WO2010090071A1 - ヒートポンプ式給湯・空調装置 - Google Patents

ヒートポンプ式給湯・空調装置 Download PDF

Info

Publication number
WO2010090071A1
WO2010090071A1 PCT/JP2010/050610 JP2010050610W WO2010090071A1 WO 2010090071 A1 WO2010090071 A1 WO 2010090071A1 JP 2010050610 W JP2010050610 W JP 2010050610W WO 2010090071 A1 WO2010090071 A1 WO 2010090071A1
Authority
WO
WIPO (PCT)
Prior art keywords
hot water
water
refrigerant
temperature
heat exchanger
Prior art date
Application number
PCT/JP2010/050610
Other languages
English (en)
French (fr)
Inventor
容之 山田
伸行 竹内
峰正 大村
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to EP10738409.1A priority Critical patent/EP2395302B1/en
Publication of WO2010090071A1 publication Critical patent/WO2010090071A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/08Hot-water central heating systems in combination with systems for domestic hot-water supply
    • F24D3/082Hot water storage tanks specially adapted therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/0095Devices for preventing damage by freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/08Hot-water central heating systems in combination with systems for domestic hot-water supply
    • F24D3/087Tap water heat exchangers specially adapted therefore
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/18Hot-water central heating systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H6/00Combined water and air heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • F25B47/025Defrosting cycles hot gas defrosting by reversing the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/12Heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/003Indoor unit with water as a heat sink or heat source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/006Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass for preventing frost
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/12Hot water central heating systems using heat pumps

Definitions

  • the present invention relates to a heat pump type hot water supply / air conditioner that performs hot water supply and air conditioning using a heat pump, and more particularly, to a defrost control of a heat pump type hot water supply / air conditioner that performs a defrost operation by switching a refrigerant circuit of a heat pump to a cooling cycle.
  • the heat pump type hot water supply / air conditioner includes a refrigerant system in which a refrigerant sent out by a compressor circulates through a closed circuit refrigerant circuit having a heat exchanger and repeats a gas-liquid state change, and water sent out by the pump is a refrigerant. And a water system that absorbs heat from the refrigerant by a heat exchanger (water-refrigerant heat exchanger) provided in the system and becomes hot water.
  • a heat pump type hot water supply / air conditioner by operating a four-way valve provided in the refrigerant system, either the heating operation or the cooling operation can be selected by switching the circulation direction of the refrigerant.
  • the water flowing through the water system is heated by the water-refrigerant heat exchanger functioning as a condenser to become hot water.
  • This hot water may be used directly for hot water supply, or may be used as a heat source for warm water heating by a radiator.
  • the water-refrigerant heat exchanger serves as an evaporator during defrost operation in which the refrigerant circulation direction is reversed, and exhibits a negative ability to cool water by the refrigerant. Therefore, during such defrost operation, the refrigerant hot gas It is disclosed to adjust the amount of bypass to reduce minus capacity and shorten defrost operation time.
  • the heat source that vaporizes the refrigerant in the water-refrigerant heat exchanger is deficient.
  • Such a shortage of heat source is not preferable because it causes a low pressure drop in which the pressure of the gas refrigerant sucked into the compressor is reduced in the refrigerant system, and causes hot water absorbed in the water-refrigerant heat exchanger to freeze.
  • the pressure saturation temperature on the refrigerant system side is kept at a certain temperature or higher together with the water temperature on the water system side. Is required.
  • the present invention has been made in view of the above circumstances, and the object of the present invention is to avoid the risk of freezing of the water-refrigerant heat exchanger by using the minimum necessary heat source in the defrost operation. It is to provide a heat pump type hot water supply / air conditioner.
  • the present invention employs the following means.
  • the refrigerant sent out by the compressor circulates through the closed circuit refrigerant circuit having the heat exchanger to repeat the gas-liquid state change and circulates through the refrigerant circuit.
  • the refrigerant system of the heat pump that can select the cooling cycle or the heating cycle by switching the circulation direction of the refrigerant, and the water sent by the pump absorbs heat from the refrigerant into the hot water by the water heat exchanger provided in the refrigerant system.
  • a hot water tank that is connected to a hot water circulation channel that circulates the hot water and uses a hot water heat source via a flow switching valve, and the cooling direction of the refrigerant in the refrigerant system is
  • a heat pump hot water supply / air conditioner that performs a defrost operation by setting a cycle
  • a water temperature test of hot water flowing through the water system is performed as water that flows through the water heat exchanger during the defrost operation.
  • the stored hot water has a water temperature detection value of a predetermined water temperature value. It is selected when
  • the circulating hot water circulating in the hot water circulation channel according to the detected temperature value of the hot water flowing through the water system or Either one of the stored hot water stored in the hot water tank is selected. That is, one stored hot water is selected when the detected water temperature value is equal to or lower than the predetermined water temperature value, and the other circulating hot water is selected when the detected water temperature value is higher than the predetermined water temperature value.
  • the defrosting operation can be carried out while minimizing the amount of hot water stored in the tank.
  • the predetermined water temperature value is preferably corrected so as to be higher as the outside air temperature is lower, and thereby, the amount of stored hot water in the hot water tank having a high temperature is further reduced and efficient. Defrost operation can be carried out.
  • the necessary hot water can be surely secured and the defrost operation can be performed. become.
  • the defrost operation performed by performing the cooling cycle, when the detected water temperature flowing through the water system side is higher than a predetermined value, the circulating hot water is used, Since the stored hot water is used only when the detected temperature of the water flowing through the side is equal to or lower than the predetermined value, the defrost operation can be carried out while minimizing the amount of stored hot water in the hot water tank. In addition, a remarkable effect can be obtained that the risk of icing of the heat exchanger that performs heat exchange between the water and the refrigerant using the minimum necessary heat source (stored hot water) can be avoided.
  • FIG. 1 is a system diagram showing an embodiment of a heat pump type hot water supply / air conditioner according to the present invention, and shows a state of defrost operation using circulating hot water.
  • the state of defrost operation using stored hot water is shown.
  • It is the figure prescribed
  • It is a systematic diagram of the principal part which shows the modification of the heat pump type hot-water supply / air-conditioning apparatus which concerns on this invention, and the state of the defrost driving
  • the heat pump hot water supply / air conditioner HP includes a refrigerant system 10 of a heat pump capable of selecting a cooling cycle or a heating cycle by switching the circulation direction of the refrigerant circulating in the refrigerant circuit, and the heat pump. And a water system 30 that uses hot water obtained by heating water for hot water supply or heating.
  • the refrigerant sent out by the compressor 11 circulates through a closed circuit refrigerant circuit 14 including the outdoor heat exchanger 12 and the outdoor heat exchanger 13, and repeatedly changes the state of the gas and liquid.
  • the illustrated refrigerant circuit 14 is provided with a four-way valve 15 on the discharge side of the compressor 11, and by operating the four-way valve 15, the refrigerant circulation direction is switched and reversed, and a clockwise cooling cycle or counterclockwise rotation is performed. Any one of the heating cycles can be selected.
  • Reference numeral 16 provided in the refrigerant circuit 14 is an electronic expansion valve for cooling
  • 17 is an electronic expansion valve for heating
  • 18 is a receiver.
  • the water sent out by the pump 31 absorbs heat from the refrigerant in an outdoor heat exchanger (hereinafter also referred to as “water heat exchanger”) 13 provided in the refrigerant system 10, and becomes warm water.
  • a hot water circulation channel 32 that circulates and uses a hot water heat source is formed.
  • the hot water circulation channel 32 is provided with a three-way valve 33, a first electromagnetic switching valve 34, and a second electromagnetic switching valve 35 as a hot water channel switching valve.
  • a radiator 36 that functions as a heat exchanger for heating using hot water and a hot water branched from the hot water circulation channel 32 are introduced, and the hot water is stored and stored.
  • a hot water tank 37 is provided.
  • the radiator 36 in this case is a heat exchanger that heats hot water and indoor air by exchanging heat.
  • the hot water tank 37 includes a sanitary water supply circuit 38 that supplies hot water for hot water supply that is heated using the stored hot water, and an electric heater 39 that is energized as necessary.
  • the sanitary water supply circuit 38 absorbs heat when the water supplied by a hot water supply pump (not shown) flows through the heat exchanger 38a in the hot water tank 37 to become hot water, and this hot water is used for hot water supply. It is.
  • the electric heater 39 is auxiliary heating means used when the amount of heat stored in the hot water tank 37 is as low as a predetermined value or less. That is, the electric heater 39 is a device for energizing when the stored hot water in the hot water tank 39 is equal to or lower than a predetermined water temperature value and heating the stored hot water to a desired temperature.
  • the water system 30 configured in this manner is a heating system that supplies hot water to the radiator 36 by appropriately opening and closing the above-described three-way valve 33, the first electromagnetic switching valve 34, and the second electromagnetic switching valve 35. Either the operation or the heat storage operation for supplying hot water to the hot water tank 37 is selected and implemented, or the hot water is dividedly supplied to both the radiator 36 and the hot water tank 37 to perform both the heating operation and the heat storage operation by the hot water. Can be implemented.
  • the low-temperature and low-pressure gas refrigerant is compressed by the compressor 11 and sent to the refrigerant circuit 14 as a high-temperature and high-pressure gas refrigerant.
  • This gas refrigerant is guided to the water heat exchanger 13 by the four-way valve 15 and circulates counterclockwise as indicated by a solid arrow in the figure.
  • the water heat exchanger 13 in this case is a heat exchanger that exchanges heat between the water of the water system 30 sent by the pump 31 and the high-temperature and high-pressure gas refrigerant, and the heat of condensation condensed by the refrigerant condensing the water. Functions as a condenser to heat.
  • the high-temperature and high-pressure gas refrigerant flowing through the refrigerant system 10 is condensed to become a high-temperature and high-pressure liquid refrigerant (including gas-liquid two phases), and the water flowing through the water system 30 absorbs heat from the refrigerant and becomes hot water.
  • the refrigerant condensed in the water heat exchanger 13 flows into the receiver 18 through the fully opened cooling electronic expansion valve 16.
  • the receiver 18 performs gas-liquid separation of the refrigerant and adjusts the amount of circulating refrigerant.
  • a heating electronic expansion valve 17 that depressurizes the high-temperature and high-pressure liquid refrigerant is disposed downstream of the receiver 18. As the refrigerant passes through the heating electronic expansion valve 17, the high-temperature and high-pressure liquid refrigerant is decompressed to become a low-temperature and low-pressure liquid refrigerant. This liquid refrigerant is led to the outdoor heat exchanger 12 functioning as an evaporator, and heat is exchanged with the outside air to vaporize by absorbing heat from the outside air. At this time, since moisture in the air freezes and forms frost on the outer peripheral surface of the outdoor heat exchanger 12 having a low temperature, the defrost operation described later is performed every appropriate operation time to remove the frost. Is required.
  • the refrigerant circulation direction is switched by the operation of the four-way valve 15. That is, the high-temperature and high-pressure gas refrigerant delivered from the compressor 11 is guided to the outdoor heat exchanger 12 by the four-way valve 15 and circulates clockwise as indicated by broken line arrows in the drawing.
  • the outdoor heat exchanger 12 in this case functions as a condenser that condenses the refrigerant and dissipates the heat of condensation by exchanging heat between the outside air and the high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant is condensed to become a high-temperature and high-pressure liquid refrigerant (including gas-liquid two phases), and the frost adhering to the outdoor heat exchanger 12 is solved by receiving heat radiation (condensation heat).
  • the refrigerant condensed in the outdoor heat exchanger 12 flows into the receiver 18 through the fully-open heating electronic expansion valve 17.
  • the receiver 18 performs gas-liquid separation of the refrigerant and adjusts the amount of circulating refrigerant.
  • a cooling electronic expansion valve 16 that depressurizes the high-temperature and high-pressure liquid refrigerant is disposed downstream of the receiver 18.
  • the cooling electronic expansion valve 16 When the refrigerant passes through the cooling electronic expansion valve 16, the high-temperature and high-pressure liquid refrigerant is decompressed to become a low-temperature and low-pressure liquid refrigerant. Since this liquid refrigerant is led to the water heat exchanger 13 functioning as an evaporator, it absorbs heat and vaporizes by exchanging heat with the hot water supplied from the water system 30. As a result, the low-temperature and low-pressure liquid refrigerant becomes a low-temperature and low-pressure gas refrigerant, and is again sucked into the compressor 11 through the four-way valve 15.
  • the low-temperature and low-pressure gas refrigerant sucked into the compressor 11 in this way is compressed by the compressor 11 to become a high-temperature and high-pressure gas refrigerant, and thereafter circulates in the same path and repeats the gas-liquid state change.
  • the hot water of the water system 30 is used as a heat source for vaporizing the low-temperature and low-pressure liquid refrigerant in the water heat exchanger 13 functioning as an evaporator. That is, the warm water flowing to the water heat exchanger 13 during the defrost operation is the circulating hot water circulating in the hot water circulation channel 32 according to the detected value of the temperature of the warm water flowing in the hot water circulation channel 32 of the water system 30, or Either one of the stored hot water stored in the hot water tank 37 is selected and used.
  • the above-described water temperature detection value is obtained by installing a temperature sensor (not shown) at the inlet or outlet of the water heat exchanger 13 and measuring the temperature of the hot water flowing through the hot water circulation channel 32 at the inlet or outlet of the water heat exchanger 13. A value is used. Then, the stored hot water in the hot water tank 37 is selected as the hot water flowing to the water heat exchanger 13 during the defrost operation when the water temperature detection value becomes a low temperature equal to or lower than a predetermined water temperature value. That is, when the detected water temperature is higher than the predetermined value, the circulating hot water is used, and the stored hot water in the hot water tank 37 is used when the detected water temperature is lower than the predetermined value. Therefore, the stored hot water in the hot water tank 37 having a high temperature is used. With respect to, defrosting operation can be carried out while minimizing the amount used.
  • the water system 30 shown in FIG. 1 shows the open / closed state (black paint is closed) of the three-way valve 33, the first electromagnetic switching valve 34, and the second electromagnetic switching valve 35 during defrost operation using circulating hot water.
  • the first electromagnetic switching valve 34 is opened, the second electromagnetic switching valve 35 is closed, and the three-way valve 33 flows from the water heat exchanger 13 to the first electromagnetic switching valve 34.
  • the road is open.
  • the circulating hot water supplied to the water heat exchanger 13 is vaporized by heating the refrigerant in the water heat exchanger 13, passes through the three-way valve 33, the first electromagnetic switching valve 34, and the radiator 36, and is sucked into the pump 31 again. And circulates through the hot water circulation passage 32.
  • the water system 30 shown in FIG. 2 shows the open / closed state (black paint is closed) at the time of defrost operation using stored hot water for the three-way valve 33, the first electromagnetic switching valve 34, and the second electromagnetic switching valve 35.
  • the first electromagnetic switching valve 34 is closed
  • the second electromagnetic switching valve 35 is opened
  • the three-way valve 33 flows from the water heat exchanger 13 to the first electromagnetic switching valve 34.
  • the road is open.
  • the stored hot water in the hot water tank 37 is supplied to the water heat exchanger 13 through the second electromagnetic switching valve 35 by the operation of the pump 31.
  • the stored hot water is vaporized by heating the refrigerant in the water heat exchanger 13, and then returned to the hot water tank 37 through the three-way valve 33.
  • Such a defrost operation is performed by operating the four-way valve 15 to reverse the refrigerant circulation direction and switching the heating cycle to the cooling cycle.
  • the compressor 11 It is desirable to reduce the rotational speed to the minimum. That is, before the switching operation of the four-way valve 15 is performed, a control for reducing the rotation speed of the compressor 11 is performed, so that a sudden low pressure drop occurs in the defrost operation after the switching operation of the four-way valve 15 occurs. Can be prevented.
  • the cooling electronic expansion valve 16 is fully opened at the same time when the defrost operation is started, and the refrigerant flow path in the refrigerant circuit 14 is secured.
  • the hot water flowing from the circulating hot water or the stored hot water to the hydrothermal exchanger 13 may be selected based on the predetermined water temperature value based on the water temperature detection value detected at the inlet or the outlet of the water heat exchanger 13. As shown in FIG. 3, the selection may be made in consideration of the relationship between the detected outside air temperature and the detected water temperature. In the example shown in FIG.
  • the values defining the boundary line in FIG. 3 are the lower limit of the hydrothermal inlet water temperature (20 ° C.) is the lower limit value of the operating temperature range, and the upper limit of the hydrothermal inlet water temperature (30 ° C.) is the lower limit of the outside air temperature.
  • the lower limit ( ⁇ 20 ° C.) of the water temperature and the outside air temperature necessary for the water heat exchanger 13 to avoid the evaporation saturation temperature at which partial freezing starts is the lower limit value of the operating temperature range.
  • the outside air temperature (0 ° C) at the inflection point of the boundary line is the intersection of the selected boundary line (inclined straight line) for switching between circulating hot water / stored hot water and the lower limit (20 ° C) of the hydrothermal inlet temperature.
  • This selection boundary line lowers the upper limit of the hydrothermal inlet water temperature as the outside air temperature increases. Therefore, the selected boundary line is corrected so that the predetermined water temperature value becomes higher as the outside air temperature is lower. In addition, it is not necessary to consider the area where the water temperature and the outside air temperature are below the lower limit of the operating temperature range because they are outside the operating range. Therefore, in the area below the boundary line, the operation is switched to the defrost operation using the stored hot water regardless of the use range defined by the system.
  • region below a boundary line) of FIG. 3 is based on the hydrothermal exchange inlet water temperature, it is also possible to prescribe
  • the temperature of the hot water detected by a temperature sensor (not shown) built in the hot water tank 37 or the water temperature at the hydrothermal entrance after the switching is low is below the boundary line. If it exists in an area
  • hot water is stored (heat storage) in the hot water tank 37, and hot water is supplied by heating the water flowing through the sanitary water supply circuit 38 using the stored hot water as a heat source.
  • the defrost operation can be applied to a water system 30A that uses hot water obtained by heating water in the hot water tank 37A for hot water supply, as in another embodiment shown in FIG. 4, for example.
  • the hot water stored in the hot water tank 37A flows directly through the sanitary water supply circuit 38A and is supplied with hot water, and the hot water supplied from the water heat exchanger 13 in the heating cycle is the heat exchanger 40. Is used for heating the hot water stored in the hot water tank 37A.
  • the three-way valve 33 When the defrost operation is performed in the water system 30A configured as described above, when the stored hot water is used to raise the temperature of the hot water supplied to the water heat exchanger 13, the three-way valve 33 is operated and the arrow W Switch the hot water flow path as shown by. As a result, the low-temperature circulating hot water flows through the hot water tank 37A, and when passing through the hot water tank 37A, the hot water is heated through the heat exchanger 40 and heated. To do. In the case where the stored hot water in the hot water tank 37A does not have sufficient heating capability, the electric heater 39 may be energized and heated and heated as in the above-described embodiment.
  • the water temperature detection value detected at the inlet or outlet of the water heat exchanger 13 is not used as a heat source to be supplied to the water heat exchanger 13 at the time of the defrost operation. Or, based on the water temperature detection value corrected according to the outside air temperature, either one of the circulating hot water or the stored hot water is selected and used. Therefore, by using the circulating hot water, the high temperature storage in the hot water tank is usually used. Defrosting operation can be carried out with a minimum amount of hot water used.

Abstract

 ヒートポンプの冷媒系統(10)から加熱を受けて温水を得る水系統(30)を有し、冷媒系統(10)の冷媒循環方向を冷房サイクルに設定してデフロスト運転を行うヒートポンプ式給湯・空調装置(HP)において、デフロスト運転において、必要最小限の熱源を用いて水-冷媒熱交換器の氷結リスクを回避できるようにする。デフロスト運転時に室内熱交換器(13)に流す水として、水系統(30)を流れる温水の水温検出値に応じて、温水循環流路(32)を循環している循環温水または温水タンク(37)内に貯蔵されている貯蔵温水のいずれか一方が選択され、水温検出値が所定水温値以下となった場合に貯蔵温水が選択される。

Description

ヒートポンプ式給湯・空調装置
 本発明は、ヒートポンプを用いて給湯及び空調を行うヒートポンプ式給湯・空調装置に係り、特に、ヒートポンプの冷媒回路を冷房サイクルに切り替えてデフロスト運転を行うヒートポンプ式給湯・空調装置のデフロスト制御に関する。
 ヒートポンプ式給湯・空調装置は、圧縮機により送出される冷媒が熱交換器を備えた閉回路の冷媒回路を循環して気液の状態変化を繰り返す冷媒系統と、ポンプにより送出された水が冷媒系統に設けられた熱交換器(水-冷媒熱交換器)で冷媒から吸熱して温水となる水系統とを有している。このようなヒートポンプ式給湯・空調装置においては、冷媒系統に設けられている四方弁を操作することにより、冷媒の循環方向を切り替えて暖房運転及び冷房運転のいずれか一方を選択することができる。
 そして、上述した冷媒系統を暖房運転の状態にすれば、凝縮器として機能する水-冷媒熱交換器で水系統を流れる水が加熱されて温水となる。この温水は、給湯用として直接使用してもよいし、あるいは、ラジエターによる温水暖房用の熱源としても使用できる。
 上述したヒートポンプ式給湯・空調装置の冷媒系統においては、水-冷媒熱交換器で水を加熱して温水とする暖房運転の継続により、蒸発器として機能する熱交換器に着霜して熱交換効率が低下する。このため、従来のヒートポンプ式給湯・空調装置は、必要に応じて冷媒系統を暖房運転から冷房運転に切り替えて冷媒循環方向を逆転させ、着霜した熱交換器を凝縮器として機能させることで除霜するデフロスト運転が行われている。
 ヒートポンプのデフロスト運転に関する従来技術としては、たとえば下記の特許文献1に記載された給湯器が知られている。この従来技術には、冷媒の循環方向を逆転させるデフロスト運転時に水-冷媒熱交換器が蒸発器となり、冷媒により水を冷却するマイナス能力を発揮するので、このようなデフロスト運転時に冷媒のホットガスバイパス量を調整してマイナス能力の低減やデフロスト運転時間の短縮等を行うことが開示されている。
特開2008-224088号公報
  ところで、従来のヒートポンプ式給湯・空調装置においては、冷媒回路の冷媒循環を冷房運転に切り替えてデフロスト運転を行う際、水系統(給湯・暖房回路側)を循環している温水の温度が低いと、水-冷媒熱交換器で冷媒を気化させる熱源に不足を生じることになる。このような熱源不足は、冷媒系統において圧縮機に吸入されるガス冷媒の圧力が低下する低圧低下や、水-冷媒熱交換器内で吸熱される温水を氷結させる原因となるため好ましくない。
 他方、上述した熱源不足のみを考慮し、たとえば高温にて蓄熱されている給湯タンク内の熱源(温水)を使用してデフロスト運転を実施すると、給湯タンク内の温水温度を低下させることになる。このような給湯タンク内の温水温度低下は、給湯用温水の温度低下を意味するため好ましくない。
 すなわち、冷媒の循環方向を逆転させてデフロスト運転を行うヒートポンプ式給湯・空調装置においては、冷媒と空気とを熱交換させるヒートポンプ式の空調装置と異なり、冷媒と熱交換を行う熱伝達物質に水を使用しているので、冷媒側の温度が極度に低くなる場合には、水-冷媒熱交換器内の水に部分氷結が発生する可能性を有している。このため、冷房運転時と同様の冷媒循環を行って水-冷媒熱交換器に冷媒を流すデフロスト運転においては、水系統側の水温とともに冷媒系統側の圧力飽和温度をある一定温度以上に保つことが必要となる。
 本発明は、上記の事情に鑑みてなされたものであり、その目的とするところは、デフロスト運転において、必要最小限の熱源を用いて水-冷媒熱交換器の氷結リスクを回避できるようにしたヒートポンプ式給湯・空調装置を提供することにある。
 本発明は、上記の課題を解決するため、下記の手段を採用した。
 本発明に係るヒートポンプ式給湯・空調装置は、圧縮機により送出される冷媒が熱交換器を備えた閉回路の冷媒回路を循環して気液の状態変化を繰り返すとともに、前記冷媒回路を循環する冷媒の循環方向を切り替えて冷房サイクルまたは暖房サイクルの選択が可能なヒートポンプの冷媒系統と、ポンプにより送出された水が前記冷媒系統に設けられた水熱交換器で冷媒から吸熱して温水とされ、該温水を循環させて温水熱源を使用する温水循環流路に流路切替弁を介して連結された温水タンクを備えている水系統とを有し、前記冷媒系統の冷媒循環方向を前記冷房サイクルに設定してデフロスト運転を行うヒートポンプ式給湯・空調装置において、前記デフロスト運転時に前記水熱交換器に流す水として、前記水系統を流れる温水の水温検出値に応じて、前記温水循環流路を循環している循環温水または前記温水タンク内に貯蔵されている貯蔵温水のいずれか一方が選択され、前記貯蔵温水は、前記水温検出値が所定水温値以下となった場合に選択されるものである。
 このようなヒートポンプ式給湯・空調装置によれば、デフロスト運転時に水熱交換器へ流す水として、水系統を流れる温水の水温検出値に応じて、温水循環流路を循環している循環温水または温水タンク内に貯蔵されている貯蔵温水のいずれか一方が選択される。すなわち、一方の貯蔵温水は、水温検出値が所定水温値以下となった場合に選択され、他方の循環温水は、水温検出値が所定水温値より高い場合に選択されるので、温度の高い温水タンク内の貯蔵温水使用量を最小限に抑えてデフロスト運転を実施することができる。
 上記の発明において、前記水温所定値は、外気温度が低いほど高くなるように補正されることが好ましく、これにより、温度の高い温水タンク内の貯蔵温水使用量をより一層低減して効率のよいデフロスト運転を実施することができる。
 上記の発明において、前記貯蔵温水が前記所定水温値以下の場合に加熱して昇温させる加熱手段を設けておくことにより、必要な温水(熱源)を確実に確保してデフロスト運転を実施できるようになる。
 上述した本発明のヒートポンプ式給湯・空調装置によれば、冷房サイクルを実施して行われるデフロスト運転において、水系統側を流れる水温検出値が所定値より高い場合は循環温水を使用し、水系統側を流れる水温検出値が所定値以下となる場合にのみ貯蔵温水を使用するので、温度の高い温水タンク内の貯蔵温水使用量を最小限に抑えてデフロスト運転を実施することができるようになり、必要最小限の熱源(貯蔵温水)を用いて水-冷媒間で熱交換する熱交換器の氷結リスクを回避できるという顕著な効果が得られる。
本発明に係るヒートポンプ式給湯・空調装置の一実施形態を示す系統図であり、循環温水を使用したデフロスト運転の状態が示されている。 図1に示すヒートポンプ式給湯・空調装置において、貯蔵温水を使用したデフロスト運転の状態が示されている。 貯蔵温水を使用する領域の一例として、外気温度と水熱交入口水温との関係により規定した図である。 本発明に係るヒートポンプ式給湯・空調装置の変形例を示す要部の系統図であり、循環温水または貯蔵温水を使用したデフロスト運転の状態が示されている。
 以下、本発明に係るヒートポンプ式給湯・空調装置の一実施形態を図面に基づいて説明する。
 図1に示す実施形態の系統図において、ヒートポンプ式給湯・空調装置HPは、冷媒回路を循環する冷媒の循環方向を切り替えて冷房サイクルまたは暖房サイクルの選択が可能なヒートポンプの冷媒系統10と、ヒートポンプにより水を加熱して得られる温水を給湯や暖房に使用する水系統30とを備えている。
 冷媒系統10は、圧縮機11により送出される冷媒が室外熱交換器12及び室外熱交換器13を備えた閉回路の冷媒回路14を循環して気液の状態変化を繰り返すものである。図示の冷媒回路14は、圧縮機11の吐出側に四方弁15を備えており、この四方弁15を操作することにより冷媒の循環方向を切り替えて逆転させ、時計回りの冷房サイクルまたは反時計回りの暖房サイクルからいずれか一方を選択することができる。なお、冷媒回路14に設けられている符号16は冷房用電子膨張弁、17は暖房用電子膨張弁、18はレシーバである。
 水系統30は、ポンプ31により送出された水が冷媒系統10に設けられた室外熱交換器(以下、「水熱交換器」ともいう)13で冷媒から吸熱して温水とされ、この温水を循環させて温水熱源を使用する温水循環流路32を形成している。この温水循環流路32には、温水の流路切替弁として、三方弁33、第1電磁切替弁34及び第2電磁切替弁35が設けられている。
 さらに、上述した温水循環流路32には、温水を用いた暖房用熱交換器として機能するラジエター36と、温水循環流路32から分岐させて温水を導入し、この温水を貯蔵して蓄熱する温水タンク37とが設けられている。この場合のラジエター36は、温水と室内の空気とを熱交換させて暖房する熱交換器である。
 温水タンク37は、貯蔵した温水の蓄熱を利用して加熱した給湯用温水を供給するサニタリ水供給回路38と、必要に応じて通電される電気ヒータ39とを備えている。
 サニタリ水供給回路38は、給湯ポンプ(不図示)により供給される水が温水タンク37内の熱交換器38aを流れる際に吸熱して温水となり、この温水を給湯などに使用する給湯温水供給系統である。
 電気ヒータ39は、温水タンク37内に貯蔵されている温水の蓄熱量が所定値以下と低い場合に使用される補助の加熱手段である。すなわち、電気ヒータ39は、温水タンク39内の貯蔵温水が所定水温値以下の場合に通電し、貯蔵温水を加熱して所望の温度まで昇温させるための装置である。
 このように構成された水系統30は、上述した三方弁33、第1電磁切替弁34及び第2電磁切替弁35を適宜開閉操作して選択切替することにより、ラジエター36に温水を供給する暖房運転または温水タンク37に温水を供給する蓄熱運転のいずれか一方を選択して実施し、あるいは、ラジエター36及び温水タンク37の両方に温水を分割供給して温水による暖房運転及び蓄熱運転の両方を実施することができる。
 上述した冷媒系統10においては、暖房サイクルが選択されると、低温低圧のガス冷媒が圧縮機11で圧縮され、高温高圧のガス冷媒として冷媒回路14に送出される。このガス冷媒は、図中に実線矢印で示すように、四方弁15により水熱交換器13へ導かれて反時計回りに循環する。この場合の水熱交換器13は、ポンプ31により送出された水系統30の水と高温高圧のガス冷媒とを熱交換させる熱交換器であり、冷媒の凝縮により放熱される凝縮熱が水を加熱する凝縮器として機能する。この結果、冷媒系統10を流れる高温高圧のガス冷媒は凝縮して高温高圧の液冷媒(気液二相を含む)となり、水系統30を流れる水は冷媒から吸熱して温水となる。
 水熱交換器13で凝縮した冷媒は、全開の冷房用電子膨張弁16を通ってレシーバ18へ流入する。このレシーバ18では、冷媒の気液分離が行われるとともに、循環する冷媒量の調整が行われる。
 レシーバ18の下流側には、高温高圧の液冷媒を減圧する暖房用電子膨張弁17が配置されている。この暖房用電子膨張弁17を冷媒が通過することにより、高温高圧の液冷媒は減圧されて低温低圧の液冷媒となる。この液冷媒は、蒸発器として機能する室外熱交換器12に導かれ、外気と熱交換することにより外気から吸熱して気化する。このとき、低温となる室外熱交換器12の外周面には空気中の水分等が氷結して着霜するので、適当な運転時間毎に後述するデフロスト運転を実施して着霜を除去することが必要となる。
 このようにして、低温低圧の液冷媒が室外熱交換器12を通過することにより、この液冷媒は気化して低温低圧のガス冷媒となる。この結果、このガス冷媒は、再び四方弁15を通って圧縮機11に吸引される。こうして圧縮機11に吸引された低温低圧のガス冷媒は、圧縮機11により再度圧縮されて高温高圧のガス冷媒となり、以下同様の経路を循環して気液の状態変化を繰り返す。
 なお、図中の符号12aは、室外熱交換器12を通過する外気量(送風量)の調整を行う外気ファンである。
 一方、上述した冷媒系統10において、デフロスト運転を行うために冷房サイクルが選択されると、四方弁15の操作により冷媒の循環方向が切り替えられる。
 すなわち、圧縮機11から送出された高温高圧のガス冷媒は、図中に破線矢印で示すように、四方弁15により室外熱交換器12へ導かれて時計回りに循環する。この場合の室外熱交換器12は、外気と高温高圧のガス冷媒とが熱交換することにより、冷媒が凝縮して凝縮熱を放熱する凝縮器として機能する。この結果、高温高圧のガス冷媒は凝縮して高温高圧の液冷媒(気液二相を含む)となり、室外熱交換器12に付着した霜については、放熱(凝縮熱)を受けることによって解かされる。
 室外熱交換器12で凝縮した冷媒は、全開の暖房用電子膨張弁17を通ってレシーバ18へ流入する。このレシーバ18では、冷媒の気液分離が行われるとともに、循環する冷媒量の調整が行われる。
 レシーバ18の下流側には、高温高圧の液冷媒を減圧する冷房用電子膨張弁16が配置されている。この冷房用電子膨張弁16を冷媒が通過することにより、高温高圧の液冷媒が減圧されて低温低圧の液冷媒となる。この液冷媒は、蒸発器として機能する水熱交換器13に導かれるので、水系統30から供給される温水と熱交換することにより吸熱して気化する。この結果、低温低圧の液冷媒は低温低圧のガス冷媒となり、再び四方弁15を通って圧縮機11に吸引される。こうして圧縮機11に吸引された低温低圧のガス冷媒は、圧縮機11により圧縮されて高温高圧のガス冷媒となり、以下同様の経路を循環して気液の状態変化を繰り返す。
 さて、上述したデフロスト運転時の冷房サイクルでは、蒸発器として機能する水熱交換器13において、低温低圧の液冷媒を気化させる熱源として、水系統30の温水が使用されている。すなわち、デフロスト運転時に水熱交換器13へ流す温水は、水系統30の温水循環流路32を流れる温水の水温検出値に応じて、温水循環流路32を循環している循環温水、または、温水タンク37内に貯蔵されている貯蔵温水のいずれか一方が選択して使用される。
 上述した水温検出値は、水熱交換器13の入口または出口に温度センサ(不図示)を設置し、温水循環流路32を流れる温水の温度を水熱交換器13の入口または出口で測定した値が使用される。そして、デフロスト運転時に水熱交換器13へ流す温水として温水タンク37内の貯蔵温水を選択するのは、水温検出値が所定水温値以下の低温となった場合とされる。すなわち、水温検出値が所定値より高い場合に循環温水を使用し、水温検出値が所定値以下の低温時に温水タンク37内の貯蔵温水を使用するので、温度の高い温水タンク37内の貯蔵温水については、その使用量を最小限に抑えてデフロスト運転を実施することができる。
 図1に示す水系統30は、三方弁33、第1電磁切替弁34及び第2電磁切替弁35について、循環温水を使用するデフロスト運転時の開閉状態(黒塗りが閉)を示している。この場合、第1電磁切替弁34が開とされ、かつ、第2電磁切替弁35が閉とされるとともに、三方弁33については、水熱交換器13から第1電磁切替弁34へ向かう流路が開かれている。この結果、ポンプ31の運転により、温水循環流路32を循環する循環温水が水熱交換器13へ供給され、貯蔵温水はそのまま温水タンク37内に貯蔵される。水熱交換器13へ供給された循環温水は、水熱交換機13で冷媒を加熱して気化させた後、三方弁33、第1電磁切替弁34及びラジエター36を通り、ポンプ31に再び吸引されて温水循環流路32を循環する。
 図2に示す水系統30は、三方弁33、第1電磁切替弁34及び第2電磁切替弁35について、貯蔵温水を使用するデフロスト運転時の開閉状態(黒塗りが閉)を示している。この場合、第1電磁切替弁34が閉とされ、かつ、第2電磁切替弁35が開とされるとともに、三方弁33については、水熱交換器13から第1電磁切替弁34へ向かう流路が開かれている。この結果、ポンプ31の運転により、温水タンク37内の貯蔵温水が第2電磁切替弁35を通って水熱交換器13へ供給される。この貯蔵温水は、水熱交換機13で冷媒を加熱して気化させた後、三方弁33を通って温水タンク37に戻される。
 このようなデフロスト運転は、四方弁15を操作することにより冷媒の循環方向を逆転させ、暖房サイクルを冷房サイクルに切り替えて実施されるが、四方弁15を操作する時点においては、圧縮機11の回転数を最低に落とすことが望ましい。すなわち、四方弁15の切替操作を実施する前に、圧縮機11の回転数を低減する制御を行うことにより、四方弁15を切替操作した後のデフロスト運転において、急激な低圧低下が生じることを防止できる。
 また、デフロスト運転時には、デフロスト運転開始とともに冷房用電子膨張弁16を全開とし、冷媒回路14内の冷媒流路を確保する。このとき、水熱交換器13の入口または出口で検出した水温検出値により、所定水温値を基準にして循環温水または貯蔵温水から水熱交換器13に流す温水を選択してもよいが、たとえば図3に示すように、検出した外気温度と水温検出値との関係を考慮した選択をしてもよい。
 図3に示す例では、外気温度及び水熱交換器13の入口で検出した水温検出値(水熱交入口水温)が境界線よりも下の領域にある場合、循環温水の温度が低いと判断して温水タンク37内の貯蔵温水を選択し、他の領域にある場合は循環温水が選択される。
 ここで、図3の境界線を規定する値は、水熱交入口水温の下限(20℃)が運転温度範囲の下限値、水熱交入口水温の上限(30℃)が外気温度の下限において水熱交換器13が部分氷結を開始する蒸発飽和温度を回避するのに必要な水温、外気温度の下限(-20℃)が運転温度範囲の下限値である。そして、境界線の変曲点での外気温度(0℃)は、循環温水/貯蔵温水の選択切替を行う選択境界線(傾斜直線)と水熱交入口温度の下限(20℃)との交点であり、この選択境界線は、外気温度が高くなるにつれて水熱交入口水温の上限を低下させている。従って、この選択境界線は、上述した所定水温値について、外気温度が低いほど高くなるように補正したものとなる。また、水熱交入口水温及び外気温度が運転温度範囲の下限値を下回る領域は、本来使用範囲外であるため考慮する必要はないが、システムの始動時など過渡的に使用範囲を逸脱するケースを考慮し、境界線より下の領域ではシステムで規定された使用範囲の内外によらず、貯蔵温水を用いたデフロスト運転に切り替える。
 なお、図3の貯蔵温水選択領域(境界線より下の領域)は、水熱交入口水温を基準としているが、水熱交出口水温を基準として貯蔵温水選択領域を規定することも可能である。
 また、循環温水の温度が低く貯蔵温水を選択した場合、温水タンク37に内蔵された温度センサ(不図示)による温水の検知温度もしくは切替完了後の水熱交入口水温が低く境界線より下の領域(図3参照)にあれば、貯蔵温水も十分な水温を有していない状態にあると判断できる。
 そこで、温水タンク37の内部に補助的な加熱手段として設けられている電気ヒータ39に通電し、内部の貯蔵温水を加熱して昇温させる。すなわち、温水タンク37には、貯蔵温水が所定水温値以下の場合に加熱し、貯蔵温水を所望の温度まで昇温させる電気ヒータ39が設けられているので、この電気ヒータ39で加熱した貯蔵温水を使用することにより、冷媒の気化に必要な熱源の温水を確実に得てデフロスト運転を実施することができる。
 ところで、上述した実施形態では、温水タンク37に高温の温水を貯蔵(蓄熱)し、この貯蔵温水を熱源としてサニタリ水供給回路38を流れる水の加熱を行って給湯しているが、本発明のデフロスト運転は、たとえば図4に示す他の実施形態のように、温水タンク37A内の水を加熱した温水を給湯に使用する水系統30Aにも適用可能である。
 図4に示す水系統30Aは、温水タンク37A内に貯蔵される温水が直接サニタリ水供給回路38Aを流れて給湯され、暖房サイクルで水熱交換器13から供給される温水は、熱交換器40を介して温水タンク37A内に貯蔵された温水の加熱に使用される。
 このように構成された水系統30Aでデフロスト運転を行う場合、水熱交換器13に供給する温水の昇温に貯蔵温水を使用する場合には、三方弁33を操作して図中に矢印Wで示すように温水流路を切り替える。この結果、低温の循環温水は、温水タンク37A内を通過して流れるようになり、温水タンク37Aの内部を通過する際には、熱交換器40を介して貯蔵温水の加熱を受けて昇温する。なお、温水タンク37A内の貯蔵温水が十分な加熱能力を有していない場合には、上述した実施形態と同様に、電気ヒータ39に通電して加熱・昇温させればよい。
 このように、上述した本発明によれば、デフロスト運転時に水熱交換器13に供給する熱源として一律に循環温水を用いるのではなく、水熱交換器13の入口または出口で検出した水温検出値、あるいは、外気温度によって補正した水温検出値に基づいて、循環温水または貯蔵温水からいずれか一方を選択して使用するので、通常は循環温水を使用することにより、温水タンク内にある高温の貯蔵温水使用量を最小限に抑えてデフロスト運転を実施できるようになる。従って、デフロスト運転時には、必要最小限の熱源(貯蔵温水)を用い、水-冷媒間で熱交換を行う室内熱交換器(水熱交換器)13に懸念されていた氷結リスクを回避することができる。
 なお、本発明は上述した実施形態に限定されることはなく、その要旨を逸脱しない範囲内において適宜変更することができる。
 10  冷媒系統
 11  圧縮機
 12  室外熱交換器
 12a  室外機ファン
 13  室内熱交換器(水熱交換器)
 14  冷媒回路
 15  四方弁
 16  冷房用電子膨張弁
 17  暖房用電子膨張弁
 18  レシーバ
 30,30A  水系統
 31  ポンプ
 32  温水循環流路
 33  三方弁
 34  第1電磁切替弁
 35  第2電磁切替弁
 36  ラジエター
 37,37A  温水タンク
 38,38A  サニタリ水供給回路
 38a,40  熱交換器
 39  電気ヒータ
 HP  ヒートポンプ式給湯・空調装置

Claims (3)

  1.  圧縮機により送出される冷媒が室外熱交換器及び室内熱交換器を備えた閉回路の冷媒回路を循環して気液の状態変化を繰り返すとともに、前記冷媒回路を循環する冷媒の循環方向を切り替えて冷房サイクルまたは暖房サイクルの選択が可能なヒートポンプの冷媒系統と、
     ポンプにより送出された水が前記室内熱交換器で冷媒から吸熱して温水とされ、該温水を循環させて温水熱源を使用する温水循環流路に流路切替弁を介して連結された温水タンクを備えている水系統とを有し、
     前記冷媒系統の冷媒循環方向を前記冷房サイクルに設定してデフロスト運転を行うヒートポンプ式給湯・空調装置において、
     前記デフロスト運転時に前記室内熱交換器に流す水として、前記水系統を流れる温水の水温検出値に応じて、前記温水循環流路を循環している循環温水または前記温水タンク内に貯蔵されている貯蔵温水のいずれか一方が選択され、
     前記貯蔵温水は、前記水温検出値が所定水温値以下となった場合に選択されるヒートポンプ式給湯・空調装置。
  2.  前記所定水温値は、外気温度が低いほど高くなるように補正される請求項1に記載のヒートポンプ式給湯・空調装置。
  3.  前記貯蔵温水が前記所定水温値以下の場合に加熱して昇温させる加熱手段を備えている請求項1または2に記載のヒートポンプ式給湯・空調装置。
PCT/JP2010/050610 2009-02-06 2010-01-20 ヒートポンプ式給湯・空調装置 WO2010090071A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP10738409.1A EP2395302B1 (en) 2009-02-06 2010-01-20 Heat pump-type hot-water supply and air-conditioning device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009025946A JP5427428B2 (ja) 2009-02-06 2009-02-06 ヒートポンプ式給湯・空調装置
JP2009-025946 2009-02-06

Publications (1)

Publication Number Publication Date
WO2010090071A1 true WO2010090071A1 (ja) 2010-08-12

Family

ID=42541975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/050610 WO2010090071A1 (ja) 2009-02-06 2010-01-20 ヒートポンプ式給湯・空調装置

Country Status (3)

Country Link
EP (1) EP2395302B1 (ja)
JP (1) JP5427428B2 (ja)
WO (1) WO2010090071A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102997415A (zh) * 2012-12-19 2013-03-27 深圳麦克维尔空调有限公司 空气源热泵热水机
CN105823280A (zh) * 2016-03-29 2016-08-03 青岛海信日立空调系统有限公司 一种除霜装置、除霜控制方法、控制器及空气源热泵系统
CN107525174A (zh) * 2017-08-17 2017-12-29 青岛海信日立空调系统有限公司 一种多联机空调系统及其控制方法
US20220252326A1 (en) * 2021-02-08 2022-08-11 A. O. Smith (China) Water Heater Co., Ltd. Defrosting control method, central controller and heating system

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5651902B2 (ja) * 2010-09-06 2015-01-14 オリオン機械株式会社 貯湯式温水器および貯湯式温水器の制御方法
JP2012117769A (ja) * 2010-12-02 2012-06-21 Panasonic Corp 冷温水給湯装置
JP2012167889A (ja) * 2011-02-16 2012-09-06 Panasonic Corp 冷温水給湯装置
JP5573740B2 (ja) * 2011-03-18 2014-08-20 三菱電機株式会社 ヒートポンプ式給湯機
JP5501279B2 (ja) * 2011-03-31 2014-05-21 三菱電機株式会社 ヒートポンプシステム及びヒートポンプシステムの制御方法
JP2013007523A (ja) * 2011-06-24 2013-01-10 Panasonic Corp 冷温水給湯装置
JP5773897B2 (ja) * 2012-01-19 2015-09-02 三菱電機株式会社 ヒートポンプシステム及びヒートポンプシステムの制御方法
FR2995667B1 (fr) * 2012-09-14 2018-08-31 Societe Muller & Cie Procede de degivrage d'une pompe a chaleur d'une installation de chauffage
GB2497171B (en) * 2012-11-02 2013-10-16 Asd Entpr Ltd Improvements to thermodynamic solar heat transfer systems
WO2014102934A1 (ja) 2012-12-26 2014-07-03 ダイキン工業株式会社 ヒートポンプ温水暖房機
JP6297072B2 (ja) * 2014-02-10 2018-03-20 三菱電機株式会社 ヒートポンプ式給湯装置
ES2683600T3 (es) * 2014-11-27 2018-09-27 Fujitsu General Limited Aparato de calentamiento y de suministro de agua caliente de tipo bomba de calor
JP6742200B2 (ja) * 2016-08-31 2020-08-19 日立ジョンソンコントロールズ空調株式会社 空調給湯システム
CN106369877A (zh) * 2016-11-30 2017-02-01 广东美的制冷设备有限公司 热泵系统及其除霜控制方法
CN106765673B (zh) * 2016-11-30 2020-09-25 美的集团武汉制冷设备有限公司 热泵系统及其除霜控制方法
CN109163367A (zh) * 2018-09-06 2019-01-08 大连民族大学 一种带中间补气的空气源-水源复合热泵供热方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08152193A (ja) * 1994-11-29 1996-06-11 Kyocera Corp 給湯装置
JPH1089816A (ja) * 1996-09-09 1998-04-10 Daikin Ind Ltd ヒートポンプシステム
JP2004183908A (ja) * 2002-11-29 2004-07-02 Toshiba Electric Appliance Co Ltd ヒートポンプ給湯装置
JP2006266596A (ja) * 2005-03-24 2006-10-05 Matsushita Electric Ind Co Ltd 貯湯式給湯器
JP2008224088A (ja) 2007-03-09 2008-09-25 Mitsubishi Electric Corp 給湯器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5308220B2 (ja) * 2009-04-17 2013-10-09 三菱重工業株式会社 ヒートポンプ式給湯・空調装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08152193A (ja) * 1994-11-29 1996-06-11 Kyocera Corp 給湯装置
JPH1089816A (ja) * 1996-09-09 1998-04-10 Daikin Ind Ltd ヒートポンプシステム
JP2004183908A (ja) * 2002-11-29 2004-07-02 Toshiba Electric Appliance Co Ltd ヒートポンプ給湯装置
JP2006266596A (ja) * 2005-03-24 2006-10-05 Matsushita Electric Ind Co Ltd 貯湯式給湯器
JP2008224088A (ja) 2007-03-09 2008-09-25 Mitsubishi Electric Corp 給湯器

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102997415A (zh) * 2012-12-19 2013-03-27 深圳麦克维尔空调有限公司 空气源热泵热水机
CN105823280A (zh) * 2016-03-29 2016-08-03 青岛海信日立空调系统有限公司 一种除霜装置、除霜控制方法、控制器及空气源热泵系统
CN107525174A (zh) * 2017-08-17 2017-12-29 青岛海信日立空调系统有限公司 一种多联机空调系统及其控制方法
US20220252326A1 (en) * 2021-02-08 2022-08-11 A. O. Smith (China) Water Heater Co., Ltd. Defrosting control method, central controller and heating system

Also Published As

Publication number Publication date
EP2395302B1 (en) 2018-12-26
JP5427428B2 (ja) 2014-02-26
EP2395302A1 (en) 2011-12-14
JP2010181104A (ja) 2010-08-19
EP2395302A4 (en) 2017-08-09

Similar Documents

Publication Publication Date Title
JP5427428B2 (ja) ヒートポンプ式給湯・空調装置
JP4974714B2 (ja) 給湯器
US9506674B2 (en) Air conditioner including a bypass pipeline for a defrosting operation
JP5595140B2 (ja) ヒートポンプ式給湯・空調装置
US8656729B2 (en) Air conditioning system with defrosting operation
KR101387541B1 (ko) 공기조화기 및 공기조화기의 제상방법
JP5308220B2 (ja) ヒートポンプ式給湯・空調装置
WO2013171803A1 (ja) ヒートポンプ装置
WO2010070828A1 (ja) ヒートポンプ給湯装置およびその運転方法
US20110259025A1 (en) Heat pump type speed heating apparatus
DK2792970T3 (en) CONTAINER COOLING DEVICES
JP2011127792A (ja) 空気熱源ヒートポンプ給湯・空調装置
WO2015162679A1 (ja) 冷凍サイクル装置
JP6057871B2 (ja) ヒートポンプシステム、及び、ヒートポンプ式給湯器
JP5404761B2 (ja) 冷凍装置
US11592203B2 (en) Refrigeration cycle apparatus
JP4622901B2 (ja) 空気調和装置
JP2007071478A (ja) ヒートポンプ装置
WO2016166873A1 (ja) ヒートポンプシステム
JP2006242480A (ja) 蒸気圧縮サイクルシステム
KR101079230B1 (ko) 이슬맺힘 방지장치가 포함된 히트펌프 시스템 및 이의 제어방법
JP6029569B2 (ja) ヒートポンプシステム、及び、ヒートポンプ式給湯器
KR101100009B1 (ko) 공기 조화 시스템
EP3290827A1 (en) Defrosting without reversing refrigerant cycle
JP6886701B2 (ja) 除湿送風機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10738409

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010738409

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE