表示を変更されてしまうことがなくなり、これにより、優先給湯運転を行うことでユーザーが第2利用ユニット10a、10bの故障が発生したものと誤解しないようにすることができる。
 (第2実施形態)
 上述の第1実施形態におけるヒートポンプシステム1では、例えば、65℃以上の温水のような高温の水媒体を得るためには、熱源側圧縮機21の吐出における熱源側冷媒の圧力を高くする等の運転効率の悪い条件で運転を行う必要があり、好ましいものとはいえない。
 そこで、このヒートポンプシステム200では、上述の第1実施形態におけるヒートポンプシステム1(図1参照)の構成において、図3に示されるように、第1利用側熱交換器41aをガス冷媒連絡管14から導入される熱源側冷媒と熱源側冷媒とは別の利用側冷媒との熱交換を行う熱交換器とし、第1利用ユニット4aに、利用側冷媒を圧縮する利用側圧縮機62a(後述)や利用側冷媒の放熱器として機能して水媒体を加熱することが可能な冷媒-水熱交換器65a(後述)等をさらに設けることで、第1利用側熱交換器41aとともに利用側冷媒が循環する利用側冷媒回路40aを構成するようにしている。以下、このヒートポンプシステム200の構成について説明する。
 <構成>
 -全体-
 図3は、本発明の第2実施形態にかかるヒートポンプシステム200の概略構成図である。ヒートポンプシステム200は、蒸気圧縮式のヒートポンプサイクルを利用して水媒体を加熱する運転等を行うことが可能な装置である。
 ヒートポンプシステム200は、主として、熱源ユニット2と、第1利用ユニット4aと、第2利用ユニット10a、10bと、液冷媒連絡管13と、ガス冷媒連絡管14と、貯湯ユニット8aと、温水暖房ユニット9aと、水媒体連絡管15aと、水媒体連絡管16aとを備えており、熱源ユニット2と第1利用ユニット4aと第2利用ユニット10a、10bとが冷媒連絡管13、14を介して接続されることによって、熱源側冷媒回路20を構成し、第1利用ユニット4aが利用側冷媒回路40aを構成し、第1利用ユニット4aと貯湯ユニット8aと温水暖房ユニット9aとが水媒体連絡管15a、16aを介して接続されることによって、水媒体回路80aを構成している。熱源側冷媒回路20には、HFC系冷媒の一種であるHFC-410Aが熱源側冷媒として封入されており、また、HFC系冷媒に対して相溶性を有するエステル系又はエーテル系の冷凍機油が熱源側圧縮機21の潤滑のために封入されている。また、利用側冷媒回路40aには、HFC系冷媒の一種であるHFC-134aが利用側冷媒として封入されており、また、HFC系冷媒に対して相溶性を有するエステル系又はエーテル系の冷凍機油が利用側圧縮機62aの潤滑のために封入されている。尚、利用側冷媒としては、高温の冷凍サイクルに有利な冷媒を使用されるという観点から、飽和ガス温度65℃に相当する圧力がゲージ圧で高くとも2.8MPa以下、好ましくは、2.0MPa以下の冷媒を使用することが好ましい。そして、HFC-134aは、このような飽和圧力特性を有する冷媒の一種である。また、水媒体回路80aには、水媒体としての水が循環するようになっている。
 尚、以下の構成に関する説明では、第1実施形態におけるヒートポンプシステム1(図1参照)と同様の構成を有する熱源ユニット2、第2利用ユニット10a、貯湯ユニット8a、温水暖房ユニット9a、液冷媒連絡管13、ガス冷媒連絡管14、水媒体連絡管15a、16a、第1利用側コントローラ77a、及び、第2利用側コントローラ108a、108bの構成については、同じ符号を付して説明を省略し、第1利用ユニット4aの構成のみについて説明を行う。
 -第1利用ユニット-
 第1利用ユニット4aは、屋内に設置されており、冷媒連絡管13、14を介して熱源ユニット2に接続されており、熱源側冷媒回路20の一部を構成している。また、第1利用ユニット4aは、利用側冷媒回路40aを構成している。さらに、第1利用ユニット4aは、水媒体連絡管15a、16aを介して貯湯ユニット8a及び温水暖房ユニット9aに接続されており、水媒体回路80aの一部を構成している。
 第1利用ユニット4aは、主として、第1利用側熱交換器41aと、第1利用側流量調節弁42aと、利用側圧縮機62aと、冷媒-水熱交換器65aと、冷媒-水熱交側流量調節弁66aと、利用側アキュムレータ67aと、循環ポンプ43aとを有している。
 第1利用側熱交換器41aは、熱源側冷媒と利用側冷媒との熱交換を行うことで熱源側冷媒の放熱器として機能する熱交換器であり、その熱源側冷媒が流れる流路の液側には、第1利用側液冷媒管45aが接続されており、その熱源側冷媒が流れる流路のガス側には、第1利用側ガス冷媒管54aが接続されており、その利用側冷媒が流れる流路の液側には、カスケード側液冷媒管68aが接続されており、その利用側冷媒が流れる流路のガス側には、第2カスケード側ガス冷媒管69aが接続されている。第1利用側液冷媒管45aには、液冷媒連絡管13が接続されており、第1利用側ガス冷媒管54aには、ガス冷媒連絡管14が接続されており、カスケード側液冷媒管68aには、冷媒-水熱交換器65aが接続されており、第2カスケード側ガス冷媒管69aには、利用側圧縮機62aが接続されている。
 第1利用側流量調節弁42aは、開度制御を行うことで第1利用側熱交換器41aを流れる熱源側冷媒の流量を可変することが可能な電動膨張弁であり、第1利用側液冷媒管45aに設けられている。
 利用側圧縮機62aは、利用側冷媒を圧縮する機構であり、ここでは、ケーシング(図示せず)内に収容されたロータリ式やスクロール式等の容積式の圧縮要素(図示せず)が、同じくケーシング内に収容された利用側圧縮機モータ63aによって駆動される密閉式圧縮機が採用されている。この利用側圧縮機62aのケーシング内には、圧縮要素において圧縮された後の熱源側冷媒が充満する高圧空間(図示せず)が形成されており、この高圧空間には、冷凍機油が溜められている。利用側圧縮機モータ63aは、インバータ装置(図示せず)によって、その回転数(すなわち、運転周波数)を可変でき、これにより、利用側圧縮機62aの容量制御が可能になっている。また、利用側圧縮機62aの吐出には、カスケード側吐出管70aが接続されており、利用側圧縮機62aの吸入には、カスケード側吸入管71aが接続されている。このカスケード側吸入管71aは、第2カスケード側ガス冷媒管69aに接続されている。
 冷媒-水熱交換器65aは、利用側冷媒と水媒体との熱交換を行うことで利用側冷媒の放熱器として機能する熱交換器であり、その利用側冷媒が流れる流路の液側には、カスケード側液冷媒管68aが接続されており、その利用側冷媒が流れる流路のガス側には、第1カスケード側ガス冷媒管72aが接続されており、その水媒体が流れる流路の入口側には、第1利用側水入口管47aが接続されており、その水媒体が流れる流路の出口側には、第1利用側水出口管48aが接続されている。第1カスケード側ガス冷媒管72aは、カスケード側吐出管70aに接続されており、第1利用側水入口管47aには、水媒体連絡管15aが接続されており、第1利用側水出口管48aには、水媒体連絡管16aが接続されている。
 冷媒-水熱交側流量調節弁66aは、開度制御を行うことで冷媒-水熱交換器65aを流れる利用側冷媒の流量を可変することが可能な電動膨張弁であり、カスケード側液冷媒管68aに設けられている。
 利用側アキュムレータ67aは、カスケード側吸入管71aに設けられており、利用側冷媒回路40aを循環する利用側冷媒をカスケード側吸入管71aから利用側圧縮機62aに吸入される前に一時的に溜めるための容器である。
 このように、利用側圧縮機62a、冷媒-水熱交換器65a、冷媒-水熱交側流量調節弁66a及び第1利用側熱交換器41aが冷媒管71a、70a、72a、68a、69aを介して接続されることによって、利用側冷媒回路40aが構成されている。
 循環ポンプ43aは、水媒体の昇圧を行う機構であり、ここでは、遠心式や容積式のポンプ要素(図示せず)が循環ポンプモータ44aによって駆動されるポンプが採用されている。循環ポンプ43aは、第1利用側水出口管48aに設けられている。循環ポンプモータ44aは、インバータ装置(図示せず)によって、その回転数(すなわち、運転周波数)を可変でき、これにより、循環ポンプ43aの容量制御が可能になっている。
 これにより、第1利用ユニット4aは、第1利用側熱交換器41aをガス冷媒連絡管14から導入される熱源側冷媒の放熱器として機能させることで、第1利用側熱交換器41aにおいて放熱した熱源側冷媒を液冷媒連絡管13に導出し、第1利用側熱交換器41aにおける熱源側冷媒の放熱によって利用側冷媒回路40aを循環する利用側冷媒を加熱し、この加熱された利用側冷媒が利用側圧縮機62aにおいて圧縮された後に、冷媒-水熱交換器65aにおいて放熱することによって水媒体を加熱する給湯運転を行うことが可能になっている。
 また、第1利用ユニット4aには、各種のセンサが設けられている。具体的には、第1利用ユニット4aには、第1利用側熱交換器41aの液側における熱源側冷媒の温度である第1利用側冷媒温度Tsc1を検出する第1利用側熱交温度センサ50aと、冷媒-水熱交換器65aの液側における利用側冷媒の温度であるカスケード側冷媒温度Tsc2を検出する第1冷媒-水熱交温度センサ73aと、冷媒-水熱交換器65aの入口における水媒体の温度である水媒体入口温度Twrを検出する水媒体出口温度センサ51aと、冷媒-水熱交換器65aの出口における水媒体の温度である水媒体出口温度Twlを検出する水媒体出口温度センサ52aと、利用側圧縮機62aの吸入における利用側冷媒の圧力である利用側吸入圧力Ps2を検出する利用側吸入圧力センサ74aと、利用側圧縮機62aの吐出における利用側冷媒の圧力である利用側吐出圧力Pd2を検出する利用側吐出圧力センサ75aと、利用側圧縮機62aの吐出における利用側冷媒の温度である利用側吐出温度Td2を検出する利用側吐出温度センサ76aとが設けられている。
 また、ヒートポンプシステム200には、第1及び第2利用側コントローラの設定や指令によって、以下の運転や各種制御を行う制御部(図示せず)が設けられている。
 <動作>
 次に、ヒートポンプシステム200の動作について説明する。
 ヒートポンプシステム200の運転としては、第1実施形態のヒートポンプシステム1と同様に、第1利用ユニット4aの給湯運転(すなわち、貯湯ユニット8a及び/又は温水暖房ユニット9aの運転)のみを行う給湯運転と、第2利用ユニット10a及び/又は第2利用ユニット10bの冷房運転のみを行う冷房運転と、第2利用ユニット10a及び/又は第2利用ユニット10bの暖房運転のみを行う暖房運転と、第1利用ユニット4aの給湯運転を行うとともに第2利用ユニット10a及び/又は第2利用ユニット10bの暖房運転を行う給湯暖房運転とがある。
 以下、ヒートポンプシステム200の4つの運転における動作について説明する。
 -給湯運転-
 第1利用ユニット4aの給湯運転のみを行う場合には、熱源側冷媒回路20においては、熱源側切換機構23が熱源側蒸発運転状態(図3の熱源側切換機構23の破線で示された状態)に切り換えられ、吸入戻し膨張弁26a及び第2利用側流量調節弁102a、102bが閉止された状態になる。また、水媒体回路80aにおいては、水媒体切換機構161aが貯湯ユニット8a及び/又は温水暖房ユニット9aに水媒体を供給する状態に切り換えられる。ここでは、第2利用側コントローラ108a、108bのうちの1つによって、温調モードとしての熱源側切換機構23の切換状態を熱源側蒸発運転状態に切り換えた上で、第1利用側コントローラ77aの運転指令によって、第1利用ユニット4a(及び、貯湯ユニット8a及び/又は温水暖房ユニット9a)の運転(給湯運転)が行われる。
 このような状態の熱源側冷媒回路20において、冷凍サイクルにおける低圧の熱源側冷媒は、熱源側吸入管21cを通じて、熱源側圧縮機21に吸入され、冷凍サイクルにおける高圧まで圧縮された後に、熱源側吐出管21bに吐出される。熱源側吐出管21bに吐出された高圧の熱源側冷媒は、油分離器22aにおいて冷凍機油が分離される。油分離器22aにおいて熱源側冷媒から分離された冷凍機油は、油戻し管22bを通じて、熱源側吸入管21cに戻される。冷凍機油が分離された高圧の熱源側冷媒は、熱源側切換機構23、第2熱源側ガス冷媒管23b及びガス側閉鎖弁30を通じて、熱源ユニット2からガス冷媒連絡管14に送られる。
 ガス冷媒連絡管14に送られた高圧の熱源側冷媒は、第1利用ユニット4aに送られる。第1利用ユニット4aに送られた高圧の熱源側冷媒は、第1利用側ガス冷媒管54aを通じて、第1利用側熱交換器41aに送られる。第1利用側熱交換器41aに送られた高圧の熱源側冷媒は、第1利用側熱交換器41aにおいて、利用側冷媒回路40aを循環する冷凍サイクルにおける低圧の利用側冷媒と熱交換を行って放熱する。第1利用側熱交換器41aにおいて放熱した高圧の熱源側冷媒は、第1利用側流量調節弁42a及び第1利用側液冷媒管45aを通じて、第1利用ユニット4aから液冷媒連絡管13に送られる。
 液冷媒連絡管13に送られた熱源側冷媒は、熱源ユニット2に送られる。熱源ユニット2に送られた熱源側冷媒は、液側閉鎖弁29を通じて、過冷却器27に送られる。過冷却器27に送られた熱源側冷媒は、吸入戻し管26に熱源側冷媒が流れていないため、熱交換を行うことなく、熱源側膨張弁25に送られる。熱源側膨張弁25に送られた熱源側冷媒は、熱源側膨張弁25において減圧されて、低圧の気液二相状態になり、熱源側液冷媒管24aを通じて、熱源側熱交換器24に送られる。熱源側熱交換器24に送られた低圧の冷媒は、熱源側熱交換器24において、熱源側ファン32によって供給される室外空気と熱交換を行って蒸発する。熱源側熱交換器24において蒸発した低圧の熱源側冷媒は、第1熱源側ガス冷媒管23a及び熱源側切換機構23を通じて、熱源側アキュムレータ28に送られる。熱源側アキュムレータ28に送られた低圧の熱源側冷媒は、熱源側吸入管21cを通じて、再び、熱源側圧縮機21に吸入される。
 一方、利用側冷媒回路40aにおいては、第1利用側熱交換器41aにおける熱源側冷媒の放熱によって利用側冷媒回路40aを循環する冷凍サイクルにおける低圧の利用側冷媒が加熱されて蒸発する。第1利用側熱交換器41aにおいて蒸発した低圧の利用側冷媒は、第2カスケード側ガス冷媒管69aを通じて、利用側アキュムレータ67aに送られる。利用側アキュムレータ67aに送られた低圧の利用側冷媒は、カスケード側吸入管71aを通じて、利用側圧縮機62aに吸入され、冷凍サイクルにおける高圧まで圧縮された後に、カスケード側吐出管70aに吐出される。カスケード側吐出管70aに吐出された高圧の利用側冷媒は、第1カスケード側ガス冷媒管72aを通じて、冷媒-水熱交換器65aに送られる。冷媒-水熱交換器65aに送られた高圧の利用側冷媒は、冷媒-水熱交換器65aにおいて、循環ポンプ43aによって水媒体回路80aを循環する水媒体と熱交換を行って放熱する。冷媒-水熱交換器65aにおいて放熱した高圧の利用側冷媒は、冷媒-水熱交側流量調節弁66aにおいて減圧されて、低圧の気液二相状態になり、カスケード側液冷媒管68aを通じて、再び、第1利用側熱交換器41aに送られる。
 また、水媒体回路80aにおいては、冷媒-水熱交換器65aにおける利用側冷媒の放熱によって水媒体回路80aを循環する水媒体が加熱される。冷媒-水熱交換器65aにおいて加熱された水媒体は、第1利用側水出口管48aを通じて、循環ポンプ43aに吸入され、昇圧された後に、第1利用ユニット4aから水媒体連絡管16aに送られる。貯湯ユニット8aに送られた水媒体は、熱交換コイル82aにおいて貯湯タンク81a内の水媒体と熱交換を行って放熱し、これにより、貯湯タンク81a内の水媒体を加熱する。温水暖房ユニット9aに送られた水媒体は、熱交換パネル91aにおいて放熱し、これにより、室内の壁際等を加熱したり室内の床を加熱する。
 このようにして、第1利用ユニット4aの給湯運転のみを行う給湯運転における動作が行われる。
 -冷房運転-
 第2利用ユニット10a及び/又は第2利用ユニット10bの冷房運転のみを行う場合には、熱源側冷媒回路20においては、熱源側切換機構23が熱源側放熱運転状態(図3の熱源側切換機構23の実線で示された状態)に切り換えられ、第1利用側流量調節弁42aが閉止された状態になる。ここでは、第2利用側コントローラ108a、108bのうちの1つによって、温調モードとしての熱源側切換機構23の切換状態を熱源側放熱運転状態に切り換えた上で、第2利用側コントローラ108a及び/又は第2利用側コントローラ108bの運転指令によって、第2利用ユニット10a及び/又は第2利用ユニット10bの運転(冷房運転)が行われる。尚、冷房運転については、第1実施形態のヒートポンプシステム1における冷房運転と同様であるため、ここでは説明を省略する。
 -暖房運転-
 第2利用ユニット10a及び/又は第2利用ユニット10bの暖房運転のみを行う場合には、熱源側冷媒回路20においては、熱源側切換機構23が熱源側放熱運転状態(図3の熱源側切換機構23の破線で示された状態)に切り換えられ、吸入戻し膨張弁26a及び第1利用側流量調節弁42aが閉止された状態になる。ここでは、第2利用側コントローラ108a、108bのうちの1つによって、温調モードとしての熱源側切換機構23の切換状態を熱源側蒸発運転状態に切り換えた上で、第2利用側コントローラ108a及び/又は第2利用側コントローラ108bの運転指令によって、第2利用ユニット10a及び/又は第2利用ユニット10bの運転(暖房運転)が行われる。尚、暖房運転については、第1実施形態のヒートポンプシステム1における暖房運転と同様であるため、ここでは説明を省略する。
 -給湯暖房運転-
 第1利用ユニット4aの給湯運転を行うとともに第2利用ユニット10a及び/又は第2利用ユニット10bの暖房運転を行う場合には、熱源側冷媒回路20においては、熱源側切換機構23が熱源側蒸発運転状態(図3の熱源側切換機構23の破線で示された状態)に切り換えられ、吸入戻し膨張弁26aが閉止された状態になる。また、水媒体回路80aにおいては、水媒体切換機構161aが貯湯ユニット8a及び/又は温水暖房ユニット9aに水媒体を供給する状態に切り換えられる。ここでは、第2利用側コントローラ108a、108bのうちの1つによって、温調モードとしての熱源側切換機構23の切換状態を熱源側蒸発運転状態に切り換えた上で、第1利用側コントローラ77aの運転指令によって、第1利用ユニット4a(及び、貯湯ユニット8a及び/又は温水暖房ユニット9a)の運転(給湯運転)と、第2利用側コントローラ108a及び/又は第2利用側コントローラ108bの運転指令によって、第2利用ユニット10a及び/又は第2利用ユニット10bの運転(暖房運転)が行われる。
 このような状態の熱源側冷媒回路20において、冷凍サイクルにおける低圧の熱源側冷媒は、熱源側吸入管21cを通じて、熱源側圧縮機21に吸入され、冷凍サイクルにおける高圧まで圧縮された後に、熱源側吐出管21bに吐出される。熱源側吐出管21bに吐出された高圧の熱源側冷媒は、油分離器22aにおいて冷凍機油が分離される。油分離器22aにおいて熱源側冷媒から分離された冷凍機油は、油戻し管22bを通じて、熱源側吸入管21cに戻される。冷凍機油が分離された高圧の熱源側冷媒は、熱源側切換機構23、第2熱源側ガス冷媒管23b及びガス側閉鎖弁30を通じて、熱源ユニット2からガス冷媒連絡管14に送られる。
 ガス冷媒連絡管14に送られた高圧の熱源側冷媒は、第1利用ユニット4a及び第2利用ユニット10a、10b(ここでは、第2利用ユニット10a、10bの両方を暖房運転するものとして説明する)に送られる。
 第2利用ユニット10a、10bに送られた高圧の熱源側冷媒は、第2利用側ガス冷媒管104a、104bを通じて、第2利用側熱交換器101a、101bに送られる。第2利用側熱交換器101a、101bに送られた高圧の熱源側冷媒は、第2利用側熱交換器101a、101bにおいて、利用側ファン105a、105bによって供給される空気媒体と熱交換を行って放熱し、これにより、室内の暖房を行う。第2利用側熱交換器101a、101bにおいて放熱した高圧の熱源側冷媒は、第2利用側流量調節弁102a、102b及び第2利用側液冷媒管103a、103bを通じて、第2利用ユニット10a、10bから液冷媒連絡管13に送られる。
 第1利用ユニット4aに送られた高圧の熱源側冷媒は、第1利用側ガス冷媒管54aを通じて、第1利用側熱交換器41aに送られる。第1利用側熱交換器41aに送られた高圧の熱源側冷媒は、第1利用側熱交換器41aにおいて、利用側冷媒回路40aを循環する冷凍サイクルにおける低圧の利用側冷媒と熱交換を行って放熱する。第1利用側熱交換器41aにおいて放熱した高圧の熱源側冷媒は、第1利用側流量調節弁42a及び第1利用側液冷媒管45aを通じて、第1利用ユニット4aから液冷媒連絡管13に送られる。
 第2利用ユニット10a、10b及び第1利用ユニット4aから液冷媒連絡管13に送られた熱源側冷媒は、液冷媒連絡管13において合流して、熱源ユニット2に送られる。熱源ユニット2に送られた熱源側冷媒は、液側閉鎖弁29を通じて、過冷却器27に送られる。過冷却器27に送られた熱源側冷媒は、吸入戻し管26に熱源側冷媒が流れていないため、熱交換を行うことなく、熱源側膨張弁25に送られる。熱源側膨張弁25に送られた熱源側冷媒は、熱源側膨張弁25において減圧されて、低圧の気液二相状態になり、熱源側液冷媒管24aを通じて、熱源側熱交換器24に送られる。熱源側熱交換器24に送られた低圧の冷媒は、熱源側熱交換器24において、熱源側ファン32によって供給される室外空気と熱交換を行って蒸発する。熱源側熱交換器24において蒸発した低圧の熱源側冷媒は、第1熱源側ガス冷媒管23a及び熱源側切換機構23を通じて、熱源側アキュムレータ28に送られる。熱源側アキュムレータ28に送られた低圧の熱源側冷媒は、熱源側吸入管21cを通じて、再び、熱源側圧縮機21に吸入される。
 一方、利用側冷媒回路40aにおいては、第1利用側熱交換器41aにおける熱源側冷媒の放熱によって利用側冷媒回路40aを循環する冷凍サイクルにおける低圧の利用側冷媒が加熱されて蒸発する。第1利用側熱交換器41aにおいて蒸発した低圧の利用側冷媒は、第2カスケード側ガス冷媒管69aを通じて、利用側アキュムレータ67aに送られる。利用側アキュムレータ67aに送られた低圧の利用側冷媒は、カスケード側吸入管71aを通じて、利用側圧縮機62aに吸入され、冷凍サイクルにおける高圧まで圧縮された後に、カスケード側吐出管70aに吐出される。カスケード側吐出管70aに吐出された高圧の利用側冷媒は、第1カスケード側ガス冷媒管72aを通じて、冷媒-水熱交換器65aに送られる。冷媒-水熱交換器65aに送られた高圧の利用側冷媒は、冷媒-水熱交換器65aにおいて、循環ポンプ43aによって水媒体回路80aを循環する水媒体と熱交換を行って放熱する。冷媒-水熱交換器65aにおいて放熱した高圧の利用側冷媒は、冷媒-水熱交側流量調節弁66aにおいて減圧されて、低圧の気液二相状態になり、カスケード側液冷媒管68aを通じて、再び、第1利用側熱交換器41aに送られる。
 また、水媒体回路80aにおいては、冷媒-水熱交換器65aにおける利用側冷媒の放熱によって水媒体回路80aを循環する水媒体が加熱される。冷媒-水熱交換器65aにおいて加熱された水媒体は、第1利用側水出口管48aを通じて、循環ポンプ43aに吸入され、昇圧された後に、第1利用ユニット4aから水媒体連絡管16aに送られる。貯湯ユニット8aに送られた水媒体は、熱交換コイル82aにおいて貯湯タンク81a内の水媒体と熱交換を行って放熱し、これにより、貯湯タンク81a内の水媒体を加熱する。温水暖房ユニット9aに送られた水媒体は、熱交換パネル91aにおいて放熱し、これにより、室内の壁際等を加熱したり室内の床を加熱する。
 このようにして、第1利用ユニット4aの給湯運転を行うとともに第2利用ユニット10a及び/又は第2利用ユニット10bの暖房運転を行う給湯暖房運転における動作が行われる。
 このように、このヒートポンプシステム200では、第1実施形態のヒートポンプシステム1と同様に、温調モードを熱源側放熱運転状態に切り換えたままでは、給湯運転や暖房運転を行うことができず、また、温調モードを熱源側蒸発運転状態に切り換えたままでは、冷房運転を行うことができない。すなわち、第1利用ユニット4a及び第2利用ユニット10a、10bにおいて所望の運転を行うためには、第1利用側コントローラ77aから第1利用ユニット4aへの給湯運転の指令や第2利用側コントローラ108a、108bから第2利用ユニット10a、10bへの冷房運転又は暖房運転の指令だけでなく、第1及び第2利用ユニット4a、10a、10bに共通の熱源ユニット2における運転状態を決定する熱源側切換機構23の切換状態である温調モードの切り換えが必要であり、その意味において、このヒートポンプシステム200は、第1利用ユニット4a及び第2利用ユニット10a、10bが個別に給湯運転、冷房運転又は暖房運転を選択して運転できないものとなっている。
 そして、このヒートポンプシステム200においても、第1実施形態のヒートポンプシステム1と同様に、第2利用ユニット10a、10bに指令を行う第2利用側コントローラ108a、108bのうちの1つ(ここでは、第2利用側コントローラ108aとする)が指令している温調モードとしての熱源側切換機構23の切換状態とは異なる温調モードに切り換えて運転することが可能な温調モード切り換え制御を行うようにしている。尚、温調モード切り換え制御については、第1実施形態のヒートポンプシステム1における温調モード切り換え制御と同様であるため(図2等参照)、ここでは説明を省略する。
 これにより、このヒートポンプシステム200においても、第1実施形態のヒートポンプシステム1と同様の作用効果を得ることができる。
 (第3実施形態)
 上述の第1実施形態におけるヒートポンプシステム1(図1参照)においては、第1利用ユニット4aの給湯運転を行うとともに第2利用ユニット10a、10bの冷房運転を行うことができないため、このような運転(以下、「排熱給湯運転」とする)を行うことができれば、夏期等の冷房運転が行われている運転状態において、第2利用側熱交換器101a、101bにおける蒸発負荷(すなわち、冷房負荷)に見合う分の第1利用側熱交換器4aにおける放熱負荷(すなわち、給湯負荷)によって給湯運転を行うことができるようになるため、省エネルギー化の観点から好ましい。
 そこで、このヒートポンプシステム300では、上述の第1実施形態にかかるヒートポンプシステム1(図1参照)の構成において、図4に示されるように、第2利用側熱交換器101a、101bを熱源側冷媒の蒸発器として機能させることで空気媒体を冷却するとともに、第1利用側熱交換器41aを熱源側冷媒の放熱器として機能させることで水媒体を加熱する運転である排熱給湯運転を行うことができるようにしている。以下、このヒートポンプシステム300の構成について説明する。
 <構成>
 -全体-
 図4は、本発明の第3実施形態にかかるヒートポンプシステム300の概略構成図である。ヒートポンプシステム300は、蒸気圧縮式のヒートポンプサイクルを利用して水媒体を加熱する運転等を行うことが可能な装置である。
 ヒートポンプシステム300は、主として、熱源ユニット2と、第1利用ユニット4aと、第2利用ユニット10a、10bと、吐出冷媒連絡管12と、液冷媒連絡管13と、ガス冷媒連絡管14と、貯湯ユニット8aと、温水暖房ユニット9aと、水媒体連絡管15aと、水媒体連絡管16aとを備えており、熱源ユニット2と第1利用ユニット4aと第2利用ユニット10aとが冷媒連絡管12、13、14を介して接続されることによって、熱源側冷媒回路20を構成し、第1利用ユニット4aが利用側冷媒回路40aを構成し、第1利用ユニット4aと貯湯ユニット8aと温水暖房ユニット9aとが水媒体連絡管15a、16aを介して接続されることによって、水媒体回路80aを構成している。熱源側冷媒回路20には、HFC系冷媒の一種であるHFC-410Aが熱源側冷媒として封入されており、また、HFC系冷媒に対して相溶性を有するエステル系又はエーテル系の冷凍機油が熱源側圧縮機21の潤滑のために封入されている。また、利用側冷媒回路40aには、HFC系冷媒の一種であるHFC-134aが利用側冷媒として封入されており、また、HFC系冷媒に対して相溶性を有するエステル系又はエーテル系の冷凍機油が利用側圧縮機62aの潤滑のために封入されている。尚、利用側冷媒としては、高温の冷凍サイクルに有利な冷媒を使用されるという観点から、飽和ガス温度65℃に相当する圧力がゲージ圧で高くとも2.8MPa以下、好ましくは、2.0MPa以下の冷媒を使用することが好ましい。そして、HFC-134aは、このような飽和圧力特性を有する冷媒の一種である。また、水媒体回路80aには、水媒体としての水が循環するようになっている。
 尚、以下の構成に関する説明では、第1実施形態におけるヒートポンプシステム1(図1参照)と同様の構成を有する第2利用ユニット10a、10b、貯湯ユニット8a、温水暖房ユニット9a、液冷媒連絡管13、ガス冷媒連絡管14、水媒体連絡管15a、16a、第1利用側コントローラ77a、及び、第2利用側コントローラ108a、108bの構成については、同じ符号を付して説明を省略し、熱源ユニット2、吐出冷媒連絡管12、及び、第1利用ユニット4aの構成のみについて説明を行う。
 -熱源ユニット-
 熱源ユニット2は、屋外に設置されており、冷媒連絡管12、13、14を介して利用ユニット4a、10aに接続されており、熱源側冷媒回路20の一部を構成している。
 熱源ユニット2は、主として、熱源側圧縮機21と、油分離機構22と、熱源側切換機構23と、熱源側熱交換器24と、熱源側膨張機構25と、吸入戻し管26と、過冷却器27と、熱源側アキュムレータ28と、液側閉鎖弁29と、ガス側閉鎖弁30と、吐出側閉鎖弁31とを有している。
 ここで、吐出側閉鎖弁31は、熱源側圧縮機21の吐出と熱源側切換機構23とを接続する熱源側吐出管21bから分岐された熱源側吐出分岐管21dとガス冷媒連絡管14との接続部に設けられた弁である。
 尚、熱源ユニット2は、吐出側閉鎖弁31及び熱源側吐出分岐管21dを有する点を除いた構成については、第1実施形態におけるヒートポンプシステム1(図1参照)と同様であるため、ここでは、同じ符号を付して説明を省略する。
 -吐出冷媒連絡管-
 吐出冷媒連絡管12は、吐出側閉鎖弁31を介して熱源側吐出分岐管21dに接続されており、熱源側切換機構23が熱源側放熱運転状態及び熱源側蒸発運転状態のいずれにおいても熱源側圧縮機21の吐出から熱源ユニット2外に熱源側冷媒を導出することが可能な冷媒管である。
 -第1利用ユニット-
 第1利用ユニット4aは、屋内に設置されており、冷媒連絡管12、13を介して熱源ユニット2及び第2利用ユニット10aに接続されており、熱源側冷媒回路20の一部を構成している。また、第1利用ユニット4aは、水媒体連絡管15a、16aを介して貯湯ユニット8a及び温水暖房ユニット9aに接続されており、水媒体回路80aの一部を構成している。
 第1利用ユニット4aは、主として、第1利用側熱交換器41aと、第1利用側流量調節弁42aと、循環ポンプ43aとを有している。
 ここで、第1利用側熱交換器41aには、その熱源側冷媒が流れる流路のガス側に、第1実施形態におけるヒートポンプシステム1(図1参照)のようなガス冷媒連絡管14に接続された第1利用側ガス冷媒管54aに代えて、吐出冷媒連絡管12が接続された第1利用側吐出冷媒管46aが接続されている。第1利用側吐出冷媒管46aには、吐出冷媒連絡管12から第1利用側熱交換器41aへ向かう熱源側冷媒の流れを許容し、第1利用側熱交換器41aから吐出冷媒連絡管12へ向かう熱源側冷媒の流れを禁止する第1利用側吐出逆止弁49aが設けられている。
 尚、利用ユニット4aは、第1利用側ガス冷媒管54aに代えて、第1利用側吐出冷媒管46aが接続されている点を除いた構成については、第1実施形態におけるヒートポンプシステム1(図1参照)と同様であるため、ここでは、同じ符号を付して説明を省略する。
 また、ヒートポンプシステム300には、第1及び第2利用側コントローラの設定や指令によって、以下の運転や各種制御を行う制御部(図示せず)が設けられている。
 <動作>
 次に、ヒートポンプシステム300の動作について説明する。
 ヒートポンプシステム300の運転としては、第1利用ユニット4aの給湯運転(すなわち、貯湯ユニット8a及び/又は温水暖房ユニット9aの運転)のみを行う給湯運転と、第2利用ユニット10a及び/又は第2利用ユニット10bの冷房運転のみを行う冷房運転と、第2利用ユニット10a及び/又は第2利用ユニット10bの暖房運転のみを行う暖房運転と、第1利用ユニット4aの給湯運転を行うとともに第2利用ユニット10a及び/又は第2利用ユニット10bの暖房運転を行う給湯暖房運転と、第1利用ユニット4aの給湯運転を行うとともに第2利用ユニット10a及び/又は第2利用ユニット10bの冷房運転を行う排熱給湯運転とがある。
 以下、ヒートポンプシステム300の5つの運転における動作について説明する。
 -給湯運転-
 第1利用ユニット4aの給湯運転のみを行う場合には、熱源側冷媒回路20においては、熱源側切換機構23が熱源側蒸発運転状態(図4の熱源側切換機構23の破線で示された状態)に切り換えられ、吸入戻し膨張弁26a及び第2利用側流量調節弁102a、102bが閉止された状態になる。また、水媒体回路80aにおいては、水媒体切換機構161aが貯湯ユニット8a及び/又は温水暖房ユニット9aに水媒体を供給する状態に切り換えられる。ここでは、第2利用側コントローラ108a、108bのうちの1つによって、温調モードとしての熱源側切換機構23の切換状態を熱源側蒸発運転状態に切り換えた上で、第1利用側コントローラ77aの運転指令によって、第1利用ユニット4a(及び、貯湯ユニット8a及び/又は温水暖房ユニット9a)の運転(給湯運転)が行われる。
 このような状態の熱源側冷媒回路20において、冷凍サイクルにおける低圧の熱源側冷媒は、熱源側吸入管21cを通じて、熱源側圧縮機21に吸入され、冷凍サイクルにおける高圧まで圧縮された後に、熱源側吐出管21bに吐出される。熱源側吐出管21bに吐出された高圧の熱源側冷媒は、油分離器22aにおいて冷凍機油が分離される。油分離器22aにおいて熱源側冷媒から分離された冷凍機油は、油戻し管22bを通じて、熱源側吸入管21cに戻される。冷凍機油が分離された高圧の熱源側冷媒は、熱源側吐出分岐管21d及び吐出側閉鎖弁31を通じて、熱源ユニット2から吐出冷媒連絡管12に送られる。
 吐出冷媒連絡管12に送られた高圧の熱源側冷媒は、第1利用ユニット4aに送られる。第1利用ユニット4aに送られた高圧の熱源側冷媒は、第1利用側吐出冷媒管46a及び第1利用側吐出逆止弁49aを通じて、第1利用側熱交換器41aに送られる。第1利用側熱交換器41aに送られた高圧の熱源側冷媒は、第1利用側熱交換器41aにおいて、循環ポンプ43aによって水媒体回路80aを循環する水媒体と熱交換を行って放熱する。第1利用側熱交換器41aにおいて放熱した高圧の熱源側冷媒は、第1利用側流量調節弁42a及び第1利用側液冷媒管45aを通じて、第1利用ユニット4aから液冷媒連絡管13に送られる。
 液冷媒連絡管13に送られた熱源側冷媒は、熱源ユニット2に送られる。熱源ユニット2に送られた熱源側冷媒は、液側閉鎖弁29を通じて、過冷却器27に送られる。過冷却器27に送られた熱源側冷媒は、吸入戻し管26に熱源側冷媒が流れていないため、熱交換を行うことなく、熱源側膨張弁25に送られる。熱源側膨張弁25に送られた熱源側冷媒は、熱源側膨張弁25において減圧されて、低圧の気液二相状態になり、熱源側液冷媒管24aを通じて、熱源側熱交換器24に送られる。熱源側熱交換器24に送られた低圧の冷媒は、熱源側熱交換器24において、熱源側ファン32によって供給される室外空気と熱交換を行って蒸発する。熱源側熱交換器24において蒸発した低圧の熱源側冷媒は、第1熱源側ガス冷媒管23a及び熱源側切換機構23を通じて、熱源側アキュムレータ28に送られる。熱源側アキュムレータ28に送られた低圧の熱源側冷媒は、熱源側吸入管21cを通じて、再び、熱源側圧縮機21に吸入される。
 一方、水媒体回路80aにおいては、第1利用側熱交換器41aにおける熱源側冷媒の放熱によって水媒体回路80aを循環する水媒体が加熱される。第1利用側熱交換器41aにおいて加熱された水媒体は、第1利用側水出口管48aを通じて、循環ポンプ43aに吸入され、昇圧された後に、第1利用ユニット4aから水媒体連絡管16aに送られる。水媒体連絡管16aに送られた水媒体は、水媒体側切換機構161aを通じて、貯湯ユニット8a及び/又は温水暖房ユニット9aに送られる。貯湯ユニット8aに送られた水媒体は、熱交換コイル82aにおいて貯湯タンク81a内の水媒体と熱交換を行って放熱し、これにより、貯湯タンク81a内の水媒体を加熱する。温水暖房ユニット9aに送られた水媒体は、熱交換パネル91aにおいて放熱し、これにより、室内の壁際等を加熱したり室内の床を加熱する。
 このようにして、第1利用ユニット4aの給湯運転のみを行う給湯運転における動作が行われる。
 -冷房運転-
 第2利用ユニット10a及び/又は第2利用ユニット10bの冷房運転のみを行う場合には、熱源側冷媒回路20においては、熱源側切換機構23が熱源側放熱運転状態(図4の熱源側切換機構23の実線で示された状態)に切り換えられ、第1利用側流量調節弁42aが閉止された状態になる。ここでは、第2利用側コントローラ108a、108bのうちの1つによって、温調モードとしての熱源側切換機構23の切換状態を熱源側放熱運転状態に切り換えた上で、第2利用側コントローラ108a及び/又は第2利用側コントローラ108bの運転指令によって、第2利用ユニット10a及び/又は第2利用ユニット10bの運転(冷房運転)が行われる。尚、冷房運転については、第1実施形態のヒートポンプシステム1における冷房運転と同様であるため、ここでは説明を省略する。
 -暖房運転-
 第2利用ユニット10a及び/又は第2利用ユニット10bの暖房運転のみを行う場合には、熱源側冷媒回路20においては、熱源側切換機構23が熱源側放熱運転状態(図4の熱源側切換機構23の破線で示された状態)に切り換えられ、吸入戻し膨張弁26a及び第1利用側流量調節弁42aが閉止された状態になる。ここでは、第2利用側コントローラ108a、108bのうちの1つによって、温調モードとしての熱源側切換機構23の切換状態を熱源側蒸発運転状態に切り換えた上で、第2利用側コントローラ108a及び/又は第2利用側コントローラ108bの運転指令によって、第2利用ユニット10a及び/又は第2利用ユニット10bの運転(暖房運転)が行われる。尚、暖房運転については、第1実施形態のヒートポンプシステム1における暖房運転と同様であるため、ここでは説明を省略する。
 -給湯暖房運転-
 第1利用ユニット4aの給湯運転を行うとともに第2利用ユニット10a及び/又は第2利用ユニット10bの暖房運転を行う場合には、熱源側冷媒回路20においては、熱源側切換機構23が熱源側蒸発運転状態(図4の熱源側切換機構23の破線で示された状態)に切り換えられ、吸入戻し膨張弁26aが閉止された状態になる。また、水媒体回路80aにおいては、水媒体切換機構161aが貯湯ユニット8a及び/又は温水暖房ユニット9aに水媒体を供給する状態に切り換えられる。ここでは、第2利用側コントローラ108a、108bのうちの1つによって、温調モードとしての熱源側切換機構23の切換状態を熱源側蒸発運転状態に切り換えた上で、第1利用側コントローラ77aの運転指令によって、第1利用ユニット4a(及び、貯湯ユニット8a及び/又は温水暖房ユニット9a)の運転(給湯運転)と、第2利用側コントローラ108a及び/又は第2利用側コントローラ108bの運転指令によって、第2利用ユニット10a及び/又は第2利用ユニット10bの運転(暖房運転)が行われる。
 このような状態の熱源側冷媒回路20において、冷凍サイクルにおける低圧の熱源側冷媒は、熱源側吸入管21cを通じて、熱源側圧縮機21に吸入され、冷凍サイクルにおける高圧まで圧縮された後に、熱源側吐出管21bに吐出される。熱源側吐出管21bに吐出された高圧の熱源側冷媒は、油分離器22aにおいて冷凍機油が分離される。油分離器22aにおいて熱源側冷媒から分離された冷凍機油は、油戻し管22bを通じて、熱源側吸入管21cに戻される。冷凍機油が分離された高圧の熱源側冷媒は、その一部が、熱源側吐出分岐管21d及び吐出側閉鎖弁31を通じて、熱源ユニット2から吐出冷媒連絡管12に送られ、その残りが、熱源側切換機構23、第2熱源側ガス冷媒管23b及びガス側閉鎖弁30を通じて、熱源ユニット2からガス冷媒連絡管14に送られる。
 ガス冷媒連絡管14に送られた高圧の熱源側冷媒は、第2利用ユニット10a、10b(ここでは、第2利用ユニット10a、10bの両方を暖房運転するものとして説明する)に送られる。第2利用ユニット10a、10bに送られた高圧の熱源側冷媒は、第2利用側ガス冷媒管104a、104bを通じて、第2利用側熱交換器101a、101bに送られる。第2利用側熱交換器101a、101bに送られた高圧の熱源側冷媒は、第2利用側熱交換器101a、101bにおいて、利用側ファン105a、105bによって供給される空気媒体と熱交換を行って放熱し、これにより、室内の暖房を行う。第2利用側熱交換器101a、101bにおいて放熱した高圧の熱源側冷媒は、第2利用側流量調節弁102a、102b及び第2利用側液冷媒管103a、103bを通じて、第2利用ユニット10a、10bから液冷媒連絡管13に送られる。
 吐出冷媒連絡管12に送られた高圧の熱源側冷媒は、第1利用ユニット4aに送られる。第1利用ユニット4aに送られた高圧の熱源側冷媒は、第1利用側吐出冷媒管46a及び第1利用側吐出逆止弁49aを通じて、第1利用側熱交換器41aに送られる。第1利用側熱交換器41aに送られた高圧の熱源側冷媒は、第1利用側熱交換器41aにおいて、循環ポンプ43aによって水媒体回路80aを循環する水媒体と熱交換を行って放熱する。第1利用側熱交換器41aにおいて放熱した高圧の熱源側冷媒は、第1利用側流量調節弁42a及び第1利用側液冷媒管45aを通じて、第1利用ユニット4aから液冷媒連絡管13に送られる。
 第2利用ユニット10a、10b及び第1利用ユニット4aから液冷媒連絡管13に送られた熱源側冷媒は、液冷媒連絡管13において合流して、熱源ユニット2に送られる。熱源ユニット2に送られた熱源側冷媒は、液側閉鎖弁29を通じて、過冷却器27に送られる。過冷却器27に送られた熱源側冷媒は、吸入戻し管26に熱源側冷媒が流れていないため、熱交換を行うことなく、熱源側膨張弁25に送られる。熱源側膨張弁25に送られた熱源側冷媒は、熱源側膨張弁25において減圧されて、低圧の気液二相状態になり、熱源側液冷媒管24aを通じて、熱源側熱交換器24に送られる。熱源側熱交換器24に送られた低圧の冷媒は、熱源側熱交換器24において、熱源側ファン32によって供給される室外空気と熱交換を行って蒸発する。熱源側熱交換器24において蒸発した低圧の熱源側冷媒は、第1熱源側ガス冷媒管23a及び熱源側切換機構23を通じて、熱源側アキュムレータ28に送られる。熱源側アキュムレータ28に送られた低圧の熱源側冷媒は、熱源側吸入管21cを通じて、再び、熱源側圧縮機21に吸入される。
 一方、水媒体回路80aにおいては、第1利用側熱交換器41aにおける熱源側冷媒の放熱によって水媒体回路80aを循環する水媒体が加熱される。第1利用側熱交換器41aにおいて加熱された水媒体は、第1利用側水出口管48aを通じて、循環ポンプ43aに吸入され、昇圧された後に、第1利用ユニット4aから水媒体連絡管16aに送られる。水媒体連絡管16aに送られた水媒体は、水媒体側切換機構161aを通じて、貯湯ユニット8a及び/又は温水暖房ユニット9aに送られる。貯湯ユニット8aに送られた水媒体は、熱交換コイル82aにおいて貯湯タンク81a内の水媒体と熱交換を行って放熱し、これにより、貯湯タンク81a内の水媒体を加熱する。温水暖房ユニット9aに送られた水媒体は、熱交換パネル91aにおいて放熱し、これにより、室内の壁際等を加熱したり室内の床を加熱する。
 このようにして、第1利用ユニット4aの給湯運転を行うとともに第2利用ユニット10a及び/又は第2利用ユニット10bの暖房運転を行う給湯暖房運転における動作が行われる。
 -排熱給湯運転-
 第1利用ユニット4aの給湯運転を行うとともに第2利用ユニット10a及び/又は第2利用ユニット10bの冷房運転を行う排熱給湯運転を行う場合には、熱源側冷媒回路20においては、熱源側切換機構23が熱源側放熱運転状態(図4の熱源側切換機構23の実線で示された状態)に切り換えられた状態になる。また、水媒体回路80aにおいては、水媒体切換機構161aが貯湯ユニット8aに水媒体を供給する状態に切り換えられる。ここでは、第2利用側コントローラ108a、108bのうちの1つによって、温調モードとしての熱源側切換機構23の切換状態を熱源側蒸発運転状態に切り換えた上で、第1利用側コントローラ77aの運転指令によって、第1利用ユニット4a(及び、貯湯ユニット8a及び/又は温水暖房ユニット9a)の運転(給湯運転)と、第2利用側コントローラ108a及び/又は第2利用側コントローラ108bの運転指令によって、第2利用ユニット10a及び/又は第2利用ユニット10bの運転(冷房運転)が行われる。
 このような状態の熱源側冷媒回路20において、冷凍サイクルにおける低圧の熱源側冷媒は、熱源側吸入管21cを通じて、熱源側圧縮機21に吸入され、冷凍サイクルにおける高圧まで圧縮された後に、熱源側吐出管21bに吐出される。熱源側吐出管21bに吐出された高圧の熱源側冷媒は、油分離器22aにおいて冷凍機油が分離される。油分離器22aにおいて熱源側冷媒から分離された冷凍機油は、油戻し管22bを通じて、熱源側吸入管21cに戻される。冷凍機油が分離された高圧の熱源側冷媒は、その一部が、熱源側吐出分岐管21d及び吐出側閉鎖弁31を通じて、熱源ユニット2から吐出冷媒連絡管12に送られ、その残りが、熱源側切換機構23及び第1熱源側ガス冷媒管23aを通じて、熱源側熱交換器24に送られる。熱源側熱交換器24に送られた高圧の熱源側冷媒は、熱源側熱交換器24において、熱源側ファン32によって供給される室外空気と熱交換を行って放熱する。熱源側熱交換器において放熱した高圧の熱源側冷媒は、熱源側膨張弁25を通じて、過冷却器27に送られる。過冷却器27に送られた熱源側冷媒は、熱源側液冷媒管24aから吸入戻し管26に分岐された熱源側冷媒と熱交換を行って過冷却状態になるように冷却される。吸入戻し管26を流れる熱源側冷媒は、熱源側吸入管21cに戻される。過冷却器27において冷却された熱源側冷媒は、熱源側液冷媒管24a及び液側閉鎖弁29を通じて、熱源ユニット2から液冷媒連絡管13に送られる。
 吐出冷媒連絡管12に送られた高圧の熱源側冷媒は、第1利用ユニット4aに送られる。第1利用ユニット4aに送られた高圧の熱源側冷媒は、第1利用側吐出冷媒管46a及び第1利用側吐出逆止弁49aを通じて、第1利用側熱交換器41aに送られる。第1利用側熱交換器41aに送られた高圧の熱源側冷媒は、第1利用側熱交換器41aにおいて、循環ポンプ43aによって水媒体回路80aを循環する水媒体と熱交換を行って放熱する。第1利用側熱交換器41aにおいて放熱した高圧の熱源側冷媒は、第1利用側流量調節弁42a及び第1利用側液冷媒管45aを通じて、第1利用ユニット4aから液冷媒連絡管13に送られる。
 熱源ユニット2及び第1利用ユニット4aから液冷媒連絡管13に送られた熱源側冷媒は、液冷媒連絡管13において合流して、第2利用ユニット10a、10b(ここでは、第2利用ユニット10a、10bの両方を暖房運転するものとして説明する)に送られる。第2利用ユニット10a、10bに送られた熱源側冷媒は、第2利用側流量調節弁102a、102bに送られる。第2利用側流量調節弁102a、102bに送られた熱源側冷媒は、第2利用側流量調節弁102a、102bにおいて減圧されて、低圧の気液二相状態になり、第2利用側液冷媒管103a、103bを通じて、第2利用側熱交換器101a、101bに送られる。第2利用側熱交換器101a、101bに送られた低圧の熱源側冷媒は、第2利用側熱交換器101a、101bにおいて、利用側ファン105a、105aによって供給される空気媒体と熱交換を行って蒸発し、これにより、室内の冷房を行う。第2利用側熱交換器101a、101bにおいて蒸発した低圧の熱源側冷媒は、第2利用側ガス冷媒管104a、104bを通じて、第2利用ユニット10a、10bからガス冷媒連絡管14に送られる。
 ガス冷媒連絡管14に送られた低圧の熱源側冷媒は、熱源ユニット2に送られる。熱源ユニット2に送られた低圧の熱源側冷媒は、ガス側閉鎖弁30、第2熱源側ガス冷媒管23b及び熱源側切換機構23を通じて、熱源側アキュムレータ28に送られる。熱源側アキュムレータ28に送られた低圧の熱源側冷媒は、熱源側吸入管21cを通じて、再び、熱源側圧縮機21に吸入される。
 一方、水媒体回路80aにおいては、第1利用側熱交換器41aにおける熱源側冷媒の放熱によって水媒体回路80aを循環する水媒体が加熱される。第1利用側熱交換器41aにおいて加熱された水媒体は、第1利用側水出口管48aを通じて、循環ポンプ43aに吸入され、昇圧された後に、第1利用ユニット4aから水媒体連絡管16aに送られる。水媒体連絡管16aに送られた水媒体は、水媒体側切換機構161aを通じて、貯湯ユニット8a及び/又は温水暖房ユニット9aに送られる。貯湯ユニット8aに送られた水媒体は、熱交換コイル82aにおいて貯湯タンク81a内の水媒体と熱交換を行って放熱し、これにより、貯湯タンク81a内の水媒体を加熱する。
 このようにして、第1利用ユニット4aの給湯運転を行うとともに第2利用ユニット10a及び/又は第2利用ユニット10bの冷房運転を行う排熱給湯運転における動作が行われる。
 このように、このヒートポンプシステム300では、排熱給湯運転を行う場合には、温調モードを熱源側放熱運転状態に切り換えたままでも給湯運転を行うことができるが、このような排熱給湯運転を行う場合には、第2利用側熱交換器101a、101bにおける蒸発負荷に見合う分の第1利用側熱交換器41aにおける放熱負荷によって給湯運転が行われることになるため、所望の給湯負荷をまかなうことができないこともあり、この場合には、温調モードを熱源側蒸発運転状態に切り換えて給湯運転を行う必要がある。また、春期や秋期等には、必要に応じて冷房運転や暖房運転を行うこともあり、この場合にも、温調モードの切り換えが必要である。すなわち、このヒートポンプシステム300のような、排熱給湯運転を行うことが可能な構成であっても、温調モードの切り換えが必要であり、その意味において、このヒートポンプシステム300も、第1利用ユニット4a及び第2利用ユニット10a、10bが個別に給湯運転、冷房運転又は暖房運転を選択して運転できないものとなっている。
 -温調モード切り換え制御-
 しかし、ユーザーは、このヒートポンプシステム300を、第1実施形態のヒートポンプシステム1と同様、単に、第2利用ユニット10a、10bによる冷暖房装置と第1利用ユニット4a等による給湯装置とが併存したしたものと受け取ってしまうため、温調モードの切り換えの必要性を認識できず、温調モードの切り換えを忘れたり、切り換えミスを生じるおそれがあり、また、温調モードの切り換えも煩雑である。
 そこで、このヒートポンプシステム300では、第2利用ユニット10a、10bに指令を行う第2利用側コントローラ108a、108bのうちの1つ(ここでは、第2利用側コントローラ108aとする)が指令している温調モードとしての熱源側切換機構23の切換状態とは異なる温調モードに切り換えて運転することが可能な温調モード切り換え制御を行うようにしている。
 以下に、このヒートポンプシステム300における温調モード切り換え制御の制御ロジックについて、図5を用いて説明する。この温調モード切り換え制御では、温調モードが熱源側放熱運転状態になっている(すなわち、第2利用ユニット10a、10bが冷房運転しているか、冷房運転を行っていなくても、第2利用側コントローラ108aが温調モードを熱源側放熱運転状態になるように指令している)際において、第1利用側コントローラ77aから第1利用ユニット4aに給湯運転が指令された場合(したがって、温調モードを熱源側蒸発運転状態しなければならない場合)には、温調モードを熱源側蒸発運転状態に切り換えて、第1利用ユニット4aの給湯運転を行う運転である優先給湯運転(ステップS17~S19)が行われるようになっており、それ以外の場合には、指令されている温調モード(ここでは、第2利用側コントローラ108aによって指令されている温調モード)における運転(ステップS11、S14)が行われるようになっている。
 まず、ステップS11の運転状態、すなわち、第2利用側コントローラ108aによって指令されている温調モードにおける運転(図5では、この運転を「優先給湯運転=OFF」とする)が継続しているものとする。
 次に、ステップS12において、条件Aを満たすかどうかを判定する。ここで、条件Aは、第2利用側コントローラ108aによって指令されている温調モードが熱源側放熱運転状態(図5では、この状態を「温調モード=冷房」とする)であり、かつ、所定の第3時間tm3が経過し(図5では、この状態を「tm3タイムアップ」とする)、かつ、第1利用側コントローラ77aによって第1利用ユニット4aに給湯運転が指令されたかどうか(図5では、この指令がなされた状態を「給湯運転要求=ON」とする)であり、かつ、第2利用ユニット10a、10bの冷房運転中に第1利用ユニット4aの給湯運転を行う排熱給湯運転が行われていないかどうか(図5では、この排熱給湯運転が行われていない状態を「排熱給湯運転要求=OFF」とする)、これにより、温調モードが熱源側放熱運転状態になっている際に第1利用ユニット4aに給湯運転が指令されたかどうかを判定する。ここで、時間tm3は、後述のステップS20において設定される時間である。また、排熱給湯運転は、冷房運転を行っている際において、貯湯ユニット8aの貯湯温度Twhが所定の貯湯設定温度Twhs以下になった場合に、自動的に、第1利用ユニット4aが第1利用側熱交換器41aにおける熱源側冷媒の放熱によって水媒体を加熱する給湯運転を行うものである。そして、このステップS12において、条件Aを満たさないと判定された場合、すなわち、温調モードが熱源側蒸発運転状態である場合(図5では、この状態を「温調モード≠冷房」とする)、又は、第3時間tm3が経過していない場合、又は、第1利用側コントローラ77aによって第1利用ユニット4aに給湯運転が指令されていない場合(すなわち、「給湯運転要求=OFF」)には、第2利用側コントローラ108aによって指令されている温調モードにおける運転(すなわち、「優先給湯運転=OFF」)を継続し、条件Aを満たすと判定された場合には、温調モードが熱源側放熱運転状態にあり、また、排熱給湯運転では所望の給湯負荷をまかなうことができない状態(給湯負荷が大きく、排熱給湯運転では、貯湯温度Twhを所定の貯湯設定温度Twhs以上にすることができない状態)となっているため、優先給湯運転(ステップS17~S19)に向けて、ステップS13以降の処理に移行する。
 次に、ステップS13、S14では、条件Aを満たす場合ではあるが、すぐに、優先給湯運転(ステップS17~S19)に移行するのではなく、ステップS13において、所定の第1時間tm1のカウントを開始し、ステップS11と同じく、第2利用側コントローラ108aによって指令されている温調モードにおける運転(すなわち、「優先給湯運転=OFF」)を継続する。ここで、第1時間tm1は、ステップS12の処理が終了してからステップS15、S16の処理が行われるまでの時間間隔に相当するものであり、数分から10分程度に設定される。
 次に、ステップS15において、条件Bを満たすかどうかを判定する。ここで、条件Bは、第2利用側コントローラ108aによって指令されている温調モードが熱源側放熱運転状態(すなわち、「温調モード=冷房」)であり、かつ、第1利用側コントローラ77aによって第1利用ユニット4aに給湯運転が指令されたかどうか(すなわち、「給湯運転要求=ON」)であり、かつ、第2利用ユニット10a、10bの冷房運転中に第1利用ユニット4aの給湯運転を行う排熱給湯運転が行われていないかどうか(すなわち、「排熱給湯運転要求=OFF」)であり、かつ、第1時間tm1が経過したかどうか(図5では、この状態を「tm1タイムアップ」とする)、又は、外気温度Toが所定の低温条件温度Tolより低いかどうか(図5では、この状態を「To<Tol」とする)であり、これにより、ステップS12において、条件Aを満たす状態が第1時間tm1継続しており給湯運転の要求が確実なもの(例えば、排熱給湯運転では所望の給湯負荷をまかなうことができない状態)であるか、又は、外気温度Toが低温条件であるにもかかわらず、第2利用側コントローラ108aによって指令されている温調モードが熱源側放熱運転状態(すなわち、「温調モード=冷房」)になっているかを判定する。ここで、低温条件温度Tolは、第2利用ユニット10a、10bの暖房運転を行うことが想定される最も高い温度に相当するものであり、15℃程度に設定される。そして、このステップS15において、条件Bを満たさないと判定された場合、すなわち、温調モードが熱源側蒸発運転状態である場合(すなわち、「温調モード≠冷房」)、又は、第1利用側コントローラ77aによって第1利用ユニット4aに給湯運転が指令されていない場合(すなわち、「給湯運転要求=OFF」)、又は、第2利用ユニット10a、10bの冷房運転中に第1利用ユニット4aの給湯運転を行う排熱給湯運転が行われている場合(図5では、この排熱給湯運転が行われている状態を「排熱給湯運転要求=ON」とする)には、ステップS16の条件Dを満たすものと判定して、ステップS1の第2利用側コントローラ108aによって指令されている温調モードにおける運転(すなわち、「優先給湯運転=OFF」)を継続し、条件Bを満たすと判定された場合には、給湯運転の要求が確実なものとなっている状態、又は、外気温度Toが低温条件であるにもかかわらず第2利用側コントローラ108aによって指令されている温調モードが熱源側放熱運転状態(すなわち、「温調モード=冷房」)になっている状態であるため、優先給湯運転(ステップS17~S19)に移行する。
 次に、ステップS17~S19では、まず、ステップS17において、所定の第2時間tm2のカウントを開始する。ここで、第2時間tm2は、優先給湯運転を行う時間に相当するものであり、10分から30分程度に設定される。そして、ステップS18において、第2利用側コントローラ108aが温調モードを熱源側放熱運転状態(すなわち、「温調モード=冷房」)に指令しているにもかかわらず、温調モードを熱源側蒸発運転状態に切り換えるとともに、循環ポンプ43aの起動や第1利用側流量調節弁41aの開操作等を行って第1利用ユニット4aの給湯運転(すなわち、優先給湯運転)を開始する。
 ところで、このような優先給湯運転を行うために、温調モードを熱源側放熱運転状態から熱源側蒸発運転状態に切り換えると、第2利用ユニット10a、10bが暖房運転を行う状態に切り換えられることになり、優先給湯運転が開始されるまで第2利用ユニット10a、10bが冷房運転を行っていた場合には、第2利用ユニット10a、10bが暖房運転を行う状態になり、また、優先給湯運転中に第2利用側コントローラ108a、108bから第2利用ユニット10a、10bに冷房運転が指令された場合に暖房運転を開始してしまうため、室内の快適性が損なわれて好ましくない。そこで、このヒートポンプシステム300では、第1実施形態のヒートポンプシステム1と同様に、優先給湯運転中は、第2利用ユニット10a、10bの冷房運転を禁止するようにしている。
 また、上述のように、優先給湯運転において、第2利用ユニット10a、10bの冷房運転を禁止する際に、第2利用側コントローラ108a、108bから冷房運転が指令されている第2利用ユニット10a、10bについて、利用側ファン105a、105bの運転も停止してしまうと、ユーザーが第2利用ユニット10a、10bの故障が発生したものと誤解するおそれがある。そこで、このヒートポンプシステム300では、第1実施形態のヒートポンプシステム1と同様に、第2利用側コントローラ108a、108bから冷房運転が指令されている第2利用ユニット10a、10bについては、優先給湯運転中は、第2利用側流量調節弁102a、102bの閉操作等を行って冷房運転を停止した状態で利用側ファン105a、105bを運転するようにしている。ここで、利用側ファン105a、105bの運転周波数は、室内のドラフト防止のために、最低周波数にすることが好ましい。
 さらに、上述のように、優先給湯運転において、第2利用ユニット10a、10bの冷房運転を停止することに連動して、第2利用側コントローラ108a、108bにおける第2利用ユニット10a、10bの運転状態の表示を変更(すなわち、冷房運転を停止に変更)してしまうと、ユーザーが第2利用ユニット10a、10bの故障が発生したものと誤解するおそれがある。そこで、このヒートポンプシステム300では、第1実施形態のヒートポンプシステム1と同様に、優先給湯運転における第2利用ユニット10a、10bの冷房運転の停止中においても、第2利用側コントローラ108a、108bが冷房運転中である旨の表示を維持するようにしている。
 そして、この優先給湯運転は、ステップS19において、条件Cを満たすまで継続される。ここで、条件Cは、第2利用側コントローラ108aによって温調モードが熱源側蒸発運転状態に切り換えるように指令されるか(すなわち、「温調モード≠冷房」)、又は、第1利用側コントローラ77aによって第1利用ユニット4aに給湯運転を停止する指令がされるか(すなわち、「給湯運転要求=OFF」)又は、外気温度Toが所定の高温条件温度Tohより高い状態(図5では、この状態を「To>Toh」とする)で第2時間tm2が経過するか(図5では、この状態を「tm2タイムアップ」とする)であり、これにより、ステップS19において、優先給湯運転を行わなくても給湯運転が可能な状態になったか、又は、給湯運転が不要になったか、又は、優先給湯運転が第2時間tm2継続したかを判定する。ここで、高温条件温度Tohは、第2利用ユニット10a、10bの冷房運転を行うことが想定される最も低い温度に相当するものであり、20℃程度に設定される。そして、優先給湯運転は、このステップS19において、条件Cを満たすと判定されるまで、すなわち、優先給湯運転を行わなくても給湯運転が可能な状態になり、又は、給湯運転が不要になり、又は、優先給湯運転が第2時間tm2継続するまで継続され、その後、第2利用側コントローラ108aが指令している温調モードにおける運転に戻す処理(ステップS20、S11)に移行する。
 次に、ステップS20、S11では、まず、ステップS20において、所定の第3時間tm3のカウントを開始し、そして、ステップS11において、第2利用側コントローラ108aが指令している温調モードにおける運転に戻す処理が行われる。ここで、第3時間tm3は、優先給湯運転が要求されている場合において、優先給湯運転を行なわずに第2利用側コントローラ108aが指令している温調モードにおける運転を行う時間に相当するものであり、5分から25分程度に設定される。例えば、第2利用ユニット10a、10bの冷房運転中に第1利用ユニット4aの給湯運転が要求された場合には、優先給湯運転が第2時間tm2だけ行われ、冷房運転が第3時間tm3だけ行われることになる。
 以上のような温調モード切り換え制御によって、このヒートポンプシステム300では、第2利用ユニット10a、10bの運転が停止している場合、又は、冷房運転が行われている場合(すなわち、第2利用側コントローラ108aが指令している温調モードが熱源側放熱運転状態である場合)において、第1利用ユニット10aに給湯運転が要求された場合(すなわち、第1利用側コントローラ77aから第1利用ユニット4aに給湯運転が指令された場合)には、第2利用側コントローラ108aが温調モードを熱源側放熱運転状態に指令しているにもかかわらず、温調モードを熱源側蒸発運転状態に切り換えて優先給湯運転を行うことができる、すなわち、第2利用側コントローラ108aが指令している温調モードとしての熱源側切換機構23の切換状態とは異なる温調モードに切り換えて運転することが可能になっている。
 これにより、このヒートポンプシステム300においても、第1実施形態のヒートポンプシステム1と同様の作用効果を得ることができる。
 (第4実施形態)
 上述の第2実施形態におけるヒートポンプシステム200(図3参照)においては、第1利用ユニット4aの給湯運転を行うとともに第2利用ユニット10a、10bの冷房運転を行うことができないため、このような運転(以下、「排熱給湯運転」とする)を行うことができれば、夏期等の冷房運転が行われている運転状態において、第2利用側熱交換器101a、101bにおける蒸発負荷(すなわち、冷房負荷)に見合う分の第1利用側熱交換器4aにおける放熱負荷(すなわち、給湯負荷)によって給湯運転を行うことができるようになるため、省エネルギー化の観点から好ましい。
 そこで、このヒートポンプシステム400では、上述の第2実施形態にかかるヒートポンプシステム1(図3参照)の構成において、図6に示されるように、第2利用側熱交換器101a、101bを熱源側冷媒の蒸発器として機能させることで空気媒体を冷却するとともに、第1利用側熱交換器41aを熱源側冷媒の放熱器として機能させることで水媒体を加熱する運転である排熱給湯運転を行うことができるようにしている。以下、このヒートポンプシステム400の構成について説明する。
 <構成>
 -全体-
 図6は、本発明の第4実施形態にかかるヒートポンプシステム400の概略構成図である。ヒートポンプシステム400は、蒸気圧縮式のヒートポンプサイクルを利用して水媒体を加熱する運転等を行うことが可能な装置である。
 ヒートポンプシステム400は、主として、熱源ユニット2と、第1利用ユニット4aと、第2利用ユニット10a、10bと、吐出冷媒連絡管12と、液冷媒連絡管13と、ガス冷媒連絡管14と、貯湯ユニット8aと、温水暖房ユニット9aと、水媒体連絡管15aと、水媒体連絡管16aとを備えており、熱源ユニット2と第1利用ユニット4aと第2利用ユニット10aとが冷媒連絡管12、13、14を介して接続されることによって、熱源側冷媒回路20を構成し、第1利用ユニット4aが利用側冷媒回路40aを構成し、第1利用ユニット4aと貯湯ユニット8aと温水暖房ユニット9aとが水媒体連絡管15a、16aを介して接続されることによって、水媒体回路80aを構成している。熱源側冷媒回路20には、HFC系冷媒の一種であるHFC-410Aが熱源側冷媒として封入されており、また、HFC系冷媒に対して相溶性を有するエステル系又はエーテル系の冷凍機油が熱源側圧縮機21の潤滑のために封入されている。また、利用側冷媒回路40aには、HFC系冷媒の一種であるHFC-134aが利用側冷媒として封入されており、また、HFC系冷媒に対して相溶性を有するエステル系又はエーテル系の冷凍機油が利用側圧縮機62aの潤滑のために封入されている。尚、利用側冷媒としては、高温の冷凍サイクルに有利な冷媒を使用されるという観点から、飽和ガス温度65℃に相当する圧力がゲージ圧で高くとも2.8MPa以下、好ましくは、2.0MPa以下の冷媒を使用することが好ましい。そして、HFC-134aは、このような飽和圧力特性を有する冷媒の一種である。また、水媒体回路80aには、水媒体としての水が循環するようになっている。
 尚、このヒートポンプシステム400の構成は、第2利用ユニット10a、10b、貯湯ユニット8a、温水暖房ユニット9a、液冷媒連絡管13、ガス冷媒連絡管14、水媒体連絡管15a、16a、第1利用側コントローラ77a、及び、第2利用側コントローラ108a、108bの構成については、第2実施形態におけるヒートポンプシステム200(図3参照)と同様の構成であり、また、熱源ユニット2及び吐出冷媒連絡管12の構成については、第3実施形態におけるヒートポンプシステム300(図4参照)と同様の構成であるため、これらの構成については、同じ符号を付して説明を省略し、第1利用ユニット4aの構成のみについて説明を行う。
 -第1利用ユニット-
 第1利用ユニット4aは、屋内に設置されており、冷媒連絡管12、13を介して熱源ユニット2及び第2利用ユニット10aに接続されており、熱源側冷媒回路20の一部を構成している。また、第1利用ユニット4aは、利用側冷媒回路40aを構成している。さらに、第1利用ユニット4aは、水媒体連絡管15a、16aを介して貯湯ユニット8a及び温水暖房ユニット9aに接続されており、水媒体回路80aの一部を構成している。
 第1利用ユニット4aは、主として、第1利用側熱交換器41aと、第1利用側流量調節弁42aと、利用側圧縮機62aと、冷媒-水熱交換器65aと、冷媒-水熱交側流量調節弁66aと、利用側アキュムレータ67aと、循環ポンプ43aとを有している。
 ここで、第1利用側熱交換器41aには、その熱源側冷媒が流れる流路のガス側に、第2実施形態におけるヒートポンプシステム200(図3参照)のようなガス冷媒連絡管14に接続された第1利用側ガス冷媒管54aに代えて、吐出冷媒連絡管12が接続された第1利用側吐出冷媒管46aが接続されている。第1利用側吐出冷媒管46aには、吐出冷媒連絡管12から第1利用側熱交換器41aへ向かう熱源側冷媒の流れを許容し、第1利用側熱交換器41aから吐出冷媒連絡管12へ向かう熱源側冷媒の流れを禁止する第1利用側吐出逆止弁49aが設けられている。
 尚、利用ユニット4aは、第1利用側ガス冷媒管54aに代えて、第1利用側吐出冷媒管46aが接続されている点を除いた構成については、第2実施形態におけるヒートポンプシステム200(図3参照)と同様であるため、ここでは、同じ符号を付して説明を省略する。
 また、ヒートポンプシステム400には、第1及び第2利用側コントローラの設定や指令によって、以下の運転や各種制御を行う制御部(図示せず)が設けられている。
 <動作>
 次に、ヒートポンプシステム400の動作について説明する。
 ヒートポンプシステム400の運転としては、第1利用ユニット4aの給湯運転(すなわち、貯湯ユニット8a及び/又は温水暖房ユニット9aの運転)のみを行う給湯運転と、第2利用ユニット10a及び/又は第2利用ユニット10bの冷房運転のみを行う冷房運転と、第2利用ユニット10a及び/又は第2利用ユニット10bの暖房運転のみを行う暖房運転と、第1利用ユニット4aの給湯運転を行うとともに第2利用ユニット10a及び/又は第2利用ユニット10bの暖房運転を行う給湯暖房運転と、第1利用ユニット4aの給湯運転を行うとともに第2利用ユニット10a及び/又は第2利用ユニット10bの冷房運転を行う排熱給湯運転とがある。
 以下、ヒートポンプシステム400の5つの運転における動作について説明する。
 -給湯運転-
 第1利用ユニット4aの給湯運転のみを行う場合には、熱源側冷媒回路20においては、熱源側切換機構23が熱源側蒸発運転状態(図6の熱源側切換機構23の破線で示された状態)に切り換えられ、吸入戻し膨張弁26a及び第2利用側流量調節弁102a、102bが閉止された状態になる。また、水媒体回路80aにおいては、水媒体切換機構161aが貯湯ユニット8a及び/又は温水暖房ユニット9aに水媒体を供給する状態に切り換えられる。ここでは、第2利用側コントローラ108a、108bのうちの1つによって、温調モードとしての熱源側切換機構23の切換状態を熱源側蒸発運転状態に切り換えた上で、第1利用側コントローラ77aの運転指令によって、第1利用ユニット4a(及び、貯湯ユニット8a及び/又は温水暖房ユニット9a)の運転(給湯運転)が行われる。
 このような状態の熱源側冷媒回路20において、冷凍サイクルにおける低圧の熱源側冷媒は、熱源側吸入管21cを通じて、熱源側圧縮機21に吸入され、冷凍サイクルにおける高圧まで圧縮された後に、熱源側吐出管21bに吐出される。熱源側吐出管21bに吐出された高圧の熱源側冷媒は、油分離器22aにおいて冷凍機油が分離される。油分離器22aにおいて熱源側冷媒から分離された冷凍機油は、油戻し管22bを通じて、熱源側吸入管21cに戻される。冷凍機油が分離された高圧の熱源側冷媒は、熱源側吐出分岐管21d及び吐出側閉鎖弁31を通じて、熱源ユニット2から吐出冷媒連絡管12に送られる。
 吐出冷媒連絡管12に送られた高圧の熱源側冷媒は、第1利用ユニット4aに送られる。第1利用ユニット4aに送られた高圧の熱源側冷媒は、第1利用側吐出冷媒管46a及び第1利用側吐出逆止弁49aを通じて、第1利用側熱交換器41aに送られる。第1利用側熱交換器41aに送られた高圧の熱源側冷媒は、第1利用側熱交換器41aにおいて、利用側冷媒回路40aを循環する冷凍サイクルにおける低圧の利用側冷媒と熱交換を行って放熱する。第1利用側熱交換器41aにおいて放熱した高圧の熱源側冷媒は、第1利用側流量調節弁42a及び第1利用側液冷媒管45aを通じて、第1利用ユニット4aから液冷媒連絡管13に送られる。
 液冷媒連絡管13に送られた熱源側冷媒は、熱源ユニット2に送られる。熱源ユニット2に送られた熱源側冷媒は、液側閉鎖弁29を通じて、過冷却器27に送られる。過冷却器27に送られた熱源側冷媒は、吸入戻し管26に熱源側冷媒が流れていないため、熱交換を行うことなく、熱源側膨張弁25に送られる。熱源側膨張弁25に送られた熱源側冷媒は、熱源側膨張弁25において減圧されて、低圧の気液二相状態になり、熱源側液冷媒管24aを通じて、熱源側熱交換器24に送られる。熱源側熱交換器24に送られた低圧の冷媒は、熱源側熱交換器24において、熱源側ファン32によって供給される室外空気と熱交換を行って蒸発する。熱源側熱交換器24において蒸発した低圧の熱源側冷媒は、第1熱源側ガス冷媒管23a及び熱源側切換機構23を通じて、熱源側アキュムレータ28に送られる。熱源側アキュムレータ28に送られた低圧の熱源側冷媒は、熱源側吸入管21cを通じて、再び、熱源側圧縮機21に吸入される。
 一方、利用側冷媒回路40aにおいては、第1利用側熱交換器41aにおける熱源側冷媒の放熱によって利用側冷媒回路40aを循環する冷凍サイクルにおける低圧の利用側冷媒が加熱されて蒸発する。第1利用側熱交換器41aにおいて蒸発した低圧の利用側冷媒は、第2カスケード側ガス冷媒管69aを通じて、利用側アキュムレータ67aに送られる。利用側アキュムレータ67aに送られた低圧の利用側冷媒は、カスケード側吸入管71aを通じて、利用側圧縮機62aに吸入され、冷凍サイクルにおける高圧まで圧縮された後に、カスケード側吐出管70aに吐出される。カスケード側吐出管70aに吐出された高圧の利用側冷媒は、第1カスケード側ガス冷媒管72aを通じて、冷媒-水熱交換器65aに送られる。冷媒-水熱交換器65aに送られた高圧の利用側冷媒は、冷媒-水熱交換器65aにおいて、循環ポンプ43aによって水媒体回路80aを循環する水媒体と熱交換を行って放熱する。冷媒-水熱交換器65aにおいて放熱した高圧の利用側冷媒は、冷媒-水熱交側流量調節弁66aにおいて減圧されて、低圧の気液二相状態になり、カスケード側液冷媒管68aを通じて、再び、第1利用側熱交換器41aに送られる。
 また、水媒体回路80aにおいては、冷媒-水熱交換器65aにおける利用側冷媒の放熱によって水媒体回路80aを循環する水媒体が加熱される。冷媒-水熱交換器65aにおいて加熱された水媒体は、第1利用側水出口管48aを通じて、循環ポンプ43aに吸入され、昇圧された後に、第1利用ユニット4aから水媒体連絡管16aに送られる。貯湯ユニット8aに送られた水媒体は、熱交換コイル82aにおいて貯湯タンク81a内の水媒体と熱交換を行って放熱し、これにより、貯湯タンク81a内の水媒体を加熱する。温水暖房ユニット9aに送られた水媒体は、熱交換パネル91aにおいて放熱し、これにより、室内の壁際等を加熱したり室内の床を加熱する。
 このようにして、第1利用ユニット4aの給湯運転のみを行う給湯運転における動作が行われる。
 -冷房運転-
 第2利用ユニット10a及び/又は第2利用ユニット10bの冷房運転のみを行う場合には、熱源側冷媒回路20においては、熱源側切換機構23が熱源側放熱運転状態(図6の熱源側切換機構23の実線で示された状態)に切り換えられ、第1利用側流量調節弁42aが閉止された状態になる。ここでは、第2利用側コントローラ108a、108bのうちの1つによって、温調モードとしての熱源側切換機構23の切換状態を熱源側放熱運転状態に切り換えた上で、第2利用側コントローラ108a及び/又は第2利用側コントローラ108bの運転指令によって、第2利用ユニット10a及び/又は第2利用ユニット10bの運転(冷房運転)が行われる。尚、冷房運転については、第2実施形態のヒートポンプシステム200における冷房運転と同様であるため、ここでは説明を省略する。
 -暖房運転-
 第2利用ユニット10a及び/又は第2利用ユニット10bの暖房運転のみを行う場合には、熱源側冷媒回路20においては、熱源側切換機構23が熱源側放熱運転状態(図6の熱源側切換機構23の破線で示された状態)に切り換えられ、吸入戻し膨張弁26a及び第1利用側流量調節弁42aが閉止された状態になる。ここでは、第2利用側コントローラ108a、108bのうちの1つによって、温調モードとしての熱源側切換機構23の切換状態を熱源側蒸発運転状態に切り換えた上で、第2利用側コントローラ108a及び/又は第2利用側コントローラ108bの運転指令によって、第2利用ユニット10a及び/又は第2利用ユニット10bの運転(暖房運転)が行われる。尚、暖房運転については、第2実施形態のヒートポンプシステム200における暖房運転と同様であるため、ここでは説明を省略する。
 -給湯暖房運転-
 第1利用ユニット4aの給湯運転を行うとともに第2利用ユニット10a及び/又は第2利用ユニット10bの暖房運転を行う場合には、熱源側冷媒回路20においては、熱源側切換機構23が熱源側蒸発運転状態(図6の熱源側切換機構23の破線で示された状態)に切り換えられ、吸入戻し膨張弁26aが閉止された状態になる。また、水媒体回路80aにおいては、水媒体切換機構161aが貯湯ユニット8a及び/又は温水暖房ユニット9aに水媒体を供給する状態に切り換えられる。ここでは、第2利用側コントローラ108a、108bのうちの1つによって、温調モードとしての熱源側切換機構23の切換状態を熱源側蒸発運転状態に切り換えた上で、第1利用側コントローラ77aの運転指令によって、第1利用ユニット4a(及び、貯湯ユニット8a及び/又は温水暖房ユニット9a)の運転(給湯運転)と、第2利用側コントローラ108a及び/又は第2利用側コントローラ108bの運転指令によって、第2利用ユニット10a及び/又は第2利用ユニット10bの運転(暖房運転)が行われる。
 このような状態の熱源側冷媒回路20において、冷凍サイクルにおける低圧の熱源側冷媒は、熱源側吸入管21cを通じて、熱源側圧縮機21に吸入され、冷凍サイクルにおける高圧まで圧縮された後に、熱源側吐出管21bに吐出される。熱源側吐出管21bに吐出された高圧の熱源側冷媒は、油分離器22aにおいて冷凍機油が分離される。油分離器22aにおいて熱源側冷媒から分離された冷凍機油は、油戻し管22bを通じて、熱源側吸入管21cに戻される。冷凍機油が分離された高圧の熱源側冷媒は、その一部が、熱源側吐出分岐管21d及び吐出側閉鎖弁31を通じて、熱源ユニット2から吐出冷媒連絡管12に送られ、その残りが、熱源側切換機構23、第2熱源側ガス冷媒管23b及びガス側閉鎖弁30を通じて、熱源ユニット2からガス冷媒連絡管14に送られる。
 ガス冷媒連絡管14に送られた高圧の熱源側冷媒は、第2利用ユニット10a、10b(ここでは、第2利用ユニット10a、10bの両方を暖房運転するものとして説明する)に送られる。第2利用ユニット10a、10bに送られた高圧の熱源側冷媒は、第2利用側ガス冷媒管104a、104bを通じて、第2利用側熱交換器101a、101bに送られる。第2利用側熱交換器101a、101bに送られた高圧の熱源側冷媒は、第2利用側熱交換器101a、101bにおいて、利用側ファン105a、105bによって供給される空気媒体と熱交換を行って放熱し、これにより、室内の暖房を行う。第2利用側熱交換器101a、101bにおいて放熱した高圧の熱源側冷媒は、第2利用側流量調節弁102a、102b及び第2利用側液冷媒管103a、103bを通じて、第2利用ユニット10a、10bから液冷媒連絡管13に送られる。
 吐出冷媒連絡管12に送られた高圧の熱源側冷媒は、第1利用ユニット4aに送られる。第1利用ユニット4aに送られた高圧の熱源側冷媒は、第1利用側吐出冷媒管46a及び第1利用側吐出逆止弁49aを通じて、第1利用側熱交換器41aに送られる。第1利用側熱交換器41aに送られた高圧の熱源側冷媒は、第1利用側熱交換器41aにおいて、利用側冷媒回路40aを循環する冷凍サイクルにおける低圧の利用側冷媒と熱交換を行って放熱する。第1利用側熱交換器41aにおいて放熱した高圧の熱源側冷媒は、第1利用側流量調節弁42a及び第1利用側液冷媒管45aを通じて、第1利用ユニット4aから液冷媒連絡管13に送られる。
 第2利用ユニット10a、10b及び第1利用ユニット4aから液冷媒連絡管13に送られた熱源側冷媒は、液冷媒連絡管13において合流して、熱源ユニット2に送られる。熱源ユニット2に送られた熱源側冷媒は、液側閉鎖弁29を通じて、過冷却器27に送られる。過冷却器27に送られた熱源側冷媒は、吸入戻し管26に熱源側冷媒が流れていないため、熱交換を行うことなく、熱源側膨張弁25に送られる。熱源側膨張弁25に送られた熱源側冷媒は、熱源側膨張弁25において減圧されて、低圧の気液二相状態になり、熱源側液冷媒管24aを通じて、熱源側熱交換器24に送られる。熱源側熱交換器24に送られた低圧の冷媒は、熱源側熱交換器24において、熱源側ファン32によって供給される室外空気と熱交換を行って蒸発する。熱源側熱交換器24において蒸発した低圧の熱源側冷媒は、第1熱源側ガス冷媒管23a及び熱源側切換機構23を通じて、熱源側アキュムレータ28に送られる。熱源側アキュムレータ28に送られた低圧の熱源側冷媒は、熱源側吸入管21cを通じて、再び、熱源側圧縮機21に吸入される。
 一方、利用側冷媒回路40aにおいては、第1利用側熱交換器41aにおける熱源側冷媒の放熱によって利用側冷媒回路40aを循環する冷凍サイクルにおける低圧の利用側冷媒が加熱されて蒸発する。第1利用側熱交換器41aにおいて蒸発した低圧の利用側冷媒は、第2カスケード側ガス冷媒管69aを通じて、利用側アキュムレータ67aに送られる。利用側アキュムレータ67aに送られた低圧の利用側冷媒は、カスケード側吸入管71aを通じて、利用側圧縮機62aに吸入され、冷凍サイクルにおける高圧まで圧縮された後に、カスケード側吐出管70aに吐出される。カスケード側吐出管70aに吐出された高圧の利用側冷媒は、第1カスケード側ガス冷媒管72aを通じて、冷媒-水熱交換器65aに送られる。冷媒-水熱交換器65aに送られた高圧の利用側冷媒は、冷媒-水熱交換器65aにおいて、循環ポンプ43aによって水媒体回路80aを循環する水媒体と熱交換を行って放熱する。冷媒-水熱交換器65aにおいて放熱した高圧の利用側冷媒は、冷媒-水熱交側流量調節弁66aにおいて減圧されて、低圧の気液二相状態になり、カスケード側液冷媒管68aを通じて、再び、第1利用側熱交換器41aに送られる。
 また、水媒体回路80aにおいては、冷媒-水熱交換器65aにおける利用側冷媒の放熱によって水媒体回路80aを循環する水媒体が加熱される。冷媒-水熱交換器65aにおいて加熱された水媒体は、第1利用側水出口管48aを通じて、循環ポンプ43aに吸入され、昇圧された後に、第1利用ユニット4aから水媒体連絡管16aに送られる。貯湯ユニット8aに送られた水媒体は、熱交換コイル82aにおいて貯湯タンク81a内の水媒体と熱交換を行って放熱し、これにより、貯湯タンク81a内の水媒体を加熱する。温水暖房ユニット9aに送られた水媒体は、熱交換パネル91aにおいて放熱し、これにより、室内の壁際等を加熱したり室内の床を加熱する。
 このようにして、第1利用ユニット4aの給湯運転を行うとともに第2利用ユニット10a及び/又は第2利用ユニット10bの暖房運転を行う給湯暖房運転における動作が行われる。
 -排熱給湯運転-
 第1利用ユニット4aの給湯運転を行うとともに第2利用ユニット10a及び/又は第2利用ユニット10bの冷房運転を行う排熱給湯運転を行う場合には、熱源側冷媒回路20においては、熱源側切換機構23が熱源側放熱運転状態(図6の熱源側切換機構23の実線で示された状態)に切り換えられた状態になる。また、水媒体回路80aにおいては、水媒体切換機構161aが貯湯ユニット8aに水媒体を供給する状態に切り換えられる。ここでは、第2利用側コントローラ108a、108bのうちの1つによって、温調モードとしての熱源側切換機構23の切換状態を熱源側蒸発運転状態に切り換えた上で、第1利用側コントローラ77aの運転指令によって、第1利用ユニット4a(及び、貯湯ユニット8a及び/又は温水暖房ユニット9a)の運転(給湯運転)と、第2利用側コントローラ108a及び/又は第2利用側コントローラ108bの運転指令によって、第2利用ユニット10a及び/又は第2利用ユニット10bの運転(冷房運転)が行われる。
 このような状態の熱源側冷媒回路20において、冷凍サイクルにおける低圧の熱源側冷媒は、熱源側吸入管21cを通じて、熱源側圧縮機21に吸入され、冷凍サイクルにおける高圧まで圧縮された後に、熱源側吐出管21bに吐出される。熱源側吐出管21bに吐出された高圧の熱源側冷媒は、油分離器22aにおいて冷凍機油が分離される。油分離器22aにおいて熱源側冷媒から分離された冷凍機油は、油戻し管22bを通じて、熱源側吸入管21cに戻される。冷凍機油が分離された高圧の熱源側冷媒は、その一部が、熱源側吐出分岐管21d及び吐出側閉鎖弁31を通じて、熱源ユニット2から吐出冷媒連絡管12に送られ、その残りが、熱源側切換機構23及び第1熱源側ガス冷媒管23aを通じて、熱源側熱交換器24に送られる。熱源側熱交換器24に送られた高圧の熱源側冷媒は、熱源側熱交換器24において、熱源側ファン32によって供給される室外空気と熱交換を行って放熱する。熱源側熱交換器において放熱した高圧の熱源側冷媒は、熱源側膨張弁25を通じて、過冷却器27に送られる。過冷却器27に送られた熱源側冷媒は、熱源側液冷媒管24aから吸入戻し管26に分岐された熱源側冷媒と熱交換を行って過冷却状態になるように冷却される。吸入戻し管26を流れる熱源側冷媒は、熱源側吸入管21cに戻される。過冷却器27において冷却された熱源側冷媒は、熱源側液冷媒管24a及び液側閉鎖弁29を通じて、熱源ユニット2から液冷媒連絡管13に送られる。
 吐出冷媒連絡管12に送られた高圧の熱源側冷媒は、第1利用ユニット4aに送られる。第1利用ユニット4aに送られた高圧の熱源側冷媒は、第1利用側吐出冷媒管46a及び第1利用側吐出逆止弁49aを通じて、第1利用側熱交換器41aに送られる。第1利用側熱交換器41aに送られた高圧の熱源側冷媒は、第1利用側熱交換器41aにおいて、利用側冷媒回路40aを循環する冷凍サイクルにおける低圧の利用側冷媒と熱交換を行って放熱する。第1利用側熱交換器41aにおいて放熱した高圧の熱源側冷媒は、第1利用側流量調節弁42a及び第1利用側液冷媒管45aを通じて、第1利用ユニット4aから液冷媒連絡管13に送られる。
 熱源ユニット2及び第1利用ユニット4aから液冷媒連絡管13に送られた熱源側冷媒は、液冷媒連絡管13において合流して、第2利用ユニット10a、10b(ここでは、第2利用ユニット10a、10bの両方を暖房運転するものとして説明する)に送られる。第2利用ユニット10a、10bに送られた熱源側冷媒は、第2利用側流量調節弁102a、102bに送られる。第2利用側流量調節弁102a、102bに送られた熱源側冷媒は、第2利用側流量調節弁102a、102bにおいて減圧されて、低圧の気液二相状態になり、第2利用側液冷媒管103a、103bを通じて、第2利用側熱交換器101a、101bに送られる。第2利用側熱交換器101a、101bに送られた低圧の熱源側冷媒は、第2利用側熱交換器101a、101bにおいて、利用側ファン105a、105aによって供給される空気媒体と熱交換を行って蒸発し、これにより、室内の冷房を行う。第2利用側熱交換器101a、101bにおいて蒸発した低圧の熱源側冷媒は、第2利用側ガス冷媒管104a、104bを通じて、第2利用ユニット10a、10bからガス冷媒連絡管14に送られる。
 ガス冷媒連絡管14に送られた低圧の熱源側冷媒は、熱源ユニット2に送られる。熱源ユニット2に送られた低圧の熱源側冷媒は、ガス側閉鎖弁30、第2熱源側ガス冷媒管23b及び熱源側切換機構23を通じて、熱源側アキュムレータ28に送られる。熱源側アキュムレータ28に送られた低圧の熱源側冷媒は、熱源側吸入管21cを通じて、再び、熱源側圧縮機21に吸入される。
 一方、利用側冷媒回路40aにおいては、第1利用側熱交換器41aにおける熱源側冷媒の放熱によって利用側冷媒回路40aを循環する冷凍サイクルにおける低圧の利用側冷媒が加熱されて蒸発する。第1利用側熱交換器41aにおいて蒸発した低圧の利用側冷媒は、第2カスケード側ガス冷媒管69aを通じて、利用側アキュムレータ67aに送られる。利用側アキュムレータ67aに送られた低圧の利用側冷媒は、カスケード側吸入管71aを通じて、利用側圧縮機62aに吸入され、冷凍サイクルにおける高圧まで圧縮された後に、カスケード側吐出管70aに吐出される。カスケード側吐出管70aに吐出された高圧の利用側冷媒は、第1カスケード側ガス冷媒管72aを通じて、冷媒-水熱交換器65aに送られる。冷媒-水熱交換器65aに送られた高圧の利用側冷媒は、冷媒-水熱交換器65aにおいて、循環ポンプ43aによって水媒体回路80aを循環する水媒体と熱交換を行って放熱する。冷媒-水熱交換器65aにおいて放熱した高圧の利用側冷媒は、冷媒-水熱交側流量調節弁66aにおいて減圧されて、低圧の気液二相状態になり、カスケード側液冷媒管68aを通じて、再び、第1利用側熱交換器41aに送られる。
 また、水媒体回路80aにおいては、第1利用側熱交換器41aにおける熱源側冷媒の放熱によって水媒体回路80aを循環する水媒体が加熱される。第1利用側熱交換器41aにおいて加熱された水媒体は、第1利用側水出口管48aを通じて、循環ポンプ43aに吸入され、昇圧された後に、第1利用ユニット4aから水媒体連絡管16aに送られる。水媒体連絡管16aに送られた水媒体は、水媒体側切換機構161aを通じて、貯湯ユニット8a及び/又は温水暖房ユニット9aに送られる。貯湯ユニット8aに送られた水媒体は、熱交換コイル82aにおいて貯湯タンク81a内の水媒体と熱交換を行って放熱し、これにより、貯湯タンク81a内の水媒体を加熱する。
 このようにして、第1利用ユニット4aの給湯運転を行うとともに第2利用ユニット10a及び/又は第2利用ユニット10bの冷房運転を行う排熱給湯運転における動作が行われる。
 このように、このヒートポンプシステム400においても、第3実施形態のヒートポンプシステム300と同様に、第2利用ユニット10a、10bに指令を行う第2利用側コントローラ108a、108bのうちの1つ(ここでは、第2利用側コントローラ108aとする)が指令している温調モードとしての熱源側切換機構23の切換状態とは異なる温調モードに切り換えて運転することが可能な温調モード切り換え制御を行うようにしている。尚、温調モード切り換え制御については、第3実施形態のヒートポンプシステム300における温調モード切り換え制御と同様であるため(図5等参照)、ここでは説明を省略する。
 これにより、このヒートポンプシステム400においても、第3実施形態のヒートポンプシステム300と同様の作用効果を得ることができる。
 (他の実施形態)
 以上、本発明の実施形態について図面に基づいて説明したが、具体的な構成は、これらの実施形態に限られるものではなく、発明の要旨を逸脱しない範囲で変更可能である。
 <A>
 上述のヒートポンプシステム1、200、300、400(図1、3、4、6参照)では、第2利用側コントローラ108a、108bの1つによって温調モードの切り換えが行われるようになっているが、基本的には、指令された温調モードとは異なる温調モードに切り換えて運転することを可能にすることができればよいため、第1利用側コントローラ77aによって温調モードの切り換えが行われるようにしてもよいし、また、例えば、図7に示されるように、第1利用側コントローラ77a及び第2利用側コントローラ108a、108bとは別の集中コントローラ37を設けて、この集中コントローラ37によって温調モードの切り換えを行われるようにしてもよい。ここで、集中コントローラ37は、第1利用ユニット4aや第2利用ユニット10a、10bのような個別の利用ユニットの制御設定や運転指令を行うものではなく、温調モードの切り換えを含むヒートポンプシステム全体に共通の制御設定や運転指令を行うものである。
 しかし、集中コントローラ37に温調モードの切り換えを行わせるようにすると、例えば、温調モードが熱源側蒸発運転状態に切り換えられたままで放置されると、夏期等の冷房運転が必要な運転条件においては、第2利用ユニット10a、10bの冷房運転が行われる毎に、温調モードが熱源側放熱運転状態に切り換えられることになり、また、温調モードが熱源側放熱運転状態に切り換えられたままで放置されると、冬期等の暖房運転が必要な運転条件においては、第2利用ユニット10a、10bの暖房運転が行われる毎に、温調モードが熱源側蒸発運転状態に切り換えられることになり、温調モードの切り換えが頻繁に行われることになってしまう。また、第1利用側コントローラ77aに温調モードの切り換えを行わせるようにすると、温調モードが熱源側蒸発運転状態に切り換えられたままで放置されることがほとんどであるため、夏期等の冷房運転が必要な運転条件においては、第2利用ユニット10a、10bの冷房運転が行われる毎に、温調モードが熱源側放熱運転状態に切り換えられることになってしまい、温調モードの切り換えが頻繁に行われることになってしまう。このように、第1利用側コントローラ77aや集中コントローラ37に温調モードの切り換えを行わせるようにすると、温調モードの切り換えが頻繁に行われるおそれがあり、好ましくない。
 これに対して、温調モードの切り換えを第2利用側コントローラ108a、108bによって行うようにすると、夏期等の冷房運転が必要な運転条件においては、温調モードが熱源側放熱運転状態に切り換えられた状態が維持され、また、冬期等の暖房運転が必要な運転条件においては、温調モードが熱源側蒸発運転状態に切り換えられた状態が維持されるようになり、温調モードの切り換えが頻繁に行われることを防ぐことができる。
 このため、指令された温調モードとは異なる温調モードに切り換えて運転することを可能にするという観点だけでいえば、基本的には、第1利用側コントローラ77a、第2利用側コントローラ108a、108b、又は、集中コントローラ37のいずれに温調モードの切り換えを行わせるようにしてもよいが、温調モードの切り換えの頻繁さという観点を考慮すると、上述のヒートポンプシステム1、200、300、400(図1、3、4、6参照)のように、温調モードの切り換えを第2利用側コントローラ108a、108bによって行われせることが好ましい。
 <B>
 上述のヒートポンプシステム1、200、300、400(図1、3、4、6参照)では、熱源ユニット2に1つの第1利用ユニット4aと2つの第2利用ユニット10a、10bとが冷媒連絡管13、14等を介して接続されているが、これに限定されず、第1利用ユニットが複数であってもよいし、また、第2利用ユニットが1つや3つ以上であってもよい。
 <C>
 第2、第4実施形態にかかるヒートポンプシステム200、400においては、利用側冷媒としてHFC-134aが使用されているが、これに限定されず、例えば、HFO-1234yf(2、3、3、3-テトラフルオロ-1-プロペン)等、飽和ガス温度65℃に相当する圧力がゲージ圧で高くとも2.8MPa以下、好ましくは、2.0MPa以下の冷媒であればよい。
 本発明を利用すれば、水媒体を加熱する給湯運転を行う利用ユニットと空気媒体の冷却や加熱を行う利用ユニットとが両者に共通の熱源ユニットに接続されたヒートポンプシステムにおいて、所望の運転に適した温調モードの切り換えが行われるようにすることができる。
 1、200、300、400 ヒートポンプシステム
 2 熱源ユニット
 4a 第1利用ユニット
 10a、10b 第2利用ユニット
 21 熱源側圧縮機
 23 熱源側切換機構
 24 熱源側熱交換器
 37 集中コントローラ
 41a 第1利用側熱交換器
 77a 第1利用側コントローラ
 101a、101b 第2利用側熱交換器
 105a、105b 利用側ファン
 108a、108b 第2利用側コントローラ
特開2000-46417号公報

Claims (8)

  1.  冷媒を圧縮する圧縮機(21)と、熱源側熱交換器(24)と、前記熱源側熱交換器を冷媒の放熱器として機能させる放熱運転状態と前記熱源側熱交換器を冷媒の蒸発器として機能させる蒸発運転状態とを切り換えることが可能な熱源側切換機構(23)とを有する熱源ユニット(2)と、
     前記熱源ユニットに接続されており、前記熱源側切換機構が前記蒸発運転状態において冷媒の放熱器として機能する第1利用側熱交換器(41a)を有しており、前記第1利用側熱交換器における冷媒の放熱によって水媒体を加熱する給湯運転を行うことが可能な第1利用ユニット(4a)と、
     前記熱源ユニットに接続されており、前記熱源側切換機構が前記放熱運転状態において冷媒の蒸発器として機能し、前記熱源側切換機構が前記蒸発運転状態において冷媒の放熱器として機能する第2利用側熱交換器(101a、101b)を有しており、前記第2利用側熱交換器における冷媒の蒸発によって空気媒体を冷却する冷房運転を行い、前記第2利用側熱交換器における冷媒の放熱によって空気媒体を加熱する暖房運転を行うことが可能な第2利用ユニット(10a、10b)とを備え、
     前記第1利用ユニット及び前記第2利用ユニットは、個別に前記給湯運転、前記冷房運転又は前記暖房運転を選択して運転できないものであり、
     前記第1利用ユニットに指令を行う第1利用側コントローラ(77a)、前記第2利用ユニットに指令を行う第2利用側コントローラ(108a、108b)、又は、前記第1利用側コントローラ及び前記第2利用側コントローラとは別の集中コントローラ(37)が指令している温調モードとしての前記熱源側切換機構の切換状態とは異なる温調モードに切り換えて運転することが可能である、
    ヒートポンプユニット(1、200、300、400)。
  2.  前記温調モードが前記放熱運転状態になっている際において、前記第1利用側コントローラ(77a)から前記第1利用ユニット(4a)に給湯運転が指令された場合には、前記温調モードを前記蒸発運転状態に切り換えて、前記第1利用ユニットの給湯運転を行う運転である優先給湯運転を行う、請求項1に記載のヒートポンプシステム(1、200、300、400)。
  3.  前記優先給湯運転中は、前記第2利用ユニット(10a、10b)の冷房運転を禁止する、請求項2に記載のヒートポンプシステム(1、200、300、400)。
  4.  前記第2利用ユニット(10a、10b)は、前記第2利用側熱交換器(101a、101b)に空気媒体を供給する利用側ファン(105a、105b)をさらに有しており、
     前記第2利用側コントローラ(108a、108b)から冷房運転が指令されている前記第2利用ユニットについては、前記優先給湯運転中は、冷房運転を停止した状態で前記利用側ファンを運転する、
    請求項3に記載のヒートポンプシステム(1、200、300、400)。
  5.  前記第2利用側コントローラ(108a、108b)は、前記優先給湯運転における前記第2利用ユニット(10a、10b)の冷房運転の停止中においても、冷房運転中である旨の表示を維持する、請求項4に記載のヒートポンプシステム(1、200、300、400)。
  6.  前記温調モードの切り換えは、前記指令された温調モード及び外気温度の少なくとも1つに基づいて行われる、請求項1~5のいずれかに記載のヒートポンプシステム(1、200、300、400)。
  7.  前記第1利用ユニット(4a)は、前記熱源側切換機構(23)が前記放熱運転状態において、前記第2利用側熱交換器(101a、101b)を冷媒の蒸発器として機能させるとともに、前記第1利用側熱交換器(41a)を冷媒の放熱器として機能させることが可能となるように、前記熱源ユニット(2)に接続されている、請求項1~6のいずれかに記載のヒートポンプシステム(1、200、300、400)。
  8.  前記温調モードの切り換えは、前記第2利用側コントローラ(108a、108b)によって行われる、請求項1~7のいずれかに記載のヒートポンプシステム(1、200、300、400)。
PCT/JP2010/001181 2009-02-24 2010-02-23 ヒートポンプシステム WO2010098070A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2010800095942A CN102326038B (zh) 2009-02-24 2010-02-23 热泵系统
EP10745957.0A EP2402685B1 (en) 2009-02-24 2010-02-23 Heat pump system
AU2010219253A AU2010219253B2 (en) 2009-02-24 2010-02-23 Heat pump system
KR1020117022100A KR101372594B1 (ko) 2009-02-24 2010-02-23 히트 펌프 시스템
US13/202,628 US8650897B2 (en) 2009-02-24 2010-02-23 Heat pump system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009041322A JP2010196953A (ja) 2009-02-24 2009-02-24 ヒートポンプシステム
JP2009-041322 2009-02-24

Publications (1)

Publication Number Publication Date
WO2010098070A1 true WO2010098070A1 (ja) 2010-09-02

Family

ID=42665288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/001181 WO2010098070A1 (ja) 2009-02-24 2010-02-23 ヒートポンプシステム

Country Status (7)

Country Link
US (1) US8650897B2 (ja)
EP (1) EP2402685B1 (ja)
JP (1) JP2010196953A (ja)
KR (1) KR101372594B1 (ja)
CN (1) CN102326038B (ja)
AU (1) AU2010219253B2 (ja)
WO (1) WO2010098070A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120280052A1 (en) * 2010-03-05 2012-11-08 Mitsubishi Heavy Industries, Ltd. Hot-water heat pump and method of controlling the same
US20130219945A1 (en) * 2010-12-22 2013-08-29 Mitsubishi Electric Corporation Combined hot water supply and air-conditioning device
JP2016050734A (ja) * 2014-09-01 2016-04-11 リンナイ株式会社 ヒートポンプシステム
EP2450637A3 (en) * 2010-11-05 2016-08-24 LG Electronics, Inc. Hot water supply apparatus for combined use of air conditioner
EP2538145A3 (en) * 2011-06-23 2018-04-18 Samsung Electronics Co., Ltd. Heat Pump and Method for Controlling the Same

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102753910B (zh) * 2010-02-10 2015-09-30 三菱电机株式会社 冷冻循环装置
JP5851303B2 (ja) 2012-03-28 2016-02-03 三菱電機株式会社 冷凍サイクル装置および室外熱源ユニット
JP6051401B2 (ja) * 2012-06-12 2016-12-27 パナソニックIpマネジメント株式会社 ヒートポンプ式冷暖房給湯装置
US9127851B2 (en) * 2012-06-28 2015-09-08 Yixin Yang Heating and cooling system including a heat pump and a heat storage tank
WO2014128830A1 (ja) * 2013-02-19 2014-08-28 三菱電機株式会社 空気調和装置
JP5984784B2 (ja) * 2013-11-19 2016-09-06 三菱電機株式会社 温冷水空調システム
EP3367020B1 (en) * 2015-10-21 2019-10-23 Mitsubishi Electric Corporation Air conditioner
EP3299732B1 (en) * 2016-09-23 2020-04-29 Daikin Industries, Limited System for air-conditioning and hot-water supply
ES2975698T3 (es) * 2016-09-23 2024-07-11 Daikin Ind Ltd Sistema para acondicionamiento de aire y suministro de agua caliente
EP3299738B1 (en) * 2016-09-23 2024-08-14 Daikin Industries, Ltd. System for air-conditioning and hot-water supply
WO2019018446A1 (en) 2017-07-17 2019-01-24 Fractal Heatsink Technologies, LLC SYSTEM AND METHOD FOR MULTI-FRACTAL THERMAL DISSIPATOR
CN111649417A (zh) * 2020-05-25 2020-09-11 宁波奥克斯电气股份有限公司 一种具有热水器功能的空调器及控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61223463A (ja) * 1985-03-26 1986-10-04 三菱電機株式会社 冷暖房・給湯ヒ−トポンプ装置
JPH0282067A (ja) * 1988-09-19 1990-03-22 Matsushita Electric Ind Co Ltd 冷暖房給湯機
JPH09210505A (ja) * 1996-02-05 1997-08-12 Daikin Ind Ltd ヒートポンプシステム
JP2004218944A (ja) * 2003-01-15 2004-08-05 Matsushita Electric Ind Co Ltd ヒートポンプ式冷暖房給湯装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2343467A (en) * 1941-06-28 1944-03-07 Honeywell Regulator Co Air conditioning control system
US2982523A (en) * 1956-01-24 1961-05-02 Alden I Mcfarlan Air conditioning system
US4015962A (en) * 1974-12-20 1977-04-05 Xenco Ltd. Temperature control system utilizing naturally occurring energy sources
US4327561A (en) * 1980-06-20 1982-05-04 Mcneal G Russell High coefficient of performance heat pump
JP2000046417A (ja) 1998-07-31 2000-02-18 Daikin Ind Ltd ヒートポンプ式温水床暖房装置
EP1072453B1 (en) * 1999-07-26 2006-11-15 Denso Corporation Refrigeration-cycle device
JP3857221B2 (ja) * 2002-11-29 2006-12-13 東芝機器株式会社 ヒートポンプ給湯暖房装置
JP4114651B2 (ja) * 2003-11-17 2008-07-09 株式会社デンソー 車両用空調装置
EP1886081A4 (en) * 2005-06-03 2011-06-08 Carrier Corp REFRIGERANT SYSTEM WITH WATER HEATING
JP4592617B2 (ja) * 2006-02-27 2010-12-01 三洋電機株式会社 冷却加熱装置
JP5073970B2 (ja) * 2006-06-01 2012-11-14 日立アプライアンス株式会社 ヒートポンプ給湯床暖房装置
KR101270615B1 (ko) * 2006-07-25 2013-06-07 엘지전자 주식회사 코제너레이션 및 그 제어 방법
JP4889545B2 (ja) * 2007-03-30 2012-03-07 三洋電機株式会社 乾燥装置及びこの装置を備えた洗濯乾燥機
US8549868B2 (en) * 2007-06-22 2013-10-08 Panasonic Corporation Refrigeration cycle apparatus
JP5084903B2 (ja) * 2008-03-31 2012-11-28 三菱電機株式会社 空調給湯複合システム
JP5380226B2 (ja) * 2009-09-25 2014-01-08 株式会社日立製作所 空調給湯システム及びヒートポンプユニット

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61223463A (ja) * 1985-03-26 1986-10-04 三菱電機株式会社 冷暖房・給湯ヒ−トポンプ装置
JPH0282067A (ja) * 1988-09-19 1990-03-22 Matsushita Electric Ind Co Ltd 冷暖房給湯機
JPH09210505A (ja) * 1996-02-05 1997-08-12 Daikin Ind Ltd ヒートポンプシステム
JP2004218944A (ja) * 2003-01-15 2004-08-05 Matsushita Electric Ind Co Ltd ヒートポンプ式冷暖房給湯装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120280052A1 (en) * 2010-03-05 2012-11-08 Mitsubishi Heavy Industries, Ltd. Hot-water heat pump and method of controlling the same
US9664415B2 (en) * 2010-03-05 2017-05-30 Mitsubishi Heavy Industries, Ltd. Hot-water heat pump and method of controlling the same
EP2450637A3 (en) * 2010-11-05 2016-08-24 LG Electronics, Inc. Hot water supply apparatus for combined use of air conditioner
US20130219945A1 (en) * 2010-12-22 2013-08-29 Mitsubishi Electric Corporation Combined hot water supply and air-conditioning device
EP2657628A1 (en) * 2010-12-22 2013-10-30 Mitsubishi Electric Corporation Hot-water-supplying, air-conditioning composite device
EP2657628A4 (en) * 2010-12-22 2014-07-02 Mitsubishi Electric Corp COMPOSITE HOT WATER SUPPLY AND AIR CONDITIONING DEVICE
US9528713B2 (en) 2010-12-22 2016-12-27 Mitsubishi Electric Corporation Combined hot water supply and air-conditioning device
EP2538145A3 (en) * 2011-06-23 2018-04-18 Samsung Electronics Co., Ltd. Heat Pump and Method for Controlling the Same
JP2016050734A (ja) * 2014-09-01 2016-04-11 リンナイ株式会社 ヒートポンプシステム

Also Published As

Publication number Publication date
AU2010219253B2 (en) 2013-05-16
EP2402685A4 (en) 2015-02-18
CN102326038B (zh) 2013-11-06
JP2010196953A (ja) 2010-09-09
AU2010219253A1 (en) 2011-10-13
KR101372594B1 (ko) 2014-03-10
US8650897B2 (en) 2014-02-18
EP2402685A1 (en) 2012-01-04
EP2402685B1 (en) 2018-08-22
CN102326038A (zh) 2012-01-18
KR20110129419A (ko) 2011-12-01
US20110302949A1 (en) 2011-12-15

Similar Documents

Publication Publication Date Title
WO2010098070A1 (ja) ヒートポンプシステム
KR101391775B1 (ko) 히트 펌프 시스템
KR101305871B1 (ko) 히트 펌프 시스템
JP5200996B2 (ja) ヒートポンプシステム
JP5627606B2 (ja) ヒートポンプシステム
JP5806940B2 (ja) ヒートポンプシステム
AU2010219038B2 (en) Heat pump system
KR101308806B1 (ko) 히트 펌프 시스템
JP5913402B2 (ja) ヒートポンプシステム
JP5500292B2 (ja) ヒートポンプシステム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080009594.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10745957

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13202628

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010219253

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 20117022100

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010745957

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2010219253

Country of ref document: AU

Date of ref document: 20100223

Kind code of ref document: A