WO2010084924A1 - 電子デバイス用基板の製造方法、電子デバイスの製造方法、電子デバイス用基板、および電子デバイス - Google Patents
電子デバイス用基板の製造方法、電子デバイスの製造方法、電子デバイス用基板、および電子デバイス Download PDFInfo
- Publication number
- WO2010084924A1 WO2010084924A1 PCT/JP2010/050730 JP2010050730W WO2010084924A1 WO 2010084924 A1 WO2010084924 A1 WO 2010084924A1 JP 2010050730 W JP2010050730 W JP 2010050730W WO 2010084924 A1 WO2010084924 A1 WO 2010084924A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- glass
- substrate
- scattering layer
- electronic device
- scattering
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/02—Surface treatment of glass, not in the form of fibres or filaments, by coating with glass
- C03C17/04—Surface treatment of glass, not in the form of fibres or filaments, by coating with glass by fritting glass powder
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/006—Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
- C03C17/008—Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character comprising a mixture of materials covered by two or more of the groups C03C17/02, C03C17/06, C03C17/22 and C03C17/28
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/12—Silica-free oxide glass compositions
- C03C3/16—Silica-free oxide glass compositions containing phosphorus
- C03C3/21—Silica-free oxide glass compositions containing phosphorus containing titanium, zirconium, vanadium, tungsten or molybdenum
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C8/00—Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
- C03C8/02—Frit compositions, i.e. in a powdered or comminuted form
- C03C8/08—Frit compositions, i.e. in a powdered or comminuted form containing phosphorus
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/02—Details
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/85—Arrangements for extracting light from the devices
- H10K50/854—Arrangements for extracting light from the devices comprising scattering means
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K77/00—Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
- H10K77/10—Substrates, e.g. flexible substrates
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2217/00—Coatings on glass
- C03C2217/40—Coatings comprising at least one inhomogeneous layer
- C03C2217/43—Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
- C03C2217/46—Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
- C03C2217/48—Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase having a specific function
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2217/00—Coatings on glass
- C03C2217/70—Properties of coatings
- C03C2217/77—Coatings having a rough surface
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24802—Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
- Y10T428/24926—Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.] including ceramic, glass, porcelain or quartz layer
Definitions
- the present invention relates to an electronic device substrate manufacturing method, an electronic device manufacturing method, an electronic device substrate, and an electronic device, and more particularly to a technology for improving the light extraction structure of an optical device such as an organic LED (Organic Light Emitting Diode). .
- an optical device such as an organic LED (Organic Light Emitting Diode).
- An organic LED element is a process in which an organic layer is sandwiched between electrodes, a voltage is applied between the electrodes, holes and electrons are injected, recombined in the organic layer, and a light emitting molecule moves from an excited state to a ground state. Extracts the generated light and is used in displays, backlights, and lighting applications.
- the refractive index of the organic layer is about 1.8 to 2.1 at a wavelength of 430 nm.
- ITO Indium Tin Oxide
- the refractive index differs depending on the ITO film formation conditions and composition (Sn—In ratio), but 1.9 to 2.1. The degree is common.
- the refractive index of the organic layer and the translucent electrode layer is close, and the emitted light reaches the interface between the translucent electrode layer and the translucent substrate without being totally reflected between the organic layer and the translucent electrode layer.
- a glass or a resin substrate is usually used as the translucent substrate, but the refractive index thereof is about 1.5 to 1.6, which is lower than the refractive index of the organic layer or translucent electrode layer.
- Patent Document 1 discloses forming an additional layer (scattering layer) on a light-transmitting substrate by spraying or the like.
- Patent Document 1 does not describe or suggest anything about efficiently creating a scattering layer.
- the present invention has been made in view of the above circumstances, and an object of the present invention is to provide an electronic device substrate manufacturing method that can improve light extraction efficiency, is easy to manufacture, and has high reliability.
- the present invention includes a step of preparing a glass substrate, a step of forming a glass powder having a desired composition, and a step of supplying the glass powder onto the glass substrate and forming a scattering layer by heat. It is characterized by that. According to this configuration, since a glass powder having a desired composition is formed and a scattering layer is formed on the glass substrate by heat, a glass layer having a desired refractive index is controlled with good controllability. It can be formed easily.
- the process of forming the said scattering layer further includes the process of baking the said glass powder supplied on the said glass substrate. According to this configuration, by supplying heat for melting the glass powder to form the glass layer after supplying the glass powder to the glass substrate, it is possible to form a scattering layer made of a glass layer having desired characteristics. it can.
- a step of producing a molten glass by heating and melting a glass raw material or glass, and a molten glass on a bath surface of a molten metal bath containing molten metal Forming a continuous glass ribbon and supplying a glass powder having a desired composition on the continuous glass ribbon and forming a scattering layer by melting or sintering the glass powder
- a step of slowly cooling the continuous glass ribbon with the scattering layer and a step of cutting the slow-cooled continuous glass ribbon with the scattering layer into a glass substrate with the scattering layer.
- the scattering powder is formed by melting or sintering the glass powder on the glass ribbon using the heat in the slow cooling step in the glass ribbon forming step. That is, instead of newly adding a temperature raising step, the temperature of the glass ribbon at that position during the glass ribbon transport and slow cooling is the same as the heat for melting the glass powder on the glass ribbon and forming the scattering layer. It is used as. For this reason, the time required for manufacturing can be greatly shortened. Moreover, since a new temperature raising process and temperature lowering process are unnecessary, the thermal history (heat change) as a glass substrate can be reduced, and deterioration due to the heat change can be prevented.
- the step of forming the scattering layer includes a base material having a first refractive index and the base dispersed in the base material. And a plurality of scattering materials having a second refractive index different from the material, and forming a scattering layer in which the distribution of the scattering materials in the scattering layer is reduced from the inside of the scattering layer to the outermost surface. Including the process to be performed. According to this configuration, a uniform film can be formed when the surface is flat and an electrode is formed in the upper layer to form a device. Therefore, when forming an optical device having an organic layer sandwiched between two electrodes, such as an organic LED element, the distance between the electrodes can be made uniform, and deterioration due to electric field concentration can be prevented. This is particularly effective for self-luminous optical devices.
- the said process of supplying includes what is a process of spraying the said glass powder on the said board
- the said process of supplying includes what is a process of disperse
- the said process of supplying includes what is the process of supplying the said glass powder on the said glass substrate by a thermal spraying method, fuse
- the process of forming the said glass powder prepares and melt
- the glass powder in which the desired scattering material is dispersed can be obtained by pulverizing and mixing the scattering material.
- a scattering layer composed of a scattering material and a glass layer having a desired composition can be formed on a glass ribbon.
- the process of forming the said scattering layer contains what includes the process of forming a hemispherical scattering surface on the said glass substrate. According to this configuration, a desired scattering surface can be obtained by adjusting the supply amount of the glass powder so as to be hemispherical due to surface tension on the glass substrate.
- the layer which has a light emission function is formed on the said 1st electrode including the manufacturing method of the board
- a step of forming a second electrode on the layer having a light emitting function is formed on the said 1st electrode including the manufacturing method of the board
- the surface is flat, a uniform film can be formed, the distance between the electrodes can be made uniform, deterioration due to electric field concentration can be prevented, and the light extraction efficiency is improved due to the presence of the scattering layer. Improvements can be made.
- the present invention also includes a glass substrate and a plurality of glass scattering regions formed in an island shape on the glass substrate.
- the plurality of glass scattering regions formed in the island shape are formed on the glass substrate via a glass layer containing a scattering substance.
- substrate for electronic devices with the electrically conductive film of this invention comprises the process of forming an electrically conductive film on the scattering layer of the said board
- an electronic device substrate with a conductive film, a layer having a light emitting function sequentially stacked on the conductive film of the electronic device substrate, and a second conductive film are provided. It is characterized by having.
- the layer having the light emitting function is an organic layer.
- the glass powder having a desired composition is supplied onto the glass substrate and the scattering layer is formed by heat. Therefore, the refractive index can be controlled with high accuracy, and the desired refractive index can be set. The scattering layer possessed can be obtained very easily.
- the flowchart figure which shows the manufacturing method of the electronic device of Embodiment 1 of this invention.
- Sectional schematic diagram which shows a part of manufacturing equipment of the board
- Sectional schematic diagram which shows the board
- Sectional schematic diagram which shows the electronic device formed using the method of Embodiment 1 of this invention
- Explanatory drawing which shows the manufacturing method of the board
- step S1001 a step of manufacturing molten glass by heating and melting a glass raw material or glass
- step S1002 a molten metal bath containing molten metal A molding process
- step S1003 The step of forming a scattering layer by melting glass powder (step S1003), the step of gradually cooling the continuous glass ribbon with the scattering layer (step S1004), and the continuous glass with the scattering layer that has been gradually cooled And a step of cutting the ribbon into a glass substrate with a scattering layer (step S1005).
- FIG. 2 is a schematic cross-sectional view showing a part of a manufacturing facility used in the method for manufacturing an electronic device substrate according to the present embodiment.
- the plate glass manufacturing facility shown in FIG. 2 is installed in the subsequent stage of a melting and clarifying tank (not shown) for preparing and clarifying molten glass, and in the subsequent stage of the molten metal tank 1 in which the molten metal 1a is accommodated.
- the transfer chamber 2 is generally constituted by an installed transfer chamber 2 and a slow cooling furnace 3 installed at a subsequent stage of the transfer chamber 2.
- a spray nozzle 2b as a scattering layer forming apparatus according to the present invention is installed.
- a defect detector (not shown) for inspecting the surface of the glass ribbon and a cutting machine (not shown) for cutting the cooled glass ribbon are provided at the subsequent stage of the slow cooling furnace 3.
- molten glass is continuously supplied to the horizontal bath surface of the molten metal tank 1 containing the molten metal using the manufacturing equipment of FIG. Then, the glass ribbon 6 is formed, and then the glass ribbon 6 is pulled up from the molten metal tank outlet and drawn out of the molten metal tank. The glass ribbon is formed to a target thickness by a drawing force that pulls up from the outlet of the bathtub. Next, a glass ribbon is conveyed on the lift-out roll 2a, and a suspension formed by dispersing glass powder for forming a scattering layer in ethanol is sprayed through the spray nozzle 2b by a spray method.
- the molten metal tank 1 is filled with a molten metal 1a made of metal tin or the like, and molten glass 5 is continuously supplied onto the bath surface 1b of the molten metal 1a from a melting and clarifying tank (not shown). It is configured to be.
- a spray nozzle 2 b for supplying a glass powder suspension is disposed opposite the lift-out roll 2 a, and the glass powder suspension is placed on the glass ribbon 6. It is configured to be supplied.
- the transfer chamber 2 is provided with a lift-out roll 2a, and is configured to pull out the glass ribbon 6 formed into a plate shape from the molten metal tank 1 by the pulling force of the lift-out roll 2a.
- the slow cooling furnace 3 is provided with a layer roll 3b, and the glass ribbon 6 transported from the transport chamber 2 is transported through the slow cooling furnace 3 by the layer roll 3b.
- the molten glass 5 melted in the melting clarification tank is continuously supplied from the melting clarification tank onto the bath surface 1b of the molten metal 1a of the molten metal tank 1, the molten glass 5 is molded into a desired thickness and width. While being supplied with the suspension of the glass powder from the spray nozzle 2b, the glass powder is pulled out from the outlet of the molten metal tank 1 while being stretched by the traction force of the lift-out roll 2a. At this time, the molten glass 5 is adjusted to a temperature at which it can be plastically deformed and becomes a glass ribbon 6 with a scattering layer.
- the formed glass ribbon 6 with a scattering layer passes through the transfer chamber 2 and is transferred to the slow cooling furnace 3 and gradually cooled when passing through the inside of the slow cooling furnace 3.
- a scattering layer (see FIGS. 3 and 4: not shown here) is formed on the upper surface of the glass ribbon 6 by the spray nozzle 2 b installed at the entrance of the transfer chamber 2.
- the spray nozzle 2b for forming the scattering layer is installed at the entrance of the transfer chamber 2 .
- it may be a process subsequent to the molten metal tank 1, for example, installed in the slow cooling furnace 3. May be.
- the spray nozzle 2 b supplies a glass powder suspension to the glass ribbon 6. From the viewpoint of high temperature formation, it is preferably installed immediately after the molten metal tank 1 as much as possible, but is preferably installed at the entrance of the slow cooling furnace 3 where the glass state is stable. (The same applies to Embodiment 2 below)
- the scattering layer made of the glass powder M is formed on the upper surface of the glass ribbon 6 serving as the substrate by the spray method, the glass powder M may be scattered inside the transfer chamber 2. Therefore, it is possible to prevent the equipment in the transfer chamber 2 from being deteriorated.
- the scattering layer B can be formed irrespective of a glass composition.
- the glass powder M is supplied on the glass ribbon 6 in a heating state. And the glass powder M adhering on the glass ribbon 6 is fuse
- an intermediate layer can be formed at the interface between the glass ribbon 6 serving as the glass substrate and the glass powder layer serving as the scattering layer.
- This intermediate layer is effective in improving the adhesion between the glass substrate and the scattering layer and improving the optical characteristics.
- the surface temperature of the glass ribbon 6 used as a glass substrate can be controlled by adjusting the position which supplies glass powder to a glass ribbon, ie, the position in a conveyance chamber or a slow cooling chamber.
- the glass powder is melted by using the temperature of the glass ribbon 6 when staying in the transfer chamber 2 and / or the slow cooling furnace 3 as it is, it is not necessary to newly provide a heating device, which is economical. .
- the thermal history (thermal change) of a glass substrate can be decreased by utilizing the temperature of the glass ribbon 6 as it is, and deterioration by a thermal change can be prevented.
- one surface of the plate glass is formed by a molten metal bath surface, and the other free surface is formed by spreading the molten glass on the molten metal, so that the flatness of the plate glass becomes extremely high. Also suitable for mass production.
- the high-temperature glass ribbon transported on the lift-out roll is gradually cooled while controlling the cooling rate in the subsequent slow-cooling furnace, so that cracks and flatness decrease due to rapid shrinkage of the glass. Can be prevented.
- FIG. 3 is a cross-sectional view showing the structure of an organic LED element using the scattering layer-equipped electronic device substrate and FIG. 4.
- the electrode 100 and the electronic device substrate 100 with a scattering layer according to the present invention include a light-transmitting glass substrate 101, a scattering layer 102, and a light-transmitting electrode (not shown).
- the organic LED element of the present invention includes the above-mentioned electrode and substrate for electronic device 100 with a scattering layer, an organic layer 110, and a reflective electrode 120.
- an electrode and a substrate for an electronic device with a scattering layer are formed by a method described in detail below, and then an organic layer 110 including a charge injection layer and a light emitting layer is formed by a vapor deposition method or a coating method. An electrode is formed.
- the substrate 100 for an electronic device with a scattering layer of the present invention includes a light-transmitting glass substrate 101, a scattering layer 102 made of glass formed on the glass substrate, and a light-transmitting electrode 103.
- the scattering layer 102 includes a base material 105 having a first refractive index with respect to one wavelength of transmitted light, and a plurality of scattering materials dispersed in the base material 105 and having a second refractive index different from that of the base material 105. And a substance 104.
- the distribution of the scattering material 104 dispersed in the scattering layer 102 becomes smaller from the inside of the scattering layer 102 toward the translucent electrode 103. In this case, the scattering material 104 is a bubble.
- the translucent electrode 103 has a third refractive index that is the same as or lower than the first refractive index.
- To the density ⁇ 2 of the scattering material at a distance x ( ⁇ / 2 ⁇ x ⁇ ⁇ ) satisfies ⁇ 1 ⁇ ⁇ 2 .
- ⁇ 1 > ⁇ 2 is satisfied.
- the scattering layer 102 formed in the region where the surface temperature of the glass ribbon 6 was 570 ° C. and 580 ° C. was cut, the cross section was polished, and an SEM photograph was taken at a magnification of 10,000 times. Then, from the photograph, the relationship between the number of bubbles and the distance of the bubbles from the surface of the glass scattering layer was examined. The length in the transverse direction of the SEM photograph was 12.5 ⁇ m. A line was drawn from the surface layer of the scattering layer to the SEM photograph in increments of 0.25 ⁇ m, and the number of bubbles that could be confirmed in this 0.25 ⁇ m ⁇ 12.5 ⁇ m frame was counted. Here, bubbles present across a plurality of frames were counted as being in the lower frame. As a result, it was found that the density ⁇ was smaller in the region close to the surface of the translucent electrode.
- ⁇ 1 > ⁇ 2 is preferably satisfied.
- the scattering material made of a material having a composition different from that of bubbles, precipitated crystals, or the base material is present more in the scattering layer than in the surface layer of the glass layer and directly below. Therefore, the scattering layer surface is smooth. Therefore, the thickness of the translucent electrode formed on the smooth scattering layer can be made uniform, and the surface thereof becomes smooth. Similarly, the thickness of the organic layer formed on the smooth translucent electrode and the reflective electrode formed on the organic layer can be made uniform, and the surfaces thereof are also smoothed. As a result, since a large voltage is not locally applied to the layer having the light emitting function, the life can be extended.
- the surface roughness Ra of the scattering layer surface is preferably 30 nm or less, and more preferably 10 nm or less. Therefore, the translucent electrode can be formed thin without being affected by the base. When the surface roughness Ra of the scattering layer surface exceeds 30 nm, the coverage of the organic layer formed thereon may be deteriorated. Between the transparent electrode formed on the glass scattering layer and the other electrode May cause a short circuit. Although the element is not lit due to the short circuit between the electrodes, it may be possible to repair it by applying an overcurrent. In order to enable repair, the surface roughness Ra of the glass scattering layer is preferably 10 nm or less, and more preferably 3 nm or less.
- the size of the scattering material is such that when there are bubbles in the scattering layer, if the bubbles become larger, the buoyancy increases during the scattering layer formation process such as melting and firing, and it becomes easier to float. May rupture and significantly reduce the surface smoothness.
- the scattering property is lowered only in that portion. If such large bubbles are aggregated, they become uneven and can be visually recognized.
- the ratio of bubbles having a diameter of 5 ⁇ m or more is desirably 15% or less, more desirably 10% or less, and further desirably 7% or less.
- the ratio of the scattering material having the maximum length of 5 ⁇ m or more is desirably 15% or less, desirably 10% or less, and more desirably 7% or less.
- Glass powder production method Prepare glass powder.
- the glass powder used here is obtained by pulverizing glass formed by controlling a material composition and a scattering material so as to have a desired refractive index so as to have a desired particle size. That is, a powder raw material was prepared and dissolved so as to have a desired composition, and the dissolved powder raw material was dry-ground for 12 hours with an alumina ball mill, and the average particle size (d50, particle size of 50% integrated value, unit ⁇ m) A glass powder having a thickness of 1 to 3 ⁇ m was prepared.
- This glass has a glass transition temperature of 483 ° C., a yield point of 528 ° C., and a thermal expansion coefficient of 83 ⁇ 10 ⁇ 7 (1 / ° C.).
- the refractive index nF of this glass at the F-line (486.13 nm) is 2.03558
- the refractive index nd at the d-line (587.56 nm) is 1.99810
- the refractive index nC at the C-line (656.27 nm) is 1.98344.
- the refractive index was measured with a refractometer (trade name: KRP-2, manufactured by Kalnew Optical Industry Co., Ltd.).
- the glass transition point (Tg) and the bending point (At) were measured by a thermal analysis method (trade name: TD5000SA, manufactured by Bruker) at a temperature rising rate of 5 ° C./min.
- the glass powder used here preferably has a particle size D 10 of 0.2 ⁇ m or more and a D 90 of 5 ⁇ m or less.
- D 10 exceeds 5 ⁇ m, the value of the scattering layer with respect to the film thickness increases and the surface uniformity decreases.
- the particle size D 10 is less than 0.2 ⁇ m, there is a problem in that the abundance ratio of the interface is high, crystals are likely to precipitate, and devitrification is likely.
- a glass composition which forms a scattering layer what is shown in Table 1 here is used.
- P 2 O 5 is contained, Nb 2 O 5 , Bi 2 O 3 , a system containing at least one component of the group consisting of TiO 2 and WO 3 , B 2 O 3 and La 2 O 3 as essential components, Nb 2 O 5 , ZrO 2 , Ta 2 O 5 and WO 3 , a system containing at least one component from the group, containing SiO 2 as an essential component, containing any one component of Nb 2 O 5 and TiO 2 , and containing Bi 2 O 3 as a main component And a system containing SiO 2 and / or B 2 O 3 or the like as a glass forming aid.
- R 2 O—RO—BaO—B 2 O 3 —SiO 2 , RO—Al 2 O 3 —P 2 O 5 , R 2 O—B 2 O 3 — SiO 2 or the like can be used.
- R 2 O includes any one of Li 2 O, Na 2 O, and K 2 O.
- RO contains any one of MgO, CaO, and SrO.
- Embodiment 2 Next, a second embodiment of the present invention will be described.
- the glass layer serving as the scattering layer B was formed by spraying the suspension from the spray nozzle 2b at the entrance of the transfer chamber 2 while forming the glass ribbon 6 serving as the substrate.
- the scattering layer B is formed by spraying the glass powder directly onto the substrate (glass ribbon 6) by electrostatic powder coating, as shown in FIG. It is characterized by doing so.
- an apparatus similar to the apparatus of the first embodiment shown in FIG. 2 is used, except that an electrostatic powder coating apparatus (see FIG. 2) is provided on the back side of the glass ribbon.
- the scattering layer forming device is provided at the entrance of the slow cooling chamber 3, and in order to prevent the glass layer from being contaminated or broken by the roller, gripping portions (not shown) are provided at predetermined intervals instead of the roller. And different.
- the glass powder having a particle size D 10 of 0.2 ⁇ m or more and a D 90 of 5 ⁇ m or less is used.
- the scattering layer forming device is disposed on the lower surface 6 a side of the glass ribbon 6.
- the scattering layer forming apparatus includes a charging device 11 (forming means) that holds the glass powder in a charged state and a flowing state, and an extraction electrode 12 disposed at a position facing the charging device 11 with the glass ribbon 6 interposed therebetween.
- the extraction electrode 12 is a plate-like electrode formed in a substantially rectangular shape in plan view.
- the length in the longitudinal direction of the extraction electrode 12 is set to be equal to the width of the glass ribbon 6 or longer than the width of the glass ribbon 6.
- the extraction electrode 12 is connected to a high voltage power supply device (not shown) installed outside the slow cooling furnace 3 via the wiring 12a, or is grounded.
- the glass powder charging device 11 includes a charging electrode 13 and a charging holding container 14 that houses the charging electrode 13 and holds the glass powder M in a fluidized state and has an opening 14e on the glass ribbon 6 side. ing.
- the charging electrode 13 includes an electrode main body 13a extending along the width direction of the glass ribbon 6, and a plurality of needle-like shapes protruding from the electrode main body 13a toward the upper side (the glass ribbon 6 side). It is comprised from the electrode 13b.
- the acicular electrodes 13b are arranged at equal intervals from each other.
- the material of the charging electrode 13 is preferably made of a heat-resistant material that does not deform at about 700 ° C. and does not oxidize.
- the interval between the needle-like electrodes 13b is preferably set at a rate of one for every 10 cm of the width of the glass ribbon 6, for example.
- the shape of the charging electrode 13 is not necessarily the shape of the present embodiment, and the shape is not particularly limited as long as the glass powder M can be charged efficiently.
- a wiring is connected to one end side of the electrode body 13a, and the charging electrode 13 is connected to a high voltage power supply device (not shown) installed outside the slow cooling furnace 3 through this wiring.
- the charged holding container 14 is composed of a container main body 14a and a pair of partition walls 14b erected inside the container main body 14a.
- the internal space of the container body 14a is divided into three by a pair of partition walls 14b. That is, the container body 14a is formed with a charging chamber 14c positioned between the partition walls and a collection chamber 14d disposed on both sides of the charging chamber 14c via the partition walls 14b.
- the charging chamber 14c and the recovery chamber 14d are arranged in the order of the recovery chamber 14d, the charging chamber 14c, and the recovery chamber 14d along the moving direction L of the glass ribbon 6.
- an opening 14e is provided at a position facing the glass ribbon 6 of the container body 14a, and the charging electrode 13 faces the lower surface 6a of the glass ribbon 6.
- the charging chamber 14c is provided with a rectifying member 14f provided with pores that allow only gas to pass therethrough.
- the portion above the rectifying member 14f is a charging / flowing portion 14c1 that holds the glass powder M in a charged and fluidized state.
- the part below the rectifying member 14f is a gas introduction part 14c2 for ejecting gas toward the charging / fluidizing part 14c1 in order to make the glass powder M flow.
- a charging electrode 13 is disposed inside the charging / fluid portion 14c1.
- a gas introduction pipe 14g is attached inside the gas introduction part 14c2.
- a supply device (not shown) for supplying the glass powder M is attached to the inside of the charging / fluid section 14c1.
- the supply device is a screw conveyor or the like.
- the glass powder M supplied to the charging / fluidizing part 14c1 adheres to the glass ribbon 6 to develop a buffering action, easily forms a fluid state at a high temperature, further easily charges, and aggregates to form coarse particles. It is desirable to have nothing.
- a charging aid may be added.
- the charging aid those that can be easily washed away without causing a chemical reaction with glass and that do not corrode equipment inside the slow cooling furnace 3 (see FIG. 2) are preferable.
- mirabilite sodium sulfate decahydrate
- calcium carbonate is more preferred.
- the particle size of the glass powder M for example, one having a particle size D 10 of 0.2 ⁇ m or more and a D 90 of 5 ⁇ m or less is used. Although the degree is preferable, the particle size is not particularly limited as long as the glass powder M can be uniformly attached to the glass ribbon 6.
- each recovery chamber 14d is provided with a gas outlet pipe 14h.
- the gas outlet pipe 14h can discharge the introduced gas containing the glass powder M ejected from the charging / fluidizing portion 14c1 and collected in the collection chamber 14d to the outside of the container body 14a.
- members such as the container main body 14a, the partition wall 14b, and the rectifying member 14f constituting the charged holding container 14 are Any of them is preferably made of a heat-resistant material.
- the charging holding container 14 stores the charging electrode 13 connected to the high voltage power supply device, all of the constituent members such as the container main body 14a, the partition wall portion 14b, and the rectifying member 14f have insulating properties. It is preferable to be comprised with the material which has. Examples of materials satisfying heat resistance and insulation include various heat resistant ceramics represented by quartz glass or alumina ceramics.
- the charging electrode 13 and the wiring for the charging electrode are insulated from the constituent members of the charging holding container 14 and the equipment inside the slow cooling furnace 3. If the charging electrode 13 and its wiring are not sufficiently insulated, a discharge is generated at a place where the charging electrode 13 and the wiring are not insulated, and the charging efficiency with respect to the glass powder M is lowered. In particular, since the environment in which the charged holding container 14 is installed is a high temperature atmosphere of about several hundred degrees Celsius, discharge is likely to occur even from a slight insulation failure location. As an insulation measure, it is desirable that a metal member is not as close as possible to the wiring inside the slow cooling furnace 3. Further, it is desirable to coat the wiring with a heat and insulation resistant material. As a material of a tube (not shown) for covering the wiring, a material satisfying heat resistance and insulation may be used similarly to the constituent material of the electrification holding container 14.
- the collection chamber 14d is separated from the charging chamber 14c by the partition wall portion 14b.
- the upper end portion 14b1 of the partition wall portion 14b is located below the upper end portion 14a1 of the container body 14a.
- the recovery chamber 14d is provided with a gas outlet pipe 14h for sucking and taking out the atmosphere in the recovery chamber 14d.
- the glass powder M recovered in the recovery chamber 14 d can be discharged to the outside of the charging holding container 14 and the slow cooling furnace 3.
- the collection chambers 14d having the above-described configuration on both sides of the charging chamber 14c, the glass powder M can be prevented from scattering into the slow cooling furnace 3 and contamination of the slow cooling furnace 3 by the glass powder M can be prevented.
- the collected glass powder can be reused.
- the glass ribbon 6 may come into contact with the charged holding container 14 when the glass ribbon 6 is bent. If the distance between the opening 14e and the glass ribbon 6 is too large, the glass powder M may be scattered from between the opening 14e and the glass ribbon 6 to contaminate the inside of the slow cooling furnace 3. Accordingly, the charging holding container 14 may be placed as close to the glass ribbon 6 as it does not contact the glass ribbon 6. For example, the distance between the opening 14e of the antistatic container 14 and the glass ribbon 6 is about 2 to 5 cm. It is good to set.
- the glass powder M is supplied to the charging / fluid section 14 c 1 of the charging holding container 14. Then, for example, dry air or nitrogen (hereinafter also referred to as dry air or the like) is supplied from the gas introduction pipe 14g to the gas introduction unit 14c2. Dry air or the like may be introduced after heating so as not to affect the temperature inside the slow cooling furnace 3.
- the dry air or the like supplied to the gas introducing portion 14c2 passes through the rectifying member 14f and is uniformly ejected from the entire upper surface of the rectifying member 14f to the charging / fluid portion 14c1.
- the glass powder is lifted up by the blown dry air or the like, and the glass powder M becomes fluidized.
- the glass powder M is negatively charged, for example, by supplying electric power to the charging electrode 13.
- the charging conditions depend on the type of the glass powder M, the thickness of the scattering layer to be formed, and the coating amount per unit time, but are preferably 10 kV or more and 100 ⁇ A or more, for example.
- the charged glass powder M is guided toward the lower surface 6a of the glass ribbon 6 by the needle-like electrode 13b.
- the charged glass powder M is also guided toward the lower surface 6 a of the glass ribbon 6 by the extraction electrode 12. Further, the glass ribbon 6 itself is generally charged positively.
- the glass powder M uniformly adheres to the lower surface 6a of the glass ribbon 6, and the scattering layer B (102) is formed on the lower surface 6a of the glass ribbon 6 by the heat of the glass ribbon.
- the glass powder M that was not charged and not adhered to the glass ribbon 6 after being made to flow in the charging / fluid portion 14c1 by dry air or the like, or charged but not adhered to the glass ribbon 6 The glass powder M falls into the recovery chamber 14d and is taken out of the charged holding container 14 together with dry air and the like through the gas outlet pipe 14h. Thereby, the contamination inside the slow cooling furnace 3 is reduced. Further, the glass powder M taken out to the outside can be collected by a filter and reused.
- the scattering layer B made of the glass powder M is formed on the lower surface 6 a of the glass ribbon 6 by the electrostatic coating method, the glass powder M is scattered inside the slow cooling furnace 3. There is no fear, and the deterioration of the equipment in the slow cooling furnace 3 can be prevented. Further, since the scattering layer B is formed by the so-called electrostatic coating method in which the negatively charged glass powder M is attached to the positively charged glass ribbon 6, the scattering layer B is formed regardless of the glass composition.
- the scattering layer B can also be formed on non-alkali glass such as a plate glass for a liquid crystal display.
- the charged holding container 14 is disposed on the lower surface 6 a side of the glass ribbon 6 and the extraction electrode 12 is disposed at a position facing the charged holding container 14, and the glass powder 6 charged with the glass powder M in the charged state is extracted by the extraction electrode 12. Since the scattering layer B is formed by adhering the glass powder M to the lower surface 6a, the scattering layer B can be uniformly formed on the entire lower surface 6a. Since the glass ribbon 6 itself is positively charged, the scattering layer B is formed by guiding the glass powder M that is negatively charged by the flow of dry air or the like to the glass ribbon side without the extraction electrode 12. However, the scattering layer B can be formed more efficiently if the extraction electrode 12 is provided.
- the scattering layer B can be formed by promptly attaching the charged glass powder M to the glass ribbon 6, and the formation efficiency of the scattering layer B As a result, the scattering layer B can be formed on the entire lower surface 6a.
- the negatively charged glass powder M is attached to the positively charged glass ribbon 6, but depending on the composition of the glass ribbon 6 and the glass powder M, this charged charge may be The glass powder M charged positively may be attached to the glass ribbon 6 negatively charged.
- the glass powder M that has not been adhered is discharged to the outside of the slow cooling furnace 3 by the recovery chamber 14d and the gas outlet pipe 14h, so that the inside of the slow cooling furnace 3 is contaminated by the glass powder M. There is no fear and the glass powder M taken out can be reused.
- the step of supplying the glass powder onto the glass ribbon may be a method of supplying the glass powder onto the glass substrate by a thermal spraying method while melting, in addition to the methods of the first and second embodiments. Also good.
- the step of supplying the glass powder may be performed a plurality of times. Furthermore, after forming a glass substrate, a scattering layer may be formed on the glass substrate. At this time, the glass powder may be supplied and fired later when the glass substrate is at room temperature.
- the step of supplying the glass powder to the glass substrate or the glass ribbon in the process of forming the second step is different from the first step of supplying the first glass powder on the substrate and the supply conditions different from the first step.
- a second step of supplying the glass powder is different from the first step of supplying the first glass powder on the substrate and the supply conditions different from the first step.
- a second step of supplying the glass powder is different from the first step of supplying the first glass powder on the substrate and the supply conditions different from the first step.
- a second step of supplying the glass powder is different from the first step of supplying the first glass powder on the substrate and the supply conditions different from the first step.
- a second step of supplying the glass powder is different from the first step of supplying the first glass powder on the substrate and the supply conditions different from the first step.
- a second step of supplying the glass powder is different from the first step of supplying the first glass powder on the substrate and the supply conditions different from the first step.
- a second step of supplying the glass powder is
- first and second steps may be steps of supplying glass powders or glass pastes having different compositions.
- the frit glass paste is formed as follows, for example. Prepare glass powder and vehicle.
- the vehicle refers to a mixture of resin, solvent, and surfactant.
- the glass powder used here is obtained by crushing glass formed by controlling the material composition and scattering material so as to have a desired refractive index so as to have a desired particle diameter.
- Solvent and various regulators are added and used. Specifically, a resin, a surfactant, or the like is put into a solvent heated to 50 ° C.
- the glass powder and the vehicle are mixed with a planetary mixer and then uniformly dispersed with three rolls. Thereafter, the mixture is kneaded with a kneader to adjust the viscosity.
- the vehicle is 20 to 30 wt% with respect to 70 to 80 wt% of the glass material.
- the said 2nd process takes the process of supplying the glass powder with fewer components used as the said scattering material than the said 1st process. You may do it. Thereby, a scattering layer with a small density of scattering materials can be obtained on the surface side of the scattering layer.
- the scattering layer is formed directly on the glass substrate, it may be formed via a barrier layer, for example, by forming a silica thin film on the glass substrate by sputtering and then forming a scattering layer.
- a barrier layer for example, by forming a silica thin film on the glass substrate by sputtering and then forming a scattering layer.
- the scattering layer B is formed by the electrostatic coating method.
- the present invention is not limited to this, and the glass powder M is charged and applied to the lower surface 6a of the glass ribbon 6. Any method can be used as long as it can flow toward the surface, and for example, electrostatic spraying may be used. Further, since the glass ribbon 6 itself is positively charged, the glass powder M that is negatively charged can be guided to the glass ribbon side by the flow of dry air or the like without the extraction electrode 12. The electrode may be omitted.
- Example> powder raw materials were prepared so that the glass composition was as shown in Table 1, melted in an electric furnace at 1100 ° C., and cast into a roll to obtain glass flakes. This glass has a glass transition temperature of 499 ° C., a yield point of 545 ° C., and a thermal expansion coefficient of 74 ⁇ 10 ⁇ 7 (1 / ° C.) (an average value of 100 to 300 ° C.).
- the refractive index nF of this glass at F line (486.13 nm) is 2.0448, the refractive index nd at d line (587.56 nm) is 2.0065, and the refractive index nC at C line (656.27 nm) is 1.9918.
- the refractive index was measured with a refractometer (trade name: KRP-2, manufactured by Kalnew Optical Industry Co., Ltd.).
- the glass transition point (Tg) and the bending point (At) were measured by a thermal analysis method (trade name: TD5000SA, manufactured by Bruker) at a temperature rising rate of 5 ° C./min.
- the flakes thus obtained were pulverized with a zirconia planetary mill for 2 hours, and then sieved to prepare a powder.
- the particle size distribution at this time was as follows: D 50 was 0.905 ⁇ m, D 10 was 0.398 ⁇ m, and D 90 was 3.024 ⁇ m.
- a suspension was prepared by dispersing 2.0 g of this glass powder in 100 g of ethanol.
- this suspension was sprayed onto a substrate 301 heated to 600 ° C. using a spray.
- the substrate 301 is placed on the ceramic base 300.
- Soda lime glass having a thickness of 1 cm ⁇ and a thickness of 0.7 mm was used for the substrate, and an infrared condensing heating furnace was used for substrate heating.
- the infrared condensing heating furnace condenses the infrared rays emitted from the infrared lamp onto ceramics that absorb the infrared rays.
- Ceramics absorb infrared rays and are heated, and a substrate placed thereon is heated by heat transfer from the ceramics.
- the spray was sprayed 40 cm away from the substrate. At this time, if the spray bottle is too close to the substrate, the glass powder is difficult to land on the substrate due to the wind of the spray spray. If the spray bottle is too far from the substrate, the probability of landing on the substrate is reduced, resulting in poor efficiency.
- ⁇ A 300 mg suspension can be injected with a single spray.
- a glass sintered film (scattering layer) 202 was formed in an island shape on the substrate 201 as shown in FIGS. 7A and 7B.
- the sintered film was hemispherical and had a diameter of 3 ⁇ m to 80 ⁇ m. The larger the diameter, the more apt to be flat, and the maximum thickness was about 50 ⁇ m. The coverage of the substrate was about 60%.
- the sintered film contained bubbles inside, but had a smooth surface. If this operation is repeated, a sintered film should be obtained.
- FIG. 7A is a top view and FIG. 7B is a cross-sectional view.
- the electronic device substrate 200 obtained in this way has a large surface area, so that it is effective for solar cells and the like, and a solar cell with high power generation efficiency can be obtained.
- the glass powder is supplied onto the cured glass substrate, but it is also possible to easily form a film using the plate glass manufacturing apparatus as described in the first and second embodiments. .
- the substrate for an electronic device with a scattering layer of the present invention is not limited to an organic EL element or a solar cell, but is an optical device such as an inorganic EL element, various light emitting devices such as a liquid crystal, or a light receiving device such as a light quantity sensor. It is effective for improving the efficiency of
Landscapes
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Composite Materials (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Surface Treatment Of Glass (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Electroluminescent Light Sources (AREA)
- Glass Compositions (AREA)
Abstract
Description
この構成によれば、所望の組成のガラス粉末を形成しておき、これをガラス基板上で熱により散乱層を形成するようにしているため、所望の屈折率を有するガラス層を制御性よく、容易に形成することが可能となる。
この構成によれば、ガラス粉末を溶融してガラス層を形成するための熱をガラス粉末をガラス基板に供給した後に供給することで、所望の特性のガラス層からなる散乱層を形成することができる。
この構成によれば、ガラスリボンの形成工程における徐冷工程における熱を利用してガラス粉末をガラスリボン上で溶融または焼結し、散乱層を形成するようにしている。すなわち、新たに昇温工程を付加するのではなく、ガラスリボンの搬送および徐冷途上で、その位置におけるガラスリボンの温度をそのままガラスリボン上でガラス粉末を溶融させ散乱層を形成するための熱として用いている。このため、製造に要する時間を大幅に短縮できる。また、新たな昇温工程、降温工程が不要であるため、ガラス基板としての熱履歴(熱変化)を少なくすることができ、熱変化による劣化を防ぐことができる。
この構成によれば、表面が平坦で、上層に電極を形成し、デバイスを形成する場合に、均一な膜を形成できる。したがって有機LED素子など、2つの電極で有機層を挟んだ光デバイスを形成する場合には電極間距離を均一にでき、電界集中による劣化を防止できる。特に自己発光型の光デバイスの場合に有効である。
この構成によれば、均一かつ容易にガラス粉末を供給することができる。
この構成によれば、均一かつ容易にガラス粉末を供給することができる。
この構成によれば、複数種のガラス粉末を混合する場合にも溶融して均一にし、供給することができる。
この構成によれば、所望のベース材原料でガラスを形成した後、粉砕し散乱物質とを混合することで所望の散乱物質が分散しているガラス粉末を得ることができ、これをガラス基板またはガラスリボン上に供給し、散乱物質および所望の組成のガラス層からなる散乱層を形成することができる。
この構成によれば、ガラス基板上で表面張力により半球状となるようにガラス粉末の供給量を調整することで、所望の散乱性表面を得ることができる。
この構成によれば、表面が平坦で、均一な膜を形成でき、電極間距離を均一にでき、電界集中による劣化を防止でき、また散乱層の存在による光取り出し効率の向上から、信頼性の向上を図ることができる。
(実施の形態1)
本発明の電子デバイス用基板の製造方法では、図1にフローチャートを示すように、ガラス原料またはガラスを加熱溶解して溶融ガラスを製造する工程(ステップS1001)と、溶融金属を収容した溶融金属浴槽(溶融金属槽)の浴面に溶融ガラスを連続的に供給して連続したガラスリボンを形成する成形工程(ステップS1002)と、前記連続したガラスリボン上に、所望の組成のガラス粉末を供給し、ガラス粉末の溶融により散乱層を形成する工程(ステップS1003)と、前記散乱層付きの連続したガラスリボンを徐冷する工程(ステップS1004)と、徐冷された前記散乱層付きの連続したガラスリボンを切断して散乱層付きガラス基板とする工程(ステップS1005)とを含むことを特徴とする。
図2に示す板ガラスの製造設備は、溶融ガラスを調製、清澄させる溶解清澄槽(図示略)の後段に設置され、溶融金属1aが収容された溶融金属槽1と、溶融金属槽1の後段に設置された搬送室2と、この搬送室2の後段に設置された徐冷炉3とから概略構成されている。搬送室2の入口近傍には、本発明に係る散乱層形成装置としてのスプレーノズル2bが設置されている。また、徐冷炉3の後段には、ガラスリボンの表面を検査する欠点検出器(図示せず)と、冷却されたガラスリボンを切断する切断機(図示せず)とが備えられている。
そして、搬送室2の入り口付近にはガラス粉末の懸濁液を供給するためのスプレーノズル2bがリフトアウトロール2aに対向して配置されており、ガラス粉末の懸濁液がガラスリボン6上に供給されるように構成されている。
次に、搬送室2にはリフトアウトロール2aが備えられており、溶融金属槽1から板状に成形されたガラスリボン6をリフトアウトロール2aの牽引力によって引き出すように構成されている。
また、徐冷炉3には、レヤーロール3bが備えられており、搬送室2から搬送されたガラスリボン6を、レヤーロール3bによって徐冷炉3内を搬送するように構成されている。
また、本実施の形態では、既存の搬送室2及び/若しくは徐冷炉3にガラス粉末Mを噴霧するスプレーノズル2bを設け、その滞在時間内でガラス粉末を溶融させるため、既存のガラスの製造時間において散乱層も形成することができる。そのため、本実施の形態では、製造に要する時間を大幅に短縮できる。
本発明の電極および散乱層付き電子デバイス用基板100は、図3に示すように、透光性のガラス基板101と、散乱層102と、透光性電極(図示せず)とにより構成される。
本発明の有機LED素子は、図4に示すように、上記電極および散乱層付き電子デバイス用基板100と、有機層110と、反射性電極120とにより構成される。
また、散乱物質の大きさは、散乱層中に気泡がある場合、気泡が大きくなると、溶融や焼成などの散乱層形成プロセス途中で浮力が大きくなり、浮上し易くなり、最表面に到達すると気泡が破裂し、表面平滑性を著しく低下させることになる可能性がある。また相対的にその部分の散乱物質の数が少なくなるためその部分のみ散乱性が低下することにもなる。このように大きな気泡が凝集すれば、むらとなって視認されることにもなる。さらにまた直径が5μm以上の気泡の割合が15%以下であるのが望ましく、さらに望ましくは、10%以下であり、さらに望ましくは7%以下である。また、散乱物質が気泡以外の場合でも、相対的にその部分の散乱物質の数が少なくなるため、その部分のみ散乱性が低下することになる。従って散乱物質の最大長さが5μm以上のものの割合が15%以下であるのが望ましく、望ましくは10%以下であり、さらに望ましくは7%以下である。
(ガラス粉末の作製方法)
ガラス粉末を準備する。ここで用いるガラス粉末は、所望の屈折率となるように、材料組成および散乱物質を制御して形成されたガラスを、所望の粒径となるように粉砕して得られる。
すなわち、所望の組成となるように、粉末原料を調合、溶解し、溶解した粉末原料をアルミナ製のボールミルで12時間乾式粉砕し、平均粒径(d50、積算値50%の粒度、単位μm)が1~3μmであるガラス粉末を作製した。このガラスのガラス転移温度は483℃、屈服点は528℃、熱膨張係数は83×10-7(1/℃)である。このガラスのF線(486.13nm)での屈折率nFは2.03558、d線(587.56nm)での屈折率ndは1.99810、C線(656.27nm)での屈折率nCは1.98344である。屈折率は、屈折率計(カルニュー光学工業社製、商品名:KRP-2)で測定した。ガラス転移点(Tg)および屈服点(At)は、熱分析装置(Bruker社製、商品名:TD5000SA)で熱膨張法により、昇温速度5℃/分で測定した。
ここで、R2Oは、Li2O、Na2O及びK2Oのいずれか一つを含む。ROは、MgO、CaO及びSrOのいずれか一つを含む。
次に本発明の実施の形態2について説明する。
なお実施の形態1では、基板となるガラスリボン6を形成しつつ、搬送室2の入り口において、スプレーノズル2bから懸濁液を吹き付けることで、散乱層Bとなるガラス層を形成した。実施の形態2では、図5に製造装置の要部拡大図を示すように、前記ガラス粉末を静電粉体塗装により直接前記基板(ガラスリボン6)上に吹き付けることで散乱層Bを形成するようにしたことを特徴とする。本実施の形態でもおおむね図2に示した前記実施の形態1の装置と同様の装置を用いるが、ガラスリボンの裏面側に静電粉体塗装装置(図2参照)を設けている点と、散乱層形成装置を徐冷室3の入り口に設けた点で、ローラによるガラス層の汚染や破壊を防ぐために、ローラではなく、把持部(図示せず)が所定の間隔で設けられている点で、異なる。ここでもガラス粉末は、粒径のD10が0.2μm以上でかつ、D90が5μm以下であるものを用いる。
図5に示すように、帯電電極13は、ガラスリボン6の幅方向に沿って延在する電極本体13aと、電極本体13aから上側(ガラスリボン6側)に向けて突出された複数の針状電極13bとから構成されている。針状電極13bは、相互に等間隔をあけて配置されている。帯電電極13の材質は、700℃程度で変形せず、かつ酸化しない耐熱材料からなることが好ましく、例えばステンレス合金、ニッケルまたはニッケル合金等が好ましい。また針状電極13bの相互の間隔は、例えばガラスリボン6の幅10cm毎に1本の割合で設置するとよい。なお、帯電電極13の形状は本実施の形態の形状であることは必須ではなく、ガラス粉末Mを効率良く帯電させることが出来れば特に形状に限定されない。
電極本体13aの一端側には配線が接続されており、帯電電極13はこの配線を介して、徐冷炉3の外部に設置された図示しない高電圧電源装置に接続されている。
まず、帯電化保持容器14の帯電・流動部14c1にガラス粉末Mを供給する。そして、例えば乾燥空気または窒素等(以下、乾燥空気等ともいう)をガス導入配管14gからガス導入部14c2に供給する。徐冷炉3内部の温度に影響を与えない様、乾燥空気等は加熱後導入しても良い。ガス導入部14c2に供給された乾燥空気等は、整流部材14fを通過して整流部材14fの上面全面から帯電・流動部14c1に均一に噴出される。この噴出された乾燥空気等によってガラス粉末が舞い上げられ、ガラス粉末Mが流動状態になる。
更に、ガラス粉末Mをガラスリボン6の下面6a側において帯電させるので、帯電されたガラス粉末Mをすみやかにガラスリボン6に付着させて散乱層Bを形成することができ、散乱層Bの形成効率が向上して散乱層Bを下面6a全面にもれなく形成できる。
さらにまた、ガラス基板を形成した後、このガラス基板上に散乱層を形成するようにしてもよい。このとき、ガラス基板が常温の時にガラス粉末を供給して、後に焼成してもよい。
ここでフリットガラスペーストの形成は例えば以下のようにして行なう。
ガラス粉末とビヒクルを準備する。ここで、ビヒクルとは、樹脂、溶剤、界面活性剤を混合したものをいう。ここで用いるガラス粉末は、所望の屈折率となるように、材料組成および散乱物質を制御して形成されたガラスを、所望の粒径となるように粉砕して得られ、このガラス粉末に樹脂、溶剤、各種調整剤を添加して用いる。具体的には、50℃~80℃に加熱した溶剤中に樹脂、界面活性剤などを投入し、その後4時間から12時間程度静置したのち、ろ過し、得られる。
次に、ガラス粉末とビヒクルとを、プラネタリーミキサーで混合した後、3本ロールで均一分散させる。その後粘度調整のため、混練機で混練する。通常ガラス材料70~80wt%に対してビヒクル20~30wt%とする。
これにより、散乱層の表面側で散乱物質の密度の小さい散乱層を得ることができる。
<実施例>
まずガラス組成が表1になるように粉末原料を調合し、1100℃の電気炉にて溶解し、ロールにキャストしてガラスのフレークを得た。このガラスのガラス転移温度は499℃、屈服点は545℃、熱膨張係数は74×10-7(1/℃)(100~300℃の平均値)である。このガラスのF線(486.13nm)での屈折率nFは2.0448、d線(587.56nm)での屈折率ndは2.0065、C線(656.27nm)での屈折率nCは1.9918である。屈折率は、屈折率計(カルニュー光学工業社製、商品名:KRP-2)で測定した。ガラス転移点(Tg)および屈服点(At)は、熱分析装置(Bruker社製、商品名:TD5000SA)で熱膨張法により、昇温速度5℃/分で測定した。
この時、霧吹きと基板が近すぎると、霧吹きの風によりガラス粉末が基板に着弾しにくくなり、霧吹きと基板が遠すぎると、基板に着弾する確率が減ってしまい、効率が悪くなる。
1b 浴面
2a リフトアウトロール
2b スプレーノズル
3 徐冷炉
3a 徐冷炉の入口
5 溶融ガラス
6 ガラスリボン
6a ガラスリボンの下面
11 帯電装置(形成手段)
12 引出電極
13 帯電電極
14 帯電化保持容器
B 散乱層
M ガラス粉末
Claims (13)
- ガラス基板を用意する工程と、
所望の組成のガラス粉末を形成する工程と、
前記ガラス粉末を前記ガラス基板上に供給して、熱により、散乱層を形成する工程とを含む散乱層付き電子デバイス用基板の製造方法。 - 請求項1に記載の散乱層付き電子デバイス用基板の製造方法であって、
前記散乱層を形成する工程は、
さらに、前記ガラス基板上に供給された前記ガラス粉末を焼成する工程を含む散乱層付き電子デバイス基板の製造方法。 - 請求項1に記載の散乱層付き電子デバイス用基板の製造方法であって、
ガラス原料またはガラスを加熱溶解して溶融ガラスを製造する工程と、
溶融金属を収容した溶融金属浴槽の浴面に溶融ガラスを連続的に供給して連続したガラスリボンを形成する成形工程と、
前記連続したガラスリボン上に、所望の組成のガラス粉末を供給し、ガラス粉末の溶融または焼結により散乱層を形成する工程と、
前記散乱層付きの連続したガラスリボンを徐冷する工程と、
徐冷された前記散乱層付きの連続したガラスリボンを切断して散乱層付きガラス基板とする工程とを含む散乱層付き電子デバイス用基板の製造方法。 - 請求項1乃至3のいずれかに記載の散乱層付き電子デバイス用基板の製造方法であって、
前記散乱層を形成する工程は、
第1の屈折率を有するベース材と、前記ベース材中に分散された、前記ベース材と異なる第2の屈折率を有する複数の散乱物質とを具備し、
前記散乱層内部から最表面にむかって、散乱層中の散乱物質の層内分布が、小さくなっている散乱層を形成する工程である散乱層付き電子デバイス用基板の製造方法。 - 請求項1乃至4のいずれかに記載の散乱層付き電子デバイス用基板の製造方法であって、
前記供給する工程は、
前記ガラス粉末を静電粉体塗装により直接前記基板上に吹き付ける工程である散乱層付き電子デバイス用基板の製造方法。 - 請求項1乃至4のいずれかに記載の散乱層付き電子デバイス用基板の製造方法であって、
前記供給する工程は、
前記ガラス粉末を、液体中に分散させてスプレー法により吹き付ける工程である散乱層付き電子デバイス用基板の製造方法。 - 請求項1乃至4のいずれかに記載の散乱層付き電子デバイス用基板の製造方法であって、
前記供給する工程は、
前記ガラス粉末を、溶融しながら溶射法により前記ガラス基板上に供給する工程である散乱層付き電子デバイス用基板の製造方法。 - 請求項5乃至7のいずれかに記載の散乱層付き電子デバイス用基板の製造方法であって、
前記供給する工程は、粒径のD10が0.2μm以上でかつ、D90が5μm以下であるガラス粉末を供給する工程を含む散乱層付き電子デバイス用基板の製造方法。 - ガラス基板と、
前記ガラス基板上に、島状に形成された複数個のガラス散乱領域とを含む電子デバイス用基板。 - 請求項9に記載の電子デバイス用基板であって、
前記島状に形成された複数個のガラス散乱領域は、
前記ガラス基板上に、散乱物質を含むガラス層を介して形成される電子デバイス用基板。 - 請求項9又は10に記載の電子デバイス用基板の散乱層の上に形成された導電膜を具備した電子デバイス用基板の製造方法。
- 請求項11により製造された導電膜付きの電子デバイス用基板と、
前記電子デバイス用基板の導電膜上に、順次積層された発光機能を有する層と、第2の導電膜とを具備した自己発光型の電子デバイス。 - 請求項12に記載の自己発光型の電子デバイスであって、
前記発光機能を有する層が有機層である有機LED素子。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201080005624.2A CN102292302B (zh) | 2009-01-26 | 2010-01-21 | 电子器件用基板的制造方法、电子器件的制造方法、电子器件用基板及电子器件 |
JP2010547516A JP5541165B2 (ja) | 2009-01-26 | 2010-01-21 | 電子デバイス用基板の製造方法、電子デバイスの製造方法、電子デバイス用基板、および電子デバイス |
EP20100733531 EP2390240A4 (en) | 2009-01-26 | 2010-01-21 | METHOD FOR PRODUCING SUBSTRATE FOR ELECTRONIC DEVICES, METHOD FOR MANUFACTURING ELECTRONIC DEVICE, SUBSTRATE FOR ELECTRONIC DEVICES, AND ELECTRONIC DEVICE |
US13/137,166 US20110278635A1 (en) | 2009-01-26 | 2011-07-25 | Method for producing electronic device substrate, method for manufacturing electronic device, electronic device substrate, and electronic device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-014796 | 2009-01-26 | ||
JP2009014796 | 2009-01-26 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/137,166 Continuation US20110278635A1 (en) | 2009-01-26 | 2011-07-25 | Method for producing electronic device substrate, method for manufacturing electronic device, electronic device substrate, and electronic device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010084924A1 true WO2010084924A1 (ja) | 2010-07-29 |
Family
ID=42355976
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/050730 WO2010084924A1 (ja) | 2009-01-26 | 2010-01-21 | 電子デバイス用基板の製造方法、電子デバイスの製造方法、電子デバイス用基板、および電子デバイス |
Country Status (7)
Country | Link |
---|---|
US (1) | US20110278635A1 (ja) |
EP (1) | EP2390240A4 (ja) |
JP (1) | JP5541165B2 (ja) |
KR (1) | KR20110108373A (ja) |
CN (1) | CN102292302B (ja) |
TW (1) | TW201107261A (ja) |
WO (1) | WO2010084924A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014510364A (ja) * | 2011-02-08 | 2014-04-24 | ピーピージー・インダストリーズ・オハイオ・インコーポレイテッド | 有機発光ダイオードの為の光取出し基板 |
JP2016029009A (ja) * | 2010-10-26 | 2016-03-03 | ショット・アーゲー | 透明層複合体アセンブリ |
JP2016528674A (ja) * | 2013-07-03 | 2016-09-15 | コーニング精密素材株式会社Corning Precision Materials Co., Ltd. | 光電素子用基板およびこれを含む光電素子 |
JP2019019159A (ja) * | 2017-07-12 | 2019-02-07 | 日本パーカライジング株式会社 | 静電粉体塗料、並びに塗膜を有する塗装物品及びその製造方法 |
US10308545B2 (en) | 2010-10-26 | 2019-06-04 | Schott Ag | Highly refractive thin glasses |
US10343946B2 (en) | 2010-10-26 | 2019-07-09 | Schott Ag | Highly refractive thin glasses |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009060916A1 (ja) * | 2007-11-09 | 2009-05-14 | Asahi Glass Co., Ltd. | 透光性基板、その製造方法、有機led素子およびその製造方法 |
TW201228069A (en) * | 2010-07-16 | 2012-07-01 | Agc Glass Europe | Translucent conductive substrate for organic light emitting devices |
CN103757992A (zh) * | 2012-02-02 | 2014-04-30 | 廖树汉 | 宽超10米薄至0.3毫米代用金属能锯钻打不烂的玻璃纸板 |
JP5990994B2 (ja) * | 2012-04-19 | 2016-09-14 | セントラル硝子株式会社 | ガラス粉末材料及び多孔質なガラス質膜の製造方法。 |
ES2564141T3 (es) * | 2013-06-14 | 2016-03-18 | Saint-Gobain Glass France | Substrato de OLED difusor transparente y método para producir tal substrato |
KR101493601B1 (ko) * | 2013-07-17 | 2015-02-13 | 쌩-고벵 글래스 프랑스 | 발광 디바이스용 적층체 및 그의 제조 방법 |
KR101493612B1 (ko) | 2013-10-08 | 2015-02-13 | 쌩-고벵 글래스 프랑스 | 발광 디바이스용 적층체 및 그의 제조 방법 |
DE102014110311B4 (de) * | 2014-07-22 | 2017-07-27 | Osram Oled Gmbh | Verfahren zum Herstellen eines organischen optoelektronischen Bauelementes |
JP2016062014A (ja) * | 2014-09-19 | 2016-04-25 | 日本碍子株式会社 | 光学部品 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0930832A (ja) * | 1995-07-21 | 1997-02-04 | Nippon Sheet Glass Co Ltd | 車両用熱線遮蔽ガラス |
JP2001114534A (ja) * | 1999-10-20 | 2001-04-24 | Nippon Sheet Glass Co Ltd | 金属酸化物膜付きガラス板およびその製造方法、ならびにこれを用いた複層ガラス |
JP2004535348A (ja) * | 2001-05-10 | 2004-11-25 | カール−ツァイス−シュティフトゥング | 光散乱層、特にガラスまたはガラス・セラミック材料のコーティング用光散乱層およびその製造方法 |
JP2005063704A (ja) | 2003-08-20 | 2005-03-10 | Stanley Electric Co Ltd | 有機el素子 |
WO2007059223A1 (en) * | 2005-11-15 | 2007-05-24 | Corning Incorporated | Method and apparatus for the elimination of interference fringes in an oled device |
JP2007242286A (ja) * | 2006-03-06 | 2007-09-20 | Asahi Glass Co Ltd | 膜付き基板とその製造方法、透明導電性膜付き基板および発光素子 |
JP2008063319A (ja) | 2006-07-10 | 2008-03-21 | Sicor Inc | 臭化チオトロピウムの調製方法 |
JP2009014796A (ja) | 2007-06-30 | 2009-01-22 | Sony Corp | El表示パネル、電源線駆動装置及び電子機器 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4466562A (en) * | 1981-12-15 | 1984-08-21 | Ppg Industries, Inc. | Method of and apparatus for severing a glass sheet |
US4671155A (en) * | 1985-06-13 | 1987-06-09 | Ppg Industries, Inc. | Positioning apparatus |
CA2002495A1 (en) * | 1989-06-13 | 1990-12-13 | Peter H. Hofer | Method and apparatus for manufacturing coated flat glass |
US5173121A (en) * | 1990-11-09 | 1992-12-22 | The Board Of Trustees Of The University Of Little Rock | Apparatus for the deposition and film formation of silicon on substrates |
US5998803A (en) * | 1997-05-29 | 1999-12-07 | The Trustees Of Princeton University | Organic light emitting device containing a hole injection enhancement layer |
WO2002064524A1 (fr) * | 2001-02-16 | 2002-08-22 | Nippon Sheet Glass Co., Ltd. | Film irregulier et son procede de fabrication |
US20030037569A1 (en) * | 2001-03-20 | 2003-02-27 | Mehran Arbab | Method and apparatus for forming patterned and/or textured glass and glass articles formed thereby |
-
2010
- 2010-01-21 WO PCT/JP2010/050730 patent/WO2010084924A1/ja active Application Filing
- 2010-01-21 JP JP2010547516A patent/JP5541165B2/ja not_active Expired - Fee Related
- 2010-01-21 EP EP20100733531 patent/EP2390240A4/en not_active Withdrawn
- 2010-01-21 KR KR1020117017522A patent/KR20110108373A/ko not_active Application Discontinuation
- 2010-01-21 CN CN201080005624.2A patent/CN102292302B/zh not_active Expired - Fee Related
- 2010-01-26 TW TW099102125A patent/TW201107261A/zh unknown
-
2011
- 2011-07-25 US US13/137,166 patent/US20110278635A1/en not_active Abandoned
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0930832A (ja) * | 1995-07-21 | 1997-02-04 | Nippon Sheet Glass Co Ltd | 車両用熱線遮蔽ガラス |
JP2001114534A (ja) * | 1999-10-20 | 2001-04-24 | Nippon Sheet Glass Co Ltd | 金属酸化物膜付きガラス板およびその製造方法、ならびにこれを用いた複層ガラス |
JP2004535348A (ja) * | 2001-05-10 | 2004-11-25 | カール−ツァイス−シュティフトゥング | 光散乱層、特にガラスまたはガラス・セラミック材料のコーティング用光散乱層およびその製造方法 |
JP2005063704A (ja) | 2003-08-20 | 2005-03-10 | Stanley Electric Co Ltd | 有機el素子 |
WO2007059223A1 (en) * | 2005-11-15 | 2007-05-24 | Corning Incorporated | Method and apparatus for the elimination of interference fringes in an oled device |
JP2007242286A (ja) * | 2006-03-06 | 2007-09-20 | Asahi Glass Co Ltd | 膜付き基板とその製造方法、透明導電性膜付き基板および発光素子 |
JP2008063319A (ja) | 2006-07-10 | 2008-03-21 | Sicor Inc | 臭化チオトロピウムの調製方法 |
JP2009014796A (ja) | 2007-06-30 | 2009-01-22 | Sony Corp | El表示パネル、電源線駆動装置及び電子機器 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2390240A4 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016029009A (ja) * | 2010-10-26 | 2016-03-03 | ショット・アーゲー | 透明層複合体アセンブリ |
US10308545B2 (en) | 2010-10-26 | 2019-06-04 | Schott Ag | Highly refractive thin glasses |
US10343946B2 (en) | 2010-10-26 | 2019-07-09 | Schott Ag | Highly refractive thin glasses |
JP2014510364A (ja) * | 2011-02-08 | 2014-04-24 | ピーピージー・インダストリーズ・オハイオ・インコーポレイテッド | 有機発光ダイオードの為の光取出し基板 |
US10581020B2 (en) | 2011-02-08 | 2020-03-03 | Vitro Flat Glass Llc | Light extracting substrate for organic light emitting diode |
US11943960B2 (en) | 2011-02-08 | 2024-03-26 | Vitro Flat Glass Llc | Light extracting substrate for organic light emitting diode |
JP2016528674A (ja) * | 2013-07-03 | 2016-09-15 | コーニング精密素材株式会社Corning Precision Materials Co., Ltd. | 光電素子用基板およびこれを含む光電素子 |
JP2019019159A (ja) * | 2017-07-12 | 2019-02-07 | 日本パーカライジング株式会社 | 静電粉体塗料、並びに塗膜を有する塗装物品及びその製造方法 |
JP7049076B2 (ja) | 2017-07-12 | 2022-04-06 | 日本パーカライジング株式会社 | 静電粉体塗料、並びに塗膜を有する塗装物品及びその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JP5541165B2 (ja) | 2014-07-09 |
EP2390240A1 (en) | 2011-11-30 |
JPWO2010084924A1 (ja) | 2012-07-19 |
US20110278635A1 (en) | 2011-11-17 |
EP2390240A4 (en) | 2015-04-29 |
CN102292302A (zh) | 2011-12-21 |
CN102292302B (zh) | 2014-08-13 |
KR20110108373A (ko) | 2011-10-05 |
TW201107261A (en) | 2011-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5541165B2 (ja) | 電子デバイス用基板の製造方法、電子デバイスの製造方法、電子デバイス用基板、および電子デバイス | |
CN103403911B (zh) | 用于有机发光二极管的光提取基材 | |
TWI527779B (zh) | A glass melting furnace, a manufacturing method of a molten glass, a manufacturing apparatus for a glass product, and a method for manufacturing a glass product | |
US9768407B2 (en) | Substrate-sealing method, frit and electronic device | |
US8530748B2 (en) | Substrate with through-holes for grid-like auxiliary wiring pattern | |
JP5642363B2 (ja) | ガラス基板 | |
JP5403487B2 (ja) | ガラスロール | |
US8999871B2 (en) | High refractive index glass | |
WO2012077708A1 (ja) | 高屈折率ガラス | |
ES2829911T3 (es) | Laminado para dispositivo emisor de luz y proceso para preparar el mismo | |
KR101554532B1 (ko) | 박막 태양 전지용 유리판 | |
JP5983100B2 (ja) | ガラス基材 | |
CN105073666A (zh) | 用于具有有机发光二极管的器件的衬底 | |
CN114538771A (zh) | 载体基板、层叠体、电子器件的制造方法 | |
JP2013025900A (ja) | 電子デバイス用基板、及び、これを用いた有機led素子 | |
RU2656261C2 (ru) | Прозрачная рассеивающая подложка для органических светодиодов и способ изготовления такой подложки | |
CN112186048A (zh) | 透明电极基板和太阳能电池 | |
WO2014010621A1 (ja) | 光取り出し層形成用ガラス、これを用いた、光取り出し層形成用ガラス粉末、光取り出し層の形成方法、光取り出し層形成用材料、光取り出し層形成用ガラスペースト、有機el素子用ガラス基板、有機el素子及び有機el素子用ガラス基板の製造方法 | |
CN111465586A (zh) | 具有改进的边缘强度的拼接件的显示区域及其制造方法 | |
JP2013109923A (ja) | 電子デバイス用基板の製造方法 | |
CN110521283A (zh) | 有机el设备用基板、有机el设备以及有机el设备用基板的制造方法 | |
JP2009167025A (ja) | 絶縁層形成用ガラス組成物および絶縁層形成用材料 | |
JP6295625B2 (ja) | 有機el素子用ガラス基板及びその製造方法 | |
JP6156675B2 (ja) | ガラスパッケージの製造方法 | |
JP2015227272A (ja) | 分相ガラス及びこれを用いた複合基板 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080005624.2 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10733531 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2010547516 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20117017522 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010733531 Country of ref document: EP |