JP6297072B2 - ヒートポンプ式給湯装置 - Google Patents

ヒートポンプ式給湯装置 Download PDF

Info

Publication number
JP6297072B2
JP6297072B2 JP2015560854A JP2015560854A JP6297072B2 JP 6297072 B2 JP6297072 B2 JP 6297072B2 JP 2015560854 A JP2015560854 A JP 2015560854A JP 2015560854 A JP2015560854 A JP 2015560854A JP 6297072 B2 JP6297072 B2 JP 6297072B2
Authority
JP
Japan
Prior art keywords
heat exchanger
temperature
expansion valve
refrigerant
hot water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015560854A
Other languages
English (en)
Other versions
JPWO2015118580A1 (ja
Inventor
仁隆 門脇
仁隆 門脇
善生 山野
善生 山野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2015118580A1 publication Critical patent/JPWO2015118580A1/ja
Application granted granted Critical
Publication of JP6297072B2 publication Critical patent/JP6297072B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/02Domestic hot-water supply systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/0095Devices for preventing damage by freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/12Heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2347/00Details for preventing or removing deposits or corrosion
    • F25B2347/02Details of defrosting cycles
    • F25B2347/021Alternate defrosting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21162Temperatures of a condenser of the refrigerant at the inlet of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21175Temperatures of an evaporator of the refrigerant at the outlet of the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

この発明は、ヒートポンプを用いて給湯を行うヒートポンプ式の給湯装置に関し、特に、暖房運転時の除霜運転の間隔を長くしたヒートポンプ式の給湯装置に関するものである
近年、エネルギー問題が叫ばれる中、再生可能エネルギー有効利用の切り札としてヒートポンプに注目が集まっている。中でも、60℃以上の温水を取出す給湯用ヒートポンプは大気の熱を利用することで高効率な運転が可能である。このため、ヒートポンプ式の給湯装置は、ボイラー代替技術として期待されている。
上述した空気を熱源とするヒートポンプ式給湯装置は、外気温度が一定範囲のとき、例えば、0℃付近において空気熱交換器に大量な霜が付くため、ホットガスなどの除霜運転を頻繁に行う必要がある(例えば特許文献1参照)。
ヒートポンプ式給湯装置は、貯湯タンクを有している場合が多い。この場合、貯湯タンク内の温度が設定値に達するとヒートポンプは停止する。ヒートポンプ式給湯装置は、燃焼式ボイラーとは異なり、装置が停止中であってもタンク内のお湯を用いて給湯を行うことができる。
このため、貯湯タンク内の温度を一定温度まで上昇させた後、除霜運転に入ることができれば、湯切れを回避することがでる。従って、温水負荷が高い時間帯に、湯切れを回避させるためには、除霜運転の間隔をできるだけ長くする必要がある。
特開2010−181104号公報
上述のヒートポンプ式給湯装置において、運転時に外気温度が低い場合(約5℃〜−5℃)には、室外に設置された空気熱交換器に着霜するため、除霜運転が必要となる。一般に、外気温度が低いほど空気中の飽和水蒸気圧も低くなるため、空気熱交換器での着霜量は減少する。また、外気温度が一定温度(例えば5℃)以上である場合は、空気熱交換器の温度が0℃以下であることが少なくなるため、空気熱交換器での着霜量は減少する。
一方、空気熱交換器は、空気風量が均一でない箇所があると、空気風量が多いところで大きな熱交換を行うため、着霜が増える。空気熱交換器に着霜すると、霜が熱抵抗となるため、蒸発圧力が低下しやすく、効率の低下や除霜運転間隔の短縮につながる。
従来のヒートポンプ式給湯装置では、外気温度の低下に伴って圧縮機の回転数を上昇させる制御を行っていた。しかし、単純に外気温度の低下に追随させて圧縮機の回転数を上昇させると、例えば、低温ではあるが比較的飽和水蒸気圧の高い、つまり、空気熱交換器での着霜が発生しやすい外気温度(約5℃〜−5℃)である時に、高い回転数で圧縮機の運転を行うと、空気熱交換器の着霜量が多くなる。
空気熱交換器の着霜量が多くなると、頻繁に除霜運転を行わなければならず、結果として、暖房運転と除霜運転とが頻繁に切り換わり、効率の悪い暖房運転となる場合があった。
この発明は上述の問題を解決するためになされたもので、空気熱交換器での着霜量を抑えて、効率的な運転を行うことができるヒートポンプ式給湯装置を提供することを目的とする。
上記目的を達成するため、この発明にかかるヒートポンプ式給湯装置は、
圧縮機により圧縮され、かつ膨張弁により減圧された冷媒が、空気熱交換器および水熱交換器を備えた閉回路を循環し、かつ四方弁を用いて冷媒の循環方向を切り替えることで気液の状態変化を繰り返す冷媒回路と、
ポンプにより送出された水が水熱交換器で冷媒から吸熱して温水とされた後、負荷に供給される水回路と、
圧縮機の回転数および膨張弁の開度を制御する制御部と、を備え、
空気熱交換器は、通過する風量が多い第1の熱交換器と、通過する風量が少ない第2の熱交換器とを有し、
膨張弁は、水熱交換器と第1の熱交換器との間に接続される第1の膨張弁と、水熱交換器と第2の熱交換器との間に接続される第2の膨張弁とを含み、
制御部は、暖房運転時において、
外気温度が、着霜が発生しやすい第1の温度域の場合、第1の熱交換器または第2の熱交換器の何れか一方への冷媒の供給を停止し、
外気温度が、第1の温度域以外の第2の温度域の場合、第1の熱交換器および第2の熱交換器の両方へ冷媒を供給するよう、
第1の膨張弁および第2の膨張弁の開閉を制御し、空気熱交換器での着霜場所および着霜量を調節するものであり、
制御部は、外気温度が第1の温度域の場合、
外気温度および蒸発温度に応じて異なる最大開度に基づいて、第1の膨張弁および第2の膨張弁の何れか一方の開度を制御する、または
外気温度および蒸発温度に応じて異なる最大回転数に基づいて、圧縮機の回転数を制御することを特徴とする。
この発明にかかるヒートポンプ式給湯装置は、検出した蒸発温度あるいは蒸発器出口温度、および外気温度に応じて、冷媒を供給する熱交換器を選択し運転を制御する。従って、給湯装置の運転状態に応じて適切に使用する熱交換器を制御することにより、空気熱交換器での着霜量を抑えて効率的な運転を行うことができる。
特に、着霜が促進される外気温度0℃付近の除霜運転が必要な外気温度においては、空気熱交換器での着霜量を均一にし、空気熱交換器の面積を出来る限り有効利用することが可能なため、除霜運転を行う頻度が減少し、かつ、できる限りシステムの蒸発温度を上げた状態で運転を行える。従って、除霜運転を適切に行いつつ、ヒートポンプ式給湯装置を、より効率的に運転できる。
この発明の実施の形態にかかるヒートポンプ式給湯装置の概略構成を示す図である この発明の実施の形態にかかるヒートポンプ式給湯装置の制御系の構成を示すブロック図である 空気熱交換器の運転状態の推移を説明する図である。 従来のヒートポンプ式給湯装置とこの発明におけるそれとの運転制御の違いを説明する図である。
以下、この発明にかかるヒートポンプ式給湯装置について、図面を参照して説明する。図1に、この発明によるヒートポンプ式サイクル装置の概略構成を示す。また図2に、同装置の制御系の構成を示す。
本実施の形態のヒートポンプ式給湯装置は、採熱用の冷媒回路10と加熱用の水回路20とで構成されている。このうち、冷媒回路10は、圧縮機1A、1B、四方弁2A、2B、冷媒と水との熱交換を行う水熱交換器3、冷媒タンク4、膨張弁5A、5B、5C、5D、採熱用の熱交換器である空気熱交換器6、7およびアキュムレータ8で構成され、これらの部材が前述した順に流路で接続されている。また冷媒回路10は、四方弁2A、2Bを用いて冷媒循環方向を切り替えるように構成されている。
空気熱交換器6は2つに分割されており、送風用のファン61、ファン61による風量が多い第1の熱交換器62、およびファン61による風量が少ない第2の熱交換器63で構成されている。熱交換器62および63は、分岐した流路を介して、膨張弁5Aおよび5Bにそれぞれ接続されている。なお、空気熱交換器6を2つに分割することで、分配の悪い熱交換器を有効に利用できるなどの効果が得られる。
本実施の形態では、空気熱交換器6として、直方体状の筐体の上部にファン61が設置され、筐体内部の上方に第1の熱交換器62が配置され、下方に第2の熱交換器63が配置された熱交換器を用いている。
空気熱交換器7は空気熱交換器6と同様の構成を有し、ファン71、上方に配置された第1の熱交換器72および下方に配置された第2の熱交換器73で構成されている。空気熱交換器6と同様、熱交換器72および73は、分岐した流路を介して膨張弁5Cおよび5Dにそれぞれ接続されている。
水熱交換器3の入口には、冷媒の温度を検出する温度センサ102が設置されている。また空気熱交換器6および7の近傍には、外気温度を検出する外気温センサ107が設置されている。
空気熱交換器6の熱交換器63の入口には、冷媒の温度を検出する温度センサ105Aが設置され、熱交換器62および63の出口には、冷媒の温度を検出する温度センサ106Aおよび106Bが、膨張弁5Aおよび5Bにそれぞれ対応するように設置されている。
空気熱交換器7の熱交換器73の入口にも、冷媒の温度を検出する温度センサ105Bが設置され、熱交換器72および73の出口には、冷媒の温度を検出する温度センサ106Cおよび106Dが、膨張弁5Cおよび5Dにそれぞれ対応するように設置されている。
更に、圧縮機1Aおよび1Bの吐出側(四方弁2A、2Bと水熱交換器3との間)には、凝縮圧力を検出する圧力センサ101が設置され、空気熱交換器6および7の出口側(空気熱交換器6、7とアキュムレータ8との間)には蒸発圧力を検知する圧力センサ108が設置されている。
一方、水回路12を構成する水熱交換器3の入口側流路にはポンプ9が取り付けられている。ポンプ9の働きにより水入口から給水された水は、水熱交換器3で冷媒から吸熱して温水となり、水出口から負荷に供給される。水熱交器3には、熱交換器の入口の水温度を検知する温度センサ104と出口の水温度を検知する温度センサ103が設置されている。
本実施の形態によるヒートポンプ式給湯装置は、各温度センサで検出した温度や圧力センサで検出した圧力を記録し、あるいは、図示しないリモコン等による使用者からの運転要求に応じて、圧縮機1Aおよび1B、四方弁2Aおよび2B、ならびに膨張弁5A、5B、5Cおよび5Dの駆動を制御する制御手段を備えている。
図2にヒートポンプ式給湯装置の制御系の構成を示す。制御部30は、冷媒回路10の圧縮機1Aおよび1Bの回転数と膨張弁5A〜5Dの開度を制御し、更に、水回路20のポンプ9の動作を制御する。
具体的には、制御部30は、冷媒回路10のインバータ11Aおよび11Bの出力周波数を制御して圧縮機1Aおよび1Bの回転数を制御する。圧縮機1Aおよび1Bの回転数の制御値は、使用者からリモコン等にて要求された温度と水熱交換器3の出口側の水温度103との温度差を比較して演算を行う。圧縮機1Aおよび1Bの回転数は、記憶部40に格納されている圧縮機最大回転数テーブルを演算結果にて補正を行った値を用いている。
なお、図1では暖房運転時の冷媒回路のみを示しており、除霜運転時の冷媒回路や、冷媒の流れ方向の記載は省略している。ただし、除霜運転時は暖房運転時の冷媒の流れ方向と逆方向となる。また、図1では2つの空気熱交換器6および7を用いて冷媒回路10を構成しているが、これは要求される加熱条件を考慮したもので、加熱条件が緩い場合には、1つの空気熱交換器で冷媒回路を構成してもよい。
次に、上述の構成を有するヒートポンプ式給湯装置の運転動作を、暖房運転を行う場合を例に挙げて説明する。使用者がリモコン等を操作してスタートスイッチをオンにすると、給湯装置が運転を開始する。
この時、水温センサ103で検出された現在の水温、つまり水熱交換器3で暖められた水の温度が、使用者が定めた暖房運転の目標温度である設定温度に対応する水の温度となるように圧縮機1A、1Bを制御する。圧縮機1A、1Bで高温高圧のガスとなった冷媒は四方弁2A、2Bを通過し、水熱交換器3で熱を放出して液体となり、冷媒タンク4に一旦溜められる。この後、膨張弁5A、5B、5C、5Dで減圧されて空気熱交換器6、7で蒸発して室外空気と熱交換し、ガスとなって再び圧縮機1A、1Bで圧縮される過程を繰り返す。
なお、冷媒回路10がインジェクション機構を有する場合、暖房運転時に外気温度が低温の状態で高い水温が求められる場合は、インジェクションをオンとすることもある。この時、圧縮機1A、1Bの機構部に冷媒がインジェクションされ、圧縮機1A、1Bの吐出温度を下げると共に、水熱交換器3での冷媒循環量が増加するので、外気温度が低温で高い水温が求められる場合でも、水熱交換器3での冷媒流量を大きくすることで高い暖房能力を発揮できる。
次に、前述の図1および図3を参照して、この発明にかかるヒートポンプ式給湯装置における制御の原理を説明する。図3は、空気熱交換器の運転状態の推移を示した図である。
前述したように、この発明では、空気熱交換器として、熱交換器部分が複数に分割されたもの、具体的には、通過する風量が異なる複数の熱交換器で構成され、かつそれぞれが別々の膨張弁に接続された空気熱交換器を用いている。
なお、本実施の形態では、空気熱交換器6、7は、最低分割数である2つの熱交換器を有するものとして説明する。また、説明を分かりやすくするため、図3には、空気熱交換器6だけを示す。
熱交換器を2分割させる方法は、例えば、熱交換器の中を通る風量の違いから熱交換効率に偏りがある場合、熱交換効率の高い部分と低い部分で分割させる。図3には、直方体状の筐体の上部に送風用のファンが取り付けられ、筐体内の上方と下方に熱交換器がそれぞれ配置された空気熱交換器を示す。ファンに対する位置的な関係から、上方の熱交換器を通過する風量は下方の熱交換器を通過する風量より多い。
図3を参照して、空気熱交換器6の運転状態の推移を説明する。運転開始時、外気温度が、除霜運転が頻発する第1の温度域であるとき、図3の中央部に示すように、膨張弁5A、5Bで熱交換効率の高い部分の空気熱交換器6と冷媒配管がつながっている膨張弁(例えばここでは膨張弁5Aとする)を起動時制御し、膨張弁5Bは全閉させて休止状態とする。このとき、上方の熱交換器62だけが使用状態であるため、空気熱交換器6の伝熱面積は通常運転時の半分となるが、熱交換効率の高い部分のみを用いることで運転効率の低下を防ぐ。
熱交換器が一体となった従来の空気熱交換器を使用した場合、熱交換部位による熱交換効率の違いにより局所的に着霜が増加して熱交換が出来なくなり、熱交換器出口での過熱度が低くなるため、結果として、空気熱交換器の伝熱面積を十分に使えないまま除霜運転に入っていた。これに対し、上述した熱交換器62および63の使用と停止を交互に行う制御は、強制的に冷媒流路を変更させることで伝熱面積を十分に使うことができるため、除霜運転に入りにくくさせることが可能となる。また、熱交換器の風路面席が着霜により減少するため、風速が上昇して熱交換効率を上昇させ、運転効率を向上させることができる。
一方、外気温度が5℃以上と高い場合は、空気熱交換器6の温度も0℃以下となることが少なく、室外熱交換器5で着霜は発生しにくい。また、外気温度が−5℃以下と低い場合は、飽和水蒸気圧が低いため、室外熱交換器5で着霜は発生しにくい。従って、外気温度が5℃以上あるいは−5℃未満である第2の温度域では、除霜運転を行う頻度が少ない。また圧縮機1A、1Bの回転数が低いほど空気熱交換器6に流入する冷媒量も少なくなるため、空気熱交換器6の温度が0℃以下となることが少なくなり、室外熱交換器5での着霜量も少なくなる。
以上のことを考慮して、第2の温度域においては、第1および第2の熱交換器62、63の両方を使用した運転を行う。これは、加熱負荷が高くなる−5℃以下の外気温度域において頻繁に除霜運転に切り換わらず暖房運転時間を長くし、また、高い暖房能力が得られるようにするためである。
次に、図4を参照して、ヒートポンプ式給湯装置における従来の運転制御と、この発明の運転制御の違いを説明する。従来の運転制御は、空気熱交換器の熱交換器部分を分割しない場合の運転制御を指す。除霜運転開始判断を、蒸発温度で行う場合、空気熱交換器に霜が付くと熱交換効率が低下し、蒸発温度が低下することで、除霜運転が開始される。
空気熱交換器の熱交換器部分を分割しない場合、冷媒分配が悪いと霜付位置が偏り、特に風量が多い熱交換器の上部に霜が付きやすい。このため、運転時間が経過するにつれて空気熱交換器の上部の熱交換効率が低下し、冷媒が蒸発しきれないため膨張弁を絞る制御を行い、熱交換器伝熱面積を有効に使えない状態で除霜運転を行う。
これに対し、この発明のように熱交換器部分を分割すると、空気熱交換器の熱交換効率が高い順番に意図的に冷媒を流し、着霜場所および着霜量を制御しながら運転を行う。着霜が進行するにつれて熱交換器の風路面席が減少するため、熱交換器の風量最大部が変化し熱交換効率の最大位置が変化する。上下に分割した場合、熱交換効率の最大位置は下方向へと変化する。そのため、運転効率の低下を抑制しながら、伝熱面積を十分に利用した運転が出来、結果として、除霜運転までの運転間隔を長く出来る。
次に、この発明における膨張弁の開度と圧縮機の回転数の制御について説明する。膨張弁5A、5Bの開度については、記憶部40に、外気温度および水温度103における膨張弁最大開度テーブル(表1参照)が格納されている。ここでは、外気温度を5℃毎に区分して外気温度レンジとしている。なお、外気温度レンジについては、暖房運転中に除霜運転が必要となる外気温度である−5℃以上5℃未満までの範囲を2℃毎に区分したものを第1の温度域、これ以外、つまり外気温度が5℃以上および−5℃未満を第2の温度域としている。
Figure 0006297072
膨張弁5Aは、採熱側熱交換器出口の冷媒温度および蒸発温度圧力センサ107で測定した冷媒の圧力を制御部に取り込んで演算を行い、過熱度に演算されたものと、記憶部40に格納されている過熱度目標値となるように制御される。
膨張弁5Aは、上方の熱交換器62の出口の冷媒温度および蒸発温度圧力センサ107より演算された蒸発温度の差が−5℃未満となったとき、空気との熱交換が出来なくなったと判断して膨張弁5Aを閉じる。この時、それまで閉じていた膨張弁5Bを開とし、目標の過熱度をなるように制御を開始する。
膨張弁5Bは、運転開始時に熱交換効率の高い部分と対応していた膨張弁5Aが起動し、熱交換効率の高い部分に多くの霜が付いたことでフィン間が霜で覆われ風路が埋まるため、空気は、それまで流れの少なかった膨張弁5Bに対応する熱交換効率の低い部分に流れ始め、それまで熱交換効率の低い部分であった膨張弁5Bに対応する下方の熱交換器63の熱交換効率が向上する。この空気の流れの変化が熱交換効率を向上させ、運転効率の低下を防ぐ。膨張弁5C、5Dにおいても同様の制御を行う。
圧縮機1A、1Bの回転数については、記憶部40に、外気温度および蒸発温度における圧縮機最大回転数テーブル(表2参照)が格納されている。表2に示す圧縮機最大回転数テーブルでは、凝縮圧力が3.8MPa未満の場合の第1の温度域における圧縮機1A、1Bの許容最大回転数を、圧縮機1A、1Bの性能限界回転数である100rps以下の範囲で、第1の温度域において蒸発圧力センサ108が低下するに従い圧縮機回転数を低下させる。これは、蒸発圧力が低下するほど、圧縮機の能力が空気熱交換器の能力と比較して十分大きいことを示すとの考えから、圧縮機回転数を低下させ空気熱交換器の能力に近づける。圧縮機回転数が低下するほど空気熱交換器6での着霜量が減少するので、除霜運転が頻繁に必要となる着霜量とはなりにくいと考えられるためである。
Figure 0006297072
また、表2の圧縮機最大回転数テーブルにおいて、第2の温度域では霜付量が少ないと考えられるため、圧縮機1A、1Bの回転数は性能限界である100rpsまで上昇を許可するようにし、目標となる設定温度(水温)にできるだけ速やかに到達するようにしている。 なお、この圧縮機最大回転数テーブルは、予め試験等により求められたものである。
一方、表1の膨張弁最大開度テーブルは、多霜温度域において製品ばらつきによる霜付量をコントロールするため、膨張弁開度を開けすぎないようにする。空気熱交換器への冷媒流入量最大値を制御することで、着霜増加量を一定値以下とするように管理するため、ある程度の製品ばらつきが生じても、除霜運転が頻繁に必要となる着霜量とはなりにくいと考えられる。
以下、上述の圧縮機最大回転数テーブルおよび膨張弁最大開度テーブルを記憶部40に格納したヒートポンプ式給湯装置の動作を説明する。使用者がリモコン等を操作することによって、あるいは、タイマー運転開始によって給湯装置の暖房運転を開始すると、制御部30は、圧力センサ101で検出した現在の凝縮圧力が3.85MPa未満であるか否かを判断する。
凝縮圧力が3.85MPa未満である場合、制御部30は、外気温度センサ107が多霜温度域(第1の温度域)か否かを判断する。通常温度域(第2の温度域)の場合、圧縮機1A、1Bの性能限界回転数である100rpsを抽出し、これを許容最大回転数と決定する。一方、膨張弁開度は、制御内に記憶されている通常の膨張弁最大開度に従う。
そして、制御部30は、水熱交換器3の出口で測定した水温度が目標温度となるように、圧縮機1A、1Bの回転数を許容最大回転数内で制御する。 また、制御部30は、蒸発圧力センサ108およびそれぞれの膨張弁に対応した採熱用熱交換器出口の温度センサ106A、106B、106C、106Dにより測定した冷媒温度に基づいて膨張弁開度を制御する。この際、認識した過熱度が目標値となるように制御する。
外気温度が第1の温度域内である場合、制御部30は、蒸発圧力センサ108により現在の蒸発圧力を認識し、表2の圧縮機最大回転数テーブルを参照して、この認識した蒸発圧力に応じた圧縮機1A、1Bの許容最大回転数を決定する。そして、制御部30は、水熱交換器3の出口の水温度が目標温度となるように、圧縮機1A、1Bの回転数を許容最大回転数内で制御する。
また、膨張弁開度の制御は、外気温センサ107により外気温度を認識し、記憶部40に格納されている膨張弁最大開度テーブル(表1参照)に従い、膨張弁最大開度を決定する。そして、制御部30は、蒸発圧力センサ108およびそれぞれの膨張弁に対応した採熱用熱交換器出口の温度センサ106A、106B、106C、106Dで測定した冷媒温度を用いて、認識した過熱度が目標値となるように膨張弁最大開度以下で膨張弁開度を制御する。
以上説明したように、この発明にかかるヒートポンプ式給湯装置では、検出した外気温度に応じて、空気熱交換器の熱交換器部分を分割し、空気熱交換器の伝熱面積を制御して採熱量を制御している。従って、給湯装置の運転状態に応じて適切な伝熱面積を確保することで蒸発圧力低下による運転効率低下を抑制し、空気熱交換器での着霜量を抑え、効率的なヒートポンプサイクル装置の運転を行うことができる。
特に、暖房運転時に空気熱交換器の除霜運転が多くなるような外気温度においては、空気熱交換器での着霜量を抑えるような圧縮機の許容最大回転数を設定し、この許容最大回転数内で圧縮機の運転を行うので、除霜運転を行う頻度が減少し、かつ、できる限り蒸発圧力を上げた状態で暖房運転を行える。
併せて膨張弁最大開度を規定することで、最大開度内で膨張弁制御を行うため、装置の製造ばらつきによる不具合を抑制することが可能となる。結果として、除霜運転を適切に行い、製品によるばらつきを抑制しながら、ヒートポンプ式給湯装置を、より効率的に運転することが可能となる。
1A、1B 圧縮機
2A、2B 四方弁
3 水熱交換器
4 冷媒タンク
5A、5B、5C、5D 膨張弁
6、7 空気熱交換器
8 アキュムレータ
9 ポンプ
10 冷媒回路
20 水回路
30 制御部
40 記憶部
101、108 圧力センサ
102、103、104 温度センサ
105A、105B 温度センサ
106A〜106D 温度センサ
107 外気温センサ

Claims (6)

  1. 圧縮機により圧縮され、かつ膨張弁により減圧された冷媒が、空気熱交換器および水熱交換器を備えた閉回路を循環し、かつ四方弁を用いて冷媒の循環方向を切り替えることで気液の状態変化を繰り返す冷媒回路と、
    ポンプにより送出された水が前記水熱交換器で冷媒から吸熱して温水とされた後、負荷に供給される水回路と、
    前記圧縮機の回転数および前記膨張弁の開度を制御する制御部と、を備え、
    前記空気熱交換器は、通過する風量が多い第1の熱交換器と、通過する風量が少ない第2の熱交換器とを有し、
    前記膨張弁は、前記水熱交換器と前記第1の熱交換器との間に接続される第1の膨張弁と、前記水熱交換器と前記第2の熱交換器との間に接続される第2の膨張弁とを含み、
    前記制御部は、暖房運転時において、
    気温度が、着霜が発生しやすい第1の温度域の場合、前記第1の熱交換器または前記第2の熱交換器の何れか一方への冷媒の供給を停止し、
    前記外気温度が、前記第1の温度域以外の第2の温度域の場合、前記第1の熱交換器および前記第2の熱交換器の両方へ冷媒を供給するよう、
    前記第1の膨張弁および前記第2の膨張弁の開閉を制御し、前記空気熱交換器での着霜場所および着霜量を調節するものであり、
    前記制御部は、前記外気温度が前記第1の温度域の場合、
    前記外気温度および蒸発温度に応じて異なる最大開度に基づいて、前記第1の膨張弁および前記第2の膨張弁の何れか一方の開度を制御する、または
    前記外気温度および前記蒸発温度に応じて異なる最大回転数に基づいて、前記圧縮機の回転数を制御する、ヒートポンプ式給湯装置。
  2. 前記制御部は、蒸発温度が所定の値以上では、前記第1の熱交換器に冷媒を供給すると共に、前記第2の熱交換器の冷媒の供給を停止し、
    蒸発温度が所定の値未満では、前記第2の熱交換器に冷媒を供給すると共に、前記第1の熱交換器への冷媒の供給を停止する、請求項1に記載のヒートポンプ式給湯装置。
  3. 外気温度および蒸発温度と、前記膨張弁の最大開度との関係を表した第1のテーブルが格納される記憶部をさらに備え、
    前記制御部は、前記記憶部から読み出された当該第1のテーブルを用いて前記膨張弁の開度を制御する、請求項1または2に記載のヒートポンプ式給湯装置。
  4. 外気温度および蒸発温度と、前記圧縮機の最大回転数との関係を表した第2のテーブルが格納される記憶部をさらに備え、
    前記制御部は、前記記憶部から読み出された当該第2のテーブルを用いて前記圧縮機の回転を制御する、請求項1または2に記載のヒートポンプ式給湯装置。
  5. 直方体状の筐体の上部に取り付けられた送風用のファンをさらに備え、
    前記筐体の内部の上方に前記第1の熱交換器が配置され、
    前記筐体の内部の下方に前記第2の熱交換器が配置される、請求項1〜4の何れか一項に記載のヒートポンプ式給湯装置。
  6. 前記制御部は、前記外気温度が前記第2の温度域の場合、
    予め設定される通常の最大開度に基づいて、前記第1の膨張弁および前記第2の膨張弁の何れか一方の開度を制御する、または
    前記圧縮機の性能限界回転数に基づいて、前記圧縮機の回転数を制御する、請求項1〜5の何れか一項に記載のヒートポンプ式給湯装置。
JP2015560854A 2014-02-10 2014-02-10 ヒートポンプ式給湯装置 Active JP6297072B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/000701 WO2015118580A1 (ja) 2014-02-10 2014-02-10 ヒートポンプ式給湯装置

Publications (2)

Publication Number Publication Date
JPWO2015118580A1 JPWO2015118580A1 (ja) 2017-03-23
JP6297072B2 true JP6297072B2 (ja) 2018-03-20

Family

ID=53777423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015560854A Active JP6297072B2 (ja) 2014-02-10 2014-02-10 ヒートポンプ式給湯装置

Country Status (3)

Country Link
EP (1) EP3106773B1 (ja)
JP (1) JP6297072B2 (ja)
WO (1) WO2015118580A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112016006644B4 (de) * 2016-03-23 2021-11-04 Mitsubishi Electric Corporation Heizvorrichtung vom wärmepumpentyp
US11927376B2 (en) * 2019-07-25 2024-03-12 Mitsubishi Electric Corporation Refrigeration cycle apparatus
CN111594902B (zh) * 2020-06-02 2022-03-01 宁波奥克斯电气股份有限公司 一种防冻方法及地暖系统
CN112594929A (zh) * 2020-11-19 2021-04-02 浙江理工大学 一种全循环供热水直热式热泵系统
WO2023233654A1 (ja) * 2022-06-03 2023-12-07 三菱電機株式会社 冷凍サイクル装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5623374U (ja) * 1979-07-27 1981-03-02
JPS62261862A (ja) * 1986-05-08 1987-11-14 ダイキン工業株式会社 ヒ−トポンプシステム
JPH01107055A (ja) * 1987-10-21 1989-04-24 Hitachi Ltd 調温調湿設備の除霜制御方法、及び同装置
JPH03286978A (ja) * 1990-04-03 1991-12-17 Mitsubishi Electric Corp 冷暖房装置
JPH10259972A (ja) * 1997-03-19 1998-09-29 Fujitsu General Ltd 空気調和機
JP2001059664A (ja) * 1999-08-20 2001-03-06 Fujitsu General Ltd 空気調和機
JP2002081807A (ja) * 2000-08-31 2002-03-22 Daikin Ind Ltd 冷凍装置
JP2008170015A (ja) * 2005-04-25 2008-07-24 Matsushita Electric Ind Co Ltd 貯湯槽付き冷凍サイクル装置
JP4120680B2 (ja) * 2006-01-16 2008-07-16 ダイキン工業株式会社 空気調和機
AU2009339555B2 (en) * 2009-02-05 2013-01-10 Mitsubishi Electric Corporation Indoor unit for air conditioner, and air conditioner
JP5427428B2 (ja) * 2009-02-06 2014-02-26 三菱重工業株式会社 ヒートポンプ式給湯・空調装置
JP2010234945A (ja) * 2009-03-31 2010-10-21 Hitachi Ltd 鉄道車両用ヒートポンプ空調装置
US20110113803A1 (en) * 2009-05-14 2011-05-19 Halla Climate Control Corp. Multi-evaporation system
JP4978659B2 (ja) * 2009-05-29 2012-07-18 ダイキン工業株式会社 空気調和機の室外機
JP2011122735A (ja) * 2009-12-08 2011-06-23 Tokyo Electric Power Co Inc:The 熱供給システム
JP5518101B2 (ja) * 2010-01-19 2014-06-11 三菱電機株式会社 空調給湯複合システム
JP2012063033A (ja) * 2010-09-14 2012-03-29 Panasonic Corp 空気調和機
JP5747709B2 (ja) * 2011-07-22 2015-07-15 株式会社富士通ゼネラル 空気調和装置
JP5851771B2 (ja) * 2011-08-31 2016-02-03 三菱重工業株式会社 超臨界サイクルおよびそれを用いたヒートポンプ給湯機
JP5939764B2 (ja) * 2011-11-02 2016-06-22 三菱電機株式会社 ヒートポンプ装置及びヒートポンプ給湯機
JP2013193709A (ja) * 2012-03-22 2013-09-30 Mitsubishi Heavy Ind Ltd 車両用ヒートポンプ式空調機及びその制御方法

Also Published As

Publication number Publication date
EP3106773A4 (en) 2017-09-13
EP3106773B1 (en) 2018-05-09
JPWO2015118580A1 (ja) 2017-03-23
WO2015118580A1 (ja) 2015-08-13
EP3106773A1 (en) 2016-12-21

Similar Documents

Publication Publication Date Title
CN102032704B (zh) 热泵装置
CN102105752B (zh) 空调装置
JP6297072B2 (ja) ヒートポンプ式給湯装置
JP4999529B2 (ja) 熱源機および冷凍空調装置
CN103370584A (zh) 制冷循环装置及制冷循环控制方法
KR20130041640A (ko) 공기조화기 및 그 운전 방법
US20190011148A1 (en) Refrigeration cycle apparatus
JP6694582B2 (ja) 給水加温システム
JP2012032091A (ja) ヒートポンプサイクル装置
JP5816422B2 (ja) 冷凍装置の排熱利用システム
CN103415747B (zh) 热泵式热水器
JP5831467B2 (ja) 暖房システム
EP2708833A1 (en) Cascade refrigerating system
JP5831466B2 (ja) 暖房システム
JP2011257098A (ja) ヒートポンプサイクル装置
JP6433602B2 (ja) 冷凍サイクル装置
JP3855695B2 (ja) ヒートポンプ給湯機
JP2008082601A (ja) ヒートポンプ給湯装置
JP2015081708A (ja) 給水加温システム
JP6137016B2 (ja) ヒートポンプ式給湯機、およびヒートポンプ式給湯機の制御方法
JP2016048126A (ja) 給水加温システム
JP2006194537A (ja) ヒートポンプ装置
JPWO2018163347A1 (ja) 地熱ヒートポンプ装置
KR20220102923A (ko) 온수기
JP2009085476A (ja) ヒートポンプ給湯装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170328

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171214

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20171225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180220

R150 Certificate of patent or registration of utility model

Ref document number: 6297072

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250