WO2010092886A1 - ドラム式洗濯機 - Google Patents
ドラム式洗濯機 Download PDFInfo
- Publication number
- WO2010092886A1 WO2010092886A1 PCT/JP2010/051401 JP2010051401W WO2010092886A1 WO 2010092886 A1 WO2010092886 A1 WO 2010092886A1 JP 2010051401 W JP2010051401 W JP 2010051401W WO 2010092886 A1 WO2010092886 A1 WO 2010092886A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- washing machine
- drum
- shaft
- type washing
- field generator
- Prior art date
Links
Images
Classifications
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06F—LAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
- D06F37/00—Details specific to washing machines covered by groups D06F21/00 - D06F25/00
- D06F37/20—Mountings, e.g. resilient mountings, for the rotary receptacle, motor, tub or casing; Preventing or damping vibrations
- D06F37/22—Mountings, e.g. resilient mountings, for the rotary receptacle, motor, tub or casing; Preventing or damping vibrations in machines with a receptacle rotating or oscillating about a horizontal axis
- D06F37/225—Damping vibrations by displacing, supplying or ejecting a material, e.g. liquid, into or from counterbalancing pockets
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F9/00—Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
- F16F9/32—Details
- F16F9/53—Means for adjusting damping characteristics by varying fluid viscosity, e.g. electromagnetically
- F16F9/535—Magnetorheological [MR] fluid dampers
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06F—LAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
- D06F37/00—Details specific to washing machines covered by groups D06F21/00 - D06F25/00
- D06F37/20—Mountings, e.g. resilient mountings, for the rotary receptacle, motor, tub or casing; Preventing or damping vibrations
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F13/00—Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
- F16F13/04—Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper
- F16F13/26—Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper characterised by adjusting or regulating devices responsive to exterior conditions
- F16F13/30—Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper characterised by adjusting or regulating devices responsive to exterior conditions comprising means for varying fluid viscosity, e.g. of magnetic or electrorheological fluids
Definitions
- the present invention relates to a drum-type washing machine in which a water tank is vibration-proof supported by a suspension using a functional fluid.
- a drum-type washing machine is configured to include a drum for storing laundry in a water tank for storing washing water so as to be rotatable on a horizontal axis.
- the vibration during operation is reduced by supporting the water tank with a plurality of suspensions on the bottom plate of the outer box.
- a suspension using a magnetorheological fluid (MR fluid) whose viscosity changes depending on the strength of a magnetic field is known (see, for example, Patent Document 1).
- a piston rod is inserted into a damper tube, and pistons are respectively provided at two positions in the axial direction of the piston rod.
- a magnetorheological fluid storage chamber sandwiched between the two pistons is formed inside the damper tube.
- the magnetism generator is provided in the damper tube in the part which faces a magnetorheological fluid storage chamber.
- the magnetorheological fluid storage chamber is divided into two chambers in the axial direction. That is, in the damper tube, two chambers of magnetorheological fluid storage chambers are provided on both sides in the axial direction of the magnetism generator. Magnetorheological fluids are accommodated in these two chambers, respectively.
- the magnetism generator is configured by providing a coil on an annular iron core to generate a magnetic field.
- this magnetism generator forms a magnetorheological fluid flow path with the piston rod.
- a damper tube side spring seat is provided at the end of the damper tube on the side where the piston rod protrudes.
- the shaft side spring seat is provided in the protrusion end part of the piston rod. A coil spring is interposed between these spring seats.
- the damper tube In the configuration in which the water tank is supported in this manner, when the water tank vibrates in the vertical direction, the damper tube also reciprocates in the axial direction that is the vertical direction integrally with the water tank, with the expansion and contraction of the coil spring. At this time, the piston reciprocates up and down relatively in the magnetorheological fluid housing chamber in the damper tube. Along with this, the magnetorheological fluid flows back and forth through the magnetorheological fluid flow channel from one side of the two chambers in the axial direction of the magnetorheological fluid housing chamber to the other side.
- the magnetorheological fluid generates a damping force due to its viscosity and attenuates the amplitude of the water tank.
- the so-called functional fluid (fluid whose rheological characteristics such as viscosity are changed by controlling the physical quantity applied from the outside) such as the above-mentioned magnetorheological fluid is more expensive than ordinary damper oil.
- the magnetorheological fluid is accommodated in two chambers of magnetorheological fluid accommodating chambers formed on both sides in the axial direction of the magnetism generator. For this reason, the cost of the suspension, and hence the cost of the drum type washing machine, is significantly increased.
- An object of the present invention is to provide a water tank that contains a drum with vibration-proof support by a suspension that uses a functional fluid.
- a drum that can reduce the amount of use of the functional fluid and reduce the cost. It is to provide a type washing machine.
- the present invention relates to a drum-type washing machine having a suspension for vibration-proofing and supporting a water tub that accommodates a drum.
- the field generator is configured to variably generate a magnetic field or an electric field by fixing the suspension to a cylinder and the inside of the cylinder.
- Magnetic field generator or electric field generator magnetic members disposed on both sides in the axial direction of the field generator, and the field generator and the magnetic member can be reciprocated in the axial direction relatively.
- a functional fluid magnetto-viscous fluid, or filled between the shaft supported through and the shaft and the field generator, and between the shaft and the magnetic members in the vicinity thereof.
- Electrorheological fluid positioned below the field generator and fixed inside the cylinder, in close contact with the outer peripheral surface of the shaft Characterized by being configured to and a sealing member for preventing leakage of the functional fluid.
- the functional fluid (magnetoviscous fluid or electrorheological fluid) is transferred between the field generator (magnetic field generator or electric field generator) and the shaft, and the The water tank is supported in an anti-vibration manner by filling and using only between the nearby shaft and both magnetic members.
- the usage-amount of functional fluid can be aimed at and cost reduction can be attained.
- FIG. 1 relates to a first embodiment of the present invention and is a longitudinal sectional view showing a state before operation of a suspension.
- FIG. 2 is a longitudinal sectional view showing a state during operation of the suspension.
- FIG. 3 is an enlarged longitudinal sectional view showing the main part for explaining the operation of the suspension.
- FIG. 4 is a longitudinal side view of the entire drum type washing machine.
- FIG. 5 is a view corresponding to FIG. 1 according to the second embodiment of the present invention.
- FIG. 6 is a view corresponding to FIG. 1 according to the third embodiment of the present invention.
- FIG. 7 is a view corresponding to FIG. 1 according to the fourth embodiment of the present invention.
- FIG. 8 is a view corresponding to FIG. 3 according to the fifth embodiment of the present invention.
- FIG. 4 shows the overall structure of the drum type washing machine.
- the drum type washing machine has an outer box 1 as an outer shell.
- the laundry doorway 2 is formed at a substantially central portion of the front surface portion (right side in FIG. 4) of the outer box 1.
- the door 3 is provided to open and close the laundry entrance 2.
- the operation panel 4 is provided on the upper portion of the front surface portion of the outer box 1.
- the control device 5 for operation control is provided on the back side of the operation panel 4 (inside the outer box 1).
- the water tank 6 is disposed inside the outer box 1.
- This water tank 6 has a horizontal axis cylindrical shape in which the axial direction is the front-rear direction (right-left direction in FIG. 4).
- the water tub 6 is elastically supported on the bottom plate 1a of the outer box 1 by a pair of left and right (only one shown) suspensions 7 in an upwardly inclined manner. The detailed structure of the suspension 7 will be described later.
- the motor 8 is attached to the back of the water tank 6.
- the motor 8 is composed of, for example, a DC brushless motor, and is an outer rotor type.
- the motor 8 has a rotating shaft (not shown) attached to the center portion of the rotor 8 a inserted through the water tank 6 through a bearing bracket 9.
- the drum 10 is disposed inside the water tank 6.
- the drum 10 also has a horizontal cylindrical shape whose axial direction is the front-rear direction.
- the drum 10 is attached at the center of the rear part thereof to the tip of the rotating shaft of the motor 8.
- the drum type washing machine supports the drum 10 in an upwardly inclined shape coaxial with the water tank 6.
- the drum 10 is rotated by a motor 8. Accordingly, the drum 10 functions as a rotating tub, and the motor 8 functions as a drum driving device that rotates the drum 10.
- the drum 10 has a large number of small holes 11 (only a part of which is shown) over the entire circumferential side portion (body portion).
- the drum 10 has an opening 12 on the front surface, and the water tank 6 has an opening 13 on the front.
- the laundry entrance / exit 2 is connected to the opening 13 of the water tub 6 through an annular bellows 14. As a result, the laundry entrance 2 is connected to the inside of the drum 10 through the bellows 14, the opening 13 of the water tub 6, and the opening 12 of the drum 10.
- the drain pipe 16 is connected to the rear part of the bottom, which is the lowest part of the water tank 6, via a drain valve 15.
- the drying unit 17 is arranged from the back of the water tank 6 upward and forward.
- the drying unit 17 includes a dehumidifier 18, a blower 19, and a heating device 20.
- the drying unit 17 dehumidifies the air in the water tub 6, and then heats it to dry the laundry by circulating it back into the water tub 6.
- the suspension 7 includes a shaft 22 attached to the attachment plate 21 included in the bottom plate 1 a of the outer box 1 and a cylindrical cylinder 24 attached to the attachment plate 23 included in the water tank 6. It is composed. Specifically, the connecting portion 22 ⁇ / b> F is provided at the lower end portion of the shaft 22. The connecting portion 22F is fastened to the mounting plate 21 of the bottom plate 1a with a nut 26 via an elastic seat plate 25 such as rubber. Thereby, the shaft 22 is attached to the attachment plate 21.
- the connecting member 27 is provided at the upper end of the cylinder 24.
- the connecting member 27 is fastened to the mounting plate 23 of the water tank 6 with a nut 29 through an elastic seat plate 28 and the like. Accordingly, the cylinder 24 is configured to vibrate in the vertical direction (axial direction) together with the water tank 6.
- the bearing housing 33 is press-fitted into the lower part inside the cylinder 24.
- the bearing housing 33 accommodates and arranges the bearings 30 and 31 so as to be separated from each other by a spacer 32.
- the bearings 30 and 31 are made of, for example, sintered oil-impregnated metal (so-called bearing alloy), and are fixed inside the cylinder 24 together with the spacer 32 and the bearing housing 33.
- the annular and lip-shaped seal member 34 is fixedly provided at the uppermost portion in the bearing housing 33.
- the lower yoke 35 which is a ring-shaped magnetic member, is press-fitted into a position above the seal member 34 in the cylinder 24 and is provided in a fixed state. Further, the field generator 36 is press-fitted above the lower yoke 35 and provided in a fixed state.
- the field generator 36 is a magnetic field generator, and is formed by winding a coil 36b around a bobbin 36a. The field generator 36 is energized to the coil 36b through the lead wire 36c led out of the cylinder 24.
- an upper yoke 37 which is a ring-shaped magnetic member, is press-fitted into the cylinder 24 at a position above the field generator 36 and is provided in a fixed state.
- the upper yoke 37 has a length (thickness) in the axial direction larger than that of the lower yoke 35, and has a recessed portion 38 around the central portion of the upper portion.
- a portion of the cylinder 24 above the upper yoke 37 is a cavity 39 between the cylinder 24 and the connecting member 27.
- the upper portion of the shaft 22 reciprocates relatively in the axial direction with respect to the bearing 31, spacer 32, bearing 30, seal member 34, lower yoke 35, field generator 36 (bobbin 36a), and upper yoke 37.
- the upper end reaches the inside of the cavity 39 movably penetrating.
- the entire shaft 22 is supported by the bearings 30 and 31.
- the seal member 34 located below the lower yoke 35 and located below the field generator 36 is in close contact with the outer peripheral surface of the shaft 22.
- a predetermined gap is formed between the shaft 22 and the field generator 36 (bobbin 36a), and between the shaft 22 and the lower yoke 35 and the upper yoke 37 in the vicinity thereof.
- the functional fluid in this case, the magnetorheological fluid 40
- the seal member 34 is configured to prevent leakage of the magnetorheological fluid 40.
- the functional fluid is a fluid in which rheological properties such as viscosity are functionally changed by controlling a physical quantity applied from the outside.
- This functional fluid includes a magnetorheological fluid 40 and an electrorheological fluid (not shown) as fluids whose viscosity changes upon application of electrical energy.
- a magnetorheological fluid 40 whose viscosity characteristics change according to the strength of the magnetic field (magnetic field) is used as the functional fluid.
- an electrorheological fluid whose viscosity characteristics change according to the strength of the electric field (electric field) may be used as the functional fluid.
- the magnetorheological fluid 40 is, for example, a dispersion of ferromagnetic particles (iron, carbonyl iron, etc.) in oil. When a magnetic field is applied, the ferromagnetic particles form chain clusters. As a result, the apparent viscosity of the magnetorheological fluid 40 increases.
- ferromagnetic particles iron, carbonyl iron, etc.
- the electrorheological fluid includes a dispersed electrorheological fluid and a homogeneous electrorheological fluid.
- the electrorheological fluid of the dispersion system is a fluid in which inductive fine particles are dispersed in insulating oil.
- an electric field electric field
- the inductive fine particles form a chain cluster (a bridge-like one in which the inductive fine particles are connected in the direction of the electric field).
- the apparent viscosity of the electrorheological fluid in the dispersion system increases.
- particles constituting the electrorheological fluid are oriented by an electric field. As a result, the apparent viscosity of the homogeneous electrorheological fluid increases.
- the field generator 36 controls the viscosity of the magnetorheological fluid 40 by generating a magnetic field corresponding to the value of the current flowing through the coil 36b.
- the generated magnetic field is variable depending on the current value, and the viscosity of the magnetorheological fluid 40 can be variably controlled.
- the shaft-side spring seat 41 is fitted and fixed to the lower part of the shaft 22.
- the cylinder-side spring seat 42 is joined and fixed to the lower end portion of the cylinder 24 in such a manner that the cylinder-side spring seat 42 is separated from and opposed to the shaft-side spring seat 41.
- the cylinder-side spring seat 42 is fitted into the shaft 22 so as to be reciprocally movable in the axial direction.
- a coil spring 43 composed of a compression coil spring surrounding the shaft 22 and the cylinder-side spring seat 42 is mounted between the spring seats 41 and 42 so as to be extendable and contractable.
- FIG. 2 shows one state of the suspension 7 during the operation of the washing machine.
- the cylinder 24 is lowered with the above-described parts from the state before the operation shown in FIG.
- the cylinder 24 vibrates in the vertical direction with each of the above components, it is between the shaft 22 and the field generator 36 and between the shaft 22 and the lower yoke 35 and the upper yoke 37 which are in the vicinity thereof.
- the filled magnetorheological fluid 40 gives a damping force by the frictional resistance due to its viscosity, and attenuates the amplitude of the water tank 6.
- FIG. 3 shows this state.
- a magnetic circuit 44 including the shaft 22, the magnetorheological fluid 40, the upper yoke 37, the cylinder 24, the lower yoke 35, the magnetorheological fluid 40, and the shaft 22 is generated. And the viscosity of the magnetic viscous fluid 40 of the location through which magnetic flux passes increases.
- each magnetorheological fluid 40 between the shaft 22 having a high magnetic flux density and the upper yoke 37 and between the lower yoke 35 and the shaft 22 is significantly increased, and the frictional resistance is greatly increased.
- the frictional resistance when the cylinder 24 vibrates in the vertical direction with each component increases, and the damping force increases.
- the damping force can be controlled by changing the viscosity of the magnetorheological fluid 40 by energizing the coil 36b of the field generator 36.
- the seal member 34 is fixedly provided at a position below the field generator 36 in the cylinder 24. The sealing member 34 is brought into close contact with the outer periphery of the shaft 22 to prevent leakage of the magnetorheological fluid 40.
- the magnetorheological fluid 40 is filled only between the field generator 36 and the shaft 22 and between the shaft 22, the lower yoke 35, and the upper yoke 37 in the vicinity thereof.
- the vibration isolation support of the water tank 6 can be performed. Therefore, unlike the one described in Patent Document 1, a large number of magnetorheological fluids 40 are not used. Thereby, the usage-amount of the magnetic viscous fluid 40 can fully be aimed at, and the cost of the suspension 7, and also the cost of a drum-type washing machine can be reduced.
- the field generator 36 is a magnetic field generator.
- the upper yoke 37 and the lower yoke 35 which are magnetic members, are disposed on both sides in the axial direction of the magnetic field generator.
- the magnetorheological fluid 40 is filled between the upper yoke 37 and the shaft 22 and between the lower yoke 35 and the shaft 22.
- FIGS. 5 to 8 show the second to fifth embodiments of the present invention.
- the same parts as those in the first embodiment are denoted by the same reference numerals, description thereof is omitted, and only different parts are described.
- the bearing 30 is housed in the upper yoke 51 having a longer axial length than the upper yoke 37 of the first embodiment, and is provided above the field generator 36.
- the bearing 31 is housed together with the seal member 34 in a bearing housing 52 having a smaller axial length than the bearing housing 33 of the first embodiment, and is provided below the field generator 36. That is, the bearings 30 and 31 are disposed on both sides of the field generator 36 in the axial direction.
- the same actions and effects as those of the first embodiment described above can be obtained. That is, when the control device 5 starts operation based on the operation of the operation panel 4, the water tub 6 vibrates mainly in the vertical direction as the drum 10 containing the laundry is driven to rotate.
- the cylinder 24 integrally connected to the water tank 6 includes components (connection member 27, bearing 30, upper yoke 51, field generator 36, lower yoke 35). With the seal member 34, the bearing 31, the bearing housing 52, and the cylinder side spring seat 42), the coil spring 43 is expanded and contracted to vibrate up and down around the shaft 22.
- the cylinder 24 vibrates in the vertical direction with each of the above components, it is between the shaft 22 and the field generating device 36, between the shaft 22 and the lower yoke 35 in the vicinity thereof, and the shaft 22.
- the magnetorheological fluid 40 filled between the upper yoke 51 and the upper yoke 51 gives a damping force by the frictional resistance due to the viscosity, and attenuates the amplitude of the water tank 6.
- the coil 36b of the field generator 36 When the coil 36b of the field generator 36 is energized, a magnetic field is generated, the magnetic viscous fluid 40 is given a magnetic field, and the viscosity of the magnetic viscous fluid 40 is increased.
- a magnetic circuit (not shown) including the shaft 22, the magnetorheological fluid 40, the upper yoke 51, the cylinder 24, the lower yoke 35, the magnetorheological fluid 40, and the shaft 22 is generated. To do. And the viscosity of the magnetic viscous fluid 40 of the location through which magnetic flux passes increases.
- each magnetorheological fluid 40 between the shaft 22 having a high magnetic flux density and the upper yoke 51 and between the lower yoke 35 and the shaft 22 is significantly increased, and the frictional resistance is greatly increased.
- the frictional resistance when the cylinder 24 vibrates in the vertical direction with each component increases, and the damping force increases.
- the damping force can be controlled by changing the viscosity of the magnetorheological fluid 40 by energizing the coil 36b of the field generator 36.
- the seal member 34 is fixedly provided at a position below the field generator 36 in the cylinder 24. The sealing member 34 is brought into close contact with the outer periphery of the shaft 22 to prevent leakage of the magnetorheological fluid 40.
- the magnetorheological fluid 40 is allowed to flow between the field generator 36 and the shaft 22, between the shaft 22 and the lower yoke 35, and between the shaft 22 and the vicinity thereof.
- Anti-vibration support of the water tank 6 can be performed by filling and using only between the upper yoke 51. Therefore, unlike the one described in Patent Document 1, a large number of magnetorheological fluids 40 are not used. Thereby, the usage-amount of the magnetic viscous fluid 40 can fully be aimed at, and the cost of the suspension 7, and also the cost of a drum-type washing machine can be reduced.
- the field generator 36 is a magnetic field generator.
- the upper yoke 51 and the lower yoke 35 which are magnetic members, are disposed on both sides in the axial direction of the magnetic field generator.
- the magnetorheological fluid 40 is filled between the upper yoke 51 and the shaft 22 and between the lower yoke 35 and the shaft 22.
- the spacer 61 is disposed between the field generating device 36 and the shaft 22 between the upper yoke 37 and the lower yoke 35, which are magnetic members. Yes.
- the viscosity of the magnetorheological fluid 40 is highest between the shaft 22 and the upper yoke 37 and between the shaft 22 and the lower yoke 35. These portions have the highest rate of contribution to increasing damping force. On the other hand, except for those portions, the rate that contributes to increasing the damping force is low. Therefore, by arranging the spacer 61 there (between the field generating device 36 and the shaft 22 in the entire area between the upper yoke 37 and the lower yoke 35), the use of the magnetorheological fluid 40 can be reduced. And between the lower yoke 35 and the shaft 22 only. Thereby, the usage-amount of the magnetorheological fluid 40 can further be reduced.
- the spacer 61 may be disposed between a part between the upper yoke 37 and the lower yoke 35 and between the field generator 36 and the shaft 22.
- the damper member 71 that applies a damping force to the axial reciprocation of the shaft 22 is formed between the bearing 30 and the bearing 31 on one axial side of the field generator 36. It is arranged in between.
- the damper member 71 is a cylindrical member made of, for example, EPDM (ethylene-propylene-diene rubber), which is a friction material and an elastic body.
- the inner diameter of the damper member 71 is smaller than the outer diameter of the shaft 22.
- the inner circumferential surface of the damper member 71 is in close contact with the outer circumferential surface of the shaft 22, and exerts a frictional force on the shaft 22.
- the damper member 71 may be disposed not only on one side of the field generating device 36 in the axial direction but also on both sides. Thereby, a larger damping force can be obtained.
- the seal member 34 is disposed below the bearing 30, the spacer 32, and the bearing 31.
- the shaft 22 has a magnetic portion 22a that reciprocates relatively in the field generator 36 (magnetic field generator) portion, and a non-magnetic portion 22b that reciprocates relatively in the seal member 34 portion.
- the magnetic portion 22a of the shaft 22 is realized by covering the surface of the shaft 22 made of a non-magnetic metal (such as aluminum) with a magnetic material.
- the nonmagnetic portion 22b of the shaft 22 is realized by exposing the surface of the shaft 22 as it is.
- the magnetic flux is passed through the shaft 22 by energizing the coil 36b of the field generating device 36.
- the magnetic circuit 44 is formed as described above.
- the magnetorheological fluid 40 leaks from the magnetic circuit 44 in the nonmagnetic portion 22b of the shaft 22 (portion that relatively reciprocates the seal member 34 portion). Therefore, it is possible to avoid adhesion to the surface of the shaft 22. Thereby, it can prevent that the magnetorheological fluid 40 leaks little by little from the seal member 34 part, and the damping force with respect to the vertical vibration of the water tank 6 can be maintained.
- the shaft 22 and both or one of the upper yoke 37 and the lower yoke 35 may be magnetized in advance.
- the magnetorheological fluid 40 is initially filled by the magnetic force between the shaft 22 and the upper yoke 37 and / or between the shaft 22 and the lower yoke 35. stay. For this reason, when the suspension 7 is transported or the entire washing machine is assembled, the magnetorheological fluid 40 leaks from the initial filling position even if the suspension 7 is laid down or reversed. There is no. Therefore, the initial performance of the magnetorheological fluid 40 can be obtained satisfactorily.
- the field generator 36 which is a magnetic field generator, uses a battery, the shaft 22, the upper yoke 37, and A magnetic field may be generated for both or one of the lower yokes 35. Also in this case, the same effect can be obtained.
- the field generator 36 including a magnetic field generator may be provided with a switch for switching the energization direction in an electric circuit energizing the coil 36b so that the direction of the magnetic flux of the magnetic field can be changed. If comprised in this way, the direction of the magnetic flux of a magnetic field can also be changed each time by switching the electricity supply direction of the coil 36b each time. Thereby, it is possible to prevent unintentional magnetization from occurring in the component in which the magnetic circuit 44 is formed, and to avoid a change in damping force.
- the drum-type washing machine of the present invention has a suspension penetrating a cylinder, an electric field generator fixed inside the cylinder and generating an electric field variably, and the electric field generator reciprocally movable in the axial direction. And a functional fluid composed of an electrorheological fluid filled between the shaft and the electric field generator, and fixed to the inside of the cylinder below the electric field generator. A sealing member that is in close contact with the surface and prevents leakage of the functional fluid may be provided. That is, the suspension may be configured using an electric field generator as the field generator and using an electrorheological fluid as the functional fluid.
- the electric field generator may be configured as follows. That is, the electrode is disposed inside the cylinder with a space from the outer peripheral surface of the shaft. An electrorheological fluid is disposed between the electrode and the shaft. For example, a voltage of several KV is applied to the electrode. In short, a capacitor (electrode) is provided inside the cylinder, and an electrorheological fluid is disposed inside the capacitor.
- a dispersion electrorheological fluid is suitable as the electrorheological fluid. This is because the dispersed electrorheological fluid is more similar in function and property to the magnetorheological fluid 40 than the homogeneous electrorheological fluid.
- the present invention is not limited to the above-described embodiments, and can be implemented with appropriate modifications within a range not departing from the gist.
- the present invention is useful for a drum-type washing machine in which a water tank accommodating a drum is supported by vibration-proofing by a suspension using a functional fluid.
- 6 is a water tank
- 7 is a suspension
- 10 is a drum
- 22 is a shaft
- 22a is a magnetic part of the shaft
- 22b is a non-magnetic part of the shaft
- 24 is a cylinder
- 30 and 31 are bearings
- 34 is a seal member
- 35 is a lower yoke (Magnetic member)
- 36 is a field generator (magnetic field generator)
- 37 is an upper yoke (magnetic member)
- 40 is a magnetorheological fluid (functional fluid)
- 51 is an upper yoke (magnetic member)
- 61 is a spacer
- 71 Indicates a damper member.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Textile Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Main Body Construction Of Washing Machines And Laundry Dryers (AREA)
- Fluid-Damping Devices (AREA)
- Vibration Prevention Devices (AREA)
Abstract
Description
以下、本発明の第1実施例につき、図1ないし図4を参照して説明する。
図4には、ドラム式洗濯機の全体構造を示している。ドラム式洗濯機は、外箱1を外殻としている。洗濯物出入口2は、この外箱1の前面部(図4で右側)のほぼ中央部に形成されている。扉3は、この洗濯物出入口2を開閉するものとして設けられている。また、操作パネル4は、外箱1の前面部の上部に設けられている。運転制御用の制御装置5は、操作パネル4の裏側(外箱1内)に設けられている。
そして、シリンダ24内のうち上ヨーク37よりも上方の部分は、連結部材27との間が空洞39となっている。
均一系の電気粘性流体は、当該電気粘性流体を構成する粒子が、電界によって配向するようになっている。これにより、均一系の電気粘性流体は、見かけ上の粘度が上昇する。
操作パネル4の操作に基づき、制御装置5が運転を開始させると、洗濯物を収容したドラム10が回転駆動されることに伴い、水槽6が上下方向を主体に振動する。この水槽6の上下振動に応動して、サスペンション7では、水槽6に一体的に連結されたシリンダ24が、各部品(連結部材27、上ヨーク37、フィールド発生装置36、下ヨーク35、シール部材34、軸受30、スペーサ32、軸受31、軸受ハウジング33、及び、シリンダ側ばね受け座42)を伴って、コイルばね43を伸縮させながらシャフト22の周囲を上下方向に振動する。図2は、この洗濯機の運転中におけるサスペンション7の一状態を示しており、図1に示した運転前の状態よりも、シリンダ24が上記各部品を伴って下降している。
図5に示す第2実施例においては、軸受30は、第1実施例の上ヨーク37よりも軸方向の長さの大きな上ヨーク51に収納され、フィールド発生装置36の上方に設けられている。軸受31は、第1実施例の軸受ハウジング33よりも軸方向の長さの小さな軸受ハウジング52にシール部材34と共に収納され、フィールド発生装置36の下方に設けられている。即ち、軸受30,31は、フィールド発生装置36の軸方向の両側に配置されている。
即ち、操作パネル4の操作に基づき、制御装置5が運転を開始させると、洗濯物を収容したドラム10が回転駆動されることに伴い、水槽6が上下方向を主体に振動する。この水槽6の上下振動に応動して、サスペンション7では、水槽6に一体的に連結されたシリンダ24が、各部品(連結部材27、軸受30、上ヨーク51、フィールド発生装置36、下ヨーク35、シール部材34、軸受31、軸受ハウジング52、及び、シリンダ側ばね受け座42)を伴って、コイルばね43を伸縮させながらシャフト22の周囲を上下方向に振動する。
図6に示す第3実施例においては、スペーサ61は、磁性部材である上ヨーク37と下ヨーク35との間の全部であってフィールド発生装置36とシャフト22との間に、配設されている。
図7に示す第4実施例においては、シャフト22の軸方向の往復動に対して減衰力を付与するダンパ部材71は、フィールド発生装置36の軸方向の片側において、軸受30と軸受31との間に配設されている。このダンパ部材71は、摩擦材であって弾性体である例えばEPDM(エチレン-プロピレン-ジエンゴム)製の円筒状部材である。ダンパ部材71の内径は、シャフト22の外径よりも小さい。ダンパ部材71は、その内周面がシャフト22の外周面に密接しており、該シャフト22に摩擦力を及ぼすようになっている。
図8に示す第5実施例においては、シール部材34は、軸受30、スペーサ32、及び、軸受31の下方に配置されている。また、シャフト22は、フィールド発生装置36(磁場発生装置)部分を相対的に往復動する部分22aが磁性となっており、シール部材34部分を相対的に往復動する部分22bが非磁性となっている。この場合、シャフト22の磁性部分22aは、非磁性の金属(アルミニウムなど)から成るシャフト22の表面を、磁性材で被覆することで実現している。シャフト22の非磁性部分22bは、同シャフト22の表面を、そのまま露出させることで実現している。
図示しないが、シャフト22と、上ヨーク37及び下ヨーク35の両方または一方とを、予め着磁しておくとよい。このように構成すると、磁気粘性流体40は、それらの磁力により、シャフト22と上ヨーク37との間、及び、シャフト22と下ヨーク35との間の両方または一方において、初期充填された状態で留まる。そのため、サスペンション7の輸送の際や洗濯機全体の組立ての際に、サスペンション7が横倒し状態になったり、逆様の状態になったりしても、磁気粘性流体40が初期充填箇所から漏れ出ることがない。従って、磁気粘性流体40の初期性能を満足に得ることができる。
Claims (12)
- ドラムを収容する水槽を防振支持するサスペンションを有したドラム式洗濯機において、
前記サスペンションは、
シリンダと、
前記シリンダの内部に固定され、磁場を可変に発生する磁場発生装置と、
前記磁場発生装置の軸方向の両側に配設された磁性部材と、
前記磁場発生装置及び前記磁性部材を相対的に軸方向に往復動可能に貫通して支持されたシャフトと、
このシャフトと前記磁場発生装置との間、及び、その近傍である前記シャフトと前記両磁性部材との間に充填された磁気粘性流体から成る機能性流体と、
前記磁場発生装置の下方に位置して前記シリンダの内部に固定され、前記シャフトの外周面に密接して前記機能性流体の漏出を阻止するシール部材とを具備して構成されていることを特徴とするドラム式洗濯機。 - 請求の範囲第1項に記載のドラム式洗濯機において、
前記シリンダの内部に固定され、前記シャフトを軸方向に往復動可能に支持する軸受が設けられていることを特徴とするドラム式洗濯機。 - 請求の範囲第1項に記載のドラム式洗濯機において、
前記両磁性部材間の全部または一部であって前記磁場発生装置と前記シャフトとの間に、スペーサが配設されていることを特徴とするドラム式洗濯機。 - 請求の範囲第1項に記載のドラム式洗濯機において、
前記シャフトと、前記両磁性部材の両方または一方は、着磁されていることを特徴とするドラム式洗濯機。 - 請求の範囲第1項に記載のドラム式洗濯機において、
前記磁場発生装置は、電池により、前記シャフトと、前記両磁性部材の両方または一方に対して、磁場を発生することが可能とされていることを特徴とするドラム式洗濯機。 - 請求の範囲第1項に記載のドラム式洗濯機において、
前記磁場発生装置の軸方向の片側または両側に、前記シャフトの軸方向の往復動に対して減衰力を付与するダンパ部材が配設されていることを特徴とするドラム式洗濯機。 - 請求の範囲第1項に記載のドラム式洗濯機において、
前記シャフトは、前記磁場発生装置部分を相対的に往復動する部分が磁性であり、前記シール部材部分を相対的に往復動する部分が非磁性であることを特徴とするドラム式洗濯機。 - 請求の範囲第1項に記載のドラム式洗濯機において、
前記磁場発生装置は、磁場の磁束の向きを変更することが可能とされていることを特徴とするドラム式洗濯機。 - 請求の範囲第2項に記載のドラム式洗濯機において、
前記軸受は、前記磁場発生装置よりも下方に設けられ、
前記シール部材は、前記磁場発生装置の下方において前記軸受よりも上方に設けられていることを特徴とするドラム式洗濯機。 - 請求の範囲第2項に記載のドラム式洗濯機において、
前記軸受は、前記磁場発生装置の軸方向の両側に配置されていることを特徴とするドラム式洗濯機。 - 請求の範囲第2項に記載のドラム式洗濯機において、
前記軸受は、前記磁場発生装置の軸方向の片側に2つ設けられ、
これら軸受間に、前記シャフトの軸方向の往復動に対して減衰力を付与するダンパ部材が配設されていることを特徴とするドラム式洗濯機。 - ドラムを収容する水槽を防振支持するサスペンションを有したドラム式洗濯機において、
前記サスペンションは、
シリンダと、
前記シリンダの内部に固定され、電場を可変に発生する電場発生装置と、
前記電場発生装置を相対的に軸方向に往復動可能に貫通して支持されたシャフトと、
このシャフトと前記電場発生装置との間に充填された電気粘性流体から成る機能性流体と、
前記電場発生装置の下方に位置して前記シリンダの内部に固定され、前記シャフトの外周面に密接して前記機能性流体の漏出を阻止するシール部材とを具備して構成されていることを特徴とするドラム式洗濯機。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010800075436A CN102317535B (zh) | 2009-02-13 | 2010-02-02 | 滚筒式洗涤机 |
KR1020117018238A KR101270799B1 (ko) | 2009-02-13 | 2010-02-02 | 드럼식 세탁기 |
EP10741164.7A EP2397597B1 (en) | 2009-02-13 | 2010-02-02 | Drum type washing machine |
US13/198,502 US8387420B2 (en) | 2009-02-13 | 2011-08-04 | Drum type washing machine |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009031223A JP5127740B2 (ja) | 2009-02-13 | 2009-02-13 | 洗濯機 |
JP2009-031223 | 2009-02-13 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/198,502 Continuation US8387420B2 (en) | 2009-02-13 | 2011-08-04 | Drum type washing machine |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010092886A1 true WO2010092886A1 (ja) | 2010-08-19 |
Family
ID=42561729
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/051401 WO2010092886A1 (ja) | 2009-02-13 | 2010-02-02 | ドラム式洗濯機 |
Country Status (7)
Country | Link |
---|---|
US (1) | US8387420B2 (ja) |
EP (1) | EP2397597B1 (ja) |
JP (1) | JP5127740B2 (ja) |
KR (1) | KR101270799B1 (ja) |
CN (1) | CN102317535B (ja) |
TW (1) | TWI403627B (ja) |
WO (1) | WO2010092886A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012040296A (ja) * | 2010-08-23 | 2012-03-01 | Toshiba Corp | 洗濯機 |
CN102383291A (zh) * | 2010-09-03 | 2012-03-21 | 株式会社东芝 | 洗衣机 |
JP2012061228A (ja) * | 2010-09-17 | 2012-03-29 | Toshiba Corp | 洗濯機 |
CN102433712A (zh) * | 2010-09-13 | 2012-05-02 | 株式会社东芝 | 洗衣机 |
EP2565317A1 (en) * | 2010-04-26 | 2013-03-06 | Kabushiki Kaisha Toshiba | Washing machine and drying machine |
US8851247B2 (en) | 2010-05-21 | 2014-10-07 | Kabushiki Kaisha Toshiba | Damper, washing machine and washing/drying machine |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2540898B1 (en) | 2010-02-24 | 2015-08-05 | Kabushiki Kaisha Toshiba | Damper, washing machine, and washer/dryer |
JP5624342B2 (ja) * | 2010-03-15 | 2014-11-12 | 株式会社東芝 | ドラム式洗濯機 |
JP5611741B2 (ja) * | 2010-09-16 | 2014-10-22 | 株式会社東芝 | 洗濯機 |
JP5570931B2 (ja) * | 2010-09-29 | 2014-08-13 | 株式会社東芝 | 洗濯機 |
JP5931352B2 (ja) * | 2011-05-26 | 2016-06-08 | 株式会社東芝 | 洗濯機 |
JP5738678B2 (ja) * | 2011-06-01 | 2015-06-24 | 株式会社東芝 | 洗濯機 |
JP5931356B2 (ja) * | 2011-06-21 | 2016-06-08 | 株式会社東芝 | 洗濯機 |
JP5773805B2 (ja) * | 2011-08-30 | 2015-09-02 | 株式会社東芝 | 洗濯機 |
KR101130785B1 (ko) * | 2011-11-15 | 2012-03-28 | 주식회사 삼코 | 드럼 세탁기용 마그넷 마찰 댐퍼 |
KR200459493Y1 (ko) * | 2011-11-15 | 2012-04-02 | 주식회사 삼코 | 경사면 코어를 가지는 드럼 세탁기용 엠알 마찰 댐퍼 |
JP6128917B2 (ja) * | 2013-03-29 | 2017-05-17 | 三和テッキ株式会社 | 減衰力可変油圧制振装置 |
US9109650B2 (en) * | 2013-04-12 | 2015-08-18 | Washington State University | Linear MR-brake as a high force and low off-state friction actuator |
CN106481723B (zh) * | 2015-09-01 | 2020-03-20 | 青岛海尔智能技术研发有限公司 | 用于波轮洗衣机的可调阻尼吊杆及具有其的波轮洗衣机 |
CN105333053A (zh) * | 2015-10-30 | 2016-02-17 | 合肥工业大学 | 无活塞式大行程磁流变阻尼器 |
CN106523579A (zh) * | 2016-11-04 | 2017-03-22 | 安徽双鹿车业有限公司 | 一种智能减震器及其制造方法 |
JP6905253B2 (ja) * | 2017-08-28 | 2021-07-21 | 不二ラテックス株式会社 | 緩衝装置 |
JP2020197277A (ja) * | 2019-06-05 | 2020-12-10 | 三星電子株式会社Samsung Electronics Co.,Ltd. | 減衰装置、洗濯機 |
KR20240009281A (ko) * | 2022-07-13 | 2024-01-22 | 삼성전자주식회사 | 의류처리장치 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0819687A (ja) * | 1994-07-07 | 1996-01-23 | Hitachi Ltd | 全自動洗濯機の防振装置 |
JP2002502942A (ja) * | 1997-10-29 | 2002-01-29 | ロード コーポレーション | 制御可能な媒体装置とそれを利用した装置 |
JP2005245578A (ja) * | 2004-03-02 | 2005-09-15 | Toshiba Corp | 洗濯機 |
JP2005291338A (ja) * | 2004-03-31 | 2005-10-20 | Hitachi Ltd | ダンパ |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0771556B2 (ja) | 1986-11-13 | 1995-08-02 | 株式会社東芝 | 超音波診断装置 |
JPS63125243U (ja) * | 1987-02-06 | 1988-08-16 | ||
JPH0571267A (ja) * | 1991-09-09 | 1993-03-23 | Bridgestone Corp | ドアー等の開閉装置 |
US5284330A (en) * | 1992-06-18 | 1994-02-08 | Lord Corporation | Magnetorheological fluid devices |
JPH0821482A (ja) * | 1994-07-04 | 1996-01-23 | Showa Electric Wire & Cable Co Ltd | 振動絶縁装置 |
US6340080B1 (en) | 1997-10-29 | 2002-01-22 | Lord Corporation | Apparatus including a matrix structure and apparatus |
US6202806B1 (en) * | 1997-10-29 | 2001-03-20 | Lord Corporation | Controllable device having a matrix medium retaining structure |
US6471018B1 (en) * | 1998-11-20 | 2002-10-29 | Board Of Regents Of The University And Community College System On Behalf Of The University Of Nevada-Reno, The University Of Reno | Magneto-rheological fluid device |
US7637360B2 (en) * | 2000-03-29 | 2009-12-29 | Lord Corporation | System comprising magnetically actuated motion control device |
US6378671B1 (en) * | 2000-03-29 | 2002-04-30 | Lord Corporation | Magnetically actuated motion control device |
US7217372B2 (en) * | 2000-05-03 | 2007-05-15 | Lord Corporation | Magnetorheological composition |
US6974000B2 (en) * | 2002-02-20 | 2005-12-13 | Lord Corporation | System and method for limiting vibration in an apparatus during a loss of power |
US20040231374A1 (en) * | 2003-05-20 | 2004-11-25 | Chang Jae Won | Damper for washing machine |
KR100565659B1 (ko) * | 2004-02-23 | 2006-03-30 | 엘지전자 주식회사 | 세탁기의 댐퍼 및 그 제어방법 |
KR101122069B1 (ko) * | 2004-03-17 | 2012-03-14 | 엘지전자 주식회사 | 드럼세탁기용 오일댐퍼 |
WO2005095820A1 (en) * | 2004-03-25 | 2005-10-13 | Lord Corporation | On-off damper system, especially for washing machine |
JP2006057766A (ja) * | 2004-08-20 | 2006-03-02 | Showa Corp | Mr流体ダンパ |
JP4234083B2 (ja) * | 2004-09-07 | 2009-03-04 | 本田技研工業株式会社 | 車両のサスペンション装置用可変減衰力ダンパー |
JP4412723B2 (ja) * | 2004-09-13 | 2010-02-10 | パナソニック株式会社 | ドラム式洗濯機 |
JP4603324B2 (ja) * | 2004-09-13 | 2010-12-22 | パナソニック株式会社 | ドラム式洗濯機 |
JP4857197B2 (ja) * | 2007-06-04 | 2012-01-18 | 日立アプライアンス株式会社 | ドラム式洗濯機 |
-
2009
- 2009-02-13 JP JP2009031223A patent/JP5127740B2/ja active Active
-
2010
- 2010-02-02 EP EP10741164.7A patent/EP2397597B1/en not_active Not-in-force
- 2010-02-02 KR KR1020117018238A patent/KR101270799B1/ko active IP Right Grant
- 2010-02-02 WO PCT/JP2010/051401 patent/WO2010092886A1/ja active Application Filing
- 2010-02-02 CN CN2010800075436A patent/CN102317535B/zh active Active
- 2010-02-10 TW TW099104177A patent/TWI403627B/zh not_active IP Right Cessation
-
2011
- 2011-08-04 US US13/198,502 patent/US8387420B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0819687A (ja) * | 1994-07-07 | 1996-01-23 | Hitachi Ltd | 全自動洗濯機の防振装置 |
JP2002502942A (ja) * | 1997-10-29 | 2002-01-29 | ロード コーポレーション | 制御可能な媒体装置とそれを利用した装置 |
JP2005245578A (ja) * | 2004-03-02 | 2005-09-15 | Toshiba Corp | 洗濯機 |
JP2005291338A (ja) * | 2004-03-31 | 2005-10-20 | Hitachi Ltd | ダンパ |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9359705B2 (en) | 2010-04-26 | 2016-06-07 | Kabushiki Kaisha Toshiba | Washing machine and drying machine |
EP2565317A1 (en) * | 2010-04-26 | 2013-03-06 | Kabushiki Kaisha Toshiba | Washing machine and drying machine |
EP2565317A4 (en) * | 2010-04-26 | 2013-10-23 | Toshiba Kk | WASHING MACHINE AND LAUNDRY |
US8851247B2 (en) | 2010-05-21 | 2014-10-07 | Kabushiki Kaisha Toshiba | Damper, washing machine and washing/drying machine |
TWI452195B (zh) * | 2010-08-23 | 2014-09-11 | Toshiba Kk | washing machine |
CN102373605A (zh) * | 2010-08-23 | 2012-03-14 | 株式会社东芝 | 洗衣机 |
CN102373605B (zh) * | 2010-08-23 | 2013-02-13 | 株式会社东芝 | 洗衣机 |
JP2012040296A (ja) * | 2010-08-23 | 2012-03-01 | Toshiba Corp | 洗濯機 |
CN102383291A (zh) * | 2010-09-03 | 2012-03-21 | 株式会社东芝 | 洗衣机 |
CN102383291B (zh) * | 2010-09-03 | 2013-08-14 | 株式会社东芝 | 洗衣机 |
CN102433712B (zh) * | 2010-09-13 | 2013-11-13 | 株式会社东芝 | 洗衣机 |
CN102433712A (zh) * | 2010-09-13 | 2012-05-02 | 株式会社东芝 | 洗衣机 |
JP2012061228A (ja) * | 2010-09-17 | 2012-03-29 | Toshiba Corp | 洗濯機 |
Also Published As
Publication number | Publication date |
---|---|
TWI403627B (zh) | 2013-08-01 |
KR101270799B1 (ko) | 2013-06-05 |
US20110289981A1 (en) | 2011-12-01 |
CN102317535B (zh) | 2013-11-27 |
US8387420B2 (en) | 2013-03-05 |
CN102317535A (zh) | 2012-01-11 |
JP5127740B2 (ja) | 2013-01-23 |
TW201042114A (en) | 2010-12-01 |
EP2397597A4 (en) | 2015-10-28 |
EP2397597B1 (en) | 2018-04-18 |
KR20110101242A (ko) | 2011-09-15 |
EP2397597A1 (en) | 2011-12-21 |
JP2010184068A (ja) | 2010-08-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010092886A1 (ja) | ドラム式洗濯機 | |
JP5106441B2 (ja) | ドラム式洗濯機 | |
JP5127873B2 (ja) | ドラム式洗濯機 | |
JP5127667B2 (ja) | ドラム式洗濯機及びサスペンション | |
JP5426278B2 (ja) | ドラム式洗濯機 | |
JP5127909B2 (ja) | サスペンション及び洗濯機 | |
JP5330345B2 (ja) | 洗濯機 | |
JP2010284252A (ja) | ドラム式洗濯機 | |
JP2012157574A (ja) | 洗濯機 | |
JP2012141045A (ja) | ダンパ及びランドリー機器 | |
JP2012148033A (ja) | 洗濯機 | |
JP6223655B2 (ja) | ドラム式洗濯機 | |
KR101302337B1 (ko) | 세탁기 | |
TWI452196B (zh) | washing machine | |
JP5489102B2 (ja) | ドラム式洗濯機 | |
JP5812656B2 (ja) | ドラム式洗濯機 | |
JP5611741B2 (ja) | 洗濯機 | |
JP2011041844A (ja) | サスペンション及び洗濯機 | |
JP2012165943A (ja) | 洗濯機 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080007543.6 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10741164 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010741164 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20117018238 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |