WO2010093002A1 - 積層体及び容器 - Google Patents

積層体及び容器 Download PDF

Info

Publication number
WO2010093002A1
WO2010093002A1 PCT/JP2010/052025 JP2010052025W WO2010093002A1 WO 2010093002 A1 WO2010093002 A1 WO 2010093002A1 JP 2010052025 W JP2010052025 W JP 2010052025W WO 2010093002 A1 WO2010093002 A1 WO 2010093002A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
fine particles
oxide fine
packaging material
hydrophobic oxide
Prior art date
Application number
PCT/JP2010/052025
Other languages
English (en)
French (fr)
Inventor
関口 朋伸
山本 政史
山田 和範
周平 菅野
Original Assignee
東洋アルミニウム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=42561842&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2010093002(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from JP2009030750A external-priority patent/JP4348401B1/ja
Priority claimed from JP2009167553A external-priority patent/JP5647774B2/ja
Priority claimed from JP2009225653A external-priority patent/JP5498749B2/ja
Priority to US13/148,786 priority Critical patent/US9327879B2/en
Priority to RU2011137528/12A priority patent/RU2546511C2/ru
Priority to AU2010214393A priority patent/AU2010214393B2/en
Priority to CN201080007596.8A priority patent/CN102317067B/zh
Priority to BRPI1013669-0A priority patent/BRPI1013669B1/pt
Application filed by 東洋アルミニウム株式会社 filed Critical 東洋アルミニウム株式会社
Priority to KR1020117018835A priority patent/KR101330001B1/ko
Priority to ES10741279T priority patent/ES2461845T3/es
Priority to EP20100741279 priority patent/EP2397319B1/en
Publication of WO2010093002A1 publication Critical patent/WO2010093002A1/ja
Priority to HK12104878A priority patent/HK1164225A1/xx
Priority to US14/491,351 priority patent/US20150017334A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D43/00Lids or covers for rigid or semi-rigid containers
    • B65D43/02Removable lids or covers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/10Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of paper or cardboard
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/16Drying; Softening; Cleaning
    • B32B38/164Drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/16Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer formed of particles, e.g. chips, powder or granules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/40Applications of laminates for particular packaging purposes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/02Chemical treatment or coating of shaped articles made of macromolecular substances with solvents, e.g. swelling agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B2038/0052Other operations not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/16Drying; Softening; Cleaning
    • B32B38/164Drying
    • B32B2038/168Removing solvent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/28Multiple coating on one surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/73Hydrophobic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/74Oxygen absorber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2310/00Treatment by energy or chemical effects
    • B32B2310/04Treatment by energy or chemical effects using liquids, gas or steam
    • B32B2310/0409Treatment by energy or chemical effects using liquids, gas or steam using liquids
    • B32B2310/0418Treatment by energy or chemical effects using liquids, gas or steam using liquids other than water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2405/00Adhesive articles, e.g. adhesive tapes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2435/00Closures, end caps, stoppers
    • B32B2435/02Closures, end caps, stoppers for containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/06Polystyrene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249982With component specified as adhesive or bonding agent
    • Y10T428/249983As outermost component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249986Void-containing component contains also a solid fiber or solid particle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/254Polymeric or resinous material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/259Silicic material

Definitions

  • the present invention relates to a laminate and a container. In particular, it relates to the following technologies.
  • the present invention relates to a laminate and a packaging material.
  • the present invention relates to a laminate used for waterproof clothing, water-repellent films, water-repellent sheets and the like and packaging materials used for packaging foods, beverages, pharmaceuticals, cosmetics, chemicals and the like.
  • this invention relates to a non-adhesive container and its manufacturing method.
  • the present invention relates to a container excellent in non-adhesiveness of contents and a manufacturing method thereof. More specifically, the present invention relates to a non-adhesive container for containing foods, beverages, pharmaceuticals, cosmetics, chemicals, and the like, and a method for manufacturing the same. Furthermore, the present invention relates to a packaging material and a manufacturing method thereof. More specifically, the present invention relates to a packaging material used for packaging foods, beverages, pharmaceuticals, cosmetics, chemicals, and the like and a manufacturing method thereof. In particular, the present invention relates to a packaging material excellent in non-adhesiveness of contents. Furthermore, the present invention relates to a packaging material. More specifically, the present invention relates to a packaging material used for packaging foods, beverages, pharmaceuticals, cosmetics, chemicals, and the like. In particular, the present invention relates to a packaging material excellent in non-adhesiveness and oxygen absorption of contents.
  • a wide variety of packaging materials and containers are known in the past, but their contents are also diverse.
  • foods, beverages, pharmaceuticals, cosmetics, chemicals and the like such as jelly confectionery, pudding, yogurt, liquid detergent, toothpaste, carrero, syrup, petrolatum, face wash cream, face wash mousse and the like.
  • properties of the contents such as a solid, a semi-solid, a liquid, a viscous material, a gel-like material, and the like.
  • the packaging materials for packaging these contents are required to have hermeticity as well as thermal adhesiveness, light shielding, heat resistance, durability, etc. depending on the contents, packaging form, application, etc.
  • packaging materials that satisfy these characteristics have the following problems. That is, there is a problem that the contents adhere to the packaging material. If the contents adhere to the packaging material, it becomes difficult to use up all the contents, resulting in waste. In addition, in order to use up all the contents, the contents attached to the packaging material must be collected separately, which is troublesome. For this reason, the packaging material needs to have a property (non-adhesiveness) that the contents are difficult to adhere to the packaging material in addition to the above-described sealing property and the like.
  • the heat seal layer has an anti-adhesion effect, glyceric acid ester, polyglycerin fatty acid ester, pentaerythritol fatty acid. It consists of polyolefin containing ester, polyoxypropylene / polyoxyethylene block polymer, sorbitan fatty acid ester, polyoxyethylene alkyl ether, fatty acid amide, etc., and its thickness is thicker than 10 ⁇ m, between the adhesive layer and the heat seal layer.
  • Patent Document 1 proposes a filler adhesion prevention lid material characterized in that an intermediate layer made of polyolefin is provided.
  • the surface coating comprises a metal oxide network and a hydrophobic surface.
  • the hydrophobic material is uniformly distributed with respect to the thickness of the surface coating, and the surface coating is hydrophobic and has a contact angle with water greater than 90 °.
  • Patent Document 1 and Patent Document 2 cannot be said to have sufficient adhesion prevention effects. In this respect, further improvement is necessary for practical use.
  • a main object of the present invention is to provide a laminate, a packaging material, and a container that can continuously exhibit non-adhesiveness superior to that of the prior art.
  • the present inventor has found that the above object can be achieved by employing a laminate or a packaging material having a specific structure, and has completed the present invention. It was.
  • the present invention relates to the following laminate, packaging material, and container.
  • Item 3 The laminate according to Item 2, wherein the hydrophobic oxide fine particles form a porous layer having a three-dimensional network structure. 6). Item 3. The laminate according to Item 2, wherein the hydrophobic oxide fine particles have a specific surface area of 50 to 300 m 2 / g by BET method. 7). Item 3. The laminate according to Item 2, wherein the hydrophobic oxide fine particles are hydrophobic silica. 8). Item 8. The laminate according to Item 7, wherein the hydrophobic silica has a trimethylsilyl group on its surface. 9. Item 4. The laminate according to Item 3, wherein the filler particles have an average particle diameter of 0.5 to 100 ⁇ m. 10. A packaging material comprising the laminate according to any one of items 1 to 9. 11.
  • a non-adhesive container for containing contents wherein hydrophobic oxide fine particles having an average primary particle diameter of 3 to 100 nm are attached to at least part or all of the surface of the container that comes into contact with the contents.
  • 12 Item 12.
  • the non-adhesive container according to Item 11, wherein the amount of hydrophobic oxide fine particles attached is 0.01 to 10 g / m 2 .
  • 13 Item 12.
  • the non-adhesive container according to Item 11, wherein the hydrophobic oxide fine particles form a porous layer having a three-dimensional network structure.
  • 14 Item 12.
  • the nonadherent container according to Item 11, wherein the hydrophobic oxide fine particles have a specific surface area of 50 to 300 m 2 / g by BET method. 15.
  • Item 12 The non-adhesive container according to Item 11, wherein the hydrophobic oxide fine particles are hydrophobic silica. 16.
  • Item 16 The non-adhesive container according to Item 15, wherein the hydrophobic silica has a trimethylsilyl group on the surface thereof. 17.
  • a method for producing a container for containing contents comprising a step of attaching hydrophobic oxide fine particles having an average primary particle diameter of 3 to 100 nm to at least part or all of the surface of the container that contacts the contents
  • a method for producing a non-adhesive container comprising a step.
  • a packaging material comprising at least a base material layer and a thermal adhesive layer, wherein the thermal adhesive layer is laminated as an outermost layer on one surface of the packaging material, and the thermal adhesive layer is adjacent to the other layer.
  • the packaging material according to Item 20, wherein the amount of hydrophobic oxide fine particles adhered is 0.01 to 10 g / m 2 . 22.
  • Item 21. The packaging material according to Item 20, wherein the hydrophobic oxide fine particles form a porous layer having a three-dimensional network structure. 23.
  • Item 21. The packaging material according to Item 20, wherein the hydrophobic oxide fine particles have a specific surface area of 50 to 300 m 2 / g by BET method. 24.
  • the packaging material according to Item 20, wherein the hydrophobic oxide fine particles are hydrophobic silica.
  • 25. The packaging material according to Item 24, wherein the hydrophobic silica has a trimethylsilyl group on its surface. 26. Item 21.
  • the packaging material according to Item 20 which is used for a product in which the content is packaged in a packaging material in a state where the content can contact the outermost surface on the thermal adhesive layer side.
  • a method for producing a packaging material comprising a laminate having at least a base material layer and a thermal adhesive layer, comprising the step of attaching hydrophobic oxide fine particles having an average primary particle diameter of 3 to 100 nm to the surface of the thermal adhesive layer Manufacturing method of packaging material.
  • a packaging material comprising at least a base material layer and a thermal adhesive layer, wherein the thermal adhesive layer is laminated as an outermost layer on one surface of the packaging material, and the thermal adhesive layer is adjacent to the other layer.
  • a lid material in which hydrophobic oxide fine particles having an average primary particle diameter of 3 to 100 nm are attached to the outermost surface that is not formed, and the hydrophobic oxide fine particles form a porous layer having a three-dimensional network structure.
  • Bags and molded containers in which hydrophobic oxide fine particles having an average primary particle diameter of 3 to 100 nm are attached to the outermost surface that is not formed, and the hydrophobic oxide fine particles form a porous layer having a three-dimensional network structure A packaging material used as a packaging sheet or tube.
  • a packaging material comprising a laminate having at least a base material layer and a thermal adhesive layer, wherein the thermal adhesive layer is laminated as an outermost layer on one side of the packaging material, and at least the base material layer and the thermal adhesive layer
  • a packaging material comprising an oxygen absorbent on one side and hydrophobic oxide fine particles having an average primary particle diameter of 3 to 100 nm adhering to the outermost surface where the thermal adhesive layer is not adjacent to other layers.
  • the packaging material according to Item 31, wherein the amount of hydrophobic oxide fine particles adhered is 0.01 to 10 g / m 2 . 33.
  • Item 32. The packaging material according to Item 31, wherein the hydrophobic oxide fine particles form a porous layer having a three-dimensional network structure. 34.
  • Item 32. The packaging material according to Item 31, wherein the hydrophobic oxide fine particles have a specific surface area of 50 to 300 m 2 / g by BET method. 35.
  • Item 32. The packaging material according to Item 31, wherein the hydrophobic oxide fine particles are hydrophobic silica.
  • 36. The packaging material according to Item 35, wherein the hydrophobic silica has a trimethylsilyl group on its surface. 37. Item 32.
  • the laminate and the packaging material of the first invention can exhibit good water repellency and non-adhesiveness (or antifouling property).
  • a layer containing a thermoplastic resin hereinafter also referred to as “thermoplastic resin layer” contains filled particles containing at least one of an organic component and an inorganic component, the hydrophobic oxide fine particles are removed.
  • thermoplastic resin layer contains filled particles containing at least one of an organic component and an inorganic component
  • thermoplastic resin layer when used as a thermal adhesive layer, excellent non-adhesiveness is continuously exhibited while maintaining good thermal adhesiveness. Can do. That is, high non-adhesiveness can be obtained without impeding the thermal adhesiveness practically without being restricted by the type and thickness of the thermal adhesive layer. More specifically, at the time of thermal bonding, the hydrophobic oxide fine particles existing on the heat-bonded region are embedded in the heat-bonding layer and thus do not inhibit the heat-bonding, but exist outside the heat-bonded region. Since the hydrophobic oxide fine particles are held on the thermal adhesive layer as they are, their high non-adhesiveness can be exhibited.
  • Such laminates include, for example, tablecloths, napkins, aprons, table covers, floor mats, wall cloths, wallpaper, labels, release paper, tags, chair covers, tarpaulins, umbrellas, ski wear, building materials, bed covers, It can be suitably used for shoe surface materials, shoe covers, waterproof clothing, water repellent films, water repellent sheets and the like.
  • this laminated body can be suitably used as a packaging material for packaging foods, beverages, pharmaceuticals, cosmetics, chemicals and the like as they are or by processing them.
  • the non-adhesive container of the second invention can exhibit excellent non-adhesiveness without containing a concern substance such as fluorine. Thereby, since almost all the contents can be taken out from the container, the loss of the amount adhering to the inner wall of the container can be suppressed or prevented.
  • the hydrophobic oxide fine particles it is only necessary to apply the hydrophobic oxide fine particles to at least a part of the surface in contact with the contents, so that it is not necessary to go through a complicated process, and the production efficiency, This is advantageous in terms of cost.
  • limiting of the material of a container For example, it can apply also to containers of any materials, such as a glass container, earthenware, a paper container, a plastic container, a metal container, and a wooden container.
  • non-adhesiveness can be imparted to existing containers later.
  • non-adhesiveness can be further maintained by heat-treating after applying the hydrophobic oxide fine particles.
  • the packaging material of the third invention can exhibit excellent non-adhesiveness while maintaining good thermal adhesiveness. That is, high non-adhesiveness can be obtained without impeding the thermal adhesiveness practically without being restricted by the type and thickness of the thermal adhesive layer. More specifically, at the time of thermal bonding, the hydrophobic oxide fine particles existing on the heat-bonded region are embedded in the heat-bonding layer and thus do not inhibit the heat-bonding, but exist outside the heat-bonded region. Since the hydrophobic oxide fine particles are held on the thermal adhesive layer as they are, their high non-adhesiveness can be exhibited.
  • the thermal bonding can be performed only by attaching the hydrophobic oxide fine particles to the entire surface without considering the bonding margin to the thermal bonding layer.
  • Such packaging materials can be used as lidding materials, and are effective for various uses such as pillow bags, gusset bags, self-supporting bags, three-side seal bags, four-side seal bags, etc., molded containers, packaging sheets, tubes, etc. Can be used.
  • the packaging material of the fourth invention can exhibit excellent non-adhesiveness and oxygen absorbability while maintaining good thermal adhesiveness. That is, high non-adhesiveness can be obtained without impeding the thermal adhesiveness practically without being restricted by the type and thickness of the thermal adhesive layer. More specifically, at the time of thermal bonding, the hydrophobic oxide fine particles existing on the heat-bonded region are embedded in the heat-bonding layer and thus do not inhibit the heat-bonding, but exist outside the heat-bonded region. Since the hydrophobic oxide fine particles are held on the thermal adhesive layer as they are, their high non-adhesiveness can be exhibited.
  • the oxygen absorbent particles exhibit desired oxygen absorption performance while avoiding falling off due to contact of contents and the like. be able to.
  • the layer composed of the hydrophobic oxide fine particles formed on the thermal bonding layer is formed in a porous shape (that is, when a porous layer is formed)
  • it has high non-adhesiveness Higher oxygen absorption performance can be exhibited.
  • oxygen remaining in the package or oxygen generated from the contents can penetrate through the porous layer and reach the oxygen absorbent contained in the thermal adhesive layer or the like more reliably.
  • oxygen can be more effectively absorbed and removed by the oxygen absorbent, and high non-adhesiveness can be exhibited by forming the porous layer.
  • Such packaging materials can be used as lidding materials, and are effective for various uses such as pillow bags, gusset bags, self-supporting bags, three-side seal bags, four-side seal bags, etc., molded containers, packaging sheets, tubes, etc. Can be used.
  • FIG. 3 It is a schematic diagram of the cross-sectional structure of an example of the laminated body of 1st invention. It is a schematic diagram of the cross-sectional structure of the packaging body produced using the laminated body of 1st invention as a cover material of a container. The cross-sectional observation photograph of a part of the packaging material of Example 1-4 is shown.
  • “Lotus surface” indicates “the surface of a porous layer having a three-dimensional network structure of hydrophobic oxide fine particles”.
  • FIG. 1 It is a schematic diagram of a cross-sectional structure showing a state in which contents are put into a non-adhesive container of the second invention and a lid member is thermally bonded.
  • FIG. 1 It is a schematic diagram of the cross-sectional structure of the packaging material of 3rd invention.
  • FIG. 1 It is a schematic diagram of the cross-sectional structure of the packaging material of 3rd invention.
  • FIG. 1 It is a schematic diagram of the cross-sectional structure of the package manufactured using the packaging material of 3rd invention as a cover material of a container.
  • FE Field Emission
  • FIG. 1 It is a schematic diagram of the cross-sectional structure of the packaging material which concerns on one Embodiment of 4th invention.
  • the first to fourth inventions basically have a non-adhesive laminate in which hydrophobic oxide fine particles having an average primary particle diameter of 3 to 100 nm are attached to at least a part of the outermost surface.
  • the hydrophobic oxide fine particles form a porous layer having a three-dimensional network structure. Thereby, water repellency or non-adhesiveness can be exhibited more effectively.
  • the first to fourth inventions will be described individually.
  • the laminate of the first invention is a hydrophobic oxide having an average primary particle diameter of 3 to 100 nm on at least part of the surface of a layer containing a thermoplastic resin (hereinafter also referred to as “thermoplastic resin layer”). It is characterized by adhering fine particles.
  • FIG. 1 shows a schematic diagram of a cross-sectional structure of an example of the laminate of the first invention.
  • hydrophobic oxide fine particles 3 having an average primary particle diameter of 3 to 100 nm are attached to the surface of a thermoplastic resin layer 2 in which a base material layer 1 includes filler particles 6.
  • the thermoplastic resin layer 2 is laminated on one outermost layer of the packaging material (laminate).
  • hydrophobic oxide fine particles 3 having an average primary particle diameter of 3 to 100 nm are formed on the surface (outermost surface) that is not adjacent to the other layer (the base material layer in FIG. 1). It is attached. Hydrophobic oxide fine particles 3 are adhered and fixed to the thermoplastic resin layer 2.
  • the hydrophobic oxide fine particles 3 may contain primary particles, but it is desirable that the hydrophobic oxide fine particles 3 contain many aggregates (secondary particles).
  • the hydrophobic oxide fine particles form a porous layer having a three-dimensional network structure. That is, it is preferable that a porous layer having a three-dimensional network structure formed of hydrophobic oxide fine particles is laminated on the thermoplastic resin layer 2.
  • the surface of the thermoplastic resin layer (surface on which the hydrophobic oxide fine particles adhere) becomes uneven in the cross section, and the recesses are hydrophobic. It is considered that the non-adhesiveness is maintained for a long period of time when the conductive oxide fine particles enter in an aggregated state. That is, in addition to the contents, the hydrophobic oxide fine particles that have entered the concave portion enter the concave portion and maintain the fixed state even when contact with the device or apparatus in the process occurs. As a result of effectively suppressing or preventing the falling off of the fine particles, excellent non-adhesiveness can be exhibited continuously. In other words, good non-adhesiveness can be exhibited over a relatively long period.
  • FIG. 2 shows a schematic view of a cross-sectional structure of a package produced using the laminate of the first invention as a container lid.
  • the notation of the hydrophobic oxide fine particles 3 and the filler particles 6 is omitted.
  • the container 4 is filled with the contents 5 and sealed in such a state that the opening and the thermoplastic resin layer 2 of the laminate are in contact with each other. That is, the laminate (packaging material) of the present invention is used in a state where the hydrophobic oxide fine particles adhering to the thermoplastic resin layer 2 can come into contact with the contents 5.
  • thermoplastic resin layer 2 is protected by the hydrophobic oxide fine particles and has excellent non-adhesiveness, even if the contents are in contact with the vicinity of the thermoplastic resin layer 2 (approaching) Even so, adhesion of the contents to the thermoplastic resin layer is blocked and repelled by the hydrophobic oxide fine particles (or a porous layer made of hydrophobic oxide fine particles). For this reason, the content does not remain in the vicinity of the thermoplastic resin layer, but is repelled by hydrophobic oxide fine particles (or a porous layer made of hydrophobic oxide fine particles) and the content is placed in the container.
  • a material of the container 4 it can select suitably from a metal, a synthetic resin, glass, paper, those composite materials, etc., The kind of a thermoplastic resin layer, a component, etc. can be adjusted suitably according to the material.
  • thermoplastic resin layer
  • thermoplastic resin acrylic resin, polystyrene, ABS resin, vinyl chloride resin, polyethylene resin, polypropylene resin, polyamide resin, polycarbonate, polyacetal, fluorine resin, silicone resin, polyester resin, and blended resins of these Copolymers, modified resins and the like containing combinations of monomers to be used can be used.
  • the thickness of the thermoplastic resin layer is not particularly limited, but is preferably about 0.01 ⁇ m to 5 mm, more preferably about 0.01 ⁇ m to 2 mm from the viewpoint of productivity, cost, and the like.
  • the thickness is preferably 1 to 150 ⁇ m in consideration of thermal adhesiveness.
  • the hydrophobic oxide fine particles present on the region to be thermally bonded are embedded in the thermoplastic resin layer, and the thermoplastic resin layer becomes the outermost surface. Gluing can be performed. For this reason, it is desirable to set the thickness within the above thickness range so that the hydrophobic oxide fine particles can be embedded in the thermoplastic resin layer as much as possible.
  • the content of the thermoplastic resin in the thermoplastic resin layer varies depending on the type of the thermoplastic resin, the presence or absence of filler particles and other additives, but is usually 20 to 100% by weight, particularly 30 to 99% by weight. %, More preferably 50 to 99% by weight.
  • thermoplastic resin for the purpose of reinforcing a thermoplastic resin (layer) or imparting other properties (moisture permeability resistance, oxygen permeability resistance, light shielding property, heat insulating property, impact resistance, etc.) as necessary.
  • a base material layer another layer (referred to as a base material layer) can be laminated on the thermoplastic resin (layer).
  • a base material layer usually, a three-layer structure in which a base material layer / thermoplastic resin layer / hydrophobic oxide fine particles are sequentially laminated as shown in FIG.
  • a well-known material can be employ
  • the composite material / laminate material can be suitably used.
  • the base layer may be formed by laminating each layer employed in known packaging materials, building materials, clothing materials, daily necessities, etc. at an arbitrary position.
  • a printing layer a printing protective layer (so-called OP layer), a colored layer, an adhesive layer, an adhesion reinforcing layer, a primer coat layer, an anchor coat layer, an anti-slip agent layer, a lubricant layer, an anti-fogging agent layer and the like can be mentioned.
  • the method for laminating the base material layer and the method for laminating the base material layer and the thermoplastic resin layer are not limited.
  • a known method such as a dry laminating method, an extrusion laminating method, a wet laminating method, or a heat laminating method should be adopted. Can do.
  • thermoadhesive material When making a thermoplastic resin layer function as a thermoadhesive layer, a well-known thermoadhesive material can be employ
  • a layer formed of an adhesive such as a lacquer type adhesive, an easy peel adhesive, or a hot melt adhesive
  • the thermoplastic resin includes a known thermal adhesive containing a resin component.
  • a lacquer type adhesive or a hot melt adhesive it is preferable to employ a lacquer type adhesive or a hot melt adhesive, and particularly a thermal adhesive layer formed of a lacquer type adhesive can be suitably employed.
  • the filled particles can be contained in the thermoplastic resin layer as necessary. By dispersing the filler particles in the thermoplastic resin layer, more excellent wear resistance and the like can be imparted to the thermoplastic resin layer.
  • filler particles containing at least one of an organic component and an inorganic component can be employed.
  • inorganic components include 1) metals such as aluminum, copper, iron, titanium, silver, and calcium, or alloys or intermetallic compounds containing these metals, and 2) silicon oxide, aluminum oxide, zirconium oxide, titanium oxide, iron oxide, and the like. Oxides, 3) inorganic acid salts or organic acid salts such as calcium phosphate and calcium stearate, 4) glass, 5) ceramics such as aluminum nitride, boron nitride, silicon carbide and silicon nitride can be suitably used.
  • organic components examples include acrylic resins, urethane resins, melamine resins, amino resins, epoxy resins, polyethylene resins, polystyrene resins, polypropylene resins, polyester resins, cellulose resins, vinyl chloride resins, and polyvinyl resins.
  • Organic polymer components such as alcohol, ethylene-vinyl acetate copolymer, ethylene-vinyl alcohol copolymer, ethylene-ethyl acrylate copolymer, polyacrylonitrile, and polyamide can be suitably used.
  • particles containing both an inorganic component and an organic component can be used in addition to particles made of an inorganic component or particles made of an organic component.
  • the average particle size of the filled particles is preferably about 0.5 to 100 ⁇ m, more preferably 1 to 50 ⁇ m, and most preferably 5 to 30 ⁇ m. If it is less than 0.5 ⁇ m, it is unsuitable in terms of handleability, the above-described formation of irregularities, and the like. On the other hand, when exceeding 100 micrometers, it is unsuitable at points, such as drop-off
  • the shape of the filled particles is not limited, and may be any of spherical shape, spheroid shape, indefinite shape, teardrop shape, flat shape, hollow shape, porous shape, and the like.
  • the content of the filler particles in the thermoplastic resin layer can be appropriately changed according to the kind of the thermoplastic resin or filler particles, desired physical properties, etc., but is generally preferably 1 to 80% by weight based on the weight of the solid content. More preferably, it is 3 to 50% by weight.
  • the method of containing the filler particles is not particularly limited, but generally, a method of blending the filler particles with a raw material (composition containing a thermoplastic resin) for forming a thermoplastic resin layer can be mentioned.
  • the mixing method may be either dry mixing or wet mixing.
  • the main component of the thermoplastic resin layer is 1) a thermoplastic resin or a monomer or oligomer constituting the thermoplastic resin, 2) a solvent, 3) a cross-linking agent, etc., if necessary. What is necessary is just to add and mix.
  • the hydrophobic oxide fine particles adhering to the thermoplastic resin layer usually have an average primary particle size of 3 to 100 nm, preferably 5 to 50 nm, more preferably 5 to 20 nm.
  • the hydrophobic oxide fine particles are in an appropriate aggregated state, and can hold a gas such as air in the voids in the aggregate, resulting in excellent non-adhesiveness. Obtainable. That is, since this aggregated state is maintained even after adhering to the thermoplastic resin layer, excellent non-adhesiveness can be exhibited.
  • the hydrophobic oxide fine particles can be attached to one side or both sides of the thermoplastic resin (layer).
  • the average primary particle diameter can be measured with a scanning electron microscope (FE-SEM), and when the resolution of the scanning electron microscope is low, the transmission electron microscope or the like is used.
  • An electron microscope may be used in combination.
  • the particle shape is spherical
  • the diameter is considered as the diameter
  • the particle shape is non-spherical
  • the average value of the longest diameter and the shortest diameter is regarded as the diameter, and 20 arbitrarily selected by observation with a scanning electron microscope or the like.
  • the average diameter of the particles is defined as the average primary particle diameter.
  • the specific surface area (BET method) of the hydrophobic oxide fine particles is not particularly limited, but is usually 50 to 300 m 2 / g, particularly preferably 100 to 300 m 2 / g.
  • the hydrophobic oxide fine particles are not particularly limited as long as they have hydrophobicity, and may be those hydrophobized by surface treatment.
  • fine particles in which hydrophilic oxide fine particles are subjected to a surface treatment with a silane coupling agent or the like to make the surface state hydrophobic can also be used.
  • the type of oxide is not limited as long as it has hydrophobicity.
  • at least one of silica (silicon dioxide), alumina, titania and the like can be used. These may be known or commercially available.
  • silica product names “AEROSIL R972”, “AEROSIL R972V”, “AEROSIL R972CF”, “AEROSIL R974”, “AEROSIL RX200”, “AEROSIL RY200” (above, manufactured by Nippon Aerosil Co., Ltd.), “AEROSIL R202” “AEROSIL R805", “AEROSIL R812”, “AEROSIL R812S” (above, manufactured by Evonik Degussa).
  • titania include the product name “AEROXIDE TiO 2 T805” (Evonik Degussa).
  • alumina include fine particles in which the product name “AEROXIDE Alu C” (manufactured by Evonik Degussa) or the like is treated with a silane coupling agent to make the particle surface hydrophobic.
  • hydrophobic silica fine particles can be preferably used.
  • hydrophobic silica fine particles having a trimethylsilyl group on the surface are preferable in that better non-adhesiveness can be obtained.
  • commercially available products corresponding to this include “AEROSIL R812” and “AEROSIL R812S” (both manufactured by Evonik Degussa).
  • the adhesion amount (weight after drying) of the hydrophobic oxide fine particles to be adhered to the thermoplastic resin layer is not limited, but is usually preferably 0.01 to 10 g / m 2, and preferably 0.2 to 1.5 g / m 2. m 2 is more preferable, and 0.2 to 1 g / m 2 is most preferable. By setting within the above range, more excellent non-adhesiveness can be obtained over a long period of time, and it is further advantageous in terms of suppression of falling off of hydrophobic oxide fine particles, cost, and the like.
  • the hydrophobic oxide fine particles adhering to the thermoplastic resin layer preferably form a porous layer having a three-dimensional network structure, and the thickness is preferably about 0.1 to 5 ⁇ m, and 0.2 to 2 More preferably, it is about 5 ⁇ m.
  • the layer can contain a lot of air, and more excellent non-adhesiveness can be exhibited.
  • the hydrophobic oxide fine particles may be attached to the entire surface of the thermoplastic resin layer (the entire surface on the side opposite to the base material layer side), or a region where the thermoplastic resin layer is thermally bonded (so-called adhesion). You may adhere to the area
  • adhesion even when adhering to the entire surface of the thermoplastic resin layer, most or all of the hydrophobic oxide fine particles present on the region to be thermally bonded are buried in the thermoplastic resin layer, so that thermal adhesion is achieved. It is not obstructed, and it is desirable that it adheres to the entire surface of the thermoplastic resin layer even in industrial production.
  • the laminate of the first invention can be used for various other uses as it is or after being processed. Other uses are not limited as long as non-adhesiveness, antifouling properties, water repellency, etc. are required.
  • table cloth, napkin, apron, table cover, floor mat, wall cloth, wallpaper, label , Release paper, tag, chair cover, waterproof sheet, umbrella, ski wear, building material, bed cover, shoe surface material, shoe cover, waterproof clothing, water repellent film, water repellent sheet, and the like.
  • the laminate (packaging material) of the first invention is, for example, a method for producing a laminate or packaging material having at least a thermoplastic resin layer, which is primary on the surface of the thermoplastic resin layer. It can be suitably obtained by a production method including a step of attaching hydrophobic oxide fine particles having an average particle diameter of 3 to 100 nm (hereinafter also referred to as “attachment step”).
  • the thermoplastic resin layer can be used as it is if it is in the form of a film or a sheet.
  • a known substrate layer can be laminated according to a known method. For example, with respect to a laminated material produced by a single layer base material or a dry laminating method, an extrusion laminating method, a wet laminating method, a heat laminating method, etc. What is necessary is just to form a thermoplastic resin layer by the method demonstrated in (4).
  • the filler particles may be previously contained in the raw material for forming the thermoplastic resin layer as described above.
  • the method for carrying out the step of attaching the hydrophobic oxide fine particles is not particularly limited.
  • known methods such as roll coating, gravure coating, bar coating, doctor blade coating, brush coating, and powder electrostatic coating can be employed.
  • the adhesion step can be performed by a method of drying after forming a coating film on the thermoplastic resin layer using a dispersion obtained by dispersing hydrophobic oxide fine particles in a solvent. .
  • the solvent in this case is not limited, and in addition to water, for example, alcohol (ethanol), cyclohexane, toluene, acetone, IPA, propylene glycol, hexylene glycol, butyl diglycol, pentamethylene glycol, normal pentane, normal hexane, hexyl alcohol
  • An organic solvent such as can be selected as appropriate.
  • a very small amount of a dispersant, a colorant, an anti-settling agent, a viscosity modifier and the like can be used in combination.
  • the dispersion amount of the hydrophobic oxide fine particles in the solvent is usually about 10 to 100 g / L.
  • drying either natural drying or forced drying (heat drying) may be used, but industrially forced drying is preferable.
  • the drying temperature is not limited as long as it does not affect the thermoplastic resin layer, but is usually 150 ° C. or less, and preferably 80 to 120 ° C.
  • the laminate can also be heated during and / or after the attaching step.
  • the adhesion force (fixing force) of the hydrophobic oxide fine particles to the thermoplastic resin layer can be further increased.
  • the heating temperature T in this case can be appropriately set according to the type of the thermoplastic resin layer and the like, and usually Tm-50 ⁇ T ⁇ with respect to the melting point Tm (melting start temperature) ° C. of the thermoplastic resin layer used. A range of Tm + 50 is preferable.
  • the laminated body thus obtained can be used as a packaging material as it is or after being processed.
  • the same method as in the case of a known packaging material can be adopted. For example, embossing, half-cutting, notching, etc. may be performed.
  • Non-adhesive container of the second invention is a container for containing the contents, and the hydrophobic particles having an average primary particle diameter of 3 to 100 nm on at least part or all of the surface where the container contacts the contents. It is characterized by adhering fine oxide particles.
  • the container body of the second invention is not limited as long as it can accommodate the contents, and a known or commercially available product can be used.
  • the material is not limited, and any material such as a glass container, ceramics, paper container, plastic container, metal container, wood container, or a container made of a composite material of two or more of these may be used.
  • the form of the container body is a known form such as a dish shape, tray shape, bag shape, cup shape, bottle shape, pan shape, box shape, barrel shape, substantially cylindrical shape, wrapping paper (packaging leaf), etc. There may be.
  • the container main body can use the container which consists of a molded object suitably.
  • the container which consists of a molded object of paper, a plastics, or a metal can be mentioned.
  • the container comprised from the laminated material containing the layer which consists of a rigid material can also be illustrated.
  • the non-adhesive container is preferably “a packaging material comprising a laminate having at least a base material layer and a thermal adhesive layer, wherein the thermal adhesive layer is an outermost layer on one surface of the packaging material.
  • the non-adhesive container of the second invention is characterized in that hydrophobic oxide fine particles having an average primary particle diameter of 3 to 100 nm are attached to at least part or all of the surface of the container that contacts the contents.
  • the hydrophobic oxide fine particles may be attached to the surface of the container body that is not in contact with the contents, or may be attached to the entire surface of the container (including the entire surface that does not contact the contents). There is no problem. Moreover, you may adhere to a part of surface which contacts the contents, and you may adhere to all the said surfaces (entire surface).
  • the hydrophobic oxide fine particles adhering to the non-adhesive container of the second invention are hardly recognizable with the naked eye and are therefore transparent or translucent. For this reason, when a transparent glass container or a nearly transparent plastic container is employed as the container body, the transparency can be maintained even after the hydrophobic oxide fine particles are adhered.
  • the pattern, the pattern, or the like can be visually recognized through hydrophobic oxide fine particles (or a layer thereof).
  • a laminate including a thermoplastic resin layer containing the filler particles in the first invention can be employed. That is, it is a container composed of a laminate including a thermoplastic resin layer containing filled particles, and the hydrophobic oxide fine particles are attached to at least part or all of the surface of the container that contacts the contents.
  • the invention characterized by the above is also included.
  • Such a container uses, for example, a thermoplastic resin containing pre-filled particles in a portion to which hydrophobic oxide fine particles are adhered, for example, by a method such as in-mold molding, coating, spraying, spraying, transferring, fitting, and bonding.
  • a method such as in-mold molding, coating, spraying, spraying, transferring, fitting, and bonding.
  • the thermoplastic resin and the filler particles can have the same configuration as described in the first invention. That is, the same thermoplastic resin (layer) and filled particles as described in the first invention can be used, and those within the preferable range described in the first invention can be preferably used. .
  • region which forms the thermoplastic resin layer containing a filling particle is not specifically limited.
  • it may be any of 1) a region to which the hydrophobic oxide fine particles are attached, 2) a region including a portion to which the hydrophobic oxide fine particles are not attached, and 3) the entire surface of the container (the entire inner surface).
  • FIG. 4 shows a schematic diagram of the cut surface structure of the non-adhesive container of the second invention.
  • hydrophobic oxide fine particles 3 having an average primary particle diameter of 3 to 100 nm are attached to the surface (bottom surface and part of the side surface) of the container main body 4 that accommodates the contents.
  • the hydrophobic oxide fine particles 3 are adhered and fixed to the container body 4. That is, even if the hydrophobic oxide fine particles and the content come into contact with each other, the hydrophobic oxide fine particles are adhered to such an extent that they do not fall off.
  • the hydrophobic oxide fine particles 3 may contain primary particles, but it is desirable that the hydrophobic oxide fine particles 3 contain many aggregates (secondary particles).
  • the hydrophobic oxide fine particles form a porous layer having a three-dimensional network structure. That is, it is preferable that a porous layer having a three-dimensional network structure formed of hydrophobic oxide fine particles is laminated on at least a part of the surface of the container body 4.
  • FIG. 5 shows a schematic diagram of a cross-sectional structure of a product in which the non-adhesive container of the second invention is filled with the contents and the contents are sealed by thermally bonding the lid material.
  • the hydrophobic oxide fine particles 3 are omitted.
  • the container 4 is filled with the contents 5 and is sealed in a state where the opening and the thermal adhesive layer 2 of the lid are in contact with each other.
  • the hydrophobic oxide fine particles present on the heat-bonded region are present in the heat-adhesive layer when thermally bonded. It is embedded, and the thermal bonding layer and the container body 4 are in direct contact, and thermal bonding can be performed.
  • the material of the container body 4 is a thermoplastic plastic, it can be welded to a lid made of the same kind of plastic, for example.
  • the material of the lid member is not particularly limited, and a known material or a laminated material can be adopted, and may be appropriately selected according to the material and required characteristics of the container body 4.
  • a simple substance such as paper, synthetic paper, a resin film, a resin film with a vapor deposition layer, an aluminum foil, or a composite material / laminated material thereof can be suitably used.
  • each layer employed in a known lid material may be laminated at an arbitrary position.
  • printing layer printing protective layer (so-called OP layer), colored layer, thermal adhesive layer, adhesive layer, adhesion reinforcing layer, primer coat layer, anchor coat layer, anti-slip agent layer, lubricant layer, anti-fogging agent layer, etc.
  • OP layer printing protective layer
  • colored layer thermal adhesive layer
  • adhesive layer adhesion reinforcing layer
  • primer coat layer primer coat layer
  • anchor coat layer anti-slip agent layer
  • anti-fogging agent layer lubricant layer
  • anti-fogging agent layer etc.
  • cover material is used, it is not limited to this, The thing of another well-known type can also be employ
  • a fitting lid, a screw lid, a wrap film, a heat shrinkable film, a caulking lid, a cap, and the like can be appropriately selected.
  • hydrophobic oxide fine particles can be attached to the inner surface and / or the outer surface of these lid members.
  • the hydrophobic oxide fine particles adhering to the container body 4 usually have an average primary particle diameter of 3 to 100 nm, preferably 5 to 50 nm, more preferably 5 to 20 nm.
  • the hydrophobic oxide fine particles are in an appropriate aggregated state, and can hold a gas such as air in the voids in the aggregate, resulting in excellent non-adhesiveness. Obtainable. That is, this agglomerated state is maintained even after adhering to the container body, so that excellent non-adhesiveness can be exhibited.
  • the average primary particle diameter can be measured with a scanning electron microscope (FE-SEM).
  • FE-SEM scanning electron microscope
  • the resolution of the scanning electron microscope is low, the transmission electron microscope or the like is used.
  • An electron microscope may be used in combination.
  • the particle shape is spherical, the diameter is considered as the diameter, and when the particle shape is non-spherical, the average value of the longest diameter and the shortest diameter is regarded as the diameter, and 20 arbitrarily selected by observation with a scanning electron microscope or the like.
  • the average diameter of the particles is defined as the average primary particle diameter.
  • the specific surface area (BET method) of the hydrophobic oxide fine particles is not particularly limited, but is usually 50 to 300 m 2 / g, particularly preferably 100 to 300 m 2 / g.
  • the hydrophobic oxide fine particles are not particularly limited as long as they have hydrophobicity, and may be those hydrophobized by surface treatment.
  • fine particles in which hydrophilic oxide fine particles are subjected to a surface treatment with a silane coupling agent or the like to make the surface state hydrophobic can also be used.
  • the type of oxide is not limited as long as it has hydrophobicity.
  • at least one of silica (silicon dioxide), alumina, titania and the like can be used. These may be known or commercially available.
  • silica product names “AEROSIL R972”, “AEROSIL R972V”, “AEROSIL R972CF”, “AEROSIL R974”, “AEROSIL RX200”, “AEROSIL RY200” (above, manufactured by Nippon Aerosil Co., Ltd.), “AEROSIL R202” “AEROSIL R805", “AEROSIL R812”, “AEROSIL R812S” (above, manufactured by Evonik Degussa).
  • titania include “AEROXIDE TiO 2 T805” (manufactured by Evonik Degussa).
  • alumina include fine particles in which the product name “AEROXIDE Alu C” (manufactured by Evonik Degussa) is treated with a silane coupling agent to make the particle surface hydrophobic.
  • hydrophobic silica fine particles can be preferably used.
  • hydrophobic silica fine particles having a trimethylsilyl group on the surface are preferable in that better non-adhesiveness can be obtained.
  • commercially available products corresponding to this include “AEROSIL R812” and “AEROSIL R812S” (both manufactured by Evonik Degussa).
  • the amount (weight after drying) of the hydrophobic oxide fine particles to be adhered to the container body is not limited, but is usually preferably 0.01 to 10 g / m 2 and preferably 0.2 to 1.5 g / m 2. More preferred is 0.3 to 1 g / m 2 .
  • the hydrophobic oxide fine particles adhering to the container body 4 preferably form a porous layer having a three-dimensional network structure, and the thickness is preferably about 0.1 to 5 ⁇ m, and 0.2 to 2. More preferably, it is about 5 ⁇ m. By adhering in such a porous layer state, the layer can contain a lot of air, and more excellent non-adhesiveness can be exhibited.
  • the non-adhesive container of the second invention is a process in which hydrophobic oxide fine particles having an average primary particle diameter of 3 to 100 nm are attached to at least part or all of the surface of the container body that contacts the contents. It can obtain suitably by the manufacturing method containing.
  • the container body As the container body, a known container can be adopted as described above.
  • the method for performing the attaching step is not particularly limited.
  • known methods such as dipping, brush coating, roll coating, and electrostatic powder coating can be employed.
  • the adhesion step can be carried out by a method of drying after forming a coating film on the container body using a dispersion in which hydrophobic oxide fine particles are dispersed in a solvent. .
  • the solvent in this case is not limited, and in addition to water, for example, alcohol (ethanol), cyclohexane, toluene, acetone, IPA, propylene glycol, hexylene glycol, butyl diglycol, pentamethylene glycol, normal pentane, normal hexane, hexyl alcohol
  • An organic solvent such as can be selected as appropriate.
  • a very small amount of a dispersant, a colorant, an anti-settling agent, a viscosity modifier and the like can be used in combination.
  • the dispersion amount of the hydrophobic oxide fine particles in the solvent is usually about 10 to 100 g / L.
  • drying either natural drying or forced drying (heat drying) may be used, but industrially forced drying is preferable.
  • the drying temperature is not particularly limited depending on the material of the container, but it is usually preferably 250 ° C. or lower, particularly 120 to 200 ° C. from the viewpoint of maintaining non-adhesiveness.
  • the container main body can be heated during and / or after the attaching step.
  • the adhesion force (fixing force) of the hydrophobic oxide fine particles to the container body can be further increased.
  • the heating temperature in this case is not particularly limited, but is usually about 120 to 200 ° C.
  • the process of forming the thermoplastic resin layer containing a filler particle may be included before the process of attaching hydrophobic oxide microparticles
  • a thermoplastic resin composition containing filled particles is used in a portion where hydrophobic oxide fine particles are attached, and in-mold molding, coating, thermal spraying, spraying, transfer, fitting, bonding, etc.
  • the method may include a step of forming a thermoplastic resin layer.
  • hydrophobic oxide fine particles can be adhered to the formed portion.
  • the non-adhesion container which can maintain favorable water repellency and non-adhesion more effectively can be provided.
  • the thermoplastic resin and the filler particles can be the same as those described in the first invention. In short, the same thermoplastic resin and filled particles as described in the first invention can be used, and those within the preferred range described in the first invention can be preferably used.
  • thermoplastic resin layer containing the filler particles is formed is not limited. For example, it may be only a portion to which the hydrophobic oxide fine particles are attached, may include a portion to which the hydrophobic oxide fine particles are not attached, or may be the entire surface of the container.
  • the packaging material of the third invention is a packaging material comprising a laminate having at least a base material layer and a thermal adhesive layer, and the thermal adhesive layer is laminated as an outermost layer on one surface of the packaging material, Hydrophobic oxide fine particles having an average primary particle diameter of 3 to 100 nm are attached to the outermost surface where the thermal adhesive layer is not adjacent to other layers.
  • FIG. 6 shows a schematic diagram of a cross-sectional structure of the packaging material of the third invention.
  • the packaging material of FIG. 6 consists of a laminated body in which the thermal adhesive layer 2 is laminated on the base material layer 1.
  • the thermal adhesive layer 2 is laminated on one outermost layer of the packaging material (laminate).
  • hydrophobic oxide fine particles 3 having an average primary particle diameter of 3 to 100 nm adhere to the surface (outermost surface) on the side not adjacent to the other layer (base material layer in FIG. 6). is doing.
  • the hydrophobic oxide fine particles 3 are adhered and fixed to the heat bonding layer 2.
  • the hydrophobic oxide fine particles 3 may contain primary particles, but it is preferable that the hydrophobic oxide fine particles 3 contain a large amount of aggregates (secondary particles).
  • the hydrophobic oxide fine particles form a porous layer having a three-dimensional network structure. That is, it is preferable that a porous layer having a three-dimensional network structure formed of hydrophobic oxide fine particles is laminated on the thermal bonding layer 2.
  • FIG. 7 shows a schematic diagram of a cross-sectional structure of a package produced using the packaging material of the third invention as a lid for a container.
  • the description of the hydrophobic oxide fine particles 3 is omitted.
  • the container 4 is filled with the contents 5 and sealed in such a state that the opening and the thermal adhesive layer 2 of the packaging material are in contact with each other. That is, the packaging material of the third invention is used in a state where the hydrophobic oxide fine particles adhering to the heat bonding layer 2 can come into contact with the contents 5. Even in such a case, the thermal adhesive layer 2 is protected by the hydrophobic oxide fine particles and has excellent non-adhesiveness.
  • the adhesion of the contents to the thermal adhesive layer is blocked and repelled by the hydrophobic oxide fine particles (or the porous layer made of hydrophobic oxide fine particles). For this reason, the content does not remain in the vicinity of the thermal adhesive layer, but is repelled by the hydrophobic oxide fine particles (or the porous layer made of the hydrophobic oxide fine particles) and returns to the container.
  • a material of the container 4 it can select suitably from a metal, a synthetic resin, glass, paper, those composite materials, etc., The kind and component of a heat bonding layer can be adjusted suitably according to the material.
  • the packaging material according to the third aspect of the present invention is in a state in which the contents can come into contact with the outermost surface (particularly the hydrophobic oxide fine particles (or the porous layer made of hydrophobic oxide fine particles)) on the thermal adhesive layer side. It can be suitably used for products in which the contents are packaged in a packaging material.
  • the base material layer a known material or a laminated material can be adopted.
  • a simple substance such as paper, synthetic paper, a resin film, a resin film with a vapor deposition layer, an aluminum foil, or a composite material / laminated material thereof can be suitably used.
  • These layers may be laminated at arbitrary positions with each layer employed in known packaging materials.
  • a printing layer a printing protective layer (so-called OP layer), a colored layer, an adhesive layer, an adhesion reinforcing layer, a primer coat layer, an anchor coat layer, an anti-slip agent layer, a lubricant layer, an anti-fogging agent layer and the like can be mentioned.
  • the lamination method in the case of using a laminated material is not limited, and a known method such as a dry lamination method, an extrusion lamination method, a wet lamination method, or a heat lamination method can be employed.
  • the thickness of the base material layer is not limited, but may be appropriately set within a range of usually 15 to 500 ⁇ m from the viewpoint of strength, flexibility, cost, etc. as a packaging material.
  • a known material can be used for the thermal adhesive layer.
  • a layer formed of an adhesive such as a lacquer type adhesive, an easy peel adhesive, or a hot melt adhesive can be employed.
  • a lacquer type adhesive or a hot melt adhesive it is preferable to employ a lacquer type adhesive or a hot melt adhesive, and particularly a thermal adhesive layer (hot melt layer) formed by the hot melt adhesive can be suitably employed.
  • the thickness of the thermal adhesive layer is not particularly limited, but it is usually preferably about 2 to 150 ⁇ m from the viewpoint of sealing performance, productivity, cost and the like.
  • the hydrophobic oxide fine particles existing on the heat bonded region are embedded in the heat bonding layer, and the heat bonding layer becomes the outermost surface so that the heat bonding is performed. It can be carried out. Therefore, it is desirable to set the thickness within the above thickness range so that as many hydrophobic oxide fine particles as possible can be embedded in the thermal adhesive layer.
  • the hydrophobic oxide fine particles adhering to the thermal adhesive layer usually have an average primary particle size of 3 to 100 nm, preferably 5 to 50 nm, more preferably 5 to 20 nm.
  • the hydrophobic oxide fine particles are in an appropriate aggregated state, and can hold a gas such as air in the voids in the aggregate, resulting in excellent non-adhesiveness. Obtainable. That is, this agglomerated state is maintained even after adhering to the thermal adhesive layer, so that excellent non-adhesiveness can be exhibited.
  • the average primary particle diameter can be measured with a scanning electron microscope (FE-SEM), and when the resolution of the scanning electron microscope is low, the transmission electron microscope or the like is used.
  • An electron microscope may be used in combination.
  • the particle shape is spherical
  • the diameter is considered as the diameter
  • the particle shape is non-spherical
  • the average value of the longest diameter and the shortest diameter is regarded as the diameter, and 20 arbitrarily selected by observation with a scanning electron microscope or the like.
  • the average diameter of the particles is defined as the average primary particle diameter.
  • the specific surface area (BET method) of the hydrophobic oxide fine particles is not particularly limited, but is usually 50 to 300 m 2 / g, particularly preferably 100 to 300 m 2 / g.
  • the hydrophobic oxide fine particles are not particularly limited as long as they have hydrophobicity, and may be those hydrophobized by surface treatment.
  • fine particles in which hydrophilic oxide fine particles are subjected to a surface treatment with a silane coupling agent or the like to make the surface state hydrophobic can also be used.
  • the type of oxide is not limited as long as it has hydrophobicity.
  • at least one of silica (silicon dioxide), alumina, titania and the like can be used. These may be known or commercially available.
  • silica product names “AEROSIL R972”, “AEROSIL R972V”, “AEROSIL R972CF”, “AEROSIL R974”, “AEROSIL RX200”, “AEROSIL RY200” (above, manufactured by Nippon Aerosil Co., Ltd.), “AEROSIL R202” “AEROSIL R805", “AEROSIL R812”, “AEROSIL R812S” (above, manufactured by Evonik Degussa).
  • titania include “AEROXIDE TiO 2 T805” (manufactured by Evonik Degussa).
  • alumina include fine particles in which the product name “AEROXIDE Alu C” (manufactured by Evonik Degussa) is treated with a silane coupling agent to make the particle surface hydrophobic.
  • hydrophobic silica fine particles can be preferably used.
  • hydrophobic silica fine particles having a trimethylsilyl group on the surface are preferable in that better non-adhesiveness can be obtained.
  • commercially available products corresponding to this include “AEROSIL R812” and “AEROSIL R812S” (both manufactured by Evonik Degussa).
  • the adhesion amount (weight after drying) of the hydrophobic oxide fine particles to be adhered to the heat bonding layer is not limited, but is usually preferably 0.01 to 10 g / m 2, and preferably 0.2 to 1.5 g / m 2. 2 is more preferable, and 0.3 to 1 g / m 2 is most preferable.
  • the hydrophobic oxide fine particles attached to the heat bonding layer preferably form a porous layer having a three-dimensional network structure, and the thickness is preferably about 0.1 to 5 ⁇ m, and 0.2 to 2. More preferably, it is about 5 ⁇ m.
  • the hydrophobic oxide fine particles may be attached to the entire surface of the thermal adhesive layer (the entire surface opposite to the base material layer side), or a region where the thermal adhesive layer is thermally bonded (so-called adhesive margin). It may be attached to the area excluding.
  • adhesive margin a region where the thermal adhesive layer is thermally bonded
  • the hydrophobic oxide fine particles present on the heat bonded region are buried in the heat bonding layer, so that the heat bonding is hindered. In view of industrial production, it is desirable to adhere to the entire surface of the thermal adhesive layer.
  • the packaging material of the third invention is, for example, a method for manufacturing a packaging material comprising a laminate having at least a base material layer and a thermal adhesive layer, and has an average primary particle diameter on the surface of the thermal adhesive layer. It can be suitably obtained by a method for producing a packaging material including a step of attaching hydrophobic oxide fine particles of 3 to 100 nm (hereinafter also referred to as “attachment step”).
  • the production of the laminate itself can be performed according to a known method.
  • a thermal adhesive layer may be formed by the method described in (1).
  • the method for carrying out the adhesion process is not particularly limited.
  • known methods such as roll coating, gravure coating, bar coating, doctor blade coating, brush coating, and powder electrostatic coating can be employed.
  • the adhesion step can be carried out by a method of forming a coating film on the thermal adhesive layer using a dispersion obtained by dispersing hydrophobic oxide fine particles in a solvent and then drying.
  • the solvent in this case is not limited, and in addition to water, for example, alcohol (ethanol), cyclohexane, toluene, acetone, IPA, propylene glycol, hexylene glycol, butyl diglycol, pentamethylene glycol, normal pentane, normal hexane, hexyl alcohol
  • An organic solvent such as can be selected as appropriate.
  • a very small amount of a dispersant, a colorant, an anti-settling agent, a viscosity modifier and the like can be used in combination.
  • the dispersion amount of the hydrophobic oxide fine particles in the solvent is usually about 10 to 100 g / L.
  • drying either natural drying or forced drying (heat drying) may be used, but industrially forced drying is preferable.
  • the drying temperature is not limited as long as it does not affect the thermal adhesive layer, but is usually 150 ° C. or less, and preferably 80 to 120 ° C.
  • the laminate can be heated during and / or after the attaching step.
  • the adhesion (fixing force) of the hydrophobic oxide fine particles to the thermal adhesive layer can be further increased.
  • the heating temperature T in this case can be set as appropriate according to the type of the thermal adhesive layer and the like, and usually Tm ⁇ 50 ⁇ T ⁇ Tm + 50 with respect to the melting point Tm (melting start temperature) ° C. of the thermal adhesive layer used. It is preferable to be in the range.
  • the packaging material of the third invention may be subjected to embossing, half-cutting, notching, etc., as necessary, as with known packaging materials.
  • the packaging material of the fourth invention is a packaging material comprising a laminate having at least a base material layer and a thermal adhesive layer, and the thermal adhesive layer is laminated as an outermost layer on one surface of the packaging material, Hydrophobic oxide fine particles having an average primary particle diameter of 3 to 100 nm are attached to the outermost surface that contains an oxygen absorbent in at least one of the base material layer and the thermal adhesive layer, and the thermal adhesive layer is not adjacent to other layers. It is characterized by.
  • FIG. 9 shows a schematic diagram of a cross-sectional structure of a packaging material according to one embodiment of the fourth invention.
  • the packaging material of FIG. 9 consists of a laminated body in which the thermal adhesive layer 2 is laminated on the base material layer 1.
  • the thermal adhesive layer 2 is laminated on one outermost layer of the packaging material (laminate).
  • the oxygen absorbent 6 is contained in the thermal adhesive layer 2.
  • some particles of the oxygen absorbent 6 may exist so as to straddle between the base material layer 1 and the heat bonding layer 2.
  • hydrophobic oxide fine particles 3 having an average primary particle diameter of 3 to 100 nm are attached to the surface (outermost surface) which is not adjacent to the other layer (the base material layer in FIG. 9). is doing.
  • the hydrophobic oxide fine particles 3 are adhered and fixed to the heat bonding layer 2. That is, even if the hydrophobic oxide fine particles and the content come into contact with each other, the hydrophobic oxide fine particles are adhered to such an extent that they do not fall off.
  • the hydrophobic oxide fine particles 3 may contain primary particles, but it is desirable that a large amount of aggregates (secondary particles) are contained.
  • the hydrophobic oxide fine particles form a porous layer having a three-dimensional network structure. That is, it is preferable that a porous layer having a three-dimensional network structure formed of hydrophobic oxide fine particles is laminated on the thermal bonding layer 2.
  • FIG. 10 shows a schematic diagram of a cross-sectional structure of a package produced using the packaging material of the fourth invention as a lid for a container.
  • the description of the hydrophobic oxide fine particles 3 and the oxygen absorbent 6 is omitted.
  • the container 4 is filled with the contents 5 and sealed in such a state that the opening and the thermal adhesive layer 2 of the packaging material are in contact with each other. That is, the packaging material of the fourth invention is used in a state where the hydrophobic oxide fine particles adhering to the heat bonding layer 2 can come into contact with the contents 5. Even in such a case, the thermal adhesive layer 2 is protected by the hydrophobic oxide fine particles and has excellent non-adhesiveness.
  • the adhesion of the contents to the thermal adhesive layer is blocked and repelled by the hydrophobic oxide fine particles (or the porous layer made of hydrophobic oxide fine particles). For this reason, the content does not remain in the vicinity of the thermal adhesive layer, but is repelled by the hydrophobic oxide fine particles (or the porous layer made of the hydrophobic oxide fine particles) and returns to the container.
  • a material of the container 4 it can select suitably from a metal, a synthetic resin, glass, paper, those composite materials, etc., The kind of a heat bonding layer, a component, etc. can be adjusted suitably according to the material.
  • the base material layer a known material or a laminated material can be adopted.
  • a simple substance such as paper, synthetic paper, a resin film, a resin film with a vapor deposition layer, an aluminum foil, or a composite material / laminated material thereof can be suitably used.
  • These layers may be laminated at arbitrary positions with each layer employed in known packaging materials.
  • a printing layer a printing protective layer (so-called OP layer), a colored layer, an adhesive layer, an adhesion reinforcing layer, a primer coat layer, an anchor coat layer, an anti-slip agent layer, a lubricant layer, an anti-fogging agent layer and the like can be mentioned.
  • the lamination method in the case of using a laminated material is not limited, and a known method such as a dry lamination method, an extrusion lamination method, a wet lamination method, or a heat lamination method can be employed.
  • the thickness of the base material layer is not limited, but may be appropriately set within a range of usually 15 to 500 ⁇ m from the viewpoint of strength, flexibility, cost, etc. as a packaging material.
  • a known material can be used for the thermal adhesive layer.
  • a layer formed of an adhesive such as a lacquer type adhesive, an easy peel adhesive, or a hot melt adhesive can be employed.
  • a lacquer type adhesive or a hot melt adhesive it is preferable to employ a lacquer type adhesive or a hot melt adhesive, and particularly a thermal adhesive layer (hot melt layer) formed by the hot melt adhesive can be suitably employed.
  • the thickness of the thermal adhesive layer is not particularly limited, but it is usually preferably about 2 to 150 ⁇ m from the viewpoint of sealing performance, productivity, cost and the like.
  • the hydrophobic oxide fine particles existing on the region to be thermally bonded are embedded in the heat bonding layer, and the heat bonding layer becomes the outermost surface, thereby heat bonding. It can be performed. Therefore, it is desirable to set the thickness within the above thickness range so that as many hydrophobic oxide fine particles as possible can be embedded in the thermal adhesive layer.
  • the hydrophobic oxide fine particles adhering to the thermal adhesive layer usually have an average primary particle size of 3 to 100 nm, preferably 5 to 50 nm, more preferably 5 to 20 nm.
  • the hydrophobic oxide fine particles are in an appropriate aggregated state, and can hold a gas such as air in the voids in the aggregate, resulting in excellent non-adhesiveness. Obtainable. That is, this agglomerated state is maintained even after adhering to the thermal adhesive layer, so that excellent non-adhesiveness can be exhibited.
  • the average primary particle diameter can be measured with a scanning electron microscope (FE-SEM).
  • FE-SEM scanning electron microscope
  • the resolution of the scanning electron microscope is low, the transmission electron microscope or the like is used.
  • An electron microscope may be used in combination.
  • the particle shape is spherical, the diameter is considered as the diameter, and when the particle shape is non-spherical, the average value of the longest diameter and the shortest diameter is regarded as the diameter, and 20 arbitrarily selected by observation with a scanning electron microscope or the like.
  • the average diameter of the particles is defined as the average primary particle diameter.
  • the specific surface area (BET method) of the hydrophobic oxide fine particles is not particularly limited, but is usually 50 to 300 m 2 / g, particularly preferably 100 to 300 m 2 / g.
  • the hydrophobic oxide fine particles are not particularly limited as long as they have hydrophobicity, and may be those hydrophobized by surface treatment.
  • fine particles in which hydrophilic oxide fine particles are subjected to a surface treatment with a silane coupling agent or the like to make the surface state hydrophobic can also be used.
  • the type of oxide is not limited as long as it has hydrophobicity.
  • at least one of silica (silicon dioxide), alumina, titania and the like can be used. These may be known or commercially available.
  • silica product names “AEROSIL R972”, “AEROSIL R972V”, “AEROSIL R972CF”, “AEROSIL R974”, “AEROSIL RX200”, “AEROSIL RY200” (above, manufactured by Nippon Aerosil Co., Ltd.), “AEROSIL R202” “AEROSIL R805", “AEROSIL R812”, “AEROSIL R812S” (above, manufactured by Evonik Degussa).
  • titania include “AEROXIDE TiO 2 T805” (manufactured by Evonik Degussa).
  • alumina include fine particles in which the product name “AEROXIDE Alu C” (manufactured by Evonik Degussa) is treated with a silane coupling agent to make the particle surface hydrophobic.
  • hydrophobic silica fine particles can be preferably used.
  • hydrophobic silica fine particles having a trimethylsilyl group on the surface are preferable in that better non-adhesiveness can be obtained.
  • commercially available products corresponding to this include “AEROSIL R812” and “AEROSIL R812S” (both manufactured by Evonik Degussa).
  • the adhesion amount (weight after drying) of the hydrophobic oxide fine particles to be adhered to the heat bonding layer is not limited, but is usually preferably 0.01 to 10 g / m 2, and preferably 0.2 to 1.5 g / m 2. 2 is more preferable, and 0.3 to 1 g / m 2 is most preferable.
  • the hydrophobic oxide fine particles attached to the heat bonding layer preferably form a porous layer having a three-dimensional network structure, and the thickness is preferably about 0.1 to 5 ⁇ m, and 0.2 to 2. More preferably, it is about 5 ⁇ m.
  • the hydrophobic oxide fine particles may be attached to the entire surface of the thermal adhesive layer (the entire surface opposite to the base material layer side), or a region where the thermal adhesive layer is thermally bonded (so-called adhesive margin). It may be attached to the area excluding.
  • adhesive margin a region where the thermal adhesive layer is thermally bonded
  • the hydrophobic oxide fine particles existing on the heat-bonded region are buried in the heat-bonding layer, so that the heat bonding is inhibited. In view of industrial production, it is desirable to adhere to the entire surface of the thermal adhesive layer.
  • an oxygen absorbent is contained in at least one of the base material layer and the thermal adhesive layer.
  • an inorganic oxygen absorbent mainly composed of at least one fine powder of iron, silicon, aluminum, etc .
  • organic oxygen absorption mainly composed of at least one kind such as ascorbic acid and unsaturated fatty acid.
  • Agents a main agent capable of irreversibly adsorbing oxygen is preferable.
  • the main component of the inorganic oxygen absorbent it is also possible to use a metal particle in which at least a part of the surface is coated with a resin component or an oxide.
  • a metal particle in which at least a part of the surface is coated with a resin component or an oxide.
  • aluminum-based particles aluminum generally has a high reaction rate with oxygen, so that the speed can be adjusted by coating a part or all of the surface of the aluminum-based particles with a resin component.
  • Commercially available aluminum-based particles (resin-coated Al-based particles) themselves coated with such a resin component can be used, and can also be prepared by known methods.
  • a known method can also be adopted when coating with an oxide (inorganic oxide). More specifically, in addition to the so-called sol-gel method, for example, the method described in Japanese Patent No.
  • the organosilicon compound is adjusted by adjusting the pH of a dispersion solution containing aluminum particles, an organosilicon compound and a hydrolysis catalyst). And the like, and a silica film is deposited on the surface of the aluminum particles to obtain oxide-coated aluminum particles).
  • the content of the oxygen absorbent can be appropriately set according to the desired oxygen absorption performance or the like, but is usually 0.3 to 30% by weight as the content of the main agent in the base material layer or the thermal adhesive layer. In particular, it is more preferably 1 to 20% by weight. By setting within the above range, excellent oxygen absorption performance can be obtained while maintaining desired thermal adhesiveness and the like.
  • the oxygen absorbent may be contained in at least one of the base material layer and the thermal adhesive layer, but is preferably contained in at least the thermal adhesive layer from the viewpoint of obtaining oxygen absorption performance more effectively.
  • the method for incorporating the oxygen absorbent in these layers is not limited as long as the oxygen absorbent can be uniformly dispersed.
  • the method of mixing an oxygen absorbent with the raw material for forming a base material layer or a heat bonding layer in advance is mentioned.
  • the mixing can be performed with a known mixer, stirrer, or the like. In this case, either dry mixing or wet mixing may be used.
  • an inorganic oxygen absorbent using aluminum-based particles (or resin-coated Al-based particles) as a main agent will be described together with preferred embodiments thereof.
  • the aluminum-based particles are not particularly limited as long as a predetermined oxygen absorption performance is exhibited.
  • various aluminum alloy particles can be used in addition to pure aluminum particles.
  • the average particle diameter of the aluminum-based particles is preferably about 1 to 100 ⁇ m. If the average particle size is less than 1 ⁇ m, it is unsuitable in terms of handleability. On the other hand, when it exceeds 100 ⁇ m, the specific surface area becomes small, and it is better to avoid it in terms of oxygen absorption capacity. Further, the shape of the aluminum-based particles is not limited, and may be any of spherical shape, spheroid shape, indefinite shape, teardrop shape, flat shape, and the like.
  • the resin component (polymer) coated on the surface of the aluminum-based particles is preferably a copolymer obtained by reacting at least two oligomers and monomers having at least one polymerizable double bond.
  • the amount of each oligomer or monomer used can be arbitrarily set.
  • the oligomer or monomer constituting the polymer is not particularly limited as long as it has at least one polymerizable double bond.
  • Examples of the monomer having at least one polymerizable double bond include unsaturated carboxylic acids (for example, acrylic acid, methacrylic acid, crotonic acid, itaconic acid, citraconic acid, maleic acid or maleic anhydride), and nitriles thereof (for example, acrylonitrile).
  • unsaturated carboxylic acids for example, acrylic acid, methacrylic acid, crotonic acid, itaconic acid, citraconic acid, maleic acid or maleic anhydride
  • nitriles thereof for example, acrylonitrile
  • methacrylonitrile or esters thereof (for example, methyl acrylate, ethyl acrylate, propyl acrylate, n-butyl acrylate, 2-ethylhexyl acrylate, lauryl acrylate, stearyl acrylate, hydroxyethyl acrylate, acrylic acid 2) -Hydroxypropyl, methoxyethyl acrylate, butoxyethyl acrylate, glycidyl acrylate, cyclohexyl acrylate, 1,6-hexanediol diacrylate, 1,4-butanediol diacrylate, trimethyl Propane triacrylate, tetramethylol methane tetraacrylate, tetramethylol methane triacrylate, methyl methacrylate, ethyl methacrylate, propyl methacrylate, n-butyl methacrylate, 2-ethylhexyl
  • a cyclic unsaturated compound for example, cyclohexene
  • an acyclic unsaturated compound for example, styrene, ⁇ -methylstyrene, vinyl toluene, divinylbenzene, cyclohexene vinyl monoxide, divinylbenzene monooxide, vinyl acetate, vinyl propionate, or Examples thereof include diallylbenzene).
  • the stability is further improved by the crosslinking action (it can be coated with a more stable film).
  • the use of monomers having at least two ionic double bonds is particularly preferred.
  • Examples of the oligomer having at least one polymerizable double bond include epoxidized 1,2-polybutadiene, acrylic-modified polyester, acrylic-modified polyether, acrylic-modified urethane, acrylic-modified epoxy, and acrylic-modified spirane (all having a polymerization degree of 2 About 20).
  • epoxidized 1,2-polybutadiene and acrylic modified polyester is preferable.
  • the degree of polymerization is preferably about 3 to 10.
  • the use of an oligomer makes the reaction efficiency very high because the polymerization reaction proceeds gradually, and is preferable to the case where the monomer is used alone.
  • the method for coating aluminum particles is not particularly limited. For example, 1) a method of impregnating or immersing aluminum-based particles in a solution or dispersion obtained by dissolving or dispersing a resin component in a solvent, and then drying to coat the resin component on the particle surface; 2) After preparing a solution or dispersion containing a monomer or oligomer capable of constituting a predetermined resin component and a mixed solution containing aluminum-based particles, the monomer or oligomer is polymerized to form particles of the polymer (resin component). For example, a method of coating the surface.
  • the above method 2) can be suitably employed.
  • this method for example, after preparing a dispersion liquid in which aluminum-based particles are dispersed in an organic solvent, at least two kinds of oligomers and monomers having at least one polymerizable double bond are dissolved in the dispersion liquid. Then, the copolymer can be coated on the particle surface by heating in the presence of a polymerization initiator.
  • organic solvent examples include aliphatic hydrocarbons such as hexane, heptane, octane, cyclohexane, and mineral spirits, aromatic hydrocarbons such as benzene, toluene, and xylene, chlorobenzene, trichlorobenzene, perchlorethylene, and trichlorobenzene.
  • Halogenated hydrocarbons such as methanol, ethanol, n-propartur, n-butanol and the like, ketones such as 2-propanone and 2-butanone, esters such as ethyl acetate and propyl acetate, tetrahydrofuran, diethyl Examples include ether and ethylpropyl ether.
  • polymerization initiator examples include known high-temperature or medium-temperature polymerization initiators such as di-t-butyl peroxide, acetyl peroxide, benzoyl peroxide, lauroyl peroxide, cumyl hydroperoxide, t-butyl hydroperoxide and the like.
  • An azo compound such as ⁇ , ⁇ '-azobisisobutyronitrile can be used.
  • the polymerization reaction temperature (heating temperature) is not limited, and can generally be appropriately set within a range of 60 to 200 ° C.
  • the polymerization reaction can be carried out in an inert gas atmosphere such as nitrogen, helium, argon or the like for the purpose of increasing the polymerization efficiency, if necessary.
  • an inert gas atmosphere such as nitrogen, helium, argon or the like for the purpose of increasing the polymerization efficiency, if necessary.
  • the resin-coated Al-based particles produced as described above may be recovered using a known solid-liquid separation method, purification method, or the like as necessary.
  • aluminum compound particles when aluminum-based particles are used as the main agent, it is preferable to use aluminum compound particles as the auxiliary agent.
  • the aluminum compound include at least one of alumina (aluminum oxide), aluminum hydroxide, aluminate, aluminosilicate, and the like. Among these, it is particularly preferable to use alumina. By using alumina particles, effective oxygen absorption performance can be expressed by its catalytic action.
  • the ratio between the aluminum-based particles and the auxiliary agent is not particularly limited, but is preferably 3: 7 to 7: 3 by mass ratio.
  • an electrolyte may be added to effectively promote the oxygen absorption action of the aluminum-based particles.
  • the electrolyte for example, at least one of calcium oxide, calcium hydroxide, magnesium oxide, magnesium hydroxide, sodium chloride, potassium chloride, calcium chloride, sodium carbonate, calcium carbonate and the like can be added in an appropriate amount as necessary.
  • hydrogen generation inhibitors such as silver oxide, titanium, zeolite, activated carbon, and sulfide are required in the oxygen absorbent. Accordingly, it can be added in the range of 1 ppm to 10% by mass.
  • the packaging material of the fourth invention is, for example, a method for manufacturing a packaging material comprising a laminate having at least a base material layer and a thermal adhesive layer, and has an average primary particle diameter on the surface of the thermal adhesive layer. It can be suitably obtained by a method for producing a packaging material including a step of attaching hydrophobic oxide fine particles of 3 to 100 nm (hereinafter also referred to as “attachment step”).
  • the production of the laminate itself can be performed according to a known method.
  • a thermal adhesive layer may be formed by the method described in (1).
  • the oxygen absorbent is the same as in 1. Those described in the above can be used. As described above, these may be contained in advance in the raw material for forming the base material layer and / or the thermal adhesive layer.
  • the method for carrying out the step of attaching the hydrophobic oxide fine particles is not particularly limited.
  • known methods such as roll coating, gravure coating, bar coating, doctor blade coating, brush coating, and powder electrostatic coating can be employed.
  • the adhesion step can be carried out by a method of drying after forming a coating film on the thermal adhesive layer using a dispersion in which hydrophobic oxide fine particles are dispersed in a solvent.
  • the solvent in this case is not limited, but water, for example, alcohol (ethanol), cyclohexane, toluene, acetone, IPA, propylene glycol, hexylene glycol, butyl diglycol, pentamethylene glycol, normal pentane, normal hexane, hexyl alcohol
  • An organic solvent such as can be selected as appropriate.
  • a very small amount of a dispersant, a colorant, an anti-settling agent, a viscosity modifier and the like can be used in combination.
  • the dispersion amount of the hydrophobic oxide fine particles in the solvent is usually about 10 to 100 g / L.
  • drying either natural drying or forced drying (heat drying) may be used, but industrially forced drying is preferable.
  • the drying temperature is not limited as long as it does not affect the thermal adhesive layer, but it is usually 150 ° C. or lower, preferably 80 to 120 ° C.
  • the laminate can be heated during and / or after the attaching step.
  • the adhesion (fixing force) of the hydrophobic oxide fine particles to the thermal adhesive layer can be further increased.
  • the heating temperature T in this case can be set as appropriate according to the type of the thermal adhesive layer and the like, and usually Tm ⁇ 50 ⁇ T ⁇ Tm + 50 with respect to the melting point Tm (melting start temperature) ° C. of the thermal adhesive layer used. It is preferable to be in the range.
  • the packaging material of the present invention may be subjected to embossing, half-cutting, notching, etc., as necessary, similarly to known packaging materials.
  • Examples 1-1 to 1-9 and Comparative Example 1-1 A sample was prepared by attaching hydrophobic oxide fine particles to a laminate having a thermoplastic resin layer. Specifically, each sample was produced as follows.
  • Example 1-1 Comparative Example 1-1
  • front printing and OP coating overprint coating
  • polyurethane-based dry laminate adhesive weight after drying: 3.5 g / m 2 ; abbreviated as D
  • AL vapor deposition PET polyethylene terephthalate film
  • a heat seal lacquer (main component: 160 parts by weight of polyester resin + 10 parts by weight of acrylic resin + solvent (mixed solvent of toluene + MEK)) 40 parts by weight of lacquer as a thermoplastic resin layer on the polyethylene terephthalate film of the bonding material And a weight of about 3 g / m 2 (drying condition is 150 ° C. ⁇ 10 seconds).
  • a laminate having a configuration of “OP / printing / paper / D / AL vapor deposition PET / lacquer” was obtained.
  • Examples 1-2 to 1-6 1-20 parts by weight (shown in the table) of acrylic resin beads (average particle size: 30 ⁇ m, manufactured by Sekisui Kasei Kogyo Co., Ltd.) was further added and mixed in the heat seal lacquer, and the weight after drying was 3 g / m 2 (drying conditions) Was 150 ° C. ⁇ 10 seconds), and a laminate was produced in the same manner as in Example 1-1.
  • Example 1-1 acrylic resin beads (average particle diameter: 15 ⁇ m, manufactured by Sekisui Chemical Co., Ltd.) were further added and mixed in the heat seal lacquer, and after drying, the weight was 3 g / m 2 (drying conditions were A laminate was produced in the same manner as in Example 1-1 except that coating was performed so that the temperature was 150 ° C. ⁇ 10 seconds.
  • Example 1-9 In Example 1-1 above, acrylic resin beads (average particle size: 8 ⁇ m, manufactured by Sekisui Chemical Co., Ltd.) were further added and mixed in the heat seal lacquer, and after drying, the weight was 3 g / m 2 (drying conditions were A laminate was produced in the same manner as in Example 1-1 except that coating was performed so that the temperature was 150 ° C. ⁇ 10 seconds.
  • Test Example 1-1 (opening strength) The opening strength of the samples obtained in each example and comparative example was examined.
  • a package was produced using a lid material cut out from each packaging material into a lid shape (rectangular length 62 mm ⁇ width 67 mm with a tab). Specifically, the lid material is heated on the flange of a flanged polystyrene container (formed with a flange width of 4 mm, a flange outer diameter of 60 mm ⁇ 65 mm ⁇ , a height of about 48 mm, and an internal volume of about 100 cm 3 ). Each package was produced by sealing.
  • the heat seal condition was a ring (concave) seal with a width of 2 mm in 1 second at a temperature of 210 ° C.
  • Test Example 1-3 Initial yogurt non-adhesiveness
  • a thermoplastic resin layer side of each laminate is used as a test surface, and this surface is used as an upper surface and fixed to a horizontal flat plate with a clip.
  • a commercially available yogurt product name “Delicious Caspian Sea” soft yogurt, Glico Dairy Co., Ltd., 1 drop: About 0.4 g
  • the results are shown in Tables 1 and 2.
  • Test Example 1-5 (vibration test) Each package was prepared in the same manner as in Test Example 1-4, and each of these packages was reciprocated up and down for 20 minutes and 30 Hz (30 times per minute using a BF-30U manufactured by IDEX Co., Ltd.). After vibrating under the conditions of (vibration), 2.2 mm amplitude (vertical direction) and acceleration of about 1 G, the lid material was opened with fingers, and the weight of yogurt adhering to each lid material was measured. Less than 0.5 g / cup was accepted and 0.5 g / cup or more was rejected. The results are shown in Tables 1 and 2.
  • Test Example 1-6 (Abrasion resistance test) Using the surface of the thermoplastic resin layer side of each laminate as the test surface, using the Gakushin type abrasion resistance tester (JIS K 5701-1), the number of reciprocations is 100 times, the load is 200 g, and the mating material is chrome-plated surface. A wear resistance test was performed. The same yogurt non-adhesion test as in Test Example 3 was performed after the abrasion resistance test. The yogurt droplets were judged to pass, and the case where the yogurt droplets tumbled without falling even when tilted by 90 degrees was rejected. The results are shown in Tables 1 and 2.
  • Test Example 1-7 (contact angle) The contact angle measuring device (solid-liquid interface analyzer “Drop Master 300” manufactured by Kyowa Interface Science Co., Ltd.) was used to measure the contact angle of pure water using the thermoplastic resin layer side of each laminate as a test surface. The results are shown in Tables 1 and 2.
  • the conventional product does not exhibit non-adhesiveness (yogurt repellent property) at all, and the contact angle of pure water is 85 degrees. It can be seen that the invention 1 (Example) exhibits high non-adhesiveness. It can be seen that in terms of unsealing strength and sealing performance (sealing strength), good performance with no practical impediment is shown. Moreover, it can be seen from the results of the contact angle that the laminate and the packaging material of the first invention exhibit high water repellency.
  • the outermost surface of the laminate of the first invention and the packaging material on the side of the thermoplastic resin layer (the surface on which the hydrophobic oxide fine particles are adhered) has a contact angle of pure water of 150 degrees or more. Excellent contents non-adhesiveness not seen.
  • inorganic particles or organic particles are contained as filler particles in the thermoplastic resin layer, the wear resistance is remarkably improved, and the falling off of hydrophobic oxide fine particles can be effectively suppressed or prevented. It can be seen that continuous non-adhesiveness can be obtained.
  • Example 2-1 A coating solution was prepared by dispersing 50 g of hydrophobic oxide fine particles (product name “AEROSIL R812S” manufactured by Evonik Degussa, BET specific surface area: 220 m 2 / g, primary particle average diameter: 7 nm) in 1000 mL of ethanol.
  • a commercially available polypropylene container flange width of about 3 mm, flange outer diameter of about 70 mm, height of about 110 mm, and internal volume of about 200 cc
  • a sample (container) was obtained by evaporating ethanol with a warm air of 25 ° C. ⁇ 30 seconds (drying treatment).
  • Example 2-2 A coating solution was prepared by dispersing 50 g of hydrophobic oxide fine particles (product name “AEROSIL R812S” manufactured by Evonik Degussa, BET specific surface area: 220 m 2 / g, primary particle average diameter: 7 nm) in 1000 mL of ethanol.
  • hydrophobic oxide fine particles product name “AEROSIL R812S” manufactured by Evonik Degussa, BET specific surface area: 220 m 2 / g, primary particle average diameter: 7 nm
  • a commercially available flanged paper / polyethylene container with a flange width of 3 mm, a flange outer diameter of 70 mm, a height of about 55 mm, an internal volume of about 130 cm 3 and a thickness of about 300 ⁇ m coated with 100 ⁇ m of polyethylene Soaked inside the container).
  • a sample (container) was obtained by evaporating ethanol with 25 ° C. warm air.
  • Example 2-3 A coating solution was prepared by dispersing 50 g of hydrophobic oxide fine particles (product name “AEROSIL R812S” manufactured by Evonik Degussa, BET specific surface area: 220 m 2 / g, primary particle average diameter: 7 nm) in 1000 mL of ethanol.
  • a commercially available polystyrene container (flange width: about 3 mm, flange outer diameter: about 88 mm, height: about 63 mm, internal volume: about 176 cc) was immersed in this coating solution.
  • a sample (container) was obtained by evaporating ethanol with 25 ° C. warm air.
  • Comparative Example 2-1 The commercially available polypropylene container used in Example 2-1 was directly used as a sample.
  • Comparative Example 2-2 The commercially available paper / polyethylene container used in Example 2-2 was directly used as a sample.
  • Comparative Example 2-3 The commercially available polystyrene container used in Example 2-3 was used as a sample as it was.
  • Test Example 2-1 ⁇ Observation of porous layer made of hydrophobic oxide fine particles>
  • the structure of the layer made of hydrophobic oxide fine particles was observed by FE-SEM.
  • a porous layer having a three-dimensional network structure formed by hydrophobic oxide fine particles was observed.
  • ⁇ Contact angle> The bottom inner surface of each container of Examples 2-1 to 2-3 was used as a test piece (test surface), and a contact angle measuring device (solid-liquid interface analyzing device “Drop” When the contact angle of pure water was measured using “Master 300” (manufactured by Kyowa Interface Science Co., Ltd.), all were 150 ° or more.
  • the container of the second invention has a contact angle of pure water of 150 degrees or more, and has excellent content non-adhesiveness not found in conventional containers.
  • Example 2-4 A sample (container) was obtained in the same manner as in Example 2-1, except that the drying treatment after the immersion treatment was hot air of 140 ° C. ⁇ 30 seconds.
  • Example 2-5 A sample (container) was obtained in the same manner as in Example 2-1, except that the drying treatment after the immersion treatment was hot air of 160 ° C. ⁇ 30 seconds.
  • Test Example 2-2 ⁇ Sustainability improvement test> The weight (A) of each container of Example 2-1, Example 2-4, and Example 2-5 was measured in advance, and then commercially available yogurt (product name “Delicious Caspian Sea” soft yogurt, Glico Dairy Co., Ltd.) was filled with 100 g each, and the coating liquid used in Example 1 was dried and applied to the surface of the heat-bonding layer of the laminate lid member made of 40 ⁇ m thick aluminum foil and the heat-bonding layer by 0.5 g / m 2 by weight. The lid material was thermally bonded to the opening end face (flange, etc.) of each container to obtain a package.
  • commercially available yogurt product name “Delicious Caspian Sea” soft yogurt, Glico Dairy Co., Ltd.
  • Each of these packages is subjected to a vibration tester (BF-30U manufactured by IDEX Co., Ltd.) for 1 minute, 30 Hz (30 vertical vibrations per minute), 2.2 mm amplitude (vertical direction), and acceleration of about 40 G.
  • a vibration tester BF-30U manufactured by IDEX Co., Ltd.
  • the lid material is unsealed (no yogurt adhered to the lid material), each container is turned upside down for 10 seconds (the opening is in the direction of the ground), and the contents are discharged.
  • the amount of yogurt adhered was determined by determining BA.
  • Example 3-1 to Example 3-9 and Comparative Example 3-1 to Comparative Example 3-3 Samples were prepared in which hydrophobic oxide fine particles were adhered to a laminate having each type of thermal bonding layer as shown in Table 5. Specifically, each sample was produced as follows.
  • ⁇ Hot melt type> Using a polyurethane dry laminate adhesive (weight after drying: 3.5 g / m 2 ; abbreviated as D) on one side of a 15 ⁇ m thick aluminum foil (1N30, soft foil; abbreviated as AL), back printing (abbreviated as printing)
  • the substrate was bonded to the printed surface of a 12 ⁇ m thick polyethylene terephthalate film (abbreviated as PET).
  • the aluminum surface of this base material layer was subjected to an anchor coat (main component: polyester resin; abbreviated as AC) treatment, and a low density polyethylene resin (abbreviated as LDPE) was extruded and laminated to a film thickness of 20 ⁇ m after drying. .
  • an anchor coat main component: polyester resin; abbreviated as AC
  • LDPE low density polyethylene resin
  • a gravure hot so that the hot melt agent (35 parts by weight of wax, 35 parts by weight of rosin and 30 parts by weight of ethylene-vinyl acetate copolymer; abbreviated as HM) is dried on low density polyethylene to a weight of 20 g / m 2. Melt coated. As a result, a laminate having a configuration of “PET / printing / D / AL / AC / LDPE / HM” was obtained.
  • the hot melt agent 35 parts by weight of wax, 35 parts by weight of rosin and 30 parts by weight of ethylene-vinyl acetate copolymer; abbreviated as HM
  • HM ethylene-vinyl acetate copolymer
  • ⁇ Sealant type> Using a polyurethane dry laminate adhesive (weight after drying: 3.5 g / m 2 ; abbreviated as D) on one side of a 15 ⁇ m thick aluminum foil (1N30, soft foil; abbreviated as AL), back printing (abbreviated as printing)
  • the substrate was bonded to the printed surface of a 12 ⁇ m thick polyethylene terephthalate film (abbreviated as PET).
  • the aluminum surface of this base material layer is subjected to anchor coating (main component: polyester resin; abbreviated as AC), and then a sealant having a thickness of 30 ⁇ m using a low density polyethylene resin (film thickness after drying: 20 ⁇ m; abbreviated as LDPE).
  • a film (main component: metallocene-catalyzed polyethylene; abbreviated as sealant) was extruded and laminated. As a result, a laminate having a configuration of “PET / printing / D / AL / AC / LDPE / sealant” was obtained.
  • ⁇ Lacquer type> Using a polyurethane dry laminate adhesive (weight after drying: 3.5 g / m 2 ; abbreviated as D) on one side of a 15 ⁇ m thick aluminum foil (1N30, soft foil; abbreviated as AL), back printing (abbreviated as printing) The substrate was bonded to the printed surface of a 12 ⁇ m thick polyethylene terephthalate film (abbreviated as PET). A separately prepared polyethylene terephthalate film (abbreviated as PET) having a thickness of 12 ⁇ m was bonded to the aluminum surface of the base material layer using a polyurethane dry laminate adhesive (weight after drying: 3.5 g / m 2 ; abbreviated as D).
  • PET polyethylene terephthalate film
  • a heat seal lacquer (main component: acrylic resin + polyester resin: abbreviated as lacquer) was applied after drying to a weight of 5 g / m 2 .
  • lacquer main component: acrylic resin + polyester resin: abbreviated as lacquer
  • Test Example 3-1 (seal strength) The seal strength of the samples obtained in each example and comparative example was examined.
  • Example 3-1 to Example 3-6 and Comparative Example 3-1 to Comparative Example 3-2 Packaging using a lid material cut out from each packaging material into a lid material shape (circular with a diameter of 75 mm with a tab) The body was made. Specifically, a flanged paper / polyethylene container (with a flange width of 3 mm, a flange outer diameter of 70 mm, a height of about 55 mm, an internal volume of about 130 cm 3 and a thickness of about 300 ⁇ m coated with 100 ⁇ m of polyethylene on the inside of the container. Each of the packaging bodies was produced by heat-sealing the lid material on the flanges of the molded product. The heat sealing conditions were a temperature of 160 ° C.
  • Example 3-7 to Example 3-9 and Comparative Example 3-3 A package is produced using a lid material cut out from each packaging material into a lid shape (rectangular length 62 mm ⁇ width 67 mm). did. Specifically, the lid material is heated on the flange of a flanged polystyrene container (formed with a flange width of 4 mm, a flange outer diameter of 60 mm ⁇ 65 mm ⁇ , a height of about 48 mm, and an internal volume of about 100 cm 3 ). Each package was produced by sealing. The heat seal conditions were a ring (concave) seal with a width of 2 mm in 1 second at a temperature of 210 ° C. and a pressure of 2 kg / cm 2 .
  • Test Example 3-3 (Contact angle) The contact angle measuring device (solid-liquid interface analyzer “Drop” The contact angle of pure water was measured using Master 300 (manufactured by Kyowa Interface Science Co., Ltd.). The results are shown in Table 5.
  • Test Example 3-4 (Drop angle) Use the heat-adhesive layer side of each packaging material as the test surface and fix it on a horizontal flat plate with this surface as the top surface.
  • a commercially available yogurt product name “Delicious Caspian Sea” soft yogurt, 1 drop manufactured by Glico Dairy Co., Ltd .: approx. 0.4 g
  • the results are shown in Table 5.
  • Comparative Example 3-1 to Comparative Example 3-3 the liquid flowed down without falling down even at 90 degrees.
  • Test Example 3-5 Transport test 100 g (flange paper / polyethylene container) and 85 g (flange polystyrene product) of commercially available yogurt (product name “Delicious Caspian Sea” soft yogurt, manufactured by Glico Dairies Co., Ltd.) in the package used in Test Example 3-1. Each container was filled, and the lid was heat sealed in the same manner as in Test Example 3-1. After the package filled with yogurt was transported by a long distance truck at a distance of 1500 km, the lid was opened with fingers, and the state of the surface of each lid on the side of the thermal adhesive layer was visually observed. The results are shown in Table 5.
  • the evaluation is “ ⁇ ” when there is no yogurt adhering, and “ ⁇ ” when there is some ring-like adhering in the periphery (adhesive area ratio 20% or less), and the adhering is slightly noticeable (adhesive area) The ratio was more than 20% and less than 90%), and the case where adhesion was found on almost the entire surface (adhesion area ratio of 90% or more) was marked with “X”. In this case, “ ⁇ ” and “ ⁇ ” are evaluated as good.
  • the non-adhesive property is not exhibited at all in the conventional product (comparative example), whereas the high non-adhesive property is exhibited in the third invention (example). Recognize.
  • the present invention shows good performance that is practically satisfactory in terms of seal strength and sealability (puncture value).
  • the packaging material of this invention shows high non-adhesiveness also from the result of a contact angle and a fall angle.
  • the outermost surface of the packaging material of the third invention on the thermal adhesive layer side has a contact angle of pure water of 150 degrees or more, which is superior to conventional packaging materials. Non-adhesive content.
  • the main component of the aluminum oxygen absorbent is pure aluminum powder (atomized powder manufactured by Toyo Aluminum Co., Ltd., average particle size: 8 ⁇ m, BET specific surface area 0.7 m 2. / G) and resin-coated aluminum powder (resin coating amount 3 g / 100 g aluminum content) whose resin was coated on the surface of the aluminum powder.
  • the method for coating the surface of the aluminum powder with a resin is as follows.
  • a fourth flask having a volume of 3 liters was epoxidized 1,2-polybutadiene: 1.5 g, trimethylolpropane triacrylate: 3.5 g, acrylic acid: 0.3 g, Divinylbenzene: 1.4 g, mineral spirit: 1440 g, untreated aluminum powder: 200 g were charged and sufficiently stirred and mixed while introducing nitrogen gas.
  • the temperature inside the system was raised to 80 ° C., 1.1 g of ⁇ , ⁇ ′-azobisisobutyronitrile (AIBN) was added, and the mixture was reacted at 80 ° C. for 6 hours while stirring was continued. After completion of the reaction, the mixed solution was filtered and dried at 140 ° C.
  • AIBN 1.1 g of ⁇ , ⁇ ′-azobisisobutyronitrile
  • Example 4-2 and Example 4-3 thermal adhesive was obtained.
  • each of the thermal adhesives prepared in (1-1) and (1-2) was applied to a weight of 3 g / m 2 after drying.
  • a thermal adhesive containing no oxygen absorbent main component: 160 parts by weight of a polyester resin + 10 parts by weight of an acrylic resin + 40 parts by weight of a solvent (a mixed solvent of toluene + MEK)
  • main component 160 parts by weight of a polyester resin + 10 parts by weight of an acrylic resin + 40 parts by weight of a solvent (a mixed solvent of toluene + MEK)
  • a packaging material was prepared in the same manner as described above except that.
  • hydrophobic oxide fine particles 5 g of hydrophobic oxide fine particles (product name “AEROSIL R812S” manufactured by Evonik Degussa, BET specific surface area: 220 m 2 / g, primary particle average diameter: 7 nm) are dispersed in 100 mL of ethanol.
  • a coating solution was prepared. This coating solution is applied to the surface of the thermal adhesive layer of the packaging material prepared in (2) above by a bar coating method so that the weight after drying is 0.5 g / m 2, and then at 100 ° C. for about 10 seconds. The sample was obtained by drying and evaporating the ethanol. In addition, the hydrophobic oxide fine particles are not attached to the sample of Comparative Example 4-1.
  • Non-adhesive and scattering properties of yogurt A package is prepared in the same manner as in (5) above except that the content is a commercially available yogurt (product name “Delicious Caspian Sea” soft yogurt, manufactured by Glico Dairy Co., Ltd.) And after leaving in a refrigerator set at 5 ° C. for 72 hours, tilt the container upside down (the container lid side is the ground direction) and then return to the original state (the container lid side is the top direction) This was repeated three times and the lid was opened. For the evaluation of non-adhesiveness, the state of the lid was visually observed, and the case where yogurt was adhered was defined as “failed” and the state where yogurt was not adhered was defined as “accepted”. In addition, as evaluation of the scattering property, when the lid was opened, the yogurt liquid droplets that had jumped out of the container were determined to be “failed”, and those that did not fly were determined to be “passed”. The results are shown in Table 6.
  • the contact angle measurement device solid-liquid interface analyzer “Drop Master 300” manufactured by Kyowa Interface Science Co., Ltd. was used to measure the contact angle of pure water using the thermal adhesive layer side of each packaging material as the test surface. . The results are shown in Table 6.
  • the outermost surface on the thermal adhesive layer side of the packaging material of the fourth invention (the surface on which hydrophobic oxide fine particles are adhered) has a contact angle of pure water of 150 degrees or more, which is superior to conventional packaging materials.
  • Non-adhesive content since the lid material of the present invention contains an oxygen absorbent in at least one of the base material layer and the thermal adhesive layer, in addition to being effective for long-term storage by preventing spoilage and deterioration, the pressure in the package is reduced. It can be seen that the reduction is effective in preventing the contents from being scattered and ejected.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Wrappers (AREA)
  • Laminated Bodies (AREA)

Abstract

本発明は、優れた撥水性及び非付着性を持続できる積層体、包装材料及び容器を提供する。最外層の少なくとも一部に一次粒子平均径3~100nmの疎水性酸化物微粒子が付着している非付着性積層体に係る。

Description

積層体及び容器
 本発明は、積層体及び容器に関する。特に、下記に示す技術に関する。
 本発明は、積層体及び包装材料に関する。特に、テーブルクロス、ナプキン、エプロン、テーブルカバー、床マット、壁面クロス、壁紙、ラベル、剥離紙、タグ、椅子カバー、防水シート、傘、スキーウェア、建築材、ベッドカバー、靴表面材、靴カバー、防水着、撥水フィルム、撥水シート等に用いる積層体ならびに食品、飲料品、医薬品、化粧品、化学品等を包装するために用いる包装材料に関する。
 さらに、本発明は、非付着性容器及びその製造方法に関する。特に、内容物の非付着性に優れた容器とその製造方法に関する。より具体的には、食品、飲料品、医薬品、化粧品、化学品等を収容するための非付着性容器とその製造方法に関する。
 さらに、本発明は、包装材料及びその製造方法に関する。より具体的には、食品、飲料品、医薬品、化粧品、化学品等を包装するために用いる包装材料とその製造方法に関する。特に、内容物の非付着性に優れた包装材料に関する。
 さらに、本発明は、包装材料に関する。より具体的には、食品、飲料品、医薬品、化粧品、化学品等を包装するために用いる包装材料に関する。特に、内容物の非付着性と酸素吸収性に優れた包装材料に関する。
 従来より多種多様の包装材料及び容器が知られているが、その内容物も多岐にわたる。例えば、ゼリー菓子、プリン、ヨーグルト、液体洗剤、練り歯磨き、カレールー、シロップ、ワセリン、洗顔クリーム、洗顔ムース等のように、食品、飲料品、医薬品、化粧品、化学品等がある。また、内容物の性状も、例えば固体、半固体、液体、粘性体、ゲル状物等のように様々なものがある。
 これらの内容物を包装するための包装材料においては、密封性が要求されるほかに、内容物、包装形態、用途等に応じて熱接着性、遮光性、耐熱性、耐久性等が要求される。ところが、これらの特性を満たしている包装材料であっても、次のような問題がある。すなわち、内容物が包装材料に付着するという問題である。内容物が包装材料に付着すれば、内容物をすべて使い切ることが困難になり、それだけ無駄が生じることになる。また、内容物をすべて使い切るためには包装材料に付着した内容物を別途に回収しなければならず、手間がかかる。このため、包装材料では、上記のような密封性等のほか、内容物が包装材料に付着しにくい性質(非付着性)を備えていることが必要である。
 これに対し、接着層を介して一体化された基材層とヒートシール層とを備えた蓋材において、ヒートシール層が、付着防止効果を有するグリセリン酸エステル、ポリグリセリン脂肪酸エステル、ペンタエリスリトール脂肪酸エステル、ポリオキシプロピレン・ポリオキシエチレンブロックポリマー、ソルビタン脂肪酸エステル、ポリオキシエチレンアルキルエーテル、脂肪酸アミド等を含むポリオレフィンからなり、その厚さが10μmよりも厚く、接着層と該ヒートシール層との間にポリオレフィンからなる中間層が設けられていることを特徴とする充填物付着防止蓋材が提案されている(特許文献1)。
 また、少なくとも300℃の耐熱性があり、顕著な抗付着性と1~1000nmの厚さを有する容易にきれいにされる表面コーティングを備えた装置において、前記表面コーティングは、金属酸化物網状組織と疎水性物質を含有し、前記疎水性物質は前記表面コーティングの前記厚さに対して均一に分布され、前記表面コーティングは疎水性であり、90°より大きい水に対する接触角を有することを特徴とする容易にきれいにされる表面コーティングを備えた装置が開示されている(特許文献2)。 
特開2002-37310号 特開2004-130785号
 しかし、特許文献1、特許文献2等の材料は、付着防止効果が十分なものとは言えない。この点において、実用化を進める上ではさらなる改善が必要である。
 従って、本発明の主な目的は、従来技術よりも優れた非付着性を持続的に発揮できる積層体、包装材料及び容器を提供することにある。
 本発明者は、従来技術の問題点に鑑みて鋭意研究を重ねた結果、特定の構造を有する積層体ないし包装材料を採用することにより上記目的を達成できることを見出し、本発明を完成するに至った。
 すなわち、本発明は、下記の積層体、包装材料及び容器に係る。
1. 最外面の少なくとも一部に一次粒子平均径3~100nmの疎水性酸化物微粒子が付着している非付着性積層体。
2. 熱可塑性樹脂を含有する層の表面の少なくとも一部に一次粒子平均径3~100nmの疎水性酸化物微粒子が付着している積層体。
3. 有機成分及び無機成分の少なくとも1種を含む充填粒子が前記熱可塑性樹脂を含有する層に含まれている、前記項2記載の積層体。
4. 疎水性酸化物微粒子の付着量が0.01~10g/mである、前記項2に記載の積層体。
5. 疎水性酸化物微粒子が三次元網目状構造からなる多孔質層を形成している、前記項2に記載の積層体。
6. 疎水性酸化物微粒子のBET法による比表面積が50~300m/gである、前記項2に記載の積層体。
7. 疎水性酸化物微粒子が疎水性シリカである、前記項2に記載の積層体。
8. 疎水性シリカがその表面にトリメチルシリル基を有する、前記項7に記載の積層体。
9. 前記充填粒子の平均粒子径が0.5~100μmである、前記項3に記載の積層体。
10. 前記項1~9のいずれかに記載の積層体を含む包装材料。
11. 内容物を収容するための容器であって、容器が少なくとも内容物と接触する面の一部又は全部に一次粒子平均径3~100nmの疎水性酸化物微粒子が付着している非付着性容器。
12. 疎水性酸化物微粒子の付着量が0.01~10g/mである、前記項11に記載の非付着性容器。
13. 疎水性酸化物微粒子が三次元網目状構造からなる多孔質層を形成している、前記項11に記載の非付着性容器。
14. 疎水性酸化物微粒子のBET法による比表面積が50~300m/gである、前記項11に記載の非付着性容器。
15. 疎水性酸化物微粒子が疎水性シリカである、前記項11に記載の非付着性容器。
16. 疎水性シリカがその表面にトリメチルシリル基を有する、前記項15に記載の非付着性容器。
17. 前記項11に記載の非付着性容器に内容物が充填されており、蓋材により当該内容物が密封されてなる製品。
18. 内容物を収容するための容器を製造する方法であって、容器が少なくとも内容物と接触する面の一部又は全部に一次粒子平均径3~100nmの疎水性酸化物微粒子を付着させる工程を含む非付着性容器の製造方法。
19. 内容物を収容するための容器を製造する方法であって、容器が少なくとも内容物と接触する面の一部又は全部に一次粒子平均径3~100nmの疎水性酸化物微粒子を付着させ、熱処理する工程を含む非付着性容器の製造方法。
20. 少なくとも基材層及び熱接着層を有する積層体からなる包装材料であって、前記熱接着層が包装材料の一方の面の最外層として積層されており、前記熱接着層が他の層と隣接していない最外面に一次粒子平均径3~100nmの疎水性酸化物微粒子が付着している包装材料。
21. 疎水性酸化物微粒子の付着量が0.01~10g/mである、前記項20に記載の包装材料。
22. 疎水性酸化物微粒子が三次元網目状構造からなる多孔質層を形成している、前記項20に記載の包装材料。
23. 疎水性酸化物微粒子のBET法による比表面積が50~300m/gである、前記項20に記載の包装材料。
24. 疎水性酸化物微粒子が疎水性シリカである、前記項20に記載の包装材料。
25. 疎水性シリカがその表面にトリメチルシリル基を有する、前記項24に記載の包装材料。
26. 熱接着層側の最外面に内容物が接触可能な状態で当該内容物が包装材料に包装されてなる製品のために用いられる、前記項20に記載の包装材料。
27. 少なくとも基材層及び熱接着層を有する積層体からなる包装材料を製造する方法であって、当該熱接着層の表面に一次粒子平均径3~100nmの疎水性酸化物微粒子を付着させる工程を含む包装材料の製造方法。
28. 前記工程中及び/又は前記工程後に積層体を加熱する工程をさらに含む、前記項27に記載の製造方法。
29. 少なくとも基材層及び熱接着層を有する積層体からなる包装材料であって、前記熱接着層が包装材料の一方の面の最外層として積層されており、前記熱接着層が他の層と隣接していない最外面に一次粒子平均径3~100nmの疎水性酸化物微粒子が付着し、疎水性酸化物微粒子が三次元網目状構造からなる多孔質層を形成している蓋材。
30. 少なくとも基材層及び熱接着層を有する積層体からなる包装材料であって、前記熱接着層が包装材料の一方の面の最外層として積層されており、前記熱接着層が他の層と隣接していない最外面に一次粒子平均径3~100nmの疎水性酸化物微粒子が付着し、疎水性酸化物微粒子が三次元網目状構造からなる多孔質層を形成している、袋体、成形容器、包装シート又はチューブとして用いる包装材料。
31. 少なくとも基材層及び熱接着層を有する積層体からなる包装材料であって、前記熱接着層が包装材料の一方の面の最外層として積層されており、前記基材層及び熱接着層の少なくとも一方に酸素吸収剤を含み、前記熱接着層が他の層と隣接していない最外面に一次粒子平均径3~100nmの疎水性酸化物微粒子が付着している包装材料。
32. 疎水性酸化物微粒子の付着量が0.01~10g/mである、前記項31に記載の包装材料。
33. 疎水性酸化物微粒子が三次元網目状構造からなる多孔質層を形成している、前記項31に記載の包装材料。
34. 疎水性酸化物微粒子のBET法による比表面積が50~300m/gである、前記項31に記載の包装材料。
35. 疎水性酸化物微粒子が疎水性シリカである、前記項31に記載の包装材料。
36. 疎水性シリカがその表面にトリメチルシリル基を有する、前記項35に記載の包装材料。
37. 前記酸素吸収剤が、粒子表面の少なくとも一部に樹脂成分及び無機酸化物の少なくとも1種が被覆された金属粒子を含む、前記項31に記載の包装材料。
38. 熱接着層側の最外面に内容物が接触可能な状態で当該内容物が包装材料に包装されてなる製品のために用いられる、前記項31に記載の包装材料。
<第1発明の効果>
 第1発明の積層体及び包装材料は、良好な撥水性及び非付着性(又は防汚性)を発揮することができる。特に、熱可塑性樹脂を含む層(以下「熱可塑性樹脂層」ともいう。)に有機成分及び無機成分の少なくとも1種を含む充填粒子が含有されている場合は、疎水性酸化物微粒子の脱落を効果的に抑制ないしは防止することができる結果、良好な撥水性及び非付着性をより効果的に持続させることが可能となる。
 また、第1発明の積層体又は包装材料において、熱可塑性樹脂層を熱接着層として利用する場合は、良好な熱接着性を維持しながらも、優れた非付着性を持続的に発揮することができる。すなわち、熱接着層の種類、厚み等の制限を受けることなく、熱接着性を実用上阻害せずに、高い非付着性を得ることができる。より具体的には、熱接着時において、熱接着される領域上に存在する疎水性酸化物微粒子は当該熱接着層中に埋め込まれるので熱接着を阻害しない一方、熱接着される領域外に存在する疎水性酸化物微粒子はそのまま熱接着層上に保持されているのでその高い非付着性を発揮することができる。
 このような積層体は、例えばテーブルクロス、ナプキン、エプロン、テーブルカバー、床マット、壁面クロス、壁紙、ラベル、剥離紙、タグ、椅子カバー、防水シート、傘、スキーウェア、建築材、ベッドカバー、靴表面材、靴カバー、防水着、撥水フィルム、撥水シート等に好適に用いることができる。また、この積層体は、そのまま又は加工することにより、食品、飲料品、医薬品、化粧品、化学品等を包装するための包装材料としても好適に用いることができる。
<第2発明の効果>
 第2発明の非付着性容器は、フッ素のような懸念物質を含むことなく、優れた非付着性を発揮することができる。これにより、内容物を容器からほぼすべて取り出すことができるので、容器内壁に付着する分のロスを抑制ないしは防止することができる。
 また、第2発明の製造方法によれば、容器が少なくとも内容物と接触する面の一部に疎水性酸化物微粒子を付与するだけで良いので、複雑な工程を経る必要がなく、生産効率、コスト等の面で有利である。また、容器の材質の制約もなく、例えばガラス容器、陶器、紙容器、プラスチック容器、金属容器、木質容器等のいずれの材質の容器にも適用できる。しかも、既存の容器にも事後的に非付着性を付与することができる。さらに、疎水性酸化物微粒子を付与後に熱処理することにより、さらに非付着性を持続させることができる。
<第3発明の効果>
 第3発明の包装材料は、良好な熱接着性を維持しながらも、優れた非付着性を発揮することができる。すなわち、熱接着層の種類、厚み等の制限を受けることなく、熱接着性を実用上阻害せずに、高い非付着性を得ることができる。より具体的には、熱接着時において、熱接着される領域上に存在する疎水性酸化物微粒子は当該熱接着層中に埋め込まれるので熱接着を阻害しない一方、熱接着される領域外に存在する疎水性酸化物微粒子はそのまま熱接着層上に保持されているのでその高い非付着性を発揮することができる。
 また、第3発明の製造方法によれば、熱接着層に疎水性酸化物微粒子を付与するだけで良いので、熱接着層を構成する原材料への添加剤の配合の制御をする必要がなく、よってその配合率の制御等が不要となる分、生産効率、コスト等の面で有利である。しかも、前記のように、熱接着層に接着しろを考慮せずに全面に疎水性酸化物微粒子を付着させるだけで熱接着を行うことができるという点でも有利である。
 このような包装材料は、蓋材として使用できるほか、ピロー袋、ガセット袋、自立袋、三方シール袋、四方シール袋等の袋体、成形容器、包装シート、チューブ等の様々な用途に効果的に利用することができる。
<第4発明の効果>
 第4発明の包装材料は、良好な熱接着性を維持しながらも、優れた非付着性及び酸素吸収性を発揮することができる。すなわち、熱接着層の種類、厚み等の制限を受けることなく、熱接着性を実用上阻害せずに、高い非付着性を得ることができる。より具体的には、熱接着時において、熱接着される領域上に存在する疎水性酸化物微粒子は当該熱接着層中に埋め込まれるので熱接着を阻害しない一方、熱接着される領域外に存在する疎水性酸化物微粒子はそのまま熱接着層上に保持されているのでその高い非付着性を発揮することができる。
 また、前記基材層及び熱接着層の少なくとも一方に酸素吸収剤が含まれているため、酸素吸収剤の粒子が内容物の接触等による脱落を回避しつつ、所望の酸素吸収性能を発揮することができる。特に、熱接着層上に形成されている疎水性酸化物微粒子からなる層は多孔質状に形成されている場合(すなわち、多孔質層を形成している場合)は、高い非付着性とともに、より高い酸素吸収性能を発揮することができる。この場合は、包装体内に残存する酸素又は内容物から発生する酸素が前記多孔質層を透過して熱接着剤層等の中に含まれる酸素吸収剤に、より確実に到達することができる。その結果として、酸素は酸素吸収剤によりいっそう効果的に吸収・除去されるとともに、多孔質層の形成により高い非付着性を発揮することができる。
 このような包装材料は、蓋材として使用できるほか、ピロー袋、ガセット袋、自立袋、三方シール袋、四方シール袋等の袋体、成形容器、包装シート、チューブ等の様々な用途に効果的に利用することができる。
第1発明の積層体の一例の断面構造の模式図である。 第1発明の積層体を容器の蓋材として用いて作製された包装体の断面構造の模式図である。 実施例1-4の包装材料の一部の断面観察写真を示す。図3中、「Lotus表面」は「疎水性酸化物微粒子の三次元網目状構造からなる多孔質層の表面」を示す。 第2発明の非付着性容器の切断面構造を示す模式図である。 第2発明の非付着性容器に内容物を入れ、蓋材を熱接着した状態を示す断面構造の模式図である。 第3発明の包装材料の断面構造の模式図である。 第3発明の包装材料を容器の蓋材として用いて作製された包装体の断面構造の模式図である。 実施例で得られた包装材料における断面構造をFE(Field Emission)-SEMで観察した結果を示す図である。 第4発明の一実施形態に係る包装材料の断面構造の模式図である。 第4発明の包装材料を容器の蓋材として用いて作製された包装体の断面構造の模式図である。
 第1発明~第4発明は、最外面の少なくとも一部に一次粒子平均径3~100nmの疎水性酸化物微粒子が付着している非付着性積層体を基本構成とするものである。好ましくは、疎水性酸化物微粒子が三次元網目状構造からなる多孔質層を形成していることを特徴とする。これにより、撥水性ないしは非付着性をより効果的に発揮することができる。以下、第1発明~第4発明について個別に説明する。
<第1発明>
1.積層体・包装材料
 第1発明の積層体は、熱可塑性樹脂を含有する層(以下「熱可塑性樹脂層」ともいう。)の表面の少なくとも一部に一次粒子平均径3~100nmの疎水性酸化物微粒子が付着していることを特徴とする。
 図1に第1発明の積層体の一例の断面構造の模式図を示す。図1の積層体では、基材層1に充填粒子6を含んだ熱可塑性樹脂層2の表面に一次粒子平均径3~100nmの疎水性酸化物微粒子3が付着している。熱可塑性樹脂層2は包装材料(積層体)の一方の最外層に積層されている。最外層である熱可塑性樹脂層2において、他の層(図1では基材層)と隣接していない側の面(最外面)に一次粒子平均径3~100nmの疎水性酸化物微粒子3が付着している。疎水性酸化物微粒子3は熱可塑性樹脂層2に付着して固定されている。すなわち、疎水性酸化物微粒子と内容物とが接触しても疎水性酸化物微粒子が脱落しないように付着している。図1において、疎水性酸化物微粒子3は、一次粒子が含まれていても良いが、その凝集体(二次粒子)が多く含まれていることが望ましい。特に、疎水性酸化物微粒子が三次元網目状構造からなる多孔質層をなしていることがより好ましい。すなわち、熱可塑性樹脂層2の上には疎水性酸化物微粒子により形成された三次元網目状構造からなる多孔質層が積層されていることが好ましい。
 第1発明においては、熱可塑性樹脂層中に充填粒子を含有させる場合は、熱可塑性樹脂層の表面(疎水性酸化物微粒子が付着する面)がその断面において凹凸状になり、その凹部に疎水性酸化物微粒子が凝集状態で入り込むことにより、非付着性を長期間維持すると考えられる。すなわち、内容物のほか、工程中の機器又は装置との接触が生じても、当該凹部に入り込んだ疎水性酸化物微粒子は当該凹部に入り込んで固定された状態を維持することによって疎水性酸化物微粒子の脱落を効果的に抑制ないしは防止できる結果、優れた非付着性を持続的に発揮することができる。換言すれば、良好な非付着性を比較的長期にわたり発揮することができる。
 図2には、第1発明の積層体を容器の蓋材として用いて作製された包装体の断面構造の模式図を示す。なお、図2では、疎水性酸化物微粒子3及び充填粒子6の表記は省略されている。容器4に内容物5が充填され、その開口部と積層体の熱可塑性樹脂層2とが接するような状態で密封される。つまり、熱可塑性樹脂層2に付着している疎水性酸化物微粒子が内容物5と接触可能な状態で本発明の積層体(包装材料)が使用されることになる。このような場合であっても、熱可塑性樹脂層2は疎水性酸化物微粒子によって保護され、優れた非付着性を有するので、たとえ内容物が熱可塑性樹脂層2近傍に接触しても(接近しても)、内容物の熱可塑性樹脂層への付着が疎水性酸化物微粒子(又は疎水性酸化物微粒子からなる多孔質層)によって遮られ、なおかつ、はじかれる。このため、内容物が熱可塑性樹脂層近傍に付着したままの状態とならずに、疎水性酸化物微粒子(又は疎水性酸化物微粒子からなる多孔質層)にはじかれて内容物が容器内に戻る。なお、容器4の材質としては、金属、合成樹脂、ガラス、紙、それらの複合材等から適宜選択でき、その材質に応じて熱可塑性樹脂層の種類、成分等を適宜調整することができる。
 熱可塑性樹脂(層)
 熱可塑性樹脂は、公知の熱可塑性樹脂を採用することができる。例えば、アクリル樹脂、ポリスチレン、ABS樹脂、塩化ビニル樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリアミド系樹脂、ポリカーボネート、ポリアセタール、フッ素系樹脂、シリコン樹脂、ポリエステル系樹脂等のほか、これらのブレンド樹脂、これらを構成するモノマーの組合せを含む共重合体、変性樹脂等を用いることができる。
 熱可塑性樹脂層の厚みは特に限定的ではないが、生産性、コスト等の観点より0.01μm~5mm程度とすることが好ましく、0.01μm~2mm程度とすることがさらに好ましい。また、熱可塑性樹脂層を熱接着層として機能させる場合は、熱接着性を考慮し、1~150μmの厚みとするのが好ましい。特に、本発明の包装材料では、熱接着するに際して、熱接着される領域上に存在する疎水性酸化物微粒子が熱可塑性樹脂層中に埋め込まれ、熱可塑性樹脂層が最表面となることにより熱接着を行うことができる。このため、上記厚みの範囲内において、疎水性酸化物微粒子を熱可塑性樹脂層にできるだけ多く埋め込むことができる厚みに設定することが望ましい。
 熱可塑性樹脂層中における熱可塑性樹脂の含有量は、熱可塑性樹脂の種類、充填粒子及びその他の添加剤の使用の有無等によって異なるが、通常は20~100重量%とし、特に30~99重量%とすることが好ましく、さらに好ましくは50~99重量%とする。
 本発明では、必要に応じて、熱可塑性樹脂(層)を補強したり、他の特性(耐水分透過性、耐酸素透過性、遮光性、断熱性、耐衝撃性等)を付与する目的で、熱可塑性樹脂(層)に他の層(基材層と称す)を積層することもできる。この場合、通常は、図1に示すように基材層/熱可塑性樹脂層/疎水性酸化物微粒子を順次積層した3層構造とすれば良い。
 基材層を用いる場合、基材層としては、公知の材料を採用することができる。例えば、紙、合成紙、樹脂フィルム、蒸着層付き樹脂フィルム、合成樹脂板、アルミニウム箔、その他の金属箔、金属板、織布、不織布、皮、合成皮革、木材、ガラス板等の単体又はこれらの複合材料・積層材料を好適に用いることができる。
 基材層には、公知の包装材料、建築材料、服飾材、日用品等で採用されている各層が任意の位置に積層されていても良い。例えば、印刷層、印刷保護層(いわゆるOP層)、着色層、接着剤層、接着強化層、プライマーコート層、アンカーコート層、防滑剤層、滑剤層、防曇剤層等が挙げられる。
 基材層の積層方法、基材層と熱可塑性樹脂層との積層方法も限定的でなく、例えばドライラミネート法、押し出しラミネート法、ウエットラミネート法、ヒートラミネート法等の公知の方法を採用することができる。
 熱可塑性樹脂層を熱接着層として機能させる場合は、公知の熱接着性材料を採用することができる。例えば、公知のシーラントフィルムのほか、ラッカータイプ接着剤、イージーピール接着剤、ホットメルト接着剤等の接着剤により形成される層を採用することができる。すなわち、本明細書においては、熱可塑性樹脂には、樹脂成分を含有する公知の熱接着剤も含む。第1発明では、この中でも、ラッカータイプ接着剤又はホットメルト接着剤を採用するのが好ましく、特にラッカータイプ接着剤により形成される熱接着層を好適に採用することができる。ホットメルト層を形成する場合には、ホットメルト接着剤を溶融状態で塗布した後、冷却固化するまでに疎水性酸化物微粒子を付与すれば熱接着層に疎水性酸化物微粒子をそのまま付着させることができるため、第1発明の積層体(又は包装材料)の連続的な生産が容易となる。
 充填粒子
 第1発明では、必要に応じて熱可塑性樹脂層に充填粒子を含有させることもできる。熱可塑性樹脂層中に充填粒子を分散させることにより、より優れた耐摩耗性等を熱可塑性樹脂層に付与することができる。
 充填粒子としては、有機成分及び無機成分の少なくとも1種を含む充填粒子を採用することができる。
 無機成分としては、例えば1)アルミニウム、銅、鉄、チタン、銀、カルシウム等の金属又はこれらを含む合金又は金属間化合物、2)酸化珪素、酸化アルミニウム、酸化ジルコニウム、酸化チタン、酸化鉄等の酸化物、3)リン酸カルシウム、ステアリン酸カルシウム等の無機酸塩又は有機酸塩、4)ガラス、5)窒化アルミニウム、窒化硼素、炭化珪素、窒化珪素等のセラミック等を好適に用いることができる。
 有機成分としては、例えばアクリル系樹脂、ウレタン系樹脂、メラミン系樹脂、アミノ樹脂、エポキシ樹脂、ポリエチレン系樹脂、ポリスチレン系樹脂、ポリプロピレン系樹脂、ポリエステル系樹脂、セルロース系樹脂、塩化ビニル系樹脂、ポリビニルアルコール、エチレン-酢酸ビニル共重合体、エチレン-ビニルアルコール共重合体、エチレン-アクリル酸エチル共重合体、ポリアクリロニトリル、ポリアミド等の有機高分子成分(又は樹脂成分)を好適に用いることができる。
 第1発明の充填粒子は、無機成分からなる粒子あるいは有機成分からなる粒子のほか、無機成分及び有機成分の両者を含む粒子を用いることができる。この中でも特に、アクリル系樹脂粒子、親水性シリカ粒子、リン酸カルシウム粒子、炭粉、焼成カルシウム粒子、未焼成カルシウム粒子、ステアリン酸カルシウム粒子等の少なくとも1種を用いることがより好ましい。
 充填粒子の平均粒子径(レーザー回折式粒度分布計による)は0.5~100μm程度が好ましく、1~50μmがさらに好ましく、5~30μmが最も好ましい。0.5μm未満では取扱い性、前述の凹凸形成等の点で不向きである。他方、100μmを超える場合は、充填粒子の脱落、分散性等の点で不向きである。
 充填粒子の形状は限定的でなく、例えば球状、回転楕円体状、不定形状、涙滴状、扁平状、中空状、多孔質状等のいずれであっても良い。
 熱可塑性樹脂層中における充填粒子の含有量は、熱可塑性樹脂又は充填粒子の種類、所望の物性等に応じて適宜変更できるが、一般的には固形分重量基準で1~80重量%が好ましく、3~50重量%がさらに好ましい。
 充填粒子を含有させる方法は、特に限定されないが、一般的には熱可塑性樹脂層を形成するための原料(熱可塑性樹脂を含む組成物)に充填粒子を配合する方法等が挙げられる。混合する方法は、乾式混合又は湿式混合のいずれであっても良い。一般的に熱可塑性樹脂層の主成分は1)熱可塑性樹脂又はそれを構成するモノマーもしくはオリゴマー、2)溶剤、3)必要に応じて架橋剤等からなるため、それらの混合物中に充填粒子を添加混合すれば良い。
 疎水性酸化物微粒子
 熱可塑性樹脂層に付着する疎水性酸化物微粒子は、一次粒子平均径が通常3~100nmであり、好ましくは5~50nmであり、より好ましくは5~20nmである。一次粒子平均径を上記範囲とすることにより、疎水性酸化物微粒子が適度な凝集状態となり、その凝集体中にある空隙に空気等の気体を保持することができる結果、優れた非付着性を得ることができる。すなわち、この凝集状態は、熱可塑性樹脂層に付着した後も維持されるので、優れた非付着性を発揮することができる。本発明において、疎水性酸化物微粒子は、熱可塑性樹脂(層)の片面あるいは両面に付着させることができる。
 なお、第1発明において、一次粒子平均径の測定は、走査型電子顕微鏡(FE-SEM)で実施することができ、走査型電子顕微鏡の分解能が低い場合には透過型電子顕微鏡等の他の電子顕微鏡を併用して実施しても良い。具体的には、粒子形状が球状の場合はその直径、非球状の場合はその最長径と最短径との平均値を直径とみなし、走査型電子顕微鏡等による観察により任意に選んだ20個分の粒子の直径の平均を一次粒子平均径とする。
 疎水性酸化物微粒子の比表面積(BET法)は特に制限されないが、通常50~300m/gとし、特に100~300m/gとすることが好ましい。
 疎水性酸化物微粒子としては、疎水性を有するものであれば特に限定されず、表面処理により疎水化されたものであっても良い。例えば、親水性酸化物微粒子をシランカップリング剤等で表面処理を施し、表面状態を疎水性とした微粒子を用いることもできる。酸化物の種類も、疎水性を有するものであれば限定されない。例えばシリカ(二酸化ケイ素)、アルミナ、チタニア等の少なくとも1種を用いることができる。これらは公知又は市販のものを採用することができる。例えば、シリカとしては、製品名「AEROSIL R972」、「AEROSIL R972V」、「AEROSIL R972CF」、「AEROSIL R974」、「AEROSIL RX200」、「AEROSIL RY200」(以上、日本アエロジル株式会社製)、「AEROSIL R202」、「AEROSIL R805」、「AEROSIL R812」、「AEROSIL R812S」、(以上、エボニック デグサ社製)等が挙げられる。チタニアとしては、製品名「AEROXIDE TiO T805」(エボニック デグサ社製)等が例示できる。アルミナとしては、製品名「AEROXIDE Alu C」(エボニック デグサ社製)等をシランカップリング剤で処理して粒子表面を疎水性とした微粒子が例示できる。
 この中でも、疎水性シリカ微粒子を好適に用いることができる。とりわけ、より優れた非付着性が得られるという点において、表面にトリメチルシリル基を有する疎水性シリカ微粒子が好ましい。これに対応する市販品としては、例えば前記「AEROSIL R812」、「AEROSIL R812S」(いずれもエボニック デグサ社製)等が挙げられる。
 熱可塑性樹脂層に付着させる疎水性酸化物微粒子の付着量(乾燥後重量)は限定的ではないが、通常0.01~10g/mとするのが好ましく、0.2~1.5g/mとするのがより好ましく、0.2~1g/mとするのが最も好ましい。上記範囲内に設定することによって、より優れた非付着性が長期にわたって得ることができる上、疎水性酸化物微粒子の脱落抑制、コスト等の点でもいっそう有利となる。熱可塑性樹脂層に付着した疎水性酸化物微粒子は、三次元網目状構造を有する多孔質層を形成していることが好ましく、その厚みは0.1~5μm程度が好ましく、0.2~2.5μm程度がさらに好ましい。このようなポーラスな層状態で付着することにより、当該層に空気を多く含むことができ、より優れた非付着性を発揮することができる。
 また、疎水性酸化物微粒子は、熱可塑性樹脂層の全面(基材層側と反対側の面の全面)に付着していても良いし、熱可塑性樹脂層が熱接着される領域(いわゆる接着しろ)を除いた領域に付着していても良い。本発明では、熱可塑性樹脂層の全面に付着している場合でも、熱接着される領域上に存在する疎水性酸化物微粒子のほとんど又は全部が当該熱可塑性樹脂層中に埋没するので熱接着が阻害されることはなく、工業的生産上でも熱可塑性樹脂層の全面に付着している方が望ましい。
 包装材料及びその他の用途
 第1発明の積層体は、そのままで又は加工を施した上で包装材料をはじめ、他の様々な用途に用いることができる。他の用途としては、非付着性、防汚性、撥水性等が要求される分野であれば限定的でなく、例えばテーブルクロス、ナプキン、エプロン、テーブルカバー、床マット、壁面クロス、壁紙、ラベル、剥離紙、タグ、椅子カバー、防水シート、傘、スキーウェア、建築材、ベッドカバー、靴表面材、靴カバー、防水着、撥水フィルム、撥水シート等を挙げることができる。
2.積層体・包装材料の製造方法
 第1発明の積層体(包装材料)は、例えば、少なくとも熱可塑性樹脂層を有する積層体ないし包装材料を製造する方法であって、当該熱可塑性樹脂層表面に一次粒子平均径3~100nmの疎水性酸化物微粒子を付着させる工程(以下「付着工程」ともいう。)を含む製造方法によって好適に得ることができる。
 熱可塑性樹脂層は、フィルム状あるいはシート状のものであればそのまま用いることができる。必要に応じて公知の基材層を公知の方法に従って積層することができる。例えば、単層基材又はドライラミネート法、押し出しラミネート法、ウエットラミネート法、ヒートラミネート法等により作製された積層材料に対して、前記1.で説明した方法により熱可塑性樹脂層を形成すれば良い。充填粒子を用いる場合は、充填粒子は前述のとおり、熱可塑性樹脂層を形成するための原料に予め含有させれば良い。
 疎水性酸化物微粒子の付着工程を実施する方法は特に限定されない。例えば、ロールコーティング、グラビアコーティング、バーコート、ドクターブレードコーティング、刷毛塗り、粉体静電塗装法等の公知の方法を採用することができる。ロールコーティング等を採用する場合は、疎水性酸化物微粒子を溶媒に分散させてなる分散体を用いて熱可塑性樹脂層上に塗膜を形成した後に乾燥する方法により付着工程を実施することができる。この場合の溶媒は限定されず、水のほか、例えばアルコール(エタノール)、シクロヘキサン、トルエン、アセトン、IPA、プロピレングリコール、ヘキシレングリコール、ブチルジグリコール、ペンタメチレングリコール、ノルマルペンタン、ノルマルヘキサン、ヘキシルアルコール等の有機溶剤を適宜選択することができる。この際、微量の分散剤、着色剤、沈降防止剤、粘度調整剤等を併用することもできる。溶媒に対する疎水性酸化物微粒子の分散量は通常10~100g/L程度とすれば良い。乾燥する場合は、自然乾燥又は強制乾燥(加熱乾燥)のいずれであっても良いが、工業的には強制乾燥するのが良い。乾燥温度は、熱可塑性樹脂層に影響を与えない範囲であれば制限されないが、通常は150℃以下、特に80~120℃とすることが好ましい。
 第1発明の製造方法では、前記の付着工程中及び/又は付着工程後に積層体を加熱することもできる。積層体を加熱することにより熱可塑性樹脂層に対する疎水性酸化物微粒子の付着力(固定力)をより高めることができる。この場合の加熱温度Tは、熱可塑性樹脂層の種類等に応じて適宜設定することができ、通常は用いる熱可塑性樹脂層の融点Tm(溶融開始温度)℃に対してTm-50≦T≦Tm+50の範囲とすることが好ましい。
 このようにして得られた積層体は、そのままで又は加工を施して包装材料として用いることができる。加工方法は、公知の包装材料の場合と同様の方法を採用することができる。例えば、エンボス加工、ハーフカット加工、ノッチ加工等を施しても差し支えない。
<第2発明>
1.非付着性容器
 第2発明の非付着性容器は、内容物を収容するための容器であって、容器が少なくとも内容物と接触する面の一部又は全部に一次粒子平均径3~100nmの疎水性酸化物微粒子が付着していることを特徴とする。
 まず、第2発明の容器本体は、内容物を収容できるものであれば良く、公知のもの又は市販品を使用することができる。その材質も限定されず、例えばガラス容器、陶器、紙容器、プラスチック容器、金属容器、木質容器のほか、それら2種以上の複合材料からなる容器等のいずれの材質であっても良い。また、容器本体の形態は、例えば皿状、トレー状、袋状、コップ状、ボトル状、なべ状、箱状、樽状、略円柱状、包装紙(包装用葉)等の公知の形態であっても良い。また、容器本体は、成形体からなる容器を好適に用いることができる。例えば、紙、プラスチック又は金属の成形体からなる容器を挙げることができる。また、容器本体としては、剛性材料からなる層を含む積層材料から構成されてなる容器も例示することができる。また、第2発明では、非付着性容器として、好ましくは「少なくとも基材層及び熱接着層を有する積層体からなる包装材料であって、前記熱接着層が包装材料の一方の面の最外層として積層されており、前記熱接着層が他の層と隣接していない最外面に一次粒子平均径3~100nmの疎水性酸化物微粒子が付着している包装材料」を除く。
 第2発明の非付着性容器は、容器が少なくとも内容物と接触する面の一部又は全部に一次粒子平均径3~100nmの疎水性酸化物微粒子が付着していることを特徴とする。この場合、容器本体が内容物と接触していない面に当該疎水性酸化物微粒子が付着していても良く、また容器の全面(内容物と接触しない面も含む全面)に付着していても差し支えない。また、内容物と接触する面の一部に付着していても良いし、当該面の全部(全面)に付着していても良い。
 第2発明の非付着性容器に付着している疎水性酸化物微粒子は肉眼では殆ど認識できず、従って透明ないしは半透明である。このため、容器本体として透明のガラス容器や透明に近いプラスチック容器を採用した場合は、疎水性酸化物微粒子の付着後であってもその透明性を維持することができる。その他にも、容器内面に絵柄、模様等がある場合は、疎水性酸化物微粒子(又はその層)を介してその絵柄、模様等を視認することができる。
 第2発明においても、第1発明における充填粒子を含有する熱可塑性樹脂層を含む積層体を採用することができる。すなわち、充填粒子を含有する熱可塑性樹脂層を含む積層体から構成される容器であり、容器が少なくとも内容物と接触する面の一部又は全部に前記疎水性酸化物微粒子が付着していることを特徴とする発明も包含する。
 このような容器は、例えば疎水性酸化物微粒子を付着させる部分に予め充填粒子を含んだ熱可塑性樹脂を用い、例えばインモールド成形、塗布、溶射、スプレー、転写、嵌め込み、貼り合せ等の方法により熱可塑性樹脂層を形成し、その形成した部分に疎水性酸化物微粒子を付着させることにより、第1発明と同様に良好な撥水性及び非付着性をより効果的に持続させることができる。熱可塑性樹脂及び充填粒子は第1発明で説明した内容と同様の構成とすることができる。つまり、第1発明で述べている熱可塑性樹脂(層)及び充填粒子と同様のものを採用することができ、好ましくは第1発明で述べている好ましい範囲内のものを好適に用いることができる。
 なお、充填粒子を含んだ熱可塑性樹脂層を形成する領域は特に限定されない。例えば、1)疎水性酸化物微粒子を付着させる領域のみ、2)疎水性酸化物微粒子が付着しない部分も含む領域、3)容器の全面(内面全面)等のいずれであっても良い。
 図4に第2発明の非付着性容器の切断面構造の模式図を示す。図4の非付着性容器では、容器本体4の内容物を収容する側の面(底面及び側面の一部)に一次粒子平均径3~100nmの疎水性酸化物微粒子3が付着している。疎水性酸化物微粒子3は容器本体4に付着して固定されている。すなわち、疎水性酸化物微粒子と内容物とが接触しても疎水性酸化物微粒子が脱落しない程度に付着している。図4において、疎水性酸化物微粒子3は、一次粒子が含まれていても良いが、その凝集体(二次粒子)が多く含まれていることが望ましい。特に、疎水性酸化物微粒子が三次元網目状構造からなる多孔質層をなしていることがより好ましい。すなわち、容器本体4の少なくとも一部表面上には疎水性酸化物微粒子により形成された三次元網目状構造からなる多孔質層が積層されていることが好ましい。
 図5には、第2発明の非付着性容器に内容物を充填し、蓋材を熱接着することにより内容物を密封した製品の断面構造の模式図を示す。なお、図5は疎水性酸化物微粒子3は省略して記載している。容器4に内容物5が充填され、その開口部と蓋の熱接着層2とが接するような状態で密封される。この場合、容器の開口部表面に疎水性酸化物微粒子が付着している場合であっても、熱接着するに際して、熱接着される領域上に存在する疎水性酸化物微粒子が熱接着層中に埋め込まれ、熱接着層と容器本体4が直接接触することになり、熱接着を行うことができる。また、容器本体4の材質が熱可塑性のプラスチックの場合は、例えば同種のプラスチックからなる蓋と溶着可能である。
 なお、蓋材の材質は特に制限されるものではなく、公知の材料又は積層材料を採用することができ、容器本体4の材質や要求特性に応じて適宜選択すれば良い。例えば、紙、合成紙、樹脂フィルム、蒸着層付き樹脂フィルム、アルミニウム箔等の単体又はこれらの複合材料・積層材料を好適に用いることができる。
 これらの材料には、公知の蓋材で採用されている各層が任意の位置に積層されていても良い。例えば、印刷層、印刷保護層(いわゆるOP層)、着色層、熱接着層、接着剤層、接着強化層、プライマーコート層、アンカーコート層、防滑剤層、滑剤層、防曇剤層等が挙げられる。
 なお、図5では、熱接着性の蓋材を用いているが、これに限定されることはなく、他の公知のタイプのものも採用することができる。例えば、嵌合蓋、ネジ蓋、ラップフィルム、熱収縮性フィルム、かしめ蓋、キャップ等を適宜選択することができる。勿論これらの蓋材の内面及び/又は外面に疎水性酸化物微粒子を付着させることもできる。
 容器本体4に付着する疎水性酸化物微粒子は、一次粒子平均径が通常3~100nmであり、好ましくは5~50nmであり、より好ましくは5~20nmである。一次粒子平均径を上記範囲とすることにより、疎水性酸化物微粒子が適度な凝集状態となり、その凝集体中にある空隙に空気等の気体を保持することができる結果、優れた非付着性を得ることができる。すなわち、この凝集状態は、容器本体に付着した後も維持されるので、優れた非付着性を発揮することができる。
 なお、第2発明において、一次粒子平均径の測定は、走査型電子顕微鏡(FE-SEM)で実施することができ、走査型電子顕微鏡の分解能が低い場合には透過型電子顕微鏡等の他の電子顕微鏡を併用して実施しても良い。具体的には、粒子形状が球状の場合はその直径、非球状の場合はその最長径と最短径との平均値を直径とみなし、走査型電子顕微鏡等による観察により任意に選んだ20個分の粒子の直径の平均を一次粒子平均径とする。
 疎水性酸化物微粒子の比表面積(BET法)は特に制限されないが、通常50~300m/gとし、特に100~300m/gとすることが好ましい。
 疎水性酸化物微粒子としては、疎水性を有するものであれば特に限定されず、表面処理により疎水化されたものであっても良い。例えば、親水性酸化物微粒子をシランカップリング剤等で表面処理を施し、表面状態を疎水性とした微粒子を用いることもできる。酸化物の種類も、疎水性を有するものであれば限定されない。例えばシリカ(二酸化ケイ素)、アルミナ、チタニア等の少なくとも1種を用いることができる。これらは公知又は市販のものを採用することができる。例えば、シリカとしては、製品名「AEROSIL R972」、「AEROSIL R972V」、「AEROSIL R972CF」、「AEROSIL R974」、「AEROSIL RX200」、「AEROSIL RY200」(以上、日本アエロジル株式会社製)、「AEROSIL R202」、「AEROSIL R805」、「AEROSIL R812」、「AEROSIL R812S」、(以上、エボニック デグサ社製)等が挙げられる。チタニアとしては、製品名「AEROXIDE TiO T805」(エボニック デグサ社製)等が例示できる。アルミナとしては、製品名「AEROXIDE Alu C」(エボニック デグサ社製)等をシランカップリング剤で処理して粒子表面を疎水性とした微粒子が例示できる。
 この中でも、疎水性シリカ微粒子を好適に用いることができる。とりわけ、より優れた非付着性が得られるという点において、表面にトリメチルシリル基を有する疎水性シリカ微粒子が好ましい。これに対応する市販品としては、例えば前記「AEROSIL R812」、「AEROSIL R812S」(いずれもエボニック デグサ社製)等が挙げられる。
 容器本体に付着させる疎水性酸化物微粒子の付着量(乾燥後重量)は限定的ではないが、通常0.01~10g/mとするのが好ましく、0.2~1.5g/mとするのがより好ましく、0.3~1g/mとするのが最も好ましい。上記範囲内に設定することによって、より優れた非付着性が長期にわたって得ることができる上、疎水性酸化物微粒子の脱落抑制、コスト等の点でもいっそう有利となる。容器本体4に付着した疎水性酸化物微粒子は、三次元網目状構造を有する多孔質層を形成していることが好ましく、その厚みは0.1~5μm程度が好ましく、0.2~2.5μm程度がさらに好ましい。このようなポーラスな層状態で付着することにより、当該層に空気を多く含むことができ、より優れた非付着性を発揮することができる。
2.非付着性容器の製造方法
 第2発明の非付着性容器は、容器本体の少なくとも内容物と接触する面の一部又は全部に一次粒子平均径3~100nmの疎水性酸化物微粒子を付着させる工程を含む製造方法によって好適に得ることができる。
 容器本体は前述の通り公知の容器を採用できる。付着工程を実施する方法は特に限定されない。例えば、浸漬、刷毛塗り、ロールコート、粉体静電塗装法等の公知の方法を採用することができる。浸漬、刷毛塗り又はロールコートの場合は、疎水性酸化物微粒子を溶媒に分散させてなる分散体を用いて容器本体上に塗膜を形成した後に乾燥する方法により付着工程を実施することができる。この場合の溶媒は限定されず、水のほか、例えばアルコール(エタノール)、シクロヘキサン、トルエン、アセトン、IPA、プロピレングリコール、ヘキシレングリコール、ブチルジグリコール、ペンタメチレングリコール、ノルマルペンタン、ノルマルヘキサン、ヘキシルアルコール等の有機溶剤を適宜選択することができる。この際、微量の分散剤、着色剤、沈降防止剤、粘度調整剤等を併用することもできる。溶媒に対する疎水性酸化物微粒子の分散量は通常10~100g/L程度とすれば良い。乾燥する場合は、自然乾燥又は強制乾燥(加熱乾燥)のいずれであっても良いが、工業的には強制乾燥するのが良い。乾燥温度は、容器の材質にもより、特に制限されないが、通常は250℃以下、特に120~200℃とすることが、非付着性を持続させる点で好ましい。
 第2発明の製造方法では、前記の付着工程中及び/又は付着工程後に容器本体を加熱することもできる。容器本体を加熱することにより容器本体に対する疎水性酸化物微粒子の付着力(固定力)をより高めることができる。この場合の加熱温度は、特に制限されるものではないが、通常は120~200℃程度とすれば良い。
また、第2発明の製造方法では、疎水性酸化物微粒子を付着させる工程の前に、充填粒子を含んだ熱可塑性樹脂層を形成する工程を含んでも良い。例えば、非付着性容器において疎水性酸化物微粒子を付着させる部分に、充填粒子を含んだ熱可塑性樹脂組成物を用い、予めインモールド成形、塗布、溶射、スプレー、転写、嵌め込み、貼り合せ等の方法により、熱可塑性樹脂層を形成する工程を含んでも良い。上記付着工程により、その形成した部分に疎水性酸化物微粒子を付着させることができる。これにより、良好な撥水性及び非付着性をより効果的に持続できる非付着性容器を提供することができる。熱可塑性樹脂及び充填粒子は上記第1発明で述べた内容と同様とすることができる。要は、第1発明で述べている熱可塑性樹脂及び充填粒子と同一のものを採用することができ、好ましくは、第1発明で述べている好ましい範囲内のものを好適に用いることができる。
なお、充填粒子を含んだ熱可塑性樹脂層を形成する場所は限定的でない。例えば、疎水性酸化物微粒子を付着させる部分のみであっても良いし、疎水性酸化物微粒子が付着しない部分も含んでも良いし、容器の全面であっても良い。
<第3発明>
1.包装材料
 第3発明の包装材料は、少なくとも基材層及び熱接着層を有する積層体からなる包装材料であって、前記熱接着層が包装材料の一方の面の最外層として積層されており、前記熱接着層が他の層と隣接していない最外面に一次粒子平均径3~100nmの疎水性酸化物微粒子が付着していることを特徴とする。
 図6に第3発明の包装材料の断面構造の模式図を示す。図6の包装材料では、基材層1に熱接着層2が積層された積層体からなる。熱接着層2は包装材料(積層体)の一方の最外層に積層されている。最外層である熱接着層2において、他の層(図6では基材層)と隣接していない側の面(最外面)に一次粒子平均径3~100nmの疎水性酸化物微粒子3が付着している。疎水性酸化物微粒子3は熱接着層2に付着して固定されている。すなわち、疎水性酸化物微粒子と内容物とが接触しても疎水性酸化物微粒子が脱落しない程度に付着している。図6において、疎水性酸化物微粒子3は、一次粒子が含まれていても良いが、その凝集体(二次粒子)が多く含まれていることが望ましい。特に、疎水性酸化物微粒子が三次元網目状構造からなる多孔質層をなしていることがより好ましい。すなわち、熱接着層2の上には疎水性酸化物微粒子により形成された三次元網目状構造からなる多孔質層が積層されていることが好ましい。
 図7には、第3発明の包装材料を容器の蓋材として用いて作製された包装体の断面構造の模式図を示す。なお、図7では、疎水性酸化物微粒子3の表記は省略されている。容器4に内容物5が充填され、その開口部と包装材料の熱接着層2とが接するような状態で密封される。つまり、熱接着層2に付着している疎水性酸化物微粒子が内容物5と接触可能な状態で第3発明の包装材料が使用されることになる。このような場合であっても、熱接着層2は疎水性酸化物微粒子によって保護され、優れた非付着性を有するので、たとえ内容物が熱接着層2近傍に接触しても(接近しても)、内容物の熱接着層への付着が疎水性酸化物微粒子(又は疎水性酸化物微粒子からなる多孔質層)によって遮られ、なおかつ、はじかれる。このため、内容物が熱接着層近傍に付着したままの状態とならずに、疎水性酸化物微粒子(又は疎水性酸化物微粒子からなる多孔質層)にはじかれて内容物が容器に戻る。なお、容器4の材質としては、金属、合成樹脂、ガラス、紙、それらの複合材等から適宜選択でき、その材質に応じて熱接着層の種類や成分を適宜調整することができる。このように、第3発明の包装材料は、熱接着層側の最外面(特に疎水性酸化物微粒子(又は疎水性酸化物微粒子からなる多孔質層))に内容物が接触可能な状態で当該内容物が包装材料に包装されてなる製品のために好適に用いることができる。
 基材層としては、公知の材料又は積層材料を採用することができる。例えば、紙、合成紙、樹脂フィルム、蒸着層付き樹脂フィルム、アルミニウム箔等の単体又はこれらの複合材料・積層材料を好適に用いることができる。
 これらの材料には、公知の包装材料で採用されている各層が任意の位置に積層されていても良い。例えば、印刷層、印刷保護層(いわゆるOP層)、着色層、接着剤層、接着強化層、プライマーコート層、アンカーコート層、防滑剤層、滑剤層、防曇剤層等が挙げられる。
 積層材料を用いる場合の積層方法も限定的でなく、例えばドライラミネート法、押し出しラミネート法、ウエットラミネート法、ヒートラミネート法等の公知の方法を採用することができる。
 基材層の厚みは限定されないが、包装材料としての強度、柔軟性、コスト等の観点より通常15~500μmの範囲内で適宜設定すれば良い。
 熱接着層としては、公知の材料を採用することができる。例えば、公知のシーラントフィルムのほか、ラッカータイプ接着剤、イージーピール接着剤、ホットメルト接着剤等の接着剤により形成される層を採用することができる。本発明では、この中でも、ラッカータイプ接着剤又はホットメルト接着剤を採用するのが好ましく、特にホットメルト接着剤により形成される熱接着層(ホットメルト層)を好適に採用することができる。ホットメルト層を形成する場合には、ホットメルト接着剤を溶融状態で塗布した後、冷却固化するまでに疎水性酸化物微粒子を付与すれば熱接着層に疎水性酸化物微粒子をそのまま付着させることができるため、第3発明の包装材料の連続的な生産が容易となる。
 熱接着層の厚みは特に限定されないが、密封性、生産性、コスト等の観点より通常2~150μm程度とすることが好ましい。特に、本発明の包装材料では、熱接着するに際して、熱接着される領域上に存在する疎水性酸化物微粒子が熱接着層中に埋め込まれ、熱接着層が最表面となることにより熱接着を行うことができる。このため、上記厚みの範囲内において、疎水性酸化物微粒子を熱接着層にできるだけ多く埋め込むことができる厚みに設定することが望ましい。
 熱接着層に付着する疎水性酸化物微粒子は、一次粒子平均径が通常3~100nmであり、好ましくは5~50nmであり、より好ましくは5~20nmである。一次粒子平均径を上記範囲とすることにより、疎水性酸化物微粒子が適度な凝集状態となり、その凝集体中にある空隙に空気等の気体を保持することができる結果、優れた非付着性を得ることができる。すなわち、この凝集状態は、熱接着層に付着した後も維持されるので、優れた非付着性を発揮することができる。
 なお、第3発明において、一次粒子平均径の測定は、走査型電子顕微鏡(FE-SEM)で実施することができ、走査型電子顕微鏡の分解能が低い場合には透過型電子顕微鏡等の他の電子顕微鏡を併用して実施しても良い。具体的には、粒子形状が球状の場合はその直径、非球状の場合はその最長径と最短径との平均値を直径とみなし、走査型電子顕微鏡等による観察により任意に選んだ20個分の粒子の直径の平均を一次粒子平均径とする。
 疎水性酸化物微粒子の比表面積(BET法)は特に制限されないが、通常50~300m/gとし、特に100~300m/gとすることが好ましい。
 疎水性酸化物微粒子としては、疎水性を有するものであれば特に限定されず、表面処理により疎水化されたものであっても良い。例えば、親水性酸化物微粒子をシランカップリング剤等で表面処理を施し、表面状態を疎水性とした微粒子を用いることもできる。酸化物の種類も、疎水性を有するものであれば限定されない。例えばシリカ(二酸化ケイ素)、アルミナ、チタニア等の少なくとも1種を用いることができる。これらは公知又は市販のものを採用することができる。例えば、シリカとしては、製品名「AEROSIL R972」、「AEROSIL R972V」、「AEROSIL R972CF」、「AEROSIL R974」、「AEROSIL RX200」、「AEROSIL RY200」(以上、日本アエロジル株式会社製)、「AEROSIL R202」、「AEROSIL R805」、「AEROSIL R812」、「AEROSIL R812S」、(以上、エボニック デグサ社製)等が挙げられる。チタニアとしては、製品名「AEROXIDE TiO T805」(エボニック デグサ社製)等が例示できる。アルミナとしては、製品名「AEROXIDE Alu C」(エボニック デグサ社製)等をシランカップリング剤で処理して粒子表面を疎水性とした微粒子が例示できる。
 この中でも、疎水性シリカ微粒子を好適に用いることができる。とりわけ、より優れた非付着性が得られるという点において、表面にトリメチルシリル基を有する疎水性シリカ微粒子が好ましい。これに対応する市販品としては、例えば前記「AEROSIL R812」、「AEROSIL R812S」(いずれもエボニック デグサ社製)等が挙げられる。
 熱接着層に付着させる疎水性酸化物微粒子の付着量(乾燥後重量)は限定的ではないが、通常0.01~10g/mとするのが好ましく、0.2~1.5g/mとするのがより好ましく、0.3~1g/mとするのが最も好ましい。上記範囲内に設定することによって、より優れた非付着性が長期にわたって得ることができる上、疎水性酸化物微粒子の脱落抑制、コスト等の点でもいっそう有利となる。熱接着層に付着した疎水性酸化物微粒子は、三次元網目状構造を有する多孔質層を形成していることが好ましく、その厚みは0.1~5μm程度が好ましく、0.2~2.5μm程度がさらに好ましい。このようなポーラスな層状態で付着することにより、当該層に空気を多く含むことができ、より優れた非付着性を発揮することができる。
 また、疎水性酸化物微粒子は、熱接着層の全面(基材層側と反対側の面の全面)に付着していても良いし、熱接着層が熱接着される領域(いわゆる接着しろ)を除いた領域に付着していても良い。本発明では、熱接着層の全面に付着している場合でも、熱接着される領域上に存在する疎水性酸化物微粒子のほとんど又は全部が当該熱接着層中に埋没するので熱接着が阻害されることはなく、工業的生産上でも熱接着層の全面に付着している方が望ましい。
2.包装材料の製造方法
 第3発明の包装材料は、例えば、少なくとも基材層及び熱接着層を有する積層体からなる包装材料を製造する方法であって、当該熱接着層の表面に一次粒子平均径3~100nmの疎水性酸化物微粒子を付着させる工程(以下「付着工程」ともいう。)を含む包装材料の製造方法によって好適に得ることができる。
 積層体の製造自体は公知の方法に従って実施することができる。例えば、単層基材又はドライラミネート法、押し出しラミネート法、ウエットラミネート法、ヒートラミネート法等により作製された積層材料に対して、前記1.で説明した方法により熱接着層を形成すれば良い。
 付着工程を実施する方法は特に限定されない。例えば、ロールコーティング、グラビアコーティング、バーコート、ドクターブレードコーティング、刷毛塗り、粉体静電塗装法等の公知の方法を採用することができる。ロールコーティング等を採用する場合は、疎水性酸化物微粒子を溶媒に分散させてなる分散体を用いて熱接着層上に塗膜を形成した後に乾燥する方法により付着工程を実施することができる。この場合の溶媒は限定されず、水のほか、例えばアルコール(エタノール)、シクロヘキサン、トルエン、アセトン、IPA、プロピレングリコール、ヘキシレングリコール、ブチルジグリコール、ペンタメチレングリコール、ノルマルペンタン、ノルマルヘキサン、ヘキシルアルコール等の有機溶剤を適宜選択することができる。この際、微量の分散剤、着色剤、沈降防止剤、粘度調整剤等を併用することもできる。溶媒に対する疎水性酸化物微粒子の分散量は通常10~100g/L程度とすれば良い。乾燥する場合は、自然乾燥又は強制乾燥(加熱乾燥)のいずれであっても良いが、工業的には強制乾燥することがこのましい。乾燥温度は、熱接着層に影響を与えない範囲であれば制限されないが、通常は150℃以下、特に80~120℃とすることが好ましい。
 第3発明の製造方法では、前記の付着工程中及び/又は付着工程後に積層体を加熱することもできる。積層体を加熱することにより熱接着層に対する疎水性酸化物微粒子の付着力(固定力)をより高めることができる。この場合の加熱温度Tは、熱接着層の種類等に応じて適宜設定することができ、通常は用いる熱接着層の融点Tm(溶融開始温度)℃に対してTm-50≦T≦Tm+50の範囲とすることが好ましい。また、第3発明の包装材料には、公知の包装材料と同様に必要に応じて、エンボス加工、ハーフカット加工、ノッチ加工等を施しても差し支えない。
<第4発明>
1.包装材料
 第4発明の包装材料は、少なくとも基材層及び熱接着層を有する積層体からなる包装材料であって、前記熱接着層が包装材料の一方の面の最外層として積層されており、前記基材層及び熱接着層の少なくとも一方に酸素吸収剤を含み、前記熱接着層が他の層と隣接していない最外面に一次粒子平均径3~100nmの疎水性酸化物微粒子が付着していることを特徴とする。
 図9に第4発明の一実施形態に係る包装材料の断面構造の模式図を示す。図9の包装材料では、基材層1に熱接着層2が積層された積層体からなる。熱接着層2は包装材料(積層体)の一方の最外層に積層されている。この包装材料では、酸素吸収剤6は、熱接着層2中に含有されている。但し、酸素吸収剤6の一部の粒子は、基材層1と熱接着層2との間にまたがるように存在していても良い。最外層である熱接着層2において、他の層(図9では基材層)と隣接していない側の面(最外面)に一次粒子平均径3~100nmの疎水性酸化物微粒子3が付着している。疎水性酸化物微粒子3は熱接着層2に付着して固定されている。すなわち、疎水性酸化物微粒子と内容物とが接触しても疎水性酸化物微粒子が脱落しない程度に付着している。図9において、疎水性酸化物微粒子3は、一次粒子が含まれていても良いが、その凝集体(二次粒子)が多く含まれていることが望ましい。特に、疎水性酸化物微粒子が三次元網目状構造からなる多孔質層をなしていることがより好ましい。すなわち、熱接着層2の上には疎水性酸化物微粒子により形成された三次元網目状構造からなる多孔質層が積層されていることが好ましい。
 図10には、第4発明の包装材料を容器の蓋材として用いて作製された包装体の断面構造の模式図を示す。なお、図10では、疎水性酸化物微粒子3及び酸素吸収剤6の表記は省略されている。容器4に内容物5が充填され、その開口部と包装材料の熱接着層2とが接するような状態で密封される。つまり、熱接着層2に付着している疎水性酸化物微粒子が内容物5と接触可能な状態で第4発明の包装材料が使用されることになる。このような場合であっても、熱接着層2は疎水性酸化物微粒子によって保護され、優れた非付着性を有するので、たとえ内容物が熱接着層2近傍に接触しても(接近しても)、内容物の熱接着層への付着が疎水性酸化物微粒子(又は疎水性酸化物微粒子からなる多孔質層)によって遮られ、なおかつ、はじかれる。このため、内容物が熱接着層近傍に付着したままの状態とならずに、疎水性酸化物微粒子(又は疎水性酸化物微粒子からなる多孔質層)にはじかれて内容物が容器に戻る。なお、容器4の材質としては、金属、合成樹脂、ガラス、紙、それらの複合材等から適宜選択でき、その材質に応じて熱接着層の種類、成分等を適宜調整することができる。
 基材層としては、公知の材料又は積層材料を採用することができる。例えば、紙、合成紙、樹脂フィルム、蒸着層付き樹脂フィルム、アルミニウム箔等の単体又はこれらの複合材料・積層材料を好適に用いることができる。
 これらの材料には、公知の包装材料で採用されている各層が任意の位置に積層されていても良い。例えば、印刷層、印刷保護層(いわゆるOP層)、着色層、接着剤層、接着強化層、プライマーコート層、アンカーコート層、防滑剤層、滑剤層、防曇剤層等が挙げられる。また、必要に応じて、後述する酸素吸収剤を含有した樹脂層を積層しても良い。
 積層材料を用いる場合の積層方法も限定的でなく、例えばドライラミネート法、押し出しラミネート法、ウエットラミネート法、ヒートラミネート法等の公知の方法を採用することができる。
 基材層の厚みは限定されないが、包装材料としての強度、柔軟性、コスト等の観点より通常15~500μmの範囲内で適宜設定すれば良い。
 熱接着層としては、公知の材料を採用することができる。例えば、公知のシーラントフィルムのほか、ラッカータイプ接着剤、イージーピール接着剤、ホットメルト接着剤等の接着剤により形成される層を採用することができる。第4発明では、この中でも、ラッカータイプ接着剤又はホットメルト接着剤を採用するのが好ましく、特にホットメルト接着剤により形成される熱接着層(ホットメルト層)を好適に採用することができる。ホットメルト層を形成する場合には、ホットメルト接着剤を溶融状態で塗布した後、冷却固化するまでに疎水性酸化物微粒子を付与すれば熱接着層に疎水性酸化物微粒子をそのまま付着させることができるため、第4発明の包装材料の連続的な生産が容易となる。
 熱接着層の厚みは特に限定されないが、密封性、生産性、コスト等の観点より通常2~150μm程度とすることが好ましい。特に、第4発明の包装材料では、熱接着するに際して、熱接着される領域上に存在する疎水性酸化物微粒子が熱接着層中に埋め込まれ、熱接着層が最表面となることにより熱接着を行うことができる。このため、上記厚みの範囲内において、疎水性酸化物微粒子を熱接着層にできるだけ多く埋め込むことができる厚みに設定することが望ましい。
 熱接着層に付着する疎水性酸化物微粒子は、一次粒子平均径が通常3~100nmであり、好ましくは5~50nmであり、より好ましくは5~20nmである。一次粒子平均径を上記範囲とすることにより、疎水性酸化物微粒子が適度な凝集状態となり、その凝集体中にある空隙に空気等の気体を保持することができる結果、優れた非付着性を得ることができる。すなわち、この凝集状態は、熱接着層に付着した後も維持されるので、優れた非付着性を発揮することができる。
 なお、第4発明において、一次粒子平均径の測定は、走査型電子顕微鏡(FE-SEM)で実施することができ、走査型電子顕微鏡の分解能が低い場合には透過型電子顕微鏡等の他の電子顕微鏡を併用して実施しても良い。具体的には、粒子形状が球状の場合はその直径、非球状の場合はその最長径と最短径との平均値を直径とみなし、走査型電子顕微鏡等による観察により任意に選んだ20個分の粒子の直径の平均を一次粒子平均径とする。
 疎水性酸化物微粒子の比表面積(BET法)は特に制限されないが、通常50~300m/gとし、特に100~300m/gとすることが好ましい。
 疎水性酸化物微粒子としては、疎水性を有するものであれば特に限定されず、表面処理により疎水化されたものであっても良い。例えば、親水性酸化物微粒子をシランカップリング剤等で表面処理を施し、表面状態を疎水性とした微粒子を用いることもできる。酸化物の種類も、疎水性を有するものであれば限定されない。例えばシリカ(二酸化ケイ素)、アルミナ、チタニア等の少なくとも1種を用いることができる。これらは公知又は市販のものを採用することができる。例えば、シリカとしては、製品名「AEROSIL R972」、「AEROSIL R972V」、「AEROSIL R972CF」、「AEROSIL R974」、「AEROSIL RX200」、「AEROSIL RY200」(以上、日本アエロジル株式会社製)、「AEROSIL R202」、「AEROSIL R805」、「AEROSIL R812」、「AEROSIL R812S」、(以上、エボニック デグサ社製)等が挙げられる。チタニアとしては、製品名「AEROXIDE TiO T805」(エボニック デグサ社製)等が例示できる。アルミナとしては、製品名「AEROXIDE Alu C」(エボニック デグサ社製)等をシランカップリング剤で処理して粒子表面を疎水性とした微粒子が例示できる。
 この中でも、疎水性シリカ微粒子を好適に用いることができる。とりわけ、より優れた非付着性が得られるという点において、表面にトリメチルシリル基を有する疎水性シリカ微粒子が好ましい。これに対応する市販品としては、例えば前記「AEROSIL R812」、「AEROSIL R812S」(いずれもエボニック デグサ社製)等が挙げられる。
 熱接着層に付着させる疎水性酸化物微粒子の付着量(乾燥後重量)は限定的ではないが、通常0.01~10g/mとするのが好ましく、0.2~1.5g/mとするのがより好ましく、0.3~1g/mとするのが最も好ましい。上記範囲内に設定することによって、より優れた非付着性が長期にわたって得ることができる上、疎水性酸化物微粒子の脱落抑制、コスト等の点でもいっそう有利となる。熱接着層に付着した疎水性酸化物微粒子は、三次元網目状構造を有する多孔質層を形成していることが好ましく、その厚みは0.1~5μm程度が好ましく、0.2~2.5μm程度がさらに好ましい。このようなポーラスな層状態で付着することにより、当該層に空気を多く含むことができ、より優れた非付着性を発揮することができる。
 また、疎水性酸化物微粒子は、熱接着層の全面(基材層側と反対側の面の全面)に付着していても良いし、熱接着層が熱接着される領域(いわゆる接着しろ)を除いた領域に付着していても良い。第4発明では、熱接着層の全面に付着している場合でも、熱接着される領域上に存在する疎水性酸化物微粒子のほとんど又は全部が当該熱接着層中に埋没するので熱接着が阻害されることはなく、工業的生産上でも熱接着層の全面に付着している方が望ましい。
 第4発明の包装材料では、酸素吸収剤が基材層及び熱接着層の少なくとも一方に含有されている。
 酸素吸収剤そのものは、公知又は市販の無機系酸素吸収剤又は有機系酸素吸収剤を用いることができる。より具体的には、例えば鉄、シリコン、アルミニウム等の少なくとも1種の微粉末を主剤とする無機系酸素吸収剤;例えばアスコルビン酸、不飽和脂肪酸等の少なくとも1種を主剤とする有機系酸素吸収剤が挙げられる。特に、酸素を不可逆的に吸着できる主剤が好ましい。
 また、無機系酸素吸収剤の主剤としては、金属粒子の少なくとも表面の一部に樹脂成分又は酸化物で被覆されたものを使用することもできる。例えば、金属粒子としてアルミニウム系粒子を用いる場合、一般にアルミニウムは酸素との反応速度が速いため、アルミニウム系粒子表面の一部又は全部を樹脂成分で被覆することによってその速度を調整することができる。このような樹脂成分で被覆されたアルミニウム系粒子(樹脂被覆Al系粒子)自体も市販品を使用することができるほか、公知の方法で調製することもできる。また例えば、酸化物(無機酸化物)で被覆する場合も公知の方法を採用することができる。より具体的には、いわゆるゾルゲル法による場合のほか、例えば日本特許3948934号に記載の方法(アルミニウム粒子と有機珪素化合物と加水分解触媒とを含む分散溶液のpHを調整することにより該有機珪素化合物を加水分解させて、アルミニウム粒子の表面にシリカ被膜を析出させ、酸化物被覆アルミニウム粒子を得る方法)等を採用することができる。
 酸素吸収剤の含有量は、所望の酸素吸収性能等に応じて適宜設定することができるが、通常は基材層中又は熱接着剤層中において主剤の含有量として0.3~30重量%とすることが好ましく、特に1~20重量%とすることがより好ましい。上記範囲内に設定することによって、所望の熱接着性等を維持しつつ、優れた酸素吸収性能を得ることができる。
 酸素吸収剤は、基材層及び熱接着層の少なくとも一方に含有されていれば良いが、より効果的に酸素吸収性能を得るという見地より、少なくとも熱接着層に含有されていることが好ましい。酸素吸収剤をこれらの層に含有させる方法としては、酸素吸収剤を均一に分散できる限りは制限されない。例えば、基材層又は熱接着層を形成するための原料に予め酸素吸収剤を混合する方法が挙げられる。混合に際しては、公知の混合機、攪拌機等により実施することができる。この場合、乾式混合又は湿式混合のいずれの方法であっても良い。
 以下において、酸素吸収剤の一代表例として、主剤としてアルミニウム系粒子(又は樹脂被覆Al系粒子)を用いた無機系酸素吸収剤について、その好ましい態様とともに説明する。
 アルミニウム系粒子としては、所定の酸素吸収性能が発現される限りは特に限定されず、例えば純アルミニウム粒子のほか、各種のアルミニウム合金粒子等を用いることもできる。
 アルミニウム系粒子の平均粒子径は1~100μm程度が好ましい。平均粒子径が1μm未満では取扱い性等の点で不向きである。他方、100μmを超える場合は、比表面積が小さくなり、酸素吸収能の点で避けた方が良い。また、アルミニウム系粒子の形状も限定的でなく、例えば球状、回転楕円体状、不定形状、涙滴状、扁平状等のいずれであっても良い。
 アルミニウム系粒子の表面に被覆される樹脂成分(重合体)は、少なくとも1個の重合性二重結合を有するオリゴマー及びモノマーの少なくとも2種を反応させて得られる共重合体であることが好ましい。各オリゴマー又はモノマーの使用量比率は、任意に設定することができる。
 上記重合体を構成するオリゴマーもしくはモノマーとしては、少なくとも1個の重合性二重結合を有しているものであれば特に限定されない。
 少なくとも1個の重合性二重結合を有するモノマーとしては、例えば不飽和カルボン酸(例えばアクリル酸、メタクリル酸、クロトン酸、イタコン酸、シトラコン酸、マレイン酸又は無水マレイン酸)、そのニトリル(例えばアクリロニトリル又はメタクリロニトリル)又はそのエステル(例えばアクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸n-ブチル、アクリル酸2-エチルヘキシル、アクリル酸ラウリル、アクリル酸ステアリル、アクリル酸ヒドロキシエチル、アクリル酸2-ヒドロキシプロピル、アクリル酸メトキシエチル、アクリル酸ブトキシエチル、アクリル酸グリシジル、アクリル酸シクロヘキシル、1,6-へキサンジオールジアクリレート、1,4-ブタンジオールジアクリレート、トリメチロールプロパントリアクリレート、テトラメチロールメタンテトラアクリレート、テトラメチロールメタントリアクリレート、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸n-ブチル、メタクリル酸2-エチルヘキシル、メタクリル酸ラウリル、メタクリル酸ステアリル、メタクリル酸ヒドロキシエチル、メタクリル酸2-ヒドロキシプロピル、メタクリル酸メトキシエチル、メタクリル酸ブトキシエチル、メタクリル酸グリシジル、メタクリル酸シクロヘキシル、トリメチロールプロパントリメタクリレート又はテトラメチロールメタントリメタクリレート)等を挙げることができる。また、環式不飽和化合物(例えばシクロヘキセン)又は非環式不飽和化合物(例えばスチレン、α-メチルスチレン、ビニルトルエン、ジビニルベンゼン、シクロヘキセンビニルモノオキシド、ジビニルベンゼンモノオキシド、酢酸ビニル、プロピオン酸ビニル又はジアリルベンゼン)等も例示することができる。
 重合性二重結合を少なくとも2個有するモノマーとして、例えばジビニルベンゼン、アリルベンゼン、ジアリルベンゼン又はその混合物を使用すると架橋作用により安定性がより一層向上する(より安定な皮膜で被覆できる)ので、重合性二重結合を少なくとも2個有するモノマーの使用が特に好ましい。
 少なくとも1個の重合性二重結合を有するオリゴマーとしては、例えばエポキシ化1,2-ポリブタジエン、アクリル変性ポリエステル、アクリル変性ポリエーテル、アクリル変性ウレタン、アクリル変性エポキシ、アクリル変性スピラン(いずれも重合度2~20程度)を例示することができる。これらの中でも、エポキシ化1,2-ポリブタジエン及びアクリル変性ポリエステルの少なくとも1種が好ましい。また、重合度は、3~10程度であることが好ましい。オリゴマーの使用は、重合反応が徐々に進行するので反応効率が非常に高くなり、モノマーを単独で使用する場合よりも好ましい。
 アルミニウム系粒子への被覆方法は特に限定されない。例えば、1)樹脂成分を溶媒中に溶解又は分散して得られた溶液又は分散液にアルミニウム系粒子を含浸又は浸漬させた後、乾燥することにより粒子表面に樹脂成分を被覆する方法、2)所定の樹脂成分を構成し得るモノマー又はオリゴマーを含む溶液又は分散液とアルミニウム系粒子とを含む混合液を調製した後、前記モノマー又はオリゴマーを重合させることにより、その重合体(樹脂成分)を粒子表面に被覆させる方法等が挙げられる。
 特に、第4発明では、前記2)の方法を好適に採用することができる。この方法としては、例えば、有機溶媒中にアルミニウム系粒子を分散させた分散液を調製した後、前記分散液中に少なくとも1個の重合性二重結合を有するオリゴマー及びモノマーの少なくとも2種を溶解させ、重合開始剤の存在下で加熱することによって粒子表面に共重合体を被覆することができる。
 前記の有機溶剤としては、ヘキサン、ヘプタン、オクタン、シクロヘキサン、ミネラルスピリット等の脂肪族炭化水素類、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、クロルベンゼン、トリクロルベンゼン、パークロルエチレン、トリクロルベンゼン等のハロゲン化炭化水素類、メタノール、エタノール、n-プロパツール、n-ブタノール等のアルコール類、2-プロパノン、2-ブタノン等のケトン類、酢酸エチル、酢酸プロピル等のエステル類、テトラヒドロフラン、ジエチルエーテル、エチルプロピルエーテル等を例示することができる。
 また、重合開始剤としては、公知の高温又は中温重合開始剤例えばジ-t-ブチルペルオキシド、アセチルペルオキシド、ベンゾイルペルオキシド、ラウロイルペルオキシド、クミルヒドロペルオキシド、t-ブチルヒドロペルオキシド等の有機過酸化物又はα、α′-アゾビスイソブチロニトリル等のアゾ化合物を使用することができる。
 重合反応温度(加熱温度)は、限定的ではなく、一般には60~200℃の範囲内で適宜設定することができる。
 また、第4発明では、必要に応じて、重合効率を高める等の目的で、例えば窒素、ヘリウム、アルゴン等の不活性ガス雰囲気下で重合反応を行うこともできる。
 以上のようにして生成した樹脂被覆Al系粒子は、必要に応じて公知の固液分離方法、精製方法等を用いて回収すれば良い。
 第4発明では、アルミニウム系粒子を主剤として用いる場合は、アルミニウム化合物の粒子を副剤として用いるのが好ましい。アルミニウム化合物としては、例えばアルミナ(酸化アルミニウム)、アルミニウム水酸化物、アルミン酸塩、アルミノケイ酸塩等の少なくとも1種を挙げることができる。この中でも、特にアルミナを用いることが好ましい。アルミナ粒子を用いることにより、その触媒的な作用により効果的な酸素吸収性能を発現させることができる。
 アルミニウム系粒子と前記副剤との比率は特に限定されないが、質量比で3:7~7:3とするのが好ましい。
 また、必要に応じて、アルミニウム系粒子の酸素吸収作用を効果的に促進させるために電解質を添加しても良い。電解質としては、例えば酸化カルシウム、水酸化カルシウム、酸化マグネシウム、水酸化マグネシウム、塩化ナトリウム、塩化カリウム、塩化カルシウム、炭酸ナトリウム、炭酸カルシウム等の少なくとも1種を必要に応じて適量添加することができる。
 なお、アルミニウム系粒子の酸素吸収時に副反応として水素が発生する可能性があるが、この場合は酸化銀、チタン、ゼオライト、活性炭、硫化物等の水素発生阻害剤を酸素吸収剤中に必要に応じて1ppm~10質量%の範囲内で添加することができる。
 さらに、アルミニウム系粒子の酸素吸収反応をより容易にするため、必要に応じて水を酸素吸収剤中に5~85質量%含有させることができる。
2.包装材料の製造方法
 第4発明の包装材料は、例えば、少なくとも基材層及び熱接着層を有する積層体からなる包装材料を製造する方法であって、当該熱接着層の表面に一次粒子平均径3~100nmの疎水性酸化物微粒子を付着させる工程(以下「付着工程」ともいう。)を含む包装材料の製造方法によって好適に得ることができる。
 積層体の製造自体は公知の方法に従って実施することができる。例えば、単層基材又はドライラミネート法、押し出しラミネート法、ウエットラミネート法、ヒートラミネート法等により作製された積層材料に対して、前記1.で説明した方法により熱接着層を形成すれば良い。
 また、酸素吸収剤は、前記1.で説明したものを使用することができる。これらは、前述のとおり、基材層及び/又は熱接着層を形成するための原料に予め含有させれば良い。
 疎水性酸化物微粒子の付着工程を実施する方法は特に限定されない。例えば、ロールコーティング、グラビアコーティング、バーコート、ドクターブレードコーティング、刷毛塗り、粉体静電塗装法等の公知の方法を採用することができる。ロールコーティング等を採用する場合は、疎水性酸化物微粒子を溶媒に分散させてなる分散体を用いて熱接着層上に塗膜を形成した後に乾燥する方法により付着工程を実施することができる。この場合の溶媒は限定されず、水のほか、例えばアルコール(エタノール)、シクロヘキサン、トルエン、アセトン、IPA、プロピレングリコール、ヘキシレングリコール、ブチルジグリコール、ペンタメチレングリコール、ノルマルペンタン、ノルマルヘキサン、ヘキシルアルコール等の有機溶剤を適宜選択することができる。この際、微量の分散剤、着色剤、沈降防止剤、粘度調整剤等を併用することもできる。溶媒に対する疎水性酸化物微粒子の分散量は通常10~100g/L程度とすれば良い。乾燥する場合は、自然乾燥又は強制乾燥(加熱乾燥)のいずれであっても良いが、工業的には強制乾燥するのが良い。乾燥温度は、熱接着層に影響を与えない範囲であれば制限されないが、通常は150℃以下、特に80~120℃とすることが好ましい。
 第4発明の製造方法では、前記の付着工程中及び/又は付着工程後に積層体を加熱することもできる。積層体を加熱することにより熱接着層に対する疎水性酸化物微粒子の付着力(固定力)をより高めることができる。この場合の加熱温度Tは、熱接着層の種類等に応じて適宜設定することができ、通常は用いる熱接着層の融点Tm(溶融開始温度)℃に対してTm-50≦T≦Tm+50の範囲とすることが好ましい。また、本発明の包装材料には、公知の包装材料と同様に必要に応じて、エンボス加工、ハーフカット加工、ノッチ加工等を施しても差し支えない。
 以下に実施例及び比較例を示し、第1発明~第4発明の特徴をより具体的に説明する。ただし、本発明の範囲は、実施例に限定されない。
<第1発明の実施例>
 実施例1-1~1-9及び比較例1-1
 熱可塑性樹脂層を有する積層体に対して疎水性酸化物微粒子を付着させたサンプルを作製した。具体的には下記のようにして各サンプルを作製した。
(1)積層体の作製
(実施例1-1、比較例1-1) 
 坪量55g/mの紙の一方面に表印刷及びOPコート(オーバープリントコート)を施し、他方表面にポリウレタン系ドライラミネート接着剤(乾燥後重量3.5g/m;Dと略称)を用いて、アルミニウムを蒸着した厚み16μmのポリエチレンテレフタレートフィルム(AL蒸着PETと略称)の蒸着面と貼り合わせた。さらにこの貼り合せ材のポリエチレンテレフタレートフィルム上に熱可塑性樹脂層としてヒートシールラッカー(主成分:ポリエステル系樹脂160重量部+アクリル系樹脂10重量部+溶剤(トルエン+MEKの混合溶剤)40重量部:ラッカーと略称)を乾燥後重量約3g/m(乾燥条件は150℃×10秒)となるように塗布した。これによって、「OP/印刷/紙/D/AL蒸着PET/ラッカー」なる構成の積層体を得た。
(実施例1-2~1-6)
 上記ヒートシールラッカー中にアクリル樹脂ビーズ(平均粒子径:30μm、積水化成工業株式会社製)をさらに1~20重量部(表中に示す)添加混合し、乾燥後重量3g/m(乾燥条件は150℃×10秒)となるように塗布した以外は、実施例1-1と同様に積層体を作製した。
(実施例1-7~1-8)
 上記実施例1-1において、ヒートシールラッカー中にアクリル樹脂ビーズ(平均粒子径:15μm、積水化成工業株式会社製)をさらに10重量部添加混合し、乾燥後重量3g/m(乾燥条件は150℃×10秒)となるように塗布した以外は、実施例1-1と同様にして積層体を作製した。
(実施例1-9)
 上記実施例1-1において、ヒートシールラッカー中にアクリル樹脂ビーズ(平均粒子径:8μm、積水化成工業株式会社製)をさらに10重量部添加混合し、乾燥後重量3g/m(乾燥条件は150℃×10秒)となるように塗布した以外は、実施例1-1と同様にして積層体を作製した。
(2)疎水性酸化物微粒子の付着
(実施例1-1~1-9)
 疎水性酸化物微粒子(製品名「AEROSIL R812S」エボニック デグサ社製、BET比表面積:220m/g、一次粒子平均径:7nm)5gをエタノール100mLに分散させてコート液を調製した。このコート液を前記(1)で作製された積層体の熱可塑性樹脂層の面に乾燥後重量で0.11~0.4g/m(表中に示す)になるようにバーコート方式で付与した後、100℃で10秒程度をかけて乾燥させてエタノールを蒸発させることにより、サンプル(包装材料)を得た。
(比較例1-1)
 実施例1-1の積層体において、疎水性酸化物微粒子を付着させていないものを試験用サンプルとした。
(3)疎水性酸化物微粒子からなる多孔質層の観察
 実施例の包装材料において、疎水性酸化物微粒子からなる層の構造をFE-SEMにより観察した。その結果、いずれの包装材料についても、疎水性酸化物微粒子により形成された三次元網目状構造を有する多孔質層が観察された。その一例として、実施例1-4の包装材料の一部断面観察写真を図3に示す。なお、同様の構造が形成されていることは他の実施例でも観察された。
 試験例1-1(開封強度)
 各実施例及び比較例で得られたサンプルについて開封強度を調べた。
 各包装材料から蓋材の形状(タブ付きの縦62mm×横67mmの矩形)に切り抜いた蓋材を用いて包装体を作製した。具体的には、フランジ付きポリスチレン製容器(フランジ幅4mm、フランジ外径60mm×65mm□、高さ約48mm、内容積約100cmになるように成形したもの)のフランジ上に前記蓋材をヒートシールすることによって包装体をそれぞれ作製した。前記ヒートシール条件は、温度210℃及び圧力2kg/cmにて1秒間で2mm幅のリング(凹状)シールとした。各包装体上の蓋材のタブを開封始点からみて仰角45度の方向に100mm/分の速度で引っ張り、開封時の最大荷重を開封強度(N)とし、各包装体についてn=6点測定し、その平均値を求めた。その結果を表1及び表2に示す。
 試験例1-2(密封性(封緘強度))
 試験例1-1で作製した包装体を試験サンプルとし、{乳及び乳製品の成分規格等に関する省令(昭和54年4月16日厚生省令第17号)}の封緘強度試験法に準じて封緘強度試験を行った。但し、容器内に空気を流入し続け、空気漏れする時点の内圧(mmHg)を測定した。各包装体についてn=3点測定したが、いずれも測定上限値300mmHg以上であった。その結果を表1及び表2に示す。
 試験例1-3(初期ヨーグルト非付着性)
 各積層体の熱可塑性樹脂層側を試験面とし、この面を上面として水平な平台にクリップで固定し、市販のヨーグルト(製品名「おいしいカスピ海」ソフトヨーグルト、グリコ乳業株式会社製1滴:約0.4g)を至近距離から垂らし、水平な平台を傾け、ヨーグルト液滴が転げ落ちた場合は合格、平台を90度傾けても転げ落ちずに垂れ流れた場合を不合格とした。その結果を表1及び表2に示す。
 試験例1-4(倒立試験)
 試験例1-1で用いたフランジ付きポリスチレン製容器中に市販のヨーグルト(製品名「おいしいカスピ海」ソフトヨーグルト、グリコ乳業株式会社製)を85gそれぞれ充填し、試験例1-1と同様にして蓋材をヒートシールした。各包装体を10秒間天地逆(開口部が地の方向の状態)にして保持した後、各包装体の天地を戻した状態(=開口部が天方向の状態)で、手指で蓋材を開封し、各蓋材の熱可塑性樹脂層側の面の状態を目視で観察した。ヨーグルトが付着していない場合を合格、ヨーグルトが付着している状態を不合格とした。その結果を表1及び表2に示す。
 試験例1-5(振動試験)
 試験例1-4と同様に各包装体を作製し、これらの各包装体を振動試験機(アイデックス株式会社製BF-30U)を用いて20分間、30Hz(1分間に30回の上下往復振動)、2.2mm振幅(上下方向)、加速度約1Gの条件にて振動させた後、蓋材を手指で開封し、各蓋材に付着したヨーグルトの重量を測定した。0.5g/cup未満を合格、0.5g/cup以上を不合格とした。その結果を表1及び表2に示す。
 試験例1-6(耐磨耗試験)
 各積層体の熱可塑性樹脂層側の面を試験面とし、学振形耐磨耗試験機(JIS K 5701-1)で往復回数100回、荷重200g、相手材:クロムメッキ面の条件にて耐磨耗試験を実施した。耐磨耗試験後に試験例3と同じヨーグルト非付着性試験を行い、ヨーグルト液滴が転げ落ちた場合は合格、平台を90度傾けても転げ落ちずに垂れ流れた場合を不合格とした。その結果を表1及び表2に示す。
 試験例1-7(接触角)
 各積層体の熱可塑性樹脂層側を試験面とし、接触角測定装置(固液界面解析装置「Drop Master300」協和界面科学株式会社製)を用いて純水の接触角を測定した。その結果を表1及び表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1及び表2の結果からも明らかなように、従来品(比較例)では非付着性(撥ヨーグルト性)は全く発揮せず、純水の接触角も85度であるのに対し、第1発明(実施例)では高い非付着性を発揮していることがわかる。開封強度、密封性(封緘強度)の点においても実用上差し支えのない良好な性能を示していることがわかる。また、接触角の結果からも、第1発明の積層体及び包装材料が高い撥水性を示すことがわかる。
 特に、第1発明の積層体及び包装材料の熱可塑性樹脂層側の最外面(疎水性酸化物微粒子が付着した面)は純水の接触角が150度以上を示し、従来の包装材料には見られない優れた内容物非付着性を有する。また、熱可塑性樹脂層に充填粒子として無機粒子あるいは有機粒子を含有させた場合は、耐摩耗性が飛躍的に向上し、疎水性酸化物微粒子の脱落を効果的に抑制ないしは防止できる結果、良好な非付着性を持続的に得られることがわかる。
<第2発明の実施例>
 実施例2-1
 疎水性酸化物微粒子(製品名「AEROSIL R812S」エボニック デグサ社製、BET比表面積:220m/g、一次粒子平均径:7nm)50gをエタノール1000mLに分散させてコート液を調製した。このコート液中に市販のポリプロピレン製容器(フランジ幅約3mm、フランジ外径約70mm、高さ約110mm、内容積約200cc)を浸漬した。コート液の付着量は、乾燥後重量(=固形分付着量)で0.5g/mであった。浸漬処理後、25℃×30秒の温風でエタノールを蒸発させること(乾燥処理)により、サンプル(容器)を得た。
 実施例2-2
 疎水性酸化物微粒子(製品名「AEROSIL R812S」エボニック デグサ社製、BET比表面積:220m/g、一次粒子平均径:7nm)50gをエタノール1000mLに分散させてコート液を調製した。このコート液中に市販のフランジ付き紙/ポリエチレン製容器(フランジ幅3mm、フランジ外径70mm、高さ約55mm、内容積約130cm、厚み約300μmの紙にポリエチレン100μmをコーティングしたものをポリエチレンが容器内側になるように成形したもの)を浸漬した。コート液の付着量は、乾燥後重量(=固形分付着量)で0.5g/mであった。浸漬処理後、25℃温風でエタノールを蒸発させることにより、サンプル(容器)を得た。
 実施例2-3
 疎水性酸化物微粒子(製品名「AEROSIL R812S」エボニック デグサ社製、BET比表面積:220m/g、一次粒子平均径:7nm)50gをエタノール1000mLに分散させてコート液を調製した。このコート液中に市販のフランジ付きポリスチレン製容器(フランジ幅約3mm、フランジ外径約88mm、高さ約63mm、内容積約176cc)を浸漬した。コート液の付着量は、乾燥後重量(=固形分付着量)で0.5g/mであった。浸漬処理後、25℃温風でエタノールを蒸発させることにより、サンプル(容器)を得た。
 比較例2-1
 実施例2-1で使用した市販のポリプロピレン製容器をそのままサンプルとして用いた。
 比較例2-2
 実施例2-2で使用した市販の紙/ポリエチレン製容器をそのままサンプルとして用いた。
 比較例2-3
 実施例2-3で使用した市販のポリスチレン製容器をそのままサンプルとして用いた。
 試験例2-1
 <疎水性酸化物微粒子からなる多孔質層の観察>
 実施例2-1~2-3の容器において、疎水性酸化物微粒子からなる層の構造をFE-SEMにより観察した。その結果、疎水性酸化物微粒子により形成された三次元網目状構造を有する多孔質層が観察された。
 <接触角>
 実施例2-1~実施例2-3の各容器の底内面を試験片(試験面)とし、接触角測定装置(固液界面解析装置「Drop
Master300」協和界面科学株式会社製)を用いて純水の接触角を測定したところ、いずれも150度以上であった。
 <付着テスト>
 実施例2-1~実施例2-3及び比較例2-1~比較例2-3の各容器の重量(A)を予め測定しておき、次に市販のヨーグルト(製品名「おいしいカスピ海」ソフトヨーグルト、グリコ乳業株式会社製)を100gそれぞれ充填後、当該容器を10秒間天地逆(開口部が地の方向の状態)にして内容物を排出させ、容器の天地を戻した状態(=開口部が天方向の状態)でその容器の重量(B)を測定した。B-Aを求めることにより、ヨーグルトの付着量とした。n=10の測定結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3の結果からも明らかなように、従来品(比較例)では充填量の約6~16%が容器に付着したまま残るのに対し、実施例では充填量の約1%あるいはそれ以下まで低減する(殆ど付着しない)ことがわかる。第2発明の容器は、純水の接触角が150度以上を示し、従来の容器には見られない優れた内容物非付着性を有する。
 実施例2-4
 浸漬処理後の乾燥処理を140℃×30秒の熱風とした以外は、実施例2-1と同様にサンプル(容器)を得た。
 実施例2-5
 浸漬処理後の乾燥処理を160℃×30秒の熱風とした以外は、実施例2-1と同様にサンプル(容器)を得た。
 試験例2-2
 <持続性改善テスト>
 実施例2-1、実施例2-4及び実施例2-5の各容器の重量(A)を予め測定しておき、次に市販のヨーグルト(製品名「おいしいカスピ海」ソフトヨーグルト、グリコ乳業株式会社製)を100gそれぞれ充填後、厚み40μmのアルミニウム箔+熱接着層からなるラミネート蓋材の熱接着層面に実施例1で用いたコート液を乾燥後重量で0.5g/m塗布し、この蓋材を前記各容器の開口部端面(フランジ等)に熱接着し包装体とした。この各包装体を振動試験機(アイデックス株式会社製BF-30U)を用いて1分間、30Hz(1分間に30回の上下往復振動)、2.2mm振幅(上下方向)、加速度約40Gの条件にて振動させた後、蓋材を開封取り除き(蓋材にヨーグルトは付着しなかった)、各容器を10秒間天地逆(開口部が地の方向の状態)にして内容物を排出させ、容器の天地を戻した状態(=開口部が天方向の状態)でその容器の重量(B)を測定した。B-Aを求めることにより、ヨーグルトの付着量とした。n=10の測定結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4の結果からも明らかなように、疎水性酸化物微粒子を付着させた後、熱処理を施すことにより、非付着性の持続効果(耐久性)がより改善されることがわかる。
<第3発明の実施例>
 実施例3-1~実施例3-9及び比較例3-1~比較例3-3
 表5に示すような各タイプの熱接着層を有する積層体に対して疎水性酸化物微粒子を付着させたサンプルを作製した。具体的には下記のようにして各サンプルを作製した。
(1)積層体の作製
 <ホットメルトタイプ>
 厚み15μmのアルミニウム箔(1N30、軟質箔;ALと略称)の片面にポリウレタン系ドライラミネート接着剤(乾燥後重量3.5g/m;Dと略称)を用いて、裏印刷(印刷と略称)を施した厚み12μmのポリエチレンテレフタレートフィルム(PETと略称)の印刷面と貼り合わせ、基材層を作製した。この基材層のアルミニウム面にアンカーコート(主成分:ポリエステル系樹脂;ACと略称)処理を施した上、低密度ポリエチレン樹脂(LDPEと略称)を乾燥後膜厚20μmとなるように押出し積層した。さらに、低密度ポリエチレン上にホットメルト剤(ワックス35重量部、ロジン35重量部及びエチレン-酢酸ビニル共重合体30重量部;HMと略称)を乾燥後重量20g/mとなるようにグラビアホットメルトコートした。これによって、「PET/印刷/D/AL/AC/LDPE/HM」なる構成の積層体を得た。
 <シーラントタイプ>
 厚み15μmのアルミニウム箔(1N30、軟質箔;ALと略称)の片面にポリウレタン系ドライラミネート接着剤(乾燥後重量3.5g/m;Dと略称)を用いて、裏印刷(印刷と略称)を施した厚み12μmのポリエチレンテレフタレートフィルム(PETと略称)の印刷面と貼り合わせ、基材層を作製した。この基材層のアルミニウム面にアンカーコート(主成分:ポリエステル系樹脂;ACと略称)処理を施した上、低密度ポリエチレン樹脂(乾燥後膜厚20μm;LDPEと略称)を用いて厚み30μmのシーラントフィルム(主成分:メタロセン触媒ポリエチレン;シーラントと略称)を押出しラミネートした。これによって、「PET/印刷/D/AL/AC/LDPE/シーラント」なる構成の積層体を得た。
 <ラッカータイプ>
 厚み15μmのアルミニウム箔(1N30、軟質箔;ALと略称)の片面にポリウレタン系ドライラミネート接着剤(乾燥後重量3.5g/m;Dと略称)を用いて、裏印刷(印刷と略称)を施した厚み12μmのポリエチレンテレフタレートフィルム(PETと略称)の印刷面と貼り合わせ、基材層を作製した。この基材層のアルミニウム面にポリウレタン系ドライラミネート接着剤(乾燥後重量3.5g/m;Dと略称)を用いて、別途用意した厚み12μmのポリエチレンテレフタレートフィルム(PETと略称)を貼り合わせた上、ヒートシールラッカー(主成分:アクリル樹脂+ポリエステル樹脂:ラッカーと略称)を乾燥後重量5g/mとなるように塗布した。これによって、「PET/印刷/D/AL/D/PET/ラッカー」なる構成の積層体を得た。
(2)疎水性酸化物微粒子の付着
 疎水性酸化物微粒子(製品名「AEROSIL R812S」エボニック デグサ社製、BET比表面積:220m/g、一次粒子平均径:7nm)5gをエタノール100mLに分散させてコート液を調製した。このコート液を前記(1)で作製された積層体の熱接着層の面に乾燥後重量で0.3~1.0g/mとなるようにグラビアコート方式又はバーコート方式で付与した後、100℃で10秒程度をかけて乾燥させてエタノールを蒸発させることにより、サンプル(包装材料)を得た。
(3)疎水性酸化物微粒子からなる多孔質層の観察(確認)
 実施例の包装材料において、疎水性酸化物微粒子からなる層の構造をFE-SEMにより観察した。その結果、いずれの包装材料についても、疎水性酸化物微粒子により形成された三次元網目状構造を有する多孔質層が観察された。その一例として、実施例3-4(A)の観察結果を図8に示す。図8に示すように、熱接着層(シーラント)の上に黒色と白色が混ざった層が認められる。この白色の部分は疎水性酸化物からなる多孔質層である。こように、前記コート液を塗布及び乾燥することにより、疎水性酸化物微粒子からなる多孔質層が形成されることがわかる。
 試験例3-1(シール強度)
 各実施例及び比較例で得られたサンプルについてシール強度を調べた。
 実施例3-1~実施例3-6及び比較例3-1~比較例3-2について
 各包装材料から蓋材の形状(タブ付きの直径75mmの円形)に切り抜いた蓋材を用いて包装体を作製した。具体的には、フランジ付き紙/ポリエチレン製容器(フランジ幅3mm、フランジ外径70mm、高さ約55mm、内容積約130cm、厚み約300μmの紙にポリエチレン100μmをコーティングしたものをポリエチレンが容器内側になるように成形したもの)のフランジ上に前記蓋材をヒートシールすることによって包装体をそれぞれ作製した。前記ヒートシール条件は、温度160℃及び圧力1kg/cmで1秒間とした。各包装体上の蓋材のタブを開封始点からみて仰角45度の方向に100mm/分の速度で引っ張り、開封時の最大荷重をシール強度(N)とし、各包装体についてn=6点測定し、その平均値を求めた。その結果を表5に示す。
 実施例3-7~実施例3-9及び比較例3-3について
 各包装材料から蓋材の形状(タブ付きの縦62mm×横67mmの矩形)に切り抜いた蓋材を用いて包装体を作製した。具体的には、フランジ付きポリスチレン製容器(フランジ幅4mm、フランジ外径60mm×65mm□、高さ約48mm、内容積約100cmになるように成形したもの)のフランジ上に前記蓋材をヒートシールすることによって包装体をそれぞれ作製した。前記ヒートシール条件は、温度210℃及び圧力2kg/cmにて1秒間で2mm幅のリング(凹状)シール)とした。各包装体上の蓋材のタブを開封始点からみて仰角45度の方向に100mm/分の速度で引っ張り、開封時の最大荷重をシール強度(N)とし、各包装体についてn=6点測定し、その平均値を求めた。その結果を表5に示す。
 試験例3-2(密封性(パンク強度))
 試験例3-1で作製した包装体を試験サンプルとし、{乳及び乳製品の成分規格等に関する省令(昭和54年4月16日厚生省令第17号)}の封緘強度試験法に準じて封緘強度試験を行った。但し、容器内に空気を流入し続け、空気漏れする時点の内圧(mmHg)を測定した。各包装体についてn=3点測定し、その平均値を求めた。その結果を表5に示す。
 試験例3-3(接触角)
 各包装材料の熱接着層側を試験面とし、接触角測定装置(固液界面解析装置「Drop
Master300」協和界面科学株式会社製)を用いて純水の接触角を測定した。その結果を表5に示す。
 試験例3-4(落下角)
 各包装材料の熱接着層側を試験面とし、この面を上面として水平な平台にクリップで固定し、市販のヨーグルト(製品名「おいしいカスピ海」ソフトヨーグルト、グリコ乳業株式会社製1滴:約0.4g)を至近距離から垂らし、水平な平台を傾け、ヨーグルト液滴が転げ落ちたときの角度を求めた。その結果を表5に示す。なお、比較例3-1~比較例3-3は、90度でも転げ落ちずに垂れ流れた。
 試験例3-5(輸送テスト)
 試験例3-1で用いた包装体中に市販のヨーグルト(製品名「おいしいカスピ海」ソフトヨーグルト、グリコ乳業株式会社製)を100g(フランジ付き紙/ポリエチレン製容器)及び85g(フランジ付きポリスチレン製容器)それぞれ充填し、試験例3-1と同様にして蓋材をヒートシールをした。ヨーグルトを充填した包装体を1500kmの距離を長距離トラックで輸送した後、手指で蓋材を開封し、各蓋材の熱接着層側の面の状態を目視で観察した。その結果を表5に示す。なお、評価は、ヨーグルトの付着なしの場合は「◎」とし、周辺部に若干リング状の付着がある場合(付着面積割合20%以下)は「○」とし、付着がやや目立つ場合(付着面積割合20%超え90%未満)は「△」とし、ほぼ全面に付着が認められる場合(付着面積割合90%以上)は「×」とした。この場合、「◎」「○」が良好と評価される。
Figure JPOXMLDOC01-appb-T000005
 表5の結果からも明らかなように、従来品(比較例)では非付着性は全く発揮されていないのに対し、第3発明(実施例)では高い非付着性を発揮していることがわかる。また、シール強度、密封性(パンク値)の点においても実用上差し支えのない良好な性能を示していることがわかる。また、接触角及び落下角の結果からも、本発明の包装材料が高い非付着性を示すことがわかる。特に、第3発明の包装材料の熱接着層側の最外面(疎水性酸化物微粒子が付着した面)は純水の接触角が150度以上を示し、従来の包装材料には見られない優れた内容物非付着性を有する。
<第4発明の実施例>
 実施例4-1~4-3及び比較例4-1
 以下のようにサンプルを作製し、評価した。
(1)熱接着剤の調製
(1-1)鉄系酸素吸収剤を含有した熱接着剤
 鉄系酸素吸収剤は、市販品(三菱瓦斯化学株式会社製「エージレス」)をそのまま用い、ヒートシールラッカー(主成分:ポリエステル系樹脂160重量部+アクリル系樹脂10重量部+溶剤(トルエン+MEKの混合溶剤)40重量部)中に10重量%添加混合し、実施例4-1の熱接着剤とした。
(1-2)アルミニウム系酸素吸収剤を含有した熱接着剤
 アルミニウム系酸素吸収剤の主剤は、純アルミニウム粉(東洋アルミニウム株式会社製アトマイズ粉、平均粒子径:8μm、BET比表面積0.7m/g)と、そのアルミニウム粉の表面に樹脂を被覆した樹脂コートアルミニウム粉(樹脂コート量3g/100gアルミニウム分))を用いた。アルミニウム粉の表面に樹脂を被覆する方法は、容積3リットルの四ツ目フラスコにエポキシ化1,2-ポリブタジェン:1.5g、トリメチロールプロパントリアクリレート:3.5g、アクリル酸:0.3g、ジビニルベンゼン:1.4g、ミネラルスピリット:1440g、未処理アルミニウム粉:200gを装填し、窒素ガスを導入しながら十分攪拌混合した。系内の温度を80℃に昇温し、α、α′-アゾビスイソブチロニトリル(AIBN)を1.1g添加し、攪拌を続けながら80℃で6時間反応させた。反応終了後混合液を濾過し、140℃で乾燥させ、樹脂被覆アルミニウム粉を得た。
 次に、アルミニウム系酸素吸収剤の主剤1g、α-アルミナ粉末(大明化学工業株式会社製TM-DAR、平均粒子径0.1μm、BET比表面積14.5m/g)1g、酸化カルシウム(和光純薬株式会社製 純度99.9%)0.5g及びゼオライトA-4(和光純薬株式会社製,平均粒径3.5μm)0.5gを攪拌・混合し、続いてバインダー(主成分:ポリエステル系樹脂160重量部+アクリル系樹脂10重量部+溶剤(トルエン+MEKの混合溶剤)40重量部)27gを加えて攪拌混合し、さらに水を1g添加混合し、実施例4-2及び実施例4-3の熱接着剤とした。
(2)包装材料の作製 
 厚み15μmのアルミニウム箔(1N30、軟質箔;ALと略称)の片面にポリウレタン系ドライラミネート接着剤(乾燥後重量3.5g/m;Dと略称)を用いて、裏印刷(印刷と略称)を施した厚み12μmのポリエチレンテレフタレートフィルム(PETと略称)の印刷面と貼り合わせ、基材層を作製した。この基材層のアルミニウム面にポリウレタン系ドライラミネート接着剤(乾燥後重量3.5g/m;Dと略称)を用いて、別途用意した厚み12μmのポリエチレンテレフタレートフィルム(PETと略称)を貼り合わせた上、前記(1-1)及び(1-2)で調製した各熱接着剤を乾燥後重量3g/mとなるようにそれぞれ塗布した。
 なお、比較例4-1として、酸素吸収剤を含まない熱接着剤(主成分:ポリエステル系樹脂160重量部+アクリル系樹脂10重量部+溶剤(トルエン+MEKの混合溶剤)40重量部)を用いた以外は、前記と同様に包装材料を作製した。
(3)疎水性酸化物微粒子の付着
 疎水性酸化物微粒子(製品名「AEROSIL R812S」エボニック デグサ社製、BET比表面積:220m/g、一次粒子平均径:7nm)5gをエタノール100mLに分散させてコート液を調製した。このコート液を前記(2)で作製された包装材料の熱接着層の面に乾燥後重量で0.5g/mとなるようにバーコート方式で付与した後、100℃で10秒程度をかけて乾燥させてエタノールを蒸発させることにより、サンプルを得た。なお、比較例4-1のサンプルには、疎水性酸化物微粒子を付着していない。
(4)疎水性酸化物微粒子からなる多孔質層の観察
 各実施例の包装材料において、疎水性酸化物微粒子からなる層の構造をFE-SEMにより観察した。その結果、いずれの包装材料についても、疎水性酸化物微粒子により形成された三次元網目状構造を有する多孔質層が観察された。
(5)容器内残存酸素の測定
 各サンプルから蓋材の形状(タブ付きの縦62mm×横67mmの矩形)に切り抜いて得られた蓋材を用いて包装体を作製した。具体的には、フランジ付きポリスチレン製容器(フランジ幅4mm、フランジ外径60mm×65mm□、高さ約48mm、内容積約105cmになるように成形したもの)に水を80g充填し、容器のフランジ上に前記蓋材をヒートシールすることによって包装体をそれぞれ作製した。前記ヒートシール条件は、温度220℃及び圧力3kgf/cmにて1秒間で約2mm幅のリング(凹状)シール)とした。常温で72時間静置後、装置「OXYGEN ANALYZER(TORAY製LC-750)」にて、容器内残存酸素濃度を測定した。その結果を表6に示す。
(6)容器内残存空気(気体)量
 上記(5)と同様に作製した包装体を水槽中でサンプルの蓋を開封し、容器内から出てきた空気(気体)をメスシリンダーにて捕集し、気体の量を水中で測定した。その結果を表6に示す。
(7)ヨーグルトの非付着性及び飛散性
 内容物を市販のヨーグルト(製品名「おいしいカスピ海」ソフトヨーグルト、グリコ乳業株式会社製)とした以外は、上記(5)と同様に包装体を作製し、5℃に設定した冷蔵庫内で72時間静置後、容器を傾け天地逆の状態(容器の蓋側が地の方向)にした後、元の状態(容器の蓋側が天の方向)に戻し、これを3回繰返し、蓋を開封した。非付着性の評価としては、蓋の状態を目視で観察し、ヨーグルトが付着した場合を「不合格」、ヨーグルトが付着していない状態を「合格」とした。また、飛散性の評価としては、蓋の開封時にヨーグルト液滴が容器外に飛出したものを「不合格」、飛出しなかったものを「合格」とした。その結果を表6に示す。
(8)接触角
 各包装材料の熱接着層側を試験面とし、接触角測定装置(固液界面解析装置「Drop Master300」協和界面科学株式会社製)を用いて純水の接触角を測定した。その結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006
 表6の結果からも明らかなように、従来品(比較例)では非付着性は全く発揮されていないのに対し、第4発明(実施例)では高い非付着性を発揮していることがわかる。また、接触角の結果からも、本発明の包装材料が高い非付着性を示すことがわかる。
 特に、第4発明の包装材料の熱接着層側の最外面(疎水性酸化物微粒子が付着した面)は純水の接触角が150度以上を示し、従来の包装材料には見られない優れた内容物非付着性を有する。さらに、本発明の蓋材は、基材層及び熱接着層の少なくとも一方に酸素吸収剤を含んでいるので、腐敗・変質の防止により長期保存に有効であることに加え、包装体内の圧力を低減することで内容物の飛散・飛出防止に効果があることがわかる。

 

Claims (26)

  1. 最外面の少なくとも一部に一次粒子平均径3~100nmの疎水性酸化物微粒子が付着している非付着性積層体。
  2. 熱可塑性樹脂を含有する層の表面の少なくとも一部に前記疎水性酸化物微粒子が付着している、請求項1に記載の積層体。
  3. 有機成分及び無機成分の少なくとも1種を含む充填粒子が前記熱可塑性樹脂を含有する層に含まれている、請求項2に記載の積層体。
  4. 疎水性酸化物微粒子が三次元網目状構造からなる多孔質層を形成している、請求項1に記載の積層体。
  5. 疎水性酸化物微粒子が疎水性シリカである、請求項1に記載の積層体。
  6. 疎水性シリカがその表面にトリメチルシリル基を有する、請求項5に記載の積層体。
  7. 前記充填粒子の平均粒子径が0.5~100μmである、請求項3に記載の積層体。
  8. 請求項1~7のいずれかに記載の積層体を含む包装材料。
  9. 請求項1~7のいずれかに記載の積層体を含む容器であって、容器が少なくとも内容物と接触する面の一部又は全部に前記疎水性酸化物微粒子が付着している非付着性容器。
  10. 請求項9に記載の非付着性容器に内容物が充填されており、蓋材により当該内容物が密封されてなる製品。
  11. 内容物を収容するための容器を製造する方法であって、容器が少なくとも内容物と接触する面の一部又は全部に一次粒子平均径3~100nmの疎水性酸化物微粒子を付着させる工程を含む非付着性容器の製造方法。
  12. 前記の疎水性酸化物微粒子を付着させる工程の後、熱処理する工程をさらに含む、請求項11に記載の製造方法。
  13. 少なくとも基材層及び熱接着層を有する積層体からなる包装材料であって、前記熱接着層が包装材料の一方の面の最外層として積層されており、前記熱接着層が他の層と隣接していない最外面に一次粒子平均径3~100nmの疎水性酸化物微粒子が付着している包装材料。
  14. 疎水性酸化物微粒子が三次元網目状構造からなる多孔質層を形成している、請求項13に記載の包装材料。
  15. 疎水性酸化物微粒子が疎水性シリカである、請求項13に記載の包装材料。
  16. 疎水性シリカがその表面にトリメチルシリル基を有する、請求項15に記載の包装材料。
  17. 熱接着層側の最外面に内容物が接触可能な状態で当該内容物が包装材料に包装されてなる製品のために用いられる、請求項13に記載の包装材料。
  18. 少なくとも基材層及び熱接着層を有する積層体からなる包装材料を製造する方法であって、当該熱接着層の表面に一次粒子平均径3~100nmの疎水性酸化物微粒子を付着させる工程を含む包装材料の製造方法。
  19. 前記工程中及び/又は前記工程後に積層体を加熱する工程をさらに含む、請求項18に記載の製造方法。
  20. 少なくとも基材層及び熱接着層を有する積層体からなる包装材料であって、前記熱接着層が包装材料の一方の面の最外層として積層されており、前記熱接着層が他の層と隣接していない最外面に一次粒子平均径3~100nmの疎水性酸化物微粒子が付着し、疎水性酸化物微粒子が三次元網目状構造からなる多孔質層を形成している蓋材。
  21. 少なくとも基材層及び熱接着層を有する積層体からなる包装材料であって、前記熱接着層が包装材料の一方の面の最外層として積層されており、前記熱接着層が他の層と隣接していない最外面に一次粒子平均径3~100nmの疎水性酸化物微粒子が付着し、疎水性酸化物微粒子が三次元網目状構造からなる多孔質層を形成している、袋体、成形容器、包装シート又はチューブとして用いる包装材料。
  22. 少なくとも基材層及び熱接着層を有する積層体からなる包装材料であって、前記熱接着層が包装材料の一方の面の最外層として積層されており、前記基材層及び熱接着層の少なくとも一方に酸素吸収剤を含み、前記熱接着層が他の層と隣接していない最外面に一次粒子平均径3~100nmの疎水性酸化物微粒子が付着している包装材料。
  23. 疎水性酸化物微粒子が三次元網目状構造からなる多孔質層を形成している、請求項22に記載の包装材料。
  24. 疎水性酸化物微粒子が疎水性シリカである、請求項22に記載の包装材料。
  25. 疎水性シリカがその表面にトリメチルシリル基を有する、請求項24に記載の包装材料。
  26. 前記酸素吸収剤が、粒子表面の少なくとも一部に樹脂成分及び無機酸化物の少なくとも1種が被覆された金属粒子を含む、請求項22に記載の包装材料。
PCT/JP2010/052025 2009-02-13 2010-02-12 積層体及び容器 WO2010093002A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
EP20100741279 EP2397319B1 (en) 2009-02-13 2010-02-12 Multilayer body and container
ES10741279T ES2461845T3 (es) 2009-02-13 2010-02-12 Cuerpo de varias capas y envase
KR1020117018835A KR101330001B1 (ko) 2009-02-13 2010-02-12 포장재료 및 그 제조방법
US13/148,786 US9327879B2 (en) 2009-02-13 2010-02-12 Multilayer body and container
RU2011137528/12A RU2546511C2 (ru) 2009-02-13 2010-02-12 Упаковочный материал (варианты)
AU2010214393A AU2010214393B2 (en) 2009-02-13 2010-02-12 Multilayer body and container
CN201080007596.8A CN102317067B (zh) 2009-02-13 2010-02-12 层叠体及容器
BRPI1013669-0A BRPI1013669B1 (pt) 2009-02-13 2010-02-12 Material de acondicionamento formado por corpo de multicamadas e método de produção do mesmo
HK12104878A HK1164225A1 (en) 2009-02-13 2012-05-18 Multilayer body and container
US14/491,351 US20150017334A1 (en) 2009-02-13 2014-09-19 Multilayer body and container

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2009-030750 2009-02-13
JP2009030750A JP4348401B1 (ja) 2009-02-13 2009-02-13 蓋材
JP2009083670 2009-03-30
JP2009-083670 2009-03-30
JP2009-167553 2009-07-16
JP2009167553A JP5647774B2 (ja) 2009-07-16 2009-07-16 包装材料
JP2009-225653 2009-09-29
JP2009225653A JP5498749B2 (ja) 2009-09-29 2009-09-29 包装材料
JP2009225652 2009-09-29
JP2009-225652 2009-09-29

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/148,786 A-371-Of-International US9327879B2 (en) 2009-02-13 2010-02-12 Multilayer body and container
US14/491,351 Continuation US20150017334A1 (en) 2009-02-13 2014-09-19 Multilayer body and container

Publications (1)

Publication Number Publication Date
WO2010093002A1 true WO2010093002A1 (ja) 2010-08-19

Family

ID=42561842

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/052025 WO2010093002A1 (ja) 2009-02-13 2010-02-12 積層体及び容器

Country Status (14)

Country Link
US (2) US9327879B2 (ja)
EP (3) EP2857190B1 (ja)
KR (1) KR101330001B1 (ja)
CN (1) CN102317067B (ja)
AU (1) AU2010214393B2 (ja)
BR (1) BRPI1013669B1 (ja)
DK (1) DK2666627T3 (ja)
ES (3) ES2461845T3 (ja)
HK (1) HK1164225A1 (ja)
PL (2) PL2666627T3 (ja)
PT (1) PT2397319E (ja)
RU (1) RU2546511C2 (ja)
TW (1) TWI488746B (ja)
WO (1) WO2010093002A1 (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012041049A (ja) * 2010-08-12 2012-03-01 Morinaga Milk Ind Co Ltd カップ状容器の蓋体及びその製造方法
JP2013071779A (ja) * 2011-09-29 2013-04-22 Toppan Printing Co Ltd 蓋材
JP2013103751A (ja) * 2011-11-15 2013-05-30 Showa Denko Packaging Co Ltd 非付着性表面を有する包装材料およびその製造方法
JP2014000968A (ja) * 2012-06-17 2014-01-09 Toyo Aluminium Kk 撥水性表面を有する樹脂成形品の製造方法
JP2014015236A (ja) * 2012-07-09 2014-01-30 Yoshino Kogyosho Co Ltd 合成樹脂製カップ容器
JP2014051295A (ja) * 2012-09-06 2014-03-20 Toppan Printing Co Ltd 蓋材およびそれを用いた密封容器
JP2014055013A (ja) * 2012-09-12 2014-03-27 Toppan Printing Co Ltd 蓋材
JP2014054757A (ja) * 2012-09-12 2014-03-27 Toppan Printing Co Ltd 蓋材
JP2014069557A (ja) * 2012-10-02 2014-04-21 Toppan Printing Co Ltd 熱シール性フィルム
WO2015002012A1 (ja) * 2013-07-02 2015-01-08 東洋製罐グループホールディングス株式会社 滑水性に優れた表面を有する樹脂成形体
JP2015089832A (ja) * 2013-11-07 2015-05-11 昭和電工パッケージング株式会社 内容物付着防止蓋材
US20150175317A1 (en) * 2012-09-07 2015-06-25 Toppan Pringting Co., Ltd. Cover material and packaging container
RU2589826C2 (ru) * 2012-03-01 2016-07-10 Марухо Ко., Лтд. Упаковка лекарственного продукта
JP2016188107A (ja) * 2011-10-27 2016-11-04 昭和電工パッケージング株式会社 内容物付着防止蓋材およびその製造方法
JP2018059109A (ja) * 2017-11-01 2018-04-12 東洋アルミニウム株式会社 包装材料
JP2018083948A (ja) * 2017-12-06 2018-05-31 東洋製罐グループホールディングス株式会社 滑水性に優れた表面を有する樹脂成形体
RU2675145C1 (ru) * 2015-03-27 2018-12-17 Тойо Сейкан Груп Холдингз, Лтд. Структурированное изделие, имеющее гидрофобную поверхность, и способ его изготовления

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI511885B (zh) * 2009-04-20 2015-12-11 Toyo Aluminium Kk 積層體、包裝體、包裝用薄片、包裝材料、標籤及容器
KR20140105480A (ko) 2011-11-21 2014-09-01 도요세이칸 그룹 홀딩스 가부시키가이샤 점성 유체의 배출에 이용하는 주출 부재
JP5908707B2 (ja) * 2011-12-01 2016-04-26 昭和電工パッケージング株式会社 内容物付着防止蓋材
JP6246997B2 (ja) 2012-03-29 2017-12-13 大日本印刷株式会社 レトルト殺菌包装容器用の蓋材
CN107244481B (zh) * 2012-07-13 2019-10-08 东洋制罐集团控股株式会社 对内容物具有优异的滑动性的包装容器
JP6031869B2 (ja) * 2012-07-24 2016-11-24 凸版印刷株式会社 撥水性包装材料及び包装体
NZ706157A (en) * 2012-09-25 2017-08-25 Stora Enso Oyj A method for the manufacturing of a polymer product with super- or highly hydrophobic characteristics, a product obtainable from said method and use thereof
KR102116593B1 (ko) * 2012-12-07 2020-05-28 덴카 주식회사 발수성을 구비한 열가소성 수지 시트 및 성형품
CN104903099B (zh) * 2012-12-07 2017-01-18 电化株式会社 具有拒水性的热塑性树脂片以及成型品
WO2014126010A1 (ja) 2013-02-14 2014-08-21 東洋製罐株式会社 流動性物質に対する滑り性に優れた注出具
JP6194590B2 (ja) * 2013-02-15 2017-09-13 凸版印刷株式会社 蓋材とその製造方法
JP6146091B2 (ja) * 2013-03-29 2017-06-14 凸版印刷株式会社 蓋材
JP6188378B2 (ja) * 2013-03-29 2017-08-30 Eaファーマ株式会社 充填容器およびその製造方法
CN103205211A (zh) * 2013-04-11 2013-07-17 浙江理工大学 一种超疏水胶带的制备方法
JP6102481B2 (ja) * 2013-05-08 2017-03-29 凸版印刷株式会社 ヒートシール性包装材料
JP5673870B1 (ja) * 2013-07-26 2015-02-18 東洋製罐グループホールディングス株式会社 表面に液層を有する樹脂構造体
KR102138009B1 (ko) * 2013-12-23 2020-07-28 코웨이 주식회사 물저장탱크 제작방법
US20220234255A1 (en) * 2014-05-05 2022-07-28 saperatec GmbH Method and Apparatus for Recylcing Laminated Glass
JP6593332B2 (ja) * 2014-06-20 2019-10-23 東洋製罐株式会社 内面に液膜が形成されている容器及び液膜形成用コーティング液
US10661496B2 (en) * 2015-03-09 2020-05-26 Conopco, Inc. Process for surface modification of materials
JP6651319B2 (ja) 2015-09-30 2020-02-19 東洋製罐グループホールディングス株式会社 包装容器
RU2616046C1 (ru) * 2015-10-12 2017-04-12 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Волгоградский государственный технический университет" (ВолгГТУ) Способ получения полимерного покрытия на поверхности хлопчатобумажной ткани
RU2616048C1 (ru) * 2015-10-12 2017-04-12 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Волгоградский государственный технический университет" (ВолгГТУ) Способ получения полимерного покрытия на поверхности хлопчатобумажной ткани
CN105383779A (zh) * 2015-11-11 2016-03-09 无锡市路华肥料科技有限公司 肥料储存盒
CN106756748B (zh) * 2015-11-24 2019-10-18 北京印刷学院 一种具有疏水表面的复合铝纸和铝塑复合膜包装材料制备方法
RS59233B1 (sr) * 2016-05-17 2019-10-31 Evonik Roehm Gmbh Direktno prianjajuće providno vezivo za toplo pečaćenje, za premazivanje i pečaćenje providnih plastičnih folija
HUP1600340A2 (en) * 2016-05-26 2017-11-28 Flexinnova Kft Antislip, heat sealable plastic flexible packaging bag and method and apparatus for its production
CN105966017A (zh) * 2016-06-08 2016-09-28 竹菱(大连)实业有限公司 一种纳米不沾薄膜
BR112018075724B1 (pt) 2016-06-15 2022-04-05 Bemis Company, Inc Tampa de vedação por calor com camada sem vedação por calor e envoltório hidrofóbico
CN106115072B (zh) * 2016-06-28 2018-07-27 东营市一大早乳业有限公司 一种不沾型酸奶包装材料的制备方法
CN106003963B (zh) * 2016-07-11 2018-08-28 浙江金石包装有限公司 一种不沾奶热封口膜及其制备方法
WO2018079607A1 (ja) * 2016-10-27 2018-05-03 東洋製罐株式会社 プラスチック成形体
KR101988717B1 (ko) * 2017-04-03 2019-06-12 롯데알미늄 주식회사 발수성 식품 포장재
CN110662814B (zh) * 2017-05-15 2021-11-16 陶氏环球技术有限责任公司 水基粘着剂组合物
JP6997958B2 (ja) * 2017-08-14 2022-01-18 大日本印刷株式会社 蓋材用撥水性積層体、蓋材および容器
CN108058464A (zh) * 2017-12-19 2018-05-22 衢州量智科技有限公司 包装膜及其制备方法
KR102072719B1 (ko) * 2018-05-14 2020-02-04 주식회사 지디프라코 내마모성이 우수한 코팅액 및 이를 코팅한 액체 보관 용기 캡
US20210300651A1 (en) 2018-08-03 2021-09-30 Cryovac, Llc Super-hydrophobic thermoplastic films for packaging and packages made therefrom
US20210284410A1 (en) * 2018-08-03 2021-09-16 Cryovac, Llc Super-hydrophobic thermoplastic films for packaging
JP6522841B6 (ja) 2018-09-27 2019-07-17 大和製罐株式会社 撥液性フィルムまたはシート、およびそれを用いた包装材
US11702239B2 (en) * 2018-10-22 2023-07-18 Double Double D, Llc Degradable containment features
EP3936329A4 (en) * 2019-03-07 2022-11-23 Toyobo Co., Ltd. LAMINATING FILM
JP6815432B2 (ja) * 2019-03-29 2021-01-20 大和製罐株式会社 撥液性ヒートシール膜、および、コーティング剤
KR102154464B1 (ko) 2020-01-31 2020-09-10 동원시스템즈 주식회사 식품 용기용 리드 포장재
RU209353U1 (ru) * 2020-12-29 2022-03-15 Общество с ограниченной ответственностью "Сагрит" Тара из композитного пресс-материала
RU2764617C1 (ru) * 2021-07-16 2022-01-18 Общество с ограниченной ответственностью "ДАНАФЛЕКС-НАНО" (ООО "ДАНАФЛЕКС-НАНО") Многослойный высокобарьерный полимерный материал для упаковки пищевых продуктов
KR102341782B1 (ko) 2021-09-24 2021-12-20 박시효 보존성이 향상된 포장재 및 그 제조방법
WO2023152647A1 (en) 2022-02-09 2023-08-17 Cryovac, Llc Multilayer film, process of making the same, vacuum package and process of making said package

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002037310A (ja) 2000-07-28 2002-02-06 Mitsubishi Alum Co Ltd 充填物付着防止蓋材およびその製造方法
JP2002210876A (ja) * 2001-01-19 2002-07-31 Nippon Soda Co Ltd 撥水層担持構造体及びその製造方法
JP2004130785A (ja) 2002-08-09 2004-04-30 Carl-Zeiss-Stiftung 容易にきれいになる、耐熱性表面コーティングを備えたきれいにし易い装置
JP2005516813A (ja) * 2002-02-13 2005-06-09 クレアヴィス ゲゼルシャフト フュア テヒノロギー ウント イノヴェイション ミット ベシュレンクテル ハフツング 自浄性を有する成形体および該成形体の製造方法
JP3948934B2 (ja) 2001-11-08 2007-07-25 東洋アルミニウム株式会社 アルミニウム顔料、その製造方法および樹脂組成物

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2643048A (en) * 1947-09-20 1953-06-23 Monsanto Chemicals Paper container with slip resistant coating
US2664237A (en) * 1947-11-04 1953-12-29 Ex Cell O Corp Paper container
US3820685A (en) * 1972-10-30 1974-06-28 Reisman J & Sons Tubular carton
DE3901969A1 (de) * 1989-01-24 1990-07-26 Hoechst Ag Biaxial orientierte kunststoffolie
JPH09220518A (ja) * 1995-12-15 1997-08-26 Sekisui Chem Co Ltd 撥水性皮膜を有する物品および製造方法
GB2336366A (en) * 1998-04-14 1999-10-20 Ecc Int Ltd Filled polyethylene compositions
US20040047997A1 (en) 2001-01-12 2004-03-11 Harald Keller Method for rendering surfaces resistant to soiling
DE10118349A1 (de) 2001-04-12 2002-10-17 Creavis Tech & Innovation Gmbh Selbstreinigende Oberflächen durch hydrophobe Strukturen und Verfahren zu deren Herstellung
US6677019B2 (en) * 2001-07-12 2004-01-13 Sonoco Development, Inc. Liquid-resistant paperboard tube, and method and apparatus for making same
DE10205007A1 (de) 2002-02-07 2003-08-21 Creavis Tech & Innovation Gmbh Verfahren zur Herstellung von Schutzschichten mit schmutz- und wasserabweisenden Eigenschaften
DE10210674A1 (de) 2002-03-12 2003-10-02 Creavis Tech & Innovation Gmbh Flächenextrudate mit selbstreinigenden Eigenschaften und Verfahren zur Herstellung solcher Extrudate
JP4061136B2 (ja) * 2002-06-25 2008-03-12 大日本印刷株式会社 帯電防止積層体及びその製造方法、並びにテーピング包装用カバーテープ
DE10233830A1 (de) * 2002-07-25 2004-02-12 Creavis Gesellschaft Für Technologie Und Innovation Mbh Verfahren zur Flammpulverbeschichtung von Oberflächen zur Erzeugung des Lotus-Effektes
DE10244490A1 (de) * 2002-09-24 2004-03-25 Creavis Gesellschaft Für Technologie Und Innovation Mbh Geblasene Mehrschichtfolien mit Lotus-Effekt
KR100601797B1 (ko) * 2003-12-02 2006-07-14 도레이새한 주식회사 실리콘 이형 폴리에스테르 필름
EP1807347B1 (en) * 2004-10-20 2014-01-22 Cabot Corporation Method of preparing hydrophobic silica directly from an aqueous colloidal silica dispersion
US20060112860A1 (en) * 2004-11-16 2006-06-01 Nissan Chemical Industries, Ltd. Process for producing hydrophobic silica powder
US7767760B2 (en) * 2005-12-30 2010-08-03 E.I. Du Pont De Nemours And Company Hot melt adhesive composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002037310A (ja) 2000-07-28 2002-02-06 Mitsubishi Alum Co Ltd 充填物付着防止蓋材およびその製造方法
JP2002210876A (ja) * 2001-01-19 2002-07-31 Nippon Soda Co Ltd 撥水層担持構造体及びその製造方法
JP3948934B2 (ja) 2001-11-08 2007-07-25 東洋アルミニウム株式会社 アルミニウム顔料、その製造方法および樹脂組成物
JP2005516813A (ja) * 2002-02-13 2005-06-09 クレアヴィス ゲゼルシャフト フュア テヒノロギー ウント イノヴェイション ミット ベシュレンクテル ハフツング 自浄性を有する成形体および該成形体の製造方法
JP2004130785A (ja) 2002-08-09 2004-04-30 Carl-Zeiss-Stiftung 容易にきれいになる、耐熱性表面コーティングを備えたきれいにし易い装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2397319A4

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012041049A (ja) * 2010-08-12 2012-03-01 Morinaga Milk Ind Co Ltd カップ状容器の蓋体及びその製造方法
JP2013071779A (ja) * 2011-09-29 2013-04-22 Toppan Printing Co Ltd 蓋材
JP2018047957A (ja) * 2011-10-27 2018-03-29 昭和電工パッケージング株式会社 内容物付着防止蓋材およびその製造方法
JP2017007747A (ja) * 2011-10-27 2017-01-12 昭和電工パッケージング株式会社 内容物付着防止蓋材およびその製造方法
JP2016188107A (ja) * 2011-10-27 2016-11-04 昭和電工パッケージング株式会社 内容物付着防止蓋材およびその製造方法
JP2013103751A (ja) * 2011-11-15 2013-05-30 Showa Denko Packaging Co Ltd 非付着性表面を有する包装材料およびその製造方法
RU2589826C2 (ru) * 2012-03-01 2016-07-10 Марухо Ко., Лтд. Упаковка лекарственного продукта
JP2014000968A (ja) * 2012-06-17 2014-01-09 Toyo Aluminium Kk 撥水性表面を有する樹脂成形品の製造方法
JP2014015236A (ja) * 2012-07-09 2014-01-30 Yoshino Kogyosho Co Ltd 合成樹脂製カップ容器
JP2014051295A (ja) * 2012-09-06 2014-03-20 Toppan Printing Co Ltd 蓋材およびそれを用いた密封容器
US20150175317A1 (en) * 2012-09-07 2015-06-25 Toppan Pringting Co., Ltd. Cover material and packaging container
JP2014054757A (ja) * 2012-09-12 2014-03-27 Toppan Printing Co Ltd 蓋材
JP2014055013A (ja) * 2012-09-12 2014-03-27 Toppan Printing Co Ltd 蓋材
JP2014069557A (ja) * 2012-10-02 2014-04-21 Toppan Printing Co Ltd 熱シール性フィルム
JP2015010221A (ja) * 2013-07-02 2015-01-19 東洋製罐グループホールディングス株式会社 滑水性に優れた表面を有する樹脂成形体
WO2015002012A1 (ja) * 2013-07-02 2015-01-08 東洋製罐グループホールディングス株式会社 滑水性に優れた表面を有する樹脂成形体
US10266735B2 (en) 2013-07-02 2019-04-23 Toyo Seikan Group Holdings, Ltd. Resin formed body having surface that exhibits excellent water-sliding property
JP2015089832A (ja) * 2013-11-07 2015-05-11 昭和電工パッケージング株式会社 内容物付着防止蓋材
RU2675145C1 (ru) * 2015-03-27 2018-12-17 Тойо Сейкан Груп Холдингз, Лтд. Структурированное изделие, имеющее гидрофобную поверхность, и способ его изготовления
JP2018059109A (ja) * 2017-11-01 2018-04-12 東洋アルミニウム株式会社 包装材料
JP2018083948A (ja) * 2017-12-06 2018-05-31 東洋製罐グループホールディングス株式会社 滑水性に優れた表面を有する樹脂成形体

Also Published As

Publication number Publication date
DK2666627T3 (en) 2015-09-14
US9327879B2 (en) 2016-05-03
EP2397319B1 (en) 2014-04-16
PL2857190T3 (pl) 2017-07-31
ES2546169T3 (es) 2015-09-21
US20150017334A1 (en) 2015-01-15
PT2397319E (pt) 2014-05-06
KR20110120889A (ko) 2011-11-04
KR101330001B1 (ko) 2013-11-15
EP2397319A1 (en) 2011-12-21
AU2010214393A1 (en) 2011-09-15
EP2666627B1 (en) 2015-08-12
PL2666627T3 (pl) 2015-12-31
EP2666627A1 (en) 2013-11-27
TWI488746B (zh) 2015-06-21
AU2010214393B2 (en) 2015-09-24
US20120118886A1 (en) 2012-05-17
CN102317067B (zh) 2014-04-16
BRPI1013669A2 (pt) 2016-04-26
EP2857190B1 (en) 2017-01-25
CN102317067A (zh) 2012-01-11
ES2616323T3 (es) 2017-06-12
RU2546511C2 (ru) 2015-04-10
TW201036817A (en) 2010-10-16
ES2461845T3 (es) 2014-05-21
HK1164225A1 (en) 2012-09-21
EP2397319A4 (en) 2012-11-14
BRPI1013669B1 (pt) 2020-02-11
EP2857190A1 (en) 2015-04-08
RU2011137528A (ru) 2013-03-20

Similar Documents

Publication Publication Date Title
WO2010093002A1 (ja) 積層体及び容器
JP5674221B2 (ja) 積層体及び包装材料
JP4348401B1 (ja) 蓋材
KR101499766B1 (ko) 발수·발유성 도포막 및 그 도포막을 포함하는 물품
JP5793936B2 (ja) 熱シール性フィルム、及びその製造方法
JP5966519B2 (ja) 撥水性積層体及び撥水性積層体の製造方法
JP5890952B2 (ja) 包装材料
JP6044060B2 (ja) 熱シール性包装材料
JP5880218B2 (ja) 撥水性積層体
JP5995463B2 (ja) 包装材料及びその製造方法
WO2016136981A1 (ja) 包装材料及びその製造方法
JP5498749B2 (ja) 包装材料
JP5647774B2 (ja) 包装材料
JP5499128B2 (ja) 包装材料の製造方法
JP5499127B2 (ja) 包装体
JP2015037974A (ja) 包装材料

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080007596.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10741279

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117018835

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010214393

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 6759/DELNP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2010741279

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011137528

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 2010214393

Country of ref document: AU

Date of ref document: 20100212

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13148786

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI1013669

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI1013669

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110812