WO2010097837A1 - 永久磁石式発電機 - Google Patents

永久磁石式発電機 Download PDF

Info

Publication number
WO2010097837A1
WO2010097837A1 PCT/JP2009/000881 JP2009000881W WO2010097837A1 WO 2010097837 A1 WO2010097837 A1 WO 2010097837A1 JP 2009000881 W JP2009000881 W JP 2009000881W WO 2010097837 A1 WO2010097837 A1 WO 2010097837A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
outside air
heat exchanger
rotor
stator
Prior art date
Application number
PCT/JP2009/000881
Other languages
English (en)
French (fr)
Inventor
郡大祐
小村昭義
堀正寛
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to EP09840692A priority Critical patent/EP2403115A1/en
Priority to US12/681,086 priority patent/US8421285B2/en
Priority to JP2011501349A priority patent/JP5358667B2/ja
Priority to PCT/JP2009/000881 priority patent/WO2010097837A1/ja
Publication of WO2010097837A1 publication Critical patent/WO2010097837A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/10Arrangements for cooling or ventilating by gaseous cooling medium flowing in closed circuit, a part of which is external to the machine casing
    • H02K9/12Arrangements for cooling or ventilating by gaseous cooling medium flowing in closed circuit, a part of which is external to the machine casing wherein the cooling medium circulates freely within the casing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • H02K7/1823Rotary generators structurally associated with turbines or similar engines
    • H02K7/183Rotary generators structurally associated with turbines or similar engines wherein the turbine is a wind turbine
    • H02K7/1838Generators mounted in a nacelle or similar structure of a horizontal axis wind turbine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present invention relates to a permanent magnet generator, and more particularly, to a permanent magnet generator provided with a heat exchanger on the outer peripheral side of a stator for exchanging heat by cooling the temperature inside the generator with outside air.
  • the permanent magnet generator has a hermetic structure in which the rotor 2 fixed to the rotary shaft 1 and the stator 3 arranged on the outer periphery thereof with a gap are covered with a housing 4 to form a sealed structure.
  • a heat exchanger 5 is provided on the outer peripheral side.
  • a plurality of cooling pipes 14 are installed in the heat exchanger 5 along the extending direction of the rotary shaft 1, and an electric fan 15 is provided on the discharge side of the cooling pipe 14 in order to distribute the outside air a to the cooling pipe 14. Is provided.
  • the inside air (air or cooling air) b that circulates in the housing 4 and cools the rotor 2 and the stator 3 to raise the temperature It can cool by distribute
  • Patent Document 1 exists as a related technique for suppressing an increase in calorific value by allowing the inside air circulating inside the machine to pass through the heat exchanger.
  • the permanent magnet generator as shown in FIG. 11 a certain amount of heat generation can be suppressed.
  • the inside air b in the housing 4 that passes through the introduction side of the outside air a of the heat exchanger 5 and the heat exchanger 5 The degree of cooling differs from the inside air b in the housing 4 that passes through the discharge side of the outside air a, and it is inevitable that the temperature of the inside air b in the housing 4 that passes through the discharge side becomes high.
  • the temperature in the axial direction of the stator 3 has a temperature gradient such that the region facing the outside air discharge side of the heat exchanger 5 becomes higher as shown in FIG.
  • permanent magnet generators are designed based on the maximum temperature rise in the generator, so if the design is to allow the maximum temperature rise, the generator structure must be enlarged, It was difficult to obtain a small permanent magnet generator by increasing the single machine capacity.
  • An object of the present invention is to provide a permanent magnet generator that can be downsized with little gradient of temperature rise even when the capacity is increased.
  • the amount of the internal air (air or cooling air) circulated via the heat exchanger that circulates the outside air is set to the outside air discharge side rather than the outside air introduction side of the heat exchanger. Ventilation means to increase in the area facing the sway is provided.
  • FIG. 1 is a view corresponding to FIG. 1 showing a third embodiment of a permanent magnet generator according to the present invention.
  • the equivalent figure of FIG. 1 which shows 4th Embodiment of the permanent-magnet-type generator by this invention.
  • FIG. 1 is a view corresponding to FIG. 1 showing a fifth embodiment of a permanent magnet generator according to the present invention.
  • FIG. 1 is a view corresponding to FIG. 1 showing a sixth embodiment of a permanent magnet generator according to the present invention.
  • FIG. 1 is a view corresponding to FIG. 1 showing a sixth embodiment of a permanent magnet generator according to the present invention.
  • FIG. 1 is a view corresponding to FIG. 1 showing a seventh embodiment of a permanent magnet generator according to the present invention.
  • FIG. 10 is a view corresponding to FIG. 1 showing a ninth embodiment of a permanent magnet generator according to the present invention. Schematic which shows the wind power generation system to which the permanent magnet generator by this invention is applied.
  • FIG. 1 is a view corresponding to FIG. 1 showing a conventional permanent magnet generator. The temperature distribution figure of the stator of the permanent magnet type generator shown in FIG.
  • the permanent magnet generator includes a rotating shaft 1 connected to a prime mover, a rotor 2 fixed to the rotating shaft 1, a stator 3 disposed on the outer periphery of the rotor 2 with a gap, and the rotor 2.
  • a housing 4 that hermetically covers the stator 3 and a heat exchanger 5 located on the outer peripheral side of the stator 3 are provided.
  • the rotor 2 includes a rotor core 6 configured by laminating electromagnetic steel sheets in the axial direction, and a plurality of permanent magnets 7 embedded in the circumferential direction on the outer diameter side of the rotor core 6.
  • a plurality of axial ventilation passages 8 are formed in the circumferential direction on the inner diameter side of the rotor core 6. Further, the rotor core 6 forms a plurality of ventilation ducts 9 in the axial direction via the duct piece DP and communicates with the axial ventilation path 8.
  • axial fans 10A and 10B are provided in regions of the rotating shaft 1 facing both sides of the rotor core 6 in the axial direction, and the internal air b in the housing 4 is moved in the axial direction of the rotor 2 and the stator 3. Air is blown from both sides toward the center.
  • the stator 3 includes a stator core 11 formed by laminating electromagnetic steel plates in the axial direction, and a stator winding 12 mounted in a winding groove (not shown) formed in the stator core 11.
  • the rotor core 11 has a plurality of ventilation ducts 13 formed in the axial direction via a duct piece DP.
  • the heat exchanger 5 has a length equal to or larger than the axial dimension of the stator 3 and is installed on the outer diameter side of the stator 3.
  • a plurality of cooling pipes 14 are installed along the extending direction of the rotating shaft 1, and in order to allow the outside air a to flow through the cooling pipes 14, An electric fan 15 is provided.
  • the heat exchanger 5 communicates with the inside of the housing 4, and is configured so that the inside air (air or cooling air) b in the housing 4 circulates between the plurality of cooling pipes 14. Yes.
  • the width of the duct piece DP of the rotor 2 in other words, the widths t 1 and t 2 along the axial direction of the ventilation duct 9 is changed. That is, the width t2 of the ventilation duct 9 in the region facing the outside air discharge side is wider than the width t1 of the ventilation duct 9 in the region facing the outside air introduction side of the heat exchanger 5, for example, the width t2 is set to the width t1. It was doubled.
  • the internal air b in the housing 4 is axially ventilated by the action of the axial fans 10A and 10B as indicated by arrows. It passes through the path 8 and the ventilation ducts 9 and 13, reaches the heat exchanger 5, and then circulates back to the axial fans 10 ⁇ / b> A and 10 ⁇ / b> B again. Due to the circulation of the inside air b, the rotor 2 and the stator 3 that have generated heat are cooled. Then, the inside air b that has been heated by cooling the rotor 2 and the stator 3 is cooled by heat exchange with the outside air a in the plurality of cooling pipes 14 in the heat exchanger 5.
  • the temperature of the outside air a in the cooling pipe 14 of the heat exchanger 5 gradually increases due to heat exchange with the inside air b as it proceeds from the outside air introduction side to the outside air discharge side. For this reason, in the area
  • the width t2 of the ventilation duct 9 in the region facing the outside air discharge side is widened to reduce the ventilation resistance of the inside air b and the air volume is larger than the outside air introduction side, as a result, the rotor 2 and Cooling with uniform temperature distribution can be performed by eliminating the temperature gradient in the axial direction of the stator 3. As a result, it was confirmed by experiments that the maximum temperature shown in FIG. Therefore, since the permanent magnet generator can be designed based on the uniform temperature, it is possible to obtain a permanent magnet generator that can be downsized even if the capacity is increased.
  • the configuration in which the width t2 of the ventilation duct 9 in the region facing the outside air discharge side is made wider than the width t1 of the ventilation duct 9 in the region facing the outside air introduction side of the heat exchanger 5 is the present invention. It becomes a ventilation means or an air volume increasing means for increasing the air volume of the inside air circulated through the heat exchanger that circulates the outside air by the area facing the outside air discharge side rather than the outside air introduction side of the heat exchanger. Furthermore, the structure which made the width
  • the number of ventilation ducts 9 in the axial direction of the rotor 2 is set to seven, and the width t2 of the two ventilation ducts 9 in the vicinity of the portion where the maximum temperature shown in FIG.
  • the width of the ventilation duct 9 located at the axial end of the stator 2 in the region facing the outside air discharge side is set to the same width t1 as that of the outside air inlet side.
  • the temperature rise value is lowered because of direct cooling, and for this purpose, the width t2 of the ventilation duct 9 located at the axial end of the region facing the outside air discharge side is set to the outside air introduction.
  • the width t2 of the ventilation duct 9 located closer to the outside air introduction side from the axial end of the region facing the outside air discharge side is maximized to be the same as the width t1 of the side ventilation duct.
  • the width t2 of the ventilation duct 9 in the region facing the outside air discharge side is made larger than the width t1 of the ventilation duct on the outside air introduction side, and the air volume of the inside air b is changed to the heat exchanger.
  • the number of ventilation ducts 9 having the same width t1 is more opposed to the outside air discharge side than the outside air introduction side of the heat exchanger 5.
  • the air volume of the inside air b may be increased by increasing the amount in the area to be used.
  • the number of ventilation ducts 9 installed in the region facing the maximum temperature riser shown in FIG. 12 may be increased, and the number of ventilation ducts 9 installed may be gradually decreased from there to the both sides in the axial direction.
  • the configuration different from that of the first embodiment shown in FIG. 1 is that the width T2 of the ventilation duct 13 of the stator 3 facing the width t1 of the ventilation duct 9 of the rotor 2 made wider is left.
  • the width is made wider than the width T1 of the duct 13.
  • the internal air b from the wide ventilation duct 9 of the rotor 2 and the internal air b from the axial flow fan 10B can easily flow into the wide ventilation duct 13 of the stator 3 smoothly.
  • the flow rate of the inside air b to the maximum temperature rise portion can be further increased, so that it can be efficiently cooled.
  • FIG. 3 shows a third embodiment according to the present invention, which has the same configuration as the first embodiment except that the width of the ventilation duct 13 of the stator 3 is different.
  • the configuration different from the first embodiment is that the width T2 of the ventilation duct 13 of the stator 3 facing the ventilation duct 9 of the rotor 2 made wide is maximized, and from there to both sides in the axial direction.
  • the width of the ventilation duct 13 is gradually narrowed (gradually decreased) as T3 and T1.
  • FIG. 4 shows a fourth embodiment according to the present invention, which has the same configuration as the first embodiment except that the width of the ventilation duct 9 of the rotor 2 is different.
  • the configuration different from that of the first embodiment is that the width t4 of the ventilation duct 9 of the rotor 2 in the region facing the maximum temperature rising portion on the outside air discharge side of the heat exchanger 5 is maximized.
  • the width of the ventilation duct 9 is gradually narrowed to t5, t6, t7, and t8 from both sides to the axial direction.
  • FIG. 5 shows a fifth embodiment according to the present invention, which has the same configuration as the first embodiment except that the cross-sectional area of the axial ventilation path 8 of the rotor 2 is different.
  • the configuration different from that of the first embodiment is to maximize the cross-sectional area D1 of the axial ventilation path 8 of the rotor 2 in the region facing the maximum temperature riser on the outside air discharge side of the heat exchanger 5. From there, the cross-sectional area of the axial ventilation path 8 is gradually reduced to D2, D3, D4, D5, and D6 toward both sides in the axial direction.
  • the sizes of the cross-sectional areas D1, D2, D3, D4, D5, and D6 are not necessarily limited to those that gradually decrease from the maximum cross-sectional area D1 to both sides in the axial direction.
  • the size of each of the cross-sectional areas D1, D2, D3, D4, D5, and D6 is arbitrarily changed by the circulation path b, and as a result, the air volume of the inside air b supplied to the maximum temperature rise portion is maximized. You can do it.
  • FIG. 6 shows a sixth embodiment according to the present invention.
  • the first embodiment except that the cross-sectional area of the axial ventilation path 8 of the rotor 2 is different and the configuration of the heat exchanger 5 is different. It is the same structure as the form.
  • the configuration different from the first embodiment is that the cooling pipes 14A and 14B of the heat exchanger 5 are formed from the middle in the axial direction toward both axial sides, and the axial direction of the cooling pipes 14A and 14B.
  • Electric fan 15A, 15B is installed facing both ends, respectively, and the outside air a is introduced from the middle in the axial direction and discharged from both sides in the axial direction, and the width of the ventilation duct 9 of the rotor 2 This is the point where t2 is maximized in the regions facing the outside air discharge side of the heat exchanger 5, and the width t1 of the ventilation duct 9 is made narrower than the width t2 in other cases.
  • the present invention can be applied to the heat exchanger 5 in which outside air is introduced at one place and outside air is present at two places, and the same effects as those of the embodiments can be obtained.
  • the installation shapes of the cooling pipes 14A and 14B of the heat exchanger 5 are made the same, the electric fans 15A and 15B are removed, and instead, in the middle in the axial direction of the cooling pipes 14A and 14B, FIG. As indicated by the two-dot chain line, the electric fan 15 may be installed.
  • the electric fan 15 may be a push-in type, and the outside air a may be introduced from the middle in the axial direction and discharged from both sides in the axial direction. May be introduced from the middle and discharged from the middle in the axial direction.
  • the flow direction of the outside air a is opposite to that in FIG. 6, it is necessary to make the width of the ventilation duct 9 of the rotor 2 wider at the intermediate portion in the axial direction than at both end portions in the axial direction.
  • FIG. 7 shows a seventh embodiment according to the present invention, which is the same as the first embodiment except that a part of the rotor 2 is different.
  • the configuration different from that of the first embodiment is that permanent magnets 7A embedded in the rotor core 6 adjacent to the ventilation duct 8 having the wide width t2 of the rotor 2 are embedded in other portions.
  • the magnetic force of the permanent magnet 7 is larger.
  • the same effect as that of the first embodiment can be sent, and the magnetic force that is reduced by the ventilation duct 8 having the wide width t2 can be reinforced to make the magnetic force uniform in the axial direction.
  • the electrical characteristics can be lowered, and the load acting on the bearing device that supports the rotating shaft 1 on both sides can be made uniform.
  • FIG. 8 shows an eighth embodiment according to the present invention, which is the same as the first embodiment except that a part of the rotor 2 is different.
  • the configuration different from the first embodiment is that the outer diameter d2 of the rotor core 6 in the region facing the outside air discharge side of the heat exchanger 5 is the outer diameter of the region facing the outside air introduction side.
  • the diameter is smaller than d1 and the gap with the inner peripheral surface of the stator core 11 is widened.
  • FIG. 9 shows a ninth embodiment according to the present invention, which is the same as the first embodiment except that a part of the rotor 2 is different.
  • the configuration different from that of the first embodiment is that the permanent magnet 7 embedded in the rotor core 6 is embedded in the permanent magnets 7A and 7B in the axial direction.
  • the amount of heat generated by eddy current loss generated in the permanent magnets 7A and 7B can be reduced, and the entire permanent magnet generator can be reduced. Temperature rise can be suppressed.
  • FIG. 10 shows an example in which the permanent magnet generator according to each embodiment is applied to a wind power generation system.
  • the permanent magnet generator 100 is rotationally connected to a windmill 101 which is a prime mover via a speed reduction means 102 and is installed in a windmill nacelle 103.
  • the permanent magnet generator 100 is electrically connected to the load 104 via the power converter 105 and performs a power generation operation.
  • the permanent magnet type generator 100 is rotationally connected to the windmill 101 via the speed reduction means 102, it may be directly connected to the windmill 101.
  • the entire wind turbine nacelle 103 can be downsized.
  • a permanent magnet generator that can be applied to a wind power generation system has been described.
  • a motor, a turbine, an turbine, or the like can be used as a prime mover.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

 本発明は、容量を増加させても内部の温度上昇の勾配が少なく、小型化が可能な永久磁石式発電機を提供するために、外気を流通させる熱交換器を経由して循環させる空気(内気あるいは冷却風)の風量を、前記熱交換器の外気導入側よりも外気排出側に対向する領域で多くする通風手段を設けたのである。

Description

永久磁石式発電機
 本発明は、永久磁石式発電機に係り、特に、発電機内の温度を外気で熱交換して冷却する熱交換器を固定子の外周側に備えた永久磁石式発電機に関する。
 近年、風力発電機の導入が飛躍的に増加しており、単機容量増加による経済性の向上のために、小型で大容量の永久磁石式発電機の需要が高まっている。しかしながら、永久磁石式発電機を小型で大容量化しようとすると、発熱量が増加するので、図11に示すような永久磁石式発電機が提案されている。
 即ち、永久磁石式発電機は、回転軸1に固定された回転子2と、その外周に空隙を介して配置された固定子3とをハウジング4で覆って密閉構造とし、前記固定子3の外周側に熱交換器5を備えている。この熱交換器5には冷却管14が前記回転軸1の延在方向に沿って複数設置されており、冷却管14に外気aを流通させるために冷却管14の排出側に電動ファン15が設けられている。
 このような熱交換器5を備えた永久磁石式発電機によれば、ハウジング4内を循環して回転子2や固定子3を冷却して昇温した内気(空気あるいは冷却風)bを、熱交換器5内に流通させることで冷却することができ、発熱量の増加を抑えている。
 尚、熱交換器に機内を循環する内気を通過させることで発熱量の増加を抑える関連技術として特許文献1が存在する。
特開平2-70247号公報
 上記図11に示すような永久磁石式発電機によれば、ある程度の発熱量を抑えることができる。しかしながら、熱交換器5内を通過する外気aは、一方向から他方向に通過するので、熱交換器5の外気aの導入側を通過するハウジング4内の内気bと、熱交換器5の外気aの排出側を通過するハウジング4内の内気bとは冷却の度合いが異なり、排出側を通過するハウジング4内の内気bの温度が高くなることは避けられない。
 その結果、固定子3の軸方向の温度は、図12に示すように、熱交換器5の外気排出側に対向した領域が高くなるような温度勾配が生じる。
 通常、永久磁石式発電機は、発電機内の温度上昇の最高値に基づいて設計しているので、温度上昇の最高値を許容しようと設計すると、発電機の構造を大型化しなければならず、単機容量を増加させて、小型の永久磁石式発電機を得ることは困難であった。
 本発明の目的は、容量を増加させても内部の温度上昇の勾配が少なく、小型化が可能な永久磁石式発電機を提供することである。
 上述の目的を達成するために、本発明では、外気を流通させる熱交換器を経由して循環させる内気(空気あるいは冷却風)の風量を、前記熱交換器の外気導入側よりも外気排出側に対向する領域で多くする通風手段を設けたのである。
 このように、内気(空気あるいは冷却風)の風量を、熱交換器の外気導入側よりも外気排出側に対向する領域で多く循環させることで、熱交換器の外気排出側に対向する領域の固定子や回転子の温度上昇を低減することができる。その結果、容量を増加させても温度上昇の最高値を低減させて永久磁石式発電機の軸方向の温度勾配をなくすことができるので、永久磁石式発電機を小型化することができるのである。
 以上説明したように本発明によれば、容量を増加させても内部の温度上昇の勾配が少なく、小型化が可能な永久磁石式発電機を得ることができる。
本発明による永久磁石式発電機の第1の実施の形態を示す上半分の概略縦断面図。 本発明による永久磁石式発電機の第2の実施の形態を示す図1相当図。 本発明による永久磁石式発電機の第3の実施の形態を示す図1相当図。 本発明による永久磁石式発電機の第4の実施の形態を示す図1相当図。 本発明による永久磁石式発電機の第5の実施の形態を示す図1相当図。 本発明による永久磁石式発電機の第6の実施の形態を示す図1相当図。 本発明による永久磁石式発電機の第7の実施の形態を示す図1相当図。 本発明による永久磁石式発電機の第8の実施の形態を示す熱交換器を省略した図1相当図。 本発明による永久磁石式発電機の第9の実施の形態を示す図1相当図。 本発明による永久磁石発電機を適用した風力発電システムを示す概略図。 従来による永久磁石式発電機を示す図1相当図。 図11に示す永久磁石式発電機の固定子の温度分布図。
発明を実施するための形態
 以下本発明による永久磁石式発電機の第1の実施の形態を図1に基づいて説明する。
 永久磁石式発電機は、原動機に連結される回転軸1と、この回転軸1に固定された回転子2と、その外周に空隙を介して配置された固定子3と、これら回転子2と固定子3とを密閉して覆うハウジング4と、前記固定子3の外周側に位置する熱交換器5とを備えている。
 前記回転子2は、電磁鋼板を軸方向に積層して構成された回転子鉄心6と、この回転子鉄心6の外径側に周方向に複数埋設された永久磁石7とを有し、前記回転子鉄心6の内径側には周方向に複数の軸方向通風路8が形成されている。また、回転子鉄心6は、ダクトピースDPを介して軸方向に複数の通風ダクト9を形成し、前記軸方向通風路8に連通させている。
 さらに、前記回転軸1の前記回転子鉄心6の軸方向両側に対向する領域には、軸流ファン10A,10Bが設けられ、ハウジング4内の内気bを回転子2及び固定子3の軸方向両側から中心側に向かって送風している。
 前記固定子3は、電磁鋼板を軸方向に積層して構成した固定子鉄心11と、この固定子鉄心11に形成した巻線溝(図示せず)内に装着した固定子巻線12とを有し、前記回転子鉄心11はダクトピースDPを介して軸方向に複数の通風ダクト13を形成している。
 前記熱交換器5は、固定子3の軸方向寸法以上の長さを有し、固定子3の外径側に設置されている。そして、この熱交換器5は、複数の冷却管14が前記回転軸1の延在方向に沿って設置されており、冷却管14に外気aを流通させるために冷却管14の外気排出側に電動ファン15を設けている。また、この熱交換器5は、前記ハウジング4内に連通しており、前記ハウジング4内の内気(空気あるいは冷却風)bが複数の冷却管14の間を通って循環するように構成されている。
 さらに、本実施の形態においては、回転子2のダクトピースDPの幅、云い代えれば通風ダクト9の軸方向に沿う幅t1,t2を変化させたのである。即ち、前記熱交換器5の外気導入側に対向する領域の通風ダクト9の幅t1よりも、外気排出側に対向する領域の通風ダクト9の幅t2を広く、例えば、幅t2を幅t1の2倍にしたのである。
 以上説明のように構成した本実施の形態による永久磁石式発電機によれば、運転時において、軸流ファン10A,10Bの作用によりハウジング4内の内気bは矢印に示すように、軸方向通風路8や通風ダクト9,13を通って、熱交換器5内に至り、そこから再度軸流ファン10A,10Bに戻るように循環する。このような内気bの循環により、発熱した回転子2や固定子3は冷却される。そして、回転子2や固定子3を冷却して昇温した内気bは、熱交換器5内の複数の冷却管14で外気aとの熱交換が行われて冷却される。
 また、熱交換器5の冷却管14内の外気aは、外気導入側から外気排出側に進むにつれて内気bとの熱交換により次第に温度が上昇する。このため、外気排出側に対向する領域では外気aと内気bとの熱交換率が低下する。しかし、外気排出側に対向する領域の通風ダクト9の幅t2を広くして内気bの通風抵抗を低減させ、風量を外気導入側よりも多くしているので、結果的には回転子2及び固定子3の軸方向の温度勾配をなくして温度分布を均一化した冷却を行うことができる。その結果、図12に示す最大温度が約20%低減できて突出する温度上昇部分がなくなることが実験により確認された。したがって、均一化した温度に基づいて永久磁石式発電機を設計できるようになるので、容量を増加させても、小型化できる永久磁石式発電機を得ることができる。
 本実施の形態において、熱交換器5の外気導入側に対向する領域の通風ダクト9の幅t1よりも、外気排出側に対向する領域の通風ダクト9の幅t2を広くした構成が、本発明による外気を流通させる熱交換器を経由して循環させる内気の風量を、前記熱交換器の外気導入側よりも外気排出側に対向する領域で多くする通風手段や風量増加手段となる。さらに、通風ダクト9の幅t2を広くした構成は、通風抵抗を低減させる通風手段や通風抵抗低減手段でもある。
 尚、本実施の形態においては、回転子2の軸方向の通風ダクト9設置数を7箇所とし、そのうち図12に示す最大温度となる部分の近傍の2箇所の通風ダクト9の幅t2を広くしたが、これらに限定されるものではない。
 また、本実施の形態において、外気排出側に対向する領域の固定子2の軸方向端部に位置する通風ダクト9の幅が、外気入気側と同じ幅t1にしている。その理由は、軸流ファン10Bからの冷却された内気bが、直接回転子2の通風ダクト9及び固定子3の通風ダクト13に導入されて回転子2や固定子3の軸方向端部を直接冷却するために、図12に示すように、温度上昇値が低くなるのであり、そのために、外気排出側に対向する領域の軸方向端部に位置する通風ダクト9の幅t2を、外気導入側の風通ダクトの幅t1と同じにし、外気排出側に対向する領域の軸方向端部から外気導入側寄りに位置する通風ダクト9の幅t2を最大としたのである。
 ところで、本実施の形態は、外気排出側に対向する領域の通風ダクト9の幅t2を、外気導入側の風通ダクトの幅t1よりも大きくして、内気bの風量を、前記熱交換器5の外気導入側よりも外気排出側に対向する領域で多くしたものであるが、同じ幅t1の通風ダクト9の設置数を、前記熱交換器5の外気導入側よりも外気排出側に対向する領域で多くして内気bの風量を増加させるようにしてもよい。さらに、図12に示す最大温度上昇部に対向する領域の通風ダクト9の設置数を多くし、そこから軸方向両側に行くにしたがい、通風ダクト9の設置数漸減させるようにしてもよい。
 次に、本発明による第2の実施の形態を図2に基づいて説明する。尚、図1と同一符号は同一構成部材を示すので、再度の詳細な説明は省略する。
 本実施の形態において、図1に示す第1の実施の形態と異なる構成は、広幅にした回転子2の通風ダクト9の幅t1と対向する固定子3の通風ダクト13の幅T2を残る通風ダクト13の幅T1よりも広くしたのである。
 このように構成することで、広幅にした回転子2の通風ダクト9からの内気bや軸流ファン10Bからの内気bが、固定子3の広幅にした通風ダクト13に円滑に流れ込み易くなる。その結果、最大温度上昇部への内気bの流量をより増大させることができるので、効率よく冷却することができるのである。
 図3は、本発明による第3の実施の形態を示すもので、固定子3の通風ダクト13の幅が異なるほかは、第1の実施の形態と同じ構成である。
 本実施の形態において、第1の実施の形態と異なる構成は、広幅にした回転子2の通風ダクト9と対向する固定子3の通風ダクト13の幅T2を最大とし、そこから軸方向両側に向かって通風ダクト13の幅をT3,T1と云うように徐々に狭くした(漸減した)のである。
 このように構成することで、固定子3の温度分布に合わせてより木目細かに内気bの通風量を分配することができ、温度分布をより均一化させることができるのである。
 図4は、本発明による第4の実施の形態を示すもので、回転子2の通風ダクト9の幅が異なるほかは、第1の実施の形態と同じ構成である。
 本実施の形態において、第1の実施の形態と異なる構成は、熱交換器5の外気排出側の最大温度上昇部に対向する領域の回転子2の通風ダクト9の幅t4を最大とし、そこから軸方向両側に向かって通風ダクト9の幅をt5,t6,t7,t8と徐々に狭くしたのである。
 このように構成することで、固定子3の温度分布に合わせて木目細かな冷却を行うことができ、温度分布をより均一化することができる。
 図5は、本発明による第5の実施の形態を示すもので、回転子2の軸方向通風路8の断面積が異なるほかは、第1の実施の形態と同じ構成である。
 本実施の形態において、第1の実施の形態と異なる構成は、熱交換器5の外気排出側の最大温度上昇部に対向する領域の回転子2の軸方向通風路8の断面積D1を最大とし、そこから軸方向両側に向かって軸方向通風路8の断面積をD2,D3,D4,D5,D6と徐々に小さくしたのである。
 このように構成することで、第4の実施の形態と同等の効果を奏することができる。尚、断面積D1,D2,D3,D4,D5,D6の大きさは、必ずしも最大の断面積D1から軸方向両側に漸減させるもの限定されるものではなく、永久磁石式発電機の機種や内気bの循環路によって各断面積D1,D2,D3,D4,D5,D6の大きさを任意に変化させるようにし、結果的に最大温度上昇部に供給される内気bの風量が最大になるようにすればよい。
 図6は、本発明による第6の実施の形態を示すもので、回転子2の軸方向通風路8の断面積が異なることと、熱交換器5の構成が異なるほかは、第1の実施の形態と同じ構成である。
 本実施の形態において、第1の実施の形態と異なる構成は、熱交換器5の冷却管14A,14Bが、軸方向中間から軸方向両側に向かって形成され、冷却管14A,14Bの軸方向両端側に対向して夫々電動ファン15A,15Bが設置され、外気aを軸方向中間から導入し、軸方向両側から排出するように構成されている点と、回転子2の通風ダクト9の幅t2を、熱交換器5の外気排出側に夫々対向する領域で最大とし、それ以外は通風ダクト9の幅t1を幅t2よりも狭くした点である。
 このように、外気導入が一箇所で、外気排気が2箇所存在する熱交換器5に対しても、本発明は適用でき、各実施の形態と同等の効果を奏することができる。
 尚、本実施の形態において、熱交換器5の冷却管14A,14Bの設置形状を同じにして、電動ファン15A,15Bを撤去し、代わりに冷却管14A,14Bの軸方向中間に、図6の2点鎖線で示すように、電動ファン15を設置するようにしてもよい。
 この場合、電動ファン15を押し込み型として、外気aを軸方向中間から導入して軸方向両側から排出するようにしてもよく、また、電動ファン15を吸引法型として、外気aを軸方向両側から導入して軸方向中間から排出するようにしてもよい。ただ、外気aの流通方向が図6と逆となる場合には、回転子2の通風ダクト9の幅を軸方向両端部よりも軸方向中間部で広くなるようにする必要がある。
 図7は、本発明による第7の実施の形態を示すもので、回転子2を構成する一部が異なるほかは、第1の実施の形態と同じ構成である。
 本実施の形態において、第1の実施の形態と異なる構成は、回転子2の広い幅t2の通風ダクト8に隣接する回転子鉄心6に埋設される永久磁石7Aを、他の部分に埋設される永久磁石7の磁力よりも大きくしたのである。
 このように構成することで、第1の実施の形態と同等の効果を送することは勿論、広い幅t2の通風ダクト8により低下する磁力を補強して軸方向に磁力を均一化することができるので、電気的特性の低下や、回転軸1を両側で支承する軸受装置に作用する荷重を均一化することができる。
 図8は、本発明による第8の実施の形態を示すもので、回転子2を構成する一部が異なるほかは、第1の実施の形態と同じ構成である。
 本実施の形態において、第1の実施の形態と異なる構成は、熱交換器5の外気排出側に対向する領域の回転子鉄心6の外径d2を、外気導入側に対向する領域の外径d1よりも小径にし、固定子鉄心11の内周面との空隙を広くしたのである。
 このように構成することで、熱交換器5の外気排出側に対向する領域の回転子2と固定子3間の空隙への内気bの導入が容易になり、外気排出側に生じる最大温度を低下させて温度分布を均一化することができる。
 図9は、本発明による第9の実施の形態を示すもので、回転子2を構成する一部が異なるほかは、第1の実施の形態と同じ構成である。
 本実施の形態において、第1の実施の形態と異なる構成は、回転子鉄心6に埋設する永久磁石7を、永久磁石7A,7Bに軸方向に分割して埋設したのである。
 このように構成することで、第1の実施の形態と同等の効果を奏する外、永久磁石7A,7Bに発生する渦電流損による発熱量を低減させることができ、永久磁石式発電機全体の温度上昇を抑えることができる。
 さらに、図10は、各実施の形態による永久磁石式発電機を、風力発電システムに適用した例を示す。
 永久磁石式発電機100は、原動機である風車101に減速手段102を介して回転的に接続され、風車ナセル103内に設置されている。そして、永久磁石式発電機100は、負荷104に対し、電力変換機105を解して電気的に接続され、発電運転を行う。
 尚、永久磁石式発電機100は、風車101に減速手段102を介して回転的に接続されたものであるが、風車101に対して直結してもよい。
 このように、風力発電システムに、本発明による小型で大容量の永久磁石式発電機100を適用することで、風車ナセル103全体を小型化することができる。
 上記各実施の形態は、風力発電システムに適用できる永久磁石式発電機について説明したが、原動機として水車、エンジン、タービン等に連結して用いることも可能である。

Claims (15)

  1. 固定子と永久磁石を埋設した回転子とをハウジング内に収納し、固定子の外周側に設置し外気を流通させてハウジング内の冷却風を循環させて冷却する熱交換器を備えた永久磁石式発電機において、前記熱交換器を経由して循環させ回転子の内径側から外径側に流通する前記冷却風の風量を、前記熱交換器の外気導入側よりも外気排出側に対向する領域で多くする風量増加手段を設けたことを特長とする永久磁石式発電機。
  2. 固定子と永久磁石を埋設した回転子とをハウジング内に収納し、固定子の外周側に設置され外気を流通させてハウジング内の冷却風を循環させて冷却する熱交換器を備え、前記回転子には軸方向通風路とこの軸方向通風路と連通し軸方向に複数形成された半径方向の通風ダクトとを有し、前記固定子には軸方向に複数形成された半径方向の通風ダクトを有する永久磁石式発電機において、前記熱交換器を経由して循環し回転子の軸方向通風路と通風ダクトを流通させて内径側から外径側に通過させる前記冷却風の風量を、前記熱交換器の外気導入側よりも外気排出側に対向する領域で多くする風量増加手段を設けたことを特長とする永久磁石式発電機。
  3. 前記風量増加手段は、前記熱交換器の外気導入側に対向する領域における回転子の通風ダクトの幅よりも外気排出側に対向する領域における回転子の通風ダクト幅を広くして構成されていることを特徴とする請求の範囲1又は2記載の永久磁石式発電機。
  4. 前記風量増加手段は、前記熱交換器の外気排出側に対向する固定子の温度上昇が最大となる領域に対向する回転子の通風ダクトの幅を最大にし、この最大の幅にした通風ダクトから離れるにしたがって通風ダクトの幅を漸減させて構成されていることを特徴とする請求の範囲1又は2記載の永久磁石式発電機。
  5. 前記風量増加手段は、前記熱交換器の外気導入側に対向する領域における回転子の通風ダクトの数よりも外気排出側に対向する領域における回転子の通風ダクトの数を多くして構成されていることを特徴とする請求の範囲1又は2記載の永久磁石式発電機。
  6. 前記風量増加手段は、前記熱交換器の外気排出側に対向する固定子の温度上昇が最大となる領域に対向する回転子の通風ダクトの数を最大にし、この最大の幅にした通風ダクトから離れるにしたがって通風ダクトの数を漸減させて構成されていることを特徴とする請求の範囲1又は2記載の永久磁石式発電機。
  7. 前記通風ダクトの数は、軸方向の数であることを特徴とする請求の範囲5又は6記載の永久磁石式発電機。
  8. 固定子と永久磁石を埋設した回転子とをハウジング内に収納し、固定子の外周側に設置され外気を流通させてハウジング内の冷却風を循環させて冷却する熱交換器を備え、前記回転子には軸方向通風路とこの軸方向通風路と連通し軸方向に複数形成された半径方向の通風ダクトとを有し、前記固定子には軸方向に複数形成された半径方向の通風ダクトを有する永久磁石式発電機において、前記熱交換器の外気導入側に対向する領域における回転子と固定子間の空隙よりも外気排出側に対向する領域における回転子と固定子間の空隙を広くして、前記冷却風の風量を前記熱交換器の外気導入側よりも外気排出側に対向する領域で多くする風量増加手段を構成したことを特長とする永久磁石式発電機。
  9. 前記固定子の通風ダクトの幅を、前記熱交換器の外気導入側よりも外気排出側に対向する領域で広くしたことを特徴とする請求の範囲1~8のいずれかに記載の永久磁石式発電機。
  10. 固定子と永久磁石を埋設した回転子とをハウジング内に収納し、固定子の外周側に設置され外気を流通させてハウジング内の冷却風を循環させて冷却する熱交換器を備えた永久磁石式発電機において、前記熱交換器を経由して循環させ回転子の内径側から外径側に流通する前記冷却風の風量を、前記熱交換器の外気導入側よりも外気排出側に対向する領域で多くする風量増加手段を設け、かつ、前記外気排出側に対向する領域の回転子に埋設した永久磁石の磁力を前記外気導入側に対向する領域の回転子に埋設した永久磁石の磁力よりも大きくしたことを特長とする永久磁石式発電機。
  11. 固定子と永久磁石を埋設した回転子とをハウジング内に収納し、固定子の外周側に設置され外気を流通させてハウジング内の冷却風を循環させて冷却する熱交換器を備えた永久磁石式発電機において、前記熱交換器を経由して循環させ回転子の内径側から外径側に流通する前記冷却風の風量を、前記熱交換器の外気導入側よりも外気排出側に対向する領域で多くする風量増加手段を設け、かつ、前記回転子に埋設した永久磁石の磁力を軸方向に分割したことを特長とする永久磁石式発電機。
  12. 固定子と永久磁石を埋設した回転子とをハウジング内に収納し、固定子の外周側に設置し外気を流通させてハウジング内の冷却風を循環させて冷却する熱交換器を備えた永久磁石式発電機において、前記熱交換器を経由して循環させ回転子の内径側から外径側に流通する前記冷却風の通風抵抗を、前記熱交換器の外気導入側よりも外気排出側に対向する領域で低減させる通風抵抗低減手段を設けたことを特長とする永久磁石式発電機。
  13. 前記通風抵抗低減手段は、前記熱交換器の外気排出側に対向する固定子の温度上昇が最大となる領域に対向する通風抵抗を最小とし、この最小の通風抵抗にした領域から離れるにしたがって通風抵抗を漸増させるように構成されていることを特徴とする請求の範囲12記載の永久磁石式発電機。
  14. 固定子と永久磁石を埋設した回転子とをハウジング内に収納し、固定子の外周側に設置し外気を流通させてハウジング内の内気を循環させて冷却する熱交換器を備えた永久磁石式発電機において、外気を流通させる前記熱交換器を経由して循環させる内気の風量を、前記熱交換器の外気導入側よりも外気排出側に対向する領域で多くする通風手段を設けたことを特徴とする永久磁石式発電機。
  15. 請求の範囲1~14のいずれかに記載の永久磁石式発電機を用いたことを特徴とする風力発電システム。
PCT/JP2009/000881 2009-02-27 2009-02-27 永久磁石式発電機 WO2010097837A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP09840692A EP2403115A1 (en) 2009-02-27 2009-02-27 Permanent magnet generator
US12/681,086 US8421285B2 (en) 2009-02-27 2009-02-27 Permanent magnet type electric power generator
JP2011501349A JP5358667B2 (ja) 2009-02-27 2009-02-27 永久磁石式発電機
PCT/JP2009/000881 WO2010097837A1 (ja) 2009-02-27 2009-02-27 永久磁石式発電機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/000881 WO2010097837A1 (ja) 2009-02-27 2009-02-27 永久磁石式発電機

Publications (1)

Publication Number Publication Date
WO2010097837A1 true WO2010097837A1 (ja) 2010-09-02

Family

ID=42665067

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/000881 WO2010097837A1 (ja) 2009-02-27 2009-02-27 永久磁石式発電機

Country Status (4)

Country Link
US (1) US8421285B2 (ja)
EP (1) EP2403115A1 (ja)
JP (1) JP5358667B2 (ja)
WO (1) WO2010097837A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013070559A (ja) * 2011-09-26 2013-04-18 Toshiba Mitsubishi-Electric Industrial System Corp 回転電機
JP2013074654A (ja) * 2011-09-27 2013-04-22 Toshiba Mitsubishi-Electric Industrial System Corp 回転電機
JP2018533348A (ja) * 2015-11-09 2018-11-08 グリーンスパー リニューアブルズ リミテッド ダイレクト駆動のジェネレータ用冷却手段
JP2019097295A (ja) * 2017-11-22 2019-06-20 東芝三菱電機産業システム株式会社 全閉外扇形回転電機
KR102090569B1 (ko) * 2019-05-09 2020-03-18 (주) 디엔디이 벌브 수차발전기의 냉각구조 및 냉각방법

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102577045A (zh) * 2009-10-01 2012-07-11 Abb公司 用于电动机器的冷却系统
FI122472B (fi) * 2009-12-17 2012-02-15 Abb Oy Järjestely ja menetelmä sähkökoneen jäähdyttämiseksi
DE102011014094A1 (de) * 2011-03-11 2012-09-13 Uni Wind GmbH Elektrischer Generator für eine Windkraftanlage
DK2660955T3 (da) * 2012-05-02 2019-08-26 Abb Schweiz Ag En elektrisk maskine
US20130300124A1 (en) * 2012-05-11 2013-11-14 Clipper Windpower, Inc. Profiled Air Cap on Direct Drive Wind Turbine Generator
EP2744075B1 (de) * 2012-12-11 2018-03-28 Siemens Aktiengesellschaft Elektrisch rotierende Maschine
US9413208B2 (en) * 2013-01-08 2016-08-09 Hamilton Sundstrand Corporation Enhanced cooling of enclosed air cooled high power motors
EP2958215B1 (en) * 2014-06-18 2018-02-21 Siemens Aktiengesellschaft Generator armature
WO2016046407A1 (en) * 2014-09-25 2016-03-31 Heatex Ab Heat exchange unit
CN104953766B (zh) 2015-06-17 2018-11-13 北京金风科创风电设备有限公司 电机径向通风冷却结构
EP3136549A1 (de) 2015-08-24 2017-03-01 Siemens Aktiengesellschaft Synchrone reluktanzmaschine
CA2999101C (en) * 2015-09-21 2019-05-21 Siemens Aktiengesellschaft Electrical machine comprising radial cooling slots and wind turbine
CN106787354B (zh) * 2016-07-15 2024-05-10 王子齐 直启低中高压高效发电动力多用途永磁电机
CN106385122A (zh) * 2016-09-20 2017-02-08 北京交通大学 电机的蜂巢式密闭通风冷却装置
CN106533037B (zh) * 2016-12-13 2023-04-21 国家电网公司 双馈电风力发电机
EP3358725A1 (de) * 2017-02-07 2018-08-08 Siemens Aktiengesellschaft Elektrische maschine mit unabhängiger rotorkühlvorrichtung, generatoranordnung sowie windkraftanlage
EP3379696A1 (de) 2017-03-21 2018-09-26 Siemens Aktiengesellschaft Synchrone reluktanzmaschine
US20190309644A1 (en) * 2018-04-10 2019-10-10 Elysium Solutions LLC Electrical power generation assembly having recovery gas efficiency
CN110034633B (zh) * 2019-04-15 2021-04-02 中车永济电机有限公司 发电机转子永磁体磁极冷却风路结构
CN111864992A (zh) * 2019-04-30 2020-10-30 新疆金风科技股份有限公司 冷却装置、电机及风力发电机组

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5559547U (ja) * 1978-10-19 1980-04-23
JPS576366U (ja) * 1980-06-12 1982-01-13
JPH0270247A (ja) 1988-09-02 1990-03-09 Toshiba Corp 回転電機
JPH08331781A (ja) * 1995-05-31 1996-12-13 Shinko Electric Co Ltd かご形三相誘導電動機の回転子と固定子のダクト配列
JPH10248209A (ja) * 1997-03-06 1998-09-14 Meidensha Corp 回転電機の冷却構造
JP2003204643A (ja) * 2001-11-01 2003-07-18 General Electric Co <Ge> 超伝導同期機械のためのロータ・ステータ間のテーパ状エアギャップ
JP2008131813A (ja) * 2006-11-24 2008-06-05 Hitachi Ltd 永久磁石式回転電機,風力発電システム,永久磁石の着磁方法
JP2008245336A (ja) * 2007-03-23 2008-10-09 Toshiba Corp 回転子及び永久磁石回転電機

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5559547A (en) 1978-10-27 1980-05-06 Toshiba Corp Information process system
JPS5579667U (ja) * 1978-11-24 1980-06-02
DE69923799T2 (de) * 1999-09-03 2006-02-09 Hitachi, Ltd. Dynamoelektrische maschine
GB2393584B (en) * 2002-09-26 2006-06-21 Alstom Gas-cooled generator
EP1447899A1 (de) * 2003-02-13 2004-08-18 Loher GmbH Dynamoelektrische Maschine
US7095142B2 (en) * 2004-05-21 2006-08-22 H&S Autoshot Manufacturing Pneumatic tool with integrated electricity generator
US7777374B2 (en) * 2004-09-09 2010-08-17 Siemens Aktiengesellschaft Electrical appliance
JP4572647B2 (ja) * 2004-10-01 2010-11-04 株式会社日立製作所 永久磁石式回転電機及び風力発電システム
JP4561408B2 (ja) * 2005-03-03 2010-10-13 株式会社日立製作所 回転電機
EP1786085B1 (en) * 2005-11-15 2016-08-03 Shin-Etsu Chemical Co., Ltd. Permanent magnet rotating electric machine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5559547U (ja) * 1978-10-19 1980-04-23
JPS576366U (ja) * 1980-06-12 1982-01-13
JPH0270247A (ja) 1988-09-02 1990-03-09 Toshiba Corp 回転電機
JPH08331781A (ja) * 1995-05-31 1996-12-13 Shinko Electric Co Ltd かご形三相誘導電動機の回転子と固定子のダクト配列
JPH10248209A (ja) * 1997-03-06 1998-09-14 Meidensha Corp 回転電機の冷却構造
JP2003204643A (ja) * 2001-11-01 2003-07-18 General Electric Co <Ge> 超伝導同期機械のためのロータ・ステータ間のテーパ状エアギャップ
JP2008131813A (ja) * 2006-11-24 2008-06-05 Hitachi Ltd 永久磁石式回転電機,風力発電システム,永久磁石の着磁方法
JP2008245336A (ja) * 2007-03-23 2008-10-09 Toshiba Corp 回転子及び永久磁石回転電機

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013070559A (ja) * 2011-09-26 2013-04-18 Toshiba Mitsubishi-Electric Industrial System Corp 回転電機
JP2013074654A (ja) * 2011-09-27 2013-04-22 Toshiba Mitsubishi-Electric Industrial System Corp 回転電機
JP2018533348A (ja) * 2015-11-09 2018-11-08 グリーンスパー リニューアブルズ リミテッド ダイレクト駆動のジェネレータ用冷却手段
US11309754B2 (en) 2015-11-09 2022-04-19 Time To Act Limited Generator with series stators, and series rotors separated by annular collars with cooling vents
JP2019097295A (ja) * 2017-11-22 2019-06-20 東芝三菱電機産業システム株式会社 全閉外扇形回転電機
KR102090569B1 (ko) * 2019-05-09 2020-03-18 (주) 디엔디이 벌브 수차발전기의 냉각구조 및 냉각방법

Also Published As

Publication number Publication date
JPWO2010097837A1 (ja) 2012-08-30
EP2403115A1 (en) 2012-01-04
JP5358667B2 (ja) 2013-12-04
US20110181137A1 (en) 2011-07-28
US8421285B2 (en) 2013-04-16

Similar Documents

Publication Publication Date Title
JP5358667B2 (ja) 永久磁石式発電機
US8653703B2 (en) Permanent magnetic rotating electric machine and wind power generating system
CN103269138B (zh) 电机多内腔u型冷却系统
KR102030302B1 (ko) 모터 회전자 홀더 및 모터
CA2656986C (en) Process and devices for cooling an electric machine
CN101517865B (zh) 具有内冷转子的电机
US8648505B2 (en) Electrical machine with multiple cooling flows and cooling method
CN102290922B (zh) 一种双馈风力发电机
US20070273220A1 (en) Apparatus for controller-integrated motor
US20110181138A1 (en) Totally enclosed motor
CN105048662A (zh) 电机的散热
JP2014033584A (ja) 回転電機の風冷構造
WO2012080566A1 (en) An electrical machine
CN111864992A (zh) 冷却装置、电机及风力发电机组
CN102005860A (zh) 用于大功率垂直轴风力发电机组的散热装置
CN110768414A (zh) 一种永磁电机的冷却结构
WO2018196003A1 (en) Motor ventilation structure and motor
EP4266551A1 (en) Magnetic geared electric machine and power generation system using same
CN112713716B (zh) 一种设有内外冷却风路的封闭式电机及电机机座
JP4640681B2 (ja) 回転電機
CN201238219Y (zh) 一种交流紧凑型电机风路结构
KR20150068224A (ko) 구동모터의 냉각유닛
KR101093795B1 (ko) 전기자동차용 수냉식 전동기
CN219999162U (zh) 一种油冷电机
KR200291006Y1 (ko) 최적 통풍 및 냉각회로를 가진 대형 유도전동기

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 12681086

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09840692

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011501349

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2009840692

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE