WO2010082608A1 - 保護監視回路、電池パック、二次電池監視回路、及び保護回路 - Google Patents

保護監視回路、電池パック、二次電池監視回路、及び保護回路 Download PDF

Info

Publication number
WO2010082608A1
WO2010082608A1 PCT/JP2010/050357 JP2010050357W WO2010082608A1 WO 2010082608 A1 WO2010082608 A1 WO 2010082608A1 JP 2010050357 W JP2010050357 W JP 2010050357W WO 2010082608 A1 WO2010082608 A1 WO 2010082608A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
protection
circuit
monitoring circuit
terminal
Prior art date
Application number
PCT/JP2010/050357
Other languages
English (en)
French (fr)
Inventor
亮 池内
吉英 馬島
Original Assignee
ミツミ電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ミツミ電機株式会社 filed Critical ミツミ電機株式会社
Priority to US13/143,844 priority Critical patent/US9231283B2/en
Priority to KR1020117011758A priority patent/KR101726724B1/ko
Priority to CN201080004623.6A priority patent/CN102282739B/zh
Publication of WO2010082608A1 publication Critical patent/WO2010082608A1/ja
Priority to US14/950,056 priority patent/US9935451B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/18Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for batteries; for accumulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0031Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00302Overcharge protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00304Overcurrent protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00306Overdischarge protection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a protection monitoring circuit, a battery pack, a secondary battery monitoring circuit, and a protection circuit.
  • Lithium ion batteries as secondary batteries have been installed in portable devices such as digital cameras and mobile phones.
  • Lithium ion batteries are generally vulnerable to overcharge, overcurrent, overdischarge, etc., and are in the form of a battery pack with a protection circuit that protects the lithium ion battery by detecting overcharge, overcurrent, overdischarge, etc. Used in.
  • a temperature sensor or the like is provided in the battery pack, and a secondary battery monitoring circuit for detecting a voltage change corresponding to a temperature change in the battery pack and detecting a state such as a remaining battery level of the lithium ion battery. Etc. may be mounted.
  • the battery pack is separately provided with a communication terminal for transmitting an output signal from the secondary battery monitoring circuit to the portable device, and the battery pack obtains status information of the battery pack output from the communication terminal. Perform state management.
  • the protection circuit and the secondary battery monitoring circuit provided in the battery pack do not have communication means with each other and operate independently, in the secondary battery monitoring circuit There was no way to know that the protection circuit worked. Therefore, in the secondary battery monitoring circuit, in order to determine whether or not the protection circuit has been operated, whether the voltage and current sensors of the secondary battery monitoring circuit itself are monitored and whether the conditions for operating the protection circuit are met. No, it was necessary to keep calculating at all times.
  • the presence or absence of the protective operation is determined by the calculation of the secondary battery monitoring circuit, there are the following problems.
  • the presence / absence of the overcharge protection operation could be determined without any problem using a battery voltage monitor or the like.
  • the power supply of the secondary battery monitoring circuit was dropped at a voltage very close to the overdischarge detection voltage, that is, the power supply of the secondary battery monitoring circuit was activated again. Normally, this is realized by detecting that the power-on reset has been activated.
  • there is a possibility of erroneous detection and it is difficult to strictly determine whether or not the protection circuit has been operated.
  • the protection circuit is forcibly operated from the secondary battery monitoring circuit to double the protection function and improve safety. It has been demanded.
  • the present invention has been made in view of the above points, and enables the protection function of the protection circuit to operate from the secondary battery monitoring circuit, and allows the operation state of the protection circuit to be inquired. It is an object of the present invention to provide a protection monitoring circuit, a battery pack, a secondary battery monitoring circuit, and a protection circuit that can transmit an operating state to a secondary battery monitoring circuit.
  • the present invention provides a secondary battery monitoring circuit (120) for detecting a state of a chargeable / dischargeable secondary battery (110), and the secondary battery (110) and a load or a charging device.
  • a protection monitoring circuit (101) comprising a protection circuit (130) for protecting the secondary battery (110) by controlling on / off of a charge control transistor or a discharge control transistor (M11, M12) provided therebetween.
  • the secondary battery monitoring circuit (120) outputs a control signal for forcibly turning on / off the charge control transistor or the discharge control transistor (M11, M12) to the protection circuit (130),
  • the protection circuit (130) performs on / off control of the charge control transistor or the discharge control transistor when receiving the control signal.
  • the secondary battery monitoring circuit (120) detects at least one of overcharge, overdischarge, and overcurrent of the secondary battery (110), When at least one of overcharge, overdischarge, and overcurrent of the secondary battery (110) is detected, the charge control transistor or the discharge control transistor is forced to the protection circuit (130). A control signal to be turned off is output, and the protection circuit (130) forcibly turns off the charge control transistor or the discharge control transistor in accordance with the control signal to be turned off.
  • the threshold values set for the protection circuit (130) to detect overcharge, overdischarge, and overcurrent of the secondary battery (110) are as follows:
  • the secondary battery monitoring circuit (120) is different from each threshold value set for detecting overcharge, overdischarge, and overcurrent of the secondary battery (110).
  • the secondary battery monitoring circuit (120) outputs an operation state inquiry signal for inquiring an operation state to the protection circuit (130), and the protection circuit ( 130), when receiving the inquiry signal, outputs an operation state notification signal for notifying the operation state of the protection circuit (130) to the secondary battery monitoring circuit (120).
  • the protection circuit (130) detects the secondary battery (110) upon detecting at least one of overcharge, overdischarge, and overcurrent.
  • a notification signal for notifying the battery monitoring circuit (120) of the detection is output, and the secondary battery monitoring circuit (120) includes a nonvolatile memory (124), and the notification signal or the operation state notification When a signal is received, information indicating the detection or the operation state is recorded in the nonvolatile memory (124).
  • the secondary battery monitoring circuit (120) is configured to overcharge, overdischarge, overdischarge the secondary battery (110) based on the notification signal or the operation state notification signal.
  • the number of detections of each of the overcurrent and the overcurrent is counted, and the counted number of detections is recorded in the nonvolatile memory (124).
  • the secondary battery monitoring circuit (120) may detect when the number of detections exceeds the predetermined number of times when the number of detections exceeds a predetermined number of times. According to the result, a control signal for forcibly turning off the charge control transistor or the discharge control transistor is output to the protection circuit (130).
  • the protection circuit (130) includes a first communication terminal (152) connected to the secondary battery monitoring circuit (120) and a communication terminal for the load.
  • the protection monitoring circuit (101) of the present invention is characterized by comprising a resistor (R4) connected between the communication terminal (116) with the load and the second communication terminal (153). .
  • the battery pack (100) of the present invention is characterized by including the above-described protection monitoring circuit (101).
  • the secondary battery monitoring circuit (120) of the present invention detects at least one of overcharge, overdischarge, and overcurrent of the rechargeable secondary battery (110) to detect the secondary battery (110).
  • the charge control transistor or discharge control transistor provided between the load and the charging device is turned on / off to be connected to a protection circuit (130) that protects the secondary battery (110).
  • a control signal for forcibly turning on / off the charge control transistor or the discharge control transistor is output to the protection circuit (130). It is characterized by doing.
  • the secondary battery monitoring circuit (120) of the present invention causes the protection circuit (130) to detect when at least one of overcharge, overdischarge, and overcurrent of the secondary battery (110) is detected. On the other hand, a control signal for forcibly turning off the charge control transistor or the discharge control transistor is output.
  • the secondary battery monitoring circuit (120) of the present invention has a nonvolatile memory (124), and overcharges, overdischarges, and overcurrents of the secondary battery (110) from the protection circuit (130).
  • a notification signal notifying that any one of the above has been detected or an operation state notification signal notifying the operation state of the protection circuit (130) is received, information indicating the detection or the operation state is stored in the nonvolatile memory. It is recorded in a memory (124).
  • the secondary battery monitoring circuit (120) of the present invention counts the number of detections of overcharge, overdischarge, and overcurrent of the secondary battery (110) based on the notification signal or the operation state notification signal. Then, each of the counted detection circuits is recorded in the non-volatile memory (124), and when the number of times exceeds a predetermined number of times set in accordance with the detection result when the number of times exceeds the predetermined number of times. A control signal for forcibly turning off the charge control transistor or the discharge control transistor is output to the protection circuit (130).
  • the protection circuit (130) of the present invention detects a state of the chargeable / dischargeable secondary battery (110) and has a non-volatile memory (124) for storing a control state by the protection circuit. (120) and detecting at least one of overcharge, overdischarge, and overcurrent of the secondary battery (110), and between the secondary battery (110) and a load or a charging device.
  • the protection circuit (130) for protecting the secondary battery (110) by controlling on / off of the provided charge control transistor or discharge control transistor the charge control output from the secondary battery monitoring circuit (120) When a control signal for forcibly turning on or off the transistor or the discharge control transistor is received, the charge control transistor or the discharge control transistor is turned on / off. Characterized in that it.
  • the protection circuit (130) of the present invention detects any one of overcharge, overdischarge, and overcurrent of the secondary battery (110) with respect to the secondary battery monitoring circuit (120). A notification signal for notifying that is output.
  • the protection function of the protection circuit can be operated from the secondary battery monitoring circuit, and the operation state of the protection circuit can be inquired, and the protection circuit can operate on the secondary battery monitoring circuit. It is possible to convey the state.
  • FIG. 1 It is a figure which shows an example of the circuit diagram of the battery pack of this embodiment. It is a figure which shows the hardware constitutions of a secondary battery monitoring IC. It is a figure which shows an example of an internal structure of protection IC. It is a figure which shows a mode that the charger was reversely connected to the external terminal. It is a figure which shows an example of the signal output to the protection IC from the secondary battery monitoring IC in this embodiment. It is a figure which shows the list of the commands recognized in protection IC. It is a figure which shows an example of the protection detection state notification command in protection IC notified to a secondary battery monitoring IC.
  • FIG. 1 is a diagram illustrating an example of a circuit diagram of the battery pack of the present embodiment.
  • the battery pack 100 is configured to include a protection monitoring circuit 101 and a battery unit 111.
  • the protection monitoring circuit 101 and the battery unit 111 are connected by a secondary battery connection positive terminal 112 and a secondary battery negative terminal 113.
  • the protection monitoring circuit 101 includes a secondary battery monitoring IC 120, a protection IC 130, resistors R1 to R5, capacitors C1 to C3, a MOS (Metal Oxide Semiconductor) transistor M11 having a parasitic diode D1, and a MOS having a parasitic diode D2.
  • the transistor M12, the positive terminal 114, the negative terminal 115, and the external terminal 116 are provided on the same substrate, and are configured as a protection module or COB (Chip on Board).
  • the secondary battery monitoring circuit and the protection circuit are realized by an IC (Integrated Circuit), and may be provided in the form of, for example, an IC package or a COB.
  • the battery pack 100 is used by being connected to a portable device, a charging device or the like through a positive terminal 114 and a negative terminal 115.
  • the battery pack 100 monitors the state of the battery unit 111 having a plurality of secondary batteries 110 by the secondary battery monitoring IC 120 and protects the battery unit 111 from overcharge, overcurrent, overdischarge, and the like by the protection IC 130.
  • the secondary battery monitoring IC 120 monitors the state of the battery unit 111, acquires the state information of the battery unit 111, and detects the remaining amount of the battery, for example. Further, when the secondary battery monitoring IC 120 receives a reference request for the status information of the battery unit 111 from, for example, a portable device, the secondary battery monitoring IC 120 provides the portable device with status information corresponding to the reference request. For example, the product name MM8002 is used as the secondary battery monitoring IC 120.
  • the secondary battery monitoring IC 120 detects a voltage at both ends of the resistor R3, a VDD1 terminal as a power supply terminal, a VSS terminal as a reference potential terminal, a VBAT1 terminal as a voltage detection terminal of the battery unit 111, and the resistor R3.
  • VRSP terminal and VRSM terminal that are voltage detection terminals, a SIO terminal that is a communication terminal for portable devices, and a PORT0 terminal, a PORT1 terminal, and a PORT2 terminal that are communication terminals for the protection IC 130.
  • the secondary battery monitoring IC 120 is supplied with a regulated (stabilized) power supply voltage from the protection IC 130 via the VDD1 terminal which is a power supply terminal. Further, the secondary battery monitoring IC 120 detects the voltage of the battery unit 111 via the VBAT1 terminal which is a voltage detection terminal connected to the positive electrode of the battery unit 111.
  • the VRSM terminal and the VRSP terminal which are voltage detection terminals, detect the current flowing through the resistor R3 by detecting the voltage across the resistor R3 outside the secondary battery monitoring IC 120. Thereby, the charge / discharge current of the battery unit 111 is detected.
  • the SIO terminal of the secondary battery monitoring IC 120 is connected to an external terminal 116 used as a communication terminal with a portable device or the like via the protection IC 130.
  • the secondary battery monitoring IC 120 of this embodiment communicates with a portable device or the like via the SIO terminal and the protection IC 130.
  • the secondary battery monitoring IC 120 communicates with the protection IC 130 via the PORT0 terminal, the PORT1 terminal, and the PORT2 terminal which are communication terminals connected to the protection IC 130.
  • the secondary battery monitoring IC 120 forcibly turns off the MOS transistors M11 and M12 that are the discharge control transistor or the charge control transistor of the protection IC 130 via the PORT0 terminal, the PORT1 terminal, and the PORT2 terminal.
  • a control signal for canceling off (forcibly turning on) is output.
  • the secondary battery monitoring IC 120 determines that the battery voltage of the battery unit 111 has become higher than a preset overcharge detection voltage value, the MOS transistor as a charge control transistor with respect to the protection IC 130 A charge control signal for forcibly turning off M12 is output. Further, when the secondary battery monitoring IC 120 determines that the battery voltage of the battery unit 111 is lower than the preset overdischarge detection voltage value, the secondary battery monitoring IC 120 forces the protection IC 130 to force the MOS transistor M11 as a discharge control transistor. A discharge control signal for turning off automatically is output.
  • the secondary battery monitoring IC 120 determines that the charging current of the battery unit 111 is higher than a preset charging overcurrent detection current value, the secondary battery monitoring IC 120 sets the MOS transistor M12 as a charging control transistor to the protection IC 130. A charge control signal for forcibly turning off is output. Furthermore, when the secondary battery monitoring IC 120 determines that the discharge current of the battery unit 111 has become lower than a preset discharge overcurrent value, the secondary battery monitoring IC 120 forces the protection IC 130 to force the MOS transistor M11 as a discharge control transistor. A discharge control signal for turning off automatically is output.
  • the secondary battery monitoring IC 120 outputs an operation state inquiry signal for inquiring the operation state to the protection IC 130, and an operation state notification signal for notifying the operation state in the protection IC 130 from the protection IC 130 in response to the inquiry. Receive. Further, the secondary battery monitoring IC 120 receives a notification signal that notifies the protection IC 130 that overcharge, overdischarge, charge overcurrent, and discharge overcurrent have been detected.
  • the secondary battery monitoring IC 120 Based on the notification signal received from the protection IC 130, the secondary battery monitoring IC 120 detects that overcharge, overdischarge, charge overcurrent, and discharge overcurrent are detected, or based on the operation state notification signal received from the protection IC 130. Information indicating the operation state of the protection IC 130 is recorded in the nonvolatile memory.
  • the protection IC 130 incorporates an overcharge detection circuit, an overcurrent detection circuit, an overdischarge detection circuit, and the like, detects overcharge, overcurrent, overdischarge, etc. of the secondary battery unit 111, and detects a load on the secondary battery. On / off control of a charge control transistor or a discharge control transistor provided between the portable device or the like or a charging device that supplies power to the secondary battery is performed. Accordingly, the protection IC 130 protects the battery unit 111 from overcharge, overcurrent, overdischarge, and the like of the secondary battery. For example, the product name MM3289 is used as the protection IC 130.
  • the protection IC 130 includes a VDD2 terminal that is a power supply terminal, a VSS terminal that is a reference potential terminal, a VSENSE terminal that is a voltage detection terminal, and a VREGOUT terminal that is a terminal that outputs a regulated voltage to the secondary battery monitoring IC 120. Configured to have.
  • the protection IC 130 includes a DOUT terminal and a COUT terminal connected to the gates of the MOS transistors M11 and M12 that interrupt charging / discharging of the battery pack 100, and a CCNT terminal and a DCNT terminal that are communication terminals with the secondary battery monitoring IC 120, respectively. , And an INT terminal.
  • the protection IC 130 is supplied with a power supply voltage via a VDD2 terminal that is a power supply terminal connected to the positive electrode of the battery unit 111.
  • the VSS terminal which is a reference potential terminal is connected to the negative electrode of the battery unit 111.
  • the protection IC 130 includes a voltage regulator (LDO) 131 that performs a low-saturation regulator, and regulates the power supply voltage supplied to the VDD2 terminal, which is a power supply terminal, by the voltage regulator 131.
  • the secondary battery monitoring IC 120 is supplied via the VREGOUT terminal.
  • the voltage regulator 131 is integrated and integrated with the protection IC 130. However, the voltage regulator 131 may be separated and is not limited thereto.
  • the protection IC 130 detects the voltage of the battery unit 111 via the VSENSE terminal which is a voltage detection terminal connected to the positive electrode of the battery unit 111. In addition, when the protection IC 130 detects an overdischarge, a discharge overcurrent, or the like, the output of the DOUT terminal is set to a low level to shut off (turn off) the MOS transistor M11. Further, when the overcharge and the overcharge current are detected, the protection IC 130 sets the output of the COUT terminal to a low level and shuts off (turns off) the MOS transistor M12.
  • the protection IC 130 communicates with the secondary battery monitoring IC 120 via a CCNT terminal, a DCNT terminal, and an INT terminal that are communication terminals connected to the secondary battery monitoring IC 120.
  • the protection IC 130 receives a control signal for forcibly turning off or releasing the MOS transistors M11 and M12 output from the secondary battery monitoring IC 120 and an operation state inquiry signal for inquiring the operation state of the protection IC 130. .
  • the protection IC 130 When the protection IC 130 receives these control signal and operation state inquiry signal, the protection IC 130 controls the MOS transistors M11 and M12 based on the control signal and notifies the operation state in the protection IC 130 according to the operation state inquiry signal. Output a notification signal.
  • the protection IC 130 when the protection IC 130 receives a charge control signal for turning off the MOS transistor M12 as the charge control transistor from the secondary battery monitoring IC 120, the protection IC 130 turns off the MOS transistor M12. Further, when the protection IC 130 receives a discharge control signal for turning off the MOS transistor M11 as the discharge control transistor from the secondary battery monitoring IC 120, the protection IC 130 turns off the MOS transistor M11.
  • the protection IC 130 detects overcharge, overcurrent, and overdischarge, the protection IC 130 outputs a notification signal that notifies the secondary battery monitoring IC 120 of the detection.
  • the secondary battery monitoring IC 120 and the protection IC 130 detect overcharge, overcurrent, overdischarge, etc. of the battery unit 111, respectively.
  • the secondary battery monitoring IC 120 detects overcharge or the like, it outputs a control signal for controlling the MOS transistors M11 and M12 to the protection IC 130, and the protection IC 130 based on the control signal outputs the MOS transistors M11 and M12.
  • the protection IC 130 detects overcharge or the like, it controls the MOS transistors M11 and M12 by itself. Accordingly, the protection monitoring circuit 101 can double protect the battery unit 111 from overcharge, overcurrent, overdischarge, and the like by the secondary battery IC 120 and the protection IC 130.
  • the threshold values set for the protection IC 130 to detect the overcharge, overdischarge, and overcurrent of the battery unit are, for example, the secondary battery monitoring IC 120, for example, overcharge, overdischarge, and overcharge of the battery unit. It can be set to be different from each threshold value set for detecting the overcurrent. As a result, the protection monitoring circuit 101 can detect overcharge or the like in duplicate by the two systems of the secondary battery monitoring IC 120 and the protection IC 130.
  • the overcharge detection voltage threshold of the protection IC 130 is set to be higher than the overcharge detection voltage threshold of the secondary battery monitoring IC 120, and the overdischarge detection voltage threshold of the secondary battery monitoring IC 120 is set as the overdischarge detection of the protection IC 130.
  • the secondary battery monitoring IC 120 is responsible for primary detection of overcharge and overdischarge, and the protection IC 130 is responsible for secondary detection.
  • the voltage measurement function of the battery monitoring IC 120 responsible for primary detection enables high accuracy of voltage measurement, and even if a malfunction occurs in the microcomputer built in the battery monitoring IC 120, the protection IC 130 Secondary detection is possible. Further, the threshold value on the primary detection side can be changed only by rewriting the nonvolatile memory data of the battery monitoring IC 120.
  • the overcharge detection voltage threshold of the protection IC 130 is set lower than the overcharge detection voltage threshold of the secondary battery monitoring IC 120, and the overdischarge detection voltage threshold of the secondary battery monitoring IC 120 is set to the overdischarge of the protection IC 130.
  • the protection IC 130 is responsible for primary detection for preferentially detecting overcharge and overdischarge, and the secondary battery monitoring IC 120 is responsible for secondary detection.
  • the protection IC 130 since the protection IC 130 has a much lower degree of integration than the battery monitoring IC 120, the failure rate is low, and the primary detection of overcharge and overdischarge is performed by the protection IC 130, thereby increasing the reliability.
  • the detection current threshold value of the charge overcurrent of the protection IC 130 is set to be higher than the detection current threshold value of the charge overcurrent of the secondary battery monitoring IC 120, and the detection current threshold value of the discharge overcurrent of the secondary battery monitoring IC 120 is set.
  • the discharge overcurrent is set to be higher than the detection current threshold
  • the secondary battery monitoring IC 120 is responsible for primary detection of the charge overcurrent and discharge overcurrent
  • the protection IC 130 is responsible for secondary detection.
  • the current measurement function of the battery monitoring IC 120 responsible for the primary detection enables the current measurement to be highly accurate, and the threshold value can be changed only by rewriting the nonvolatile memory data.
  • the detection current threshold value of the charge overcurrent of the protection IC 130 is set lower than the detection current threshold value of the charge overcurrent of the secondary battery monitoring IC 120, and the detection current threshold value of the discharge overcurrent of the secondary battery monitoring IC 120 is set.
  • the protection IC 130 is responsible for primary detection of the charge overcurrent and the discharge overcurrent
  • the secondary battery monitoring IC 120 is responsible for secondary detection.
  • the protection IC 130 responsible for primary detection can set the reaction speed at the time of overcurrent detection to the order of several ms, thereby eliminating the risk of heat generation.
  • the detection voltage threshold and the detection current threshold of the secondary battery monitoring IC 120 and the protection IC 130 are set as different thresholds, respectively, so that the primary battery is preferentially used with the secondary battery monitoring IC 120 and the protection IC 130. It is possible to realize a plurality of combinations that perform detection and supplementary secondary detection.
  • the above-described primary detection of overcharge and overdischarge can be performed by the battery monitoring IC 120, and primary detection of the charge overcurrent and discharge overcurrent can be performed by the protection 130.
  • the detection threshold value of the battery monitoring IC 120 may be changed and detected when the temperature of the battery unit 111 changes by the temperature detection function of the battery monitoring IC 120 described later.
  • FIG. 2 is a diagram illustrating a hardware configuration of the secondary battery monitoring IC.
  • the secondary battery monitoring IC 120 includes a CPU (Central Processing Unit) 121, a sensor unit 122, a ROM (Read Only Memory) 123, an EEPROM (Erasable Programmable ROM) 124, and a serial interface (I / F). 125 and an I / O PORT (input / output port) 126.
  • CPU Central Processing Unit
  • sensor unit 122 a sensor unit
  • ROM Read Only Memory
  • EEPROM Erasable Programmable ROM
  • serial interface I / F
  • I / O PORT input / output port
  • the CPU 121 controls each part of secondary battery monitoring IC 120.
  • the sensor unit 122 detects the voltage, current, and temperature of the battery unit 111.
  • the ROM 123 stores a program that the CPU 121 executes to control each unit of the secondary battery monitoring IC 120.
  • the CPU 121 detects at least one of overcharge, overcurrent, overdischarge, and the like based on information such as voltage, current, and temperature parameters of the battery unit 111 detected by the sensor unit 122.
  • the CPU 121 generates a control signal for the protection IC 130 and an operation state inquiry signal for inquiring the operation (protection) state of the protection IC 130, and connects the generated signal to the protection IC 130 via the I / O PORT 126.
  • the output from the PORT0 terminal, the PORT1 terminal, and the PORT2 terminal is output to the protection IC 130.
  • the CPU 121 As a control signal for the protection IC 130, the CPU 121 generates and outputs a control signal for forcibly turning on / off the MOS transistor M11 and the MOS transistor M12 that control charging / discharging of the battery pack 100.
  • the CPU 121 forcibly turns off the MOS transistor M11 or the MOS transistor M12 with respect to the protection IC 130 when detecting at least one of overcharge, overdischarge, discharge overcurrent, charge overcurrent, and the like.
  • a control signal such as a discharge control signal or a charge control signal is generated and output.
  • the CPU 121 generates an operation state inquiry signal for monitoring the operation (protection) state of the protection IC 130, for example, after receiving a notification signal indicating that overcharge, overcurrent, or the like has been detected from the protection IC 130. Output.
  • the CPU 121 notifies the protection IC 130 that at least one of overcharge, overdischarge, discharge overcurrent, charge overcurrent, etc. has been detected via the PORT0 terminal, the PORT1 terminal, and the PORT2 terminal, or
  • a nonvolatile memory such as an EEPROM 124 described later is overcharged, overdischarged, discharged overcurrent, overcharged in the protection IC130.
  • Information indicating that a current or the like has been detected or the operating state of the protection IC 130 is recorded.
  • the CPU 121 determines the number of detections of overcharge, overdischarge, discharge overcurrent, charge overcurrent, etc. of the battery unit 111 based on the notification signal or the operation state notification signal received from the protection IC 130, for example, a register or the like It counts by using and incrementing, and records the counted number of times of detection in, for example, the EEPROM 124 or the like.
  • the CPU 121 forces the MOS transistor M11 and the MOS transistor M12 to the protection IC 130 according to the detection result when the counted number of detections exceeds the predetermined number set for each.
  • a control signal for automatically turning off can be generated and output.
  • the EEPROM 124 stores information such as voltage, current, and temperature parameters of the battery unit 111 detected by the sensor unit 122.
  • the EEPROM 124 detects overcharge, overdischarge, discharge overcurrent, and charge overcurrent from the protection IC 130 received from the I / O PORT 126 via the three communication terminals PORT0, PORT1, and PORT2. Information indicating the effect is stored.
  • the I / O PORT 126 performs input / output of signals for communication with the protection IC 130 via the three communication terminals PORT0 terminal, PORT1 terminal, and PORT2 terminal.
  • the CPU 121, the sensor unit 122, the ROM 123, the EEPROM 124, the serial I / F 125, and the I / O PORT 126 are connected by a bus 127, and can exchange data, programs, and the like among them.
  • the sensor unit 122 is configured to include a temperature sensor circuit 122a, a voltage sensor circuit 122b, a current sensor circuit 122c, a multiplexer 122d, and an analog-digital (A / D) conversion circuit 122e.
  • the temperature sensor circuit 122a detects the temperature of the battery unit 111.
  • the voltage sensor circuit 122b detects the output voltage of the battery unit 111 via the voltage detection terminal VBAT1 connected to the battery unit 111.
  • the current sensor circuit 122c detects the current flowing through the resistor R3, that is, the charge / discharge current of the battery unit 111, via the voltage detection terminals VRSP and VRSM connected to both ends of the external resistor R3.
  • Each output of the temperature sensor circuit 122a, the voltage sensor circuit 122b, and the current sensor circuit 122c is connected to the multiplexer 122d, and is output as one signal by the multiplexer 122d.
  • the A / D conversion circuit 122e converts the signal output from the multiplexer 122d from analog to digital.
  • FIG. 3 is a diagram illustrating a schematic example of the internal configuration of the protection IC.
  • the protection IC 130 includes a voltage regulator (LDO) 131, an overcharge detection circuit 132, an overdischarge detection circuit 133, an overcurrent detection circuit 134, and a short (short circuit) detection circuit 135. It is configured as follows.
  • the protection IC 130 includes a logic circuit 136 that generates an output signal as a control signal based on the detection signals from the detection circuits, a delay circuit 137 as a dead time setting circuit, a secondary battery monitoring IC 120, And a communication control circuit 138 for controlling the two-way communication.
  • VSS terminal 142 includes a VSS terminal 142, a VDD terminal 143, a DOUT terminal 144, a COUT terminal 145, a V- (minus) input terminal 146, a VREGOUT terminal 147, a VSENSE terminal 148, and a CCNT.
  • the terminal 149, the DCNT terminal 150, and the INT terminal 151 are configured.
  • the voltage regulator 131 is connected to the VDD terminal 143 (VDD2 terminal in FIG. 1) which is a power supply terminal, and regulates the power supply voltage supplied into the protection IC 130.
  • the voltage regulator 131 is connected to the VREGOUT terminal 147, and outputs the regulated power supply voltage from the VREGOUT terminal 147 to the secondary battery monitoring IC 120.
  • the overcharge detection circuit 132 includes a comparator, and its non-inverting input terminal is connected to a connection point between the resistors R11 and R12 connected in series between the VSS terminal 142 and the VSENSE terminal 148, and the inverting input terminal. Is connected to the positive side of the reference voltage source Vref1.
  • the overdischarge detection circuit 133 includes a comparator, and its non-inverting input terminal is between the VSS terminal 142 and the resistors R13 and R14 connected in series between the VSENSE terminal 148.
  • the inverting input terminal is connected to the positive side of the reference voltage source Vref1.
  • the overcurrent detection circuit 134 also includes a comparator in the same manner as the overcharge detection circuit 132 and overdischarge detection circuit 133 described above, and its non-inverting input terminal is connected to the V-input terminal 146 via the resistor R15. The terminal is connected to the positive side of the reference voltage source Vref2. The negative side of the reference voltage sources Vref1 and Vref2 is connected to the VSS terminal 142.
  • the short detection circuit 135 is composed of an amplifier with a hysteresis function, and is connected to the V-input terminal 146 via a resistor R15.
  • the overcharge detection circuit 132 outputs an overcharge detection signal when detecting an overcharge state.
  • the overdischarge detection circuit 133 outputs an overdischarge detection signal when an overdischarge state is detected, and outputs an overdischarge return signal when an overdischarge return state is detected.
  • the overcurrent detection circuit 134 outputs an overcurrent detection signal when an overcurrent is detected.
  • the output overcharge detection signal, overdischarge detection signal, and overcurrent detection signal are maintained while the overcharge state, overdischarge state, and overcurrent state continue, and are input to the logic circuit 136, respectively.
  • the logic circuit 136 When receiving an overcharge detection signal, an overdischarge detection signal, an overcurrent detection signal, or the like, the logic circuit 136 outputs a signal corresponding to each case to the delay circuit 137 and the communication control circuit 138.
  • the delay circuit 137 When the delay circuit 137 receives a signal corresponding to overdischarge detection, for example, from the logic circuit 136, the first overdischarge instruction is passed when the first stage insensitive time set corresponding to the overdischarge detection has elapsed. The signal is output to the logic circuit 136. Further, the delay circuit 137 outputs a second overdischarge instruction signal to the logic circuit 136 when the second stage insensitive time has elapsed.
  • the logic circuit 136 when receiving the above-described first overdischarge instruction signal, the logic circuit 136 outputs a discharge control signal for interrupting the discharge current from the DOUT terminal 144 via the inverter 140 and the resistor R16. In addition, when the logic circuit 136 receives the above-described second overdischarge instruction signal, the logic circuit 136 outputs a voltage regulator off signal for shutting down the voltage regulator 131 to the voltage regulator 131.
  • the delay circuit 137 when the delay circuit 137 receives a signal corresponding to overcurrent detection from the logic circuit 136, the delay circuit 137 outputs an overcurrent instruction signal to the logic circuit 136 when a dead time set corresponding to the overcurrent detection has elapsed. . At this time, when receiving the overcurrent instruction signal, the logic circuit 136 outputs a discharge control signal for cutting off the discharge current from the DOUT terminal 144.
  • the logic circuit 136 when the logic circuit 136 receives the short detection signal from the short detection circuit 135, the logic circuit 136 outputs a discharge control signal for cutting off the discharge current without dead time from the DOUT terminal 144.
  • the logic circuit 136 when the logic circuit 136 receives the overdischarge return signal from the overdischarge detection circuit 133, the logic circuit 136 outputs a voltage regulator on signal for turning on the voltage regulator 131 to the voltage regulator 131 without insensitive time.
  • the delay circuit 137 when the delay circuit 137 receives a signal corresponding to overcharge detection, for example, from the logic circuit 136, the delay circuit 137 sends an overcharge instruction signal to the logic circuit 136 when the insensitive time set corresponding to the overcharge detection has elapsed. Output. At this time, when receiving the overcharge instruction signal, the logic circuit 136 outputs a charge control signal for cutting off the charging current from the COUT terminal 145 via the inverter 141 and the resistor R17.
  • the communication control circuit 138 When the communication control circuit 138 receives the protection detection state (operation state) inquiry signal (command) output from the secondary battery monitoring IC 120 via the CCNT terminal 149, DCNT terminal 150, and INT terminal 151, the logic circuit 136. , And signals indicating states such as overcharge detection, discharge overcurrent detection, charge overcurrent detection, and normal state are output from the CCNT terminal 149, the DCNT terminal 150, and the INT terminal 151, for example.
  • the communication control circuit 138 sends a signal from the secondary battery monitoring IC 120 to forcibly turn off (shut off) the MOS transistor M11 or the MOS transistor M12 via the CCNT terminal 149, the DCNT terminal 150, and the INT terminal 151.
  • the logic circuit 136 Upon receipt, the logic circuit 136 outputs a notification signal or the like for notifying the MOS transistor M11 or the MOS transistor M12 to be forcibly turned off.
  • the logic circuit 136 outputs the above-described discharge control signal, charge control signal, or the like from the DOUT terminal 144 and the COUT terminal 145. Is output.
  • a notification signal for notifying overcharge detection, overdischarge detection, discharge overcurrent detection, charge overcurrent detection, and the like is output from the terminal 151 to the secondary battery monitoring IC 120.
  • the protection IC 130 includes an SIOE terminal 152 as a first communication terminal connected to the secondary battery monitoring IC 120 and an SIOE as a second communication terminal connected to an external terminal 116 that communicates with a mobile device or the like.
  • the level shift circuit 139 shifts the level of the communication pulse signal indicating the state information input from the SIOI terminal 152 and outputs it from the SIOE terminal 153.
  • the SIOI terminal 152 is pulled up by the power supply voltage of the secondary battery monitoring IC 120 and the SIOE terminal 153 is pulled up by the power supply voltage on the portable device side, and the high level on the secondary battery monitoring IC 120 and the high level on the portable device side are different. There is a case.
  • the level shift circuit 139 performs high-level voltage conversion between the secondary battery monitoring IC 120 and the mobile device, thereby enabling communication between the two even when the high-level voltages are different as described above. Further, when the voltage at one terminal becomes Low level, Low is output to the other terminal, and the same operation is performed in both directions. By this circuit, a communication signal between the secondary battery monitoring IC 120 and the portable device is passed.
  • the secondary battery monitoring IC 120 is a fine (weak to static electricity) IC manufacturing process with a built-in microcomputer
  • the protection IC 130 is an IC manufacturing process with high withstand voltage and strong against static electricity. Since a communication terminal with a portable device or the like is used as a terminal of a battery pack, it is necessary to satisfy the standard value of the battery pack safety and cope with static electricity and high voltage.
  • the SIO terminal which is the communication terminal of the secondary battery monitoring IC 120, is used as it is for information transmission with the mobile device main body or the like, it is difficult to satisfy the standard such as static electricity.
  • the SIOI terminal 152 that is connected to the SIO terminal that is the communication terminal of the secondary battery monitoring IC 120, and the external terminal 116 that is the communication output terminal to the mobile device body.
  • a SIOE terminal 153 to be connected and a circuit that allows communication signals to pass between the SIOI terminal 152 and the SIOE terminal 153 are configured.
  • the SIO terminal of the secondary battery monitoring IC 120 receives a communication signal from the portable device or the like via the protection IC 130, it is realized as a communication terminal resistant to static electricity and high voltage.
  • an electrostatic protection component such as a Zener diode, a capacitor, or a resistor to protect the destruction of the communication terminal of the secondary battery monitoring IC 120 described above. Can be reduced in size. This also makes it possible to mount a chip or the like that realizes additional functions such as authentication and detection of the remaining amount of the secondary battery.
  • the external terminal 116 shown in FIG. 1 is a communication terminal used by the secondary battery monitoring IC 120 for transmitting information to and from a portable device, and the battery pack 100 and the portable device. This is a terminal for inputting / outputting information to / from.
  • a resistor R4 is connected between the external terminal 116 and the SIOE terminal 153 as shown in FIG. Even if a charging device or the like is accidentally reversely connected to the external terminal 116 to which an intermediate potential is applied to the positive terminal 114 and the negative terminal 115 at all times, the current is limited by the resistor R4.
  • the protection IC 130 can be safely used without being destroyed.
  • FIG. 4 is a diagram showing a state where the charger is reversely connected to the external terminal.
  • the protection IC 130 functions as a forward diode in terms of structure. Therefore, since the maximum capacity current of the connected charger continues to flow through the protection IC 130, there is a risk that the protection monitoring circuit 101 generates heat.
  • FIG. 5 is a diagram illustrating an example of an operation during communication from the secondary battery monitoring IC to the protection IC in the present embodiment.
  • FIG. 6 is a diagram showing a list of commands recognized by the protection IC.
  • the protection IC 130 recognizes a command as shown in FIG. 6 at the level of the CCNT terminal and the DCNT terminal when the INT terminal shown in FIG. 5 falls.
  • the INT terminal rises, the output states of the DCNT terminal and the CCNT terminal are ignored.
  • the INT (PORT2) terminal is pulled down.
  • the protection IC 130 latches the CCNT terminal and the DCNT terminal at the falling edge of the INT terminal.
  • the protection IC 130 is notified of a forced FET control release command for the purpose.
  • the secondary battery monitoring IC 120 notifies the protection IC 130 of a command for inquiring the protection detection state that is the operation state of the protection IC 130.
  • the protection IC 130 When the above command is notified, the protection IC 130 performs overwriting control (OR logic in terms of internal logic) for the DOUT terminal and the COUT terminal in the case of forced control of the DOUT / COUT terminal. Further, when the command is an inquiry about the protection detection state, the protection IC 130 notifies the secondary battery monitoring IC 120 of the protection detection state shown in FIG.
  • the secondary battery monitoring IC 120 realizes a function for forcibly turning off the MOS transistors M11 and M12, which are the discharge control FET and the charge control FET of the protection IC 130, and a function for releasing the same. To do. Moreover, the function which inquires the protection detection state inside the protection IC 130 from the secondary battery monitoring IC 120 is realized.
  • FIG. 7 is a diagram illustrating an example of a protection detection state notification command in the protection IC that is notified to the secondary battery monitoring IC.
  • the protection IC 130 acquires the state of the logic circuit 136, for example, overcharge detection, discharge overcurrent detection, charge overcurrent detection.
  • a signal indicating a state such as a normal state is set in the CCNT terminal 149, the DCNT terminal 150, etc. as follows, and is notified as status information shown in FIG.
  • the protection IC 130 realizes a function of notifying the protection detection state in the protection IC 130 in response to the protection detection state inquiry of the secondary battery monitoring IC 120.
  • FIG. 8 shows an operation at the time of communication from the protection IC to the secondary battery monitoring IC when the protection IC detects other than overdischarge (the logic of CCNT (PORT0) and DCNT (PORT1) indicates the charge overcurrent detection state). It is a figure which shows an example.
  • FIG. 9 is a diagram illustrating an example of an operation during communication from the protection IC to the secondary battery monitoring IC when overdischarge is detected in the protection IC.
  • FIG. 10 is a diagram showing a list of commands recognized by the secondary battery monitoring IC.
  • Protect IC 130 operates differently when it detects overdischarge and when it detects something other than overdischarge. Specifically, when overcharge other than overdischarge, discharge overcurrent, or charge overcurrent is detected, the CCNT terminal and DCNT terminal are set according to the table shown in FIG. Output.
  • the CCNT (PORT0) terminal is set to a low level (0) and the DCNT (PORT1) terminal is set to a high level. Then, the pulse is set to (1), and then a low level pulse is output to the INT (PORT 2) terminal for a certain period. Next, the CCNT (PORT0) terminal is opened (High level).
  • the CCNT (PORT0) terminal is set to the low level
  • the DCNT (PORT1) terminal is set to the low level
  • the INT (PORT2) terminal is set to Pull down (set to low level and hold).
  • the secondary battery monitoring IC 120 is notified of a current detection command.
  • the protection IC 130 maintains the INT (PORT2) terminal at the low level and turns off the voltage regulator 131 that supplies the voltage to the secondary battery monitoring IC 120 even after detecting the overdischarge and setting the DOUT terminal to the low level. After that, HiZ (high impedance state) is set. Since the voltage regulator 131 is turned off, apparently Low is continuously output.
  • the protection IC 130 generates an interrupt to the secondary battery monitoring IC 120 to notify that the overcharge, overdischarge, charge overcurrent, and discharge overcurrent are detected. This realizes a function of notifying the secondary battery monitoring IC 120 of the fact that has worked.
  • the secondary battery monitoring IC 120 and the protection IC 130 realize the above-described functions by using a three-wire bidirectional communication interface.
  • One of the three lines is an interrupt signal line that interrupts the other party when a communication state is established, and the remaining two lines indicate the contents to be communicated.
  • Three communication lines are used to execute the above-described functions in the secondary battery monitoring IC 120 and the protection IC 130.
  • the number of communication lines is increased to four or more. It is possible to cope with this by increasing the number of lines as necessary.
  • a single-line or two-line interface that is generally used requires signal pattern analysis and timing control, and the size of the transmission / reception circuit becomes complicated. Not suitable.
  • the protection IC 130 is required to have a high breakdown voltage and a high static electricity resistance, a fine manufacturing process cannot be applied. Therefore, since it is not suitable for communication specifications that require a large-scale circuit, a communication interface that can be realized with a very small circuit configuration is required.
  • the secondary battery monitoring IC 120 and the protection IC 130 are three-way bidirectional. Using the communication interface, the above-described functions are realized by a very small circuit configuration.
  • FIG. 11 is a diagram illustrating an example of a battery pack including the protection monitoring circuit according to the present embodiment and a portable device equipped with the battery pack.
  • the protection monitoring circuit 101 As shown in FIG. 11, the protection monitoring circuit 101 according to the present embodiment is provided in the battery pack 100. Moreover, the battery pack 100 provided with the protection monitoring circuit 101 is mounted and used, for example, in the portable device 160 or the like.
  • the protection function of the protection circuit can be forcibly operated from the secondary battery monitoring circuit to the protection circuit.
  • the protection function against overcharge, overcurrent, overdischarge, etc. in the battery pack can be doubled to improve safety. For example, it is possible to increase the accuracy of the detection voltage by monitoring the voltage with the secondary battery monitoring circuit.
  • the present invention it is possible to inquire the current protection operation state from the secondary battery monitoring circuit to the protection circuit at an arbitrary timing. Thereby, it becomes possible to monitor how long the protection operation in the protection circuit has continued in the secondary battery monitoring circuit.
  • the present invention when a protection operation is performed in the protection circuit, it is possible to generate an interrupt to notify the secondary battery monitoring circuit that the protection circuit has been operated. In the secondary battery monitoring circuit, the record of the history of the protection operation becomes accurate. This makes it possible to reliably detect the history of the protection operation of the protection circuit in the secondary battery monitoring circuit, and leave the history of the protection operation of the battery pack.
  • the present invention has been described based on each embodiment, but the present invention is not limited to the requirements shown in the above embodiment. With respect to these points, the gist of the present invention can be changed without departing from the scope of the present invention, and can be appropriately determined according to the application form.
  • the present invention is applicable to a protection monitoring circuit, a battery pack, a secondary battery monitoring circuit, and a protection circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Protection Of Static Devices (AREA)

Abstract

 充放電可能な二次電池110の状態を検出する二次電池監視回路120と、前記二次電池110と負荷又は充電装置との間に設けられた充電制御トランジスタ又は放電制御トランジスタをオン/オフ制御して前記二次電池110を保護する保護回路130とを備える保護監視回路101であって、前記二次電池監視回路は、前記保護回路に対して前記充電制御トランジスタ又は前記放電制御トランジスタを強制的にオン/オフさせる制御信号を出力し、前記保護回路130は、前記制御信号を受信すると、前記充電制御トランジスタ又は前記放電制御トランジスタをオン/オフ制御することにより上記課題を解決する。

Description

保護監視回路、電池パック、二次電池監視回路、及び保護回路
  本発明は、保護監視回路、電池パック、二次電池監視回路、及び保護回路に関する。
  近年では、二次電池としてリチウムイオン電池がデジタルカメラや携帯電話等の携帯機器に搭載されている。リチウムイオン電池は、一般的に過充電、過電流、及び過放電等に弱く、過充電、過電流、及び過放電等を検出してリチウムイオン電池を保護する保護回路を備えた電池パックの形態で使用される。
  また、電池パック内には、温度センサ等が設けられ、電池パック内の温度変化に対応した電圧変化等を検出して、リチウムイオン電池の電池残量等の状態を検出する二次電池監視回路等が搭載される場合がある。この場合、電池パックには、二次電池監視回路からの出力信号を携帯機器に送信するための通信端子が別途設けられ、この通信端子から出力される電池パックの状態情報を取得して電池パックの状態管理を行う。
  従来では、電池パックに設けた通信端子から、電池パックの充電を制御するための制御信号を受信する充電装置が記載されている(例えば、特許文献1参照)。
特開2000-209788号公報
  しかしながら、上記において、電池パック内に設けられている保護回路や二次電池監視回路は、お互いに通信手段を有しておらず、それぞれが独立して動作していたため、二次電池監視回路において、保護回路が動作したことを知る術がなかった。そのため、二次電池監視回路において、保護回路が動作したか否かを判断するには、二次電池監視回路自身が持つ電圧センサ及び電流センサをモニタして、保護回路が動作する条件に当てはまるか否か、常時演算し続ける必要があった。
  一方、二次電池監視回路の演算によって保護動作の有無を判断する場合には、以下の問題があった。まず、過充電保護の動作の有無に関しては、電池電圧モニタ等により問題なく判断することができた。しかしながら、過放電保護の動作の有無に関しては、過放電検出電圧に非常に近い電圧で二次電池監視回路の電源が落ちたこと、すなわち、再度、二次電池監視回路の電源が起動されたこと、通常は、パワーオンリセットが働いたことを検出することで実現されるが、誤検出の可能性もあり、厳密には保護回路が動作したか否かを判断することが困難であった。
  また、過電流保護及び短絡保護の動作の有無についても、保護回路が動作したことを判断するのは非常に困難であった。その理由は、保護回路の過電流検出電流値は、二次電池監視回路の電流測定可能レンジの外側にあり、保護回路の過電流検出までの遅延時間が非常に短く、二次電池監視回路が電流測定を終える前に保護回路が動作するため、電流値の測定が困難なためである。したがって、正確に保護回路の動作状態を二次電池監視回路に記録したい場合には、何等かの通知メカニズムが必要であった。
  更に、二次電池監視回路において検出した、例えば過充電、過電流等に基づき、二次電池監視回路から強制的に保護回路を動作させることにより、保護機能を二重化して安全性を高めることも求められている。
  本発明は、上記の点に鑑みてなされたものであり、二次電池監視回路から保護回路の保護機能を動作させ、また、保護回路の動作状態を問合わせることを可能とし、また、保護回路から二次電池監視回路に対して動作状態を伝えることを可能とする保護監視回路、電池パック、二次電池監視回路、及び保護回路を提供することを目的とする。
  上記目的を達成するため、本発明は、充放電可能な二次電池(110)の状態を検出する二次電池監視回路(120)と、前記二次電池(110)と負荷又は充電装置との間に設けられた充電制御トランジスタ又は放電制御トランジスタ(M11、M12)をオン/オフ制御して前記二次電池(110)を保護する保護回路(130)とを備える保護監視回路(101)であって、前記二次電池監視回路(120)は、前記保護回路(130)に対して前記充電制御トランジスタ又は前記放電制御トランジスタ(M11、M12)を強制的にオン/オフさせる制御信号を出力し、前記保護回路(130)は、前記制御信号を受信すると、前記充電制御トランジスタ又は前記放電制御トランジスタをオン/オフ制御することを特徴とする。
  また、本発明の保護監視回路(101)において、前記二次電池監視回路(120)は、前記二次電池(110)の過充電、過放電、及び過電流のうち少なくとも一つを検出し、前記二次電池(110)の過充電、過放電、及び過電流のうち少なくとも一つが検出された場合に、前記保護回路(130)に対して前記充電制御トランジスタ又は前記放電制御トランジスタを強制的にオフさせる制御信号を出力し、前記保護回路(130)は、前記オフさせる制御信号に応じて、前記充電制御トランジスタ又は前記放電制御トランジスタを強制的にオフ制御することを特徴とする。
  また、本発明の保護監視回路(101)において、前記保護回路(130)が前記二次電池(110)の過充電、過放電、及び過電流を検出するために設定される各閾値は、前記二次電池監視回路(120)が前記二次電池(110)の過充電、過放電、及び過電流を検出するために設定される各閾値とそれぞれ異なることを特徴とする。
  また本発明の保護監視回路(101)において、前記二次電池監視回路(120)は、前記保護回路(130)に対して動作状態を問合わせる動作状態問合わせ信号を出力し、前記保護回路(130)は、前記問合わせ信号を受信すると、前記二次電池監視回路(120)に対して前記保護回路(130)の動作状態を通知する動作状態通知信号を出力することを特徴とする。
  また、本発明の保護監視回路(101)において、前記保護回路(130)は、前記二次電池(110)の過充電、過放電、及び過電流のうち少なくとも一つを検出すると、前記二次電池監視回路(120)に対して検出した旨を通知する通知信号を出力し、前記二次電池監視回路(120)は、不揮発性メモリ(124)を有し、前記通知信号又は前記動作状態通知信号を受信すると、前記検出した旨又は前記動作状態を示す情報を前記不揮発性メモリ(124)に記録することを特徴とする。
  また、本発明の保護監視回路(101)において、前記二次電池監視回路(120)は、前記通知信号又は前記動作状態通知信号に基づき、前記二次電池(110)の過充電、過放電、及び過電流それぞれの検出回数をカウントして、カウントしたそれぞれの検出回数を前記不揮発性メモリ(124)に記録することを特徴とする。
  また、本発明の保護監視回路(101)において、前記二次電池監視回路(120)は、前記検出回数がそれぞれに設定された所定回数を超えた場合に、前記所定回数を超えたときの検出結果に応じて、前記保護回路(130)に対して前記充電制御トランジスタ又は放電制御トランジスタを強制的にオフさせる制御信号を出力することを特徴とする。
  また、本発明の保護監視回路(101)において、前記保護回路(130)は、前記二次電池監視回路(120)と接続される第1の通信端子(152)と、前記負荷との通信端子(116)に接続される第2の通信端子(153)と、前記第1の通信端子(152)と前記第2の通信端子(153)とを接続する回路とを有し、前記回路は、前記二次電池監視回路(120)と前記負荷との間の通信信号を通過させることを特徴とする。
  また、本発明の保護監視回路(101)において、前記負荷との通信端子(116)と前記第2の通信端子(153)との間に接続される抵抗(R4)を備えることを特徴とする。
  また、本発明の電池パック(100)は、上述した保護監視回路(101)を備えることを特徴とする。
  また、本発明の二次電池監視回路(120)は、充放電可能な二次電池(110)の過充電、過放電、及び過電流のうち少なくとも一つを検出して、前記二次電池(110)と負荷又は充電装置との間に設けられた充電制御トランジスタ又は放電制御トランジスタをオン/オフ制御して前記二次電池(110)を保護する保護回路(130)と接続されている前記二次電池(110)の状態を検出する二次電池監視回路(120)において、前記保護回路(130)に対して前記充電制御トランジスタ又は前記放電制御トランジスタを強制的にオン/オフさせる制御信号を出力することを特徴とする。
  また、本発明の二次電池監視回路(120)は、前記二次電池(110)の過充電、過放電、及び過電流のうち少なくとも一つを検出した場合に、前記保護回路(130)に対して前記充電制御トランジスタ又は放電制御トランジスタを強制的にオフさせる制御信号を出力することを特徴とする。
  また、本発明の二次電池監視回路(120)は、不揮発性メモリ(124)を有し、前記保護回路(130)から、前記二次電池(110)の過充電、過放電、及び過電流のいずれか一つを検出した旨を通知する通知信号又は前記保護回路(130)の動作状態を通知する動作状態通知信号を受信すると、前記検出した旨又は前記動作状態を示す情報を前記不揮発性メモリ(124)に記録することを特徴とする。
  また、本発明の二次電池監視回路(120)は、前記通知信号又は前記動作状態通知信号に基づき、前記二次電池(110)の過充電、過放電、及び過電流それぞれの検出回数をカウントして、カウントしたそれぞれの検出回路を前記不揮発性メモリ(124)に記録し、前記回数がそれぞれに設定された所定回数を超えた場合に、前記所定回数を超えたときの検出結果に応じて、前記保護回路(130)に対して前記充電制御トランジスタ又は放電制御トランジスタを強制的にオフさせる制御信号を出力することを特徴とする。
  また、本発明の保護回路(130)は、充放電可能な二次電池(110)の状態を検出し、当該保護回路による制御状態を記憶する不揮発性メモリ(124)を有する二次電池監視回路(120)と接続され、前記二次電池(110)の過充電、過放電、及び過電流のうち少なくとも一つを検出して、前記二次電池(110)と負荷又は充電装置との間に設けられた充電制御トランジスタ又は放電制御トランジスタをオン/オフ制御して前記二次電池(110)を保護する保護回路(130)において、前記二次電池監視回路(120)から出力された前記充電制御トランジスタ又は前記放電制御トランジスタを強制的にオン/オフさせる制御信号を受信すると、前記充電制御トランジスタ又は前記放電制御トランジスタをオン/オフ制御することを特徴とする。
  また、本発明の保護回路(130)は、前記二次電池監視回路(120)に対して、前記二次電池(110)の過充電、過放電、及び過電流のいずれか一つを検出した旨を通知する通知信号を出力することを特徴とする。
  尚、上記参照符号は、あくまでも参考であり、これによって、本願発明が図示の態様に限定されるものではない。
  本発明によれば、二次電池監視回路から保護回路の保護機能を動作させ、また、保護回路の動作状態を問合わせることを可能とし、また、保護回路から二次電池監視回路に対して動作状態を伝えることを可能とする。
本実施形態の電池パックの回路図の一例を示す図である 二次電池監視ICのハードウェア構成を示す図である。 保護ICの内部構成の一例を示す図である。 外部端子に、充電器が逆接続された様子を示す図である。 本実施形態における二次電池監視ICから保護ICに出力される信号の一例を示す図である。 保護ICにおいて認識されるコマンドの一覧を示す図である。 二次電池監視ICに通知する保護IC内の保護検出状態通知コマンドの一例を示す図である。 過放電以外を検出した場合における保護ICから二次電池監視ICへの通信時における動作の一例を示す図である。 過放電を検出した場合における保護ICから二次電池監視ICへの通信時における動作の一例を示す図である。 二次電池監視ICにおいて認識されるコマンドの一覧を示す図である。 本実施形態に係る保護監視回路を備えた電池パック、及び電池パックを搭載した携帯機器の一例を示す図である。
  次に、本発明を実施するための形態について図面と共に説明する。
  <電池パックの回路図>
 図1は、本実施形態の電池パックの回路図の一例を示す図である。図1に示すように、電池パック100は、保護監視回路101と、電池ユニット111とを有するように構成される。保護監視回路101と、電池ユニット111とは、二次電池接続正極端子112及び二次電池負極端子113とにより接続されている。
  保護監視回路101は、二次電池監視IC120と、保護IC130と、抵抗R1~R5と、コンデンサC1~C3と、寄生ダイオードD1を有するMOS(Metal Oxide Semiconductor)トランジスタM11と、寄生ダイオードD2を有するMOSトランジスタM12と、正極端子114、負極端子115、外部端子116とを同一の基板上に配設し、保護モジュール又はCOB(Chip on Board)として構成される。なお、二次電池監視回路及び保護回路は、IC(Integrated Circuit)で実現され、例えばICパッケージ又はCOBの形態で提供されても良い。
  電池パック100は、正極端子114及び負極端子115により携帯機器や充電装置等と接続して用いられる。電池パック100は、二次電池監視IC120によって、二次電池110を複数有する電池ユニット111の状態を監視し、保護IC130によって過充電、過電流、及び過放電等から電池ユニット111を保護する。
  <二次電池監視IC120について>
 次に、図1における二次電池監視IC120について説明する。二次電池監視IC120は、電池ユニット111の状態を監視し、電池ユニット111の状態情報を取得し、例えば電池の残量等を検出する。また、二次電池監視IC120は、例えば携帯機器等から電池ユニット111の状態情報の参照要求を受け取ると、参照要求に応じた状態情報を携帯機器へ提供する。なお、二次電池監視IC120は、例えば製品名MM8002等が用いられる。
  また、二次電池監視IC120は、電源端子であるVDD1端子と、基準電位端子であるVSS端子と、電池ユニット111の電圧検知端子であるVBAT1端子と、抵抗R3の両端の電圧を検出する一組の電圧検出端子であるVRSP端子及びVRSM端子と、携帯機器等との通信端子であるSIO端子と、保護IC130との通信端子であるPORT0端子、PORT1端子、及びPORT2端子とを有するように構成される。
  また、二次電池監視IC120は、電源端子であるVDD1端子を介して、保護IC130からレギュレート(安定化)された電源電圧が供給される。また、二次電池監視IC120は、電池ユニット111の正極に接続された電圧検知端子であるVBAT1端子を介して電池ユニット111の電圧を検出する。また、電圧検出端子であるVRSM端子と、VRSP端子とは、二次電池監視IC120の外部で抵抗R3の両端の電圧を検出することで、抵抗R3を流れる電流を検出する。これにより、電池ユニット111の充放電電流を検出する。
  また、二次電池監視IC120のSIO端子は、保護IC130を介して、携帯機器等との通信端子として使用される外部端子116に接続されている。本実施形態の二次電池監視IC120は、SIO端子及び保護IC130を介して携帯機器等との通信を行う。
  二次電池監視IC120は、保護IC130と接続された通信端子であるPORT0端子と、PORT1端子と、PORT2端子とを介して、保護IC130との通信を行う。
  例えば、二次電池監視IC120は、PORT0端子と、PORT1端子と、PORT2端子とを介して、保護ICに、保護IC130の放電制御トランジスタ又は充電制御トランジスタであるMOSトランジスタM11、M12を強制的にオフ又はオフに対する解除(強制的にオン)を行う制御信号を出力する。
  具体的には、二次電池監視IC120は、予め設定した過充電検出電圧値よりも電池ユニット111の電池電圧が高くなったと判断した場合には、保護IC130に対して充電制御トランジスタとしてのMOSトランジスタM12を強制的にオフさせる充電制御信号を出力する。また、二次電池監視IC120は、予め設定した過放電検出電圧値よりも電池ユニット111の電池電圧が低くなったと判断した場合には、保護IC130に対して放電制御トランジスタとしてのMOSトランジスタM11を強制的にオフさせる放電制御信号を出力する。
  更に、二次電池監視IC120は、予め設定した充電過電流検出電流値よりも電池ユニット111の充電電流が高くなったと判断した場合には、保護IC130に対して充電制御トランジスタとしてのMOSトランジスタM12を強制的にオフさせる充電制御信号を出力する。更にまた、二次電池監視IC120は、予め設定した放電過電流値よりも電池ユニット111の放電電流が低くなったと判断した場合には、保護IC130に対して放電制御トランジスタとしてのMOSトランジスタM11を強制的にオフさせる放電制御信号を出力する。
  また、二次電池監視IC120は、保護IC130に対して動作状態を問合わせる動作状態問合わせ信号を出力し、問合わせに応じて保護IC130から保護IC130内の動作状態を通知する動作状態通知信号を受信する。また、二次電池監視IC120は、保護IC130から過充電、過放電、充電過電流、放電過電流が検出された旨を通知する通知信号を受信する。
  二次電池監視IC120は、保護IC130から受信した通知信号に基づき、過充電、過放電、充電過電流、放電過電流が検出された旨、又は、保護IC130から受信した動作状態通知信号に基づき、保護IC130の動作状態を示す情報を不揮発性メモリに記録する。
  <保護IC130について>
 次に、図1における保護IC130について説明する。保護IC130は、過充電検出回路、過電流検出回路、及び過放電検出回路等を内蔵して、二次電池ユニット111の過充電、過電流、過放電等を検出し、二次電池に対する負荷となる携帯機器等又は二次電池に対して電源を供給する充電装置との間に設けられた充電制御トランジスタ又は放電制御トランジスタをオン/オフ制御する。これにより、保護IC130は、二次電池の過充電、過電流、過放電等から電池ユニット111を保護する。なお、保護IC130は、例えば製品名MM3289等が用いられる。
  保護IC130は、電源端子であるVDD2端子及び基準電位端子であるVSS端子と、電圧検知端子であるVSENSE端子と、レギュレートされた電圧を二次電池監視IC120に出力する端子であるVREGOUT端子とを有するように構成される。
 また、保護IC130は、電池パック100の充放電を遮断するMOSトランジスタM11、M12のゲートにそれぞれ接続されるDOUT端子とCOUT端子と、二次電池監視IC120との通信端子であるCCNT端子、DCNT端子、及びINT端子とを有するように構成される。
  保護IC130は、電池ユニット111の正極に接続された電源端子であるVDD2端子を介して、電源電圧が供給される。基準電位端子であるVSS端子は、電池ユニット111の負極に接続される。
  また、保護IC130は、低飽和レギュレータする電圧レギュレータ(LDO)131を有し、電源端子であるVDD2端子に供給された電源電圧を、電圧レギュレータ131によってレギュレートし、レギュレートされた電源電圧を、VREGOUT端子を介して、二次電池監視IC120に供給する。なお、本実施形態では、電圧レギュレータ131は、保護IC130に一体化されて集積される構成としたが、別体としても良く、これには限定されない。
  保護IC130は、電池ユニット111の正極へ接続された電圧検知端子であるVSENSE端子を介して電池ユニット111の電圧を検出する。また、保護IC130は、過放電、及び放電過電流等を検出したとき、DOUT端子の出力をLowレベルとしてMOSトランジスタM11を遮断(オフ)する。また、保護IC130は、過充電、及び充電過電流を検出したとき、COUT端子の出力をLowレベルとしてMOSトランジスタM12を遮断(オフ)する。
  また、保護IC130は、二次電池監視IC120と接続された通信端子であるCCNT端子、DCNT端子、及びINT端子を介して、二次電池監視IC120と通信を行う。
  例えば、保護IC130は、二次電池監視IC120から出力されたMOSトランジスタM11、M12を強制的にオフ又はその解除をさせる制御信号、及び保護IC130の動作状態を問合わせる動作状態問合わせ信号を受信する。
  保護IC130は、これらの制御信号、動作状態問合わせ信号を受信すると、制御信号に基づきMOSトランジスタM11、M12を制御し、動作状態問合わせ信号に応じて保護IC130内の動作状態を通知する動作状態通知信号を出力する。
  具体的には、上述したように、保護IC130は、二次電池監視IC120から充電制御トランジスタとしてのMOSトランジスタM12をオフさせる充電制御信号を受信した場合には、MOSトランジスタM12をオフさせる。また、保護IC130は、二次電池監視IC120から放電制御トランジスタとしてのMOSトランジスタM11をオフさせる放電制御信号を受信した場合には、MOSトランジスタM11をオフさせる。
  また、保護IC130は、過充電、過電流、及び過放電を検出すると、二次電池監視IC120に対して、検出した旨を通知する通知信号を出力する。
  上述したように、二次電池監視IC120及び保護IC130は、それぞれ電池ユニット111の過充電、過電流、過放電等を検出する。二次電池監視IC120が過充電等を検出した場合には、保護IC130に対してMOSトランジスタM11、M12を制御する制御信号を出力し、保護IC130は、この制御信号に基づいてMOSトランジスタM11、M12を制御する。保護IC130が過充電等を検出した場合には、自らMOSトランジスタM11、M12を制御する。これにより、保護監視回路101は、二次電池IC120及び保護IC130によって、電池ユニット111を過充電、過電流、及び過放電等から二重に保護することが可能となる。
  また、このとき、例えば保護IC130が電池ユニットの過充電、過放電、及び過電流を検出するために設定される各閾値は、例えば二次電池監視IC120が電池ユニットの過充電、過放電、及び過電流を検出するために設定される各閾値とそれぞれ異なるように設定することができる。これにより、保護監視回路101は、二次電池監視IC120及び保護IC130の二系統によって二重に過充電等を検出することが可能となる。
  例えば、保護IC130の過充電の検出電圧閾値を二次電池監視IC120の過充電の検出電圧閾値よりも高く設定し、二次電池監視IC120の過放電の検出電圧閾値を保護IC130の過放電の検出電圧閾値よりも高く設定した場合には、二次電池監視IC120が過充電及び過放電の一次検出を担い、保護IC130が二次検出を担うこととなる。
  この場合には、一次検出を担う電池監視IC120の電圧測定機能によって、電圧測定の高精度化を可能にすると共に、電池監視IC120に内蔵するマイコンに不具合が生じた場合であっても保護IC130による二次検出が可能となる。また、電池監視IC120の不揮発性メモリデータの書き換えのみによって一次検出側の閾値の変更が可能となる。
  また、例えば、保護IC130の過充電の検出電圧閾値を二次電池監視IC120の過充電の検出電圧閾値よりも低く設定し、二次電池監視IC120の過放電検出電圧の閾値を保護IC130の過放電検出電圧よりも低く設定した場合には、保護IC130が過充電及び過放電を優先的に検出する一次検出を担い、二次電池監視IC120が二次検出を担うこととなる。
  この場合には、保護IC130の方が電池監視IC120よりも集積度が非常に低いため、故障率が低くなり、過充電及び過放電の一次検出を保護IC130によって行うことで信頼性が高くなる。
  また、例えば、保護IC130の充電過電流の検出電流閾値を二次電池監視IC120の充電過電流の検出電流閾値よりも高く設定し、二次電池監視IC120の放電過電流の検出電流閾値を保護IC130の放電過電流の検出電流閾値よりも高く設定した場合には、二次電池監視IC120が充電過電流及び放電過電流の一次検出を担い、保護IC130が二次検出を担うこととなる。
  この場合には、一次検出を担う電池監視IC120の電流測定機能によって、電流測定の高精度化が可能となり、不揮発性メモリデータの書き換えのみによって閾値の変更が可能となる。
  また、例えば保護IC130の充電過電流の検出電流閾値を二次電池監視IC120の充電過電流の検出電流閾値よりも低く設定し、二次電池監視IC120の放電過電流の検出電流閾値を保護IC130の放電過電流の検出電流閾値よりも低く設定した場合には、保護IC130が充電過電流及び放電過電流の一次検出を担い、二次電池監視IC120が二次検出を担うことになる。
  この場合には、一次検出を担う保護IC130において過電流検出時の反応速度を数msオーダに設定することが可能であるため、発熱の危険性をなくすことができる。
  上述した点を考慮しながら、二次電池監視IC120と保護IC130の検出電圧閾値及び検出電流閾値をそれぞれ異なった閾値として設定することで、二次電池監視IC120及び保護IC130を用いて優先的に一次検出を行い、補助的に二次検出を行う複数の組み合わせを実現することが可能である。
  したがって、例えば、上述した過充電、過放電の一次検出を電池監視IC120によって行い、充電過電流、放電過電流の一次検出を保護130によって行うことも可能である。また、後述する電池監視IC120の温度検出機能により、電池ユニット111の温度の変化時に電池監視IC120の各検出閾値を変化させて検出させても良い。
  <二次電池監視IC120のハードウェア構成>
 次に、図2を参照して、二次電池監視IC120の詳細を説明する。図2は、二次電池監視ICのハードウェア構成を示す図である。図2において、二次電池監視IC120は、CPU(Central Processing Unit)121と、センサ部122と、ROM(Read Only Memory)123と、EEPROM(Erasable Programmable ROM)124と、シリアルインタフェース(I/F)125と、I/O PORT(入出力ポート)126とを有するように構成される。
  CPU121は、二次電池監視IC120の各部を制御する。センサ部122は、電池ユニット111の電圧、電流、及び温度を検出する。ROM123は、CPU121が二次電池監視IC120の各部を制御するために実行するプログラムを格納する。
  また、CPU121は、センサ部122によって検出された電池ユニット111の電圧、電流及び温度の各パラメータ等の情報に基づいて、過充電、過電流、過放電等のうち少なくとも一つを検出する。
  また、CPU121は、保護IC130に対する制御信号、保護IC130の動作(保護)状態を問合わせるための動作状態問合わせ信号を生成し、生成した信号を、I/O PORT126を介して、保護IC130と接続されたPORT0端子、PORT1端子、及びPORT2端子から保護IC130に出力する。
  例えば、保護IC130に対する制御信号として、CPU121は、電池パック100の充放電を制御するMOSトランジスタM11、MOSトランジスタM12を強制的にオン/オフさせる制御信号を生成し出力する。
  より具体的には、CPU121は、過充電、過放電、放電過電流、充電過電流等のうち少なくとも一つを検出した場合、保護IC130に対してMOSトランジスタM11又はMOSトランジスタM12を強制的にオフさせる放電制御信号又は充電制御信号等の制御信号を生成し出力する。
  また、CPU121は、例えば保護IC130から過充電、過電流等を検出した旨の通知信号を受信した後等に、保護IC130の動作(保護)状態をモニタするための動作状態問合わせ信号を生成して出力する。
  また、CPU121は、保護IC130からPORT0端子、PORT1端子、及びPORT2端子を介して過充電、過放電、放電過電流、充電過電流等のうち少なくとも一つが検出された旨を通知する通知信号、又は、保護IC130の動作状態を通知する通知信号を受信すると、通知信号、又は動作状態通知信号に基づき、後述するEEPROM124等の不揮発性メモリに保護IC130において過充電、過放電、放電過電流、充電過電流等が検出された旨又は保護IC130の動作状態を示す情報を記録する。
  このとき、CPU121は、保護IC130から受信した通知信号又は動作状態通知信号に基づき、電池ユニット111の過充電、過放電、放電過電流、充電過電流等のそれぞれの検出回数を、例えばレジスタ等を用いてインクリメントすることによってカウントし、カウントしたそれぞれの検出回数を例えばEEPROM124等に記録する。
  また、CPU121は、カウントした検出回数がそれぞれに設定された所定回数を超えた場合に、所定回数を超えたときの検出結果に応じて、保護IC130に対してMOSトランジスタM11、MOSトランジスタM12を強制的にオフさせる制御信号を生成し出力することができる。
  EEPROM124は、センサ部122によって検出された電池ユニット111の電圧、電流及び温度の各パラメータ等の情報を格納する。
  また、EEPROM124は、I/O PORT126から3つの通信端子であるPORT0端子、PORT1端子、及びPORT2端子を介して受信した保護IC130からの過充電、過放電、放電過電流、充電過電流を検出した旨を示す情報等を格納する。
  I/O PORT126は、3つの通信端子であるPORT0端子、PORT1端子、及びPORT2端子を介して、保護IC130と通信するための信号の入出力を行う。
  CPU121と、センサ部122と、ROM123と、EEPROM124と、シリアルI/F125と、I/O PORT126とは、バス127によって接続されており、それぞれの間でデータ及びプログラム等をやり取りすることができる。
  またセンサ部122は、温度センサ回路122aと、電圧センサ回路122bと、電流センサ回路122cと、マルチプレクサ122dと、アナログ-デジタル(A/D)変換回路122eとを有するように構成される。
  温度センサ回路122aは、電池ユニット111の温度を検出する。電圧センサ回路122bは、電池ユニット111へ接続された電圧検知端子VBAT1を介して、電池ユニット111の出力電圧を検出する。電流センサ回路122cは、外部抵抗R3の両端に接続された電圧検出端子VRSP及びVRSMを介して、抵抗R3を流れる電流、即ち、電池ユニット111の充放電電流を検出する。
  温度センサ回路122a、電圧センサ回路122b、及び電流センサ回路122cの各出力は、マルチプレクサ122dへ接続されており、マルチプレクサ122dによって一つの信号として出力される。A/D変換回路122eは、マルチプレクサ122dによって出力された信号をアナログからデジタルに変換する。
  <保護IC130の内部構成の概略例>
 次に、図3を参照して、保護IC130の内部構成の概略例について説明する。図3は、保護ICの内部構成の概略例を示す図である。
  図3に示すように、保護IC130は、電圧レギュレータ(LDO)131と、過充電検出回路132と、過放電検出回路133と、過電流検出回路134と、ショート(短絡)検出回路135とを有するように構成されている。
  また、保護IC130は、上記の各検出回路からの検出信号に基づいて制御信号としての出力信号を生成する論理回路136と、不感応時間設定回路としての遅延回路137と、二次電池監視IC120との双方向の通信を制御する通信制御回路138とを有するように構成されている。
  また、図3における保護IC130は、VSS端子142と、VDD端子143と、DOUT端子144と、COUT端子145と、V-(マイナス)入力端子146と、VREGOUT端子147と、VSENSE端子148と、CCNT端子149と、DCNT端子150と、INT端子151とを有するように構成されている。
  電圧レギュレータ131は、電源端子であるVDD端子143(図1におけるVDD2端子)に接続され、保護IC130内に供給された電源電圧をレギュレートする。また、電圧レギュレータ131は、VREGOUT端子147に接続され、レギュレートした電源電圧をVREGOUT端子147から二次電池監視IC120に出力する。
  過充電検出回路132は、コンパレータを含み、その非反転入力端子はVSS端子142と、VSENSE端子148との間に直列接続された抵抗R11とR12との間の接続点に接続され、反転入力端子は基準電圧源Vref1の正極側に接続されている。
  過放電検出回路133においても、過充電検出回路132と同様にコンパレータを含み、その非反転入力端子はVSS端子142と、VSENSE端子148との間に直列接続された抵抗R13とR14との間の接続点に接続され、反転入力端子は基準電圧源Vref1の正極側に接続されている。
  過電流検出回路134においても、上述の過充電検出回路132や過放電検出回路133と同様にコンパレータを含み、その非反転入力端子は抵抗R15を介してV-入力端子146に接続され、反転入力端子は基準電圧源Vref2の正極側に接続されている。なお、基準電圧源Vref1、Vref2の負極側は、VSS端子142に接続されている。
  ショート検出回路135は、ヒステリシス機能付きのアンプから成り、抵抗R15を介してV-入力端子146に接続されている。
  過充電検出回路132は、過充電状態を検出すると過充電検出信号を出力する。過放電検出回路133は、過放電状態を検出すると過放電検出信号を出力し、過放電復帰状態を検出すると、過放電復帰信号を出力する。過電流検出回路134は、過電流を検出すると過電流検出信号を出力する。
  ここで、出力された過充電検出信号、過放電検出信号、過電流検出信号は、それぞれ、過充電状態、過放電状態、過電流状態が続いている間維持され、論理回路136に入力される。論理回路136は、過充電検出信号、過放電検出信号、過電流検出信号等の入力があると、それぞれの場合に応じた信号を遅延回路137及び通信制御回路138に出力する。
  遅延回路137は、論理回路136から、例えば過放電検出に対応する信号を受けると、過放電検出に対応して設定された第1段階の不感応時間を経過した時に、第1の過放電指示信号を論理回路136に出力する。また、遅延回路137は、第2段階の不感応時間を経過した時に、第2の過放電指示信号を論理回路136に出力する。
  ここで、論理回路136は、上述した第1の過放電指示信号を受けると、放電電流を遮断するための放電制御信号をインバータ140、抵抗R16経由でDOUT端子144から出力する。また、論理回路136は、上述した第2の過放電指示信号を受けると、論理回路136は、電圧レギュレータ131をシャットダウンさせる電圧レギュレータオフ信号を電圧レギュレータ131に対して出力する。
  また、遅延回路137は、論理回路136から過電流検出に対応する信号を受けると、過電流検出に対応して設定された不感応時間を経過した時に過電流指示信号を論理回路136に出力する。このとき、論理回路136は、過電流指示信号を受けると、放電電流を遮断するための放電制御信号をDOUT端子144から出力する。
  また、論理回路136は、ショート検出回路135からショート検出信号を受けた場合は、不感応時間無しで放電電流を遮断するための放電制御信号をDOUT端子144から出力する。
  また、論理回路136は、過放電検出回路133から過放電復帰信号を受けた場合は、不感応時間無しで電圧レギュレータ131をオンさせる電圧レギュレータオン信号を電圧レギュレータ131に対して出力する。
  更に、遅延回路137は、論理回路136から例えば過充電検出に対応する信号を受けると、過充電検出に対応して設定された不感応時間を経過した時に、過充電指示信号を論理回路136に出力する。このとき、論理回路136は、過充電指示信号を受けると、充電電流を遮断するための充電制御信号をインバータ141、抵抗R17経由でCOUT端子145から出力する。
  通信制御回路138は、二次電池監視IC120から出力された保護検出状態(動作状態)問合わせ信号(コマンド)をCCNT端子149、DCNT端子150、及びINT端子151を介して受け取ると、論理回路136の状態を取得して、例えば過充電検出、放電過電流検出、充電過電流検出、通常状態等の状態を示す信号を、CCNT端子149、DCNT端子150及びINT端子151から出力する。
  また、通信制御回路138は、同様に、二次電池監視IC120から、CCNT端子149、DCNT端子150、及びINT端子151を介してMOSトランジスタM11又はMOSトランジスタM12を強制オフ(遮断)させる信号等を受けると、論理回路136にMOSトランジスタM11又はMOSトランジスタM12の強制オフを通知する通知信号等を出力し、論理回路136は、DOUT端子144、COUT端子145から上述した放電制御信号、充電制御信号等を出力する。
  また、通信制御回路138は、上述した論理回路136から過充電検出、過放電検出、放電過電流検出、充電過電流検出等に応じた信号を受けると、CCNT端子149、DCNT端子150、及びINT端子151から、過充電検出、過放電検出、放電過電流検出、充電過電流検出等を通知する通知信号を、二次電池監視IC120に対して出力する。
  なお、保護IC130は、二次電池監視IC120と接続される第1の通信端子としてのSIOI端子152と、携帯機器等との通信を行う外部端子116に接続される第2の通信端子としてのSIOE端子153と、SIOI端子152とSIOE端子153とを接続する回路とを有する。
  レベルシフト回路139は、SIOI端子152から入力された状態情報を示す通信パルス信号のレベルをシフトしてSIOE端子153から出力する。なお、SIOI端子152は二次電池監視IC120の電源電圧、SIOE端子153は携帯機器側の電源電圧によってそれぞれプルアップされ、二次電池監視IC120でのHighレベル、携帯機器側でのHighレベルが異なる場合がある。
  レベルシフト回路139は、二次電池監視IC120と携帯機器側それぞれのHighレベル電圧の変換を行うことで、上述したようにHighレベルの電圧が異なっていた場合でも双方の通信を可能とする。また、一方の端子の電圧がLowレベルになると、もう一方の端子にLowを出力し、双方向ともに同じ動作を行う。この回路により、二次電池監視IC120と携帯機器等との通信信号を通過させる。
  なお、二次電池監視IC120は、マイコン内蔵の微細な(静電気に対して弱い)IC製造プロセスである一方、保護IC130は、高耐圧で静電気に強いIC製造プロセスである。携帯機器等との通信端子は、電池パックの端子として使用されるため、電池パックの安全性の規格値を満足させ、静電気や高電圧に対応する必要がある。
  しかしながら、二次電池監視IC120の通信端子であるSIO端子を携帯機器本体等との情報伝達のためにそのまま利用すると、静電気等の規格を満足させるのが困難である。
  したがって、本実施形態では、上述したように、保護IC130において、二次電池監視IC120の通信端子であるSIO端子と接続するSIOI端子152と、携帯機器本体との通信出力端子である外部端子116と接続するSIOE端子153と、SIOI端子152とSIOE端子153との間で通信信号を通過させる回路を構成する。
  これにより、二次電池監視IC120のSIO端子は、携帯機器等からの通信信号を保護IC130経由で受信するため、静電気や高電圧に強い通信端子として実現される。
  また、本実施形態では、上述した二次電池監視IC120の通信端子の破壊を保護するためにツェナーダイオードやコンデンサや抵抗等の静電保護部品を追加する必要もなくなるため、コストを抑え、基板面積を小さくして小型化を可能とする。また、これにより、認証、二次電池の残量検出等の付加機能を実現するチップ等の搭載を可能とする。
  なお、本実施形態において、図1に示す外部端子116は、上述したように、二次電池監視IC120が携帯機器等との情報伝達のために用いられる通信端子であり、電池パック100と携帯機器等との情報の入出力を行うための端子である。
  ここで、外部端子116とSIOE端子153との間には、図1に示すように、抵抗R4が接続される。常時、正極端子114と負極端子115に対して中間電位が印加される外部端子116に、例えば誤って充電装置等が逆接続された場合であっても、抵抗R4によって電流が制限されるため、保護IC130が破壊されることなく、安全に利用可能となる。
  次に、携帯機器等との通信端子として用いられる外部端子116に、充電装置等が逆接続された場合について説明する。
  図4は、外部端子に、充電器が逆接続された様子を示す図である。図4に示すように、例えば充電器の正極側が外部端子116に接続され、充電器の負極側が正極端子114に接続された場合、保護IC130の電源方向が逆となる。このような場合、図4に示すように、保護IC130は、構造上、順方向のダイオードとして機能する。したがって、保護IC130には、接続された充電器の最大能力の電流が流れ続けることとなるため、保護監視回路101は発熱する危険性が生じてしまう。
  しかしながら、本実施形態では、保護IC130のSIOE端子153と、外部端子116との間に例えば1kΩから10kΩ程度の抵抗R4を直列に接続することで、電流を制限し、発熱を生じさせない程度の電流にする。これにより、上述したように充電装置等が逆接続された場合であっても、保護IC130に対する保護を可能とする。
  なお、抵抗R4の抵抗値が高いほど電流制限の効果は大きいが、本来の通信機能に影響を及ぼす可能性がある。したがって、例えば、通信仕様にもよるが、約数kΩ程度の抵抗とするのが好ましい。また、例えば1線式の双方向通信仕様の場合には、逆充電保護抵抗として抵抗R4を付加することにより、100kHzを超える高速通信は困難となり、数10kHz(bps)程度の通信仕様となる。
  <二次電池監視IC120から保護IC130への通信プロトコルの例>
 次に、図5及び図6を参照して、二次電池監視IC120から保護IC130への通信プロトコルの例について説明する。図5は、本実施形態における二次電池監視ICから保護ICへの通信時における動作の一例を示す図である。また、図6は、保護ICにおいて認識されるコマンドの一覧を示す図である。
  保護IC130は、保護IC130の基本的な動作として、図5に示すINT端子立下り時に、CCNT端子と、DCNT端子のレベルで、図6に示すようなコマンドを認識する。また、INT端子立上り時は、DCNT端子とCCNT端子の出力状態を無視する。
  図5に示す例では、CCNT(PORT0)端子が「0」に設定され、DCNT(PORT1)端子が「0」に設定された後、INT(PORT2)端子がプルダウンされている。保護IC130は、INT端子の立下りで、CCNT端子とDCNT端子とをラッチする。
  図5に示す例は、図6のコマンド一覧に示すように、DCNT=0及びCCNT=0の場合であり、二次電池監視IC120は、保護IC130に対して、強制的にFETの制御を解除するための強制FET制御解除コマンドを保護IC130に通知する。
  また、図6によれば、二次電池監視IC120は、DCNT=0及びCCNT=1の場合に、DOUT端子を強制的にHighレベルからLowレベルにするコマンドを保護IC130に通知し、DCNT=1及びCCNT=0の場合に、COUT端子を強制的にHighレベルからLowレベルにするコマンドを保護IC130に通知する。
  また、二次電池監視IC120は、DCNT=1及びCCNT=1の場合には、保護IC130に対して、保護IC130の動作状態である保護検出状態を問合わせるためのコマンドを通知する。
  上述のコマンドが通知された場合において、保護IC130は、DOUT/COUT端子の強制制御の場合には、DOUT端子とCOUT端子に対して上書き制御(内部論理的にはOR論理)を行う。また、保護IC130は、コマンドが保護検出状態の問合わせの場合には、次の図7に示す保護検出状態を二次電池監視IC120に通知する。
  上述のように、二次電池監視IC120は、保護IC130に対して保護IC130の放電制御FET、充電制御FETであるMOSトランジスタM11、M12を強制的にオフさせる機能とその解除を行う機能とを実現する。また、二次電池監視IC120から保護IC130の内部の保護検出状態を問合わせる機能を実現する。
  <保護IC130が、二次電池監視IC120から保護検出状態の問合わせコマンドを受け取った場合の二次電池監視IC120に対する保護検出状態の通知例>
 ここで、図7を参照して、保護IC130が、二次電池監視IC120から保護検出状態問合わせコマンドを受け取った場合に、保護IC130が二次電池監視ICに対して保護IC130内の保護検出状態(動作状態)を通知する通知例について説明する。図7は、二次電池監視ICに通知する保護IC内の保護検出状態通知コマンドの一例を示す図である。
  本実施形態では、保護IC130は、通信制御回路138において保護検出状態問合わせコマンドを受け取った場合に、論理回路136の状態を取得して、例えば過充電検出、放電過電流検出、充電過電流検出、通常状態等の状態を示す信号を、CCNT端子149、DCNT端子150等を以下のように設定し、図7に示すステータス情報として通知する。
  例えば、図7によれば、保護IC130は、DCNT=0及びCCNT=0の場合に、異常なし(通常状態)のコマンドを二次電池監視IC120に通知し、DCNT=0及びCCNT=1の場合に、放電過電流検出のコマンドを二次電池監視IC120に通知する。
  また、保護IC130は、DCNT=1及びCCNT=0の場合に、充電過電流検出のコマンドを二次電池監視IC120に通知し、DCNT=1及びCCNT=1の場合に、過充電検出のコマンドを二次電池監視IC120に通知する。
  上述のように、保護IC130は、二次電池監視IC120の保護検出状態問合わせに対して、保護IC130内の保護検出状態を通知する機能を実現する。
  <保護IC130から二次電池監視IC120に対する通信プロトコルの例>
 次に、図8、図9、及び図10を参照して、保護IC130から二次電池監視IC120に対する通信プロトコルの例について説明する。本実施形態では、保護IC130は、通信制御回路138により、論理回路136から過充電検出、過放電検出、放電過電流検出、及び充電過電流検出等に応じた信号を受けると、以下のように、CCNT端子149、DCNT端子150、及びINT端子151を設定して、過充電検出、過放電検出、放電過電流検出、及び充電過電流検出等を通知する通知信号を、二次電池監視IC120に対して出力する。
  図8は、保護ICにおいて過放電以外を検出した場合(CCNT(PORT0)、DCNT(PORT1)の論理は充電過電流検出状態を示す)における保護ICから二次電池監視ICへの通信時における動作の一例を示す図である。また、図9は、保護ICにおいて過放電を検出した場合における保護ICから二次電池監視ICへの通信時における動作の一例を示す図である。また、図10は、二次電池監視ICにおいて認識されるコマンドの一覧を示す図である。
  保護IC130は、過放電を検出した場合と、過放電以外を検出した場合とで異なる動作を行う。具体的には、過放電以外の過充電、放電過電流、充電過電流を検出した場合には、CCNT端子とDCNT端子とを図10に示す一覧表にしたがって設定した後に、INT端子にパルスを出力する。
  即ち、図8に示すように、保護IC130において過放電以外の例えば充電過電流を検出した場合には、CCNT(PORT0)端子をLowレベル(0)に設定し、DCNT(PORT1)端子をHighレベル(1)に設定し、その後、INT(PORT2)端子に、一定期間、Lowレベルのパルスを出力する。次に、CCNT(PORT0)端子を開放(Highレベル)する。
  ここで、二次電池監視IC120は、INT端子の立下りを割り込みトリガとしてCCNT端子とDCNT端子をラッチする。また、INT端子のパルス幅は、例えば38.4kHzで確実にラッチできるように、MIN=100usとする。
  過放電を検出した場合には、図9に示すように、保護IC130において、CCNT(PORT0)端子をLowレベルに設定し、DCNT(PORT1)端子をLowレベルに設定し、INT(PORT2)端子をプルダウンする(Lowレベルに設定して保持する。)。
  図10に示すように、保護IC130は、DCNT=0及びCCNT=0の場合に、過放電検出のコマンドを二次電池監視IC120に通知し、DCNT=0及びCCNT=1の場合に、放電過電流検出のコマンドを二次電池監視IC120に通知する。
  また、保護IC130は、DCNT=1及びCCNT=0の場合に、充電過電流検出のコマンドを二次電池監視IC120に通知し、DCNT=1及びCCNT=1の場合に、過充電検出のコマンドを二次電池監視IC120に通知する。
  なお、保護IC130は、過放電を検出してDOUT端子をLowレベルとした後も、INT(PORT2)端子をLowレベルに維持し、二次電池監視IC120への電圧を供給する電圧レギュレータ131をオフした後、HiZ(ハイインピーダンス状態)とする。電圧レギュレータ131はオフされるため、見かけ上Lowが出力され続ける。
  上述のように、保護IC130は、二次電池監視IC120に対して、割り込みを発生させて、過充電、過放電、充電過電流、放電過電流を検出したことを通知し、保護IC130において保護機能が働いたことを二次電池監視IC120に対して伝える機能を実現する。
  このように、二次電池監視IC120と、保護IC130とは、3線の双方向通信インタフェースを用いることにより、上記した機能を実現する。3線の内1本は、通信すべき状態となったときに、相手側に割り込みをかける割り込み信号線であり、残りの2本で、通信したい内容を示している。
  二次電池監視IC120と、保護IC130とにおける上述した機能を実行するため、3本の通信線を用いているが、上述した機能を更に拡張する場合には、例えば通信線を4本以上にする等、必要に応じて線数を増加することにより対応できる。
  なお、一般的に利用されているような、1本線又は2本線のインタフェースでは、信号パターンの解析や、タイミング制御が必要となり、送受信回路の規模が複雑となるため、保護IC130に搭載するには適しない。また、保護IC130には、高耐圧や、高静電気耐量が求められるため、微細な製造プロセスを適用できない。したがって、大規模回路を必要とする通信仕様には適さないため、非常に小規模の回路構成で実現できる通信インタフェースが求められるが、二次電池監視IC120と、保護IC130は、3線の双方向通信インタフェースを用いて、非常に小規模の回路構成により上述した機能を実現する。
  <保護監視回路を備えた電池パック、及び該電池パックを搭載した携帯機器の例>
 次に、図11を参照して、本実施形態に係る保護監視回路101を備えた電池パック100、及び該電池パック100を搭載した携帯機器160について説明する。図11は、本実施形態に係る保護監視回路を備えた電池パック、及び該電池パックを搭載した携帯機器の一例を示す図である。
  図11に示すように、本実施形態に係る保護監視回路101は、電池パック100内に備えられる。また、保護監視回路101を備えた電池パック100は、例えば携帯機器160等に搭載されて用いられる。
  上述のように、本発明によれば、二次電池監視回路から保護回路に対して保護回路の保護機能を強制的に動作させることを可能とする。これにより、電池パックにおける過充電、過電流、過放電等に対する保護機能を二重化して安全性を高めることが可能となる。例えば、二次電池監視回路による電圧監視により、検出電圧の高精度化を図ることが可能となる。
  また、本発明によれば、二次電池監視回路から保護回路に対して任意のタイミングで、現在の保護動作状態を問合わせることを可能する。これにより、二次電池監視回路において保護回路における保護動作がいつまで継続していたかモニタすることが可能となる。
  また、本発明によれば、保護回路において保護動作が行なわれた場合に、二次電池監視回路に対して、割り込みを発生させて、保護回路が動作したことを通知することが可能となるため、二次電池監視回路において保護動作の履歴の記録が正確なものとなる。これにより、二次電池監視回路において保護回路の保護動作の履歴を確実に検出することが可能となり、電池パックの保護動作の履歴等を残すことができる。
  また、この保護動作の履歴に基づいて、携帯機器本体でこの電池パックの使用を停止したり、電池パックへの充電を禁止したり、電池パックの交換を促すことが可能となる。したがって、万が一、電池パックが膨らむ、発熱等の異常が発生した場合には、販売店で電池パックの保護動作の履歴を読み出すことで、正常に使用された状態での異常なのか、あるいはユーザの間違った使用による異常なのかを判断することができる。つまり、異常状態となった電池パックの解析時にも有効な情報として利用することが可能となる。
  以上、各実施形態に基づき本発明の説明を行ってきたが、上記実施形態に示した要件に本発明が限定されるものではない。これらの点に関しては、本発明の主旨をそこなわない範囲で変更することができ、その応用形態に応じて適切に定めることができる。
 本国際出願は2009年1月14日に出願された日本国特許出願2009-6158号、及び2010年1月14日に出願された日本国特許出願2010-5981号に基づく優先権を主張するものであり、2009-6158号と2010-5981号の全内容をここに本国際出願に援用する。
 本発明は、保護監視回路、電池パック、二次電池監視回路、及び保護回路に適用可能である。
100 電池パック
101 保護監視回路
111 電池ユニット
112 二次電池接続正極端子
113 二次電池負極端子
114 正極端子
115 負極端子
116 外部端子
120 二次電池監視IC
121 CPU
122a 温度センサ回路
122b 電圧センサ回路
122c 電流センサ回路
122d マルチプレクサ
122e アナログ-デジタル(A/D)変換回路
123 ROM
124 EEPROM
125 シリアルI/F
126 I/O PORT
127 バス
130 保護IC
131 電圧レギュレータ(LDO)
132 過充電検出回路
133 過放電検出回路
134 過電流検出回路
135 ショート(短絡)検出回路
136 論理回路
137 遅延回路
138 通信制御回路
139 レベルシフト回路
140,141,154,155 インバータ
142 VSS端子
143 VDD端子
144 DOUT端子
145 COUT端子
146 V-(マイナス)入力端子
147 VREGOUT端子
148 VSENSE端子
149 CCNT端子
150 DCNT端子
151 INT端子
152 SIOI端子
153 SIOE端子
160 携帯機器

Claims (16)

  1.  充放電可能な二次電池の状態を検出する二次電池監視回路と、前記二次電池の過充電、過放電、及び過電流のうち少なくとも一つを検出して、前記二次電池と負荷又は充電装置との間に設けられた充電制御トランジスタ又は放電制御トランジスタをオン/オフ制御して前記二次電池を保護する保護回路とを備える保護監視回路であって、
     前記二次電池監視回路は、前記保護回路に対して前記充電制御トランジスタ又は前記放電制御トランジスタを強制的にオン/オフさせる制御信号を出力し、
     前記保護回路は、前記制御信号を受信すると、前記充電制御トランジスタ又は前記放電制御トランジスタをオン/オフ制御することを特徴とする保護監視回路。
  2.  前記二次電池監視回路は、前記二次電池の過充電、過放電、及び過電流のうち少なくとも一つを検出し、前記二次電池の過充電、過放電、及び過電流のうち少なくとも一つが検出された場合に、前記保護回路に対して前記充電制御トランジスタ又は前記放電制御トランジスタを強制的にオフさせる制御信号を出力し、
     前記保護回路は、前記オフさせる制御信号に応じて、前記充電制御トランジスタ又は前記放電制御トランジスタを強制的にオフ制御することを特徴とする請求項1に記載の保護監視回路。
  3.  前記保護回路が前記二次電池の過充電、過放電、及び過電流を検出するために設定される各閾値は、前記二次電池監視回路が前記二次電池の過充電、過放電、及び過電流を検出するために設定される各閾値とそれぞれ異なることを特徴とする請求項2に記載の保護監視回路。
  4.  前記二次電池監視回路は、前記保護回路に対して動作状態を問合わせる動作状態問合わせ信号を出力し、
     前記保護回路は、前記問合わせ信号を受信すると、前記二次電池監視回路に対して前記保護回路の動作状態を通知する動作状態通知信号を出力することを特徴とする請求項1に記載の保護監視回路。
  5.  前記保護回路は、前記二次電池の過充電、過放電、及び過電流のうち少なくとも一つを検出すると、前記二次電池監視回路に対して検出した旨を通知する通知信号を出力し、
     前記二次電池監視回路は、不揮発性メモリを有し、前記通知信号又は前記動作状態通知信号を受信すると、前記検出した旨を示す情報又は前記動作状態を示す情報を前記不揮発性メモリに記録することを特徴とする請求項4に記載の保護監視回路。
  6.  前記二次電池監視回路は、前記通知信号又は前記動作状態通知信号に基づき、前記二次電池の過充電、過放電、及び過電流それぞれの検出回数をカウントして、カウントしたそれぞれの検出回数を前記不揮発性メモリに記録することを特徴とする請求項5に記載の保護監視回路。
  7.  前記二次電池監視回路は、前記検出回数がそれぞれに設定された所定回数を超えた場合に、前記所定回数を超えたときの検出結果に応じて、前記保護回路に対して前記充電制御トランジスタ又は前記放電制御トランジスタを強制的にオフさせる制御信号を出力することを特徴とする請求項6に記載の保護監視回路。
  8.  前記保護回路は、前記二次電池監視回路と接続される第1の通信端子と、前記負荷との通信端子に接続される第2の通信端子と、前記第1の通信端子と前記第2の通信端子とを接続する回路とを有し、
     前記回路は、前記二次電池監視回路と前記負荷との間の通信信号を通過させることを特徴とする請求項1に記載の保護監視回路。
  9.  前記負荷との通信端子と前記第2の通信端子との間に接続される抵抗を備えることを特徴とする請求項8に記載の保護監視回路。
  10.  請求項1に記載の保護監視回路を備えることを特徴とする電池パック。
  11.  充放電可能な二次電池の過充電、過放電、及び過電流のうち少なくとも一つを検出して、前記二次電池と負荷又は充電装置との間に設けられた充電制御トランジスタ又は放電制御トランジスタをオン/オフ制御して前記二次電池を保護する保護回路と接続されている前記二次電池の状態を検出する二次電池監視回路において、
     前記保護回路に対して前記充電制御トランジスタ又は前記放電制御トランジスタを強制的にオン/オフさせる制御信号を出力することを特徴とする二次電池監視回路。
  12.  前記二次電池の過充電、過放電、及び過電流のうち少なくとも一つを検出した場合に、前記保護回路に対して前記充電制御トランジスタ又は放電制御トランジスタを強制的にオフさせる制御信号を出力することを特徴とする請求項11に記載の二次電池監視回路。
  13.  不揮発性メモリを有し、
     前記保護回路から、前記二次電池の過充電、過放電、及び過電流のいずれか一つを検出した旨を通知する通知信号又は前記保護回路の動作状態を通知する動作状態通知信号を受信すると、前記検出した旨又は前記動作状態を示す情報を前記不揮発性メモリに記録することを特徴とする請求項11に記載の二次電池監視回路。
  14.  前記通知信号又は前記動作状態通知信号に基づき、前記二次電池の過充電、過放電、及び過電流それぞれの検出回数をカウントして、カウントしたそれぞれの検出回路を前記不揮発性メモリに記録し、前記回数がそれぞれに設定された所定回数を超えた場合に、前記所定回数を超えたときの検出結果に応じて、前記保護回路に対して前記充電制御トランジスタ又は放電制御トランジスタを強制的にオフさせる制御信号を出力することを特徴とする請求項13に記載の二次電池監視回路。
  15.  充放電可能な二次電池の状態を検出し、当該保護回路による制御状態を記憶する不揮発性メモリを有する二次電池監視回路と接続され、前記二次電池の過充電、過放電、及び過電流のうち少なくとも一つを検出して、前記二次電池と負荷又は充電装置との間に設けられた充電制御トランジスタ又は放電制御トランジスタをオン/オフ制御して前記二次電池を保護する保護回路において、
     前記二次電池監視回路から出力された前記充電制御トランジスタ又は前記放電制御トランジスタを強制的にオン/オフさせる制御信号を受信すると、前記充電制御トランジスタ又は前記放電制御トランジスタをオン/オフ制御することを特徴とする保護回路。
  16.  前記二次電池監視回路に対して、前記二次電池の過充電、過放電、及び過電流のいずれか一つを検出した旨を通知する通知信号を出力することを特徴とする請求項15に記載の保護回路。
PCT/JP2010/050357 2009-01-14 2010-01-14 保護監視回路、電池パック、二次電池監視回路、及び保護回路 WO2010082608A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/143,844 US9231283B2 (en) 2009-01-14 2010-01-14 Protection monitoring circuit, battery pack, secondary battery monitoring circuit, and protection circuit
KR1020117011758A KR101726724B1 (ko) 2009-01-14 2010-01-14 보호감시 회로, 전지팩, 2차전지 감시 회로, 및 보호 회로
CN201080004623.6A CN102282739B (zh) 2009-01-14 2010-01-14 保护监视电路、电池组、二次电池监视电路以及保护电路
US14/950,056 US9935451B2 (en) 2009-01-14 2015-11-24 Protection monitoring circuit, battery pack, secondary battery monitoring circuit, and protection circuit

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-006158 2009-01-14
JP2009006158 2009-01-14
JP2010-005981 2010-01-14
JP2010005981A JP5564955B2 (ja) 2009-01-14 2010-01-14 保護監視回路、電池パック、二次電池監視回路、及び保護回路

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/143,844 A-371-Of-International US9231283B2 (en) 2009-01-14 2010-01-14 Protection monitoring circuit, battery pack, secondary battery monitoring circuit, and protection circuit
US14/950,056 Continuation US9935451B2 (en) 2009-01-14 2015-11-24 Protection monitoring circuit, battery pack, secondary battery monitoring circuit, and protection circuit

Publications (1)

Publication Number Publication Date
WO2010082608A1 true WO2010082608A1 (ja) 2010-07-22

Family

ID=42339862

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/050357 WO2010082608A1 (ja) 2009-01-14 2010-01-14 保護監視回路、電池パック、二次電池監視回路、及び保護回路

Country Status (5)

Country Link
US (2) US9231283B2 (ja)
JP (1) JP5564955B2 (ja)
KR (1) KR101726724B1 (ja)
CN (1) CN102282739B (ja)
WO (1) WO2010082608A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102647002A (zh) * 2011-02-18 2012-08-22 三美电机株式会社 复合设备系统
JP2014191860A (ja) * 2013-03-26 2014-10-06 Sanyo Electric Co Ltd 電池パック
WO2022049455A1 (ja) * 2020-09-07 2022-03-10 株式会社半導体エネルギー研究所 二次電池の制御回路および電子機器
JP7104262B1 (ja) 2021-05-10 2022-07-20 日本たばこ産業株式会社 エアロゾル発生装置の電源ユニット
JP7104868B1 (ja) 2021-05-10 2022-07-21 日本たばこ産業株式会社 エアロゾル発生装置
WO2022239279A1 (ja) * 2021-05-10 2022-11-17 日本たばこ産業株式会社 エアロゾル生成装置の電源ユニット
WO2022239510A1 (ja) * 2021-05-10 2022-11-17 日本たばこ産業株式会社 エアロゾル発生装置の電源ユニット
WO2022239511A1 (ja) * 2021-05-10 2022-11-17 日本たばこ産業株式会社 エアロゾル発生装置の電源ユニット
WO2022239280A1 (ja) * 2021-05-10 2022-11-17 日本たばこ産業株式会社 エアロゾル生成装置の電源ユニット
WO2022239512A1 (ja) * 2021-05-10 2022-11-17 日本たばこ産業株式会社 エアロゾル発生装置の電源ユニット
JP7523687B2 (ja) 2021-05-10 2024-07-26 日本たばこ産業株式会社 エアロゾル発生装置の電源ユニット

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5208149B2 (ja) * 2009-04-09 2013-06-12 パナソニック株式会社 保護回路、及び電池パック
JP5554204B2 (ja) * 2010-10-15 2014-07-23 株式会社マキタ 工具用バッテリ
JP5742593B2 (ja) * 2011-08-30 2015-07-01 ミツミ電機株式会社 半導体集積回路、保護回路及び電池パック
JP5971580B2 (ja) * 2011-11-22 2016-08-17 パナソニックIpマネジメント株式会社 放電システム
US20130265010A1 (en) * 2012-04-06 2013-10-10 Semiconductor Energy Laboratory Co., Ltd. Protective circuit module and battery pack
JP5752659B2 (ja) * 2012-09-20 2015-07-22 株式会社東芝 半導体回路
KR101892950B1 (ko) * 2012-10-02 2018-08-29 미쓰미덴기가부시기가이샤 전지 보호 회로 및 전지 보호 장치 및 전지 팩
US9018914B2 (en) * 2012-10-26 2015-04-28 Maxim Integrated Products, Inc. Low side NMOS protection circuit for battery pack application
KR101981134B1 (ko) * 2012-11-20 2019-05-22 미쓰미덴기가부시기가이샤 반도체 집적 회로, 보호 회로 및 전지팩
US9577446B2 (en) 2012-12-13 2017-02-21 Semiconductor Energy Laboratory Co., Ltd. Power storage system and power storage device storing data for the identifying power storage device
JP2014121169A (ja) * 2012-12-17 2014-06-30 Seiko Instruments Inc 充放電制御回路及びバッテリ装置
US8963516B2 (en) * 2013-03-04 2015-02-24 Astec International Limited Precision output control for DC voltage regulators
JP5344104B1 (ja) * 2013-03-05 2013-11-20 ミツミ電機株式会社 充放電制御回路及び充放電制御方法
JPWO2014141809A1 (ja) * 2013-03-13 2017-02-16 Necエナジーデバイス株式会社 電池パック、移動体および制御方法
JP6530586B2 (ja) 2013-12-06 2019-06-12 ミツミ電機株式会社 2次保護ic、2次保護icの制御方法、保護モジュール、及び電池パック
US10014695B2 (en) * 2014-01-27 2018-07-03 Fairchild Semiconductor Corporation Control and current measurement function for battery charging, protection and fuel gauge coulomb counting
US10177560B2 (en) 2014-04-08 2019-01-08 Kabushiki Kaisha Toyota Jidoshokki Battery monitoring device
JP6323162B2 (ja) * 2014-05-16 2018-05-16 株式会社豊田自動織機 電池監視装置
US9966639B2 (en) * 2014-04-08 2018-05-08 Kabushiki Kaisha Toyota Jidoshokki Battery monitoring device
JP6418239B2 (ja) * 2014-06-03 2018-11-07 株式会社村田製作所 電力供給装置および電力供給方法
JP5888387B1 (ja) * 2014-10-22 2016-03-22 ミツミ電機株式会社 電池保護回路及び電池保護装置、並びに電池パック
JP6477200B2 (ja) 2015-04-24 2019-03-06 ミツミ電機株式会社 電池保護システム、電池保護装置、及び電池保護方法
JP5831658B1 (ja) * 2015-06-04 2015-12-09 ミツミ電機株式会社 電池保護集積回路、電池保護装置及び電池パック
JP5850197B1 (ja) * 2015-06-17 2016-02-03 ミツミ電機株式会社 電池保護集積回路及び回路特性設定方法
JP6520658B2 (ja) * 2015-11-16 2019-05-29 ミツミ電機株式会社 集積回路及び回路特性設定方法
US10103556B2 (en) 2015-11-17 2018-10-16 Motorola Solutions, Inc. Load side method of blocking charger voltage from a battery load
US11201378B2 (en) * 2016-05-17 2021-12-14 Faraday & Future Inc. Battery monitor protection
US10051718B2 (en) * 2016-08-03 2018-08-14 Samsung Electronics Co., Ltd. Mobile X-ray apparatus and method of operating the same
US10588209B2 (en) 2016-08-03 2020-03-10 Samsung Electronics Co., Ltd. Mobile X-ray apparatus and method of operating the same
JP6144809B1 (ja) * 2016-09-05 2017-06-07 ホシデン株式会社 電源装置
CN106655371B (zh) * 2016-12-16 2023-09-26 欣旺达电子股份有限公司 电池大电流快充与放电的保护与监控电路
JP6662282B2 (ja) * 2016-12-20 2020-03-11 株式会社デンソー 電源システム
KR102358437B1 (ko) * 2017-02-08 2022-02-04 삼성에스디아이 주식회사 전원 공급 장치 및 이를 포함하는 배터리 팩
JP6844366B2 (ja) * 2017-03-24 2021-03-17 株式会社デンソー 電源システム
JP6966864B2 (ja) * 2017-04-20 2021-11-17 エイブリック株式会社 バッテリ装置
CN107134822B (zh) * 2017-04-25 2023-05-16 福建省福芯电子科技有限公司 一种电池充电过流保护电路
US11990778B2 (en) 2018-07-10 2024-05-21 Semiconductor Energy Laboratory Co., Ltd. Secondary battery protection circuit and secondary battery anomaly detection system
US11329472B2 (en) * 2018-07-20 2022-05-10 Texas Instruments Incorporated Methods and apparatus to prevent undesired triggering of short circuit or over current protection
CN110912212B (zh) * 2018-09-17 2021-07-20 硕天科技股份有限公司 具适应性限流保护功能的充电装置与手持式电子装置
US20210384751A1 (en) 2018-10-25 2021-12-09 Semiconductor Energy Laboratory Co., Ltd. Power storage device and method for operating power storage device
KR20210092749A (ko) 2018-11-16 2021-07-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 전지 보호 회로, 축전 장치, 및 전기 기기
WO2020104885A1 (ja) 2018-11-22 2020-05-28 株式会社半導体エネルギー研究所 二次電池の異常検知装置、および、半導体装置
US11342764B2 (en) * 2018-11-28 2022-05-24 Shenzhen Innokin Technology Co., Ltd. Low voltage charging control and protection circuit for electronic cigarette and method of charging the electronic cigarette using the circuit
KR102538990B1 (ko) 2019-01-24 2023-06-01 주식회사 엘지에너지솔루션 배터리 보호회로 및 이를 이용한 과전류 차단 방법
US12034322B2 (en) 2019-01-24 2024-07-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and operating method of semiconductor device
CN113424445A (zh) 2019-02-26 2021-09-21 株式会社半导体能源研究所 半导体装置及半导体装置的工作方法
CN114303315A (zh) 2019-08-23 2022-04-08 株式会社半导体能源研究所 半导体装置及半导体装置的工作方法
JPWO2021165780A1 (ja) 2020-02-21 2021-08-26
US20230144022A1 (en) 2020-03-27 2023-05-11 Semiconductor Energy Laboratory Co., Ltd. Power storage device and electronic device
CN111835071B (zh) * 2020-07-28 2022-05-17 海能达通信股份有限公司 一种电池的保护电路和系统
US20230336006A1 (en) 2020-09-22 2023-10-19 Semiconductor Energy Laboratory Co., Ltd. Control Circuit And Electronic Device
US20230408595A1 (en) 2020-11-27 2023-12-21 Semiconductor Energy Laboratory Co., Ltd. Power storage system, vehicle, and electronic device
CN112234689B (zh) * 2020-12-14 2021-03-09 苏州赛芯电子科技股份有限公司 充放电保护电路及锂电池保护系统
US20240170993A1 (en) 2021-03-05 2024-05-23 Semiconductor Energy Laboratory Co., Ltd. Method for charging secondary battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11283677A (ja) * 1998-03-27 1999-10-15 Fuji Film Celltec Kk バッテリーパック及びその状態監視動作モード制御方法
JP2006246652A (ja) * 2005-03-04 2006-09-14 Mitsumi Electric Co Ltd 電池残量検出回路、電池ユニットおよび電源電圧監視回路
JP2008220149A (ja) * 2007-03-07 2008-09-18 O2 Micro Inc 制御可能なアダプタ出力を備えたバッテリ管理システム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3327790B2 (ja) * 1996-10-29 2002-09-24 エヌイーシートーキン栃木株式会社 二次電池の保護装置
JP2000209788A (ja) 1999-01-11 2000-07-28 Sony Corp 充電装置
JP3670522B2 (ja) * 1999-07-30 2005-07-13 富士通株式会社 バッテリパック
JP2001238358A (ja) * 2000-02-24 2001-08-31 Toshiba Battery Co Ltd 二次電池装置
JP4111890B2 (ja) * 2003-07-29 2008-07-02 三洋電機株式会社 無停電電源装置
CA2539217A1 (en) * 2003-10-03 2005-04-21 Black & Decker, Inc. Methods of discharge control for a battery pack of a cordless power tool system, a cordless power tool system and battery pack adapted to provide over-discharge protection and discharge control
JP2006101635A (ja) * 2004-09-29 2006-04-13 Mitsumi Electric Co Ltd 過充電/過放電検出装置及び過充電/過放電検出回路並びに半導体装置
KR20070018432A (ko) * 2005-08-10 2007-02-14 엘지전자 주식회사 휴대용 기기에서의 배터리 전원 제어방법
JP2009153238A (ja) * 2007-12-18 2009-07-09 Mitsumi Electric Co Ltd 携帯機器と、携帯機器に用いる電池パック

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11283677A (ja) * 1998-03-27 1999-10-15 Fuji Film Celltec Kk バッテリーパック及びその状態監視動作モード制御方法
JP2006246652A (ja) * 2005-03-04 2006-09-14 Mitsumi Electric Co Ltd 電池残量検出回路、電池ユニットおよび電源電圧監視回路
JP2008220149A (ja) * 2007-03-07 2008-09-18 O2 Micro Inc 制御可能なアダプタ出力を備えたバッテリ管理システム

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102647002A (zh) * 2011-02-18 2012-08-22 三美电机株式会社 复合设备系统
US8975873B2 (en) 2011-02-18 2015-03-10 Mutsumi Electric Co., Ltd. Composite device system
KR101798005B1 (ko) 2011-02-18 2017-11-15 미쓰미덴기가부시기가이샤 복합 디바이스 시스템
JP2014191860A (ja) * 2013-03-26 2014-10-06 Sanyo Electric Co Ltd 電池パック
WO2022049455A1 (ja) * 2020-09-07 2022-03-10 株式会社半導体エネルギー研究所 二次電池の制御回路および電子機器
WO2022239510A1 (ja) * 2021-05-10 2022-11-17 日本たばこ産業株式会社 エアロゾル発生装置の電源ユニット
JP7104868B1 (ja) 2021-05-10 2022-07-21 日本たばこ産業株式会社 エアロゾル発生装置
WO2022239279A1 (ja) * 2021-05-10 2022-11-17 日本たばこ産業株式会社 エアロゾル生成装置の電源ユニット
JP7104262B1 (ja) 2021-05-10 2022-07-20 日本たばこ産業株式会社 エアロゾル発生装置の電源ユニット
WO2022239511A1 (ja) * 2021-05-10 2022-11-17 日本たばこ産業株式会社 エアロゾル発生装置の電源ユニット
WO2022239280A1 (ja) * 2021-05-10 2022-11-17 日本たばこ産業株式会社 エアロゾル生成装置の電源ユニット
WO2022239512A1 (ja) * 2021-05-10 2022-11-17 日本たばこ産業株式会社 エアロゾル発生装置の電源ユニット
JP2022173998A (ja) * 2021-05-10 2022-11-22 日本たばこ産業株式会社 エアロゾル発生装置の電源ユニット
JP2022173999A (ja) * 2021-05-10 2022-11-22 日本たばこ産業株式会社 エアロゾル発生装置
JP7523687B2 (ja) 2021-05-10 2024-07-26 日本たばこ産業株式会社 エアロゾル発生装置の電源ユニット
JP7523686B2 (ja) 2021-05-10 2024-07-26 日本たばこ産業株式会社 エアロゾル発生装置の電源ユニット

Also Published As

Publication number Publication date
KR101726724B1 (ko) 2017-04-13
US20110267726A1 (en) 2011-11-03
US9935451B2 (en) 2018-04-03
CN102282739B (zh) 2014-05-07
KR20110118766A (ko) 2011-11-01
JP5564955B2 (ja) 2014-08-06
US20160079746A1 (en) 2016-03-17
JP2010187532A (ja) 2010-08-26
US9231283B2 (en) 2016-01-05
CN102282739A (zh) 2011-12-14

Similar Documents

Publication Publication Date Title
JP5564955B2 (ja) 保護監視回路、電池パック、二次電池監視回路、及び保護回路
JP5299292B2 (ja) 保護監視回路、及び電池パック
US8148946B2 (en) Battery pack having protection circuit for secondary battery
US8148944B2 (en) Secondary battery protection semiconductor device for protecting a secondary battery
JP7538452B2 (ja) 二次電池保護装置、電池パック及び二次電池保護装置の制御方法
US8339107B2 (en) Portable device and battery pack for the same
CN106410889B (zh) 二次电池用复合集成电路、二次电池用复合装置及电池组
US8193774B2 (en) Battery pack
KR20160137356A (ko) 전지 보호 집적 회로, 전지 보호 장치 및 전지 팩
JP5396825B2 (ja) 保護回路
JP4965855B2 (ja) バッテリー状態監視回路及びバッテリー装置
US8524385B2 (en) Battery pack
JP5098501B2 (ja) 電池パック
US20050134227A1 (en) Battery pack with protection circuit
JP5338047B2 (ja) 電池パック
JP2005312140A (ja) 充放電制御回路
WO2013118401A1 (ja) 電池制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080004623.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10731277

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117011758

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13143844

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10731277

Country of ref document: EP

Kind code of ref document: A1