WO2010087332A1 - 内容物充填方法、内容物充填システム、および内容物入ボトル - Google Patents

内容物充填方法、内容物充填システム、および内容物入ボトル Download PDF

Info

Publication number
WO2010087332A1
WO2010087332A1 PCT/JP2010/050965 JP2010050965W WO2010087332A1 WO 2010087332 A1 WO2010087332 A1 WO 2010087332A1 JP 2010050965 W JP2010050965 W JP 2010050965W WO 2010087332 A1 WO2010087332 A1 WO 2010087332A1
Authority
WO
WIPO (PCT)
Prior art keywords
bottle
inert gas
content
content filling
mouth
Prior art date
Application number
PCT/JP2010/050965
Other languages
English (en)
French (fr)
Inventor
美恵 太田
章智 関根
えり子 佃
正浩 吉川
誠司 桑野
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Priority to JP2010548514A priority Critical patent/JP5569810B2/ja
Priority to CN201080006431.9A priority patent/CN102300777B/zh
Priority to SG2011040243A priority patent/SG172759A1/en
Publication of WO2010087332A1 publication Critical patent/WO2010087332A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67CCLEANING, FILLING WITH LIQUIDS OR SEMILIQUIDS, OR EMPTYING, OF BOTTLES, JARS, CANS, CASKS, BARRELS, OR SIMILAR CONTAINERS, NOT OTHERWISE PROVIDED FOR; FUNNELS
    • B67C3/00Bottling liquids or semiliquids; Filling jars or cans with liquids or semiliquids using bottling or like apparatus; Filling casks or barrels with liquids or semiliquids
    • B67C3/02Bottling liquids or semiliquids; Filling jars or cans with liquids or semiliquids using bottling or like apparatus
    • B67C3/06Bottling liquids or semiliquids; Filling jars or cans with liquids or semiliquids using bottling or like apparatus using counterpressure, i.e. filling while the container is under pressure
    • B67C3/10Bottling liquids or semiliquids; Filling jars or cans with liquids or semiliquids using bottling or like apparatus using counterpressure, i.e. filling while the container is under pressure preliminary filling with inert gases, e.g. carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67CCLEANING, FILLING WITH LIQUIDS OR SEMILIQUIDS, OR EMPTYING, OF BOTTLES, JARS, CANS, CASKS, BARRELS, OR SIMILAR CONTAINERS, NOT OTHERWISE PROVIDED FOR; FUNNELS
    • B67C3/00Bottling liquids or semiliquids; Filling jars or cans with liquids or semiliquids using bottling or like apparatus; Filling casks or barrels with liquids or semiliquids
    • B67C3/02Bottling liquids or semiliquids; Filling jars or cans with liquids or semiliquids using bottling or like apparatus
    • B67C3/04Bottling liquids or semiliquids; Filling jars or cans with liquids or semiliquids using bottling or like apparatus without applying pressure

Definitions

  • the present invention relates to a content filling method, a content filling system, and a bottle with a content, and in particular, a content filling method capable of suppressing oxidative deterioration of the content by reducing the initial oxygen amount in the bottle. , A content filling system, and a bottle with content.
  • the plastic bottle in order to improve the content storage (oxygen barrier) property, can be blended with a material having oxygen barrier properties and oxygen absorption functionality, or the plastic bottle can be multilayered to form a plastic bottle.
  • a technique for increasing the gas barrier property of the material compressing the aging of the contents over time is used.
  • Japanese Patent Application Laid-Open No. 2002-301441 discloses a technique in which an inert gas and cleaning water (rinsing water) are mixed and injected into an empty bottle.
  • the present invention has been made in consideration of such points, and a content filling method and a content filling system capable of reducing the amount of oxygen present in the bottle from the beginning and suppressing the oxidative deterioration of the content. And to provide a bottle with contents.
  • the present invention relates to a content filling method for filling a bottle having a mouth portion and a bottle body with only the inert gas supplied from the mouth portion into the bottle body.
  • the content filling method is characterized by comprising an inert gas replacement step of substituting with and a content filling step of filling the content of the bottle into the bottle body.
  • the present invention includes a sterilization step for sterilizing the inside of the bottle and a rinsing step for supplying rinsing water from the mouth into the bottle body before the inert gas replacement step. Is the method.
  • the present invention is a content filling method characterized in that a sterilization step of sterilizing the inside of a bottle with an electron beam is provided before the inert gas replacement step.
  • the present invention is a content filling method characterized in that an inert gas supply step for supplying an inert gas from the mouth portion into the bottle body is provided after the content filling step.
  • the present invention is a content filling method characterized in that after the inert gas supply step, a cap mounting step of mounting a cap on the mouth is provided.
  • the present invention is a content filling method characterized in that in the content filling step, the content is filled into the bottle body from the mouth portion at a temperature of 5 ° C. to 55 ° C.
  • the present invention is a content filling method characterized in that the entire process is performed in a sterile atmosphere.
  • the present invention relates to a foam in which an inert gas is contained in the contents filled in the bottle body during the content filling process by the inert gas introduced into the bottle body during the inert gas replacement process.
  • a content filling method characterized by the above.
  • the present invention is a content filling method, wherein the content is a tea beverage, a milk beverage, a coffee beverage, a functional beverage, a vegetable juice beverage, or a fruit juice beverage.
  • the present invention is the content filling method characterized in that the time from the inert gas replacement step to the content filling step is performed in 0.5 to 20 seconds.
  • the present invention is the content filling method, wherein the bottle body of the bottle has a body portion and a bottom portion having a petaloid shape.
  • the present invention is characterized in that the bottle body of the bottle has a body part and a bottom part in which a recessed part is formed, and the depth of the recessed part is 4% to 40% of the outer diameter of the body part. It is the content filling method to do.
  • the present invention relates to a content filling system that fills a bottle having a mouth portion and a bottle body with only the inert gas supplied from the mouth portion into the bottle body.
  • the content filling is provided with an inert gas replacement part that is replaced with the above and a content filling part that is provided on the downstream side of the inert gas replacement part and fills the bottle body with the content from the mouth part System.
  • the present invention is provided with a sterilization unit for sterilizing the inside of the bottle upstream of the inert gas replacement unit, and upstream from the inert gas replacement unit and downstream of the sterilization unit, from the mouth into the bottle body.
  • a rinsing section for supplying rinsing water is provided.
  • the present invention is a content filling system characterized in that a sterilization unit for sterilizing the inside of a bottle with an electron beam is provided upstream of an inert gas replacement unit.
  • the present invention is a content filling system characterized in that an inert gas supply unit for supplying an inert gas from the mouth portion into the bottle body is provided on the downstream side of the content filling unit.
  • the present invention is a content filling system characterized in that a cap mounting part for mounting a cap on a mouth part is provided downstream of an inert gas supply part.
  • the present invention is the content filling system, wherein the bottle body of the bottle has a body portion and a bottom portion having a petaloid shape.
  • the present invention is characterized in that the bottle body of the bottle has a body part and a bottom part in which a recessed part is formed, and the depth of the recessed part is 4% to 40% of the outer diameter of the body part. Content filling system.
  • the present invention includes a bottle having a bottle main body and a mouth portion, and a content filled in the bottle main body of the bottle, and the contents are formed with bubbles containing an inert gas therein. It is a bottle with contents.
  • the present invention is a bottle with contents, characterized in that the bottle body of the bottle has a trunk portion and a bottom portion made of a petaloid shape.
  • the present invention is characterized in that the bottle body of the bottle has a body part and a bottom part in which a recessed part is formed, and the depth of the recessed part is 4% to 40% of the outer diameter of the body part. It is a bottle with contents.
  • the contents are filled into the bottle body from the mouth portion.
  • the inside is filled with an inert gas, and bubbles containing the inert gas are formed in the contents.
  • a rinsing process for supplying rinsing water from the mouth portion into the bottle body, and then only the inert gas is supplied from the mouth portion into the bottle body, and the inside of the bottle body is filled with the inert gas. Since the inert gas replacement step for replacement is provided, the rinse water can be effectively removed by the inert gas.
  • an inert gas supply step for supplying an inert gas from the mouth portion into the bottle body is provided after the content filling step. This makes it possible to supplement the bottle body with the inert gas lost from the bottle body during transport, reduce the amount of oxygen present in the bottle from the beginning (total oxygen amount in the initial container), and reduce the content of the contents. Initial oxidation deterioration can be more reliably suppressed.
  • the contents are filled from the mouth portion into the bottle body at a temperature of 5 ° C. to 55 ° C., and the entire process is performed in a sterile atmosphere. That is, since the contents are not heated, deterioration of the contents due to heat can be prevented.
  • the present invention even when the contents are easily foamed, for example, tea beverages, milk beverages, coffee beverages, functional beverages, vegetable juice beverages, or fruit juice beverages, the initial oxidative deterioration of the contents is prevented. It can be effectively suppressed.
  • the process from the inert gas replacement step to the content filling step is performed in 0.5 to 20 seconds, it is possible to fill the bottle with the content at high speed.
  • FIG. 1 is a configuration diagram illustrating a content filling system according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing a rinse part and an inert gas replacement part of the content filling system according to the embodiment of the present invention.
  • FIG. 3 is a flowchart showing a content filling method according to an embodiment of the present invention.
  • 4A, FIG. 4B, and FIG. 4C are diagrams showing bottles in each step of the content filling method according to the embodiment of the present invention.
  • FIG. 5 is a graph comparing the total oxygen amount in the initial container.
  • FIG. 6 is a graph comparing changes with time of the total oxygen amount in the container.
  • 7A and 7B show a bottle according to Example A.
  • FIG. 8A and 8B show a bottle according to Example B.
  • FIG. 9A and 9B show a bottle according to Example C.
  • FIG. 10A and 10B show a bottle according to Example D.
  • FIG. 1 to 4 are views showing an embodiment of the present invention.
  • the content filling system 10 shown in FIG. 1 is a system for filling a content 43 into a bottle 30 having a mouth 31 and a bottle body 32.
  • the content filling system 10 includes a sterilization unit 11, a rinse unit 12, an inert gas replacement unit 13, a content filling unit 14, an inert gas supply unit 15, and a cap mounting unit 16. .
  • the sterilization unit 11, the rinse unit 12, the inert gas replacement unit 13, the content filling unit 14, the inert gas supply unit 15, and the cap mounting unit 16 are arranged in this order from the upstream side to the downstream side. .
  • a first transport mechanism 17 that transports the bottle 30 from the sterilization unit 11 to the rinse unit 12 is provided between the sterilization unit 11 and the rinse unit 12.
  • a second transport mechanism 18 that transports the bottle 30 from the inert gas replacement unit 13 to the content filling unit 14 is provided between the inert gas replacement unit 13 and the content filling unit 14.
  • the sterilization part 11 sterilizes the inside of the empty bottle 30 with the sterilizing agent 40 ejected in a mist shape, a rod shape, or a fountain type.
  • the sterilizing agent 40 include hydrogen peroxide water and peracetic acid.
  • an electron beam sterilization method hereinafter also referred to as EB (Electron Beam) sterilization
  • EB Electro Beam sterilization
  • the rinsing unit 12 supplies rinsing water 41 into the bottle main body 32 from the mouth 31 of the bottle 30 sterilized by the sterilizing unit 11.
  • the rinse water 41 is made of warm water (sterile water) of about 25 ° C. to 80 ° C., for example.
  • this rinse part 12 does not necessarily need to be provided. In this case, the amount of water and electricity used in the manufacturing process can be reduced.
  • the bottle 30 is turned upside down so that the opening
  • the inert gas replacement unit 13 supplies only the inert gas 42 from the mouth portion 31 into the bottle main body 32 to the bottle 30 rinsed by the rinsing unit 12, thereby causing the inert gas 42 to pass through the bottle main body 32. It replaces with.
  • Various gases can be used as the inert gas 42, and nitrogen (N 2 ) is particularly preferable.
  • N 2 nitrogen
  • the bottle 30 is in the state where the mouth part 31 is directed downward.
  • the inert gas 42 is filled in the bottle 30 by substituting the air (oxygen) in the bottle 30 using the inert gas 42.
  • the rinse part 12 and the inert gas replacement part 13 are each arrange
  • the distributor 50 includes a fixed portion 51 and a rotating portion 52 that rotates on the fixed portion 51 in a certain direction. Among these, a plurality of nozzles 53 protruding upward are connected to the rotating portion 52.
  • the bottle 30 rotates in a fixed direction together with the nozzles 53 inserted into the mouth portion 31 as the rotating portion 52 rotates.
  • only a part of the distributor 50 is schematically shown for convenience.
  • the rinse section 12 includes a rinse water tank 59 that contains the rinse water 41, a rinse water supply pipe 54 that is connected to the rinse water tank 59, and a rinse water supply space 55 that is connected to the rinse water supply pipe 54. ing.
  • the rinse water supply space 55 is formed in the fixed portion 51 and communicates with the nozzle 53 that has moved to the top of the rinse water supply space 55 as the rotating portion 52 rotates. Accordingly, the rinse water 41 is supplied from the rinse water tank 59 into the bottle 30 through the rinse water supply pipe 54, the rinse water supply space 55, and the nozzles 53 in order, and the inside of the bottle 30 is washed.
  • the inert gas replacement unit 13 includes an inert gas tank 56 containing the inert gas 42, an inert gas supply pipe 57 connected to the inert gas tank 56, and an inert gas supply pipe 57 connected to the inert gas supply pipe 57. And an active gas supply space 58.
  • the inert gas supply space 58 is formed in the fixed portion 51 and communicates with the nozzle 53 that has moved above the inert gas supply space 58 as the rotating portion 52 rotates.
  • the inert gas 42 is supplied from the inert gas tank 56 into the bottle 30 through the inert gas supply pipe 57, the inert gas supply space 58, and the nozzles 53 in order, and is replaced with the air in the bottle 30. Is done.
  • the content filling unit 14 for filling the content 43 into the bottle body 32 from the mouth 31 of the bottle 30 is provided on the downstream side of the inert gas replacement unit 13.
  • the contents filling unit 14 the contents 43 are filled into the bottle 30 in a state where the inert gas 42 is filled.
  • the contents 43 may be made of various beverages and the like, but in particular, a liquid that easily foams, such as a tea beverage such as green tea, a milk beverage such as milk, a coffee beverage, a functional beverage, a vegetable juice beverage, or a fruit juice beverage. It can be used suitably.
  • the bottle 30 is turned upside down again so that the mouth 31 faces upward.
  • An inert gas supply unit 15 is provided on the downstream side of the content filling unit 14.
  • the inert gas supply unit 15 supplies the inert gas 42 from the mouth part 31 of the bottle 30 into the bottle body 32, and a space above the liquid level of the contents 43 in the bottle body 32 (liquid level upper space 32 a).
  • the inside is filled with an inert gas 42.
  • the inert gas 42 for example, nitrogen (N 2 ) can be used similarly to the gas supplied in the inert gas replacement unit 13.
  • N 2 nitrogen
  • the inert gas supplied by the inert gas supply unit 15 may be made of a different type of gas from the inert gas supplied by the inert gas replacement unit 13.
  • the amount of the inert gas 42 filled in the inert gas supply unit 15 is preferably equal to or greater than the total volume of the bubbles 43a and the liquid surface upper space 32a.
  • the liquid surface upper space 32 a is a space formed above the liquid surface of the content 43 in the space inside the bottle body 32, and excludes bubbles 43 a generated in the content 43. Say something. Therefore, the gas contained in the bubble 43a and the upper liquid level space 32a corresponds to the gas in the head space after entering the market.
  • the cap mounting portion 16 provided on the downstream side of the inert gas supply portion 15 seals the bottle 30 by mounting a cap 33 on the mouth portion 31 of the bottle 30.
  • the inside of the empty bottle 30 is sterilized with the sterilizing agent 40 (sterilization process) (step S1 in FIG. 3).
  • the sterilizing agent 40 hydrogen peroxide solution or peracetic acid is mentioned as mentioned above.
  • the above-described EB sterilization method may be used.
  • the inside of the bottle 30 is sterilized in the sterilization unit 11.
  • the sterilized bottle 30 is turned upside down in the first transport mechanism 17 so that the mouth portion 31 faces downward, and is transported to the rinse section 12.
  • the rinse water 41 is supplied in the bottle main body 32 from the opening part 31 of the bottle 30 (rinsing process) (step S2 of FIG. 3).
  • the sterilization process is not used, and therefore it is not always necessary to provide this rinse process.
  • this rinsing process may be provided in order to remove foreign matters remaining in the bottle 30.
  • the bottle 30 is conveyed to the inert gas replacement unit 13 with the mouth portion 31 facing downward.
  • the inert gas replacement unit 13 only the inert gas 42 is supplied from the mouth portion 31 of the bottle 30 into the bottle body 32, and the inside of the bottle body 32 is replaced with the inert gas 42 (inert gas replacement step) ( Step S3 in FIG.
  • the bottle 30 filled with the inert gas 42 is turned upside down in the second transport mechanism 18 so that the mouth portion 31 faces upward, and is transported to the content filling unit 14.
  • the content 43 is filled into the bottle body 32 from the mouth portion 31 of the bottle 30 (content filling step) (step S4 in FIG. 3, FIG. 4A).
  • the contents 43 to be filled are controlled (liquid deaeration) and managed in advance in the liquid treatment step so as to suppress the dissolved oxygen concentration.
  • the inert gas 42 is introduced into the bottle body 32 in the inert gas replacement step. Therefore, in the content 43, a bubble 43a in which the inert gas 42 is stored is generated. Further, the inert gas 42 is encapsulated in the contents 43.
  • the content 43 is made of a liquid that easily foams, such as a tea beverage such as green tea, a milk beverage such as milk, a coffee beverage, a functional beverage, a vegetable juice beverage, or a fruit juice beverage. It is preferable. That is, according to this embodiment, since the effect of suppressing the initial oxidation of the content 43 is high, the content 43 is a liquid having a property that the flavor and color difference are easily changed by oxidative degradation, as represented by green tea. Very suitable. It is also effective to use a liquid that contains a large amount of milk components that are easy to foam when the contents 43 are filled and in which foam does not easily disappear.
  • the bottle 30 is conveyed to the inert gas supply unit 15.
  • the inert gas 42 is supplied from the mouth portion 31 of the bottle 30 into the bottle main body 32 (inert gas supply step) (step S ⁇ b> 5 and FIG. 4B in FIG. 3).
  • the inert gas 42 is filled in the liquid surface upper space 32 a of the bottle body 32.
  • the inert gas 42 partially lost during the transportation of the bottle 30 from the inert gas replacement unit 13 through the content filling unit 14 to the inert gas supply unit 15 is supplemented in the bottle body 32. .
  • the bottle 30 is conveyed to the cap mounting unit 16. Thereafter, in the cap mounting section 16, the cap 33 is mounted on the mouth portion 31 of the bottle 30 to obtain the content-filled bottle 35 (cap mounting process) (steps S6 and 4C in FIG. 3).
  • the content-filled bottle 35 after sealing is provided with a bottle 30 having a bottle main body 32 and a mouth portion 31 and a content 43 filled in the bottle main body 32 of the bottle 30.
  • an inert gas 42 is filled in the liquid surface upper space 32a of the bottle main body 32, and bubbles 43a containing the inert gas 42 are formed inside (FIG. 4C). Therefore, the amount of oxygen existing in the bottle 30 from the beginning (the total amount of oxygen in the initial container) is extremely small.
  • the entire process from the sterilization process to the cap mounting process described above is performed in an aseptic atmosphere, and from the mouth portion 31 of the bottle 30 to the bottle body 32, the temperature is 5 ° C. to 55 ° C., for example, normal temperature ( The contents 43 are filled at 5 ° C. to 35 ° C.). That is, a so-called aseptic filling method is employed.
  • the difference between the aseptic filling method according to this embodiment and the hot pack filling method will be described.
  • the filling temperature of the content 43 is 5 ° C. to 55 ° C.
  • the amount of gas in the bubbles 43a and the upper liquid surface space 32a at the time of filling is The volume of the head space of the product (the bottle 35 with contents) is approximately equal.
  • the hot pack filling method when the hot pack filling method is adopted, the contents are filled at a high temperature of 85 ° C. or higher. For this reason, the head space is filled with steam at the time of filling, and the oxygen concentration of the head space is low. Further, when the contents thereafter become room temperature, the head space is greatly reduced. Furthermore, the solubility of a gas in a liquid generally has a property of increasing at a lower temperature.
  • the dissolved oxygen concentration in the content 43 is likely to increase due to the entrainment of air when the content 43 is filled, as compared with the hot pack filling method.
  • the liquid level upper space 32a is large, the total oxygen amount in the bottle 30 tends to increase. Therefore, particularly when using the aseptic filling method, it is effective to prevent the contents 43 from being oxidized by suppressing the amount of oxygen existing in the bottle 30 from the beginning (total amount of oxygen in the initial container).
  • the production (conveyance) speed of the content-filled bottle 35 is 100 bpm to 2000 bpm.
  • bpm bottle per minute refers to the conveyance speed of the bottle 30 per minute.
  • the period from the inert gas replacement step (step S3 in FIG. 3) to the content filling step (step S4 in FIG. 3) is preferably performed in 0.5 to 20 seconds.
  • the bottle 30 As a material of the bottle 30, synthetic resin materials such as polyethylene terephthalate (PET), polypropylene (PP), polylactic acid (PLA) can be used.
  • PET polyethylene terephthalate
  • PP polypropylene
  • PLA polylactic acid
  • the inert gas 42 is supplied from the mouth portion 31 of the bottle 30 into the bottle body 32 and the inside of the bottle body 32 is replaced with the inert gas 42.
  • the contents 43 are filled into the bottle body 32.
  • the bottle main body 32 is filled with the inert gas 42, and bubbles 43 a containing the inert gas 42 are formed in the contents 43.
  • the total amount of oxygen in the initial container in the bottle 30 (the amount of oxygen present in the upper liquid level space 32a immediately after production, the amount of oxygen present in the bubbles 43a, and the amount of oxygen dissolved in the contents 43)
  • the initial oxidation deterioration of the content 43 can be suppressed.
  • the total oxygen amount in the initial container can be suppressed to 2.0 cc or less.
  • the rinse water 41 is supplied in the bottle main body 32 from the mouth part 31 of the bottle 30 (rinsing process), and only the inert gas 42 is supplied in the bottle main body 32 from the mouth part 31 after that. Then, the inside of the bottle body 32 is replaced with the inert gas 42 (inert gas replacement step). Therefore, the rinse water 41 can be effectively removed by the inert gas 42.
  • an inert gas supply step for supplying the inert gas 42 from the mouth portion 31 into the bottle body 32 is provided.
  • the inert gas 42 partially lost from the bottle main body 32 during conveyance can be supplemented to the bottle main body 32, and the initial oxidation deterioration of the contents 43 can be more reliably suppressed.
  • the contents 43 are filled from the mouth portion 31 into the bottle body 32 at 5 ° C. to 55 ° C., and the entire process is performed in an aseptic atmosphere (aseptic filling method). That is, unlike the hot pack filling method, the contents 43 are not heated, so that deterioration of the contents 43 due to heat can be prevented.
  • the production (conveyance) speed of the bottle 35 with contents is 100 bpm to 2000 bpm, and the period from the inert gas replacement process to the contents filling process is 0.5 seconds to 20 seconds. Therefore, the contents 43 can be filled into the bottle 30 at high speed.
  • Example 1 A content-filling bottle 35 (Example 1) was produced using the content filling system 10 shown in FIG. 1 and the content filling method shown in FIG. In this case, the contents 43 were filled in an aseptic atmosphere at normal temperature (aseptic filling method). Further, a PET bottle having a capacity of 500 ml was used as the bottle 30, and the conveyance speed of the bottle 30 was 900 bpm.
  • the inside of the bottle 30 was sterilized with a disinfectant composed of hydrogen peroxide (sterilization process), and then rinse water was supplied from the mouth portion 31 into the bottle body 32 (rinse process). Subsequently, 550 ml of an inert gas composed of nitrogen was supplied from the mouth portion 31 into the bottle body 32, and the inside of the bottle body 32 was replaced with nitrogen gas (inert gas replacement step). Next, the contents 43 made of green tea was filled from the mouth portion 31 into the bottle body 32 (content filling step). In this case, the oxygen concentration in the green tea before filling was 1.4 ppm. The filling temperature of green tea was 30.2 ° C.
  • an inert gas composed of nitrogen is supplied from the mouth portion 31 into the bottle body 32 (inert gas supply step), and then a cap 33 is attached to the mouth portion 31, whereby the bottle with contents according to the first embodiment. 35 was obtained.
  • the capacity of the head space was 20 ml.
  • the total amount of oxygen in the initial container (beverage-derived oxygen amount + headspace-derived oxygen amount) of the content-containing bottle 35 (Example 1) thus obtained was measured.
  • the total amount of oxygen in the initial container is calculated based on the following formula, measuring the oxygen concentration (%) of the headspace, the volume of the headspace, the filling amount of the contents, and the dissolved oxygen concentration (%) in the contents. did.
  • Total oxygen content in the initial container (head space oxygen concentration) ⁇ (head space capacity) + (content filling amount) ⁇ (dissolved oxygen concentration in the content)
  • the total oxygen amount in the initial container was 1.5 cc (beverage-derived oxygen amount 0.4 cc + headspace-derived oxygen amount 1.1 cc) (see FIG. 5).
  • the amount of oxygen derived from the beverage includes the amount of oxygen dissolved in the green tea, and the amount of oxygen derived from the head space includes the amount of oxygen present in the upper liquid level space 32a and the amount of oxygen present in the bubbles 43a. .
  • Example 2 The contents 43 were filled with the liquid temperature lower than that in Example 1 to generate a large amount of bubbles 43a (the proportion of the head space capacity occupied by the bubbles 43a (also referred to as the bubble rate) was 18%).
  • a bottle 35 (Example 2) with contents was prepared in the same manner as in Example 1 except for the above. When the total amount of oxygen in the initial container of the bottle 35 with contents (Example 2) was measured, it was 1.0 cc (beverage-derived oxygen amount 0.4 cc + headspace-derived oxygen amount 0.6 cc) (see FIG. 5). ).
  • Example 1 After the rinsing step, the same as in Example 1 except that 550 ml of gas made of sterilized air instead of nitrogen was supplied from the mouth portion 31 into the bottle body 32 and that the inert gas supplying step was not performed. Thus, a bottle with contents (Comparative Example 1) was produced. When the total amount of oxygen in the initial container of the bottle with contents (Comparative Example 1) was measured, it was 5.0 cc (beverage-derived oxygen amount 1.0 cc + headspace-derived oxygen amount 4.0 cc) (see FIG. 5). .
  • Comparative Example 2 After the rinsing step, a bottle containing contents (Comparative Example 2) was prepared in the same manner as in Example 1 except that 550 ml of sterilized air instead of nitrogen was supplied from the mouth portion 31 into the bottle body 32. Produced. When the total amount of oxygen in the initial container of this bottle with contents (Comparative Example 2) was measured, it was 2.5 cc (beverage-derived oxygen amount 0.5 cc + headspace-derived oxygen amount 2.0 cc) (see FIG. 5). .
  • Example 3 A bottle with contents (Comparative Example 3) was prepared in the same manner as in Example 1 except that the hot pack filling method was used instead of the aseptic filling method.
  • the total amount of oxygen in the initial container of this bottle with contents (Comparative Example 3) was measured, it was 1.7 cc (beverage-derived oxygen amount 0.4 cc + headspace-derived oxygen amount 1.3 cc) (see FIG. 5). .
  • the total amount of oxygen in the initial container of the bottle 35 with contents according to Example 1 and Example 2 could be suppressed to 2.0 cc or less (1.5 cc and 1.0 cc, respectively).
  • This numerical value is equivalent to or lower than the numerical value (1.7 cc) of the bottle with contents (Comparative Example 3) produced under the same conditions using the hot pack filling method (see FIG. 5).
  • the total oxygen amount in the initial container of the bottles with contents according to Comparative Example 1 and Comparative Example 2 exceeded 2.0 cc (5.0 cc and 2.5 cc, respectively).
  • the total oxygen amount in the container over time was compared between the bottles 35 containing the contents according to Example 1 and Example 2 and the bottles containing contents according to Comparative Examples 1 to 3. (FIG. 6).
  • the passage of time is caused by the permeation of oxygen through the wall surface of the bottle.
  • the total oxygen amount in the container gradually increased (the graph in FIG. 6 increased to the right).
  • the difference in the total oxygen amount in the containers of these bottles was maintained almost constant. Also from this, it was confirmed that keeping the total amount of oxygen in the initial container low is effective for suppressing the oxidative deterioration of the contents.
  • the inert gas 42 is supplied from the mouth portion 31 of the bottle 30 into the bottle body 32 and the inside of the bottle body 32 is replaced with the inert gas 42 (inert gas replacement). Step), then, the contents 43 are filled into the bottle body 32 from the mouth portion 31 (content filling step).
  • Example A 7A and 7B show a bottle 30 (30a) suitably used in the content filling method and the content filling system according to the present embodiment (Example A).
  • 7A is a perspective view showing a bottle according to Example A
  • FIG. 7B is a cross-sectional view (a cross-sectional view taken along line VII-VII in FIG. 7A) showing the bottom of the bottle according to Example A.
  • the bottle 30 (30a) shown to FIG. 7A and FIG. 7B has the opening part 31 and the bottle main body 32.
  • the bottle main body 32 has the trunk
  • the bottom part 22 has five leg parts 23 arranged at equal intervals in the circumferential direction.
  • the outer diameter (body diameter) of the body part 21 is 55 mm to 70 mm, preferably 60 mm to 70 mm.
  • Example B 8A and 8B show a bottle 30 (30b) suitably used in the content filling method and the content filling system according to the present embodiment (Example B).
  • 8A is a perspective view showing a bottle according to Example B
  • FIG. 8B is a cross-sectional view (a cross-sectional view taken along the line VIII-VIII in FIG. 8A) showing the bottom of the bottle according to Example B.
  • the bottle 30 (30b) shown in FIGS. 8A and 8B has a mouth portion 31 and a bottle body 32.
  • the bottle main body 32 has the trunk
  • the outer diameter (body diameter) of the body part 21 is 55 mm to 70 mm, preferably 60 mm to 70 mm.
  • the bottle 30b has a depressed portion 25 that is depressed inward at the center of the bottom 24.
  • the depression 25 has a tapered peripheral wall 26 inclined toward the inside and a substantially star-shaped central recess 27 provided at the upper end thereof.
  • the depth of the depressed portion 25, that is, the distance Hb from the ground contact portion 28 to the deepest portion of the depressed portion 25 is 4% to 40%, preferably 10 to 30% of the trunk diameter. If the distance Hb is smaller than 4% of the trunk diameter, the foaming volume of the foam 43a cannot be made sufficiently large. On the other hand, when the distance Hb exceeds 40% of the body diameter, the stability of the moldability is deteriorated and the shape of the bottom 24 is difficult to be obtained, which is not preferable.
  • Example C 9A and 9B show a bottle 60 that can be used in the content filling method and the content filling system according to the present embodiment (Example C).
  • 9A is a perspective view showing a bottle according to Example C
  • FIG. 9B is a cross-sectional view (a cross-sectional view taken along line IX-IX in FIG. 9A) showing a bottom portion of the bottle according to Example C.
  • the bottle 60 shown in FIGS. 9A and 9B has a mouth part 31 and a bottle body 32.
  • the bottle main body 32 has the trunk
  • the recess 62 has a plurality of step portions 63, 63.
  • the outer diameter (body diameter) of the body part 21 is 55 mm to 70 mm.
  • the depth of the concave portion 62, that is, the distance Hc from the ground contact portion 64 to the deepest portion of the concave portion 62 is 4% to 15% of the trunk diameter.
  • Example D 10A and 10B show a bottle 70 that can be used in the content filling method and the content filling system according to the present embodiment (Example D).
  • 10A is a perspective view showing a bottle according to Example D
  • FIG. 10B is a cross-sectional view (a cross-sectional view taken along line XX of FIG. 10A) showing a bottom portion of the bottle according to Example D.
  • the bottle 70 shown in FIGS. 10A and 10B has a mouth portion 31 and a bottle main body 32.
  • the bottle main body 32 has the trunk
  • the outer diameter (body diameter) of the body part 21 is 55 mm to 70 mm.
  • the depth of the concave portion 72, that is, the distance Hd from the ground contact portion 73 to the deepest portion of the concave portion 72 is 4% to 15% of the trunk diameter.
  • the bottles shown in FIGS. 7 to 10 were prepared (referred to as the bottle 30a of Example A, the bottle 30b of Example B, the bottle 60 of Example C, and the bottle 70 of Example D, respectively).
  • Each bottle 30a, 30b, 60, 70 had an internal volume of 500 ml, and the shape of each bottle was the same except for the bottom.
  • a bottle with contents was prepared for each bottle. Specifically, a bottle with contents was produced as follows.
  • Example A Using the bottle 30a of Example A shown in FIGS. 7A and 7B, a bottle 35 with contents (Example A) was produced. Specifically, a content-filling bottle 35 (Example A) was produced using the content filling system 10 shown in FIG. 1 and the content filling method shown in FIG. In this case, the contents 43 were filled in an aseptic atmosphere at normal temperature (aseptic filling method). Moreover, a PET bottle having a capacity of 500 ml was used as the bottle 30a, and the conveyance speed of the bottle 30a was 600 bpm.
  • the inside of the bottle 30a was sterilized with a disinfectant made of hydrogen peroxide (sterilization process), and then rinse water was supplied from the mouth 31 into the bottle body 32 (rinse process). Subsequently, 600 ml of inert gas 42 made of sterilized nitrogen gas was supplied from the mouth portion 31 into the bottle body 32, and the inside of the bottle body 32 was replaced with nitrogen gas (inert gas replacement step). Next, the contents 43 made of green tea was filled from the mouth portion 31 into the bottle body 32 (content filling step). In this case, the oxygen concentration in the green tea before filling was 1.4 ppm. The filling temperature of green tea was 30.2 ° C.
  • an inert gas composed of nitrogen is supplied from the mouth portion 31 into the bottle main body 32 (inert gas supply step), and then the cap 33 is attached to the mouth portion 31, whereby the bottle with contents according to Example A 35 was obtained.
  • the capacity of the head space was 20 ml.
  • the foaming volume and the total amount of oxygen in the initial container of the content-containing bottle 35 were measured.
  • the foaming volume was 3.6 cc
  • the total oxygen amount in the initial container was 1.4 cc.
  • Example B A content-filled bottle 35 (Example B) was produced in the same manner as Example A, except that the bottle 30b shown in FIGS. 8A and 8B was used.
  • the foaming volume and the total oxygen amount in the initial container of the bottle 35 (Example B) with contents were measured, the foaming volume was 3.4 cc, and the total oxygen amount in the initial container was 1.5 cc.
  • Example C A bottle with contents (Example C) was prepared in the same manner as Example A except that the bottle 60 shown in FIGS. 9A and 9B was used.
  • the foaming volume and the total oxygen amount in the initial container of the bottle with the contents (Example C) were measured, the foaming volume was 2.1 cc and the total oxygen amount in the initial container was 2.0 cc.
  • Example D A bottle with contents (Example D) was produced in the same manner as Example A, except that the bottle 70 shown in FIGS. 10A and 10B was used.
  • the foaming volume and the total amount of oxygen in the initial container of this bottle with contents (Example D) were measured, the foaming volume was 0.8 cc and the total amount of oxygen in the initial container was 2.4 cc.
  • the bottles 30a and 30b according to the example A and the example B have a shape in which foaming due to the bubbles 43a of the inert gas 43 is likely to occur as compared with the bottles 60 and 70 according to the example C and the example D.
  • the total amount of oxygen in the initial container of the contents-containing bottle 35 according to Example A and Example B can be kept relatively low. That is, the bottles 30a and 30b according to Example A and Example B have relatively large irregularities formed at the bottoms 22 and 24, respectively. For this reason, foaming is likely to occur when the contents 43 are filled, and it is considered that the total amount of oxygen in the initial container could be kept low.
  • the bottom portion is a flat bottom shape
  • the turbulent flow phenomenon hardly occurs and the foaming hardly occurs when the filling liquid is filled, so that the effect of suppressing the total oxygen amount in the initial container is small.
  • the bottom part has a petaloid shape (Example A), or when a depressed part is formed at the bottom part (Example B)
  • the shape of the bottom part is complicated. Easily occurs, bubbles are generated, and the bubbles are filled with nitrogen.
  • Example C and Example D although the effect which suppresses the total oxygen amount in an initial container becomes relatively low, the effect is not necessarily acquired.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Filling Of Jars Or Cans And Processes For Cleaning And Sealing Jars (AREA)
  • Vacuum Packaging (AREA)

Abstract

 ボトル内に最初から存在する酸素量を減らし、内容物の酸化劣化を抑制することが可能な内容物充填方法、内容物充填システム、および内容物入ボトルを提供する。 本発明は、口部と、ボトル本体とを有するボトルに対して内容物を充填する内容物充填方法である。まず口部からボトル本体内へ不活性ガスのみを供給してボトル本体内を不活性ガスで置換し、その後、口部からボトル本体内へ内容物を充填する。予めボトル本体内に導入された不活性ガスにより、ボトル本体内に充填された内容物に、内部に不活性ガスを収納した泡が生じる。

Description

内容物充填方法、内容物充填システム、および内容物入ボトル
 本発明は、内容物充填方法、内容物充填システム、および内容物入ボトルに係り、とりわけボトル内の初期酸素量を減らすことにより、内容物の酸化劣化を抑制することが可能な内容物充填方法、内容物充填システム、および内容物入ボトルに関する。
 近年、プラスチックボトルに使用されるプラスチック材料の使用量を減らすことにより、プラスチックボトルを軽量化することが望まれている。しかしながら、プラスチックボトルを軽量化することは、プラスチックボトルの強度および内容物保存(酸素バリア)性を低下させることに繋がる。
 このため、内容物保存(酸素バリア)性を高めるために、プラスチックボトルを構成する材料に酸素遮断性や酸素吸収機能性を有する材料をブレンドしたり、プラスチックボトルを多層化することにより、プラスチックボトルのガスバリア性を高める(内容物の経時酸化を抑制する)技術が使用されている。
 また、内容物を充填した後、プラスチックボトル内のヘッドスペース中の酸素を不活性ガスによって置換することにより、ヘッドスペース中の酸素を除去する(内容物の初期酸化を抑制する)充填包装技術が存在する(特開2008-155943号公報)。
 他方、特開2002-301441号公報には、不活性ガスと洗浄水(リンス水)とを混合した状態で空ボトル内に注入させる技術が示されている。
特開2008-155943号公報 特開2002-301441号公報
 しかしながら、特開2008-155943号公報のように、内容物入りのボトルのヘッドスペース中に不活性ガスを吹きかけ、不活性ガスにより酸素を置換することを行うのみでは、そのガス置換率に限界が存在する。とりわけ内容物の種類によっては、充填時に周囲の空気を巻き込み、泡立ち易く、かつこの泡が消えにくいものもある。このような泡立ちやすい内容物が充填されているボトルの場合、ヘッドスペース中の酸素を不活性ガスにより置換する際、ヘッドスペースのうち泡の外部の空間(液面上方空間)に存在する酸素を置換することはできるが、泡の内部に存在する酸素を置換することはできない。このような、泡内部に存在する酸素は、一定時間の経過後、泡の消滅とともにヘッドスペース中に放出されるため、結果的にヘッドスペース中の酸素量が上昇してしまうことになる。
 他方、特開2002-301441号公報においては、不活性ガスを注入する工程と洗浄水(リンス水)を注入する工程とが区別されていないため、洗浄水(リンス水)の水切りを十分に行うことが難しいと考えられる。すなわち、リンス水と不活性ガスとがスプレー状に吹き出してしまうため、リンス水がボトル内壁にミスト状に残り、水切りが難しくなると考えられる。
 本発明はこのような点を考慮してなされたものであり、ボトル内に最初から存在する酸素量を減らし、内容物の酸化劣化を抑制することが可能な内容物充填方法、内容物充填システム、および内容物入ボトルを提供することを目的とする。
 本発明は、口部と、ボトル本体とを有するボトルに対して内容物を充填する内容物充填方法において、口部からボトル本体内へ不活性ガスのみを供給してボトル本体内を不活性ガスで置換する不活性ガス置換工程と、口部からボトル本体内へ内容物を充填する内容物充填工程とを備えたことを特徴とする内容物充填方法である。
 本発明は、不活性ガス置換工程の前に、ボトル内を殺菌する殺菌工程と、口部からボトル本体内へリンス水を供給するリンス工程とが設けられていることを特徴とする内容物充填方法である。
 本発明は、不活性ガス置換工程の前に、ボトル内を電子線により殺菌する殺菌工程が設けられていることを特徴とする内容物充填方法である。
 本発明は、内容物充填工程の後、口部からボトル本体内へ不活性ガスを供給する不活性ガス供給工程が設けられていることを特徴とする内容物充填方法である。
 本発明は、不活性ガス供給工程の後、口部にキャップを装着するキャップ装着工程が設けられていることを特徴とする内容物充填方法である。
 本発明は、内容物充填工程において、口部からボトル本体内へ5℃~55℃の温度で内容物を充填することを特徴とする内容物充填方法である。
 本発明は、工程全体が無菌雰囲気下で行われることを特徴とする内容物充填方法である。
 本発明は、不活性ガス置換工程の際ボトル本体内に導入された不活性ガスにより、内容物充填工程の際、ボトル本体内に充填された内容物に、内部に不活性ガスを収納した泡が生じることを特徴とする内容物充填方法である。
 本発明は、内容物は、茶飲料、乳飲料、コーヒー飲料、機能性飲料、野菜汁飲料、または果汁飲料からなることを特徴とする内容物充填方法である。
 本発明は、不活性ガス置換工程から内容物充填工程までの間が0.5秒~20秒で行われることを特徴とする内容物充填方法である。
 本発明は、ボトルのボトル本体は、胴部と、ペタロイド形状からなる底部とを有することを特徴とする内容物充填方法である。
 本発明は、ボトルのボトル本体は、胴部と、陥没部が形成された底部とを有し、陥没部の深さは、胴部の外径の4%~40%であることを特徴とする内容物充填方法である。
 本発明は、口部と、ボトル本体とを有するボトルに対して内容物を充填する内容物充填システムにおいて、口部からボトル本体内へ不活性ガスのみを供給してボトル本体内を不活性ガスで置換する不活性ガス置換部と、不活性ガス置換部の下流側に設けられ、口部からボトル本体内へ内容物を充填する内容物充填部とを備えたことを特徴とする内容物充填システムである。
 本発明は、不活性ガス置換部の上流側に、ボトル内を殺菌する殺菌部が設けられ、不活性ガス置換部の上流側であって殺菌部の下流側に、口部からボトル本体内へリンス水を供給するリンス部が設けられていることを特徴とする内容物充填システムである。
 本発明は、不活性ガス置換部の上流側に、ボトル内を電子線により殺菌する殺菌部が設けられていることを特徴とする内容物充填システムである。
 本発明は、内容物充填部の下流側に、口部からボトル本体内へ不活性ガスを供給する不活性ガス供給部が設けられていることを特徴とする内容物充填システムである。
 本発明は、不活性ガス供給部の下流側に、口部にキャップを装着するキャップ装着部が設けられていることを特徴とする内容物充填システムである。
 本発明は、ボトルのボトル本体は、胴部と、ペタロイド形状からなる底部とを有することを特徴とする内容物充填システムである。
 本発明は、ボトルのボトル本体は、胴部と、陥没部が形成された底部とを有し、陥没部の深さは、胴部の外径の4%~40%であることを特徴とする内容物充填システムである。
 本発明は、ボトル本体と口部とを有するボトルと、ボトルのボトル本体内に充填された内容物とを備え、内容物に、内部に不活性ガスを収納した泡が形成されていることを特徴とする内容物入ボトルである。
 本発明は、ボトルのボトル本体は、胴部と、ペタロイド形状からなる底部とを有することを特徴とする内容物入ボトルである。
 本発明は、ボトルのボトル本体は、胴部と、陥没部が形成された底部とを有し、陥没部の深さは、胴部の外径の4%~40%であることを特徴とする内容物入ボトルである。
 本発明によれば、口部からボトル本体内へ不活性ガスのみを供給してボトル本体内を不活性ガスで置換した後、口部からボトル本体内へ内容物を充填するので、ボトル本体内に不活性ガスが充填されるとともに、内容物に、内部に不活性ガスを収納した泡が形成される。これにより、ボトル内に最初から存在する酸素量(初期容器内総酸素量)を減らすことができ、内容物の初期酸化劣化を抑制することができる。
 また本発明によれば、口部からボトル本体内へリンス水を供給するリンス工程が設けられ、その後、口部からボトル本体内へ不活性ガスのみを供給してボトル本体内を不活性ガスで置換する不活性ガス置換工程が設けられているので、不活性ガスによってリンス水を効果的に除去することができる。
 また本発明によれば、内容物充填工程の後、口部からボトル本体内へ不活性ガスを供給する不活性ガス供給工程が設けられている。このことにより、搬送中にボトル本体内から失われた不活性ガスをボトル本体に補填することができ、ボトル内に最初から存在する酸素量(初期容器内総酸素量)を減らし、内容物の初期酸化劣化をより確実に抑制することができる。
 また本発明によれば、口部からボトル本体内へ5℃~55℃の温度で内容物を充填するとともに、工程全体が無菌雰囲気下で行われる。すなわち内容物を加熱することがないので、熱による内容物の劣化を防止することができる。
 また本発明によれば、内容物が泡立ち易いもの、例えば茶飲料、乳飲料、コーヒー飲料、機能性飲料、野菜汁飲料、または果汁飲料からなる場合であっても、内容物の初期酸化劣化を効果的に抑制することができる。
 また本発明によれば、不活性ガス置換工程から内容物充填工程までの間が0.5秒~20秒で行われるので、ボトルに対して高速で内容物を充填することも可能である。
図1は、本発明の一実施の形態による内容物充填システムを示す構成図。 図2は、本発明の一実施の形態による内容物充填システムのリンス部および不活性ガス置換部を示す概略断面図。 図3は、本発明の一実施の形態による内容物充填方法を示すフロー図。 図4A、図4Bおよび図4Cは、本発明の一実施の形態による内容物充填方法の各工程におけるボトルを示す図。 図5は、初期容器内総酸素量を比較するグラフ。 図6は、容器内総酸素量の経時変化を比較するグラフ。 図7Aおよび図7Bは、実施例Aによるボトルを示す図。 図8Aおよび図8Bは、実施例Bによるボトルを示す図。 図9Aおよび図9Bは、実施例Cによるボトルを示す図。 図10Aおよび図10Bは、実施例Dによるボトルを示す図。
 以下、図面を参照して本発明の実施の形態について説明する。図1乃至図4は本発明の一実施の形態を示す図である。
 (内容物充填システム)
 まず図1乃至図2により本実施の形態による内容物充填システムについて説明する。
 図1に示す内容物充填システム10は、口部31と、ボトル本体32とを有するボトル30に対して内容物43を充填するシステムである。この内容物充填システム10は、殺菌部11と、リンス部12と、不活性ガス置換部13と、内容物充填部14と、不活性ガス供給部15と、キャップ装着部16とを備えている。殺菌部11、リンス部12、不活性ガス置換部13、内容物充填部14、不活性ガス供給部15、およびキャップ装着部16は、上流側から下流側に向けてこの順に配設されている。
 また、殺菌部11とリンス部12との間に、ボトル30を殺菌部11からリンス部12へ搬送する第1搬送機構17が設けられている。さらに、不活性ガス置換部13と内容物充填部14との間に、ボトル30を不活性ガス置換部13から内容物充填部14へ搬送する第2搬送機構18が設けられている。
 このうち殺菌部11は、ミスト状、棒状、または噴水式に噴出される殺菌剤40により空のボトル30内を殺菌するものである。この殺菌剤40としては、例えば過酸化水素水または過酢酸が挙げられる。なお、殺菌部11においては、殺菌剤40を用いる殺菌方法のほか、殺菌剤40を用いない電子線殺菌(以下、EB(Electron Beam)殺菌ともいう)方法が用いられても良い。
 リンス部12は、殺菌部11で内部が殺菌されたボトル30の口部31からボトル本体32内へリンス水41を供給するものである。このリンス水41は、例えば25℃~80℃程度の温水(無菌水)からなっている。なお、殺菌部11においてEB殺菌方法を用いる場合、このリンス部12は必ずしも設けられなくても良い。この場合、製造工程において水や電気の使用量を削減することができる。
 なお、殺菌部11とリンス部12との間に位置する第1搬送機構17において、口部31が下方を向くように、ボトル30が上下反転されるようになっている。
 不活性ガス置換部13は、リンス部12でリンスされたボトル30に対し、その口部31からボトル本体32内へ不活性ガス42のみを供給し、これによりボトル本体32内を不活性ガス42で置換するものである。この不活性ガス42として各種のガスを用いることができるが、とりわけ窒素(N2)を用いることが好ましい。また充填する不活性ガス42の量は、ボトル30の容積を上回る量とすることが好ましい。なお、不活性ガス置換部13において、ボトル30は口部31を下方に向けたままの状態である。このように、不活性ガス42を用いてボトル30内の空気(酸素)を置換することにより、ボトル30内に不活性ガス42が充填される。
 次に図2を用いて、このリンス部12および不活性ガス置換部13の構成について更に詳細に説明する。
 図2に示すように、リンス部12および不活性ガス置換部13は、それぞれディストリビュータ50上に配置されている。このディストリビュータ50は、固定部51と、固定部51上で一定方向に回転する回転部52とを有している。このうち回転部52に、上方に向けて突出する複数のノズル53が連結されている。そしてボトル30は、回転部52の回転に伴い、口部31内に挿入された各ノズル53とともに一定方向に回転するようになっている。なお図2において、便宜上、ディストリビュータ50の一部分のみを模式的に示している。
 リンス部12は、リンス水41を収容したリンス水タンク59と、リンス水タンク59に連結されたリンス水供給管54と、リンス水供給管54に連結されたリンス水供給空間55とを有している。このうちリンス水供給空間55は、固定部51内に形成されるとともに、回転部52の回転に伴ってリンス水供給空間55上方に移動してきたノズル53と連通するようになっている。これによりリンス水41は、リンス水タンク59から、リンス水供給管54、リンス水供給空間55、および各ノズル53を順次介してボトル30内に供給され、ボトル30内が洗浄される。
 他方、不活性ガス置換部13は、不活性ガス42を収容した不活性ガスタンク56と、不活性ガスタンク56に連結された不活性ガス供給管57と、不活性ガス供給管57に連結された不活性ガス供給空間58とを有している。このうち不活性ガス供給空間58は、固定部51内に形成されるとともに、回転部52の回転に伴って不活性ガス供給空間58上方に移動してきたノズル53と連通するようになっている。これにより不活性ガス42は、不活性ガスタンク56から、不活性ガス供給管57、不活性ガス供給空間58、および各ノズル53を順次介してボトル30内に供給され、ボトル30内の空気と置換される。
 再び図1を参照すると、不活性ガス置換部13の下流側に、ボトル30の口部31からボトル本体32内へ内容物43を充填する内容物充填部14が設けられている。この内容物充填部14において、不活性ガス42が充填された状態のボトル30に対して内容物43が充填される。内容物43は、各種の飲料等からなっていて良いが、とりわけ、緑茶等の茶飲料、牛乳等の乳飲料、コーヒー飲料、機能性飲料、野菜汁飲料、または果汁飲料等、泡立ち易い液体を好適に用いることができる。
 なお不活性ガス置換部13と内容物充填部14との間の第2搬送機構18において、口部31が上方を向くように再度ボトル30を上下反転するようになっている。
 内容物充填部14の下流側には、不活性ガス供給部15が設けられている。この不活性ガス供給部15は、ボトル30の口部31からボトル本体32内へ不活性ガス42を供給し、ボトル本体32のうち内容物43の液面上方の空間(液面上方空間32a)内に不活性ガス42を充填するものである。なお、不活性ガス42としては、不活性ガス置換部13において供給されるガスと同様に、例えば窒素(N2)を用いることができる。なお、不活性ガス供給部15で供給される不活性ガスが、不活性ガス置換部13で供給される不活性ガスと異なる種類のガスからなっていても良い。この不活性ガス供給部15で充填される不活性ガス42の量は、泡43aおよび液面上方空間32aの合計容積と同等以上の量とすることが好ましい。ここで本明細書中、液面上方空間32aとは、ボトル本体32内部の空間のうち、内容物43の液面上方に形成される空間であって、内容物43に発生する泡43aを除いたものをいう。したがって、泡43aおよび液面上方空間32aに含まれる気体が、市場に出た後におけるヘッドスペース中の気体に相当する。
 不活性ガス供給部15の下流側に設けられたキャップ装着部16は、ボトル30の口部31にキャップ33を装着することにより、ボトル30を密閉するものである。
 (内容物充填方法)
 次に、図1、図3、および図4A-図4Cにより、本実施の形態による内容物充填方法について説明する。本実施の形態による内容物充填方法は、上述した内容物充填システム10(図1)を用いて行われるものである。
 まず、殺菌部11において、空のボトル30内を殺菌剤40により殺菌する(殺菌工程)(図3のステップS1)。この殺菌剤40としては、上述したように過酸化水素水または過酢酸が挙げられる。なお、この殺菌工程において、殺菌剤40を用いる殺菌方法のほか、上述したEB殺菌方法を用いても良い。このように、殺菌部11においてボトル30内が殺菌される。
 次に、殺菌されたボトル30は、第1搬送機構17において口部31が下方を向くように上下反転され、リンス部12に搬送される。次にこのリンス部12において、ボトル30の口部31からボトル本体32内へリンス水41が供給される(リンス工程)(図3のステップS2)。このように、リンス水41を用いてボトル30内を洗浄することにより、ボトル30内に残存する殺菌剤40等を取り除く。なお、殺菌工程においてEB殺菌方法を用いる場合には、殺菌剤40を使用しないため、必ずしもこのリンス工程を設ける必要はない。ただし殺菌工程でEB殺菌方法を用いる場合であっても、ボトル30内に残存する異物等を除去するために、このリンス工程が設けられていても良い。
 続いて、ボトル30は、口部31を下方に向けたまま不活性ガス置換部13に搬送される。この不活性ガス置換部13において、ボトル30の口部31からボトル本体32内へ不活性ガス42のみを供給し、ボトル本体32内を不活性ガス42で置換する(不活性ガス置換工程)(図3のステップS3)。このように、ボトル本体32内に下方から不活性ガス42を噴射することにより、ボトル本体32内に残存するリンス水41を効果的に取り除くことができるという効果もある。
 次に、不活性ガス42が充填されたボトル30は、第2搬送機構18において口部31が上方を向くように上下反転され、内容物充填部14に搬送される。続いて、内容物充填部14において、ボトル30の口部31からボトル本体32内へ内容物43が充填される(内容物充填工程)(図3のステップS4、図4A)。なお、充填される内容物43は、その溶存酸素濃度を抑えるように、予め液処理工程において制御(液脱気)管理されている。
 この内容物充填工程の際、ボトル30のボトル本体32に充填された内容物43の内部および表面に、充填時の巻き込みにより多数の泡43aが生じる。この場合、上述したように、不活性ガス置換工程において、ボトル本体32内に不活性ガス42が導入されている。したがって、内容物43には、内部に不活性ガス42が収納された泡43aが生じる。また、内容物43中に不活性ガス42が包み込まれる。
 本実施の形態において、内容物43は、上述したように緑茶等の茶飲料、牛乳等の乳飲料、コーヒー飲料、機能性飲料、野菜汁飲料、または果汁飲料等の泡立ち易い液体からなっていることが好ましい。すなわち本実施の形態によれば、内容物43の初期酸化を抑制する効果が高いため、内容物43として、緑茶に代表されるような、酸化劣化によって風味や色差が変わりやすい性質を持つ液体が非常に適している。また、内容物43の充填時に泡立ちし易く、泡が消えにくい乳成分を多く含む液体を用いることも効果的である。
 内容物充填工程の後、ボトル30は不活性ガス供給部15に搬送される。次いで、この不活性ガス供給部15において、ボトル30の口部31からボトル本体32内へ不活性ガス42が供給される(不活性ガス供給工程)(図3のステップS5、図4B)。これにより、ボトル本体32の液面上方空間32a内に不活性ガス42が充填される。この結果、不活性ガス置換部13から内容物充填部14を経て不活性ガス供給部15に至るボトル30の搬送中に一部失われた不活性ガス42が、ボトル本体32内に補填される。
 不活性ガス供給工程の後、ボトル30はキャップ装着部16に搬送される。その後、キャップ装着部16において、ボトル30の口部31にキャップ33を装着することにより、内容物入ボトル35が得られる(キャップ装着工程)(図3のステップS6、図4C)。
 この密栓後の内容物入ボトル35は、ボトル本体32と口部31とを有するボトル30と、ボトル30のボトル本体32内に充填された内容物43とを備えている。また、ボトル本体32の液面上方空間32a内に不活性ガス42が充填されるとともに、内部に不活性ガス42を収納した泡43aが形成されている(図4C)。したがって、ボトル30内に最初から存在する酸素量(初期容器内総酸素量)がきわめて少なく抑えられている。
 ところで、本実施の形態において、上述した殺菌工程からキャップ装着工程までの工程全体が無菌雰囲気下で行われるとともに、ボトル30の口部31からボトル本体32内へ5℃~55℃、例えば常温(5℃~35℃)で内容物43を充填するようになっている。すなわち、いわゆる無菌充填方式が採用されている。
 ここで、本実施の形態による無菌充填方式と、ホットパック充填方式の違いについて説明する。本実施の形態による無菌充填方式の特徴として、内容物43の充填温度が5℃~55℃であるため、充填時における泡43aおよび液面上方空間32aの気体量は、市場に出た後における、製品(内容物入ボトル35)のヘッドスペース容積にほぼ等しいことが挙げられる。
 これに対して、ホットパック充填方式を採用した場合には、85℃以上の高温下で内容物を充填する。このため、充填時にヘッドスペースは蒸気で満たされており、ヘッドスペースの酸素濃度は低くなっている。また、その後内容物が常温となった場合には、ヘッドスペースが大きく減少する。さらに、気体の液体への溶解度は一般的に低温である程、増す性質がある。
 したがって、本実施の形態による無菌充填方式は、ホットパック充填方式と比べて、内容物43の充填時における空気の巻き込みにより、内容物43中の溶存酸素濃度が高まりやすい。加えて、液面上方空間32aが大きいことから、ボトル30内の総酸素量が大きくなりやすい傾向にある。したがって、とりわけ無菌充填方式を用いる場合、ボトル30内に最初から存在する酸素量(初期容器内総酸素量)を抑えることが、内容物43の酸化を防止するうえで効果的となる。
 なお、本実施の形態において、内容物入ボトル35の生産(搬送)速度は、100bpm~2000bpmとすることが好ましい。ここでbpm(bottle per minute)とは、1分間当たりのボトル30の搬送速度をいう。この場合、不活性ガス置換工程(図3のステップS3)から内容物充填工程(図3のステップS4)までの間が0.5秒~20秒で行われることが好ましい。
 なお、ボトル30の材料としては、ポリエチレンテレフタレート(PET)、ポリプロピレン(PP)、ポリ乳酸(PLA)等の合成樹脂材料を用いることができる。なお、ボトル30の好ましい形状については後に詳述する。
 以上のように本実施の形態によれば、ボトル30の口部31からボトル本体32内へ不活性ガス42のみを供給してボトル本体32内を不活性ガス42で置換した後、口部31からボトル本体32内へ内容物43を充填する。このことにより、ボトル本体32内に不活性ガス42が充填されるとともに、内容物43に、内部に不活性ガス42を収納した泡43aが形成される。この結果、ボトル30内の初期容器内総酸素量(製造直後における、液面上方空間32a内部に存在する酸素量、泡43a内部に存在する酸素量、および内容物43に溶解している酸素量の合計)を減らすことができ、内容物43の初期酸化劣化を抑制することができる。具体的には、500mlサイズのボトル30の場合、初期容器内総酸素量を2.0cc以下に抑えることができる。
 また本実施の形態によれば、ボトル30の口部31からボトル本体32内へリンス水41を供給し(リンス工程)、その後、口部31からボトル本体32内へ不活性ガス42のみを供給してボトル本体32内を不活性ガス42で置換する(不活性ガス置換工程)。したがって、不活性ガス42によってリンス水41を効果的に除去することができる。
 また本実施の形態によれば、内容物充填工程の後、口部31からボトル本体32内へ不活性ガス42を供給する不活性ガス供給工程が設けられている。このことにより、搬送中にボトル本体32内から一部失われた不活性ガス42をボトル本体32に補填することができ、内容物43の初期酸化劣化をより確実に抑制することができる。
 また本実施の形態によれば、口部31からボトル本体32内へ5℃~55℃で内容物43を充填するとともに、工程全体が無菌雰囲気下で行われる(無菌充填方式)。すなわち、ホットパック充填方式と異なり、内容物43を加熱することがないので、熱による内容物43の劣化を防止することができる。
 さらに本実施の形態によれば、従来の無菌充填方式で使用されている設備を大幅に改造する必要がないため、設備コストを抑制することができる。
 さらに本実施の形態によれば、内容物入ボトル35の生産(搬送)速度は、100bpm~2000bpmであり、また不活性ガス置換工程から内容物充填工程までの間が0.5秒~20秒で行われるので、ボトル30に対して高速で内容物43を充填することが可能である。
 (実施例)
 次に、図1、図3、図5、および図6を用いて本発明の具体的実施例を説明する。
 (実施例1)
 図1に示す内容物充填システム10を用い、かつ図3に示す内容物充填方法により内容物入ボトル35(実施例1)を作製した。この場合、無菌雰囲気かつ常温で内容物43を充填した(無菌充填方式)。また、ボトル30として容量500mlのPETボトルを用い、さらにボトル30の搬送速度は900bpmとした。
 まずボトル30内を過酸化水素水からなる殺菌剤により殺菌し(殺菌工程)、次に口部31からボトル本体32内へリンス水を供給した(リンス工程)。続いて、口部31からボトル本体32内へ窒素からなる不活性ガスを550ml供給して、ボトル本体32内を窒素ガスで置換した(不活性ガス置換工程)。次に、口部31からボトル本体32内へ緑茶からなる内容物43を充填した(内容物充填工程)。この場合、充填前における緑茶内の酸素濃度は1.4ppmであった。また緑茶の充填温度は30.2℃であった。
 次いで、口部31からボトル本体32内へ窒素からなる不活性ガスを供給し(不活性ガス供給工程)、その後、口部31にキャップ33を装着することにより、実施例1による内容物入ボトル35を得た。この場合、ヘッドスペースの容量は20mlであった。
 このようにして得られた内容物入ボトル35(実施例1)の初期容器内総酸素量(ビバレッジ由来酸素量+ヘッドスペース由来酸素量)を測定した。初期容器内総酸素量は、ヘッドスペースの酸素濃度(%)、ヘッドスペースの容量、内容物の充填量、内容物中の溶存酸素濃度(%)をそれぞれ実測し、下記の式に基づいて算出した。
 (初期容器内総酸素量)=(ヘッドスペースの酸素濃度)×(ヘッドスペースの容量)+(内容物の充填量)×(内容物中の溶存酸素濃度)
 この結果、初期容器内総酸素量は、1.5cc(ビバレッジ由来酸素量0.4cc+ヘッドスペース由来酸素量1.1cc)となった(図5参照)。なお、ビバレッジ由来酸素量には緑茶に溶解している酸素量が含まれ、ヘッドスペース由来酸素量には液面上方空間32a内部に存在する酸素量および泡43a内部に存在する酸素量が含まれる。
 (実施例2)
 実施例1より液温を下げた状態で内容物43を充填し泡43aを多く発生させた(ヘッドスペースの容量のうち、泡43aが占める割合(泡率ともいう)を18%とした)こと、以外は、実施例1と同様にして内容物入ボトル35(実施例2)を作製した。この内容物入ボトル35(実施例2)の初期容器内総酸素量を測定したところ、1.0cc(ビバレッジ由来酸素量0.4cc+ヘッドスペース由来酸素量0.6cc)となった(図5参照)。
 (比較例1)
 リンス工程の後、口部31からボトル本体32内へ窒素ではなく無菌化した空気からなるガスを550ml供給したこと、および不活性ガス供給工程を行わなかったこと、以外は、実施例1と同様にして内容物入ボトル(比較例1)を作製した。この内容物入ボトル(比較例1)の初期容器内総酸素量を測定したところ、5.0cc(ビバレッジ由来酸素量1.0cc+ヘッドスペース由来酸素量4.0cc)となった(図5参照)。
 (比較例2)
 リンス工程の後、口部31からボトル本体32内へ窒素ではなく無菌化した空気からなるガスを550ml供給したこと、以外は、実施例1と同様にして内容物入ボトル(比較例2)を作製した。この内容物入ボトル(比較例2)の初期容器内総酸素量を測定したところ、2.5cc(ビバレッジ由来酸素量0.5cc+ヘッドスペース由来酸素量2.0cc)となった(図5参照)。
 (比較例3)
 無菌充填方式ではなくホットパック充填方式を用いたこと、以外は、実施例1と同様にして内容物入ボトル(比較例3)を作製した。この内容物入ボトル(比較例3)の初期容器内総酸素量を測定したところ、1.7cc(ビバレッジ由来酸素量0.4cc+ヘッドスペース由来酸素量1.3cc)となった(図5参照)。
 この結果、実施例1および実施例2による内容物入ボトル35の初期容器内総酸素量を2.0cc以下(それぞれ1.5cc、1.0cc)に抑えることができた。この数値は、ホットパック充填方式を用いて同様の条件下で作製した内容物入ボトル(比較例3)の数値(1.7cc)と比べ同等またはそれ以下である(図5参照)。他方、比較例1および比較例2による内容物入ボトルの初期容器内総酸素量は、2.0ccを上回った(それぞれ5.0cc、2.5cc)。
 次に、上述した実施例1および実施例2による内容物入ボトル35と、比較例1~比較例3による内容物入ボトルとの間で、時間の経過に伴う容器内総酸素量を比較した(図6)。この結果、実施例1および実施例2による内容物入ボトル35の場合も、比較例1~比較例3による内容物入ボトルの場合も、ボトルの壁面を酸素が透過することにより、時間の経過に伴って容器内総酸素量が徐々に増加していった(図6のグラフが右上がりとなった)。しかしながら、長時間が経過した後であっても、これらのボトルの容器内総酸素量の差はほぼ一定に維持されていた。このことからも、初期容器内総酸素量を低く抑えることが、内容物の酸化劣化を抑制するために有効であることが確認された。
 (ボトルの構成)
 次に、図7乃至図10を用いて、本実施の形態による内容物充填方法および内容物充填システムにおいて好適に用いられるボトルの構成について説明する。
 上述したように、本実施の形態においては、ボトル30の口部31からボトル本体32内へ不活性ガス42のみを供給してボトル本体32内を不活性ガス42で置換し(不活性ガス置換工程)、その後口部31からボトル本体32内へ内容物43を充填している(内容物充填工程)。
 また上述したように、内容物充填工程の際、充填時の巻き込みにより内容物43に多数の泡43aが生じる。この泡43aの内部には、不活性ガス42が閉じこめられている。したがって、多数の泡43aの合計体積(以下、泡立ち体積ともいう)が大きければ大きいほど、ボトル本体32の液面上方空間32a内の酸素量を相対的に減少させることができる。また泡43a内部の不活性ガス42は、キャップ装着工程までの間に外部の酸素と置換されることがない。したがって、ボトル30内に存在する酸素量(初期容器内総酸素量)を低く抑えることができる。本発明者らは、このような泡立ち体積はボトル30の形状による影響を受けやすく、とりわけボトル30の底部の形状による影響を受けやすいことを見出した。
 以下、図7乃至図10により、本実施の形態において用いられるボトル(実施例A、実施例B、実施例C、実施例D)について順次説明する。
 (実施例A)
 図7Aおよび図7Bは、本実施の形態による内容物充填方法および内容物充填システムに好適に用いられるボトル30(30a)を示している(実施例A)。なお図7Aは、実施例Aによるボトルを示す斜視図であり、図7Bは、実施例Aによるボトルの底部を示す断面図(図7AのVII-VII線断面図)である。
 図7Aおよび図7Bに示すボトル30(30a)は、口部31と、ボトル本体32とを有している。このうちボトル本体32は、胴部21と、胴部21に連接するとともにペタロイド形状からなる底部22とを有している。底部22は、周方向に等間隔に配置された5つの脚部23を有している。この場合、胴部21の外径(胴径)は55mm乃至70mm、好ましくは60mm乃至70mmとなっている。
 (実施例B)
 図8Aおよび図8Bは、本実施の形態による内容物充填方法および内容物充填システムに好適に用いられるボトル30(30b)を示している(実施例B)。なお図8Aは、実施例Bによるボトルを示す斜視図であり、図8Bは、実施例Bによるボトルの底部を示す断面図(図8AのVIII-VIII線断面図)である。
 図8Aおよび図8Bに示すボトル30(30b)は、口部31と、ボトル本体32とを有している。このうちボトル本体32は、胴部21と、胴部21に連接するとともに中央に陥没部25が形成された底部24とを有している。この場合、胴部21の外径(胴径)は55mm乃至70mm、好ましくは60mm乃至70mmとなっている。
 このボトル30bは、底部24の中央部に内方に向けて陥没する陥没部25を有している。この陥没部25は、内部に向けて傾斜したテーパー状周壁26と、その上端に設けられた略星形状の中心凹部27とを有している。また陥没部25の深さ、すなわち接地部28から陥没部25の最深部までの距離Hbは、胴径の4%~40%、好ましくは10~30%である。距離Hbが胴径の4%よりも小さいと、泡43aの泡立ち体積を十分大きくすることができない。一方、距離Hbが胴径の40%を越えると、成形性の安定が悪くなり、底部24の形状が出にくいので好ましくない。
 (実施例C)
 一方、図9Aおよび図9Bは、本実施の形態による内容物充填方法および内容物充填システムに用いることが可能なボトル60を示している(実施例C)。なお図9Aは、実施例Cによるボトルを示す斜視図であり、図9Bは、実施例Cによるボトルの底部を示す断面図(図9AのIX-IX線断面図)である。
 図9Aおよび図9Bに示すボトル60は、口部31と、ボトル本体32とを有している。このうちボトル本体32は、胴部21と、胴部21に連接するとともに凹部62が形成された底部61とを有している。凹部62は、複数の段部63、63を有している。この場合、胴部21の外径(胴径)は55mm乃至70mmとなっている。また凹部62の深さ、すなわち接地部64から凹部62の最深部までの距離Hcは、胴径の4%~15%である。
 (実施例D)
 図10Aおよび図10Bは、本実施の形態による内容物充填方法および内容物充填システムに用いることが可能なボトル70を示している(実施例D)。なお図10Aは、実施例Dによるボトルを示す斜視図であり、図10Bは、実施例Dによるボトルの底部を示す断面図(図10AのX-X線断面図)である。
 図10Aおよび図10Bに示すボトル70は、口部31と、ボトル本体32とを有している。このうちボトル本体32は、胴部21と、胴部21に連接するとともに凹部72が形成された底部71とを有している。この場合、胴部21の外径(胴径)は55mm乃至70mmとなっている。また凹部72の深さ、すなわち接地部73から凹部72の最深部までの距離Hdは、胴径の4%~15%である。
 (実施例)
 次に、図7乃至図10に示すボトルの具体的実施例を説明する。
 まず図7乃至図10に示すボトルを準備した(それぞれ、実施例Aのボトル30a、実施例Bのボトル30b、実施例Cのボトル60、実施例Dのボトル70という)。各ボトル30a、30b、60、70の内容量は500mlであり、底部を除いて各ボトルの形状は互いに同一であった。次にそれぞれのボトルについて、内容物入ボトルを作製した。具体的には以下のようにして、内容物入ボトルを作製した。
 (実施例A)
 図7Aおよび図7Bに示す実施例Aのボトル30aを用いて、内容物入ボトル35(実施例A)を作製した。具体的には、図1に示す内容物充填システム10を用い、かつ図3に示す内容物充填方法により内容物入ボトル35(実施例A)を作製した。この場合、無菌雰囲気かつ常温で内容物43を充填した(無菌充填方式)。また、ボトル30aとして容量500mlのPETボトルを用い、さらにボトル30aの搬送速度は600bpmとした。
 まずボトル30a内を過酸化水素水からなる殺菌剤により殺菌し(殺菌工程)、次に口部31からボトル本体32内へリンス水を供給した(リンス工程)。続いて、口部31からボトル本体32内へ無菌化窒素ガスからなる不活性ガス42を600ml供給して、ボトル本体32内を窒素ガスで置換した(不活性ガス置換工程)。次に、口部31からボトル本体32内へ緑茶からなる内容物43を充填した(内容物充填工程)。この場合、充填前における緑茶内の酸素濃度は1.4ppmであった。また緑茶の充填温度は30.2℃であった。
 次いで、口部31からボトル本体32内へ窒素からなる不活性ガスを供給し(不活性ガス供給工程)、その後、口部31にキャップ33を装着することにより、実施例Aによる内容物入ボトル35を得た。この場合、ヘッドスペースの容量は20mlであった。
 このようにして得られた内容物入ボトル35(実施例A)の泡立ち体積および初期容器内総酸素量を測定した。この結果、泡立ち体積は3.6ccであり、初期容器内総酸素量は1.4ccとなった。
 (実施例B)
 図8Aおよび図8Bに示すボトル30bを用いたこと、以外は、実施例Aと同様にして内容物入ボトル35(実施例B)を作製した。この内容物入ボトル35(実施例B)の泡立ち体積および初期容器内総酸素量を測定したところ、泡立ち体積は3.4ccであり、初期容器内総酸素量は1.5ccとなった。
 (実施例C)
 図9Aおよび図9Bに示すボトル60を用いたこと、以外は、実施例Aと同様にして内容物入ボトル(実施例C)を作製した。この内容物入ボトル(実施例C)の泡立ち体積および初期容器内総酸素量を測定したところ、泡立ち体積は2.1ccであり、初期容器内総酸素量は2.0ccとなった。
 (実施例D)
 図10Aおよび図10Bに示すボトル70を用いたこと、以外は、実施例Aと同様にして内容物入ボトル(実施例D)を作製した。この内容物入ボトル(実施例D)の泡立ち体積および初期容器内総酸素量を測定したところ、泡立ち体積は0.8ccであり、初期容器内総酸素量は2.4ccとなった。
 この結果、実施例Aおよび実施例Bによるボトル30a、30bは、実施例Cおよび実施例Dによるボトル60、70と比較して、不活性ガス43の泡43aによる泡立ちが生じやすい形状を有しており、これにより、実施例Aおよび実施例Bによる内容物入ボトル35の初期容器内総酸素量を相対的に低く抑えられることが分かった。すなわち、実施例Aおよび実施例Bによるボトル30a、30bは、それぞれその底部22、24に比較的大きい凹凸が形成されている。このため、内容物43を充填する際に泡立ちが生じやすく、これにより初期容器内総酸素量を低く抑えることができたと考えられる。他方、底部が平底形状の場合、充填液を充填した際液の乱流現象が起こりにくく、泡立ちも起こりにくいので、初期容器内総酸素量を低く抑えるという効果は小さい。逆に言えば、底部がペタロイド形状からなっていたり(実施例A)、底部に陥没部が形成されている場合(実施例B)には、底部の形状が複雑であるため、充填時に乱流が起こりやすく、泡が発生し、且つその泡の中は窒素で満たされるようになる。なお、実施例Cおよび実施例Dによるボトル60、70については、初期容器内総酸素量を抑制する効果は相対的に低くなるが、効果が得られないわけではない。

Claims (22)

  1.  口部と、ボトル本体とを有するボトルに対して内容物を充填する内容物充填方法において、
     口部からボトル本体内へ不活性ガスのみを供給してボトル本体内を不活性ガスで置換する不活性ガス置換工程と、
     口部からボトル本体内へ内容物を充填する内容物充填工程とを備えたことを特徴とする内容物充填方法。
  2.  不活性ガス置換工程の前に、
     ボトル内を殺菌する殺菌工程と、
     口部からボトル本体内へリンス水を供給するリンス工程とが設けられていることを特徴とする請求項1記載の内容物充填方法。
  3.  不活性ガス置換工程の前に、ボトル内を電子線により殺菌する殺菌工程が設けられていることを特徴とする請求項1記載の内容物充填方法。
  4.  内容物充填工程の後、口部からボトル本体内へ不活性ガスを供給する不活性ガス供給工程が設けられていることを特徴とする請求項1記載の内容物充填方法。
  5.  不活性ガス供給工程の後、口部にキャップを装着するキャップ装着工程が設けられていることを特徴とする請求項4記載の内容物充填方法。
  6.  内容物充填工程において、口部からボトル本体内へ5℃~55℃の温度で内容物を充填することを特徴とする請求項1記載の内容物充填方法。
  7.  工程全体が無菌雰囲気下で行われることを特徴とする請求項1記載の内容物充填方法。
  8.  不活性ガス置換工程の際ボトル本体内に導入された不活性ガスにより、内容物充填工程の際、ボトル本体内に充填された内容物に、内部に不活性ガスを収納した泡が生じることを特徴とする請求項1記載の内容物充填方法。
  9.  内容物は、茶飲料、乳飲料、コーヒー飲料、機能性飲料、野菜汁飲料、または果汁飲料からなることを特徴とする請求項1記載の内容物充填方法。
  10.  不活性ガス置換工程から内容物充填工程までの間が0.5秒~20秒で行われることを特徴とする請求項1記載の内容物充填方法。
  11.  ボトルのボトル本体は、胴部と、ペタロイド形状からなる底部とを有することを特徴とする請求項1記載の内容物充填方法。
  12.  ボトルのボトル本体は、胴部と、陥没部が形成された底部とを有し、陥没部の深さは、胴部の外径の4%~40%であることを特徴とする請求項1記載の内容物充填方法。
  13.  口部と、ボトル本体とを有するボトルに対して内容物を充填する内容物充填システムにおいて、
     口部からボトル本体内へ不活性ガスのみを供給してボトル本体内を不活性ガスで置換する不活性ガス置換部と、
     不活性ガス置換部の下流側に設けられ、口部からボトル本体内へ内容物を充填する内容物充填部とを備えたことを特徴とする内容物充填システム。
  14.  不活性ガス置換部の上流側に、ボトル内を殺菌する殺菌部が設けられ、
     不活性ガス置換部の上流側であって殺菌部の下流側に、口部からボトル本体内へリンス水を供給するリンス部が設けられていることを特徴とする請求項13記載の内容物充填システム。
  15.  不活性ガス置換部の上流側に、ボトル内を電子線により殺菌する殺菌部が設けられていることを特徴とする請求項13記載の内容物充填システム。
  16.  内容物充填部の下流側に、口部からボトル本体内へ不活性ガスを供給する不活性ガス供給部が設けられていることを特徴とする請求項13記載の内容物充填システム。
  17.  不活性ガス供給部の下流側に、口部にキャップを装着するキャップ装着部が設けられていることを特徴とする請求項14記載の内容物充填システム。
  18.  ボトルのボトル本体は、胴部と、ペタロイド形状からなる底部とを有することを特徴とする請求項13記載の内容物充填システム。
  19.  ボトルのボトル本体は、胴部と、陥没部が形成された底部とを有し、陥没部の深さは、胴部の外径の4%~40%であることを特徴とする請求項13記載の内容物充填システム。
  20.  ボトル本体と口部とを有するボトルと、
     ボトルのボトル本体内に充填された内容物とを備え、
     内容物に、内部に不活性ガスを収納した泡が形成されていることを特徴とする内容物入ボトル。
  21.  ボトルのボトル本体は、胴部と、ペタロイド形状からなる底部とを有することを特徴とする請求項20記載の内容物入ボトル。
  22.  ボトルのボトル本体は、胴部と、陥没部が形成された底部とを有し、陥没部の深さは、胴部の外径の4%~40%であることを特徴とする請求項20記載の内容物入ボトル。
PCT/JP2010/050965 2009-01-30 2010-01-26 内容物充填方法、内容物充填システム、および内容物入ボトル WO2010087332A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010548514A JP5569810B2 (ja) 2009-01-30 2010-01-26 内容物充填方法、内容物充填システム、および内容物入ボトル
CN201080006431.9A CN102300777B (zh) 2009-01-30 2010-01-26 内容物填充方法和内容物填充系统
SG2011040243A SG172759A1 (en) 2009-01-30 2010-01-26 Content filling method, content filling system, and content-containing bottle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009019519 2009-01-30
JP2009-019519 2009-01-30

Publications (1)

Publication Number Publication Date
WO2010087332A1 true WO2010087332A1 (ja) 2010-08-05

Family

ID=42395593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/050965 WO2010087332A1 (ja) 2009-01-30 2010-01-26 内容物充填方法、内容物充填システム、および内容物入ボトル

Country Status (4)

Country Link
JP (1) JP5569810B2 (ja)
CN (1) CN102300777B (ja)
SG (1) SG172759A1 (ja)
WO (1) WO2010087332A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014090678A (ja) * 2012-11-01 2014-05-19 Ito En Ltd 容器詰野菜汁及び/又は果汁含有飲料及びその製造方法、並びに容器詰野菜汁及び/又は果汁含有飲料の呈味劣化防止方法
CN105745153A (zh) * 2013-10-28 2016-07-06 株式会社大塚制药工场 不活泼气体填充用喷嘴、不活泼气体填充装置和装有输液用液体的容器的制造方法
WO2020129468A1 (ja) * 2018-12-20 2020-06-25 アサヒグループホールディングス株式会社 容器内の不活性ガス置換方法、飲料の充填装置、及び、飲料製造ライン
JP2020125117A (ja) * 2019-02-01 2020-08-20 三菱重工機械システム株式会社 殺菌装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0584808A (ja) * 1991-09-25 1993-04-06 Mitsui Petrochem Ind Ltd 飽和ポリエステル製ボトル
JP2001031010A (ja) * 1999-07-22 2001-02-06 Toyo Seikan Kaisha Ltd 合成樹脂製ボトルへの内容物の充填密封方法
JP2003237729A (ja) * 2002-02-20 2003-08-27 Mitsubishi Heavy Ind Ltd ボトル容器ガス置換装置、ボトル容器搬送装置、ボトル容器のガス置換方法
JP2004256128A (ja) * 2003-02-25 2004-09-16 Hokkai Can Co Ltd ポリエチレンテレフタレート樹脂製耐熱ボトル
JP2005112436A (ja) * 2003-10-09 2005-04-28 Mitsubishi Heavy Ind Ltd 容器内ガス置換方法、容器内ガス置換装置、及び、飲料液充填方法
JP2005271927A (ja) * 2004-03-23 2005-10-06 Toppan Printing Co Ltd 密封性容器ヘッドスペースガス置換ノズル及びそれを用いたガス置換方法
JP2008155941A (ja) * 2006-12-22 2008-07-10 Dainippon Printing Co Ltd 流動体の充填方法及び装置
JP2008162652A (ja) * 2006-12-28 2008-07-17 Shibuya Kogyo Co Ltd 容器充填システム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL6500035A (ja) * 1965-01-05 1965-08-25
CA2621769C (en) * 2005-09-07 2013-04-30 General Packer Co., Ltd. Method for placing inert gas in gas-filling packaging machine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0584808A (ja) * 1991-09-25 1993-04-06 Mitsui Petrochem Ind Ltd 飽和ポリエステル製ボトル
JP2001031010A (ja) * 1999-07-22 2001-02-06 Toyo Seikan Kaisha Ltd 合成樹脂製ボトルへの内容物の充填密封方法
JP2003237729A (ja) * 2002-02-20 2003-08-27 Mitsubishi Heavy Ind Ltd ボトル容器ガス置換装置、ボトル容器搬送装置、ボトル容器のガス置換方法
JP2004256128A (ja) * 2003-02-25 2004-09-16 Hokkai Can Co Ltd ポリエチレンテレフタレート樹脂製耐熱ボトル
JP2005112436A (ja) * 2003-10-09 2005-04-28 Mitsubishi Heavy Ind Ltd 容器内ガス置換方法、容器内ガス置換装置、及び、飲料液充填方法
JP2005271927A (ja) * 2004-03-23 2005-10-06 Toppan Printing Co Ltd 密封性容器ヘッドスペースガス置換ノズル及びそれを用いたガス置換方法
JP2008155941A (ja) * 2006-12-22 2008-07-10 Dainippon Printing Co Ltd 流動体の充填方法及び装置
JP2008162652A (ja) * 2006-12-28 2008-07-17 Shibuya Kogyo Co Ltd 容器充填システム

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014090678A (ja) * 2012-11-01 2014-05-19 Ito En Ltd 容器詰野菜汁及び/又は果汁含有飲料及びその製造方法、並びに容器詰野菜汁及び/又は果汁含有飲料の呈味劣化防止方法
CN105745153A (zh) * 2013-10-28 2016-07-06 株式会社大塚制药工场 不活泼气体填充用喷嘴、不活泼气体填充装置和装有输液用液体的容器的制造方法
WO2020129468A1 (ja) * 2018-12-20 2020-06-25 アサヒグループホールディングス株式会社 容器内の不活性ガス置換方法、飲料の充填装置、及び、飲料製造ライン
JP2020100412A (ja) * 2018-12-20 2020-07-02 アサヒビール株式会社 容器内の不活性ガス置換方法、飲料の充填装置、及び、飲料製造ライン
JP2020125117A (ja) * 2019-02-01 2020-08-20 三菱重工機械システム株式会社 殺菌装置

Also Published As

Publication number Publication date
CN102300777A (zh) 2011-12-28
SG172759A1 (en) 2011-08-29
JPWO2010087332A1 (ja) 2012-08-02
CN102300777B (zh) 2015-01-14
JP5569810B2 (ja) 2014-08-13

Similar Documents

Publication Publication Date Title
JP6044652B2 (ja) 包装体の製造方法及び装置
JP6507678B2 (ja) 複合プリフォームの殺菌方法および殺菌装置、複合容器の殺菌方法および殺菌装置、複合プリフォームおよび複合容器
JP5569810B2 (ja) 内容物充填方法、内容物充填システム、および内容物入ボトル
JP2014051304A (ja) 無菌チャンバの防菌シール方法及び装置
JP6010893B2 (ja) 水充填方法、水充填システム、および水充填ボトル
JP6397173B2 (ja) 殺菌装置
JP5704429B2 (ja) 炭酸飲料充填方法、炭酸飲料充填システム、および炭酸飲料入ボトル
WO2011155458A1 (ja) 充填方法、充填システムおよびボトル
JP5656103B2 (ja) 内容物充填方法、内容物充填システム、および内容物入ボトル
JP6394644B2 (ja) キャップ殺菌装置および内容物充填システム
JP7288613B2 (ja) キャップ殺菌装置および内容物充填システム
JP6292263B2 (ja) キャップ殺菌装置、内容物充填システムおよびキャップ殺菌方法
JP2007022576A (ja) 容器詰め飲料の製造方法および装置
JP5704424B2 (ja) 調味料充填方法、調味料充填システム、および調味料入ボトル
JP6292254B2 (ja) キャップ殺菌装置および内容物充填システム
JP6292251B2 (ja) キャップ殺菌装置、内容物充填システムおよびキャップ殺菌方法
JP4812607B2 (ja) 容器の殺菌方法、及び容器入り飲料の製造方法
WO2021112152A1 (ja) キャップ殺菌装置及び内容物充填システム
JP6395063B2 (ja) キャップ殺菌装置、内容物充填システムおよびキャップ殺菌方法
JP6292262B2 (ja) キャップ殺菌装置、内容物充填システムおよびキャップ殺菌方法
JP6292261B2 (ja) キャップ殺菌装置、内容物充填システムおよびキャップ殺菌方法
JP2018184221A (ja) キャップ殺菌装置および内容物充填システム
JP2005350091A (ja) 酸性内容液の熱可塑性樹脂製容器充填方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080006431.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10735800

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010548514

Country of ref document: JP

122 Ep: pct application non-entry in european phase

Ref document number: 10735800

Country of ref document: EP

Kind code of ref document: A1