WO2010084885A1 - アレイ型ディスク装置、及びアレイ型ディスク装置の制御方法 - Google Patents

アレイ型ディスク装置、及びアレイ型ディスク装置の制御方法 Download PDF

Info

Publication number
WO2010084885A1
WO2010084885A1 PCT/JP2010/050643 JP2010050643W WO2010084885A1 WO 2010084885 A1 WO2010084885 A1 WO 2010084885A1 JP 2010050643 W JP2010050643 W JP 2010050643W WO 2010084885 A1 WO2010084885 A1 WO 2010084885A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
optical disk
disk device
array type
optical
Prior art date
Application number
PCT/JP2010/050643
Other languages
English (en)
French (fr)
Inventor
正規 中野
雅嗣 小川
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2010547501A priority Critical patent/JPWO2010084885A1/ja
Priority to US13/143,443 priority patent/US20110271051A1/en
Publication of WO2010084885A1 publication Critical patent/WO2010084885A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0628Interfaces specially adapted for storage systems making use of a particular technique
    • G06F3/0629Configuration or reconfiguration of storage systems
    • G06F3/0632Configuration or reconfiguration of storage systems by initialisation or re-initialisation of storage systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0602Interfaces specially adapted for storage systems specifically adapted to achieve a particular effect
    • G06F3/061Improving I/O performance
    • G06F3/0611Improving I/O performance in relation to response time
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0668Interfaces specially adapted for storage systems adopting a particular infrastructure
    • G06F3/0671In-line storage system
    • G06F3/0673Single storage device
    • G06F3/0674Disk device
    • G06F3/0677Optical disk device, e.g. CD-ROM, DVD
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0668Interfaces specially adapted for storage systems adopting a particular infrastructure
    • G06F3/0671In-line storage system
    • G06F3/0683Plurality of storage devices
    • G06F3/0686Libraries, e.g. tape libraries, jukebox
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B27/00Editing; Indexing; Addressing; Timing or synchronising; Monitoring; Measuring tape travel
    • G11B27/002Programmed access in sequence to a plurality of record carriers or indexed parts, e.g. tracks, thereof, e.g. for editing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B2220/00Record carriers by type
    • G11B2220/20Disc-shaped record carriers
    • G11B2220/25Disc-shaped record carriers characterised in that the disc is based on a specific recording technology
    • G11B2220/2537Optical discs
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B2220/00Record carriers by type
    • G11B2220/40Combinations of multiple record carriers
    • G11B2220/41Flat as opposed to hierarchical combination, e.g. library of tapes or discs, CD changer, or groups of record carriers that together store one title

Definitions

  • the present invention relates to an array type disk device and a method for controlling the array type disk device, and more particularly to an array type disk device that performs information processing on a plurality of recording media and a method for controlling the array type disk device.
  • optical disk drives for recording information on recording media such as optical disks
  • This type of optical disk apparatus is mounted on a hard disk drive (HDD) or the like, for example, a recorder for recording a television program, a personal computer (PC), or the like, and is mainly used for recording information such as video and images.
  • HDD hard disk drive
  • PC personal computer
  • Such a device realizes a storage device having a larger storage capacity by operating a combination of a plurality of optical disk devices, and performs a recording process by performing an information recording process or a reproducing process in parallel. Or high-speed reproduction processing (see, for example, Patent Document 2).
  • Patent Document 3 uses a plurality of optical disk devices to record or reproduce information, and then, for at least one optical disk device, unloads the optical disk from the optical disk device, and another optical disk device. With respect to, information recording or reproduction can be immediately maintained with the optical disk mounted. Thereby, the improvement of the access performance of the apparatus can be realized.
  • JP 2005-332580 A Japanese Patent Laid-Open No. 11-045497 Japanese Patent Application Laid-Open No. 08-054991
  • the processing speed of an array type disk device configured to include a plurality of optical disk devices does not necessarily improve the information processing speed of a single device. Not as much as expected.
  • the slow processing optical disk device determines the processing speed of the entire device.
  • an array type disk device When the operation of the entire apparatus such as an array type disk device is considered as a plurality of processes such as transport of the optical disk, attachment / detachment of the optical disk, recording of information on the optical disk, or reproduction of information recorded on the optical disk, It is very important to improve the processing speed of the array type disk device. In other words, in the case of an array type disk device, not only the individual optical disk devices constituting the device are individually controlled, but also the individual operation of the array type disk device is optimized in terms of processing speed. It is necessary to control the optical disk apparatus. When such control is not performed, the array type disk device is difficult to use as a whole.
  • a first object of the present invention is to provide an array type disk device capable of increasing the processing speed of an optical disk.
  • a second object of the present invention is to provide a control method for an array type disk device capable of speeding up the processing for an optical disk.
  • An array type disk apparatus provides a plurality of optical disk apparatuses that record and reproduce information on a recording medium, and a recording medium having information of the same capacity or the same content in each of the plurality of optical disk apparatuses.
  • each of the optical disk devices is searched for information on the recording medium, and each of the plurality of optical disk devices is determined based on the determination information determined from the information searched by the plurality of optical disk devices.
  • control means for starting the next operation is performed.
  • the array disk device control method includes a plurality of optical disk devices, and information processing for a plurality of recording media each having the same capacity or the same content loaded in the plurality of optical disk devices.
  • FIG. 1 is a block diagram of an array type disk device according to a first embodiment of the present invention. It is a top view of an optical disk. It is a conceptual diagram for demonstrating the recording area of an optical disk. It is a block diagram of an optical disk device. It is a block diagram of RF circuit. It is a block diagram of a signal quality calculation circuit. It is a conceptual diagram for demonstrating the division
  • 3 is a flowchart showing a series of processing executed by the array type disk device according to the first embodiment. It is a flowchart which shows a series of processes performed by the array type disk apparatus which concerns on the 2nd Embodiment of this invention.
  • the array type disk device uses, as a common write start address for each of the plurality of optical disk devices, the head address of the unrecorded area notified first among the plurality of optical disk devices constituting the array type disk device. decide.
  • FIG. 1 is a diagram showing a schematic configuration of an array type disk device 100 according to the present embodiment.
  • an array type disk apparatus 100 includes, for example, optical disk apparatuses 20 1 to 20 4 , a holder 50 that stores a plurality of cartridges 51 1 to 51 N that store optical disks 60 1 to 60 4 , and A disk transport means (accessor) 40 for transporting and detaching the optical disks 60 1 to 60 4 between the optical disk devices 20 1 to 20 4 and the holder 50, and a main controller 10 for comprehensively controlling each of the above parts.
  • a host device 120 such as a personal computer via the main control device 10, for example.
  • the optical disc apparatuses 20 1 to 20 4 and the optical discs 60 1 to 60 4 will be referred to as the optical disc apparatus 20 and the optical disc 60 when they are not distinguished from each other.
  • the optical disc 60 is, for example, a write-once recording medium, and is a so-called Low-To-High medium of a type in which the reflectance increases when recording is performed.
  • FIG. 2 is a plan view of the optical disk 60 used in the array type disk device 100.
  • the optical disk 60 has a disc-like substrate 60a made of polycarbonate, for example, having a thickness of 0.6 mm and a diameter of 12 cm. Guide grooves called pregrooves are formed in the substrate 60a.
  • a center hole 60b is provided at the center of the substrate 60a, and a recording layer 61 made of an organic dye material is formed.
  • the area where the recording layer 61 is formed is a recordable area.
  • a lead-in area 62, a data area 63, and a lead-out area 64 are set in the recordable area.
  • the lead-in area 62 is located near the inner periphery of the recordable area, and includes a system lead-in area and a data lead-in area.
  • the data area 63 is an area for recording data.
  • the system lead-in area has a control data zone.
  • the control data zone is an area where disc manufacturing information is recorded as system information.
  • the data lead-in area is a management information area in which information (disc management information) indicating the recording status of data on the optical disc 60 is recorded.
  • management information disk management information
  • management information to which address in the data area 63 data is recorded, whether additional data can be added, or whether only necessary information is recorded (dummy) The content necessary for managing the data recording / reproducing process is included.
  • the beam spot of the laser beam moves along the guide groove formed on the substrate 60a.
  • an in-groove format having a bit pitch of 0.15 ⁇ m and a track pitch of 0.40 ⁇ m is used as the physical format of the optical disc 60.
  • FIG. 4 is a block diagram of one optical disk device 20.
  • the optical disc apparatus 20 includes a spindle drive system 21, an optical head 22, a servo controller 23, an LD driver 24, an RF circuit 25, an address detection circuit 26, a stepper 27, a modulator 28, a demodulator 29, And a drive control device 30.
  • the spindle drive system 21 rotates the optical disc 60 at a predetermined number of revolutions based on a command from the drive control device 30.
  • the optical head 22 irradiates the optical disc 60 with laser light when recording information on the optical disc 60 or reproducing information from the optical disc 60.
  • the optical head 22 includes a laser diode 22d that emits laser light having a wavelength of about 405 nm, an objective lens 22a having a numerical aperture (NA) of about 0.65, a beam splitter 22b, a light receiver 22c, and a preamplifier. 22e and 22f.
  • NA numerical aperture
  • the laser light emitted from the laser diode 22d and reflected by the beam splitter 22b is condensed on the recording layer 61 of the optical disc 60 by the objective lens 22a.
  • the reflected light from the optical disk 60 enters the light receiver 22c via the objective lens 22a and the beam splitter 22b.
  • the light receiver 22c When receiving the laser beam reflected by the optical disc 60, the light receiver 22c outputs a reproduction signal (photoelectric conversion signal) corresponding to the intensity of the received laser beam.
  • the reproduction signals are output to the RF circuit 25 and the address detection circuit 26 through the preamplifiers 22e and 22f, respectively.
  • the servo controller 23 drives the objective lens 22a, for example, according to an instruction from the drive control device 30, and performs focusing and tracking of the laser light incident on the optical disc 60. As a result, the beam spot of the laser beam is positioned on a desired track of the optical disc 60.
  • the modulator 28 modulates the recording signal supplied from the drive control device 30 and outputs it as a write signal to the LD driver 24 and the RF circuit 25.
  • the recording signal is a signal generated based on information recorded on the optical disc 60.
  • the write signal is a signal including a pattern sequence used for recording on the optical disc 60.
  • the LD driver 24 drives the laser diode 22d based on the write signal output from the modulator 28. Thereby, the power of the laser beam emitted from the laser diode 22d is controlled.
  • the RF circuit 25 performs a process such as filtering on the reproduction signal output from the preamplifier 22e of the optical head 22 and binarizes it, and outputs this to the demodulator 29 as a binarized signal. Further, the quality of the reproduction signal is measured, and a signal including the measurement result is output to the drive control device 30.
  • the RF circuit 25 includes a prefilter 25a, an auto gain control circuit (AGC) 25b, an A / D converter (ADC) 25c, a phase-locked loop circuit (PLL) 25d, adaptation, and the like. And a signal quality calculation circuit 25h.
  • the reproduction signal output from the preamplifier 22e of the optical head 22 is filtered by the prefilter 25a, subjected to amplitude control by the AGC 25b, and then digitized by the ADC 25c. Then, a clock signal is extracted from the digitized signal by the PLL 25d, and is synchronized with a predetermined channel frequency and output to the adaptive equalizer 25e.
  • the adaptive equalizer 25e converts the signal output from the PLL 25d so as to approach a desired PR (Partial Response) characteristic, and converts the signal into an equalization reproduction signal to the discriminator 25f and the signal quality calculation circuit 25h. Output.
  • the adaptive equalizer 25e includes a finite impulse response (FIR) filter. Further, the tap coefficient of the FIR filter is adaptively modified according to a least square (Least: Mean: Square) algorithm.
  • the discriminator 25f includes a Viterbi decoder, selects a path with the shortest Euclidean distance from the equalized reproduction signal output from the adaptive equalizer 25e, and binarizes the code bit sequence corresponding to the selected path Output as a signal (estimated pattern string).
  • the binarized signal is output to the demodulator 29 and the signal quality calculation circuit 25h, and is fed back to the adaptive equalizer 25e.
  • the storage circuit 25g stores the write signal output from the modulator 28, and outputs the stored write signal to the signal quality calculation circuit 25h based on an instruction from the drive control device 30.
  • the signal quality calculation circuit 25h generates and outputs information indicating the signal quality based on the outputs from the adaptive equalizer 25e and the discriminator 25f and the output from the storage circuit 25g. As shown in the block diagram of FIG. 6, the signal quality calculation circuit 25h includes an area determination unit 25i, a format determination unit 25j, and an error rate calculation unit 25k.
  • the region determination unit 25i compares the input equalized reproduction signal with a predetermined reference value, and determines whether the equalized reproduction signal includes information recorded on the optical disc 60. Then, a signal including the determination result is output to the drive control device 30.
  • the format determiner 25j uses the binarized signal to determine whether or not the signal output from the optical head 22 matches the data format defined in advance for each optical disc medium. Then, a signal including the determination result is output to the drive control device 30.
  • the data format defined in advance is, for example, the presence / absence of a VFO area, the number of sectors, the number of frames, the number of frames, the number of sync signals in one sector, the total number of data (in this example, the data field is 77376 bytes, 1 ECC block In this case, the data format is defined by data arrangement, data ID, and the like.
  • the error rate calculator 25k calculates the error rate based on the write signal stored in the storage circuit 25g or the binarized signal output from the discriminator 25f as necessary. Then, a signal including this error rate is output to the drive control device 30.
  • the demodulator 29 performs error correction processing on the binarized signal output from the discriminator 25f of the RF circuit 25 and demodulates the binarized signal after correction. Then, the demodulated signal is output to the drive control device 30.
  • the address detection circuit 26 performs processing such as filtering on the reproduction signal output from the optical head 22 to detect address information and outputs the address information to the drive control device 30.
  • the stepper 27 seeks the optical head 22 in accordance with an instruction from the drive control device 30.
  • the drive control device 30 includes a CPU (Central Processing Unit).
  • the drive control device 30 mainly adjusts parameters related to information recording and reproduction. Further, in accordance with an instruction from the main control device 10 to be described later, the entire optical disc device 20 is comprehensively controlled such as information reproduction with respect to the optical disc 60, information recording, response control when various errors occur. Further, in the present embodiment, the drive control device 30 of each of the optical disk devices 20 1 to 20 4 interrupts the main control device 10 and stores information including the status of the optical disk devices 20 1 to 20 4 as necessary. Output.
  • a CPU Central Processing Unit
  • one ECC block includes a VFO field, a data field, a postamble field, a buffer field, and the like.
  • the data field is composed of 32 sectors, and one sector is composed of 26 frames.
  • Each sector has a data ID (identifier) including a frame number, and this ID is recorded simultaneously when information (data) is recorded.
  • the optical disc apparatus 20 performs recording on the optical disc 60 using a modulation code called ETM (8/12 modulation: Eight to Twelve Modulation).
  • ETM is a kind of (1-7) RLL coding (Run Length Limited Coding) with a shortest mark or shortest space length of 2T (T is a channel clock period). If the input data series is a series of 1 and 0 bit information, the series of the same bit information is called a run.
  • (1-7) RLL coding is a modulation rule in which the minimum run is 1 and the longest run is 7. According to (1-7) RLL encoding, the minimum mark or minimum space is 2T. The longest mark or longest space is 8T.
  • the holder 50 accommodates, for example, a plurality of cartridges 51 1 to 51 N each accommodating four optical disks 60.
  • the accessor 40 takes out one of the cartridges 51 from the holder 50 in accordance with an instruction from the main controller 10, and each of the four optical discs 60 1 to 60 4 accommodated in the removed cartridge 51 is stored in the optical disc device 20 1. to load the ⁇ 20 4.
  • the accommodating the optical disc devices 20 1 to 20 4, the reproduction of the information, or the optical disk 60 1 to 60 4 of the processing of recording or the like is performed in the information, and unloaded from the optical disk device 20 1 to 20 4 to the cartridge 51 Then, the cartridge 51 is stored in the holder 50.
  • the main controller 10 includes a CPU, a ROM (Read-Only Memory) that stores a program executed by the CPU, a RAM (Random Access Memory) that functions as a work area of the CPU, and the like.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • the main control unit 10 information to be recorded from the host 120 (hereinafter, referred to as record data) has been supplied, by dividing the recording data, for each optical disc devices 20 1 to 20 4, to divide the recorded data Output. Further, in response to a request from the host 120, the data output from the optical disk devices 20 1 to 20 4 (hereinafter referred to as reproduction data) are combined and output to the host 120.
  • record data information to be recorded from the host 120
  • reproduction data data output from the optical disk devices 20 1 to 20 4
  • FIG. 7 is a conceptual diagram for explaining the division of the recording data performed by the main controller 10. For example, if data # 0 with a capacity of 128 MB is supplied from the host 120, as shown in FIG. 7, the main control apparatus 10 converts the data # 0 into four data # 1 to ## with a capacity of 32 MB, for example.
  • the data # 1 to # 4 is output to the optical disc apparatuses 20 1 to 20 4 . Thereby, in the optical disc apparatuses 20 1 to 20 4 , the recording of the data # 1 to # 4 is started almost at the same time, and the data areas 63 of the optical discs 60 1 to 60 4 loaded in the optical disc apparatuses 20 1 to 20 4 are respectively loaded. As shown in the conceptual diagram of FIG.
  • data # 1 to # 4 are recorded up to the position of address ⁇ .
  • the drive control device 30 of each of the optical disk devices 20 1 to 20 4 includes information on how far the data area 63 has been recorded and the data # 1 to # 4. Is recorded as management information in the data lead-in area of the optical disc 60.
  • FIG. 9 is a flowchart showing a series of processing executed when the array disk device 100 receives information (recording information) to be recorded on the optical disk from the host 120.
  • the operation of the array type disk device 100 will be described below with reference to FIG.
  • data is recorded in the optical disks 60 1 to 60 4 loaded in the optical disk devices 20 1 to 20 4 until the address ⁇ in the data area 63 is reached.
  • Each of the divided data may have the same capacity, and the content is not the same.
  • the main controller 10 issues a command for preparing to start recording to the optical disc devices 20 1 to 20 4 and the accessor 40 (Ste S201).
  • Accessor 40 receives this instruction, the predetermined cartridge 51 in the holder 50 i (1 ⁇ i ⁇ N ), conveying the optical disc 60 1-60 4, the optical disc device 20 1 to 20 4 on the optical disc 60 1 load ⁇ 60 4, respectively (step S202). Further, each drive control unit 30 of the optical disk device 20 1 to 20 4, the optical disk 60 1 to 60 4 is loaded is loaded in the optical disk device 20 1 to 20 4, respectively, the loading of the optical disk 60 1 to 60 4 is completed This is notified to the main control device 10 (step S203).
  • each drive control device 30 of the optical disk devices 20 1 to 20 4 reads the system information of the optical disks 60 1 to 60 4 loaded therein (step S204).
  • the drive controller 30 of the optical disk device 20 1 to 20 4 by driving each stepper 27, each of the optical head 22, corresponding to the system lead-in area of the optical discs 60 1 to 60 4 Move to position.
  • disc manufacturing information is obtained from each of the optical discs 60 1 to 60 4 , and based on this information, information relating to the loaded optical discs 60 1 to 60 4 , for example, information relating to the type of disc, manufacturer, etc., is obtained.
  • the drive control device 30 is, for example, a low-to-high type in which the loaded optical disc is an A standard write-once optical disc medium and the recording mark has a higher reflectance than the unrecorded portion. It is determined that the medium is of a type. Further, the drive control device 30 identifies the manufacturer name from the information about the manufacturer and generates a parameter table for the medium. The parameter table is generated based on system information recorded on the optical disc.
  • a plurality of parameter tables may be stored in the optical disc device 20, and the drive control device 30 may select any one of the parameter tables according to the loaded optical disc.
  • the process of determining the type of optical disk and the process of specifying the manufacturer of the optical disk may be omitted.
  • the main controller 10 may perform processing for determining the type of the optical disc and processing for specifying the manufacturer of the optical disc. In that case, the drive control device 30 needs to output the system information acquired from the optical disk device 20 to the main control device 10.
  • each drive control device 30 of the optical disc apparatuses 20 1 to 20 4 reads the management information of the optical discs 60 1 to 60 4 (step S205).
  • the management information is not read from the main control device 10, but autonomously performed by the drive control device 30 of each of the optical disk devices 20 1 to 20 4 .
  • data is recorded on the optical disks 60 1 to 60 4 loaded to the optical disk devices 20 1 to 20 4 until the address ⁇ of the data area 63 is reached. Therefore, management information having the same contents is read from the optical disks 60 1 to 60 4 . If any one of the optical discs 60 1 to 60 4 is detected with different management information, it can be determined that there is an abnormality in the corresponding optical disc.
  • this management information may be stored in a storage device other than the optical disk.
  • the main control device 10 or the drive control device 30 may read the management information from the storage device. Further, instead of autonomous reading, the main control device 10 or the drive control device 30 may instruct a device including a storage device to transmit management information.
  • a storage device for example, an apparatus including a nonvolatile memory or a hard disk drive can be considered.
  • the drive control device 30 executes a search for the head position of the area where information is added in the data area 63 (step S206).
  • the drive control circuit 30 detects the final address of the area where the information is recorded from the read management information.
  • the optical head 22 is sought around a position corresponding to this address (hereinafter referred to as a target position). This seek is performed, for example, by moving the optical head 22 along the guide groove of the optical disc so as to pass the target position.
  • the drive control device 30 drives the stepper 27 calibrated in advance with respect to the drive position to coarsely move the optical head 22 to the target position. Then, the address of the actual position (current position) of the optical head 22 with respect to the optical disc 60 is detected from the output signal from the address detection circuit 26. When the current position and the target position are far away, the optical head 22 is coarsely moved based on the difference between the current position and the target position. When the current position is close to the target position, the optical head 22 is slightly moved. In the case of fine movement, the drive control device 30 moves the optical head 22 while counting the number of crossings of grooves formed in the optical disk 60, for example. When the optical head 22 approaches the target position while finely moving, the optical head 22 is positioned on the track for each track. By performing the above operation, the optical head 22 can be quickly moved to the vicinity of the target position.
  • the optical head 22 is traced along the guide groove to detect the top position of the unrecorded area of the optical disc 60.
  • an area determination unit 25i is used for this detection.
  • the trace is started at least 4 ECC blocks before the target position address.
  • the moving method of the optical head 22 described above is an example, and other moving methods may be used.
  • the drive control device 30 constantly monitors the output signal from the area determination unit 25i constituting the signal quality calculation circuit 25h shown in FIG. 6, for example, and based on this output signal
  • the address of the boundary between the area where the information is recorded (recording area) and the area where the information is not recorded (unrecorded area) of the optical disc 60 is specified as the start address of the unrecorded area. Then, the specified head address is notified to the main control device 10 (step S207).
  • a verify operation may be performed to confirm again that the specified head address corresponds to the boundary between the recording area and the unrecorded area.
  • the same operation is repeated including the operation of seeking again, but the head address of the unrecorded area can be specified more accurately.
  • step S203 to step S207 is executed by all the optical disk devices 20 1 to 20 4 .
  • the main control device 10 first receives a notification of the head address from any one of the optical disk devices 20 1 to 20 4 , it does not wait for the notification of the head address from the other optical disk devices 20.
  • the head address notified first is determined as the write start address of the optical disk 60 loaded in all the optical disk devices 20 1 to 20 4 (step S208). Then, this write start address is notified to each of the optical disk devices 20 1 to 20 4 (step S209).
  • the recording data from the host 120 is divided, and the divided recording data is output to each of the optical disk devices 20 1 to 20 4 .
  • Each of the optical disk devices 20 1 to 20 4 writes the divided recording data from the notified write start address (step S210).
  • a series of processes in the array type disk device 100 is finished.
  • the main control device 10 when the main address is first notified from any one of the plurality of optical disk devices 20 to the main control device 10, the main control device 10 The first address notified first is determined as the writing start address without waiting for the notification of the first address from the other optical disk device 20. Then, main controller 10 notifies each optical disk device 20 of the determined write start address. As a result, there is a difference in processing speed between the optical disk devices 20, and therefore, even if the search time for the write start address is different, all of the optical disk devices 20 and the optical disk devices 20 that have finished searching for the head address most quickly. Similarly, the writing of information can be started. Therefore, the speed of the writing process can be increased as the entire array type disk device 100.
  • the array type disk device 100 according to the present embodiment is different from the array type disk device 100 according to the first embodiment in that the write start address is determined based on the notified plurality of head addresses.
  • the second embodiment of the present invention will be described in detail. The description of the same or equivalent configuration as in the first embodiment is omitted or simplified.
  • the array disk device 100 according to this embodiment has a hardware configuration equivalent to that of the array disk device 100 according to the first embodiment.
  • FIG. 10 is a flowchart showing a series of processing executed by the array type disk device 100 according to the second embodiment.
  • the main control device 10 determines the write start address from the notified plurality of head addresses (step S208a).
  • step S208a the contents of step S208a will be described in detail.
  • main controller 10 When main controller 10 receives a first address notification from one of optical disk devices 20 1 to 20 4 and receives a first address notification from another optical disk device 20, two main head devices 10 Compare addresses. When the compared start addresses are the same, the write start address is determined based on these start addresses.
  • the main controller 10 compares the newly notified head address with the already-reported head address each time the third and subsequent head addresses are notified, When the newly notified start address is the same as any of the notified start addresses, the newly notified start address is determined as the write start address based on the majority rule theory. Thereby, the reliability of the write start address is improved as compared with the case where the head address notified earliest is determined as the write start address.
  • the other optical disc device 20 is made to search for the start address, and the notified start address
  • the address may be determined as the write start address when at least three of the addresses are the same. In this case, the reliability of the write start address is further improved as compared with the case where the write start address is determined from the two head addresses.
  • the main control unit 10 notifies the write start address in the optical disc devices 20 1 to 20 4 (step S209).
  • the recording data from the host 120 is divided, and the divided recording data is output to the respective optical disk devices 20 1 to 20 4 .
  • Each of the optical disk devices 20 1 to 20 4 writes the divided recording data from the notified write start address (step S210).
  • a series of processes in the array type disk device 100 is finished.
  • the write start address is determined based on the plurality of head addresses notified from the optical disk devices 20 1 to 20 4 . For this reason, the reliability of the write start address is improved compared to the case where the head address notified earliest is determined as the write start address, and the possibility that an incorrect address is set as the write start address is reduced.
  • the main control device 10 returns to step S206 and repeats steps S206 to S208a until the write start address is determined. Repeat the process.
  • the drive control device 30 of the optical disc apparatuses 20 1 to 20 4 does not specify the head address based on the output signal from the area determination unit 25i, but outputs, for example, from the format determination unit 25j.
  • the head address may be specified based on the signal. Further, the head address may be determined based on both the output signal from the area determiner 25i and the output signal from the format determiner 25j.
  • step S206 to step S208a when the processing from step S206 to step S208a is repeated, the information from the same optical disk devices 20 1 to 20 4 may be separate from each other. In this case, these pieces of information are managed as # 1 DATA, # 2 DATA,... #NDATA in the order notified to the main control device 10.
  • the third information can be information notified again by one of the optical disk devices.
  • the main control device 10 If the information notified from each optical disk device 20 to the main control device 10 does not match within a predetermined number of start address notifications or within a predetermined time, the main control device 10 has an abnormality in the optical disk 60. It may be determined that there is, and all processing may be stopped. In this case, the host 120 may be notified that the optical disk 60 is abnormal.
  • optical disks are used in environments where the recording surface is not sealed. For this reason, dust and dirt may adhere to the recording surface, and scratches may occur. The attachment of dust or the like to the recording surface affects the reflected light from the optical disc, and due to this influence, for example, in the search for the head address described above, an incorrect address may be specified.
  • the write start address is determined after comparing a plurality of head addresses, recording failures due to misidentification of the information write start address are effectively reduced.
  • the array disk device 100 according to this embodiment has a hardware configuration equivalent to that of the array disk device 100 according to the first embodiment.
  • FIG. 11 is a flowchart showing a series of processing executed by the array type disk device 100 according to the third embodiment.
  • the processing after step S301 is sequentially executed.
  • the main controller 10 outputs to each of the optical disk devices 20 1 to 20 4 target positions whose contents are different between the optical disk devices 20 1 to 20 4 (step S301).
  • # 1 target position in the optical disc device 20 1 # 2 targets located in the optical disk device 20 2, # 3 target position in the optical disk device 20 3, # 4 target position is notified respectively to the optical disc apparatus 20 4
  • the FIG. 12 shows the # 1 to # 4 target positions notified to the optical disc apparatuses 20 1 to 20 4 , respectively.
  • the target positions # 1 to # 4 are set so that adjacent target positions are separated from each other by a predetermined address.
  • the # 1 target position that is the starting point of the # 1 to # 4 target positions is set to a position that is offset by a predetermined amount from the write start position based on the management information. Then, the remaining # 2 to # 4 target positions are sequentially set such that, for example, the # 3 target position is located on the unrecorded area side from the write start position based on the management information.
  • the drive control device 30 of each of the optical disk devices 20 1 to 20 4 When the drive control device 30 of each of the optical disk devices 20 1 to 20 4 is notified of the # 1 to # 4 target positions from the main control device 10, it performs a trace along the guide groove in the vicinity of the notified target position. . Then, it is determined whether or not the recording area is included in the traced position, and the determination result is notified to the main controller 10 (step S302).
  • the main control apparatus 10 has the # 1 target position and the # 2 target position belonging to the recording area, and the # 3 target position and the # 4 target position belong to the unrecorded area. Judge that it is.
  • “ ⁇ ” means belonging to a recording area
  • “x” means belonging to an unrecorded area.
  • main controller 10 determines the actual boundary position between the recording area and the unrecorded area from the determination result notified from optical disk apparatuses 20 1 to 20 4 (step S303). In this example, main controller 10 determines that an actual boundary position exists between # 2 target position and # 3 target position.
  • main controller 10 determines from the determination result in step S303 whether or not the actual boundary position between the recording area and the unrecorded area can be specified (step S304).
  • the optical disc 60 has a data recording unit of 1 ECC block and a size of 0x20. Therefore, when the difference between the addresses of the two target positions sandwiching the actual boundary position between the recorded area and the unrecorded area is one ECC block, it is determined that the boundary position at this target position can be specified. If it is larger than one ECC block, it is determined that the boundary position at this target position cannot be specified.
  • the boundary between the recording area and the unrecorded area Is specified between address 0x450,000 and address 0x450020.
  • the start address of the unrecorded area is specified as 0x450020.
  • Step S304 when the address of the # 2 target position is, for example, 0x450,000 and the address of the # 3 target position is, for example, 0x452000, the address of the boundary between the recording area and the unrecorded area cannot be uniquely specified (Ste S304; NO).
  • the main control apparatus 10 returns to step S301, and again outputs target positions whose contents differ between the optical disk apparatuses 20 1 to 20 4 to the optical disk apparatuses 20 1 to 20 4 (step S301).
  • the # 1 to # 4 target positions are set based on the processing result in step S303. For example, as shown in FIG.
  • the original # 2 when it is determined that the actual boundary position between the recorded area and the unrecorded area is between the # 2 target position and the # 3 target position, as an example, the original # 2
  • the # 1 to # 4 target positions are set so that the target position is the # 1 target position and the original # 3 target position is the # 4 target position.
  • step S304 the processing from step S301 to step S304 is repeated until it is determined in step S304 that the boundary position can be specified.
  • the target position interval is left as it is, and the entire target position is shifted so that the # 1 target position becomes the original # 4 target position.
  • the target position interval is left as it is, and the entire target position is shifted so that the # 4 target position becomes the original # 1 target position.
  • Steps S301 to SS304 are repeated until the recorded area and the unrecorded area change at any of the # 1 target position to the # 4 target position.
  • the # 1 target position or the # 4 target position is fixed, the target position interval is expanded, and the recorded area and the unrecorded area are changed at any of the # 1 target position to the # 4 target position.
  • Steps S301 to SS304 may be repeated until Subsequent processing is in accordance with the above example when the boundary between the recording area and the unrecorded area is at the # 2 target position and the # 3 target position.
  • step S304 determines the next address of the actual boundary position between the recording area and the unrecorded area, that is, the head of the unrecorded area.
  • the address is determined as a write start address (step S305), and the determined write start address is notified to each of the optical disk devices 20 1 to 20 4 (step S306).
  • the recording data from the host 120 is divided and output to each of the optical disk devices 20 1 to 20 4 .
  • Each of the optical disk devices 20 1 to 20 4 executes the writing of the divided recording data from the notified write start address (step S307).
  • the writing of the recording data is finished, a series of processes in the array type disk device 100 is finished.
  • the main controller 10 notifies each of the optical disk devices 20 1 to 20 4 of different target positions.
  • Each of the optical disk devices 20 1 to 20 4 simultaneously traces the target position (address position) notified to each of the four target positions.
  • the tracing is shared by a plurality of optical disk devices, so that tracing over a wide range can be performed in a short time, and as a result, the actual boundary position between the recorded area and the unrecorded area of the optical disk 60 Can be detected quickly. As a result, the operation for appending to the optical disc can be started quickly.
  • the target position (# 1 target position in this embodiment) is separated from the true boundary position because the boundary position determined based on the management information is far away from the actual boundary position. This is effective when the search range is wide.
  • the method described in this embodiment is particularly effective when the performance difference between the optical disk devices is small, or when the performance variation of the optical disk medium is small.
  • a plurality of optical disk devices are defined as drive groups, and the main controller 10 outputs different target positions for each drive group, and the information obtained as a single drive group Different information may be obtained for each drive group while improving accuracy. As a result, the actual boundary position between the recorded area and the unrecorded area can be searched quickly and accurately.
  • the target position at this time may be different for each drive group, or at least a part thereof may be the same.
  • the array type disk device 100 determines the state of the system based on the earliest notified system information and management information.
  • the fourth embodiment of the present invention will be described in detail. The description of the same or equivalent configuration as in the first embodiment is omitted or simplified.
  • the array disk device 100 according to this embodiment has a hardware configuration equivalent to that of the array disk device 100 according to the first embodiment.
  • FIG. 15 is a flowchart showing a series of processing executed by the array type disk device 100 according to the fourth embodiment.
  • the main control device 10 instructs each of the optical disk devices 20 1 to 20 4 to read out system information (step). S401).
  • each drive control device 30 of the optical disk devices 20 1 to 20 4 receives a system information read instruction from the main control device 10, the drive control device 30 reads the system information of the loaded optical disks 60 1 to 60 4 and the result of the read To the main control device 10 (step S204).
  • the main control device 10 notifies each drive control device 30 of the address where the corresponding information is recorded as a target address when instructing to read the system information.
  • Each of the optical disk devices 20 1 to 20 4 searches the corresponding information in the vicinity of the notified address via the drive control device 30 that has received the notification, and performs a reading process.
  • main controller 10 When main controller 10 receives notification of system information from any of optical disk devices 20 1 to 20 4 , the system information notified earliest is used as system information of each of optical disk devices 20 1 to 20 4 (step S402). ). Then, main controller 10 instructs each of the optical disk devices 20 1 to 20 4 to read out management information (step S403).
  • the drive control devices 30 of the optical disc devices 20 1 to 20 4 Upon receiving an instruction for reading management information from the main control device 10, the drive control devices 30 of the optical disc devices 20 1 to 20 4 read and read the management information of the loaded optical discs 60 1 to 60 4 . The result is notified to main controller 10 (step S205).
  • the main control device 10 notifies each drive control device 30 of the address at which the corresponding information is recorded as the target address when instructing to read the management information.
  • Each of the optical disk devices 20 1 to 20 4 searches the corresponding information in the vicinity of the notified address via the drive control device 30 that has received the notification, and performs a reading process.
  • the main control device 10 When receiving the management information notification from any of the optical disk devices 20 1 to 20 4 , the main control device 10 uses the management information notified earliest as the management information of each of the optical disk devices 20 1 to 20 4 (step S404). . Then, main controller 10 instructs each of optical disk devices 20 1 to 20 4 to search for the start address of the unrecorded area (step S405).
  • step S206 to step S210 described in the first embodiment is sequentially executed.
  • the main controller 10 in step S403, it instructs the reading of the management information, by notifying the individual target address to each optical disc devices 20 1 to 20 4 with respect to reading of the management information, the optical disc apparatus 20 1 - 20 4 to perform the distributed search each may search for different areas on the optical disc 60 which is specified in a separate target address. Then, main controller 10 may determine the next operation (reading of management information, searching for a head address, etc.) based on the notified first management information.
  • the main control device 10 is based on the same information, The next execution instruction may be issued.
  • the main controller 10 controls the optical disk devices 20 1 to 20 4 based on information notified from the optical disk devices 20 1 to 20 4 that operate autonomously.
  • the point of issuing an instruction is different from the array type disk device 100 according to the fourth embodiment.
  • the main control device 10 has acquired management information that would be obtained from another optical disc device 20 with the acquisition of the information notified earliest among the management information notified from the optical disc devices 20 1 to 20 4 , for example. Is determined.
  • the next operation is instructed to each of the optical disk devices 20 1 to 20 4 using this information.
  • step S401 is a read instruction from the system information
  • the process of step S405 is the head address search instruction in step S403
  • the unrecorded area is a read instruction of the management information is omitted.
  • each of the optical disk devices 20 1 to 20 4 operates autonomously. Therefore, the main controller 10 can obtain the desired information notified from the optical disk devices 20 1 to 20 4 without issuing a command such as a management information read instruction to each of the optical disk devices 20 1 to 20 4. The recording status and the status of the apparatus at 60 are determined and the next execution instruction is issued. Therefore, in this embodiment, the processing load on the main control device 10 is reduced, and the performance of the entire array type disk device can be improved. Further, since the load is distributed in the array type disk device 100 according to the present embodiment, it becomes possible to cope with more various operations. In this embodiment as well, as in the second embodiment, management information and the like are read out when the information from each of the optical disk devices 20 1 to 20 4 is the same among at least some of the optical disk devices. It may be determined that is completed.
  • the present invention is not limited to this, and the present invention can record and reproduce information on a new optical disc on which no data is recorded.
  • This can also be applied to the case where In this case, the operation for reproducing system information and management information is the subject of the present invention.
  • the main controller 10 determines the state, and then the next execution instruction is issued. As the contents of the next execution instruction, data recording, a calibration operation for correcting the state of the optical disc apparatus, and the like can be considered.
  • the area determiner 25i is used to determine the area where data is recorded and the area where data is not recorded.
  • the format determiner 25j may be used, and the area determiner. Both 25i and format determiner 25j may be used together. In this case, the determination accuracy can be improved as compared with the case where the determination is made by the area determination unit 25i alone.
  • the array disk device 100 is based on the premise that the same amount of data is recorded on the optical disk 60 loaded in each of the optical disk devices 20 1 to 20 4 . For this reason, when the amount of data recorded on each optical disc 60 is different, a problem arises when the head position of the area in which information is added is searched by the method described in the above embodiments. In this case, the main control device 10 may notify the host host of the device abnormality. In addition, an abnormality of the apparatus may be indicated by ejecting the optical disk 60.
  • the present invention is not limited thereto, and each information is simultaneously notified to the main control device 10. May be. Also in this case, the main control device 10 reconstructs the base data by using these pieces of information so that the base data is dispersed again and recording is continued in each of the optical disk devices 20 1 to 20 4. Also good.
  • the reproduction start address is determined by the output of the address detection circuit 26.
  • “search for the start address of unrecorded area” in step S206 is changed to “search for start address designated for reproduction”.
  • step S208 or step S208a
  • the “writing start address” in step S209 is replaced with “reproduction start address”
  • the “recording data writing” in step S210 is replaced with “recording data reproduction”.
  • start address search instruction for unrecorded area in step S405 is set to “start address search instruction specified for playback” and “start address search for unrecorded area” is set to “playback” in step S206.
  • the reproduction process can be speeded up, and the reliability of the reproduction process can be improved.
  • the optical head 22 includes, as an example, a laser diode 22d that emits laser light having a wavelength of about 405 nm and an objective lens 22a having a numerical aperture (NA) of about 0.65.
  • NA numerical aperture
  • the present invention is not limited to this, and the optical head 22 may be configured using a laser diode 22d having another wavelength and an objective lens 22a having another numerical aperture.
  • the optical disc 60 is described as a Low-to-High type additional recording medium.
  • the present invention is not limited to this, and the optical disc 60 records information called a High-to-Low type.
  • the medium may have a lower reflectance than the unrecorded portion.
  • the optical disk 60 may be a rewritable recording medium.
  • the thickness of the substrate of the optical disc 60 is about 0.6 mm, but the present invention is not limited to this, and the thickness of the substrate may be, for example, a medium having a thickness of about 0.1 mm.
  • the optical discs may be attached to and detached from the plurality of optical disc apparatuses at substantially the same time or separately. For example, when there are four optical disks and four optical disk apparatuses, the next operation can be applied to other optical disk apparatuses using the information obtained earliest even if the loading timing is shifted.
  • the array type disk device 100 includes four optical disk devices.
  • the number of optical disk devices is not limited to this, and as long as it includes a plurality of optical disk devices. Good.
  • the present invention has been described by taking the optical disk device as an example, but the present invention is not limited to this, and the same effect can be obtained when applied to the entire disk device.
  • the array type disk device and the control method thereof according to the present invention can be used to accurately execute information processing for a plurality of optical disks at high speed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Library & Information Science (AREA)
  • Signal Processing For Digital Recording And Reproducing (AREA)
  • Optical Recording Or Reproduction (AREA)

Abstract

 複数の光ディスク装置を備えたアレイ型ディスク装置における情報処理の高速化を図るために、アレイ型ディスク装置の主制御装置に対して、いずれか1つの光ディスク装置から先頭アドレスが通知されると、主制御装置は、他の光ディスク装置からの先頭アドレスの通知を待つことなく、最初に通知された先頭アドレスを、書き込み開始アドレスと決定する。そして、主制御装置は、光ディスク装置それぞれに、決定された書き込み開始アドレスを通知する。これにより、光ディスク装置相互間で、書き込み開始アドレスの探索時間が異なっていても、すべての光ディスク装置は、最も速く先頭アドレスの探索が終了した光ディスク装置を基準に、情報の書き込みを開始することができる。

Description

アレイ型ディスク装置、及びアレイ型ディスク装置の制御方法
 本発明は、アレイ型ディスク装置、及びアレイ型ディスク装置の制御方法に係り、更に詳しくは、複数の記録媒体に対する情報処理を行うアレイ型ディスク装置、及びアレイ型ディスク装置の制御方法に関する。
 近年、情報処理技術の進歩に伴って、光ディスク等の記録媒体に情報を記録するための光学式ディスクドライブ(以下、光ディスク装置という)が普及してきている。この種の光ディスク装置は、ハードディスクドライブ(HDD)等とともに、例えばテレビ番組を録画するための録画機、パーソナルコンピュータ(PC)等に搭載され、主に映像や画像等の情報の記録に利用されている。
 上述した光ディスク装置では、PCの処理速度の向上にともなって、情報の記録処理、及び再生処理の高速化が要求されている。そこで、最近では、例えば、記録型光ディスクへの情報の記録、又は記録型光ディスクに記録された情報の再生が終了した後に、光学ヘッドを最適位置で待機させることにより、次の命令に応じて迅速に情報の記録又は再生を行うことを可能にする技術等、情報処理速度の向上を実現するための技術が種々提案されている(例えば特許文献1参照)。
 このような光ディスク装置を複数台用いて構成されるアレイ型の光ディスク装置、又は光ディスクライブラリ装置がある。このような装置は、複数台の光ディスク装置を組み合わせて運用することにより、より大きな記憶容量をもつ記憶装置を実現するとともに、情報の記録処理、又は再生処理を並列して行うことにより、記録処理、又は再生処理の高速化を実現している(例えば特許文献2参照)。
 更に、最近では、この種のアレイ型ディスク装置へのアクセス性能を向上させる技術も提案されている(例えば特許文献3参照)。
 特許文献3に開示されている技術は、複数の光ディスク装置を使い、情報の記録、又は再生を行った後、少なくとも1つの光ディスク装置については、光ディスクを光ディスク装置からアンロードし、他の光ディスク装置については光ディスクを搭載したままにして、直ちに情報の記録、又は再生が可能な状態を維持する。これにより、装置のアクセス性能の向上を実現することができる。
特開2005-332580号公報 特開平11-045497号公報 特開平08-054991号公報
 一方、光ディスク装置単体の情報処理速度を向上させるための工夫もなされてきた。
 しかしながら、光ディスク装置単体での情報の処理速度の向上が実現されたからといって、複数台の光ディスク装置を含んで構成されたアレイ型ディスク装置の処理速度が必ずしも単体での情報処理速度の向上から期待される程に向上するわけではない。
 例えば、複数台の光ディスク装置のそれぞれは、たとえ同一構造の装置であったとしても、個体差により、また装置の経年劣化の違い等により情報の処理能力に差があることがある。このような場合には、同一の処理に要する時間が光ディスク装置によって異なり、結果的に、処理の遅い光ディスク装置が、装置全体の処理速度を決めてしまう。
 また、光ディスク装置相互間で装置自体の情報処理能力に差がない場合であっても、情報の記録又は再生が行われる光ディスクに個体差がある場合、具体的には偏心量が光ディスク相互間で異なる場合や、光ディスクに固有の反りが生じている場合等には、トラッキング制御やフォーカス制御等の際、情報の記録、及び再生用のヘッドの移動距離が、光ディスク装置相互間で異なることとなる。その結果、光ディスク装置相互間で処理速度に差が生じ、処理速度の遅い光ディスク装置が、装置全体の処理速度を決めてしまうことになる。
 アレイ型ディスク装置等の装置全体の動作を、光ディスクの搬送、光ディスクの着脱、及び光ディスクへの情報の記録、又は光ディスクに記録された情報の再生等の複数の工程として考えた場合、各工程での工夫の積み重ねが、アレイ型ディスク装置の処理速度を向上させるためには非常に重要である。すなわち、アレイ型ディスク装置の場合には、当該装置を構成する各光ディスク装置を個別に制御するだけではなくて、アレイ型ディスク装置全体の動作が処理速度の点で最適化されるように、個々の光ディスク装置を制御する必要がある。そのような制御を行わない場合には、アレイ型ディスク装置は、全体として使いにくい装置となる。 
 本発明の第1の目的は、光ディスクに対する処理の高速化を図ることが可能なアレイ型ディスク装置を提供することである。
 本発明の第2の目的は、光ディスクに対する処理の高速化を図ることが可能なアレイ型ディスク装置の制御方法を提供することである。
 本発明に係るアレイ型ディスク装置は、記録媒体に対する情報の記録及び再生を行う複数の光ディスク装置と、前記複数の光ディスク装置それぞれに、相互に同一容量又は同一内容の情報を有する記録媒体に対して情報処理を行わせる際に、前記光ディスク装置それぞれに、前記記録媒体に関する情報を探索させ、前記複数の光ディスク装置で探索される前記情報から決定した決定情報に基づいて、前記複数の光ディスク装置それぞれに、次の動作を開始させる制御手段と、を備えることを特徴とする。
 また、本発明に係るアレイ型ディスク装置の制御方法は、複数の光ディスク装置を備え、該複数の光ディスク装置にそれぞれ装填される相互に同一容量又は同一内容の情報を有する複数の記録媒体に対する情報処理を行うアレイ型ディスク装置の制御方法であって、前記複数の光ディスク装置それぞれに、該光ディスク装置に装填された前記記録媒体に関する情報を探索させる工程と、前記複数の光ディスク装置で探索される前記情報から決定情報として所定の情報を決定する工程と、前記決定情報に基づいて、前記複数の光ディスク装置それぞれに、次の動作を実行させる工程と、を含むことを特徴とする。
 記録媒体に対する情報の記録又は/及び再生処理を高速に実施することができる。また、記録媒体に対する情報の記録又は/及び再生処理を正確に実施することができる。
本発明の第1の実施形態に係るアレイ型ディスク装置のブロック図である。 光ディスクの平面図である。 光ディスクの記録領域を説明するための概念図である。 光ディスク装置のブロック図である。 RF回路のブロック図である。 信号品質算出回路のブロック図である。 記録データの分割方法を説明するための概念図である。 分割した記録データの複数の光ディスクへの記録を説明するための概念図である。 第1の実施形態に係るアレイ型ディスク装置によって実行される一連の処理を示すフローチャートである。 本発明の第2の実施形態に係るアレイ型ディスク装置によって実行される一連の処理を示すフローチャートである。 本発明の第3の実施形態に係るアレイ型ディスク装置によって実行される一連の処理を示すフローチャートである。 ディスク装置それぞれに通知されるターゲット位置を説明するための図である。 主制御装置による判定結果を説明するため図である。 第3の実施形態に係るアレイ型ディスク装置の変形例を説明するための図である。 第4の実施形態に係るアレイ型ディスク装置によって実行される一連の処理を示すフローチャートである。
《第1の実施形態》
 以下本発明の第1の実施形態を図1~図9に基づいて説明する。本実施形態に係るアレイ型ディスク装置は、アレイ型ディスク装置を構成する複数の光ディスク装置の中から最も早く通知された未記録領域の先頭アドレスを、複数の光ディスク装置それぞれに対する共通の書き込み開始アドレスとして決定する。
 図1は、本実施形態に係るアレイ型ディスク装置100の概略的な構成を示す図である。図1に示されるように、アレイ型ディスク装置100は、たとえば光ディスク装置20~20と、光ディスク60~60を収容する複数のカートリッジ51~51が収納されたホルダ50と、光ディスク装置20~20とホルダ50との間で光ディスク60~60の搬送、及び着脱を行うディスク搬送手段(アクセッサ)40と、上記各部を統括的に制御する主制御装置10とを備え、例えば主制御装置10を介してパソコン等の上位装置(ホスト)120に接続されている。なお、以下では光ディスク装置20~20、及び光ディスク60~60について、それぞれを区別しないときは光ディスク装置20、光ディスク60と表記することとする。
 光ディスク60は、例えば追記型の記録媒体であり、記録を行うと反射率が高くなるタイプの、いわゆるLow-To-Highメディアと呼ばれるものである。
 図2は、アレイ型ディスク装置100に用いられる光ディスク60の平面図である。光ディスク60は、例えばポリカーボネイトを素材とする厚さ0.6mm、直径が12cmの円盤板状の基板60aを有している。基板60aにはプリグルーブと呼ばれる案内溝が形成されている。また、基板60aの中心部にはセンターホール60bが設けられ、さらに有機色素系の材料からなる記録層61が形成されている。
 光ディスク60では、記録層61が形成された領域が記録可能領域となっている。この記録可能領域には、例えば図3の概念図に示されるように、リードインエリア62、データエリア63、及びリードアウトエリア64が設定される。リードインエリア62は、図2に示すように記録可能領域の内周近傍に位置し、システムリードインエリアとデータリードインエリアを含む。データエリア63はデータを記録する領域である。
 システムリードインエリアは、コントロールデータゾーンを有する。コントロールデータゾーンは、システム情報としてディスク製造情報が記録されている領域である。データリードインエリアは、当該光ディスク60へのデータの記録状況を示す情報(ディスク管理情報)が記録される管理情報領域である。このディスク管理情報(以下では管理情報と呼ぶ)は、データエリア63のどの番地までデータを記録したか、データの追記が可能であるか、データは必要な情報だけが記録されているのか(ダミーデータを含めて記録していないか)等、データの記録・再生処理の管理に必要な内容を含む。
 上述した光ディスク60への情報の記録、又は光ディスク60からの情報の再生が行われる際には、レーザ光のビームスポットが基板60aに形成された案内溝に沿って移動する。また、本実施形態では、光ディスク60の物理フォーマットとして、ビットピッチが0.15μm、トラックピッチが0.40μmのイングルーブ・フォーマットが用いられる。
 図4は、1台の光ディスク装置20のブロック図である。図4に示されるように、光ディスク装置20は、スピンドル駆動系21、光ヘッド22、サーボコントローラ23、LDドライバ24、RF回路25、アドレス検出回路26、ステッパ27、変調器28、復調器29、及びドライブ制御装置30を備えている。
 スピンドル駆動系21は、ドライブ制御装置30からの指令に基づいて、光ディスク60を所定の回転数で回転させる。
 光ヘッド22は、光ディスク60への情報の記録、又は光ディスク60からの情報の再生を行う際に、光ディスク60にレーザ光を照射する。この光ヘッド22は、一例として波長が405nm程度のレーザ光を出射するレーザダイオード22dと、開口数(NA)が0.65程度の対物レンズ22aと、ビームスプリッタ22bと、受光器22cと、プリアンプ22e、22fとを備えている。この光ヘッド22では、レーザダイオード22dから出射され、ビームスプリッタ22bによって反射されたレーザ光が、対物レンズ22aによって光ディスク60の記録層61に集光される。また、光ディスク60からの反射光は、対物レンズ22a、ビームスプリッタ22bを介して受光器22cに入射する。受光器22cは、光ディスク60により反射されたレーザ光を受光すると、受光したレーザ光の強度に応じた再生信号(光電変換信号)を出力する。この再生信号はプリアンプ22e、22fを介してそれぞれRF回路25及びアドレス検出回路26へ出力される。
 サーボコントローラ23は、ドライブ制御装置30からの指示により、例えば対物レンズ22aを駆動して、光ディスク60に入射するレーザ光のフォーカシング、及びトラッキングを行う。これによりレーザ光のビームスポットが光ディスク60の所望のトラック上に位置決めされる。
 変調器28は、ドライブ制御装置30から供給される記録信号を変調し、書き込み信号として、LDドライバ24、及びRF回路25へ出力する。なお、記録信号とは、光ディスク60に記録される情報に基づいて生成される信号である。また、書き込み信号とは、光ディスク60への記録に用いられるパターン列を含む信号である。
 LDドライバ24は、変調器28から出力された書き込み信号に基づいて、レーザダイオード22dを駆動する。これにより、レーザダイオード22dから出射されるレーザ光のパワーが制御される。
 RF回路25は、光ヘッド22のプリアンプ22eから出力された再生信号にフィルタリング等の処理を行い2値化し、これを2値化信号として、復調器29へ出力する。また、再生信号の品質の測定を行い、この測定結果を含む信号をドライブ制御装置30へ出力する。このRF回路25は、図5のブロック図に示されるように、プリフィルタ25a、オートゲインコントロール回路(AGC)25b、A/Dコンバータ(ADC)25c、位相ロックループ回路(PLL)25d、適応等化器25e、識別器25f、記憶回路25g、及び信号品質算出回路25h等を有している。
 光ヘッド22のプリアンプ22eから出力される再生信号は、プリフィルタ25aによってフィルタリングされ、AGC25bによって振幅制御された後、ADC25cによってデジタル化される。そして、デジタル化された信号は、PLL25dでクロック信号が抽出されるとともに、所定のチャネル周波数に同期化されて適応等化器25eに出力される。 
 適応等化器25eは、PLL25dから出力された信号を、所望のPR(Partial Response;パーシャルレスポンス)特性に近づくように変換し、これを等化再生信号として識別器25f及び信号品質算出回路25hへ出力する。この適応等化器25eは、有限インパルス応答(FIR:Finite Impulse Response)フィルタを含む。また、FIRフィルタのタップ係数は、最小自乗(LMS:Least Mean Square)アルゴリズムに準じて適応的に修正される。
 識別器25fは、ビタビ復号器を含み、適応等化器25eから出力された等化再生信号とのユークリッド距離が最も小さいパスを選択し、選択されたパスに対応する符号ビット系列を2値化信号(推定パターン列)として出力する。この2値化信号は、復調器29及び信号品質算出回路25hへ出力されるとともに、適応等化器25eへフィードバックされる。
 記憶回路25gは、変調器28が出力する書き込み信号を記憶し、ドライブ制御装置30の指示に基づいて、記憶した書き込み信号を信号品質算出回路25hへ出力する。
 信号品質算出回路25hは、適応等化器25e及び識別器25fからの出力と、記憶回路25gからの出力とに基づいて信号品質を示す情報を演算により生成し出力する。この信号品質算出回路25hは、図6のブロック図に示されるように、領域判定器25i、フォーマット判定器25j、及びエラーレート算出器25kを含む。
 領域判定器25iは、入力された等化再生信号を所定の基準値と比較し、等化再生信号が、光ディスク60に記録された情報を含むものであるか否かを判定する。そして、その判定結果を含む信号をドライブ制御装置30へ出力する。
 フォーマット判定器25jは、2値化信号を用いて、光ヘッド22から出力された信号が、光ディスク媒体毎に予め規定されているデータフォーマットに合致しているか否かを判定する。そして、その判定結果を含む信号をドライブ制御装置30へ出力する。なお、予め規定されているデータフォーマットとは、例えばVFO領域の有無、セクタ数、フレーム間隔やフレーム数、1セクタ内のシンク信号の数、データ総数(本例ではデータフィールドは77376バイト、1ECCブロックでは77469バイト等)、データの並び方、データID等により規定されたデータフォーマットをいう。
 エラーレート算出器25kは、必要に応じて、記憶回路25gに記憶されている書き込み信号、又は識別器25fから出力される2値化信号に基づいて、エラーレートを算出する。そして、このエラーレートを含む信号をドライブ制御装置30へ出力する。
 図4に戻り、復調器29は、RF回路25の識別器25fから出力される2値化信号に対して誤り訂正処理を行うとともに、訂正後の2値化信号を復調する。そして、復調した信号をドライブ制御装置30へ出力する。
 アドレス検出回路26は、光ヘッド22から出力される再生信号にフィルタリング等の処理を施すことにより、アドレス情報を検出し、このアドレス情報をドライブ制御装置30に出力する。
 ステッパ27は、ドライブ制御装置30からの指示により、光ヘッド22をシークさせる。
 ドライブ制御装置30は、CPU(Central Processing Unit:中央演算処理装置)を含む。このドライブ制御装置30は、主として情報の記録、及び再生に関係するパラメータの調整を行う。また、後述する主制御装置10からの指示により、光ディスク60に対する情報の再生、情報の記録、各種エラー発生時の対応制御等、光ディスク装置20全体を統括的に制御する。また、本実施形態では、各光ディスク装置20~20のドライブ制御装置30は、主制御装置10に対して割り込みをかけ、必要に応じて光ディスク装置20~20のステータスを含む情報を出力する。
 上述した光ディスク装置20では、一例として、64KBの1ECC(誤り訂正符号:Error Correcting Code)ブロック単位で、光ディスク60に情報の記録を行い、光ディスク60から情報の読み出し(再生)を行う。また、本実施形態に係る光ディスク60のフォーマット規定では、例えば1ECCブロックはVFOフィールド、データフィールド、ポストアンブルフィールド、バッファフィールド等からなる。また、データフィールドは32個のセクタからなり、1つのセクタは26個のフレームからなる。各セクタはフレーム番号を含むデータID(識別子)を有し、このIDは情報(データ)が記録されるときに同時に記録される。
 また、光ディスク装置20は、光ディスク60に対して、ETM(8/12変調:Eight to Twelve Modulation)と呼ばれる変調符号を用いて記録を行う。ETMは、最短マークあるいは最短スペース長が2T(Tはチャネルクロック周期)で、(1-7)RLL符号化(Run Length Limited Coding)の一種である。入力データ系列を1と0のビット情報の連なりとすると、同一ビット情報の連なりをラン(Run)という。(1-7)RLL符号化は、最小ランが1、最長ランが7である変調規則である。(1-7)RLL符号化に従うと、最小マーク又は最小スペースは2Tとなる。また、最長マーク又は最長スペースは8Tとなる。
 図1に戻り、ホルダ50は、例えばそれぞれ4枚の光ディスク60が収容される複数のカートリッジ51~51を出入り可能に収納する。
 前記アクセッサ40は、主制御装置10の指示により、ホルダ50から、いずれかのカートリッジ51を取り出して、取り出したカートリッジ51に収容された4枚の光ディスク60~60を、それぞれ光ディスク装置20~20にロードする。また、光ディスク装置20~20によって、情報の再生、又は情報の記録等の処理が行われた光ディスク60~60を、光ディスク装置20~20からアンロードしてカートリッジ51へ収容し、このカートリッジ51をホルダ50へ収納する。
 主制御装置10はCPU、CPUが実行するプログラムを格納するROM(Read-Only Memory)、CPUのワークエリアとして機能するRAM(Random Access Memory)等を含む。
 主制御装置10は、ホスト120から記録すべき情報(以下、記録データという)が供給されると、記録データを分割して、各光ディスク装置20~20に対して、記録データを分割して出力する。また、ホスト120からの要求に応じて、各光ディスク装置20~20から出力されたデータ(以下、再生データ)を、結合してホスト120へ出力する。
 図7は、主制御装置10で行われる記録データの分割を説明するための概念図である。例えばホスト120から、容量が128MBのデータ#0が供給されたとすると、図7に示されるように、主制御装置10は、このデータ#0を、例えば容量が32MBの4つのデータ#1~#4に分割し、それぞれのデータ#1~#4を、光ディスク装置20~20へ出力する。これにより、光ディスク装置20~20では、データ#1~#4の記録がほぼ同時に開始され、光ディスク装置20~20にそれぞれロードされている光ディスク60~60のデータエリア63には、図8の概念図に示されるように、データ#1~#4がそれぞれアドレスαの位置まで記録される。また、データ#1~#4の記録が完了すると、それぞれの光ディスク装置20~20のドライブ制御装置30は、データエリア63のどこまで記録が完了したかという情報と、データ#1~#4の最終アドレスαの情報とを含む情報を、光ディスク60のデータリードインエリアに管理情報として記録する。
 図9は、アレイ型ディスク装置100が、ホスト120から、光ディスクに記録すべき情報(記録情報)を受信した際に実行する一連の処理を示すフローチャートである。以下、図9に基づいて、アレイ型ディスク装置100の動作について説明する。前提として、図8に示されるように、光ディスク装置20~20にロードされる光ディスク60~60には、データエリア63のアドレスαに至るまで、データが記録されているものとする。この分割されたデータのそれぞれは互いにその容量が等しいものであればよく、内容の同一性は問わない。
 主制御装置10は、ホスト120から、光ディスク60に記録される記録情報が供給されると、光ディスク装置20~20及びアクセッサ40に対して、記録開始の準備をするための指令を出す(ステップS201)。アクセッサ40は、この指令を受けて、ホルダ50の中の所定のカートリッジ51i(1≦i≦N)から、光ディスク60~60を搬送し、光ディスク装置20~20に光ディスク60~60をそれぞれロードする(ステップS202)。また、光ディスク装置20~20の各ドライブ制御装置30は、光ディスク60~60がそれぞれ光ディスク装置20~20にロードされ装填されると、光ディスク60~60の装填が完了したことを主制御装置10に通知する(ステップS203)。
 次に、光ディスク装置20~20の各ドライブ制御装置30は、それぞれに装填された光ディスク60~60のシステム情報の読み出しを実行する(ステップS204)。この処理では、光ディスク装置20~20の各ドライブ制御装置30は、各ステッパ27を駆動することにより、それぞれの光ヘッド22を、各光ディスク60~60のシステムリードインエリアに対応する位置へ移動する。そして、各光ディスク60~60から、ディスク製造情報を取得し、この情報に基づいて、装填された光ディスク60~60に関する情報、例えばディスクの種類、製造メーカ等に関する情報を取得する。ドライブ制御装置30は、取得したシステム情報に基づいて、例えば装填された光ディスクがA規格の追記型光ディスク媒体であり、記録マークが未記録部分よりも反射率が高くなるLow-to-Highタイプの種類の媒体である等と判定する。また、ドライブ制御装置30は、製造メーカに関する情報からメーカ名を特定し、その媒体に関するパラメータテーブルを生成する。このパラメータテーブルの生成は、光ディスクに記録されているシステム情報に基づいて行われる。
 なお、例えば光ディスク装置20に複数のパラメータテーブルを格納しておき、装填された光ディスクに応じて、ドライブ制御装置30がいずれかのパラメータテーブルを選択してもよい。また、装填される光ディスクの種類が予め限定されている場合等には、光ディスクの種類を判定する処理や、光ディスクのメーカを特定する処理を省略してもよい。さらに、光ディスクの種類を判定する処理や、光ディスクのメーカを特定する処理を、主制御装置10が行ってもよい。その場合は、ドライブ制御装置30は光ディスク装置20から取得したシステム情報を主制御装置10に出力する必要がある。
 次に、光ディスク装置20~20の各ドライブ制御装置30は、光ディスク60~60の管理情報の読み出しを実行する(ステップS205)。本実施形態では、管理情報の読み出しは主制御装置10からの指示ではなく、各光ディスク装置20~20のドライブ制御装置30が自律的に行う。上述のように光ディスク装置20~20にロードされる光ディスク60~60には、それぞれデータエリア63のアドレスαに至るまでデータが記録されている。したがって、光ディスク60~60からは相互に同一内容の管理情報が読み出される。なお、光ディスク60~60のうちから、1つでも他と異なる管理情報が検出された場合には、該当する光ディスクに異常があると判断することが可能である。
 また、この管理情報が、光ディスク以外の記憶装置に記憶されていてもよい。その場合には、主制御装置10、又はドライブ制御装置30が当該記憶装置から管理情報を読み出してもよい。また、自立的読み出しではなく、主制御装置10又はドライブ制御装置30が記憶装置を備える装置に管理情報の送信を指示してもよい。この種の記録装置としては、例えば不揮発性メモリやハードディスクドライブを含んだ装置が考えられる。
 次にドライブ制御装置30は、データエリア63の中の、情報を追記する領域の先頭位置の探索を実行する(ステップS206)。この処理では、ドライブ制御回路30は、読み出した管理情報から、情報が記録された領域の最終アドレスを検出する。次に、このアドレスに対応する位置(以下目標位置という)の周辺で、光ヘッド22をシークさせる。このシークは例えば、光ディスクの案内溝に沿って光ヘッド22を、目標位置を通過するように移動させることにより行われる。
 具体的には、ドライブ制御装置30は、駆動位置について予め校正されたステッパ27を駆動して目標位置へ光ヘッド22を粗動させる。そして、アドレス検出回路26からの出力信号から光ディスク60に対する光ヘッド22の実際の位置(現在位置)のアドレスを検出する。そして、現在位置と目標位置とがある程度遠い場合には、現在位置と目標位置との差に基づいて光ヘッド22を粗動させる。また、現在位置と目標位置とが近い場合には、光ヘッド22を微動させる。微動させる場合は、ドライブ制御装置30は、例えば、光ディスク60に形成された溝の横断数をカウントしながら光ヘッド22を移動させる。そして、光ヘッド22が微動しながら更に目標位置へ近づくと、光ヘッド22を1トラックごとにトラック上へ位置決めしていく。上記動作を行うことで、光ヘッド22を目標位置近傍へ迅速に移動させることができる。
 そして、最終的に案内溝に沿って光ヘッド22をトレースすることで、光ディスク60の未記録領域先頭位置を検出する。この検出には領域判定器25iを利用する。本実施形態では、目標位置のアドレスより少なくとも4ECCブロック前から、上記トレースを開始する。なお、上述した光ヘッド22の移動方法は一例であり、他の移動方法を用いてもよい。
 ドライブ制御装置30は、光ヘッド22をシークさせているときに、例えば図6に示される信号品質算出回路25hを構成する領域判定器25iからの出力信号を常時モニタし、この出力信号に基づいて、光ディスク60の、情報が記録されている領域(記録領域)と記録されていない領域(未記録領域)との境界のアドレスを、未記録領域の先頭アドレスとして特定する。そして、特定された先頭アドレスを主制御装置10へ通知する(ステップS207)。
 なお、上述のように先頭アドレスを特定した場合に、例えば、特定した先頭アドレスが、記録領域と未記録領域との境界に相当していることを再度確認するベリファイ動作を実施してもよい。この場合、再度シークを行う動作を含めて同じ動作を繰り返すことになるが、より正確に未記録領域の先頭アドレスを特定することが可能となる。
 上述したステップS203~ステップS207までの処理は、すべての光ディスク装置20~20によって実行される。そして、主制御装置10は、光ディスク装置20~20のうちのいずれかの光ディスク装置20から最初に先頭アドレスの通知を受けると、他の光ディスク装置20からの先頭アドレスの通知を待たずに、最初に通知された先頭アドレスを、すべての光ディスク装置20~20に装填された光ディスク60の書き込み開始アドレスとして決定する(ステップS208)。そして、この書き込み開始アドレスを各光ディスク装置20~20に通知する(ステップS209)。また、並行して、ホスト120からの記録データを分割し、分割された記録データを各光ディスク装置20~20に出力する。
 各光ディスク装置20~20は、通知された書き込み開始アドレスから、分割された記録データの書き込みを実行する(ステップS210)。そして、記録データの書き込みが終了することにより、アレイ型ディスク装置100での一連の処理が終了する。
 以上説明したように、本実施形態では、主制御装置10に対して、複数の光ディスク装置20の中のいずれか1つの光ディスク装置20から最初に先頭アドレスが通知されると、主制御装置10が、他の光ディスク装置20からの先頭アドレスの通知を待つことなく、この最初に通知された先頭アドレスを、書き込み開始アドレスとして決定する。そして、主制御装置10は、各光ディスク装置20に、決定された書き込み開始アドレスを通知する。これにより、光ディスク装置20相互間で処理速度に違いがあり、そのために書き込み開始アドレスの探索時間が異なっていても、すべての光ディスク装置20は、最も速く先頭アドレスの探索が終了した光ディスク装置20と同様に情報の書き込みを開始することができる。したがって、アレイ型ディスク装置100全体として、書き込み処理の高速化を図ることができる。
《第2の実施形態》
 次に本発明の第2の実施形態について、図10を参照しつつ説明する。本実施形態に係るアレイ型ディスク装置100は、通知された複数の先頭アドレスに基づいて書き込み開始アドレスを決定するという点で、第1の実施形態に係るアレイ型ディスク装置100と相違している。以下、本発明の第2の実施形態について詳細に説明する。なお、第1の実施形態と同一又は同等の構成については、その説明を省略又は簡略する。
 本実施形態に係るアレイ型ディスク装置100は、第1の実施形態に係るアレイ型ディスク装置100と同等のハードウェア構成を有している。
 図10は、第2の実施形態に係るアレイ型ディスク装置100が実行する一連の処理を示すフローチャートである。本実施形態のアレイ型ディスク装置100では、ステップS201~ステップS207までの処理を経た後に、通知された複数の先頭アドレスから、主制御装置10によって、書き込み開始アドレスが決定される(ステップS208a)。以下、ステップS208aの内容を詳述する。
 主制御装置10は、光ディスク装置20~20のうちのいずれかの光ディスク装置20から最初に先頭アドレスの通知を受け、さらに別の光ディスク装置20から先頭アドレスの通知を受けると、2つの先頭アドレスの比較を行う。そして、比較した先頭アドレスが、同一である場合に、これらの先頭アドレスに基づいて、書き込み開始アドレスを決定する。
 一方、これら2つの先頭アドレスが異なる場合は、主制御装置10は、3番目以降の先頭アドレスが通知されるたびに、新たに通知された先頭アドレスと既通知の先頭アドレスとを比較して、新たに通知された先頭アドレスがいずれかの既通知の先頭アドレスと同一である場合に、多数決の理論に基づいて、当該新たに通知された先頭アドレスを、書き込み開始アドレスとして決定する。これにより、最も早く通知された先頭アドレスを書き込み開始アドレスとして決定する場合に比べて、書き込み開始アドレスの信頼性が向上する。
 なお、新たに通知された先頭アドレスがいずれかの既通知の先頭アドレスと同一である場合であっても、さらに他の光ディスク装置20に対して先頭アドレスの探索を実行させ、通知された先頭アドレスの少なくとも3つ以上が同一となったときに、当該アドレスを書き込み開始アドレスに決定してもよい。この場合には、2つの先頭アドレスから書き込み開始アドレスを決定する場合に比べて書き込み開始アドレスの信頼性が更に向上する。
 上述のように、ステップS208aで書き込み開始アドレスが決定されると、主制御装置10は、この書き込み開始アドレスを各光ディスク装置20~20に通知する(ステップS209)。また、並行して、ホスト120からの記録データを分割して、分割された記録データをそれぞれ各光ディスク装置20~20へ出力する。
 各光ディスク装置20~20は、通知された書き込み開始アドレスから、分割された記録データの書き込みを実行する(ステップS210)。そして、記録データの書き込みが終了することにより、アレイ型ディスク装置100での一連の処理が終了する。
 以上説明したように、第2の実施形態では、光ディスク装置20~20から通知される複数の先頭アドレスに基づいて、書き込み開始アドレスが決定される。このため、最も早く通知される先頭アドレスを書き込み開始アドレスとして決定する場合と比べて、書き込み開始アドレスの信頼性が向上し、誤ったアドレスが書き込み開始アドレスとされる可能性が低減する。
 すべての光ディスク装置20~20から通知された先頭アドレスが、すべて異なる場合には、主制御装置10は、ステップS206に戻り、書き込み開始アドレスが決定されるまで、ステップS206~ステップS208aまでの処理を繰り返す。
 また、このような場合は、光ディスク装置20~20のドライブ制御装置30は、領域判定器25iからの出力信号に基づいて先頭アドレスを特定するのではなく、例えばフォーマット判定器25jからの出力信号に基づいて、先頭アドレスを特定してもよい。
さらには、領域判定器25iからの出力信号と、フォーマット判定器25jからの出力信号との、双方の出力信号に基づいて先頭アドレスを決定してもよい。
 また、ステップS206~ステップS208aまでの処理が繰り返されるような場合には、同一の光ディスク装置20~20からの情報であっても、相互に別個の情報であるものとしてもよい。この場合、これらの情報は、主制御装置10に通知された順に、#1DATA、#2DATA、…#nDATAとして管理する。
 例えば、アレイ型ディスク装置100が#1光ディスク装置と、#2光ディスク装置の2台のみを有する場合、3番目の情報はどちらかの光ディスク装置が再度通知した情報とすることができる。
 また、各光ディスク装置20から、主制御装置10へ通知される情報が、所定の先頭アドレス通知回数内、又は所定の時間内に一致しない場合には、主制御装置10は、光ディスク60に異常があると判断し、すべての処理を停止してもよい。また、この場合には、ホスト120に対して光ディスク60に異常があることを通知してもよい。
 光ディスクは、ハードディスク等と異なり、記録面が密閉されていない環境下で使用される。このため、記録面にゴミや埃が付着する、傷等がつくということがある。記録面へのゴミ等の付着は、光ディスクからの反射光に影響を及ぼし、この影響により、例えば上述した先頭アドレスの探索では、誤ったアドレスが特定されてしまう場合がある。しかしながら、第2の実施形態では、複数の先頭アドレスが比較されたうえで、書き込み開始アドレスが決定されるので、情報の書き込み開始アドレスの誤認による記録の失敗が効果的に低減される。
《第3の実施形態》
 次に本発明の第3の実施形態について、図11を参照しつつ説明する。本実施形態に係るアレイ型ディスク装置100は、各光ディスク装置20~20から、異なる情報を取得することができる場合に、この異なる情報を用いて、書き込み開始アドレスの決定を行う。以下、本発明の第3の実施形態について詳細に説明する。なお、第1の実施形態と同一又は同等の構成については、その説明を省略又は簡略する。
 本実施形態に係るアレイ型ディスク装置100は、第1の実施形態に係るアレイ型ディスク装置100と同等のハードウェア構成を有している。
 図11は、第3の実施形態に係るアレイ型ディスク装置100が実行する一連の処理を示すフローチャートである。本実施形態のアレイ型ディスク装置100では、上述の実施形態1で説明したステップS201~ステップS205までの処置を経た後に、ステップS301以降の処理が順次実行される。
 主制御装置10は、各光ディスク装置20~20に、光ディスク装置20~20相互間で内容が異なるターゲット位置を出力する(ステップS301)。一例として、光ディスク装置20には#1ターゲット位置、光ディスク装置20には#2ターゲット位置、光ディスク装置20には#3ターゲット位置、光ディスク装置20には#4ターゲット位置がそれぞれ通知される。図12には光ディスク装置20~20にそれぞれ通知された#1~#4ターゲット位置が示されている。図12に示されるように、#1~#4ターゲット位置は、隣接するターゲット位置同士が所定のアドレスだけ離間するように設定される。
 具体的には、#1~#4ターゲット位置の起点となる#1ターゲット位置は、管理情報に基づく書き込み開始位置から、所定量オフセットした位置に設定される。そして、残りの#2~#4ターゲット位置は、例えば#3ターゲット位置が、管理情報に基づく書き込み開始位置から、未記録領域側へ位置するように順次設定される。
 各光ディスク装置20~20のドライブ制御装置30は、主制御装置10から#1~#4ターゲット位置がそれぞれ通知されると、通知されたターゲット位置近辺で案内溝に沿ったトレースを実行する。そして、トレースした位置に記録領域が含まれるか否かを判定し、判定結果を主制御装置10へ通知する(ステップS302)。
 例えば、図12に示されるように、#1~#4ターゲット位置が設定された場合には、#1ターゲット位置近辺をトレースした光ディスク装置20では、記録領域ありと判定され、この判定結果が主制御装置10へ通知される。また、#2ターゲット位置近辺をトレースした光ディスク装置20、#3ターゲット位置近辺をトレースした光ディスク装置20、#4ターゲット位置近辺をトレースした光ディスク装置20のそれぞれにおいても、同様に記録領域の有無が判定され、その判定結果が主制御装置10へ通知される。
その結果、主制御装置10は、図13の表に示すように、#1ターゲット位置、#2ターゲット位置は記録領域に属し、#3ターゲット位置、#4ターゲット位置は未記録領域に属しているものと判定する。なお、図13の表では、○は記録領域に属することを意味し、×は未記録領域に属していることを意味している。
 次に、主制御装置10は、光ディスク装置20~20から通知された上記判定結果から、記録領域と未記録領域との実際の境界位置の判定を行う(ステップS303)。この例では、主制御装置10は、#2ターゲット位置と、#3ターゲット位置との間に、実際の境界位置が存在していると判定する。
 次に、主制御装置10は、ステップS303での判定結果から、記録領域と未記録領域との実際の境界位置の特定が可能か否かを判断する(ステップS304)。光ディスク60は、データの記録単位が1ECCブロックで、その大きさが0x20の大きさを有している。したがって、記録領域と未記録領域との実際の境界位置を挟む2つのターゲット位置それぞれのアドレスの差が1ECCブロックである場合には、このターゲット位置での境界位置の特定は可能と判断される。そして、1ECCブロックより大きい場合には、このターゲット位置での境界位置の特定は可能でないと判断される。
 具体的には、記録領域に属する#2ターゲット位置のアドレスが例えば0x450000であり、未記録領域に属する#3ターゲット位置のアドレスが例えば0x450020である場合には、記録領域と未記録領域との境界はアドレス0x450000とアドレス0x450020との間と特定される。さらに、未記録領域の先頭アドレスは0x450020と特定される。
 一方、#2ターゲット位置のアドレスが例えば0x450000であり、#3ターゲット位置のアドレスが例えば0x452000である場合には、記録領域と未記録領域との境界のアドレスを一義的に特定することができない(ステップS304;NO)。この場合には、主制御装置10は、ステップS301に戻り、再度各光ディスク装置20~20に、光ディスク装置20~20相互間で内容が異なるターゲット位置を出力する(ステップS301)。この場合、#1~#4ターゲット位置は、ステップS303での処理結果に基づいて設定される。例えば、図12に示されるように、記録領域と未記録領域との実際の境界位置が#2ターゲット位置と#3ターゲット位置との間にあったと判定された場合には、一例として、元の#2ターゲット位置が#1ターゲット位置となり、元の#3ターゲット位置が#4ターゲット位置となるように、#1~#4ターゲット位置をそれぞれ設定する。
 以下、ステップS304で、境界位置の特定が可能と判断されるまで、ステップS301~ステップS304までの処理が繰り返される。
 なお、全てのターゲット位置が、記録領域と判定された場合は、例えばターゲット位置間隔をそのままにして、#1ターゲット位置を当初の#4ターゲット位置なるように全体のターゲット位置をシフトする。
 また、全てのターゲット位置が、未記録領域と判定された場合は、例えばターゲット位置間隔をそのままにして、#4ターゲット位置を当初の#1ターゲット位置なるように全体のターゲット位置をシフトする。
 このようにして#1ターゲット位置から#4ターゲット位置のいずれかで記録領域と未記録領域が変化するようになるまでステップS301~ステップSS304を繰り返す。
 他の方法として、#1ターゲット位置、又は#4ターゲット位置を固定して、ターゲット位置間隔を拡大して#1ターゲット位置から#4ターゲット位置のいずれかで記録領域と未記録領域が変化するようになるまでステップS301~ステップSS304を繰り返すようにしてもよい。
 その後の処理は、記録領域と未記録領域の境界が#2ターゲット位置と#3ターゲット位置にあった場合の上記例に準じる。
 ステップS304で境界位置の特定が可能と判断されると(ステップS304;YES)、主制御装置10は、記録領域と未記録領域との実際の境界位置の次のアドレス、すなわち未記録領域の先頭アドレスを、書き込み開始アドレスとして決定し(ステップS305)、決定した書き込み開始アドレスを各光ディスク装置20~20に通知する(ステップS306)。また、並行して、ホスト120からの記録データを分割して、各光ディスク装置20~20へ出力する。
 各光ディスク装置20~20は、通知された書き込み開始アドレスから、分割された記録データの書き込みを実行する(ステップS307)。そして、記録データの書き込みが終了することにより、アレイ型ディスク装置100での一連の処理が終了する。
 以上説明したように、本実施形態では、主制御装置10により、各光ディスク装置20~20に対して、異なるターゲット位置が通知される。そして、各光ディスク装置20~20は、4つのターゲット位置のうち、それぞれに通知されたターゲット位置(アドレス位置)に対するトレースを同時に行う。このようにトレースを複数の光ディスク装置で分担して実施することにより、広い範囲にわたるトレースを短時間に行うことができ、結果的に、光ディスク60の記録領域と未記録領域との実際の境界位置を迅速に検出することが可能となる。その結果、光ディスクへの追記のための動作を迅速に開始することができる。
 これは特に、管理情報に基づいて判断される境界位置と、実際の境界位置とが大きく離れていることにより、ターゲット位置(本実施形態では#1ターゲット位置)が真の境界位置と離れている場合や、探索範囲が広範に及ぶ場合等に有効である。また、本実施形態で説明した方法は、光ディスク装置間の性能差が小さい場合や、光ディスク媒体の性能のばらつきが少ない場合等には特に有効である。
 また、例えば図14に示されるように、複数の光ディスク装置をドライブ群として規定し、主制御装置10は、ドライブ群ごとにそれぞれ異なるターゲット位置を出力し、単一のドライブ群として得られる情報の確度を向上しつつ、ドライブ群ごとに異なる情報を得るようにしてもよい。これにより、記録領域と未記録領域との実際の境界位置を迅速に、かつ正確に探索することが可能となる。なお、この時のターゲット位置はドライブ群ごとに異なっていてもよいし、少なくとも一部が同一であってもよい。
《第4の実施形態》
 次に本発明の第4の実施形態について、図15を参照して説明する。本実施形態に係るアレイ型ディスク装置100は、最も早く通知されたシステム情報や管理情報に基づいてシステムの状態等の判断を行う。以下、本発明の第4の実施形態について詳細に説明する。なお、第1の実施形態と同一又は同等の構成については、その説明を省略又は簡略する。
 本実施形態に係るアレイ型ディスク装置100は、第1の実施形態に係るアレイ型ディスク装置100と同等のハードウェア構成を有している。
 図15は、第4の実施形態に係るアレイ型ディスク装置100が実行する一連の処理を示すフローチャートである。本実施形態のアレイ型ディスク装置100では、ステップS201~ステップS203までの処理が終了すると、主制御装置10は、各光ディスク装置20~20に対して、システム情報の読み出しを指示する(ステップS401)。
 光ディスク装置20~20の各ドライブ制御装置30は、主制御装置10からシステム情報の読み出し指示を受けると、装填された光ディスク60~60のシステム情報の読み出しを実行し、読み出した結果を主制御装置10へ通知する(ステップS204)。
 なお、主制御装置10は、システム情報の読み出しの指示の際、該当情報が記録されているアドレスを目標アドレスとして各ドライブ制御装置30に通知する。各光ディスク装置20~20は、上記通知を受けたドライブ制御装置30を介して、この通知されたアドレスの近傍で該当する該当情報を探索して読み出し処理を行う。
 主制御装置10は、光ディスク装置20~20のいずれかからシステム情報の通知を受けると、最も早く通知されたシステム情報を、各光ディスク装置20~20のシステム情報とする(ステップS402)。そして、主制御装置10は、各光ディスク装置20~20に対して、管理情報の読み出しを指示する(ステップS403)。
 光ディスク装置20~20の各ドライブ制御装置30は、主制御装置10から管理情報の読み出しの指示を受けると、装填された光ディスク60~60の管理情報の読み出しを実行し、読み出した結果を主制御装置10へ通知する(ステップS205)。
 なお、主制御装置10は、管理情報の読み出しの指示の際、該当情報が記録されているアドレスを目標アドレスとして各ドライブ制御装置30に通知する。各光ディスク装置20~20は、上記通知を受けたドライブ制御装置30を介して、この通知されたアドレスの近傍で該当する該当情報を探索して読み出し処理を行う。
 主制御装置10は、光ディスク装置20~20のいずれかから管理情報の通知を受けると、最も早く通知された管理情報を各光ディスク装置20~20の管理情報とする(ステップS404)。そして、主制御装置10は、各光ディスク装置20~20に対して、未記録領域の先頭アドレスの探索を指示する(ステップS405)。
 以降、第1の実施形態で説明したステップS206からステップS210までの処理が順次実行される。
 なお、主制御装置10は、ステップS403において、管理情報の読み出しを指示するが、管理情報の読み出しに関して個別の目標アドレスを各光ディスク装置20~20に通知することで、光ディスク装置20~20それぞれに分散検索を行わせ、別々の目標アドレスで指定される光ディスク60上の異なる領域を探索してもよい。そして、主制御装置10は、通知された最先の管理情報に基づいて、次の動作(管理情報の読み出し、先頭アドレスの探索等)を決定してもよい。
 また、主制御装置10は、複数台の光ディスク装置20~20からのシステム、又は管理情報が、それぞれ、少なくとも一部の光ディスク装置間で同一である場合に、その同一の情報に基づき、次の実行指示を出すとしてもよい。
《第5の実施形態》
 次に本発明の第5の実施形態について説明する。なお、第4の実施形態と同一又は同等の構成については、その説明を省略又は簡略する。
 本実施形態に係るアレイ型ディスク装置100では、自律的に動作する各光ディスク装置20~20から通知される情報に基づいて、主制御装置10が各光ディスク装置20~20に対して指示を出す点が、第4の実施形態に係るアレイ型ディスク装置100と異なっている。主制御装置10は、例えば、光ディスク装置20~20から通知された管理情報のうち、最も早く通知された情報の取得をもって、他の光ディスク装置20から得られるであろう管理情報を取得したと判定する。次に、この情報を利用して、各光ディスク装置20~20に対して次の動作を指示する。つまり、本実施形態に係るアレイ型ディスク装置100では、各光ディスク装置20~20が自律的に動作するため、第4の実施形態で説明した、主制御装置10から各光ディスク装置20~20に対して出していた、システム情報の読み出し指示であるステップS401、管理情報の読み出し指示であるステップS403、及び未記録領域の先頭アドレス探索指示であるステップS405の処理が省略される。
 以上説明したように、本実施形態に係るアレイ型ディスク装置100では、各光ディスク装置20~20が自律的に動作する。したがって、主制御装置10は、各光ディスク装置20~20に、例えば管理情報の読み出し指示等の指令を発せずとも、光ディスク装置20~20から通知される所望の情報の取得をもって光ディスク60における記録状態や装置の状態の判定を行い次の実行指示を発行する。したがって、本実施形態では、主制御装置10の処理負担が軽減され、アレイ型ディスク装置全体のパフォーマンスの向上を図ることができる。また、本実施形態に係るアレイ型ディスク装置100では負荷が分散されるため、より多様な動作に対応することが可能となる。なお、本実施形態においても、第2の実施形態の場合と同様に、各光ディスク装置20~20からの情報が少なくとも一部の光ディスク装置間で同一であることをもって、管理情報等の読み出しが完了したと判定してもよい。
 なお、上記各実施形態では、光ディスク60に予めデータが記録されている場合について説明したが、これに限らず、本発明は、データが記録されていない新規の光ディスクに対して情報の記録及び再生を行う場合においても適用することができる。この場合には、システム情報や管理情報の再生に対しての動作が、本発明の対象となる。例えば、管理情報が記録されていない場合には、その状態を主制御装置10が判定し、その後、次の実行指示が出されることになる。次の実行指示の内容としては、データの記録や、光ディスク装置の状態を補正するキャリブレーション動作等が考えられる。
 また、上記各実施形態では、データが記録されている領域とデータが記録されていない領域の判定に、領域判定器25iを用いたが、フォーマット判定器25jを用いてもよく、また領域判定器25iとフォーマット判定器25jの両者を併用してもよい。この場合には、領域判定器25i単体で判定する場合と比較して、判定精度を向上させることができる。
 また、上記各実施形態では、光ディスク装置20~20に装填された光ディスク60に、同一アドレスまでデータが記録されている場合について説明した。しかしながら、光ディスク60へデータを記録している最中に、突然の天災等によって電源が急に遮断された場合等には、必ずしも同一アドレスでデータの記録が終了しているとは限らない。
 上記実施形態に係るアレイ型ディスク装置100は、各光ディスク装置20~20に装填された光ディスク60に、同量のデータが記録されていることを前提としている。このため、各光ディスク60に記録されているデータの量が異なっている場合には、上記各実施形態で説明した方法で、情報を追記する領域の先頭位置の探索行うと不具合が生じる。この場合には、主制御装置10は、装置の異常を上位ホストに通知してもよい。また、光ディスク60を排出することで装置の異常を示してもよい。
 また、上記各実施形態では、システム情報、管理情報等が、別個に主制御装置10に通知される場合について説明したが、これに限らず、各情報は、主制御装置10に対して同時に通知されてもよい。この場合にも、主制御装置10は、これらの情報を利用して、基データを再構築することで、再び基データを分散化し、各々の光ディスク装置20~20に記録を継続させてもよい。
 これまでの実施形態ではデータの追記を例に取り説明してきたが、第1の実施形態、第2の実施形態、第4の実施形態、及び第5の実施形態に係る発明をデータの再生の場合に適用しても同様の効果を奏することができる。この場合、再生開始アドレスはアドレス検出回路26の出力によることとし、例えば図9、図10に関しては、ステップS206の「未記録領域の先頭アドレス探索」を、「再生を指定された先頭アドレス探索」と、ステップS208(又はステップS208a)、ステップS209の「書き込み開始アドレス」を、「再生開始アドレス」と、ステップS210の「記録データの書き込み」を、「記録データの再生」とする読替を行う。また、図15については、ステップS405の「未記録領域の先頭アドレス探索指示」を「再生を指定された先頭アドレス探索指示」と、ステップS206の「未記録領域の先頭アドレス探索」を、「再生を指定された先頭アドレス探索」と、ステップ208、ステップS209の「書き込み開始アドレス」を、「再生開始アドレス」とし、ステップS210の「記録データの書き込み」を、「記録データの再生」とする読替を行う。これにより、データの再生時にも各実施形態で説明したように、再生処理の高速化を図ることができ、更には再生処理の信頼性の改善を図ることもできる。
 また、上記各実施形態では、光ヘッド22が、一例として波長が405nm程度のレーザ光を出射するレーザダイオード22dと、開口数(NA)が0.65程度の対物レンズ22aとを備えている場合について説明したが、本発明はこれに限定されず、光ヘッド22は他の波長のレーザダイオード22dと、他の開口数の対物レンズ22aとを用いて構成してもよい。
 また、上記各実施形態では、光ディスク60が、Low-to-High型の追記媒体であるものとして説明したが、これに限らず、光ディスク60は、High-to-Low型と呼ばれる、情報を記録すると未記録部よりも反射率が低くなる媒体であってもよい。また、光ディスク60は、書き換え型の記録媒体であってもよい。
 また、光ディスク60の、基板の厚さは0.6mm程度であるが、本発明はこれに限定されるものではなく、基板の厚さは例えば略0.1mm厚の媒体であってもよい。また、複数の光ディスク装置に対する光ディスクの着脱は、ほぼ同時であっても、別々であってもよい。例えば、4枚の光ディスクと4台の光ディスク装置がある場合、装填タイミングがずれていても最も早く得られる情報を利用して、次の動作を他の光ディスク装置に適用することができる。
 また、上記各実施形態では、アレイ型ディスク装置100が、4台の光ディスク装置を備えている場合について説明したが、光ディスク装置の台数はこれに限らず、複数台の光ディスク装置を備えていればよい。
 これまで、光ディスク装置を例に本発明を説明したが、本発明をこれに限る必要はなく、ディスク装置全般に適用しても同様の効果を奏する。
 本発明は、発明の広い趣旨、範囲から外れることなく各種の実施形態とその変形が可能である。上記各実施形態は本発明を説明するためのものであり、本発明の範囲を限定することを意図したものではない。本発明の範囲は実施形態よりも、添付した請求項によって示される。請求項の範囲内、および発明の請求項と均等の範囲でなされた各種変形は本発明の範囲に含まれる。
 本出願は2009年1月21日に出願された、明細書、特許請求の範囲、図、および要約書を含む日本国特許庁出願番号2009-011434に基づく優先権を主張するものである。この元となる特許出願の開示内容は参照により全体として本出願に含まれる。
 本発明のアレイ型ディスク装置、及びその制御方法は、複数の光ディスクに対する情報処理を高速に、正確に実行するために利用することができる。
       10  主制御装置
20、20~20  光ディスク装置
       21  スピンドル駆動系
       22  光ヘッド
       22a 対物レンズ
       22b ビームスプリッタ
       22c 受光器
       22d レーザダイオード
   22e、22f プリアンプ
       23  サーボコントローラ
       24  LDドライバ
       25  RF回路
       25a プリフィルタ
       25b オートゲインコントロール回路(AGC)
       25c A/Dコンバータ(ADC)
       25d 位相ロックループ回路(PLL)
       25e 適応等化器
       25f 識別器
       25g 記憶回路
       25h 信号品質算出回路
       25i 領域判定器
       25j フォーマット判定器
       25k エラーレート算出器
       26  アドレス検出回路
       27  ステッパ
       28  変調器
       29  復調器
       30  ドライブ制御装置
       40  ディスク搬送手段(アクセッサ)
       50  ホルダ
51、51~51  カートリッジ
60、60~60  光ディスク
       60a 基板
       60b センターホール
       61  記録層
       62  リードインエリア
       63  データエリア
       64  リードアウトエリア
      100  アレイ型ディスク装置
      120  上位装置(ホスト)

Claims (15)

  1.  記録媒体に対する情報の記録及び再生を行う複数の光ディスク装置と、
     前記複数の光ディスク装置それぞれに、相互に同一容量又は同一内容の情報を有する記録媒体に対して情報処理を行わせる際に、
     前記光ディスク装置それぞれに、前記記録媒体に関する情報を探索させ、
     前記複数の光ディスク装置で探索される前記情報から決定した決定情報に基づいて、前記複数の光ディスク装置それぞれに、次の動作を開始させる制御手段と、
     を備えるアレイ型ディスク装置。
  2.  前記決定情報は、最初に探索が完了した前記光ディスク装置で探索された前記情報であること、
     を特徴とする請求項1に記載のアレイ型ディスク装置。
  3.  前記決定情報は、2つ以上の前記光ディスク装置で探索された前記情報を比較して、前記情報が同等である場合の当該情報であること、
     を特徴とする請求項1に記載のアレイ型ディスク装置。
  4.  前記決定情報は、前記光ディスク装置それぞれに、前記記録媒体の異なるアドレスにおける情報を探索させ、
     前記探索された情報のうちの相互に異なる情報に基づいて決定した情報であること、
     を特徴とする請求項1に記載のアレイ型ディスク装置。
  5.  前記決定情報は、前記光ディスク装置それぞれに、前記記録媒体の異なるアドレスにおける情報を探索させ、
     最初に探索が完了した前記光ディスク装置で探索された前記情報であること、
     を特徴とする請求項1に記載のアレイ型ディスク装置。
  6.  前記光ディスク装置による探索は、自律的に実施されること、
     を特徴とする請求項1乃至3のいずれか一項に記載のアレイ型ディスク装置。
  7.  前記決定情報は、データの所在、及びデータの内容の少なくともいずれか一方を含む管理情報であること、
     を特徴とする請求項1乃至6のいずれか一項に記載のアレイ型ディスク装置。
  8.  前記決定情報は、データが記録された領域の最終アドレス、及びデータが記録されていない領域の先頭アドレスのいずれかを含むこと、
     を特徴とする請求項1乃至7のいずれか一項に記載のアレイ型ディスク装置。
  9.  複数の光ディスク装置を備え、該複数の光ディスク装置にそれぞれ装填される相互に同一容量又は同一内容の情報を有する複数の記録媒体に対する情報処理を行うアレイ型ディスク装置の制御方法であって、
     前記複数の光ディスク装置それぞれに、該光ディスク装置に装填された前記記録媒体に関する情報を探索させる工程と、
     前記複数の光ディスク装置で探索される前記情報から決定情報として所定の情報を決定する工程と、
     前記決定情報に基づいて、前記複数の光ディスク装置それぞれに、次の動作を実行させる工程と、
     を含むアレイ型ディスク装置の制御方法。
  10.  前記所定の情報を決定する工程は、最初に探索が完了した前記光ディスク装置で探索された前記情報を前記決定情報とすること、
     を特徴とする請求項9に記載のアレイ型ディスク装置の制御方法。
  11.  前記所定の情報を決定する工程は、
     2つ以上の前記光ディスク装置で探索された前記情報を比較して、前記情報が同等である場合に、当該情報を前記決定情報とすること、
     を特徴とする請求項9に記載のアレイ型ディスク装置の制御方法。
  12.  前記情報を探索させる工程は、前記複数の光ディスク装置それぞれに、該光ディスク装置に装填された前記記録媒体の異なるアドレスにおける情報を探索させ、
     前記所定の情報を決定する工程は、前記探索された情報のうちの相互に異なる情報に基づいて、前記決定情報を決定すること、
     を特徴とする請求項9に記載のアレイ型ディスク装置の制御方法。
  13.  前記情報を決定する工程は、
     前記複数の光ディスク装置のそれぞれに装填された前記記録媒体に関する情報を、前記複数の光ディスク装置の少なくともいずれかから受信する工程を含み、
     最初に受信した前記情報を前記決定情報として決定すること、
     を特徴とする請求項9に記載のアレイ型ディスク装置の制御方法。
  14.  前記決定情報は、データの所在、及びデータの内容の少なくともいずれか一方を含む管理情報であること、
     を特徴とする請求項9乃至13のいずれか一項に記載のアレイ型ディスク装置の制御方法。
  15.  前記決定情報は、データが記録された領域の最終アドレス、及びデータが記録されていない領域の先頭アドレスのいずれかを含むこと、
     を特徴とする請求項9乃至14のいずれか一項に記載のアレイ型ディスク装置の制御方法。
PCT/JP2010/050643 2009-01-21 2010-01-20 アレイ型ディスク装置、及びアレイ型ディスク装置の制御方法 WO2010084885A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010547501A JPWO2010084885A1 (ja) 2009-01-21 2010-01-20 アレイ型ディスク装置、及びアレイ型ディスク装置の制御方法
US13/143,443 US20110271051A1 (en) 2009-01-21 2010-01-20 Array type disk device, and control method for array type disk device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009011434 2009-01-21
JP2009-011434 2009-01-21

Publications (1)

Publication Number Publication Date
WO2010084885A1 true WO2010084885A1 (ja) 2010-07-29

Family

ID=42355937

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/050643 WO2010084885A1 (ja) 2009-01-21 2010-01-20 アレイ型ディスク装置、及びアレイ型ディスク装置の制御方法

Country Status (3)

Country Link
US (1) US20110271051A1 (ja)
JP (1) JPWO2010084885A1 (ja)
WO (1) WO2010084885A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07182269A (ja) * 1993-11-12 1995-07-21 Sony Corp 情報処理システムにおける情報制御方法及び情報記録メディア記録装置
JPH0854991A (ja) * 1994-08-11 1996-02-27 Nippon Telegr & Teleph Corp <Ntt> ライブラリ装置
JP2004185477A (ja) * 2002-12-05 2004-07-02 Hitachi Ltd 光記憶媒体アレイ装置およびデータ転送方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3108090B2 (ja) * 1990-11-30 2000-11-13 株式会社リコー フアイリングシステムのデータ管理方法および装置
JP2750230B2 (ja) * 1991-07-12 1998-05-13 株式会社日立製作所 電子ファイル装置
JP3413680B2 (ja) * 1994-06-02 2003-06-03 ソニー株式会社 追記型光ディスク装置及び追記型光ディスクの領域境界検索方法
JP3566458B2 (ja) * 1995-08-30 2004-09-15 株式会社東芝 アーカイブ装置
US9158467B2 (en) * 2006-02-21 2015-10-13 Spectra Logic Corporation Optional data encryption by partition for a partitionable data storage library

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07182269A (ja) * 1993-11-12 1995-07-21 Sony Corp 情報処理システムにおける情報制御方法及び情報記録メディア記録装置
JPH0854991A (ja) * 1994-08-11 1996-02-27 Nippon Telegr & Teleph Corp <Ntt> ライブラリ装置
JP2004185477A (ja) * 2002-12-05 2004-07-02 Hitachi Ltd 光記憶媒体アレイ装置およびデータ転送方法

Also Published As

Publication number Publication date
JPWO2010084885A1 (ja) 2012-07-19
US20110271051A1 (en) 2011-11-03

Similar Documents

Publication Publication Date Title
JP4173906B2 (ja) 高密度光ディスク及び高密度光ディスクのデータを再生しかつ記録する方法
JP2002056619A (ja) ディスクドライブ装置、データ格納方法
JP2004227668A (ja) 記録方法、プログラム及び記録媒体、並びに情報記録装置
US20060104176A1 (en) Method of determining type of optical disc, and data recording and/or reproducing apparatus therefor
US8320231B2 (en) Recording apparatus and recording method
JP2005222628A (ja) 光ディスク記録装置、光ディスク記録方法及び光ディスク
JP5291468B2 (ja) 光ディスク装置
US7719945B2 (en) Information recording method allowing improved access to a recording start position of user data in an information recording medium and apparatus performing the same
US7656759B2 (en) Information recording and reproducing device suppressing erasure of data when power interruption occurs during data recording
JP2005317194A (ja) 光記録媒体、記録/再生方法及び記録/再生装置
WO2010084885A1 (ja) アレイ型ディスク装置、及びアレイ型ディスク装置の制御方法
US7907484B2 (en) Reproducing apparatus and reproduction method
US7983123B2 (en) Methods of defect management and reproduction, program and recording medium, and apparatuses for information recording and information reproduction
JPH10106170A (ja) 光ディスク情報記録システム
JP2005327405A (ja) 記録方法、情報記録装置、情報再生装置、プログラム及び記録媒体
JP2015141727A (ja) 光ディスク検査方法および光ディスクライブラリ装置
JP2011198444A (ja) 光ディスク及び光ディスク装置
JP6832524B2 (ja) 光ディスクの検査方法
JP2008282431A (ja) 光記録再生の信号評価方法、光記録再生方法
JP2007179656A (ja) 情報記録再生装置及び記録条件調整方法
KR101042153B1 (ko) 기록 속도 결정 방법
JP2013114704A (ja) 光ディスク再生方法および光ディスク装置
JP2011108318A (ja) 光記録媒体、光記録媒体再生装置、及び光記録媒体記録装置
JP2007184025A (ja) 光ディスク記録方法および光ディスク装置
JP2005182896A (ja) 光学的情報記録再生装置および方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10733492

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010547501

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13143443

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10733492

Country of ref document: EP

Kind code of ref document: A1