WO2010084591A1 - カーブ半径推定装置 - Google Patents

カーブ半径推定装置 Download PDF

Info

Publication number
WO2010084591A1
WO2010084591A1 PCT/JP2009/050986 JP2009050986W WO2010084591A1 WO 2010084591 A1 WO2010084591 A1 WO 2010084591A1 JP 2009050986 W JP2009050986 W JP 2009050986W WO 2010084591 A1 WO2010084591 A1 WO 2010084591A1
Authority
WO
WIPO (PCT)
Prior art keywords
curve radius
vehicle
curve
ratio
value
Prior art date
Application number
PCT/JP2009/050986
Other languages
English (en)
French (fr)
Inventor
実 中通
穣 佐伯
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2009/050986 priority Critical patent/WO2010084591A1/ja
Priority to EP20090838782 priority patent/EP2380794B1/en
Priority to JP2010547349A priority patent/JP5136657B2/ja
Publication of WO2010084591A1 publication Critical patent/WO2010084591A1/ja
Priority to US13/180,136 priority patent/US8195360B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • B60W40/076Slope angle of the road
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • B60W40/072Curvature of the road
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/14Yaw
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/18Steering angle

Definitions

  • the present invention relates to a curve radius estimation device that estimates a curve radius of a lane in which a vehicle travels, and more particularly to a curve radius estimation device that estimates a curve radius more accurately in a low speed region.
  • a curve radius of a lane in which the host vehicle travels is determined based on a steering angle detected by a steering sensor, and the preceding vehicle passing through the curve is recognized while recognizing a preceding vehicle existing on the lane having the determined curve radius.
  • An inter-vehicle distance control device that controls the inter-vehicle distance between the vehicle and the host vehicle is known (see, for example, Patent Document 1).
  • the curve radius calculated based on the steering angle or the yaw rate and the curve radius calculated based on the motion of the stationary object in front of the host vehicle detected by the laser sensor are averaged to derive the final curve radius, and the host vehicle
  • a traveling path estimation apparatus that estimates the traveling path of (see Patent Document 2, for example).
  • a radius estimation apparatus is known (for example, refer to Patent Document 3).
  • the curvature radius of the road on which the vehicle travels is derived based on the yaw rate and the steering angle, and the inter-vehicle distance from the preceding vehicle is controlled while recognizing the preceding vehicle existing on the road having the curvature radius.
  • a vehicle control device is known (for example, refer to Patent Document 4). JP-A-8-279099 JP 2001-328451 A JP 2004-217178 A JP 2007-331608 A
  • Patent Documents 1 to 4 are intended for a case where the host vehicle travels at a low speed and does not specify a target speed range (Patent Documents 1 and 2), or Whether the subject vehicle is traveling only at a predetermined speed or higher (Patent Documents 3 and 4).
  • Patent Documents 1 to 4 do not disclose any switching between a curve radius estimation method suitable for low-speed driving and a curve radius estimation method suitable for driving other than low-speed driving, or processing in the boundary speed region.
  • the curve radius is calculated based on the steering angle (Patent Document 1)
  • the curve radius is calculated based on either the steering angle or the yaw rate (Patent Document 2)
  • the steering angle is supplemented.
  • the curve radius is calculated based mainly on the yaw rate (Patent Document 3) or whether the curve radius is calculated based on both the steering angle and the yaw rate is disclosed (Patent Document 4).
  • the curve radii described in Patent Documents 1 to 4 are used to control the entire vehicle speed range ACC (Adaptive Cruise Control), which requires estimation of the curve radius with high reliability not only in the high speed range but also in the low speed range.
  • ACC Adaptive Cruise Control
  • the reliability of the curve radius estimation in the low speed range becomes insufficient.
  • the present invention maintains the high reliability for the estimation of the curve radius in the vehicle speed region other than the low speed region, while estimating the curve radius more reliably in the low speed region, thereby achieving the full vehicle speed region ACC.
  • An object of the present invention is to provide a curve radius estimation apparatus that can cope with the above-described problem.
  • a curve radius estimation device is a curve radius estimation device that estimates a curve radius of a lane in which the host vehicle travels, and is based on a steering angle.
  • First curve radius calculating means for calculating the second curve radius calculating means for calculating the second curve radius based on the yaw rate, and combining the first curve radius and the second curve radius at a predetermined composition ratio.
  • Curve radius estimating means for estimating a curve radius, wherein the curve radius estimating means changes the predetermined composition ratio according to a vehicle speed.
  • the second invention is a curve radius estimation device according to the first invention, wherein the curve radius estimation means changes the predetermined synthesis ratio stepwise according to the vehicle speed.
  • a third invention is a curve radius estimation device according to the first invention, wherein the curve radius estimation means calculates the predetermined composite ratio according to a bank angle or a road gradient of a road on which the host vehicle travels. It is characterized by changing.
  • the present invention maintains the high reliability with respect to the estimation of the curve radius in the vehicle speed range other than the low speed range, while estimating the curve radius more reliably in the low speed range, thereby achieving the full vehicle speed range ACC. Can be provided.
  • FIG. 6 is a diagram (part 3) illustrating a composite ratio map.
  • FIG. 6 is a diagram (part 4) illustrating a composition ratio map; It is a figure for demonstrating the recognition procedure of a preceding vehicle. It is a flowchart which shows the flow of a curve radius estimation process. It is a flowchart which shows the flow of an inter-vehicle distance control process. It is a block diagram which shows the structure of the 2nd Example of a curve radius estimation apparatus.
  • FIG. 1 is a block diagram showing a configuration of an inter-vehicle distance control system including a first embodiment of a curve radius estimation device.
  • the inter-vehicle distance control system SYS1 includes a curve radius estimation device 100 and an inter-vehicle distance control device 200.
  • the curve radius estimation device 100 is an in-vehicle device that estimates the curve radius of the lane in which the host vehicle travels, and separately calculates two provisional curve radii corresponding to the outputs of the yaw rate sensor 102 and the steering angle sensor 103, respectively. Then, the calculated two temporary curve radii are combined to estimate the final curve radius, and the estimation result is output to the inter-vehicle distance control device 200. Note that the curve radius estimation apparatus 100 determines the combined ratio of the calculated two temporary curve radii according to the output of the vehicle speed sensor 104.
  • the inter-vehicle distance control device 200 is an in-vehicle device that controls the speed of the host vehicle so that the inter-vehicle distance between the host vehicle and the preceding vehicle is a constant distance, and the curve radius estimated by the curve radius estimation device 100 and the radar 202. Based on the output of the vehicle, it recognizes a preceding vehicle traveling in the same lane as the own vehicle, and transmits a control signal to the throttle actuator 203 and the brake actuator 204 to accelerate or decelerate the own vehicle and The distance between the vehicles should be a certain distance.
  • the control unit 101 of the curve radius estimation apparatus 100 is a computer including a CPU, RAM, ROM, NVRAM, and the like.
  • the first curve radius calculation unit 110, the second curve radius calculation unit 111, and the curve radius estimation unit While the program corresponding to each of 112 is stored in the ROM, the CPU executes processing corresponding to each means.
  • the yaw rate sensor 102 is a sensor that measures the rotational angular velocity (yaw rate) of the vehicle.
  • the yaw rate sensor 102 has a configuration in which piezoelectric ceramics are attached to a U-shaped metal plate. The piezoelectric ceramic attached thereto is distorted to generate a voltage, and the rotational angular velocity of the vehicle is detected based on this voltage value, and the detected value is output to the control unit 101.
  • the steering angle sensor 103 is a sensor for measuring the rotation angle of the steering shaft related to the steering angle of the wheel. For example, a magnetic resistance by a magnet embedded in the steering shaft is read by an MR element and the rotation angle of the steering shaft is determined. The detected value is output to the control unit 101.
  • the vehicle speed sensor 104 is a sensor that measures the speed of the vehicle.
  • the MR element reads a change in the magnetic field caused by a magnet attached to each wheel and rotates with each wheel as a magnetic resistance, and this is a pulse signal proportional to the rotation speed.
  • the rotational speed of the wheel and the speed of the vehicle are detected, and the detected values are output to the control unit 101.
  • the control unit 201 of the inter-vehicle distance control device 200 is a computer including a CPU, a RAM, a ROM, and the like.
  • a program corresponding to the preceding vehicle recognition unit 210 and the inter-vehicle distance control unit 211 is stored in the ROM.
  • the CPU causes the CPU to execute processing corresponding to each means.
  • the radar 202 is a sensor for detecting an object existing around the vehicle.
  • the radar 202 is attached to the surface of the vehicle body, and uses objects such as millimeter waves, ultrasonic waves, lasers, etc. Vehicle, obstacles, pedestrians, etc.), the relative speed of these objects with respect to the host vehicle, the distance between the host vehicle and these objects, and the like, and the detected values are output to the control unit 201.
  • the detection range of the radar 202 may change in direction or width depending on the steering angle, the yaw rate, or the vehicle speed.
  • the throttle actuator 203 is a device for controlling the throttle opening.
  • the throttle opening is controlled by a solenoid according to a control signal output from the control unit 201 to control the throttle opening.
  • the brake actuator 204 is a device for controlling the braking force of the brake device.
  • the brake actuator 204 increases or decreases the hydraulic pressure in the brake line according to a control signal output from the control unit 201 to increase the braking force. Control.
  • control unit 101 Next, various means of the control unit 101 will be described.
  • the first curve radius calculation means 110 is a means for calculating the curve radius of the lane in which the host vehicle travels based on the output of the yaw rate sensor 102.
  • the curve radius R yaw is obtained by dividing the vehicle speed by the yaw rate. Temporarily calculated, and the calculation result is output to the curve radius estimating means 112.
  • the second curve radius calculation means 111 is a means for calculating the curve radius of the lane in which the host vehicle travels based on the output of the steering angle sensor 103. For example, the second curve radius calculation unit 111 steers the wheel base of the host vehicle based on the Ackermann geometry.
  • the curve radius R str is provisionally calculated by dividing by the tangent tan ⁇ of the angle ⁇ , and the calculation result is output to the curve radius estimating means 112.
  • the curve radius estimation means 112 is a means for estimating the curve radius of the lane in which the host vehicle travels.
  • the curve radius R yaw calculated by the first curve radius calculation means 110 and the second curve radius calculation means 111 include The final curve radius is estimated by combining the calculated curve radius R str with a predetermined combination ratio.
  • FIG. 2 is an example of a composite ratio map showing the correspondence between the composite ratio R ratio and the vehicle speed V.
  • the composite ratio R ratio is arranged on the vertical axis, the vehicle speed V is arranged on the horizontal axis, and the vehicle speed V is It shows that the composite ratio R ratio increases from 0 as the minimum value to 1 as the maximum value according to the increase rate in five steps as it increases. It is assumed that the composite ratio map is stored in advance in the ROM or NVRAM of the control unit 101.
  • An increase in the composite ratio R ratio indicates that the contribution ratio in the estimated value R n of the curve radius R yaw calculated based on the yaw rate is increased, while the curve radius R yaw calculated based on the steering angle is increased. It shows that the contribution rate in the estimated value R n decreases.
  • the final estimated value R n of the curve radius is equal to R str (the curve radius R yaw is not affected by the estimated value R n , and the curve The estimated radius value R n is estimated based only on the curve radius R str .)
  • the composite ratio R ratio is “1”
  • the final estimated radius value R n is equal to R yaw. (The curve radius R str has no influence on the estimated value R n , and the curve radius estimated value R n is estimated based only on the curve radius R yaw .)
  • the low speed range Due to the fact that the resolution of the yaw rate sensor 102 is limited to a certain level (because the value output from the yaw rate sensor 102 is small in the low speed range and the influence of the resolution on the output value is large), the low speed range Then, the curve radius R str calculated based on the steering angle is more reliable than the curve radius R yaw calculated based on the yaw rate, while the yaw rate sensor 102 outputs as the vehicle speed V increases. And the influence of the resolution on the output value is reduced, and the curve radius R yaw calculated based on the yaw rate is more reliable than the curve radius R str calculated based on the steering angle. Because it becomes.
  • the composite ratio R ratio is a value from “0” according to the increase in the vehicle speed V.
  • the composite ratio R ratio is constant from a value R2 to a value R3 as the vehicle speed V increases. It increases at an increase rate ⁇ 2.
  • the composite ratio R ratio increases from the value R3 to the value R4 with a constant increase rate ⁇ 3 as the vehicle speed V increases.
  • V is between V4 and V5 (for example, 12 km / h)
  • the composite ratio R ratio increases from a value R4 to a value R5 with a constant increase rate ⁇ 4 as the vehicle speed V increases, and the vehicle speed V increases from V5.
  • V6 for example, 15 km / h
  • the composite ratio R ratio increases at a constant increase rate ⁇ 5 from the value R4 to the value “1” as the vehicle speed V increases.
  • FIG. 3-5 is another example of a combination ratio map showing the correspondence relationship between the combination ratio R ratio and the vehicle speed V
  • Figure 3 the combination ratio R ratio as the vehicle speed V increases from V1 to V5 is
  • FIG. 4 shows that the composite ratio R ratio increases stepwise in a curve as the vehicle speed V increases from V1 to V6, and FIG.
  • the composite ratio R ratio increases at a constant increase rate.
  • V TH of the vehicle speed V (corresponding to the vehicle speed V6 in FIG. 2 or the vehicle speed V5 in FIG. 3) when the composite ratio R ratio reaches the value “1” depends on the resolution of the yaw rate sensor 102, The higher the resolution (fine), the smaller V TH is. If the resolution of the yaw rate sensor 102 is high, the value of the yaw rate at a relatively small level when the vehicle speed V is low can be detected more accurately, and the reliability of the curve radius R yaw calculated based on the yaw rate increases. Because it does.
  • control unit 201 Next, various means included in the control unit 201 will be described.
  • the preceding vehicle recognition means 210 is a means for recognizing a preceding vehicle traveling in the same lane as the own vehicle. For example, among one or more other vehicles within the detection range detected by the radar 202, the curve radius estimation is performed. Based on the curve radius estimation value R n output from the apparatus 100, the other vehicle existing closest to the traveling track Z determined by the preceding vehicle recognition means 210 is recognized as the preceding vehicle.
  • FIG. 6 is a diagram for explaining the procedure for recognizing the preceding vehicle, and shows the host vehicle M1 traveling on a curve and the preceding vehicle M2 traveling in front of the host vehicle M1.
  • FIG. 6 shows the detection range W of the radar 202 mounted on the host vehicle M1 and the traveling tracks Z1 to Z4 determined based on the curve radius estimation value R n output from the curve radius estimation device 100.
  • Running track Z1 ⁇ Z4 are running track Z of the vehicle M1 that is determined based on the four different curve radius estimate R n, from the running track Z is Z1 as the curve radius estimate R n becomes smaller Z4 Change.
  • the four travel tracks Z1 to Z4 are illustrated for the purpose of explanation, and the preceding vehicle recognition means 210 is actually a single curve radius estimation value R output by the curve radius estimation device 100.
  • a single traveling track Z is adopted based on n . Further, it is assumed that the center of the circle drawn by the curve radius estimation value R n exists on a straight line extending in the vehicle width direction through the center of gravity of the host vehicle, for example.
  • the preceding vehicle recognition means 210 first determines the traveling track Z of the host vehicle M1 based on the curve radius estimated value R n output from the curve radius estimating device 100 ( assuming that the traveling track Z3 is adopted). Then, the nearest vehicle M2 among the other vehicles existing in the detection range W of the radar 202 and in the traveling track Z3 of the host vehicle M1 is recognized as a preceding vehicle.
  • the traveling track Z1, Z2, or Z4 is adopted, the vehicle M2 does not exist in the traveling track, and the preceding vehicle recognition unit 210 does not recognize the vehicle M2 as a preceding vehicle.
  • the inter-vehicle distance control unit 211 is a unit for controlling the inter-vehicle distance between the host vehicle and the preceding vehicle. For example, the preceding vehicle recognized by the host vehicle M1 and the preceding vehicle recognition unit 210 based on the output of the radar 202. The distance to M2 is continuously calculated, and control signals are output to the throttle actuator 203 and the brake actuator 204 so that the distance is maintained constant, so that the host vehicle M1 is accelerated or decelerated.
  • FIG. 7 is a flowchart showing the flow of the curve radius estimation process, and the curve radius estimation apparatus 100 executes the curve radius estimation process repeatedly at a predetermined cycle (for example, every 10 milliseconds). .
  • control unit 101 acquires the value of the yaw rate output from the yaw rate sensor 102 and the value of the steering angle output from the steering angle sensor 103 (step S1).
  • control unit 101 calculates the curve radius R yaw based on the yaw rate value by the first curve radius calculation unit 110 and the curve radius R str based on the steering angle value by the second curve radius calculation unit 111. Is calculated (step S2).
  • control unit 101 acquires the value of the vehicle speed V output from the vehicle speed sensor 104 (step S3), and refers to the combination ratio map stored in the ROM based on the acquired value of the vehicle speed V to determine the combination ratio R ratio . Determine (step S4).
  • FIG. 8 is a flowchart showing the flow of the inter-vehicle distance control process.
  • the inter-vehicle distance control apparatus 200 repeatedly executes the inter-vehicle distance control process according to the output of the curve radius estimation value R n by the curve radius estimation apparatus 100. Shall.
  • control unit 201 acquires a curve radius estimation value R n output from the curve radius estimation device 100 (step S11).
  • control unit 201 uses the preceding vehicle recognizing unit 210 to derive a traveling track from which the host vehicle will travel based on the estimated curve radius R n (step S12).
  • control unit 201 uses the preceding vehicle recognition unit 210 to set another vehicle that is within the detection range of the radar 202 and that is in the traveling track and that is closest to the host vehicle as the preceding vehicle. Recognize (step S13).
  • control unit 201 When the preceding vehicle is recognized (YES in step S13), the control unit 201 outputs a control signal to the throttle actuator 203 or the brake actuator 204 by the inter-vehicle distance control unit 211, so that the distance between the host vehicle and the preceding vehicle is reduced. It adjusts so that the distance between vehicles may become predetermined distance (step S14).
  • control unit 201 outputs a control signal to the throttle actuator 203 by the inter-vehicle distance control means 211 so that the vehicle speed of the host vehicle becomes a predetermined speed. Adjust (step S15).
  • the inter-vehicle distance control system SYS1 uses the contribution ratio of the curve radius Rstr based on the steering angle that is considered to be highly reliable in the low speed range when the host vehicle travels at a low speed. Therefore, even if the host vehicle passes the curve at a low speed, the inter-vehicle distance between the host vehicle and the preceding vehicle can be controlled while recognizing the preceding vehicle with higher reliability.
  • the inter-vehicle distance control system SYS1 can continuously control the inter-vehicle distance between the host vehicle and the preceding vehicle without losing sight of the preceding vehicle even when the host vehicle enters the curve at a low speed. it can.
  • the inter-vehicle distance control system SYS1 gradually changes the respective contribution ratios of the curve radius R yaw and the curve radius R str in the curve radius estimation value R n according to the change in the vehicle speed V. Even if the vehicle enters the curve while decelerating and passes through the curve at a low speed, it maintains a reliable estimate of the curve radius and does not lose sight of the preceding vehicle.
  • the inter-vehicle distance can be continuously controlled.
  • the inter-vehicle distance control system SYS1 loses sight of the preceding vehicle while maintaining a highly reliable estimation of the curve radius even when the own vehicle passing through the curve at a low speed exits the curve at a high speed while accelerating. In addition, it is possible to continuously control the inter-vehicle distance between the host vehicle and its preceding vehicle.
  • the inter-vehicle distance control system SYS1 since the inter-vehicle distance control system SYS1 according to the present embodiment can recognize the preceding vehicle with high reliability even when passing through a curve at a low speed, it is suitable for use in the entire vehicle speed range ACC.
  • FIG. 9 is a block diagram showing a configuration of an inter-vehicle distance control system including a second embodiment of the curve radius estimating apparatus.
  • the inter-vehicle distance control system SYS2 includes a curve radius estimating apparatus 100, an inter-vehicle distance control apparatus 200 in FIG. Is different from the inter-vehicle distance control system SYS1.
  • the inter-vehicle distance control system SYS2 includes the first curve radius calculating unit 310, the second curve radius calculating unit 311, the curve radius estimating unit 312, and the preceding vehicle recognizing unit according to the present embodiment. This is realized by incorporating 313.
  • the curve radius estimation means 112 has a contribution ratio of the curve radius R yaw based on the yaw rate (corresponding to R ratio ) and a contribution ratio of the curve radius R str based on the steering angle ((1-R corresponding to ratio).) and the total but the value "1" (100%) and so as to derive the curve radius estimate R n, and always contribution of the curve radius R yaw and contribution of the curve radius R str of
  • the curve radius calculated based on other output values for example, the curve radius calculated based on the change in the relative position of the lane marking image acquired by the in-vehicle camera) is not necessary.
  • the curve radius estimated value R n may be derived.
  • the weights of the curve radius R yaw and the curve radius R str when calculating the weighted average are determined according to the vehicle speed V. Basically, as the vehicle speed V decreases, the curve radius R It is assumed that the weight of str is relatively increased and the weight of the curve radius R yaw is relatively decreased.
  • the curve radius estimation means 112 derives the curve radius estimation value R n while determining the synthesis ratio using a predetermined synthesis ratio map stored in the ROM or NVRAM.
  • the composite ratio map may be switched according to the bank angle or road gradient of the road to be operated.
  • the curve radius estimation means 112 may detect a bank angle of a road on which the host vehicle runs, a road gradient, etc. based on road information held by the navigation system, or a tilt sensor mounted on the host vehicle.
  • the bank angle or road gradient of the road on which the vehicle travels may be detected based on the output of the acceleration sensor.
  • the curve radius estimating means 112 travels at the same vehicle speed V in a low speed range (for example, 15 km / h or less), the larger the bank angle, the larger the composite ratio R ratio becomes (the yaw rate is increased).
  • the yaw rate value is corrected based on a value output from an inclination sensor or an acceleration sensor that measures vertical acceleration (for example, gravitational acceleration). This is because when the bank angle exists, the value of the yaw rate measured by the yaw rate sensor 102 includes the influence of gravitational acceleration.
  • the curve radius estimation device 100 outputs the estimated curve radius to the inter-vehicle distance control device 200.
  • the curve radius estimation device 100 estimates other curve devices such as a navigation system and a parking assistance device. The radius may be output.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mathematical Physics (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Regulating Braking Force (AREA)

Abstract

 自車両が走行する車線のカーブ半径を推定するカーブ半径推定装置(100)は、操舵角に基づいて第一カーブ半径を算出する第一カーブ半径算出手段(110)と、ヨーレートに基づいて第二カーブ半径を算出する第二カーブ半径算出手段(111)と、第一カーブ半径と第二カーブ半径とを所定の合成比で合成してカーブ半径を推定するカーブ半径推定手段(112)と、を備え、カーブ半径推定手段(112)は、車速に応じて前記所定の合成比を変化させる。

Description

カーブ半径推定装置
 本発明は、車両が走行する車線のカーブ半径を推定するカーブ半径推定装置に関し、特に、低速域においてカーブ半径をより正確に推定するカーブ半径推定装置に関する。
 従来、ステアリングセンサが検出した操舵角に基づいて自車両が走行する車線のカーブ半径を決定し、決定したカーブ半径を有する車線上に存在する先行車両を認識しながら、カーブを通過するその先行車両と自車両との間の車間距離を制御する車間距離制御装置が知られている(例えば、特許文献1参照。)。
 また、操舵角又はヨーレートに基づいて算出したカーブ半径と、レーザセンサで検出した自車両前方の停止物体の動きに基づいて算出したカーブ半径とを平均化して最終的なカーブ半径を導き出し、自車両の進行路を推定する進行路推定装置が知られている(例えば、特許文献2参照。)。
 また、自車両が時速10km以上の速度で走行している場合(極低速走行中でない場合)に、ヨーレートに基づいて算出したカーブ半径を操舵角で補正して最終的なカーブ半径を推定するカーブ半径推定装置が知られている(例えば、特許文献3参照。)。
 また、ヨーレート及び操舵角に基づいて自車両が走行する道路の曲率半径を導き出し、その曲率半径を有する道路上に存在する先行車両を認識しながら、その先行車両との間の車間距離を制御する車両制御装置が知られている(例えば、特許文献4参照。)。
特開平8-279099号公報 特開2001-328451号公報 特開2004-217178号公報 特開2007-331608号公報
 しかしながら、特許文献1~4に記載の装置は何れも、自車両が低速で走行する場合を対象としておらず、対象とする速度域を特定していないか(特許文献1及び2)、或いは、自車両が所定速度以上で走行する場合のみを対象とするか(特許文献3及び4)の何れかである。
 そのため、特許文献1~4は、低速走行に適したカーブ半径の推定方法と低速走行以外の走行に適したカーブ半径の推定方法との切り替えやその境界速度域における処理を何ら開示しておらず、汎用的に、操舵角に基づいてカーブ半径を算出するか(特許文献1)、操舵角又はヨーレートの何れか一方に基づいてカーブ半径を算出するか(特許文献2)、操舵角を補助的に考慮しながら主にヨーレートに基づいてカーブ半径を算出するか(特許文献3)、或いは、操舵角及びヨーレートの双方に基づいてカーブ半径を算出するか(特許文献4)を開示するだけであるため、高速域ばかりでなく低速域においても信頼性が高いカーブ半径の推定が必要とされる全車速域ACC(Adaptive Cruise Control)の制御に特許文献1~4に記載のカーブ半径算出方法を採用した場合には、低速域におけるカーブ半径の推定に対する信頼性が不十分となってしまう。
 上述の点に鑑み、本発明は、低速域以外での車速域におけるカーブ半径の推定に対する高い信頼性を維持しながらも、低速域でより信頼性高くカーブ半径を推定することで全車速域ACCにも対応可能なカーブ半径推定装置を提供することを目的とする。
 上述の目的を達成するために、第一の発明に係るカーブ半径推定装置は、自車両が走行する車線のカーブ半径を推定するカーブ半径推定装置であって、操舵角に基づいて第一カーブ半径を算出する第一カーブ半径算出手段と、ヨーレートに基づいて第二カーブ半径を算出する第二カーブ半径算出手段と、前記第一カーブ半径と前記第二カーブ半径とを所定の合成比で合成してカーブ半径を推定するカーブ半径推定手段と、を備え、前記カーブ半径推定手段は、車速に応じて前記所定の合成比を変化させることを特徴とする。
 また、第二の発明は、第一の発明に係るカーブ半径推定装置であって、前記カーブ半径推定手段は、車速に応じて前記所定の合成比を段階的に変化させることを特徴とする。
 また、第三の発明は、第一の発明に係るカーブ半径推定装置であって、前記カーブ半径推定手段は、自車両が走行する道路のバンク角又は道路勾配に応じて前記所定の合成比を変化させることを特徴とする。
 上述の手段により、本発明は、低速域以外での車速域におけるカーブ半径の推定に対する高い信頼性を維持しながらも、低速域でより信頼性高くカーブ半径を推定することで全車速域ACCにも対応可能なカーブ半径推定装置を提供することができる。
カーブ半径推定装置の第一実施例の構成を示すブロック図である。 合成比マップを示す図(その1)である。 合成比マップを示す図(その2)である。 合成比マップを示す図(その3)である。 合成比マップを示す図(その4)である。 先行車両の認識手順を説明するための図である。 カーブ半径推定処理の流れを示すフローチャートである。 車間距離制御処理の流れを示すフローチャートである。 カーブ半径推定装置の第二実施例の構成を示すブロック図である。
符号の説明
 100 カーブ半径推定装置
 101、201、301 制御部
 102、303 ヨーレートセンサ
 103、304 操舵角センサ
 104、305 車速センサ
 110、310 第一カーブ半径算出手段
 111、311 第二カーブ半径算出手段
 112、312 カーブ半径推定手段
 200 車間距離制御装置
 202、302 レーダ
 203、306 スロットルアクチュエータ
 204、307 ブレーキアクチュエータ
 210、313 先行車両認識手段
 211、314 車間距離制御手段
 SYS1、SYS2 車間距離制御システム
 以下、図面を参照しつつ、本発明を実施するための最良の形態の説明を行う。
 図1は、カーブ半径推定装置の第一実施例を含む車間距離制御システムの構成を示すブロック図であり、車間距離制御システムSYS1は、カーブ半径推定装置100及び車間距離制御装置200を有する。
 カーブ半径推定装置100は、自車両が走行する車線のカーブ半径を推定する車載装置であり、ヨーレートセンサ102及び操舵角センサ103のそれぞれの出力に対応する二つの暫定的なカーブ半径を別々に算出し、それら算出した二つの暫定的なカーブ半径を合成して最終的なカーブ半径を推定し、その推定結果を車間距離制御装置200に出力する。なお、カーブ半径推定装置100は、車速センサ104の出力に応じて、それら算出した暫定的な二つのカーブ半径の合成比を決定する。
 車間距離制御装置200は、自車両と先行車両との間の車間距離が一定距離となるように自車両の速度を制御する車載装置であり、カーブ半径推定装置100が推定したカーブ半径とレーダ202の出力とに基づいて自車両と同じ車線を走行する先行車両を認識し、スロットルアクチュエータ203及びブレーキアクチュエータ204に制御信号を送信して自車両を加速或いは減速させて自車両と先行車両との間の車間距離が一定距離となるようにする。
 カーブ半径推定装置100の制御部101は、CPU、RAM、ROM、NVRAM等を備えたコンピュータであって、例えば、第一カーブ半径算出手段110、第二カーブ半径算出手段111、及びカーブ半径推定手段112のそれぞれに対応するプログラムをROMに記憶しながら、各手段に対応する処理をCPUに実行させる。
 ヨーレートセンサ102は、車両の回転角速度(ヨーレート)を測定するセンサであり、例えば、U字型の金属板に圧電セラミックスを貼り付けた構成であって、回転力が金属板に加わると金属板及びそれに貼り付けた圧電セラミックスが歪んで電圧を発生させ、この電圧値によって車両の回転角速度を検出し、検出した値を制御部101に対して出力する。
 操舵角センサ103は、車輪の操舵角に関連するステアリングシャフトの回転角を測定するためのセンサであり、例えば、ステアリングシャフトに埋め込まれた磁石による磁気抵抗をMR素子によって読み取りステアリングシャフトの回転角を検出し、検出した値を制御部101に対して出力する。
 車速センサ104は、車両の速度を測定するセンサであり、例えば、各車輪に取り付けられ各車輪と共に回転する磁石による磁界の変化をMR素子が磁気抵抗として読み取り、これを回転速度に比例したパルス信号として取り出すことで車輪の回転速度及び車両の速度を検出し、検出した値を制御部101に対して出力する。
 車間距離制御装置200の制御部201は、制御部101と同様、CPU、RAM、ROM等を備えたコンピュータであって、例えば、先行車両認識手段210及び車間距離制御手段211に対応するプログラムをROMに記憶しながら、各手段に対応する処理をCPUに実行させる。
 レーダ202は、車両周辺に存在する物体を検出するためのセンサであり、例えば、車体表面に取り付けられ、ミリ波、超音波又はレーザー等を用いて、自車両の前後左右に存在する物体(他車両、障害物、歩行者等)の位置、それら物体の自車両に対する相対速度、自車両とそれら物体との間の距離等を検出し、検出した値を制御部201に対して出力する。なお、レーダ202の探知範囲は、操舵角、ヨーレート又は車速に応じてその向き又は広狭が変化するものであってもよい。
 スロットルアクチュエータ203は、スロットル開度を制御するための装置であり、例えば、制御部201が出力する制御信号に応じてソレノイドによりスロットルバルブを開閉させてスロットル開度を制御する。
 ブレーキアクチュエータ204は、ブレーキ装置による制動力を制御するための装置であり、例えば、制御部201が出力する制御信号に応じてソレノイドによりブレーキラインにおける油圧を増大させたり減少させたりして制動力を制御する。
 次に、制御部101が有する各種手段について説明する。
 第一カーブ半径算出手段110は、ヨーレートセンサ102の出力に基づいて自車両が走行する車線のカーブ半径を算出するための手段であり、例えば、車速をヨーレートで除算することによってカーブ半径Ryawを暫定的に算出し、算出結果をカーブ半径推定手段112に出力する。
 第二カーブ半径算出手段111は、操舵角センサ103の出力に基づいて自車両が走行する車線のカーブ半径を算出するための手段であり、例えば、アッカーマンジオメトリに基づいて自車両のホイールベースを操舵角θの正接tanθで除算することによってカーブ半径Rstrを暫定的に算出し、算出結果をカーブ半径推定手段112に出力する。
 カーブ半径推定手段112は、自車両が走行する車線のカーブ半径を推定するための手段であり、例えば、第一カーブ半径算出手段110が算出したカーブ半径Ryawと第二カーブ半径算出手段111が算出したカーブ半径Rstrとを所定の合成比で合成して最終的なカーブ半径を推定する。
 合成比Rratioは、0以上1未満の値であり、最終的なカーブ半径の推定値をRnとすると、Rn=Ryaw×Rratio+Rstr×(1-Rratio)の関係を満たすものとする。
 図2は、合成比Rratioと車速Vとの間の対応関係を示す合成比マップの一例であり、縦軸に合成比Rratioを配し、横軸に車速Vを配し、車速Vが増大するにつれて合成比Rratioが五段階の増加率に従って最小値である0から最大値である1まで増加することを示す。なお、合成比マップは、制御部101のROMやNVRAMに予め記憶されているものとする。
 合成比Rratioの増加は、ヨーレートに基づいて算出されるカーブ半径Ryawの推定値Rnにおける寄与率が増大することを示し、一方で、操舵角に基づいて算出されるカーブ半径Ryawの推定値Rnにおける寄与率が減少することを示す。
 また、合成比Rratioが値「0」の場合、最終的なカーブ半径の推定値RnはRstrに等しい値となり(カーブ半径Ryawの推定値Rnに対する影響が無い状態であり、カーブ半径推定値Rnは、カーブ半径Rstrのみに基づいて推定される。)、合成比Rratioが値「1」の場合、最終的なカーブ半径の推定値RnはRyawに等しい値となる(カーブ半径Rstrの推定値Rnに対する影響が無い状態であり、カーブ半径推定値Rnは、カーブ半径Ryawのみに基づいて推定される。)。
 ヨーレートセンサ102の分解能が一定レベルで制限されることに起因して(低速域ではヨーレートセンサ102が出力する値が小さく、分解能による出力値への影響が大きくなることに起因して)、低速域では、操舵角に基づいて算出されるカーブ半径Rstrの方がヨーレートに基づいて算出されるカーブ半径Ryawよりも信頼性が高くなり、一方で、車速Vが増大するにつれてヨーレートセンサ102が出力する値が大きくなり、分解能による出力値への影響が小さくなって、ヨーレートに基づいて算出されるカーブ半径Ryawの方が操舵角に基づいて算出されるカーブ半径Rstrよりも信頼性が高くなるからである。
 図2を参照すると、車速VがV1(例えば、2km/h)からV2(例えば、7km/h)の間にある場合、合成比Rratioは車速Vの増大に応じて値「0」から値R2まで一定の増加率α1で増加し、車速VがV2からV3(例えば、9km/h)の間にある場合、合成比Rratioは車速Vの増大に応じて値R2から値R3まで一定の増加率α2で増加する。
 同様に、車速VがV3からV4(例えば、10km/h)の間にある場合、合成比Rratioは車速Vの増大に応じて値R3から値R4まで一定の増加率α3で増加し、車速VがV4からV5(例えば、12km/h)の間にある場合、合成比Rratioは車速Vの増大に応じて値R4から値R5まで一定の増加率α4で増加し、車速VがV5からV6(例えば、15km/h)の間にある場合、合成比Rratioは車速Vの増大に応じて値R4から値「1」まで一定の増加率α5で増加する。
 図3~5は、合成比Rratioと車速Vとの間の対応関係を示す合成比マップの別の例であり、図3は、車速VがV1からV5まで増大するにつれて合成比Rratioが五段階のステップで階段状に増加することを示し、図4は、車速VがV1からV6まで増大するにつれて合成比Rratioが曲線状に無段階に増加することを示し、また、図5は、車速VがV1からV6の間にある場合に合成比Rratioが一定の増加率で増加することを示す。
 なお、合成比Rratioが値「1」に達するときの車速Vの値VTH(図2の車速V6又は図3の車速V5等に相当する。)は、ヨーレートセンサ102の分解能に依存し、分解能が高い(細かい)程VTHは小さい値となる。ヨーレートセンサ102の分解能が高いと、車速Vが低い場合における比較的小さなレベルにあるヨーレートの値をより正確に検出することができ、ヨーレートに基づいて算出されるカーブ半径Ryawの信頼性が増大するからである。
 次に、制御部201が有する各種手段について説明する。
 先行車両認識手段210は、自車両と同じ車線を走行する先行車両を認識するための手段であり、例えば、レーダ202が検出したその探知範囲内にある一以上の他車両のうち、カーブ半径推定装置100が出力するカーブ半径推定値Rnに基づいて先行車両認識手段210が決定する走行軌道Z内の最も近いところに存在する他車両を先行車両として認識する。
 図6は、先行車両の認識手順を説明するための図であり、カーブを走行する自車両M1と、自車両M1の前方を走行する先行車両M2とを示す。
 また、図6は、自車両M1に搭載されたレーダ202の探知範囲Wと、カーブ半径推定装置100が出力するカーブ半径推定値Rnに基づいて決定される走行軌道Z1~Z4とを示す。
 走行軌道Z1~Z4は、四つの異なるカーブ半径推定値Rnに基づいて決定される自車両M1の走行軌道Zであり、カーブ半径推定値Rnが小さくなるにつれて走行軌道ZがZ1からZ4に変化する。なお、四つの走行軌道Z1~Z4は、説明目的のために図示されるものであり、先行車両認識手段210は、実際には、カーブ半径推定装置100が出力する単一のカーブ半径推定値Rnに基づいて単一の走行軌道Zを採用するものとする。また、カーブ半径推定値Rnが描く円の中心は、例えば、自車両の重心を通って車幅方向に延びる直線上に存在するものとする。
 先行車両認識手段210は、最初に、カーブ半径推定装置100が出力するカーブ半径推定値Rnに基づいて自車両M1の走行軌道Zを決定し(走行軌道Z3を採用したものとする。)、その上で、レーダ202の探知範囲W内に存在し、且つ、自車両M1の走行軌道Z3内に存在する他車両のうち最も近くにある車両M2を先行車両として認識する。
 仮に走行軌道Z1、Z2又はZ4を採用した場合、車両M2は走行軌道内に存在しないこととなり、先行車両認識手段210は、車両M2を先行車両として認識しないこととなる。
 車間距離制御手段211は、自車両と先行車両との間の車間距離を制御するための手段であり、例えば、レーダ202の出力に基づいて自車両M1と先行車両認識手段210が認識した先行車両M2との間の距離を継続的に算出し、その距離が一定に維持されるようにスロットルアクチュエータ203及びブレーキアクチュエータ204に制御信号を出力して自車両M1を加速又は減速させるようにする。
 次に、図7を参照しながら、カーブ半径推定装置100がカーブ半径Rnを推定する処理(以下、「カーブ半径推定処理」とする。)について説明する。なお、図7は、カーブ半径推定処理の流れを示すフローチャートであり、カーブ半径推定装置100は、所定周期(例えば、10ミリ秒毎である。)で繰り返しカーブ半径推定処理を実行するものとする。
 最初に、制御部101は、ヨーレートセンサ102が出力するヨーレートの値、及び、操舵角センサ103が出力する操舵角の値を取得する(ステップS1)。
 その後、制御部101は、第一カーブ半径算出手段110によりヨーレートの値に基づいてカーブ半径Ryawを算出し、且つ、第二カーブ半径算出手段111により操舵角の値に基づいてカーブ半径Rstrを算出する(ステップS2)。
 その後、制御部101は、車速センサ104が出力する車速Vの値を取得し(ステップS3)、取得した車速Vの値に基づいてROMに記憶された合成比マップを参照し合成比Rratioを決定する(ステップS4)。
 その後、制御部101は、カーブ半径推定手段112により、カーブ半径Ryaw、カーブ半径Rstr、及び合成比Rratioのそれぞれの値を計算式Rn=Ryaw×Rratio+Rstr×(1-Rratio)に当てはめてカーブ半径推定値Rnを算出し(ステップS5)、算出したカーブ半径推定値Rnを車間距離制御装置200に対して出力する。
 次に、図8を参照しながら、車間距離制御装置200が自車両と先行車両との間の車間距離を制御する処理(以下、「車間距離制御処理」とする。)について説明する。なお、図8は、車間距離制御処理の流れを示すフローチャートであり、車間距離制御装置200は、カーブ半径推定装置100によるカーブ半径推定値Rnの出力に応じて繰り返し車間距離制御処理を実行するものとする。
 最初に、制御部201は、カーブ半径推定装置100が出力するカーブ半径推定値Rnを取得する(ステップS11)。
 その後、制御部201は、先行車両認識手段210により、カーブ半径推定値Rnに基づいて自車両がこれから走行しようとする走行軌道を導き出す(ステップS12)。
 その後、制御部201は、先行車両認識手段210により、レーダ202の探知範囲内で、且つ、走行軌道内に存在する他車両であって、自車両から最も近い位置にある他車両を先行車両として認識する(ステップS13)。
 先行車両を認識した場合(ステップS13のYES)、制御部201は、車間距離制御手段211により、スロットルアクチュエータ203又はブレーキアクチュエータ204に対して制御信号を出力し、自車両と先行車両との間の車間距離が所定距離となるように調整する(ステップS14)。
 一方、先行車両を認識しない場合(ステップS13のNO)、制御部201は、車間距離制御手段211により、スロットルアクチュエータ203に対して制御信号を出力し、自車両の車速が所定速度となるように調整する(ステップS15)。
 以上の構成により、本実施例に係る車間距離制御システムSYS1は、自車両が低速で走行する場合には低速域での信頼性が高いとされる操舵角に基づくカーブ半径Rstrの寄与率を高めるようにするので、自車両が低速でカーブを通過する場合であっても、より信頼性高く先行車両を認識しながら、自車両と先行車両との間の車間距離を制御することができる。
 また、車間距離制御システムSYS1は、自車両が低速でカーブに進入する場合であっても先行車両を見失うことなく、自車両とその先行車両との間の車間距離を継続的に制御することができる。
 また、車間距離制御システムSYS1は、車速Vの変化に応じて、カーブ半径推定値Rnにおけるカーブ半径Ryaw及びカーブ半径Rstrのそれぞれの寄与率を徐々に変化させるので、高速で走行する自車両が減速しながらカーブに進入し低速でカーブを通過する場合であっても、信頼性の高いカーブ半径の推定を維持しながら先行車両を見失うことなく、自車両とその先行車両との間の車間距離を継続的に制御することができる。
 また、車間距離制御システムSYS1は、低速でカーブを通過する自車両が加速しながら高速でカーブから退出する場合であっても、信頼性の高いカーブ半径の推定を維持しながら先行車両を見失うことなく、自車両とその先行車両との間の車間距離を継続的に制御することができる。
 また、本実施例に係る車間距離制御システムSYS1は、低速でカーブを通過する場合にも信頼性高く先行車両を認識できるので、全車速域ACCでの使用に適している。
 図9は、カーブ半径推定装置の第二実施例を含む車間距離制御システムの構成を示すブロック図であり、車間距離制御システムSYS2は、図1におけるカーブ半径推定装置100と車間距離制御装置200とを一体化した点で車間距離制御システムSYS1と相違する。
 このように、車間距離制御システムSYS2は、既存の車間距離制御装置に本実施例に係る第一カーブ半径算出手段310、第二カーブ半径算出手段311、カーブ半径推定手段312、及び先行車両認識手段313を組み込むことによって実現される。
 以上、本発明の好ましい実施例について詳説したが、本発明は、上述した実施例に制限されることはなく、本発明の範囲を逸脱することなく、上述した実施例に種々の変形及び置換を加えることができる。
 例えば、上述の実施例において、カーブ半径推定手段112は、ヨーレートに基づくカーブ半径Ryawの寄与率(Rratioに相当する。)と操舵角に基づくカーブ半径Rstrの寄与率((1-Rratio)に相当する。)との合計が値「1」(100%)となるようにカーブ半径推定値Rnを導き出すが、必ずしもカーブ半径Ryawの寄与率とカーブ半径Rstrの寄与率との合計が100%となる必要はなく、他の出力値に基づいて算出されるカーブ半径(例えば、車載カメラが取得する車線区分線画像の相対位置の変化に基づいて算出されるカーブ半径である。)による寄与率を組み入れながら、或いは、カーブ半径Ryawとカーブ半径Rstrとの加重平均を算出しながら、カーブ半径推定値Rnを導き出すようにしてもよい。なお、加重平均を算出する場合のカーブ半径Ryaw及びカーブ半径Rstrのそれぞれの重みは、車速Vに応じて決定されるものとし、基本的には、車速Vが減少するにつれて、カーブ半径Rstrの重みが相対的に増大しカーブ半径Ryawの重みが相対的に減少するものとする。
 また、上述の実施例において、カーブ半径推定手段112は、ROMやNVRAMに記憶された所定の合成比マップを用いて合成比を決定しながらカーブ半径推定値Rnを導き出すが、自車両が走行する道路のバンク角や道路勾配等に応じて合成比マップを切り換えるようにしてもよい。
 この場合、カーブ半径推定手段112は、ナビゲーションシステムが保持する道路情報に基づいて自車両が走行する道路のバンク角や道路勾配等を検出するようにしてもよく、自車両に搭載された傾斜センサや加速度センサの出力に基づいて自車両が走行する道路のバンク角や道路勾配等を検出するようにしてもよい。
 また、カーブ半径推定手段112は、低速域(例えば15km/h以下である。)における同じ車速Vで走行する場合であっても、バンク角が大きいほど合成比Rratioが大きくなるよう(ヨーレートに基づいて算出されるカーブ半径Ryawの推定値Rnにおける寄与率が大きくなるよう)、バンク角毎に用意された複数の合成比マップから特定のバンク角に対応する特定の合成比マップを選択する。
 車両は、カーブにおけるバンク角が大きいほどより小さい操舵角でそのカーブを通過することができるからであり、その結果として、操舵角に基づいて算出されるカーブ半径Rstrの推定値Rnにおける寄与率は、低減させられるべきだからである。
 なお、ヨーレートの値は、傾斜センサ、又は、鉛直方向の加速度(例えば、重力加速度である。)を測定する加速度センサが出力する値に基づいて補正されるものとする。バンク角が存在する場合、ヨーレートセンサ102によって測定されるヨーレートの値は、重力加速度による影響を含むからである。
 また、上述の実施例において、カーブ半径推定装置100は、推定したカーブ半径を車間距離制御装置200に対して出力するが、ナビゲーションシステムや駐車支援装置等の他の車載装置に対して推定したカーブ半径を出力するようにしてもよい。

Claims (3)

  1.  自車両が走行する車線のカーブ半径を推定するカーブ半径推定装置であって、
     操舵角に基づいて第一カーブ半径を算出する第一カーブ半径算出手段と、
     ヨーレートに基づいて第二カーブ半径を算出する第二カーブ半径算出手段と、
     前記第一カーブ半径と前記第二カーブ半径とを所定の合成比で合成してカーブ半径を推定するカーブ半径推定手段と、を備え、
     前記カーブ半径推定手段は、車速に応じて前記所定の合成比を変化させる、
     ことを特徴とするカーブ半径推定装置。
  2.  前記カーブ半径推定手段は、車速に応じて前記所定の合成比を段階的に変化させる、
     ことを特徴とする請求項1に記載のカーブ半径推定装置。
  3.  前記カーブ半径推定手段は、自車両が走行する道路のバンク角又は道路勾配に応じて前記所定の合成比を変化させる、
     ことを特徴とする請求項1に記載のカーブ半径推定装置。
PCT/JP2009/050986 2009-01-22 2009-01-22 カーブ半径推定装置 WO2010084591A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2009/050986 WO2010084591A1 (ja) 2009-01-22 2009-01-22 カーブ半径推定装置
EP20090838782 EP2380794B1 (en) 2009-01-22 2009-01-22 Curve radius estimation device
JP2010547349A JP5136657B2 (ja) 2009-01-22 2009-01-22 カーブ半径推定装置
US13/180,136 US8195360B2 (en) 2009-01-22 2011-07-11 Curve radius estimating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/050986 WO2010084591A1 (ja) 2009-01-22 2009-01-22 カーブ半径推定装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/180,136 Continuation US8195360B2 (en) 2009-01-22 2011-07-11 Curve radius estimating device

Publications (1)

Publication Number Publication Date
WO2010084591A1 true WO2010084591A1 (ja) 2010-07-29

Family

ID=42355665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/050986 WO2010084591A1 (ja) 2009-01-22 2009-01-22 カーブ半径推定装置

Country Status (4)

Country Link
US (1) US8195360B2 (ja)
EP (1) EP2380794B1 (ja)
JP (1) JP5136657B2 (ja)
WO (1) WO2010084591A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160036922A (ko) * 2014-09-26 2016-04-05 현대모비스 주식회사 곡률 추정 장치 및 방법
WO2017142075A1 (ja) * 2016-02-17 2017-08-24 株式会社デンソー 推定装置
CN107891860A (zh) * 2017-11-14 2018-04-10 重庆长安汽车股份有限公司 基于道路曲率自适应调节车速的系统及方法
WO2018173479A1 (ja) * 2017-03-23 2018-09-27 日野自動車株式会社 先行車判定装置及び車両制御システム
JP2019215279A (ja) * 2018-06-13 2019-12-19 株式会社デンソーテン レーダ装置および物標データ割当方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5146542B2 (ja) * 2008-12-26 2013-02-20 トヨタ自動車株式会社 走行路推定装置、及び当該装置で用いられる走行路推定方法
DE102012024970A1 (de) * 2012-12-20 2013-07-04 Daimler Ag Verfahren zum Bestimmen einer Soll-Kurvenneigung eines Kraftfahrzeugs beim Befahren eines kurvenförmigen Fahrbahnabschnitts
US10023103B2 (en) * 2013-09-13 2018-07-17 J.W. Speaker, Corporation Systems and methods for illumination control and distribution during a vehicle bank
KR102049338B1 (ko) * 2013-11-05 2019-11-27 현대모비스 주식회사 도로의 경사를 고려한 차량 속도 제어 장치 및 방법
JP6545108B2 (ja) * 2016-01-14 2019-07-17 アルパイン株式会社 駐車支援装置および駐車支援方法
DE102017106349A1 (de) 2017-03-24 2018-09-27 Valeo Schalter Und Sensoren Gmbh Fahrerassistenzsystem für ein Fahrzeug zum Prognostizieren eines dem Fahrzeug vorausliegenden Fahrspurbereichs, Fahrzeug und Verfahren
KR20210067199A (ko) * 2019-11-29 2021-06-08 현대모비스 주식회사 주변 차량을 활용한 곡률 정보 보정 시스템 및 방법
DE102020107880A1 (de) * 2020-03-23 2021-09-23 Ford Global Technologies, Llc Verfahren zum Steuern eines Geschwindigkeitsregelsystems in einem Kurvenverlauf
CN117584982B (zh) * 2023-12-28 2024-04-23 上海保隆汽车科技股份有限公司 弯道半径估算方法、系统、介质、电子设备及车机、车辆

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08219799A (ja) * 1995-02-15 1996-08-30 Mazda Motor Corp 車両の進行路推定装置
JPH08279099A (ja) 1995-04-06 1996-10-22 Nippondenso Co Ltd 車間距離制御装置
JP2001328451A (ja) 2000-05-18 2001-11-27 Denso Corp 進行路推定装置、先行車認識装置、及び記録媒体
JP2004217178A (ja) 2003-01-17 2004-08-05 Toyota Motor Corp カーブ半径推定装置
JP2007331608A (ja) 2006-06-15 2007-12-27 Toyota Motor Corp 車両制御装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000002535A (ja) * 1998-06-15 2000-01-07 Daihatsu Motor Co Ltd カーブ路の曲率検出方法及びこれに用いる検出装置
US7522091B2 (en) 2002-07-15 2009-04-21 Automotive Systems Laboratory, Inc. Road curvature estimation system
EP1714108A4 (en) * 2003-12-24 2010-01-13 Automotive Systems Lab ROAD curvature ESTIMATES SYSTEM
JP4046742B2 (ja) * 2005-07-14 2008-02-13 三菱電機株式会社 道路形状推定装置
JP2008176400A (ja) * 2007-01-16 2008-07-31 Mazda Motor Corp 車両の先行車認識装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08219799A (ja) * 1995-02-15 1996-08-30 Mazda Motor Corp 車両の進行路推定装置
JPH08279099A (ja) 1995-04-06 1996-10-22 Nippondenso Co Ltd 車間距離制御装置
JP2001328451A (ja) 2000-05-18 2001-11-27 Denso Corp 進行路推定装置、先行車認識装置、及び記録媒体
JP2004217178A (ja) 2003-01-17 2004-08-05 Toyota Motor Corp カーブ半径推定装置
JP2007331608A (ja) 2006-06-15 2007-12-27 Toyota Motor Corp 車両制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2380794A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160036922A (ko) * 2014-09-26 2016-04-05 현대모비스 주식회사 곡률 추정 장치 및 방법
KR102159360B1 (ko) * 2014-09-26 2020-09-23 현대모비스 주식회사 곡률 추정 장치 및 방법
WO2017142075A1 (ja) * 2016-02-17 2017-08-24 株式会社デンソー 推定装置
JP2017144888A (ja) * 2016-02-17 2017-08-24 株式会社デンソー 推定装置
WO2018173479A1 (ja) * 2017-03-23 2018-09-27 日野自動車株式会社 先行車判定装置及び車両制御システム
JP2018158689A (ja) * 2017-03-23 2018-10-11 日野自動車株式会社 先行車判定装置及び車両制御システム
CN107891860A (zh) * 2017-11-14 2018-04-10 重庆长安汽车股份有限公司 基于道路曲率自适应调节车速的系统及方法
JP2019215279A (ja) * 2018-06-13 2019-12-19 株式会社デンソーテン レーダ装置および物標データ割当方法
JP7168353B2 (ja) 2018-06-13 2022-11-09 株式会社デンソーテン レーダ装置および物標データ割当方法

Also Published As

Publication number Publication date
US8195360B2 (en) 2012-06-05
EP2380794B1 (en) 2015-05-06
EP2380794A4 (en) 2013-10-30
EP2380794A1 (en) 2011-10-26
US20110270466A1 (en) 2011-11-03
JPWO2010084591A1 (ja) 2012-07-12
JP5136657B2 (ja) 2013-02-06

Similar Documents

Publication Publication Date Title
JP5136657B2 (ja) カーブ半径推定装置
CN107415945B (zh) 用于评估车道换道的自动驱动系统及其使用方法
JP6344275B2 (ja) 車両制御装置
JP6252548B2 (ja) 車速制限装置及び車速制御装置
JP6319192B2 (ja) 車速制限装置
JP2004523772A (ja) 車両の車線変更を検知する方法
US9472105B2 (en) Lane marking crossing warning system
WO2010073300A1 (ja) 走行路推定装置、及び当該装置で用いられる走行路推定方法
WO2007132860A1 (ja) 対象物認識装置
CN106541946A (zh) 车速控制装置
CN102416953A (zh) 振动施加结构检测装置以及车辆控制装置
JP7081423B2 (ja) 情報処理システム
JP2007309670A (ja) 車両位置検出装置
KR20100088946A (ko) 네비게이션 정보를 이용한 차량 크루즈 시스템
JP2019043195A (ja) 車両制御装置
JP2019043192A (ja) 車両制御装置
JP6982754B2 (ja) 車両制御装置
JP4956504B2 (ja) 車両の走行安全装置
JP6481627B2 (ja) 車両用走行制御装置
WO2019203160A1 (ja) 運転支援システムおよび方法
JP4720166B2 (ja) 車両の速度検出装置
JP4615954B2 (ja) 車両用制御対象判定装置
CN110678778A (zh) 用于检测迎面车辆的车辆系统
JP2016190530A (ja) 車両用制御装置
JP2016113092A (ja) 車両制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09838782

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010547349

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009838782

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE