WO2022239511A1 - エアロゾル発生装置の電源ユニット - Google Patents

エアロゾル発生装置の電源ユニット Download PDF

Info

Publication number
WO2022239511A1
WO2022239511A1 PCT/JP2022/014085 JP2022014085W WO2022239511A1 WO 2022239511 A1 WO2022239511 A1 WO 2022239511A1 JP 2022014085 W JP2022014085 W JP 2022014085W WO 2022239511 A1 WO2022239511 A1 WO 2022239511A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
circuit
voltage
terminal
switch
Prior art date
Application number
PCT/JP2022/014085
Other languages
English (en)
French (fr)
Inventor
達也 青山
拓嗣 川中子
徹 長浜
貴司 藤木
亮 吉田
Original Assignee
日本たばこ産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本たばこ産業株式会社 filed Critical 日本たばこ産業株式会社
Publication of WO2022239511A1 publication Critical patent/WO2022239511A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/53Monitoring, e.g. fault detection
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/90Arrangements or methods specially adapted for charging batteries thereof

Definitions

  • the present invention relates to a power supply unit for an aerosol generator.
  • Patent Literature 1 discloses a system including a fuel gauge circuit.
  • the fuel gauge circuit may be configured to receive various inputs and monitor and/or measure various battery characteristics such as voltage, current, battery capacity, battery operating mode, and state of health (SOH).
  • the fuel gauge circuit may also generate various types of control signals, such as control signals for controlling charging and discharging, depending on received input signals and/or battery characteristics.
  • the first to third aspects of the invention described in the specification and drawings provide techniques that are advantageous for managing the state of the power supply with high accuracy.
  • a first aspect relates to a power supply unit for an aerosol generator having a plurality of substrates including a first substrate, the power supply unit using power supplied from a power supply to power a heater for heating an aerosol source.
  • a control unit that controls the supply of the resistor, a resistor arranged in a path through which the current output from the power supply flows, and a measurement circuit that measures the state of the power supply using the resistor, wherein the resistor and the measurement circuit is arranged on the first substrate.
  • the resistor and the measurement circuit may be arranged on the same surface of the first substrate.
  • the power supply unit may further comprise a first power connector connected to the positive pole of the power supply and a second power connector connected to the negative pole of the power supply, the path comprising: a first conductive path connected to the first power connector; and a second conductive path connected to the second power connector, the second power connector disposed on the first substrate; A vessel may be positioned in the second conductive path.
  • the power supply unit may further include a first heater connector to which a positive terminal of the heater is connected, and a second heater connector to which a negative terminal of the heater is connected.
  • a second heater connector may be located on the first substrate.
  • the first heater connector may be located on the first substrate, and the first heater connector and the second heater connector are located on the same side of the first substrate. good too.
  • the resistor and the second heater connector may be arranged on mutually opposite surfaces of the first substrate.
  • At least a portion of the resistor may overlap at least a portion of the second heater connector in orthogonal projection onto one of the two surfaces of the first substrate.
  • the power supply unit may further include a switch arranged between the resistor and the second heater connector on the second conductive path.
  • the switch and the second heater connector may be arranged on the same surface of the first substrate.
  • the switch may be the element closest to the second heater connector among the electronic components arranged on the same surface.
  • the electronic component may be an active element.
  • the power supply unit may further include a switch section arranged on the second conducting path so as to be connected in series with the resistor.
  • the resistor and the switch section are arranged on the same surface of the first substrate, and in the orthographic projection, at least part of the switch section is at least part of the second heater connector. may overlap with
  • the power supply unit further includes a protection circuit that controls the switch unit to protect the power supply according to at least one of the current flowing through the second conductive path and the output voltage of the power supply.
  • the switch section may be arranged between the resistor in the second conducting path and the negative electrode of the power supply.
  • the power supply unit may further comprise a second resistor arranged in the second conductive path so as to be connected in series with the resistor, the protection circuit comprising: may be detected using the second resistor, and the resistor and the second resistor may be located on the same side of the first substrate.
  • the shortest distance between the resistor and the second resistor may be smaller than at least one of the maximum dimension of the resistor and the maximum dimension of the second resistor.
  • the plurality of substrates may include a second substrate, and the controller may be arranged on the second substrate.
  • the power supply unit may further include a first transformation circuit that transforms the voltage supplied from the power supply and supplies it to the power supply terminal of the measurement circuit, wherein the first transformation circuit It may be arranged on two substrates.
  • the power supply unit may further include a second transformer circuit that transforms the voltage supplied from the power supply to generate the voltage supplied to the heater, wherein the second transformer circuit is configured to transform the voltage supplied from the power supply to the heater. They may be arranged on one substrate.
  • the power supply unit may further include a second switch arranged on a path connecting the output of the second transformer circuit and the heater and controlled by the control unit.
  • a switch may be disposed on the first substrate.
  • the power supply unit may further include a detection circuit for detecting the temperature of the heater, and the detection circuit may be arranged on the first substrate.
  • the first aspect relates to a power supply unit of an aerosol generator having a plurality of element placement surfaces including a first element placement surface, wherein the power supply unit heats the aerosol source using power supplied from a power supply.
  • a control unit that controls the supply of power to the heater for, a resistor arranged in a path through which the current output from the power supply flows, a measurement circuit that measures the state of the power supply using the resistor, and the resistor and the measurement circuit are arranged on the first element arrangement surface.
  • a second aspect relates to a power supply unit of an aerosol generator, said power supply unit comprising a first conductive path connected to a positive pole of a power supply, a second conductive path connected to a negative pole of said power supply, and a a control unit for controlling the heat generation of a heater for heating the aerosol source using the electric power supplied to the aerosol source; a measurement circuit for measuring the state of the power supply using a resistor arranged on the second conductive path; a switch unit arranged between the resistor and the negative electrode in the second conductive path so as to be able to cut off current flowing through the conductive path; and a protection circuit that controls the switch unit.
  • the supply of voltage to the control unit and the measurement circuit may be stopped by the protection circuit turning off the switch unit.
  • the power supply unit may further include a voltage supply section that supplies voltage to the control section and the measurement circuit based on the voltage supplied from the power supply, and the protection circuit controls the switch section. By turning off, supply of voltage from the power source to the voltage supply unit may be stopped, thereby stopping supply of voltage from the voltage supply unit to the control unit and the measurement circuit.
  • a voltage may be supplied from the power supply to the voltage supply section through the first conductive path and the second conductive path.
  • supply of voltage from the voltage supply unit to the control unit and the measurement circuit may be restarted by supplying voltage from an external device to the voltage supply unit.
  • the power supply unit further includes a charging circuit that receives a voltage supply from the external device to charge the power supply, and charging of the power supply by the charging circuit may be controlled by the control unit. good.
  • control unit controls the charging circuit so that the charging circuit receives a voltage supply from the external device and starts charging the power source when the switch unit is turned off. good too.
  • control unit may control the charging circuit to start charging the power supply when it is determined that the power supply can be charged based on the output voltage of the power supply.
  • the protection circuit may turn on the switch section when the remaining capacity of the power supply exceeds a predetermined value due to charging by the charging circuit.
  • the power supply unit further comprises a second resistor arranged between the resistor and the negative pole in the second conductive path, the protection circuit flowing through the second resistor.
  • the switch section may be controlled to protect the power supply according to the current.
  • the second resistor may be arranged between the switch section and the negative electrode in the second conducting path.
  • the switch section includes a transistor arranged to be able to cut off current flowing through the second conductive path, and a rectifying element connected in parallel to the transistor, and the transistor is controlled by the protection circuit. may be controlled.
  • the rectifying element may be a body diode attached to the transistor.
  • the forward direction of the rectifying element is the direction in which the current that charges the power supply flows, and even when the switch section is turned off, the current flows through the rectifying element, can be charged.
  • the power supply unit may further include a cutoff switch arranged in the second conductive path so as to be able to cut off current flowing through the heater and the second conductive path
  • the control unit may include the The cutoff switch may be controlled so as to cut off the current flowing through the heater and the second conductive path based on the result of measurement by a measurement circuit.
  • the switch section may be arranged between the cut-off switch and the negative electrode in the second conducting path.
  • a third aspect relates to a power supply unit of an aerosol generator, wherein the power supply unit includes a control unit for controlling power supply to a heater for heating the aerosol source using power supplied from the power supply; A state of the power supply is measured using a first resistor and a second resistor arranged in series in a path through which a current output from the power supply flows, a switch section arranged in the path, and the first resistor. and a protection circuit that controls the switch unit so that the path is cut off based on the current flowing through the path that is detected using the second resistor, the first resistor The shortest distance between the measuring circuit and the measuring circuit is less than the shortest distance between the second resistor and the protection circuit.
  • the first resistor and the measurement circuit may be arranged on the same plane of the same substrate, and the second resistor and the protection circuit may be arranged on the same plane of the same substrate. may be placed.
  • the first resistor, the second resistor, the measurement circuit and the protection circuit may be arranged on the same plane of the same substrate.
  • the first resistor, the second resistor, the measurement circuit, and the protection circuit may be arranged on the same substrate, and the substrate may be located at the end on the side where the heater is arranged. and the shortest distance between the first resistor and the edge may be less than the shortest distance between the measurement circuit and the edge.
  • the shortest distance between the second resistor and the edge may be smaller than the shortest distance between the protection circuit and the edge.
  • the shortest distance between the measurement circuit and the edge may be smaller than the shortest distance between the protection circuit and the edge.
  • the substrate may be provided with a first heater connector to which a positive terminal of the heater is connected, and a second heater connector to which a negative terminal of the heater is connected.
  • the shortest distance between the first heater connector and the edge and the shortest distance between the second heater connector and the edge are less than the shortest distance between the measurement circuit and the edge.
  • the first resistor and the second resistor may be located on a first side of the substrate, and the first heater connector and the second heater connector may be located on a second side of the substrate. may be placed on the surface.
  • the switch section may be arranged on the first surface.
  • the power supply unit may further include a cutoff switch arranged on a path connecting the second heater connector and the first resistor.
  • the shortest distance between the cut-off switch and the end may be smaller than the shortest distance between the measurement circuit and the end.
  • the cut-off switch may be arranged on the second surface.
  • the power supply unit includes a transformer circuit that transforms a voltage supplied from the power supply to generate a voltage to be supplied to the heater, and connects an output of the transformer circuit and the first heater connector. and a heater switch arranged on the path, wherein the shortest distance between the heater switch and the end may be less than the shortest distance between the measuring circuit and the end.
  • the heater switch may be arranged on the first surface.
  • At least a portion of the heater switch may overlap at least a portion of the first heater connector in orthogonal projection with respect to the first surface.
  • the shortest distance between the first resistor and the second resistor may be smaller than at least one of the maximum dimension of the first resistor and the maximum dimension of the second resistor.
  • a fourth aspect relates to a power supply unit of an aerosol generator, wherein the power supply unit includes a control unit for controlling power supply to a heater for heating the aerosol source using power supplied from the power supply; A resistor placed in a path through which a current output from a power supply flows, a thermistor for measuring the temperature of the power supply, two thermistor connectors to which the thermistors are connected, and the power supply using the resistor. a measurement circuit that measures the state and the temperature of the power supply using the thermistor; and a substrate on which the resistor, the two thermistor connectors, and the measurement circuit are arranged; The shortest distance between one thermistor connector and the measuring circuit is less than the shortest distance between the resistor and the measuring circuit.
  • the measurement circuit may include a first function of providing information indicating the temperature of the power supply to the control unit, and a second function of notifying the control unit of an abnormality in the temperature of the power supply. good.
  • control unit may stop at least one of discharging of the power supply and charging of the power supply in response to notification from the measurement circuit by the second function.
  • the measurement circuit may calculate the remaining amount of the power supply based on information obtained using the resistor and information obtained using the thermistor.
  • two terminals of the thermistor may be directly connected to the two thermistor connectors, respectively.
  • the thermistor may be arranged to at least partially surround the power supply.
  • the power source may have a cylindrical shape
  • the thermistor may include an arc-shaped portion along the cylindrical shape of the power source.
  • the measurement circuit and the resistor may be arranged on the same surface of the substrate.
  • the distance between the geometric center of the figure formed by the outer edge of the substrate and the geometric center of the measurement circuit may be smaller than the shortest distance between the geometric center of the figure and the resistor. good.
  • the distance between the geometric center of the figure formed by the outer edge of the substrate and the geometric center of the measurement circuit is smaller than the shortest distance between the geometric center of the figure and the two thermistor connectors.
  • the distance between the geometric center of the figure formed by the outer edge of the substrate and the geometric center of the measurement circuit is smaller than the shortest distance between the geometric center of the figure and the resistor, It may be less than the shortest distance between said geometric center of a figure and said two thermistor connectors.
  • the power supply unit may further include two power connectors to which the power supplies are connected, the two power connectors may be arranged on the substrate, and the power supply unit may have a shape formed by an outer edge of the substrate. A shortest distance between a geometric center and a geometric center of the measurement circuit may be less than a shortest distance between the geometric center of the figure and the two power connectors.
  • the controller may be arranged on a substrate different from the substrate on which the resistor, the two thermistor connectors, and the measurement circuit are arranged.
  • a fifth aspect relates to a power supply unit of an aerosol generator, wherein the power supply unit controls power supply to a heater for heating an aerosol source using power supplied from a power supply and charging of the power supply.
  • a control unit and a measurement circuit that measures the state of the power supply The measurement circuit includes a detection circuit that detects that the state of the power supply has become abnormal, and an output unit that outputs an abnormality notification in response to detection by the detection circuit.
  • the measurement circuit may further include an interface for providing state information regarding the state of the power supply to the control unit in response to a request from the control unit.
  • control unit may perform protection operation to protect the power supply according to the abnormality notification and the state information.
  • the protection operation may include prohibiting charging of the power supply and prohibiting discharge from the power supply to the heater.
  • the power supply unit may further include a notification section that notifies that the power supply is abnormal.
  • the power supply unit may further include a reset section that resets the control section, and the protection operation may be canceled by resetting the control section by the reset section.
  • the output unit outputs a The abnormality notification may be output.
  • control unit may acquire the state information from the measurement circuit via the interface in response to the output of the anomaly notification from the output unit.
  • the status information may include at least one of information for determining whether the power supply has permanently failed and information indicating that the power supply has permanently failed.
  • the abnormal state may include a state in which the temperature of the power supply exceeds a reference temperature.
  • the power supply unit may further include a protection unit that protects the power supply in response to the anomaly notification regardless of control by the control unit.
  • the control unit determines that the status information obtained through the interface indicates that the power supply is not in an abnormal state.
  • the power supply to the heater may be enabled.
  • the protection of the power supply by the protection unit may be releasable.
  • the control unit obtains first information about the state of the power supply from the measurement circuit via the interface by periodic polling, and responds to the abnormality notification via the interface.
  • Second information regarding the state of the power supply may be obtained from a measurement circuit, and the control unit performs an operation of protecting the power supply when the first information indicates that the power supply is in the first state. may be executed, and the measurement circuit may output the abnormality notification in response to the power supply being in a second state worse than the first state.
  • the first information and the second information may be information indicating the temperature of the power supply.
  • the control unit obtains first information about the state of the power supply from the measurement circuit via the interface by periodic polling, and responds to the abnormality notification via the interface.
  • Second information about the state of the power supply may be acquired from a measurement circuit, and the control unit may obtain any condition in which the first information includes the state of the power supply when the power supply is charged in a first condition group. is satisfied, the operation to protect the power supply is executed, and the first information satisfies any one of the conditions included in the second condition group when the state of the power supply is discharged when the power supply is discharged , the operation of protecting the power supply may be performed, and the number of conditions included in the first condition group may be greater than the number of conditions included in the second condition group.
  • the control unit obtains first information about the state of the power supply from the measurement circuit via the interface by periodic polling, and responds to the abnormality notification via the interface.
  • Second information about the state of the power supply may be obtained from a measurement circuit, and the control unit may obtain the second information if the state of the power supply is included in a third condition group when the power supply is being charged. is satisfied, the operation to protect the power supply is executed, and the second information satisfies any one of the conditions included in the fourth condition group when the state of the power supply is discharged when the power supply is discharged , the operation of protecting the power supply may be performed, and the number of conditions included in the third condition group may be less than the number of conditions included in the fourth condition group.
  • the abnormality notification may include notification by a first abnormality signal and notification by a second abnormality signal, the first abnormality signal being provided to the control unit, and the second abnormality signal may be provided to the control unit, wherein the first abnormal signal is output from the output unit when the state of the power supply is the first abnormal state, and the second abnormal signal is the state of the power supply may be output from the output section when is in a second abnormal state different from the first abnormal state.
  • the first abnormal signal may be provided to the control section through an information holding circuit that holds the first abnormal signal.
  • a sixth aspect relates to a power supply unit of an aerosol generator, wherein the power supply unit includes a connector to which a heater for heating the aerosol source using power supplied from the power supply is connected, and a positive electrode potential of the power supply.
  • a control unit for controlling the supply of electric power to the heater and the charging of the power source, and a path through which the current output from the power source flows, and the discharge of the power source can be interrupted.
  • control unit comprises the The charging current of the power source is increased when the potential of the positive electrode detected based on the potential supplied to the terminal exceeds a second level larger than the first level due to the charging of the power source.
  • the power supply unit may further include a rectifying element connected in parallel to the switch so as to be able to supply a charging current to the power supply.
  • the rectifying element may be a body diode attached to the switch.
  • the protection circuit may be supplied with the output voltage of the power supply regardless of the state of the switch.
  • power supply to the control unit may be cut off by opening the switch.
  • the difference between the second level and the first level may be greater than the forward voltage of the rectifying element.
  • the terminal may be supplied with a potential obtained by dividing the potential of the positive electrode of the power supply.
  • the path includes a first conductive path connected to the positive terminal of the power supply and a second conductive path connected to the negative terminal of the power supply, the switch comprising: may be placed in
  • the power supply unit uses a voltage supplied from an external device to supply a first voltage between the first conducting path and the second conducting path for charging the power supply.
  • a voltage supply circuit that generates a second voltage for operating the control section may be further provided, and the control section may control charging of the power supply by controlling the voltage supply circuit.
  • the voltage supply circuit includes a charging circuit that generates a third voltage in addition to the first voltage using the voltage supplied from the external device, and the third voltage that is output from the charging circuit. a transformer circuit for converting a voltage to the second voltage.
  • the controller performs error processing when the voltage supply circuit finishes charging before the potential of the positive electrode detected based on the potential supplied to the terminal exceeds the second level. may be executed.
  • the control unit stops charging the power source and supplying power to the heater as the error processing. may be prohibited.
  • the state in which the charging of the power source and the supply of power to the heater are prohibited as the error processing may be irreversible.
  • the control unit charges the power source and cuts power to the heater as the error processing.
  • the state in which the supply is prohibited may be released by restarting the control unit.
  • the protection circuit may close the switch in response to the potential of the positive electrode exceeding a third level greater than the first level.
  • the power supply unit may further include a measurement circuit that measures the voltage of the power supply, and the control unit measures the voltage measured by the measurement circuit after the protection circuit closes the switch.
  • a charging current of the power source may be increased in response to the potential of the positive electrode exceeding a fourth level that is lower than the second level.
  • a seventh aspect relates to a power supply unit of an aerosol generator, wherein the power supply unit includes a connector to which a heater for heating the aerosol source using power supplied from the power supply is connected, and a connector for supplying power to the heater.
  • a control unit for controlling supply and charging operations of the power source, and a measurement circuit for measuring the state of the power source, the control unit having a first terminal for receiving information correlated with the state of the power source.
  • the measurement circuit having a second terminal for receiving information correlated to the state of the power supply, and supplied to the second terminal;
  • a second index corresponding to the information is generated and provided to the control unit, and the control unit controls the charging operation of the power source according to the first index and the second index.
  • a charging circuit may further be provided, and the controller controls the power source to be in the first state when at least one of the first indicator and the second indicator indicates that the power source is in an over-discharged state.
  • the charging operation may be controlled such that the battery is charged in a mode.
  • a charger circuit may further be provided, and the control unit detects that the power supply is discharged when at least one of the first indicator and the second indicator indicates that the overdischarged state of the power supply has been resolved.
  • the charging operation may be controlled so that charging is performed in the second mode.
  • a charging circuit may further be provided, and the controller controls the power source to be in the first state when at least one of the first indicator and the second indicator indicates that the power source is in an overdischarged state. and when at least one of the first indication and the second indication indicates that the over-discharge condition has been resolved, the power source is The charging operation may be controlled to charge in the second mode.
  • the first indicator and the second indicator may be indicators that are comparable on the same scale.
  • the first index and the second index may be the output voltage of the power supply.
  • the power supply unit may further include a notification section that notifies information regarding the remaining amount of the power supply, and the control section indicates the remaining amount of the power supply as the state of the power supply.
  • An index may be acquired from the measurement circuit, and information corresponding to the third index may be notified by the notification unit.
  • the third index may be SOC.
  • the power supply unit includes a switch arranged in a path through which a current output from the power supply flows so as to be able to cut off the discharge of the power supply, and a potential of the positive electrode of the power supply that has fallen below a first level.
  • a protection circuit that opens the switch such that discharge of the power source is interrupted in response to a voltage and closes the switch in response to the potential of the positive electrode exceeding a second level that is greater than the first level; and a rectifying element connected in parallel to the switch so as to be able to supply a charging current to .
  • control unit controls the charging operation based on the first index when the switch is open, and controls the charging operation based on the second index when the switch is closed. You can control the action.
  • the power supply unit may further include a rectifying element connected in parallel to the switch so as to supply a charging current to the power supply.
  • the rectifying element may be a body diode attached to the switch.
  • the protection circuit may be supplied with the output voltage of the power supply regardless of the state of the switch.
  • a potential obtained by dividing the potential of the positive electrode of the power supply may be supplied to the first terminal.
  • the path may include a first conductive path connected to the positive terminal of the power supply and a second conductive path connected to the negative terminal of the power supply, the switch connecting the second It may be arranged in a conductive path.
  • the power supply unit uses a voltage supplied from an external device to supply a first voltage between the first conducting path and the second conducting path for charging the power supply.
  • a voltage supply circuit that generates a second voltage for operating the control section may be further provided, and the control section may control charging of the power supply by controlling the voltage supply circuit.
  • the voltage supply circuit includes a charging circuit that generates a third voltage in addition to the first voltage using the voltage supplied from the external device, and the third voltage that is output from the charging circuit. a transformer circuit for converting a voltage to the second voltage.
  • An eighth aspect relates to a power supply unit of an aerosol generator, the power supply unit comprising: a switch; an insertion hole that can accommodate an aerosol source; a closed state that closes the insertion hole; a slider operable to provide an open state allowing insertion; a first detector for detecting the state of the slider; and a circuit block that operates according to the
  • the power supply unit may further include an outer case including a removable panel, and a second detection section that detects the presence or absence of the panel, and the circuit block may include the second detection section.
  • the circuit block may include a restartable control unit, and the circuit block is in a state where the presence of the panel is detected by the second detection unit and
  • a first process relating to aerosol generation may be executed, and the presence of the panel may be detected by the second detection unit.
  • a second process unrelated to aerosol generation may be executed. and when the switch is operated in a state in which the second detection section detects that the panel is absent, the control section may be restarted regardless of the detection result of the first detection section. .
  • the second processing may include processing related to communication with an external device.
  • FIG. 4A and 4B are diagrams for explaining the operation of the power supply unit;
  • FIG. 4A and 4B are diagrams for explaining the operation of the power supply unit;
  • FIG. 4A and 4B are diagrams for explaining the operation of the power supply unit;
  • FIG. 4A and 4B are diagrams for explaining the operation of the power supply unit;
  • FIG. 4A and 4B are diagrams for explaining the operation of the power supply unit;
  • FIG. 4A and 4B are diagrams for explaining the operation of the power supply unit;
  • FIG. 4A and 4B are diagrams for explaining the operation of the power supply unit;
  • FIG. State transition diagram of an aerosol generator or a power supply unit The figure which illustrates the structure of an aerosol generator.
  • FIG. 3 is a diagram exemplifying a protection circuit, a measurement circuit, and electronic components arranged around them;
  • FIG. 4 is a diagram illustrating the operation of a protection circuit, a measurement circuit, and electronic components arranged around them;
  • FIG. 4 is a diagram illustrating the operation of a protection circuit, a measurement circuit, and electronic components arranged around them;
  • FIG. 4 is a diagram illustrating the operation of a protection circuit, a measurement circuit, and electronic components arranged around them;
  • FIG. 4 is a diagram illustrating the operation of a protection circuit, a measurement circuit, and electronic components arranged around them;
  • FIG. 4 is a diagram illustrating the operation of a protection circuit, a measurement circuit, and electronic components arranged around them;
  • FIG. 4 is a diagram illustrating the arrangement of electronic components on the first substrate;
  • FIG. 4 is a diagram illustrating the arrangement of electronic components on the first substrate;
  • FIG. 4 is a diagram for exemplifying a function related to protection of a power supply;
  • FIG. 23 is a diagram schematically showing a configuration example of a measurement circuit for realizing the functions of the measurement circuit shown in FIG. 22;
  • the figure which shows the example of connection such as a measuring circuit, a control part, a transformer circuit, a charging circuit, an information holding circuit, and an OP amplifier.
  • FIG. 25 is a diagram for explaining the operation of the circuit configuration shown in FIG. 24;
  • FIG. 25 is a diagram for explaining the operation of the circuit configuration shown in FIG. 24;
  • FIG. 25 is a diagram for explaining the operation of the circuit configuration shown in FIG. 24;
  • FIG. 25 is a diagram for explaining the operation of the circuit configuration shown in FIG. 24;
  • FIG. 30 is a diagram for explaining the operation of the circuit configuration shown in FIG. 29;
  • FIG. 30 is a diagram for explaining the operation of the circuit configuration shown in FIG. 29;
  • FIG. 30 is a diagram for explaining the operation of the circuit configuration shown in FIG. 29;
  • FIG. 30 is a diagram for explaining the operation of the circuit configuration shown in FIG. 29;
  • FIG. 30 is a diagram for explaining the operation of the circuit configuration shown in FIG. 29;
  • FIG. 30 is a diagram for explaining the operation of the circuit configuration shown in FIG. 29;
  • FIG. 30 is a diagram for explaining the operation of the circuit configuration shown in FIG. 29;
  • FIG. 30 is a diagram for explaining the operation of the circuit configuration shown in FIG. 29;
  • FIG. 29 is a diagram for explaining the operation of the circuit configuration shown in FIG. 29;
  • FIG. 30 is a diagram for explaining the operation of the circuit configuration shown in FIG. 29;
  • FIG. 30 is a diagram for explaining the operation of the circuit configuration shown in FIG. 29;
  • FIG. 4 is a diagram showing an operation example of a protection circuit, a control unit, a charging circuit, and a measurement circuit in chronological order
  • FIG. 4 is a diagram showing an operation example of a protection circuit, a control unit, a charging circuit, and a measurement circuit in chronological order
  • FIG. 5 is a diagram showing an operation example of the control unit when receiving an interrupt due to completion of charging
  • FIGS. 1A-1E show the configuration of the aerosol generator AGD of one embodiment.
  • FIGS. 1A to 1E are rear view, front view, top view, and bottom view, respectively, of the aerosol generator AGD.
  • FIG. D is a top view of the aerosol generator AGD with the components (slider C102) removed.
  • the aerosol generator AGD generates a flavored aerosol or It can be configured to provide a user with an aerosol and a flavorant-containing gas or an aerosol or a flavorant-containing aerosol.
  • the aerosol source can be solid, liquid, or a mixture of solids and liquids.
  • Liquid aerosol sources can include, for example, liquids such as glycerin or polyhydric alcohols such as propylene glycol. As a specific example, the aerosol source may comprise a mixed solution of glycerin and propylene glycol.
  • the aerosol source may contain a medicament.
  • a vapor source such as water may be used instead of or in conjunction with an aerosol source.
  • the flavoring substance may be, for example, a shaped body of tobacco material. Alternatively, the flavoring substance may be composed of plants other than tobacco (eg, mint, herbs, Chinese medicine, coffee beans, etc.). Flavoring substances such as menthol may be added to the flavoring substance. Flavorants may be added to the aero
  • the aerosol generator AGD can include, for example, an outer case C101 and a slider C102 attached to the outer case C101.
  • the outer case C101 can have an insertion hole C104 into which an insert containing at least one of an aerosol source and a flavoring substance can be inserted or accommodated.
  • the slider C102 can provide a closed state in which the insertion hole C104 is closed or covered, and an open state in which the insertion hole C104 is exposed to the external space and an insert can be inserted into the insertion hole C104.
  • the slider C102 may be, for example, a slide mechanism along a straight line or a curved line, or a rotating mechanism.
  • the slider C102 may be replaced by a shutter.
  • the insert may be, for example, a stick or a capsule.
  • a heater for heating the insert may be arranged in the insertion hole C104.
  • a heater can be, for example, a resistive element.
  • a heater composed of a resistance element or the like may be arranged in the insert.
  • An electrical connector may be provided electrically connected to the electrical connector provided.
  • the heater may be, for example, an induction heater.
  • An induction heating heater may include a coil and a susceptor that generates heat from the coil by induction heating using electromagnetic waves.
  • a susceptor may be disposed within the insert.
  • All or part of the outer case C101 may be composed of parts such as easily removable panels. In other words, all or part of the outer case C101 may be composed of parts such as panels that are not prohibited to be removed by the user.
  • the outer case C101 has an easily removable outer panel C103.
  • the outer panel C103 can be coupled to the remaining portion (body portion) of the outer case C101 by a magnet, a latch mechanism, or the like.
  • the outer case C101 can be understood as a first portion of the exterior component of the aerosol generator AGD, and the outer panel C103 as a second portion of the exterior component.
  • the aerosol generator AGD can have a notification unit NU.
  • the notification unit NU can provide information to the user in a perceivable form.
  • the notification unit NU may include, for example, at least one of a display device, a speaker, a vibration device, and a scent generation device.
  • the display device may include, for example, at least one of a light emitting device, such as an LED, and a two-dimensional display device, such as a liquid crystal display device.
  • FIG. 2A illustrates the aerosol generator AGD with the outer panel C103 removed.
  • the aerosol generator AGD can have one or more magnets (holding units) C112 for holding the outer panel C103 by magnetic force.
  • the aerosol generator AGD can have a switch SW that can be operated by the user.
  • the outer panel C103 may be configured to be easily deformed by a user's operation, and the switch SW may be operated by the user's pressing force on the outer panel C103. Alternatively, the switch SW may be arranged so as to be exposed to the outside of the aerosol generator AGD.
  • the aerosol generator AGD can have an inner panel C113 inside the outer panel C103.
  • the inner panel C113 can have a plurality of openings for exposing the magnet C112, the notification unit NU and the switch SW.
  • the inner panel C113 can be fastened to the internal structure of the aerosol generator AGD by fastening parts such as screws, for example.
  • FIG. 2B further illustrates the aerosol generator AGD with the inner panel C113 removed from the internal structure.
  • the aerosol generator AGD comprises a power supply unit PSU.
  • the power supply unit PSU may include a power supply BT.
  • As the power source BT for example, a lithium-ion secondary battery, a lithium-ion capacitor, a combination thereof, or other types of power supply elements may be used. may be
  • FIG. 3A further illustrates the aerosol generator AGD with the outer case C101 completely removed.
  • FIG. 3B further illustrates the aerosol generator AGD with the chassis CHS and power supply BT removed.
  • the aerosol generator AGD can include a heater HT that heats an insert inserted into the insertion hole C104.
  • the heater HT can be placed inside the insulating cylinder INS illustrated in FIG. 2B.
  • the power supply unit PSU may comprise a plurality of boards (eg printed circuit boards (PCBs)) PCB1, PCB2, PCB3, PCB4.
  • the power source BT can have a columnar shape such as a columnar shape whose axial direction is parallel to the insertion/removal direction DIR of the insert into the insertion hole C104.
  • the insertion/removal direction DIR of the insert with respect to the insertion hole C104 and the axial direction of the power source BT can be parallel to each other.
  • a part of the side surface of the power supply BT can be arranged so as to face the heater HT or the insertion hole C104 via at least the heat insulating cylinder INS.
  • Another part of the side surface of the power supply BT can be arranged to face the first substrate PCB1 directly or via other components.
  • the second substrate PCB2 may be arranged parallel to the first substrate PCB1.
  • the third substrate PCB3 can be arranged perpendicular to the first substrate PCB1 and the second substrate PCB2.
  • the third substrate PCB3 can be arranged between the first substrate PCB1 and the power supply BT in the width direction of the power supply unit PSU (the direction perpendicular to the insertion/removal direction DIR, in which the dimension of the aerosol generator AGD is the largest).
  • the third substrate PCB3 may be arranged to have a portion facing a portion of the side of the power supply BT and a portion of the thermal insulation INS.
  • the third substrate PCB3 may have an elongated shape in a direction parallel to the insertion/removal direction DIR. As shown in FIG. 2B, a third substrate PCB3 can be placed between two magnets C112.
  • FIG. 4 exemplarily shows the circuit configuration of the power supply unit PSU.
  • the power supply unit PSU includes a power supply BT, a protection circuit 90, a measurement circuit 100, an overvoltage protection circuit 110, a transformer circuit 120, an OP amplifier (amplification circuit) A1, switches SH, SM, SR, SS, a thermistor (for example, an NTC thermistor or PTC thermistor) TB.
  • the power supply BT, the protection circuit 90, the measurement circuit 100, the overvoltage protection circuit 110, the transformer circuit 120, the OP amplifier A1, the switches SH, SM, SR, SS can be arranged on the first substrate PSB1, for example.
  • the power supply unit PSU may also include a load switch 10, a charging circuit 20, a transformer circuit 30, a load switch 40, a power switch driver 50, a load switch 60, a non-volatile memory (eg, ROM) 70, and a switch circuit 80.
  • the load switch 10, the charging circuit 20, the transformer circuit 30, the load switch 40, the power switch driver 50, the load switch 60, the nonvolatile memory 70, and the switch circuit 80 can be arranged on the second substrate PCB2, for example.
  • the power supply unit PSU also includes a control unit (MCU) 130, a thermistor TP (for example, NTC thermistor or PTC thermistor), a thermistor (for example, NTC thermistor or PTC thermistor) TH, an OP amplifier (amplification circuit) A2, a thermistor (for example, NTC thermistor or PTC thermistor) TC, an OP amplifier (amplification circuit) A3, and information holding circuits FF1 and FF2.
  • the control unit 130, the OP amplifier A2, the OP amplifier A3, and the information holding circuits FF1 and FF2 can be arranged on the second substrate PCB2.
  • the power supply unit PSU can also include a detector 140, a Schmidt trigger circuit 150, a communication device 160, a detector 170, a switch SW, and an annunciator NU.
  • the detection unit 140, the Schmitt trigger circuit 150, the communication device 160, the switch SW, and the notification unit NU can be arranged on the third substrate PCB3.
  • the power supply unit PSU may also include a detector 170, which may be located on the fourth substrate PCB4.
  • the positive terminal of the power supply BT is electrically connected to the first power connector BC+, and the negative terminal of the power supply BT is electrically connected to the second power connector BC-.
  • the positive potential of the power supply BT can be supplied to the VBAT terminal of the protection circuit 90, the VBAT terminal of the measurement circuit 100, the VIN terminal of the transformer circuit 120, the BAT terminal of the charging circuit 20, and the potential input terminal of the switch circuit 80.
  • the protection circuit 90 uses the resistor R2 arranged in the second conductive path PT2 electrically connected to the path through which the current output from the power supply BT flows, more specifically to the second power supply connector BC-. It is possible to measure the current flowing through the second conductive path PT2 and control the switch section arranged on the second conductive path PT2 so as to protect the power supply BT according to the current.
  • the switch section may include a first transistor (first switch) SD and a second transistor (first switch) SC connected in series.
  • the first transistor SD functions as a switch for interrupting the second conductive path PT2 so as to stop the discharge of the power supply BT when it is opened (turned off), and the second transistor SC, which When opened (turned off), it can function as a switch for interrupting the second conductive path PT2 so as to stop charging the power source BT.
  • the first transistor SD may be arranged in a first conductive path PT1 electrically connected to the first power connector BC+, and the second transistor SC may also be arranged in the first conductive path PT1.
  • a resistor R2 may also be arranged in the first conductive path PT1.
  • the protection circuit 90 opens (turns off) the second transistor SC when the current flowing through the second conductive path PT2 measured during charging of the power supply BT is excessive. Further, when the current flowing through the second conductive path PT2 measured while the power supply BT is not charged is excessive, the protection circuit 90 opens (turns off) the first transistor SD.
  • the protection circuit 90 may be composed of, for example, an integrated circuit (IC).
  • the protection circuit 90 is arranged on the second conducting path PT2 so as to measure the output voltage of the power supply BT based on the positive potential of the power supply BT supplied to the VBAT terminal and protect the power supply BT according to the output voltage. can control the switch part.
  • the protection circuit 90 opens (turns off) the second transistor SC.
  • the protection circuit 90 opens (turns off) the first transistor SD.
  • An overcharged state of the power source BT can be understood as referring to a state in which the output voltage of the power source BT exceeds a predetermined full charge voltage.
  • the overdischarge state of the power supply BT can be understood as referring to a state in which the output voltage of the power supply BT is below a predetermined discharge end voltage.
  • the deep discharge state of the power supply BT can be understood as a state in which the discharge of the power supply BT in the overdischarge state progresses further, causing an irreversible change in the internal structure of the power supply BT.
  • a first rectifying element connected in parallel with the first transistor SD may be provided, the first rectifying element being configured as a body diode of the first transistor SD. good too.
  • the forward direction of the first rectifying element is the direction in which the current for charging the power source BT flows.
  • a second rectifying element connected in parallel with the second transistor SC may be provided, and the second rectifying element is configured as a body diode of the second transistor SC. may be The forward direction of the second rectifying element is the direction in which the current discharged from the power supply BT flows.
  • the measurement circuit 100 uses the path through which the current output from the power supply BT flows, more specifically, the resistor R1 and the VBAT terminal arranged in the second conductive path PT2 electrically connected to the second power supply connector BC-. can measure the state of the power supply BT.
  • a resistor R1 may be arranged in the first conductive path PT1.
  • the measurement circuit 100 may be arranged to measure the temperature of the power supply BT by measuring the resistance of a thermistor (eg, NTC thermistor or PTC thermistor) TB arranged to measure the temperature of the power supply BT. As illustrated in FIGS.
  • the power source BT may have a cylindrical shape, in which case the thermistor TB may include an arcuate portion along the cylindrical shape of the power source BT.
  • the thermistor TB can surround the power supply BT at a central angle of 180 degrees or more, 200 degrees or more, 220 degrees or more, 240 degrees, or 260 degrees or more along the cylindrical shape of the power supply BT.
  • the measurement circuit 100 can be composed of, for example, an integrated circuit.
  • the overvoltage protection circuit 110 receives the voltage V BUS supplied from the USB connector USBC as a power supply connector, and outputs the voltage V USB to the V USB line.
  • the voltage value of the voltage V USB is, for example, 5.0V.
  • the VUSB line is connected to the VOUT terminal and ON terminal of the load switch 10 and the PA9 terminal of the controller 130, which will be described later.
  • the overvoltage protection circuit 110 functions as a protection circuit that reduces the voltage VBUS supplied from the USB connector USBC to the specified voltage value and supplies it to the output side of the overvoltage protection circuit 110 even if the voltage VBUS exceeds the specified voltage value. can function. This specified voltage value may be set based on the voltage value input to the OVLo terminal.
  • the overvoltage protection circuit 110 may be configured with an integrated circuit, for example.
  • Transformer circuit 120 transforms power supply voltage V BAT supplied from power supply BT to generate heater voltage V BOOST for driving heater HT.
  • the transformer circuit 120 may be a boost circuit, a step-up/step-down circuit, or a step-down circuit.
  • a heater HT is arranged to heat the aerosol source.
  • a positive terminal of the heater HT can be electrically connected to the first heater connector HC+ and a negative terminal of the heater HT can be electrically connected to the second heater connector HC-.
  • the heater HT may be attached to the power supply unit PSU or the aerosol generator AGD in such a manner that it cannot be removed without destruction (for example, by soldering), or in such a manner that it can be removed without destruction.
  • the transformer circuit 120 can be configured by, for example, an integrated circuit.
  • the control unit 130 When the heater HT generates heat, the control unit 130 turns off the switch SM, turns on the switches SH and SS, and the heater voltage V BOOST can be supplied to the heater HT through the switch SH.
  • the control unit 130 When measuring the temperature or resistance of the heater HT, the control unit 130 turns off the switch SH, turns on the switches SM and SS, and supplies the heater voltage V BOOST to the heater HT through the switch SM.
  • the OP amplifier A1 detects the voltage between the positive terminal and the negative terminal of the heater HT, in other words, the voltage between the first heater connector HC+ and the second heater connector HC-. , is supplied to the PA7 terminal of the control unit 130 according to the voltage between .
  • the OP amplifier A1 may be understood as a temperature measurement circuit that measures the resistance value or temperature of the heater HT.
  • a shunt resistor RS can be arranged in a path electrically connecting the switch SM and the first heater connector HC+. The resistance value of the shunt resistor RS can be determined so that the switch SR is turned on while the heater HT is heated and turned off while the temperature or resistance value of the heater HT is measured.
  • the drain terminal of the switch SR is connected to the output terminal of the operational amplifier A1
  • the gate terminal of the switch SR is connected between the shunt resistor RS and the first heater connector HC+
  • the source terminal of switch SR is connected to the ground line.
  • a value obtained by dividing the heater voltage VBOOST mainly by the shunt resistor RS and the heater HT is input to the gate terminal of the switch SR.
  • the resistance value of the shunt resistor RS can be determined so that the divided value is greater than or equal to the threshold voltage of the switch SR.
  • the current flowing through the heater HT when the switch SH is turned off and the switches SM and SS are turned on by the shunt resistor RS is equal to the current flowing through the heater HT when the switch SH and the switch SS are turned on and the switch SM is turned off. less than As a result, when measuring the temperature or resistance of the heater HT, the temperature of the heater HT is less likely to change due to the current flowing through the heater HT.
  • the load switch 10 electrically disconnects the VIN terminal and the VOUT terminal when a low level is input to the ON terminal, and disconnects the VIN terminal and the VOUT terminal when a high level is input to the ON terminal. are electrically connected to output the voltage VCC5 from the VOUT terminal to the VCC5 line.
  • the voltage value of voltage VCC5 is, for example, 5.0V.
  • the ON terminal of load switch 10 is electrically connected to the ground line via switch SI.
  • the switch SI is composed of a transistor, turns on when a high level is supplied to its base or gate, and turns off when a low level is supplied.
  • the control unit 130 detects it based on the voltage input to the PA9 terminal, and applies the voltage to the base or gate of the transistor forming the switch SI. Supply low level.
  • the switch SI is turned off, a value obtained by dividing the voltage V USB is supplied to the ON terminal of the load switch 10 .
  • the ON terminal of the load switch 10 is supplied with a high level.
  • the two resistors connected to the ON terminal of load switch 10 have electrical resistance values such that the divided value of voltage V USB is high for the ON terminal of load switch 10 .
  • the control unit 130 supplies a high level to the base or gate of the transistor forming the switch SI based on the voltage input to the PA9 terminal. do.
  • the ON terminal of the load switch 10 is connected to the ground line when the switch SI is turned on. As a result, the ON terminal of the load switch 10 is supplied with a low level.
  • the V CC5 line is electrically connected to the VAC terminal and V BUS terminal of the charging circuit 20 and the notification unit NU.
  • the switch SI may be composed of a transistor that turns on when a low level is supplied to its base or gate, and turns off when a high level is supplied to its base or gate.
  • the control unit 130 supplies a high level to the base or gate of the transistor that constitutes the switch SI, and supplies a high level voltage through the USB connector USBC.
  • a low level may be supplied to the base or gate of the transistor forming the switch SI.
  • the load switch 10 can be composed of, for example, an integrated circuit.
  • Charging circuit 20 has a charging mode.
  • the charging circuit 20 supplies the voltage VCC from the SW terminal to the VCC line using the voltage VCC5 supplied through the VCC5 line, and electrically connects the SYS terminal and the BAT terminal. Then, the charging voltage can be supplied from the BAT terminal to the power supply BT through the first conductive path PT1.
  • the VCC line is connected to the VIN and EN terminals of transformer circuit 30, which will be described later.
  • the charging mode can be enabled or activated by supplying a low level to the /CE terminal.
  • the charging circuit 20 can be composed of, for example, an integrated circuit.
  • Charging circuit 20 may have a first power path mode.
  • the charging circuit 20 electrically connects the VBUS terminal and the SW terminal and supplies the voltage VCC to the VCC line using the voltage VCC5 supplied through the VCC5 line. electrically isolates the SYS and BAT terminals.
  • the first power pass mode is mainly used when the power supply BT is in an over-discharge or deep-discharge state.
  • the charging circuit 20 can have a second power path mode. In the second power pass mode, the charging circuit 20 electrically connects the SYS terminal and the BAT terminal, controls the pulse width of the switching element that electrically connects the VBUS terminal and the SW terminal, and supplies power from the power supply BT.
  • the supplied power supply voltage V BAT and the voltage V CC5 supplied through the V CC5 line are combined to supply the voltage V CC to the V CC line.
  • the second power pass mode is used when the voltage V BUS is supplied via the USB connector USBC and the V USB line and the charging of the power supply BT is complete.
  • the charging circuit 20 can have a third power path mode. In the third power-pass mode, the charging circuit 20 electrically separates the VBUS terminal and the SW terminal, electrically connects the SYS terminal and the BAT terminal, and converts the power supply voltage supplied from the power supply BT to the voltage VCC . to the VCC line.
  • a third power pass mode is used when the voltage V BUS is not being supplied through the USB connector USBC.
  • Charging circuit 20 may have an OTG mode.
  • the charging circuit 20 receives the power supply voltage VBAT supplied from the power supply BT to the BAT terminal through the first conductive path PT1, supplies the voltage VCC from the SYS terminal to the VCC line, and supplies the voltage VCC to the VBUS terminal. provides the voltage VCC5 on the VCC5 line.
  • the charging circuit 20 can receive the power supply voltage V BAT , generate a voltage higher than the power supply voltage V BAT as the voltage V CC5 , and supply it from the VBUS terminal to the V CC5 line.
  • the charging circuit 20 When a high level is supplied to the /CE terminal, the charging circuit 20 is set to the default operation mode among the first, second, third power path modes and the OTG mode, or the operation mode set by the control unit 130 . can operate in the same mode of operation.
  • the control unit 130 can set the charging circuit 20 to one of the first, second , third power path modes and the OTG mode through I2C communication.
  • I 2 C communication is mentioned as an example of the communication standard, but this is not intended to limit the communication standard or communication method.
  • the I2C interface can be replaced with other forms of communication and interfaces.
  • the transformer circuit 30 is enabled by supplying the voltage VCC to the VCC line connected to the EN terminal, which is the enable terminal, and supplies the voltage VCC33_0 from the VOUT terminal to the VCC33_0 line .
  • the voltage value of the voltage VCC33_0 is, for example, 3.3V.
  • the VCC33_0 line is connected to the VIN terminal of the load switch 40, which will be described later, the VIN terminal and RSTB terminal of the power switch driver 50, which will be described later, and the VCC terminal and D terminal of the information holding circuit FF2, which will be described later.
  • the transformer circuit 30 can be a boost circuit, a step-up/step-down circuit, or a step-down circuit.
  • the transformer circuit 30 can be configured by an integrated circuit, for example.
  • the load switch 40 electrically disconnects the VIN terminal and the VOUT terminal when a low level is input to the ON terminal, and disconnects the VIN terminal and the VOUT terminal when a high level is input to the ON terminal. are electrically connected to output the voltage VCC33 from the VOUT terminal to the VCC33 line.
  • the voltage value of the voltage VCC33 is, for example, 3.3V.
  • the VCC 33 line is the VIN terminal of the load switch 60, the VCC terminal of the nonvolatile memory 70, the VDD and CE terminals of the measurement circuit 100, the VDD terminal of the control section 130, the VDD terminal of the detection section 140, and the VCC of the Schmitt trigger circuit 150.
  • the VIN terminal of the load switch 40 is electrically connected to the VOUT terminal of the transformer circuit 30 and supplied with the voltage VCC33_0 from the transformer circuit 30 .
  • the ON terminal of load switch 40 is also electrically connected to the VOUT terminal of transformer circuit 30 via a resistor, and voltage VCC33_0 is supplied from transformer circuit 30 . That is, when the voltage VCC33_0 is supplied from the transformer circuit 40, the load switch 40 can output the voltage VCC33 from the VOUT terminal to the VCC33 line.
  • the load switch 50 can be composed of, for example, an integrated circuit.
  • the power switch driver 50 outputs a low level from the RSTB terminal in response to the low level being supplied to the SW1 terminal and the SW2 terminal for a predetermined period of time.
  • the RSTB terminal is electrically connected to the ON terminal of the load switch 40 . Accordingly, in response to the supply of the low level to the SW1 terminal and the SW2 terminal of the power switch driver 50 for a predetermined period of time, the load switch 40 stops outputting the voltage VCC33 from the VOUT terminal.
  • the output of the voltage VCC33 from the VOUT terminal of the load switch 40 stops, the supply of the voltage VCC33 to the VDD terminal (power supply terminal) of the control unit 130 is cut off, so the control unit 130 stops operating.
  • the power switch driver 50 can be configured with an integrated circuit, for example.
  • the power switch driver 50 receives a command to reset or restart the aerosol generator AGD or the power supply unit PSU when a low level is continuously supplied to the SW1 terminal and the SW2 terminal for a predetermined time (for example, several seconds). Recognize.
  • the power switch driver 50 may be configured to stop outputting a low level from the RSTB terminal after outputting a low level from the RSTB terminal. With such a configuration, the ON terminal of the load switch 40 is supplied with the voltage VCC33_0 again after being supplied with a low level, so the load switch 40 supplies the voltage VCC33 from the VOUT terminal to the VCC33 line. can output again. Since this voltage VCC33 is input to the VDD terminal of the control section 130, the control section 130 can be restarted. In other words, the aerosol generator AGD or the power supply unit PSU is reset or restarted by stopping outputting a low level from the RSTB terminal after the power switch driver 50 outputs a low level from the RSTB terminal.
  • the load switch 60 electrically disconnects the VIN terminal and the VOUT terminal when a low level is input to the ON terminal, and disconnects the VIN terminal and the VOUT terminal when a high level is input to the ON terminal. are electrically connected to output the voltage VCC33_SLP from the VOUT terminal to the VCC33_SLP line.
  • the voltage value of the voltage V CC33_SLP is, for example, 3.3V.
  • the VCC33_SLP line can be connected to a thermistor TP, a thermistor TH, and a thermistor TC, which will be described later.
  • the ON terminal of the load switch 60 is electrically connected to the PC11 terminal of the control section 130, and the control section 130 causes the logic level of the PC11 terminal to transition from high level to low level when shifting to the sleep mode.
  • the logic level of the PC11 terminal is changed from low level to high level. That is, the voltage VCC33_SLP cannot be used in the sleep mode, and the voltage VCC33_SLP becomes available when the sleep mode is shifted to the active mode.
  • the load switch 60 can be composed of, for example, an integrated circuit.
  • the switch circuit 80 is a switch controlled by the control unit 130.
  • the potential of the first conductive path PT1 that is, the potential corresponding to the positive electrode potential of the power source BT is applied to the control unit 130 via the switch circuit 80. It is supplied to the PC2 terminal.
  • the potential corresponding to the potential of the positive electrode of the power source BT is, for example, a potential obtained by dividing the potential of the positive electrode.
  • the control unit 130 includes an AD converter or a voltage detector electrically connected to the PC2 terminal, and the control unit 130 turns on the switch circuit 80 to change the positive potential of the power source BT, that is, the output voltage of the power source BT. can be detected.
  • the power supply unit PSU can include a thermistor (for example, an NTC thermistor or a PTC thermistor) TP that constitutes a puff sensor for detecting puff operation.
  • the thermistor TP may be positioned, for example, to detect temperature changes in the airflow path associated with the puff.
  • the power supply unit PSU may comprise a vibrator M. Vibrator M can be activated, for example, by turning on switch SN.
  • the switch SN may be composed of a transistor, and a control signal may be supplied from the PH0 terminal of the controller 130 to the base or gate of the transistor.
  • a driver for the vibrator M may be used instead of the switch SN.
  • the power supply unit PSU may include a thermistor (eg, NTC thermistor or PTC thermistor) TH for detecting the temperature of the heater HT.
  • the temperature of the heater HT may be detected indirectly by detecting the temperature in the vicinity of the heater HT.
  • the OP amplifier A2 can output a voltage corresponding to the resistance value of the thermistor TH, in other words, a voltage corresponding to the temperature of the heater HT.
  • the power supply unit PSU may include a thermistor (eg, NTC thermistor or PTC thermistor) TC for detecting the temperature of the outer case C101.
  • the temperature of the outer case C101 may be indirectly detected by detecting the temperature in the vicinity of the outer case C101.
  • the OP amplifier A3 outputs a voltage corresponding to the resistance value of the thermistor TC, in other words, a voltage corresponding to the temperature of the outer case C101.
  • the information holding circuit FF1 When the voltage corresponding to the output of the OP amplifier A2 deviates from the specified range, typically when the temperature indicated by the output of the OP amplifier A2 exceeds the allowable limit temperature of the heater HT, the information holding circuit FF1 It may be configured to hold information indicating that.
  • the information holding circuit FF1 can operate by receiving the voltage VCC33 output from the load switch 40 to the VCC33 line. In other words, the VCC terminal (power supply terminal) of the information holding circuit FF1 is connected to the VCC33 line.
  • the control section 130 stops operating, and information held in the information holding circuit FF1 may be lost.
  • the information holding circuit FF1 can be composed of, for example, an integrated circuit.
  • the information holding circuit FF1 also detects when the voltage corresponding to the output of the OP amplifier A3 deviates from the specified range, typically when the temperature indicated by the output of the OP amplifier A3 exceeds the allowable limit temperature of the outer case C101. , may be configured to hold information indicating that. As is clear from the above description, the information holding circuit FF1 operates when the temperature indicated by the output of the OP amplifier A2 exceeds the allowable limit temperature of the heater HT, and when the temperature indicated by the output of the OP amplifier A3 exceeds the temperature of the outer case C101. It may be configured to retain information indicating when any of the allowable temperature limits have been exceeded are met.
  • the information holding circuit FF2 When the voltage corresponding to the output of the OP amplifier A2 deviates from the specified range, typically when the temperature indicated by the output of the OP amplifier A2 exceeds the allowable limit temperature of the heater HT, the information holding circuit FF2 It may be configured to hold information indicating that.
  • the information holding circuit FF2 can operate by receiving the voltage VCC33_0 output from the transformer circuit 30 to the VCC33_0 line. In other words, the VCC terminal (power supply terminal) of the information holding circuit FF2 is connected to the VCC33_0 line. When the output of the voltage VCC33_0 from the transformer circuit 30 is stopped, the information held in the information holding circuit FF2 can be lost.
  • the information holding circuit FF2 may be composed of an EEPROM, and in this case, one EEPROM may provide the functions of the information holding circuit FF2 and the nonvolatile memory 70.
  • FIG. The information holding circuit FF2 can be configured by an integrated circuit, for example.
  • the control unit 130 is configured by a processor such as an MCU, operates based on a program stored in the nonvolatile memory 70 or a built-in memory, and can control or define the operation of the aerosol generator AGD or the power supply unit PSU.
  • the control unit 130 controls power supply to the heater HT for heating the aerosol source using the power supplied from the power supply BT. From another point of view, the control unit 130 controls heat generation of the heater HT for heating the aerosol source using power supplied from the power source BT. In still another aspect, the control unit 130 controls the power supply to the heater HT and the charging operation of the power supply BT.
  • the detection unit 140 can be configured to detect removal of the outer panel C103 from the aerosol generator AGD or the power supply unit PSU.
  • the detection unit 140 can be composed of, for example, an integrated circuit.
  • the output of the detection section 140 can be supplied to the SW2 terminal of the power switch driver 50 and the PD2 terminal of the control section 130 via the Schmitt trigger circuit 150 .
  • the Schmitt trigger circuit 150 can be constructed, for example, from an integrated circuit.
  • One end of the switch SW can be connected to the SW1 terminal of the power switch driver 50 and the PC10 terminal of the control section 130 .
  • One end of the switch SW is also connected to the VCC33 line, and the other end of the switch SW is connected to the ground line.
  • the detector 170 can be configured to detect opening and closing of the slider C102.
  • the output of the detection unit 170 can be supplied to the PC13 terminal of the control unit 130 .
  • the detection unit 170 can be composed of, for example, an integrated circuit.
  • the detection units 140 and 170 may be configured with Hall elements, for example.
  • the communication device 160 provides the control unit 130 with a function of communicating with electronic devices such as smart phones, mobile phones, and personal computers.
  • the communication device 160 is, for example, a communication device conforming to a short-range communication standard such as Bluetooth (registered trademark). Communication device 160 may be configured with an integrated circuit, for example.
  • FIG. 5 shows a state transition diagram of the aerosol generator AGD or the power supply unit PSU.
  • the voltage VCC33 is supplied from the VOUT terminal of the load switch 40 to the VDD terminal (power supply terminal) of the control section 130 via the VCC33 line.
  • the aerosol generator AGD, the power supply unit PSU, or the controller 130 can shift to the active mode.
  • the VOUT terminal of the load switch 60 can supply the thermistors TP, TH, TC with the voltage VCC33_SLP .
  • the control unit 130 can stop acquiring information from the measurement circuit 100 via an I2C interface, which will be described later.
  • the aerosol generator AGD, the power supply unit PSU, or the control section 130 can transition to the heating preparation mode.
  • the controller 130 can output a high level from the PC12 terminal to activate the transformer circuit 120, and the transformer circuit 120 can output the voltage V BOOST from the VOUT terminal. Since the switch SS is also connected to the PC12 terminal of the control unit 130, when a high level is output from the PC12 terminal, the switch SS is turned on and the heater connector HC- and the ground line can be connected.
  • the aerosol generator AGD, the power supply unit PSU, or the control section 130 can shift from the heating preparation mode to the heating mode.
  • the heating mode can repeat a heating operation for heating the aerosol source by the heater HT and a measurement operation for measuring the resistance value of the heater HT, that is, the temperature of the heater HT.
  • a predetermined end event such as elapse of a predetermined time from the start timing of timing, generation of puffs a predetermined number of times from the start timing of counting, closing operation of the slider C102, and connection of a USB cable to the USB connector USBC occurs.
  • the aerosol generator AGD, the power supply unit PSU, or the control unit 130 shifts to the heating end mode.
  • the time measurement start timing can be, for example, the detection of pressing of the switch SW in the active mode, the transition to the heating preparation mode, or the timing of transition to the heating mode.
  • the count start timing can be, for example, the timing of transition from the heating preparation mode to the heating mode.
  • heating termination mode heating of the aerosol source by the heater HT is terminated, and then the aerosol generator AGD, the power supply unit PSU, or the control section 130 can transition to the active mode.
  • the heating of the aerosol source is terminated by connecting the USB cable to the USB connector USBC, the aerosol generator AGD, the power supply unit PSU or the control unit 130 can directly transition from the heating termination mode to the charging mode.
  • the aerosol generator AGD, power supply unit PSU, or control section 130 can transition to sleep mode.
  • the sleep mode when the slider C102 is closed and the switch SW is pressed, the aerosol generator AGD, the power supply unit PSU, or the control section 130 can shift to the pairing mode.
  • pairing key exchange
  • bonding key storage
  • the aerosol generator AGD, power supply unit PSU or control Unit 130 may transition to a sleep mode. Information about bonding may be stored in non-volatile memory 70 . Also, when pairing fails, the aerosol generator AGD, the power supply unit PSU, or the control section 130 can transition to sleep mode.
  • the aerosol generator AGD, power supply unit PSU, or control section 130 can transition to charging mode.
  • the control unit 130 can detect the connection of the USB cable to the USB connector USBC according to the voltage or potential supplied to the PA9 terminal, and accordingly output a low level from the PC9 terminal to turn off the switch SI. Accordingly, a high level is supplied to the ON terminal of the load switch 10, and the load switch 10 can supply the voltage V USB supplied to the V USB line through the USB cable to the charging circuit 20 through the VOUT terminal. .
  • the control unit 130 outputs a low level from the PB3 terminal. Thereby, a low level (enable level) is supplied to the /CE terminal of the charging circuit 20, and the charging circuit 20 can supply the charging voltage from the BAT terminal to the power supply BT.
  • the aerosol generator AGD, the power supply unit PSU, or the control unit 130 can transition to permanent failure mode.
  • the aerosol generator AGD, the power supply unit PSU, or the control unit 130 may transition from a mode other than the charging mode to the permanent failure mode. In permanent failure mode, transitions to all other modes may be prohibited. If an error occurs in the charging mode, active mode, heating preparation mode, or heating mode, the aerosol generator AGD, power supply unit PSU, or control section 130 can transition to error processing mode.
  • the aerosol generator AGD, the power supply unit PSU, or the control unit 130 can, for example, use the notification unit NU to notify the occurrence of an error, the type of error, an operation request for canceling the error, and the like.
  • the aerosol generator AGD, the power supply unit PSU, or the control unit 130 can transition to sleep mode after a predetermined period of time if the type of error that has occurred is of the first category.
  • the aerosol generator AGD, the power supply unit PSU, or the control unit 130 can continue error processing when the type of error that has occurred is the second category error. In this case, resetting or restarting of the control unit 130 is required to return to the sleep mode.
  • FIG. 4A illustrates the operation of the power supply unit PSU in sleep mode.
  • the thick line highlights the voltage supply path.
  • the power supply BT supplies the power supply voltage V BAT to the VBAT terminal of the protection circuit 90, the VBAT terminal of the measurement circuit 100, the BAT terminal of the charging circuit 20, the VIN terminal of the transformer circuit 120, and the switch circuit 80 via the first conductive path PT1.
  • the charging circuit 20 may be set to the third power pass mode by the control unit 130, and the charging circuit 20 may supply the power supply voltage V BAT supplied from the power supply BT to the V CC line as the voltage V CC .
  • Transformation circuit 30 is enabled by applying voltage VCC to the VCC line, and may provide voltage VCC33_0 from the VOUT terminal to the VCC33_0 line.
  • the voltage VCC33_0 can be supplied to the load switch 40, the power switch driver 50, and the information holding circuits FF1 and FF2 via the VCC33_0 line.
  • the load switch 40 electrically connects the VIN terminal and the VOUT terminal, and outputs the voltage VCC33 from the VOUT terminal to the VCC33 line. I can.
  • the voltage VCC33 is applied to the VDD terminal (power supply terminal) of the control unit 130, the VDD terminals (power supply terminals) of the detection units 140 and 170, the VCC terminal (power supply terminal) of the Schmitt trigger circuit 150, and the communication device 160 via the VCC33 line.
  • VCC_NRF terminal power supply terminal of nonvolatile memory 70
  • VDD terminal power supply terminal
  • CE terminal CE terminal of measurement circuit 100
  • information holding circuits FF1 and FF2 It can be supplied to the VCC terminal (power supply terminal).
  • the power switch driver 50 supplies a low level to the ON terminal of the load switch 40 from the RSTB terminal.
  • load switch 40 stops outputting voltage VCC33 from the VOUT terminal, and control unit 130 stops operating.
  • the power switch driver 50 stops supplying the low level from the RSTB terminal to the ON terminal of the load switch 40 . Accordingly, supply of the voltage VCC33_0 from the VCC33_0 line to the ON terminal of the load switch 40 is resumed, so that the load switch 40 resumes outputting the voltage VCC33 from the VOUT terminal, and the control unit 130 is reset. Or it can be rebooted.
  • FIG. 4B shows the transition from sleep mode to pairing mode.
  • the thick lines highlight the voltage and signal supply paths.
  • a high level is supplied from the detector 140 to the PD2 terminal of the controller 130 and the SW2 terminal of the power switch driver 50 through the Schmidt trigger circuit 150. be.
  • a high level is supplied from the detection section 170 to the PC13 terminal of the control section 130 .
  • the switch SW is pressed in this state, a low level is supplied to the PC10 terminal of the control section 130 .
  • the control unit 130 recognizes this as an instruction to shift to the pairing mode, and cancels pairing from the sleep mode. mode.
  • FIG. 4C shows the transition from sleep mode to active mode.
  • the thick lines highlight the voltage and signal supply paths.
  • a high level is supplied from the detector 140 to the PD2 terminal of the controller 130 and the SW2 terminal of the power switch driver 50 through the Schmidt trigger circuit 150. be.
  • a low level is supplied from the detection section 170 to the PC13 terminal of the control section 130 .
  • Control unit 130 can recognize this as a transition command to active mode and transition from sleep mode to active mode.
  • control unit 130 supplies a high level signal from the PC11 terminal to the ON terminal of the load switch 60, and in response, the load switch 60 electrically connects the VIN terminal and the VOUT terminal so that the voltage VCC33_SLP may be supplied to thermistors TP, TH, TC.
  • Figures 4D and 4E show the transition from active mode to heating ready mode.
  • the thick lines highlight the voltage and signal supply paths.
  • the control unit 130 issues this as a transition command to the heating preparation mode. Upon recognition, it can transition from the active mode to the heat preparation mode. Specifically, the control unit 130 supplies a high level from the PC12 terminal to the EN terminal of the transformer circuit 120, and in response, the transformer circuit 120 outputs V boost from the VOUT terminal to the V boost line.
  • FIG. 4F shows the heating operation in heating mode.
  • the thick lines highlight the voltage and signal supply paths.
  • the control unit 130 supplies a high level from the PA2 terminal to the gate or base of the transistor forming the switch SH to turn on the switch SH.
  • the voltage V boost output from the VOUT terminal of the transformer circuit 120 is supplied to the heater HT, and the heater HT heats the aerosol source.
  • a voltage for turning on the switch SR is supplied to the gate or base of the transistor forming the switch SR.
  • a voltage V boost is supplied to the power terminal of the OP amplifier A2 through a shunt resistor RS.
  • FIG. 4G shows the measurement operation in heating mode.
  • the thick lines highlight the voltage and signal supply paths.
  • the control unit 130 supplies a high level from the PB5 terminal to the gate or base of the transistor forming the switch SM to turn on the switch SM.
  • the voltage V boost output from the VOUT terminal of the transformer circuit 120 is supplied to the heater HT via the shunt resistor RS.
  • a voltage obtained by dividing the voltage V boost is supplied to the gate or base of the transistor forming the switch SR. This is the voltage that turns off the switch SR.
  • the OP amplifier A1 can be configured to supply a voltage having a correlation with the resistance value of the heater HT to the PA7 terminal of the controller 130.
  • the control unit 130 can detect the temperature of the heater HT based on the voltage supplied from the OP amplifier A1.
  • the control unit 130 can take in a voltage corresponding to the voltage V boost from the PA1 terminal and use it as a reference voltage for calculating the temperature of the heater HT.
  • control unit 130 may detect the temperature of the heater HT using the thermistor TH, that is, based on the output of the OP amplifier A2.
  • FIG. 4H shows the operation of the power supply unit PSU in charging mode.
  • the thick lines highlight the voltage and signal supply paths.
  • the overvoltage protection circuit 110 receives the voltage V_BUS supplied from the USB connector USBC and outputs the voltage V_USB to the V_USB line.
  • the voltage V USB may be divided and supplied to the PA9 terminal of the controller 130 . Accordingly, the control unit 130 can recognize that the voltage V USB is supplied through the USB cable connected to the USB connector USBC, and can change the level of the PC9 terminal from high level to low level.
  • the switch SI is turned off and a high level is supplied to the ON terminal of the load switch 10 .
  • the load switch 10 may electrically connect the VIN terminal and the VOUT terminal and output the voltage VCC5 from the VOUT terminal to the VCC5 line.
  • the control unit 130 also supplies a low level from the PB3 terminal to the /CE terminal of the charging circuit 20 to permit the charging of the power supply BT by the charging circuit 20 .
  • the charging circuit 20 is set to the charging mode, supplies the voltage VCC from the SW terminal to the VCC line using the voltage VCC5 supplied through the VCC5 line, and electrically connects the SYS terminal and the BAT terminal. to supply a charging voltage from the BAT terminal to the power supply BT through the first conductive path PT1. The power supply BT is thereby charged.
  • FIG. 4I shows reset operations of the power supply unit PSU and the control section 130 .
  • the thick lines highlight the voltage and signal supply paths.
  • the power switch driver 50 can supply a low level from the RSTB terminal to the ON terminal of the load switch 40 .
  • the load switch 40 stops outputting the voltage VCC33 from the VOUT terminal, and the control section 130 to which the supply of the voltage VCC33 is cut off stops operating.
  • the power switch driver 50 can then stop supplying the low level from the RSTB terminal to the ON terminal of the load switch 40 .
  • the supply of the voltage VCC33_0 from the VCC33_0 line to the ON terminal of the load switch 40 is resumed . can be activated.
  • control unit 130, the power switch driver 50, and the load switch 40 are circuits that perform operations according to the detection results of the detection unit 140 that detects the presence or absence of the outer panel C103 in response to the operation of the switch SW. It can be understood as constituting a block.
  • control unit 130, the power switch driver 50, and the load switch 40 detect the state of the slider C102 in response to the operation of the switch SW when the detection unit 140 detects that the outer panel C103 is absent. It can be understood as configuring a circuit block that performs an operation according to the detection result of the detection unit 140 regardless of the detection result of the detection unit 170 .
  • control unit 130, the power switch driver 50, and the load switch 40 are circuit blocks that perform an operation according to the detection result of the detection unit 170 that detects the state of the slider C102 in response to the operation of the switch SW. can be understood as constituting
  • the circuit block detects the presence of the aerosol.
  • a first process of generation may be performed.
  • the circuit block A second process not related to aerosol generation, such as a process related to communication with an external device, may be performed. This corresponds to the pairing mode described above.
  • the circuit block controls the controller 130 regardless of the detection result of the detector 170, that is, the state of the slider C102. You can reboot.
  • FIGS. 6, 7A, 7B, 8, 9A, and 9B show layout examples of the various electronic components described above.
  • the electrical connection (wiring) of the thermistor connectors TC+, TC-, thermistor connectors TP+, TP-, and the thermistors TC, TP, TH to the thermistor connectors THC+, THC- is shown accurately.
  • electrical connection (wiring) of the heater HT to the first heater connector HC+ and the second heater connector HC- is omitted. As illustrated in FIG.
  • the communication device 160, the switch SW, the detection unit 140, the Schmitt trigger circuit 150, and the notification unit NU can be arranged on the same surface of the third substrate PCB3 (same surface of the same substrate), for example. .
  • the communication device 160 and the switch SW can be arranged along the insertion/removal direction DIR of the insert with respect to the insertion hole C104.
  • the communication device 160 and the switch SW can be arranged in the center of the power supply unit PSU or the aerosol generator AGD with respect to the direction orthogonal to the insertion/removal direction DIR. For example, as illustrated in FIG. 3A in addition to FIG.
  • the communication device 160 and the switch SW can be arranged between the first substrate PCB1 and the power supply BT in the direction perpendicular to the insertion/removal direction DIR. As illustrated in FIG. 6, the switch SW can be arranged between the communication device 160 and the notification unit NU. A switch SW may be placed between the detection unit 140 and the communication device 160 .
  • At least one of the protection circuit 90 and the measurement circuit 100 can be arranged on the first surface S11 facing the power supply BT among the two surfaces of the first substrate PCB1.
  • both the protection circuit 90 and the measurement circuit 100 can be arranged on the first side S11 of the first substrate PCB1.
  • the transformer circuit 120 may be disposed on the first surface S11 of the first substrate PCB1.
  • the transistors SD, SC may be arranged on the first side S11 of the first substrate PCB1.
  • the switches SH may be arranged on the first surface S11 of the first substrate PCB1.
  • the first and second resistors R1 and R2 may be arranged on the first surface S11 of the first substrate PCB1. As illustrated in FIGS. 7A and 7B, the OP amplifier A1 may be arranged on the first surface S11 of the first substrate PCB1. Arranging the protection circuit 90, the measurement circuit 100, the first resistor R1, the second resistor R2, the transistors SD and SC on the first surface S11 of the first substrate PCB1 reduces the parasitic resistance value of the second conductive path PT2 to It is advantageous to reduce
  • the transformer circuit 120 can be accompanied by an inductor 120', and the transformer circuit 120 and the inductor 120' can be arranged on opposite sides of the first substrate PCB1.
  • the transformer circuit 120 may be arranged on the first side S11 of the first substrate PCB1, and the inductor 120' may be arranged on the opposite second side S12.
  • the USB connector USBC and the inductor 120' can be arranged on the second surface S12 of the first substrate PCB1. Since the USB connector USBC and the inductor 120' are electronic components having a considerably large size or thickness, arranging them on the same surface of the first substrate PCB1 contributes to miniaturization of the aerosol generator AGD or the power supply unit PSU. can contribute.
  • heater connectors HC+, HC-, switches SM, SS, and shunt resistors RS can be arranged on the second surface S12 of the first substrate PCB1 (ie, the same surface of the same substrate). Such an arrangement is advantageous for reducing the resistance of the heater HT or the parasitic resistance of the conductive path of the circuit for detecting temperature.
  • the shortest distance between the second surface S12 of the first substrate PCB1 and the heater HT is preferably smaller than the shortest distance between the first surface S11 of the first substrate PCB1 and the heater HT. Such a configuration is advantageous for shortening the lead wires connecting the heater connectors HC+, HC- and the heater HT.
  • the second substrate PCB2 has a first surface S21 facing the second surface S12 of the first substrate PCB1 and a second surface S22 on the opposite side.
  • Connectors THC+ and THC- of the thermistor TH for detecting the temperature of the heater HT can be arranged on the second surface S22 of the second substrate PCB2.
  • the charging circuit 20 and its associated inductor 20' may be arranged on the same side of the second substrate PCB2, for example the second side S22.
  • the transformer circuit 30 and its associated inductor 30' may be arranged on the same side of the second substrate PCB2, for example the second side S22.
  • the load switch 10 may be arranged on the second surface S22 of the second substrate PCB2.
  • the controller 130 may be arranged on the second surface S22 of the second substrate PCB2.
  • the information holding circuit F11 may be arranged on the second surface S22 of the second substrate PCB2.
  • the nonvolatile memory 70 and the information holding circuit FF2 can be arranged on the first surface S21 of the second substrate PCB2.
  • a thermistor connector TC+, TC- for the thermistor TC and a thermistor connector TP+, TP- for the thermistor TP can be arranged on the first surface S21 of the second substrate PCB2.
  • FIG. 10 shows the protection circuit 90, the measurement circuit 100, and the electronic components arranged therearound.
  • the protection circuit 90 uses the second resistor R2 arranged in the path through which the current output from the power supply BT flows, measures the current flowing through the path, and controls to protect the power supply BT according to the current. It can control the switch part SWP to be switched.
  • the protection circuit 90 measures the voltage of the power supply BT based on the potential of the positive electrode of the power supply BT supplied to the VBAT terminal, and protects the power supply BT according to the voltage. It can control the switch part SWP.
  • the second resistor R2 and the switch part SWP may be arranged in the first conductive path PT1 electrically connected to the first power connector BC+, but the second resistor R2 electrically connected to the second power connector BC ⁇ may be arranged. It is preferably arranged in two conducting paths PT2. Such a configuration is advantageous in that the common-mode input voltage of the OP amplifier incorporated in the protection circuit 90 can be reduced, so that the protection circuit 90 can stably operate and that an inexpensive protection circuit 90 can be used.
  • the switch part SWP may include a first transistor SD and a second transistor SC connected in series.
  • the first transistor SD can function as a switch for interrupting the second conductive path PT2 (in other words, the path through which the current output from the power supply BT flows) so as to stop the discharge of the power supply BT.
  • the second transistor SC can function as a switch for cutting off the second conductive path PT2 (in other words, the path through which the current output from the power supply BT flows) so as to stop charging the power supply BT.
  • a first rectifying element connected in parallel with the first transistor SD may be provided, and the first rectifying element may be configured as a body diode BDD of the first transistor SD.
  • the forward direction of the first rectifying element is the direction in which the current for charging the power source BT flows.
  • a second rectifying element connected in parallel with the second transistor SC may also be provided, and the second rectifying element may be configured as the body diode BDC of the second transistor SC.
  • the forward direction of the second rectifying element is the direction in which the current discharged from the power supply BT flows.
  • the resistance value of the second resistor R2 is known, and the protection circuit 90 can detect the current (current value) flowing through the second conductive path PT2 by detecting the voltage drop due to the second resistance value R2. .
  • the protection circuit 90 detects the first It can be configured to turn off transistor SD.
  • the protection circuit 90 It can be configured to turn off two transistors SC.
  • the protection circuit 90 may be configured to turn off the second transistor SC when the output voltage of the power source BT indicates an overcharged state of the power source BT. Also, the protection circuit 90 may be configured to turn off the first transistor SD when the output voltage of the power source BT indicates an over-discharge state of the power source BT.
  • the measurement circuit 100 can measure the state of the power supply BT using the first resistor R1 arranged on the path through which the current output from the power supply BT flows.
  • the resistor R1 may be arranged in the first conductive path PT1 electrically connected to the first power connector BC+, but is arranged in the second conductive path PT2 electrically connected to the second power connector BC-. preferably.
  • Such a configuration is advantageous in that the common-mode input voltage of the OP amplifier incorporated in the measurement circuit 100 can be reduced, so that the measurement circuit 100 can operate stably and that an inexpensive measurement circuit 100 can be used.
  • the measurement circuit 100 integrates the current (current value) flowing through the first resistor R1, that is, obtains the amount of charge (power consumption) flowing through the first resistor R1, thereby obtaining the remaining capacity (Ah ) and SOC (State Of Charge).
  • the SOC (%) can be defined as "remaining capacity (Ah)/fully charged capacity (Ah) x 100".
  • the measurement circuit 100 can provide the remaining capacity and the SOC to the controller 130 .
  • the measurement circuit 100 acquires the temperature of the power supply BT using a TREG terminal, a THM terminal, and a thermistor TB (not shown in FIG. 10), and calculates the remaining capacity and SOC based on the acquired temperature of the power supply BT. good too. Since the remaining capacity, SOC, etc. of the power supply BT are strongly affected by the temperature of the power supply BT, such a configuration is advantageous for accurately obtaining the remaining capacity, SOC, etc. of the power supply BT.
  • a switch SS, a first resistor R1, a switch part SWP, and a second resistor R2 can exist between the second heater connector HC- and the second power connector BC-.
  • a parasitic resistance r1 may exist between the switch SS and the first resistor R1, and a parasitic resistance r6 may exist between the second resistor R2 and the second power connector BC-.
  • a parasitic resistance r2 may exist between the first resistor R1 and the VRSP terminal of the measurement circuit 100, and a parasitic resistance r3 may exist between the first resistor R1 and the VRSM terminal of the measurement circuit 100.
  • connection node between the parasitic resistor r2 and the first resistor R1 and the first resistor R1 and the connection node between the parasitic resistor r3 and the first resistor R1 and the first resistor A parasitic resistance may also exist between each device R1. These can be factors that cause errors in the measurement results of the measurement circuit 100 .
  • FIG. 11 schematically shows the state of discharge from the power supply BT.
  • rSS indicates the ON resistance of the switch SS
  • rSC indicates the ON resistance of the second transistor SC
  • rSD indicates the ON resistance of the first transistor SD.
  • the potential of the second heater connector HC- is higher than the potential of the second power connector BC-.
  • the parasitic resistances r1, r6 and the like are factors that increase the potential difference ⁇ V between the second heater connector HC- and the second power connector BC-.
  • An increase in ⁇ V can increase the short-circuit current that flows when the second heater connector HC- and the second power connector BC- are short-circuited due to, for example, condensation or moisture intrusion from an aerosol source.
  • FIG. 12 schematically shows the state of charge of the power supply BT.
  • the potential of the second power connector BC- is higher than the potential of the second heater connector HC-.
  • the parasitic resistances r1, r6 and the like are factors that increase the potential difference ⁇ V between the second power supply connector BC- and the second heater connector HC-.
  • An increase in ⁇ V can increase the short-circuit current that flows when the second power connector BC- and the second heater connector HC- are short-circuited due to dew condensation, intrusion of moisture from an aerosol source, or the like, as described above.
  • FIG. 13 illustrates the physical path between the second heater connector HC- and the second power connector BC-.
  • the power supply unit PSU or the aerosol generator AGD may have a plurality of substrates PCB1, PCB2, PCB3, PCB4.
  • FIG. 13 illustrates the configuration of the first substrate PCB1.
  • a first heater connector HC+ and a second heater connector HC- may be located on the first substrate PCB1.
  • the first heater connector HC+ and the second heater connector HC- may be arranged on different surfaces of the first substrate PCB1, or may be arranged on the same surface.
  • the first heater connector HC+ and the second heater connector HC ⁇ may be located on the second side S12 of the first substrate PCB1. According to the configuration in which the first heater connector HC+ and the second heater connector HC- are arranged on the same surface of the same substrate, the lead wires of the heater HT are connected to the first heater connector HC+ and the second heater connector HC- during manufacturing. easier to do. This makes it possible to reduce the cost of the aerosol generator AGD or the power supply unit PSU.
  • a first power connector BC+ electrically connected to the positive terminal of the power supply BT and a second power connector BC- connected to the negative terminal of the power supply BT can be arranged on the first substrate PCB1.
  • a path through which current output from the power supply BT flows includes a first conductive path PT1 connected to the first power connector BC+ and a second conductive path PT2 connected to the second power connector BC-.
  • a first resistor R1 and a second resistor R2 may be arranged in the second conductive path PT2.
  • a measurement circuit 100 that measures the state of a power supply BT (eg, remaining capacity, SOC, etc.) using a first resistor R1 has a first resistor R1 among a plurality of substrates PCB1, PCB2, PCB3, and PCB4. It can be placed on the same substrate as the first substrate PCB1, ie, the first substrate PCB1. From another point of view, the measurement circuit 100 is configured such that, among the plurality of element placement planes (S11, S12, S21, S22, etc.), the same element placement plane as the element placement plane on which the first resistor R1 is arranged, for example, the first It can be arranged on the surface S11.
  • the measurement circuit 100 is configured such that, among the plurality of element placement planes (S11, S12, S21, S22, etc.), the same element placement plane as the element placement plane on which the first resistor R1 is arranged, for example, the first It can be arranged on the surface S11.
  • the first resistor R1 and the VRSP terminal and the VRSM terminal of the measurement circuit 100 can be arranged physically close to each other.
  • the parasitic resistance r2 existing between the first resistor R1 and the VRSP terminal of the measurement circuit 100 and the parasitic resistance r3 existing between the first resistor R1 and the VRSM terminal of the measurement circuit 100 can be reduced.
  • Such a reduction in parasitic resistance enables highly accurate measurement of the state of the power supply BT by the measurement circuit 100 .
  • the conductive pattern connecting the first resistor R1 and the VRSP terminal and the VRSM terminal of the measurement circuit 100 can be shortened.
  • the length of the conductive pattern connecting the first resistor R1 and the VRSP terminal of the measurement circuit 100 can easily be made approximately the same as the length of the conductive pattern connecting the first resistor R1 and the VRSM terminal of the measurement circuit 100. can be done. These also enable the measurement circuit 100 to measure the state of the power supply BT with high accuracy.
  • the first resistor R1 and the second heater connector HC- can be arranged on opposite sides of the first substrate PCB1, respectively.
  • the first resistor R1 is located on the first side S11 of the first substrate PCB1 and the second heater connector HC ⁇ is located on the second side S12 of the first substrate PCB1.
  • At least a portion of the first resistor R1 may overlap at least a portion of the second heater connector HC ⁇ in orthogonal projection onto one of the two faces S11, S12 of the first substrate PCB1.
  • the first resistor R1 in orthogonal projection onto one of the two faces S11, S12 of the first substrate PCB1, can be arranged in the region of the second heater connector HC-.
  • Such an arrangement is advantageous for reducing the unfavorable parasitic resistance value between the second power supply connector BC- and the second heater connector HC- (the resistance value of the aforementioned parasitic resistance r1), which is For example, it is advantageous to reduce the short circuit current between the second power connector BC- and the second heater connector HC-.
  • the second conductive path PT2 can include a switch SS arranged between the first resistor R1 and the second heater connector HC-.
  • the switch SS and the second heater connector HC- can be arranged on the same side of the first substrate PCB1. In the example shown in FIG. 13, the switch SS and the second heater connector HC- are located on the second surface S12 of the first substrate PCB1.
  • the switch SS may be the element closest to the second heater connector HC ⁇ among the electronic components arranged on the same plane, ie, the second plane S12. In another aspect, the switch SS can be the element closest to the second heater connector HC ⁇ among the active elements located in the same plane, ie, the second plane S12.
  • the heater HT, the first heater connector HC+, and the second heater connector HC ⁇ are invaded. Static electricity, noise, and the like are less likely to enter the first resistor R1 and the second conductive path PT2.
  • the second conductive path PT2 may further include a switch section SWP arranged to be connected in series with the first resistor R1. According to such a configuration, when an abnormality such as overcurrent, overdischarge, or overcharge occurs in the power supply BT, the power supply BT can be protected by opening the switch section SWP.
  • the first resistor R1 and the switch part SWP are arranged on the same surface of the first substrate PCB1, which is the first surface S11 in the example shown in FIG.
  • the second resistor R2 may also be arranged on the same surface of the first substrate PCB1, eg, the first surface S11.
  • at least part of the switch SWP may overlap at least part of the second heater connector HC ⁇ .
  • the protection circuit 90 controls the switch part SWP to protect the power supply BT according to the current flowing through the second conductive path PT2 or the positive potential of the power supply BT (the output voltage of the power supply BT) input to the VBAT terminal. sell. According to such a configuration, the power supply BT can be protected when an abnormality such as overcurrent, overdischarge, or overcharge occurs in the power supply BT.
  • the switch part SWP can be arranged between the first resistor R1 in the second conducting path PT2 and the negative electrode of the power supply BT (or the second power supply connector BC-). According to such a configuration, as will be described later, even when the first transistor SD is turned off, the measurement circuit 100 and the control section 130 can communicate with each other through their respective I 2 C interfaces. At the same time, the protection of the power supply BT by the protection circuit 90 can be maintained as long as possible, and further discharging of the power supply BT can be suppressed to the utmost limit.
  • the protection circuit 90 can detect the current flowing through the second conductive path PT2 using a second resistor R2 arranged in the second conductive path PT2 so as to be connected in series with the first resistor R1.
  • the first resistor R1 and the second resistor R2 may be arranged on the same side of the first substrate PCB1, for example the first side S11.
  • the second resistor R2 can be arranged between the switch part SWP in the second conductive path PT2 and the negative electrode of the power supply BT (or the second power supply connector BC-).
  • the first resistor R1 and the second resistor R2 are such that the shortest distance between the first resistor R1 and the second resistor R2 is at least the maximum dimension of the first resistor R1 and the maximum dimension of the second resistor R2.
  • the measurement circuit 100 can be arranged on the first substrate PCB1 and the control unit 130 can be arranged on the second substrate PCB2.
  • the measurement circuit 100 and the control section 130 can have a function of communicating with each other. Since the measurement circuit 100 and the control unit 130 perform many calculations internally, they may become noise sources. By arranging these on different substrates, it becomes difficult for noise generated in one to affect the other.
  • a voltage VCC33 can be supplied to the VDD terminal (power supply terminal) of the measurement circuit 100 by the transformer circuit 30 via the VCC33 line.
  • the transformer circuit 30 transforms the voltage VCC supplied from the power supply BT through the charging circuit 20 to generate the voltage VCC33_0 , which is passed through the load switch 40 as the voltage VCC33 to the VDD terminal (power supply terminal) of the measurement circuit 100 . ).
  • the voltage VCC33 supplied to the VDD terminal (power supply terminal) of the measurement circuit 100 is stabilized. This stabilizes the operation of the measurement circuit 100 .
  • the measurement circuit 100 can be arranged on the first substrate PCB1 and the transformer circuit 30 can be arranged on the second substrate PCB2.
  • the transformer circuit 30 may generate noise when performing transformation.
  • the measurement circuit 100 can be physically separated from the transformer circuit 30, which may become a noise source, so that the operation of the measurement circuit 100 is stabilized.
  • a transformer circuit 120 that transforms the voltage supplied from the power source BT to generate the voltage V BOOST that is supplied to the heater HT may be disposed on the first substrate PCB1. With such a configuration, the heater HT can be supplied with an appropriate voltage V BOOST for heating the aerosol source. This makes it possible to provide the user of the aerosol generator AGD with an aerosol whose amount and flavor are highly controlled.
  • a switch SH can be arranged on a path that electrically connects the output of the transformer circuit 120 and the heater HT.
  • the switch SH may be arranged on the first substrate PCB1.
  • the switches SH can be arranged, for example, on the first surface S11 of the first substrate PCB1. Since a large amount of power is supplied from the transformer circuit 120 to the switch SH to heat the heater HT, it is preferable that the conductive pattern connecting the switch SH and the transformer circuit 120 is thick and short. With such a configuration, since the switch SH and the transformer circuit 120 are arranged on the first substrate PCB1, it is easy to form a thick and short conductive pattern. As a result, heat and noise are less likely to occur in the conductive pattern even when the large current described above flows.
  • An OP amplifier A1 constituting a detection circuit for detecting the resistance value or temperature of the heater HT can be arranged on the first substrate PCB1.
  • the OP amp A1 may be arranged, for example, on the first surface S11 of the first substrate PCB1.
  • FIG. 14 shows the protection circuit 90, the measurement circuit 100, and the electronic components arranged therearound.
  • FIG. 14 also shows the controller 130 .
  • the aerosol generator AGD or the power supply unit PSU is electrically connected to the first conductive path PT1 electrically connected to the positive terminal of the power supply BT or the first power supply connector BC+ and the negative terminal of the power supply BT or the second power supply connector BC ⁇ .
  • a second conductive path PT2 connected to the .
  • the control unit 130 can control heat generation of the heater HT for heating the aerosol source using voltage or power supplied from the power supply BT.
  • the measurement circuit 100 can measure the state of the power supply BT using a first resistor R1 that can be arranged in the second conductive path PT2.
  • the switch SWP connects the first resistor R1 in the second conductive path PT2 and the negative electrode of the power supply BT (or the second power connector BC-) so that the current flowing through the second conductive path PT2 (and the first conductive path PT1) can be cut off.
  • the protection circuit 90 can control the switch section SWP to protect the power supply BT according to the current flowing through the second conductive path PT2 and the positive potential of the power supply BT supplied to the VBAT terminal.
  • the protection circuit 90 uses a second resistor R2 arranged between the switch part SWP in the second conductive path PT2 and the negative electrode of the power supply BT (or the second power connector BC-) to switch the second conductive path PT2. The current flowing can be detected.
  • the aerosol generator AGD or the power supply unit PSU has a switch SS that can be used as a cutoff switch, which is arranged in the second conductive path PT2 so as to be able to cut off the current flowing through the heater HT and the second conductive path PT2, separately from the switch SWP. be prepared.
  • the control unit 130 can communicate with the measurement circuit 100 according to communication standards such as I 2 C communication.
  • the control unit 130 can control the switch SS as a cutoff switch so as to cut off the current flowing through the second conductive path PT2 based on the measurement result of the measurement circuit 100 .
  • FIG. 15 schematically shows a state in which the protection circuit 90 detects an overcurrent during discharge or an overdischarge state of the power supply BT, turns off the first transistor SD, and cuts off the second conduction path PT2 (discharge path of the power supply BT).
  • the transformer circuit 30 can function as a voltage supply unit that supplies voltage to the control unit 130 and the measurement circuit 100 . Voltage or power can be supplied from the power source BT to the transformer circuit 30 functioning as a voltage supply unit via the first conducting path PT1 and the second conducting path PT2.
  • the transformer circuit 30 which functions as a voltage supply unit that supplies voltage to the control unit 130 and the measurement circuit 100, supplies voltage between the positive and negative electrodes of the power source BT, That is, no power supply voltage is supplied. Therefore, transformer circuit 30 cannot output voltage VCC33_0 from its VOUT terminal. Therefore, the supply of VCC 33 to the control unit 130 and the measurement circuit 100 by the load switch 40 is also stopped. Therefore, the control unit 130 and the measurement circuit 100 stop operating.
  • the current consumption by the power supply unit PSU is divided into the current flowing between the VBAT terminal and the VSS terminal for the protection circuit 90 to acquire the output voltage of the power supply BT, and the current flowing between the VBAT terminal and the VSS terminal for the protection circuit 90 to operate. only the current supplied to This is a minute current.
  • the switch part SWP controlled by the protection circuit 90 is between the first resistor R1 in the second conducting path PT2 and the negative electrode of the power supply BT (second power supply connector BC-). It is advantageous from the viewpoint of
  • the protection circuit 90 If the potential supplied from the power supply BT to the VBAT terminal of the protection circuit 90 indicates the possibility that the power supply BT is in an unrecoverable deep discharge state, the protection circuit 90 operates as shown in FIG. , the COUN terminal at a low level and the second switch SC permanently in an off state. This makes it impossible to charge the power supply BT, which may have reached a deep discharge state, so that the safety of the power supply unit PSU or the aerosol generator AGD can be improved. Alternatively, after the protection circuit 90 detects an overcurrent during discharge and turns off the first transistor SD, the protection circuit 90 also turns off the second transistor SC for a predetermined period of time, as shown in FIG. may
  • the protection circuit 90 When the protection circuit 90 detects an overcurrent during charging or an overcharge state of the battery BT, the protection circuit 90 can turn off the second transistor SC for a predetermined period of time. At this time, the protection circuit 90 may also turn off the first transistor SD.
  • FIG. 17 schematically shows a state in which the first transistor SD is turned off and the USB cable is connected to the USB connector USBC.
  • connecting a USB cable to the USB connector USBC may be understood as connecting an external device to the USB connector USBC via a USB cable.
  • the charging circuit 20 may operate in the first power pass mode set by default. Specifically, the charging circuit 20 electrically connects the VBUS terminal and the SYS terminal while the SYS terminal and the BAT terminal are electrically separated, and supplies power from the USB connector USBC via the VCC5 line.
  • a voltage VCC5 may be used to provide the voltage VCC on the VCC line.
  • the transformer circuit 30, which functions as a voltage supply unit that supplies voltage to the control unit 130 and the measurement circuit 100, supplies the voltage VCC33_0 to the VCC33_0 line, and the load switch 40 supplies the voltage VCC33 to the VCC33 line. can supply.
  • the voltage VCC33 is supplied to the control unit 130 and the measurement circuit 100, and the control unit 130 and the measurement circuit 100 can start or resume their operation. That is, when an external device is connected to the aerosol generator AGD or the power supply unit PSU, the transformer circuit 30 supplies the voltage VCC33 to the control unit 130 and the measurement circuit 100 via the load switch 40. 100 may start or resume operation. At this time, the controller 130 may operate in a sleep mode.
  • the control unit 130 which has started operating again, acquires the output voltage (positive potential) of the power supply BT from the measurement circuit 100 and/or turns on the switch circuit 80 to switch the power supply on the basis of the potential supplied to the PC2 terminal. It may operate to obtain the potential of BT. Then, when the control unit 130 determines that the power supply BT is not deeply discharged based on the acquired potential, or determines that the power supply BT can be charged, the PB3 terminal and the /CE terminal of the charging circuit 20 are connected. is supplied to the low level to shift the charging circuit 20 to the charging mode. Thereby, as schematically shown in FIG.
  • the charging circuit 20 outputs a voltage for charging the power supply BT between the BAT terminal and the GND terminal, and the power supply BT is charged.
  • the charging circuit 20 preferably charges the power supply BT with a smaller current than when the power supply BT is not in a deeply discharged state or an overdischarged state. .
  • the protection circuit 90 When the remaining capacity of the power supply BT exceeds a predetermined value, or when the remaining capacity of the power supply BT exceeds a predetermined value due to charging, the protection circuit 90 operates as schematically shown in FIG. , output a high level from the DOUT terminal to turn on the first transistor SD. This is because it was determined that the remaining capacity of the power supply BT had sufficiently recovered and that the overdischarged state would not occur immediately even if the discharge was restarted.
  • the switch section SWP includes a first resistor R1 used by the measurement circuit 100 to measure the state of the power supply BT, and a second power connector connected to the negative electrode of the power supply BT. BC-.
  • the measurement circuit 100 and the control unit 130 operate with the voltage VCC33 generated from the voltage VUSB in the first power pass mode as shown in FIG. 17, and the first transistor SD is turned off.
  • the VSS terminal of the measurement circuit 100 and the VSS terminal of the control unit 130 are at the same potential even in the state of being connected. That is, the measurement circuit 100 and the control unit 130 can communicate via their respective I 2 C interfaces.
  • the first power connector BC+ and the second power connector BC ⁇ form a closed circuit only with the protection circuit 90 .
  • the protection of the power supply BT by the protection circuit 90 can be maintained as long as possible, and further discharge of the power supply BT can be suppressed to the utmost limit.
  • a configuration in which the measurement circuit 100 and the first resistor R1 are replaced with the protection circuit 90, the second resistor R2 and the switch section SWP from the configurations illustrated in FIGS. 14 to 19 will be considered.
  • a switch section SWP is provided between the VSS terminal of the measurement circuit 100 and the VSS terminal of the control section 100 . Therefore, when the first transistor SD is turned off, the VSS terminal of the measurement circuit 100 and the VSS terminal of the control section 130 are disconnected and have different potentials. Communication via the I 2 C interface becomes difficult between circuits in which different potentials are input to the VSS terminal to which the reference potential is to be input.
  • the first power connector BC+ and the second power connector BC ⁇ form a closed circuit not only with the protection circuit 90 but also with the measurement circuit 100 . In other words, further discharge of the power supply BT cannot be suppressed to the limit.
  • the configurations exemplified in FIGS. 14 to 19 are compared to the configurations obtained by replacing the measurement circuit 100 and the first resistor R1 with the protection circuit 90, the second resistor R2 and the switch section SWP. , and the I 2 C interface, and the discharge of the power supply BT can be suppressed to the utmost limit.
  • FIG. 20 shows an arrangement example of electronic components on the first substrate PCB1.
  • the shortest distance D11 between the first resistor R1 and the measurement circuit 100 is preferably smaller than the shortest distance D12 between the second resistor R2 and the protection circuit 90.
  • the measurement circuit 100 needs to detect and integrate the current flowing through the first resistor R1 with high accuracy in order to calculate the state of the power supply BT, for example, the remaining capacity and SOC of the power supply BT with high accuracy. . Therefore, it is advantageous to make the shortest distance D11 between the first resistor R1 and the measuring circuit 100 as small as possible in order to eliminate the effects of parasitic resistance as much as possible.
  • D11 ⁇ D12 can be one design guideline for how to arrange electronic components in a limited board area.
  • D11 ⁇ D12 is a condition in one aspect, e.g. ⁇ 0.5 ⁇ D12, D11 ⁇ 0.4 ⁇ D12, D11 ⁇ 0.3 ⁇ D12, D11 ⁇ 0.2 ⁇ D12, D11 ⁇ 0.1 ⁇ D12, the required accuracy and the aerosol generator AGD Conditions may be set according to specifications.
  • the first resistor R1 and the measurement circuit 100 can be arranged on the same plane of the same substrate, for example, the first surface S11 of the first substrate PCB1.
  • the coplanar configuration of the first resistor R1 and the measurement circuit 100 allows the two to be connected by a coplanar conductive path without vias or through holes.
  • the parasitic resistance r2 existing between the first resistor R1 and the VRSP terminal of the measurement circuit 100 and the parasitic resistance r3 existing between the first resistor R1 and the VRSM terminal of the measurement circuit 100 can be reduced. .
  • Such a reduction in parasitic resistance enables highly accurate measurement of the state of the power supply BT by the measurement circuit 100 .
  • the conductive pattern connecting the first resistor R1 and the VRSP terminal and the VRSM terminal of the measurement circuit 100 can be shortened.
  • the length of the conductive pattern connecting the first resistor R1 and the VRSP terminal of the measurement circuit 100 can easily be made approximately the same as the length of the conductive pattern connecting the first resistor R1 and the VRSM terminal of the measurement circuit 100. can be done. These also enable the measurement circuit 100 to measure the state of the power supply BT with high accuracy.
  • the second resistor R2 and the protection circuit 90 can also be arranged on the same plane of the same substrate, eg, on the first surface S11 of the first substrate PCB1. According to such a configuration, between the resistance value of the parasitic resistance r4 existing between the second resistor R2 and the CS terminal of the measurement circuit 90 and the resistance value of the second resistor R2 and the VSS terminal of the protection circuit 90 The resistance value of the existing parasitic resistance r5 can also be reduced. Such a reduction in the resistance value of the parasitic resistance enables the protection circuit 90 to protect the power supply BT with high accuracy.
  • the first resistor R1, the second resistor R2, the measurement circuit 100 and the protection circuit 90 can be arranged on the same plane of the same substrate, eg, on the first surface S11 of the first substrate PCB1.
  • the resistance values of the parasitic resistances r2, r3, r4 and r5 can be reduced.
  • highly accurate measurement of the state of the power supply BT by the measurement circuit 100 and highly accurate protection of the power supply BT by the protection circuit 90 are simultaneously possible.
  • the first resistor R1, the second resistor R2, the measurement circuit 100 and the protection circuit 90 can be placed on the same substrate, eg, the first substrate PCB1.
  • the first substrate PCB1 has an end EE on the side where the heater HT is arranged, and the shortest distance between the first resistor R1 and the end EE is the shortest distance between the measurement circuit 100 and the end EE. It is preferably smaller than the distance. It is foreseen that the edges of the substrate receive more external noise such as static electricity than the central portion of the substrate. This is because external noise generally enters the board from the edge of the board.
  • the end EE is the end on the side where the heater HT is arranged, there is a possibility that static electricity generated when inserting/removing an insert into/from the insertion hole C104 or opening/closing the slider C102 may enter.
  • these other electronic components act as physical barriers against external noise. That is, according to such a configuration, the measurement circuit 100 is less susceptible to external noise by separating the measurement circuit 100 from the end EE.
  • the shortest distance between the second resistor R2 and the end EE is preferably smaller than the shortest distance between the protection circuit 90 and the end EE.
  • the shortest distance between the measurement circuit 100 and the edge EE is preferably smaller than the shortest distance between the protection circuit 90 and the edge EE.
  • the protection circuit 90 serves to protect the power supply BT and the aerosol generator AGD by prohibiting the charging and/or discharging of the power supply BT when an abnormality occurs. In other words, protection circuit 90 is more important than measurement circuit 100 . With such a configuration, the protection circuit 90 is further separated from the edge EE, and is less susceptible to external noise. This improves the safety of the aerosol generator AGD.
  • a first heater connector HC+ to which the positive terminal of the heater HT is electrically connected, and a second heater connector HC- to which the negative terminal of the heater HT is electrically connected are arranged on the first substrate PCB1. sell.
  • the shortest distance between the first heater connector HC+ and the end EE, and the shortest distance between the second heater connector HC- and the end EE, are greater than the shortest distance between the measuring circuit 100 and the end EE. is preferably small. Such a configuration is advantageous from the viewpoint of protecting the measurement circuit 100 from external noise.
  • a first resistor R1 and a second resistor R2 are arranged on the first side S11 of the first substrate PCB1, and a first heater connector HC+ and a second heater connector HC ⁇ are arranged on the second side S12 of the first substrate PCB1.
  • Such a configuration is advantageous from the viewpoint of efficiently arranging electronic components on the first surface S11 and the second surface S12 of the first substrate PCB1.
  • the substrate area of the first substrate PCB1 becomes large, and the conductive patterns become large. There is a risk that it will become a big restriction on the formation of the electronic components and the arrangement of other electronic components.
  • At least a portion of the second heater connector HC ⁇ can be arranged to overlap at least a portion of at least one of the first resistor R1 and the second resistor R2 in orthogonal projection onto the first surface S11.
  • at least a portion of the first heater connector HC+ overlaps at least a portion of at least one of the first resistor R1 and the second resistor R2 in the orthogonal projection. may be placed.
  • Such a configuration is also advantageous from the viewpoint of efficiently arranging electronic components on the first surface S11 and the second surface S12 of the first substrate PCB1.
  • the switch part SWP may be arranged on the first surface S11 of the first substrate PCB1. Such a configuration is also advantageous from the viewpoint of efficiently arranging electronic components on the first surface S11 and the second surface S12 of the first substrate PCB1.
  • a switch SS which is controlled by the control unit 130 and can be used as a cutoff switch that cuts off the current flowing through the heater HT, can be arranged on a path that electrically connects the second heater connector HC- and the first resistor R1. As described above, the switch SS makes it difficult for static electricity, noise, and the like that can enter from the heater HT, the first heater connector HC+, and the second heater connector HC ⁇ to enter the first resistor R1 and the second conductive path PT2.
  • the switches SS can be arranged on the second surface 12 of the first substrate PCB1. Such a configuration is also advantageous from the viewpoint of efficiently arranging electronic components on the first surface S11 and the second surface S12 of the first substrate PCB1.
  • the shortest distance between the switch SS and the end EE is preferably smaller than the shortest distance between the measurement circuit 100 and the end EE. According to such a configuration, the measurement circuit 100 is less susceptible to external noise because the measurement circuit 100 is separated from the end EE and the switch SS serves as a physical barrier against external noise.
  • a switch SH that is arranged on a path that electrically connects the output of the transformer circuit 120 and the first heater connector HC+ and functions as a heater switch can be arranged on the first substrate PCB1.
  • the shortest distance between the switch SH and the edge EE is preferably smaller than the shortest distance between the measuring circuit 100 and the edge EE. According to such a configuration, the measurement circuit 100 is less susceptible to external noise because the measurement circuit 100 is separated from the end EE and the switch SH serves as a physical barrier against external noise.
  • the switch SH can be switched at high speed by PWM (Pulse Width Modulation) or PFM (Pulse Frequency Modulation) so that the temperature of the heater HT is maintained at the target temperature. A large amount of power is supplied to the switch SH to heat the heater HT, and switching can be performed at high speed.
  • PWM Pulse Width Modulation
  • PFM Pulse Frequency Modulation
  • the switch SH can be arranged on the first surface S11 of the first substrate PCB1.
  • at least a portion of the switch SH may be arranged to overlap at least a portion of the first heater connector HC+.
  • Such a configuration is advantageous for reducing parasitic resistance between switch SH and first heater connector HC+.
  • the switch SH may at least partially overlap the second heater connector HC—at least partially.
  • the shortest distance between the first resistor R1 and the second resistor R2 may be less than at least one of the maximum dimension of the first resistor R1 and the maximum dimension of the second resistor R2. .
  • Such a configuration is also advantageous from the viewpoint of efficiently arranging electronic components on the first surface S11 and the second surface S12 of the first substrate PCB1.
  • FIG. 21 shows an arrangement example of electronic components on the first substrate PCB1.
  • a thermistor TB for measuring the temperature of the power supply BT has two terminals, which can be electrically connected to two thermistor connectors TBC1 and TBC2, respectively.
  • the measurement circuit 100 can be configured to measure the state of the power supply BT (eg, remaining capacity, SOC, etc.) using the first resistor R1, and to measure the temperature of the power supply BT using the thermistor TB.
  • the first resistor R1, the two thermistor connectors TBC1, TBC2 and the measurement circuit 100 can be arranged on the first substrate PCB1.
  • the shortest distance D13 between the two thermistor connectors TBC1, TBC2 and the measuring circuit 100 is preferably smaller than the shortest distance D11 between the first resistor R1 and the measuring circuit 100.
  • the first resistor R1 and the thermistor TB connected to the two thermistor connectors TBC1 and TBC2 are both important parameters used by the measurement circuit 100 to measure the state of the power supply BT. Unlike the first resistor R1, the temperature of the power supply BT, which is obtained indirectly from the resistance value of the thermistor TB, tends to have errors.
  • the measurement circuit 100 can obtain parameters necessary for measuring the state of the power supply BT from the first resistor R1 and the thermistor TB with little error.
  • the power supply BT can be, for example, the component with the largest volume among all the components that make up the aerosol generator AGD or the power supply unit PSU.
  • the power supply BT may, for example, occupy 20% or more, 25% or more or 30% or more of the volume of the aerosol generator AGD or power supply unit PSU.
  • the thermistor TB may be arranged along at least part of the side of the power supply BT. Further, the thermistor TB can be arranged between the outer case C101 and the power supply BT, or near the inner surface of the outer case C101.
  • thermistor connectors TBC1 and TBC2 to which the thermistor TB is electrically connected should be arranged in the vicinity of the outer edge of the entire area (effective area) of the first substrate PCB1 for efficient use of space. is advantageous for In other words, if the thermistor connectors TBC1 and TBC2 are arranged in the center or in the vicinity of the first substrate PCB1, it would be difficult to arrange other electronic components, form a conductive pattern on the surface of the substrate, and form a ground layer inside the substrate. disadvantageous.
  • the measurement circuit 100 measures or detects the temperature of the power supply TB by measuring the resistance value of the thermistor TB, and uses the temperature as one parameter value to calculate the remaining amount of the power supply BT (for example, remaining capacity and SOC). I can. Therefore, it is important to accurately measure the temperature of the power supply TB in order to accurately measure the remaining amount of the power supply BT. Further, an increase in the distance between the thermistor connectors TBC1, TB2 and the measurement circuit 100 causes an increase in the parasitic resistance value of the conductive path electrically connecting the thermistor connectors TBC1, TB2 and the measurement circuit 100, which increases the temperature of the power supply BT. can reduce the measurement accuracy of
  • D13 ⁇ D11 is a condition in one aspect.
  • D13 ⁇ 0.9 ⁇ D11, D13 ⁇ 0.8 ⁇ D11, D13 ⁇ 0.7 ⁇ D11, D13 ⁇ 0.6 ⁇ D11, D13 ⁇ 0.5 ⁇ D11, D13 ⁇ 0.4 ⁇ D11 Conditions such as D13 ⁇ 0.3 ⁇ D11, D13 ⁇ 0.2 ⁇ D11, and D13 ⁇ 0.1 ⁇ D11 can be set according to the required accuracy and the specifications of the aerosol generator AGD.
  • the measurement circuit 100 can include a first function of providing information indicating the temperature of the power supply BT to the control unit 130 and a second function of notifying the control unit 130 of an abnormality in the temperature of the power supply BT.
  • the control unit 130 can be configured to stop at least one of discharging the power supply BT and charging the power supply BT in response to the notification from the measurement circuit 100 by the second function. According to these configurations, the measurement circuit 100 can not only provide information indicating the temperature of the power supply BT to the control unit 130 in response to polling from the control unit 130, but also can perform control without waiting for polling from the control unit 130. Abnormalities in the temperature of the power supply BT can be notified to the unit 130 .
  • the power consumption of the control unit 130 and the measurement circuit 100 can be suppressed when the temperature of the power supply BT is not abnormal, and the power supply BT and the aerosol generator AGD can be protected when the temperature of the power supply BT becomes abnormal.
  • the measurement circuit 100 measures the remaining power (eg, remaining capacity and SOC) of the power supply BT based on information obtained using the first resistor R1 (eg, integrated current amount) and information obtained using the thermistor TB. can be calculated.
  • the remaining amount of the power supply BT depends not only on the information obtained using the first resistor R1 (for example, the amount of integrated current) but also on the temperature of the power supply BT. With such a configuration, the measurement circuit 100 can calculate the remaining amount of the power supply BT (for example, remaining capacity and SOC) with high accuracy.
  • the two terminals of the thermistor TB can be directly connected to the two thermistor connectors TBC1 and TBC2, respectively.
  • the two terminals of the thermistor TB can be connected to each of the two thermistor connectors TBC1, TBC2 without conducting lines, active and passive elements. This is consistent with the idea of reducing the parasitic resistance between the thermistor connectors TBC1, TBC2 and the two terminals of the thermistor TB.
  • the thermistor TB is arranged to at least partially surround the power source BT, which is advantageous for measuring the average temperature of the surface of the power source BT in the case that the power source BT has a corresponding temperature distribution.
  • the power source BT may have a cylindrical shape and the thermistor TB may include an arcuate portion along the cylindrical shape of the power source BT.
  • the power supply BT may have a square shape, and the thermistor TB may have a structure or shape along the square shape of the power supply BT.
  • the measurement circuit 100 and the first resistor R1 can be arranged on the same surface of the first substrate PCB1, for example, the first surface S11 or the second surface S12. According to this configuration, as described above, the measurement circuit 100 can measure the state of the power supply BT with high accuracy. Alternatively, the measurement circuit 100 and the first resistor R1 may be arranged on different sides of the first substrate PCB1.
  • the distance between the geometric center of the figure (closed figure) formed by the outer edge of the first substrate PCB1 and the geometric center of the measurement circuit 100 is smaller than the distance between the geometric center of the figure and the first resistor R1. is preferred.
  • the distance between the geometric center of the figure (closed figure) formed by the outer edge of the first substrate PCB1 and the geometric center (or area center of gravity) of the measurement circuit 100 is the distance between the geometric center of the figure and the two thermistor connectors TB1, It is preferably smaller than the shortest distance to TB2.
  • the distance between the geometric center of the figure (closed figure) formed by the outer edge of the first substrate PCB1 and the geometric center of the measurement circuit 100 is the shortest distance between the geometric center of the figure and the first resistor R1. It is preferably smaller and smaller than the shortest distance between the geometric center of the figure and the two thermistor connectors TBC1, TBC2.
  • the outer edge of the substrate is more susceptible to external noise such as static electricity than the geometric center of the substrate. Such a configuration is therefore advantageous in making the precision continuation circuit 100 less susceptible to noise.
  • Two power connectors to which the power supply BC is connected namely a first power connector BC+ and a second power connector BC-
  • the distance between the geometric center of the figure (closed figure) formed by the outer edge of the first board PCB1 and the geometric center of the measurement circuit 100 is the shortest distance between the geometric center of the figure and the two power connectors BC+ and BC-. preferably smaller than the distance.
  • the busbars connected to the two power connectors BC+ and BC- serve as physical barriers against external noise entering from the outer edge of the board. Since this bus bar is thick because a large current flows through it, it is suitable as a physical barrier. Therefore, the measurement circuit 100 is even less susceptible to noise.
  • the control unit 130 can be arranged on a substrate different from the first substrate PCB1 on which the first resistor R1, the two thermistor connectors TB1, TB2 and the measurement circuit 100 are arranged, for example, a second substrate PCB2. Since the measurement circuit 100 and the control unit 130 perform many calculations internally, they may become noise sources. By arranging these on different substrates, it becomes difficult for noise generated in one to affect the other.
  • FIG. 22 illustrates functions related to protection of the power supply BT.
  • the columns of “measurement circuit”, “charging circuit”, and “protection circuit” in the drawing indicate functions that can be provided by the measurement circuit 100, charging circuit 20, and protection circuit 90, respectively.
  • the “I 2 C” column in the “measurement circuit” exemplifies conditions under which the control unit 130 executes error processing based on information provided from the measurement circuit 100 to the control unit 130 via the I 2 C interface. is doing.
  • the column “nGAUGE_INT1” exemplifies the nGAUGE_INT1 signal output from the ALERT terminal of the measurement circuit 100 .
  • a column of “nGAUGE_INT2” indicates the nGAUGE_INT2 signal output from the IO5 terminal of the measurement circuit 100 .
  • the column “charging circuit” (“I 2 C”) indicates conditions under which the control unit 130 performs error processing based on information provided from the charging circuit 20 to the control unit 130 via the I 2 C interface. exemplified.
  • the column of “protection circuit” exemplifies conditions under which the protection circuit 90 turns off the switch section SWP.
  • the control unit 130 receives from the measurement circuit 100 the charging current during charging of the power supply BT, the discharging current during discharging of the power supply BT, the voltage of the power supply BT, and the discharging and discharging of the power supply BT.
  • Information indicating the temperature of the power supply BT during charging can be acquired.
  • the control unit 130 can execute error processing when the charging current acquired by the measurement circuit 100 is 1.1 times or more of the set value.
  • the set value may be a charging current value in constant current (CC) charging among CCCV (constant current-constant voltage) charging performed by charging circuit 20 .
  • control unit 130 can perform error processing when the temperature of the power supply BT during discharging of the power supply BT reaches 55° C. or higher. In addition, the control unit 130 can perform error processing when the temperature of the power supply BT during charging of the power supply BT reaches 51° C. or higher. Further, the control unit 130 can execute error processing, for example, when the temperature of the power supply BT during charging becomes 0° C. or lower. In addition, the control unit 130 periodically monitors, for example, the discharge current from the power supply BT and the positive electrode potential of the power supply BT via the I 2 C interface, and based on these, determines whether the power supply BT is in a deep discharge state. can judge. In the table shown in FIG. 22, the condition for judging whether or not the battery is in the deep discharge state is described as "internal algorithm". The details of this "internal algorithm" will be described later.
  • the measurement circuit 100 detects, for example, that the discharge current from the power supply BT is 10 A or more, that the charging current of the power supply BT is 3.0 A or more, and that the temperature during discharge from the power supply BT is
  • the nGAUGE_INT1 signal may transition to an active level upon detection of either 60° C. or above.
  • the active level of the nGAUGE_INT1 signal is, for example, low level.
  • the measurement circuit 100 checks that the discharge current from the power supply BT is 9.75 A or more, the charging current of the power supply BT is 2.75 A or more, and the temperature during discharging from the power supply BT is 85° C. for 2 minutes.
  • the temperature during charging of the power supply BT is 85°C or higher for 2 minutes,
  • the temperature during discharging from the power supply BT is -5°C or lower for 5 seconds,
  • the power supply during charging of the power supply BT The nGAUGE_INT2 signal transitions to the active level when it detects either that the positive electrode potential of BT is 4.235V or higher or that the positive electrode potential of the power supply BT during discharge from the power supply BT is 2.8V or lower. sell.
  • the active level of the nGAUGE_INT2 signal is, for example, low level.
  • the positive potential of the power source BT acquired by the measurement circuit 100 corresponds to the difference between the positive potential of the power source BT and the potential of the VSS terminal. Since the VSS terminal of the measurement circuit 100 and the second power connector BC ⁇ are both connected to the ground line, the positive potential of the power supply BT acquired by the measurement circuit 100 corresponds to the output voltage of the power supply BT.
  • control unit 130 can acquire information indicating the potential of the BAT terminal (positive potential of the power supply BT) during charging of the power supply BT from the charging circuit 20 by polling via the I 2 C interface.
  • the potential of the BAT terminal (positive potential of the power supply BT) acquired by the charging circuit 20 corresponds to the difference between the potential of the BAT terminal (positive potential of the power supply BT) and the potential of the GND terminal. Since the GND terminal of the charging circuit 20 and the second power connector BC- are both connected to the ground line, the potential of the BAT terminal (positive potential of the power source BT) obtained by the charging circuit 20 corresponds to the output voltage of the power source BT. . For example, when the potential of the BAT terminal (positive potential of the power supply BT) during charging becomes 4.343 V or higher, the control unit 130 can execute error processing.
  • the protection circuit 90 can change the first transistor SD to the cutoff state when the discharge current from the power supply BT reaches 12.67 A or more.
  • the protection circuit 90 can acquire the positive potential of the power supply BT based on the input to the VBAT terminal.
  • the positive potential of the power supply BT acquired by the protection circuit 90 corresponds to the difference between the positive potential of the power supply BT and the potential of the V ⁇ terminal. Since the V- terminal of the protection circuit 90 and the second power connector BC- are both connected to the ground line, the positive potential of the power supply BT acquired by the protection circuit 90 corresponds to the output voltage of the power supply BT.
  • the protection circuit 90 can change the second transistor SC to the cutoff state when the positive potential of the power supply BT during charging of the power supply BT becomes 4.28 V or higher. Further, the protection circuit 90 can change the first transistor SD to a cutoff state, for example, when the positive electrode potential of the power supply BT becomes 2.5 V or less during discharge from the power supply BT.
  • the state in which the positive electrode potential of the power source BT is 4.28 V or higher during charging of the power source BT corresponds to the above-described overcharged state of the power source BT.
  • the state in which the positive electrode potential of the power source BT is 2.5 V or less during charging of the power source BT corresponds to the above-described overdischarge state of the power source BT.
  • FIG. 23 schematically shows a configuration example of the measurement circuit 100 for realizing the functions of the measurement circuit 100 shown in FIG.
  • the measurement circuit 100 can include, for example, a detection circuit ABD that detects that the state of the power supply BT has become abnormal, and an output unit ABN that outputs an abnormality notification in response to detection by the detection circuit ABD.
  • the detection circuit ABD detects that the discharge current from the power supply BT is 10 A or more, the charging current of the power supply BT is 3.0 A or more, and the temperature during discharge from the power supply BT is 60° C. or more for 2 seconds.
  • the output unit ABN may include a first output logic circuit that transitions the nGAUGE_INT1 signal to an active level as an operation of outputting an anomaly notification when the first detection logic circuit detects at least one of them.
  • the measurement circuit 100 checks that the discharge current from the power supply BT is 9.75 A or more, the charging current of the power supply BT is 2.75 A or more, and the temperature during discharging from the power supply BT is 85° C. for 2 minutes.
  • the temperature during charging of the power supply BT is 85°C or higher for 2 minutes,
  • the temperature during discharging from the power supply BT is -5°C or lower for 5 seconds,
  • the power supply during charging of the power supply BT It can include a second detection logic circuit that individually detects either the positive potential of BT being 4.235 V or higher or the positive potential of power source BT being 2.8 V or lower during discharge from power source BT.
  • the output unit ABN may include a second output logic circuit that transitions the nGAUGE_INT2 signal to an active level as an operation of outputting an anomaly notification when the second detection logic circuit detects at least one of them.
  • FIG. 24 shows a connection example of the measurement circuit 100, the control section 130, the transformer circuit 120, the charging circuit 20, the information holding circuits FF1 and FF2, the OP amplifiers A2 and A3, and the like.
  • the control unit 130 may be configured to control the supply of power to the heater HT for heating the aerosol source using the power supplied from the power supply BT and the charging of the power supply BT.
  • the measurement circuit 100 can be configured to measure the state of the power supply BT (eg, remaining capacity, SOC, temperature, etc.). As illustrated in FIG. 23, the measurement circuit 100 includes a detection circuit ABD that detects that the power supply BT is in an abnormal state, and an output part ABN that outputs an abnormality notification in response to the detection by the detection circuit ABD. can contain The output unit ABN outputs the first abnormal signal by, for example, shifting the nGAUGE_INT1 signal output from the ALERT terminal to the active level (here, low level), and the nGAUGE_INT2 signal output from the IO5 terminal to the active level (low level). Here, it can be configured to output the second abnormal signal by making a transition to a low level.
  • the output unit ABN outputs the first abnormal signal by, for example, shifting the nGAUGE_INT1 signal output from the ALERT terminal to the active level (here, low level), and the nGAUGE_INT2 signal output from the IO5 terminal to the active level (low
  • the measurement circuit 100 may include an interface, eg, an I 2 C interface, for providing state information regarding the state of the power supply BT to the control unit 130 in response to a request from the control unit 130 .
  • the I2C interface may consist of an SCL and SDA terminal that are different from the ALERT and IO5 terminals.
  • the control unit 130 can be configured to execute a protection operation to protect the power supply BT in accordance with the anomaly notification and status information.
  • the protection operation may include, for example, prohibiting charging of the power source BT and/or prohibiting discharging from the power source BT to the heater HT.
  • the output circuit ABN of the measurement circuit 100 notifies an abnormality in response to at least one of the charging current of the power supply BT exceeding the first reference value and the discharging current from the power supply BT exceeding the second reference value. can be output.
  • the output circuit ABN of the measurement circuit 100 sets the nGAUGE_INT1 signal to the active level (here, low level). Further, the output circuit ABN of the measurement circuit 100 shifts the nGAUGE_INT1 signal to an active level (here, low level) as an output of abnormality notification in response to the discharge current from the power supply BT being 10 A or more.
  • the output circuit ABN of the measurement circuit 100 shifts the nGAUGE_INT2 signal to an active level (here, low level) as an output of abnormality notification in response to the discharge current from the power supply BT being 9.75 A or more. . Further, the output circuit ABN of the measurement circuit 100 shifts the nGAUGE_INT2 signal to an active level (here, low level) as an output of abnormality notification in response to the charging current of the power supply BT being 2.75 A or more.
  • the control unit 130 can acquire state information from the measurement circuit 100 via the I 2 C interface in response to the transition of the nGAUGE_INT2 signal to the active level (here, low level).
  • the state information can include at least one of information for control unit 130 to determine whether to shift to the permanent failure mode and information indicating transition to the permanent failure mode. For example, in the example shown in FIG. 22, the control unit 130 determines that the state information acquired from the measurement circuit 100 via the I 2 C interface indicates that the temperature during discharge from the power supply BT is 85° C. or higher for 2 minutes. Alternatively, when the temperature of the power supply BT during charging is 85° C. or higher for two minutes, it can be determined to shift to the permanent failure mode.
  • the measurement circuit 100 controls the control unit 130 Information indicating transition to the permanent failure mode may be provided to the control unit 130 as status information in response to polling from .
  • the control unit 130 can determine whether an abnormality has occurred in the power supply BT based on information acquired from the measurement circuit 100, for example, information acquired from the measurement circuit 100 via the I2C interface. Additionally or alternatively, control unit 130 can determine whether an abnormality has occurred in power supply BT based on the output from output unit ABN of measurement circuit 100 . In addition, the control unit 130 may control the notification unit NU so as to perform notification indicating that, when it is determined that an abnormality has occurred in the power supply BT. Such notification may prompt the user to perform a predetermined operation for resetting. Such notification can be any of the generation of light of a predetermined color, flashing display, generation of a predetermined sound, or generation of predetermined vibration, or a combination of two or more thereof.
  • the control unit 130 can cause the aerosol generator AGD or the power supply unit PSU to transition to an unusable state. For example, the control unit 130 sends a command to the charging circuit 20 via the I 2 C interface to prohibit operation in all power-pass modes, so that the SYS terminal and the SW terminal of the charging circuit 20 are disabled. It can stop the voltage output. As a result, the output of the voltages V CC , V CC33_0 , and V CC33 is stopped, so that the power supply to the control unit 130 is cut off and the control unit 130 becomes inoperable.
  • the charging circuit 20 keeps holding all the commands for prohibiting the operation in the power pass mode sent from the control unit 130, even if the voltage V BUS is supplied from the USB connector USBC, the SYS terminal of the charging circuit 20 and the No voltage is output from the SW terminal. This prohibits transitions from permanent failure mode to all other modes. Such an operation is useful for prohibiting charging and discharging of the power supply BT that is determined to be faulty and enhancing safety.
  • the aerosol generator AGD or the power supply unit PSU may be provided with a protection unit PPP having a function of protecting the power supply BT in response to an abnormality notification from the measurement circuit 100 without being controlled by the control unit 130 .
  • the protection unit PPP may further include a function of protecting the power supply BT under the control of the control section 130 .
  • the protection unit PPP may, for example, include an information holding circuit FF1. Although details will be described later, the information holding circuit FF1 responds to the nGAUGE_INT1 signal output from the ALERT terminal of the measurement circuit 100 being driven to the active level (here, low level) (that is, the first abnormal signal).
  • the nALARM_Latched signal can be transitioned to an active level (here, low level), thereby turning off the switch SS arranged in the current path that drives the heater HT.
  • Information that the nGAUGE_INT1 signal has been driven to the active level ie, the first error signal
  • the information holding circuit FF1 can be composed of a D-type flip-flop having a /CLR terminal.
  • a D-type flip-flop can hold 1-bit information that can be high level and low level, and therefore can be used as an information holding circuit.
  • the nGAUGE_INT1 signal can be supplied to the /CLR terminal of the information holding circuit FF1 (D-type flip-flop).
  • the nALARM_Latched signal can be output from the Q terminal of the information holding circuit FF1 (D-type flip-flop).
  • the nALARM_Latched signal can transition to the active level (here, low level) in response to the transition of the nGAUGE_INT1 signal to active level (here, low level).
  • the nALARM_Latched signal can also be provided to the EN terminal of the transformer circuit 120 and the base or gate of the transistor that constitutes the switch SL.
  • the measurement circuit 100 detects the nGAUGE_INT1 signal output from the ALERT terminal of the measurement circuit 100 when it determines that the criteria (conditions) for prohibiting energization (heat generation) to the heater HT or charging of the power supply BT are satisfied.
  • the protection unit PPP turns off the switch SS without intervention of control by the control section 130 . As a result, heat generation of the heater HT (supply of electric power to the heater HT) is prohibited.
  • the current is 10 A or more
  • the charging current of the power supply BT is 3.0 A or more
  • the temperature during discharge from the power supply BT is 60° C. or more for 2 seconds.
  • the nGAUGE_INT1 signal is transitioned to an active level when either criterion is met. Other criteria may be set as such criteria.
  • the measurement circuit 100 measures the value of the discharge current, the value of the charge current, the temperature of the power source BT when discharging the power source BT, the temperature of the power source BT when charging the power source BT, and the positive electrode potential of the power source BT when discharging the power source BT.
  • the nGAUGE_INT1 signal can drive to an active level.
  • the control unit 130 determines that the status information obtained from the measurement circuit 100 through the I2C interface indicates that the power supply BT is not in an abnormal state. In this case, it may be possible to supply power to the heater HT and charge the power source BT. For example, after the protection unit PPP protects the power supply BT in response to the anomaly notification, the control unit 130 can prompt the user to reset or restart using the notification unit NU. When the control unit 130 is reset or restarted by this, the control unit 130 acquires state information from the measurement circuit 100 via the I 2 C interface, or checks the level of the nGAUGE_INT1 signal, and determines whether the power supply BT is abnormal.
  • the control unit 130 When not in the state, the supply of power to the heater HT and the charging of the power supply BT can be enabled. Conversely, by resetting or restarting the control unit 130, the control unit 130 may enter a state in which power can be supplied to the heater HT. In this case, the control unit 130 can obtain state information from the measurement circuit 100 via the I 2 C interface, and can prohibit power supply to the heater HT according to the state information, if necessary.
  • protection of the power supply BT by the protection unit PPP in response to the nGAUGE_INT1 signal can be treated as releasable protection. This is because the protection of the power supply BT by the protection unit PPP is not controlled by the control section 130, and there is a possibility that the protection may occur due to a malfunction of any of the electronic components forming the protection unit PPP. Also, if the protection occurs due to a failure of the control unit 130 such as freezing, resetting or restarting the control unit 130 may return the aerosol generator AGD or the power supply unit PSU to a normal state. The reason why the conditions shown in the "nGAUGE_INT2" column of FIG. It is also for determining whether
  • the inoperable state due to the transition to permanent failure mode cannot be canceled.
  • the temperature of the power supply BT is 85° C. or higher for two minutes during discharging or charging
  • the aerosol generator AGD or the power supply unit PSU is shifted to permanent failure mode by the controller 130 .
  • the control unit 130 can acquire the temperature of the power supply BT, no failure such as freezing occurs in the control unit 130 .
  • the temperature of the power supply BT becomes high, an unrecoverable error has occurred in something other than the control unit 130, and even resetting or restarting the control unit 130 cannot be expected to eliminate the error. . Therefore, it is necessary to shift the aerosol generator AGD or the power supply unit PSU to permanent failure mode.
  • the control unit 130 acquires the first information about the state of the power supply BT from the measurement circuit 100 via the I 2 C interface by periodic polling, and responds to the abnormality notification to the measurement circuit via the I 2 C interface.
  • Second information about the state of the power supply BT can be obtained from 100 .
  • the control unit 130 performs an operation to protect the power supply BT, and the measurement circuit 100 detects that the power supply BT is in the first state.
  • Abnormal information can be output according to having become the important 2nd state.
  • the first information indicates that the control unit 130 is in the first state (the temperature of the power supply BT is 55° C.
  • the measurement circuit 100 performs an operation (for example, requesting a reset) to protect the power supply BT, and the measurement circuit 100 detects that the power supply BT is in a second state (when discharging or charging the heater HT), which is more important than the first state.
  • An anomaly notification can be output (the nGAUGE_INT1 signal is driven to an active level) in response to the temperature of the BT reaching 60° C. or higher for two seconds.
  • the first information and the second information are information indicating the temperature of the power supply BT, but the first information and the second information are information indicating other states (eg, discharging current, charging current).
  • the control unit 130 performs an operation of protecting the power source BT when the first information satisfies any one of the conditions included in the first condition group when the power source BT is charged. and performing an operation to protect the power source BT when the first information satisfies any of the conditions included in the second condition group when the state of the power source BT is discharged, wherein The number of conditions included in the one condition group is greater than the number of conditions included in the second condition group.
  • protection of the power supply BT based on the first information works more strongly during charging than during discharging. This is because the energy stored in the power supply BT continues to increase during charging, unlike during discharging, so protection of the power supply BT becomes more important during charging.
  • charging at a low temperature unlike discharging, may cause irreversible changes in the internal structure of the power supply BT such as electrodeposition at the negative electrode, protection of the power supply BT becomes more important during charging.
  • control unit 130 performs an operation of protecting the power source BT when the second information satisfies any one of the conditions included in the third condition group when the power source BT is charged. and performing an operation to protect the power source BT when the second information satisfies any of the conditions included in the fourth condition group when the state of the power source BT is discharged, wherein The number of conditions included in the third condition group is less than the number of conditions included in the fourth condition group.
  • protection of the power supply BT based on the second information functions more strongly during discharging than during charging. This is because, as described above, the energy stored in the power supply BT may continue to increase during charging, or the internal structure of the power supply BT may undergo irreversible changes.
  • FIG. 25 schematically shows the protection of the power supply BT based on the state of the power supply BT acquired by periodic polling of the measurement circuit 100 by the control unit 130 .
  • the control unit 130 can acquire state information about the state of the power supply BT from the measurement circuit 100 by periodically polling the measurement circuit 100 . Then, the control unit 130 can perform a protective operation to protect the power supply BT when the state information satisfies the criteria for protecting the power supply BT.
  • the protection operation for example, causes the Heater_Enable signal output from the PC12 terminal to transition to an inactive level (here, a low level), stops the operation of the transformer circuit 120, and switches the switches arranged in the current path of the heater HT. It can include the action of turning off the SS.
  • the protection operation can also include, for example, an operation of causing the nCharger_Enable signal output from the PB3 terminal to transition to an inactive level (here, high level) to stop charging of the power supply BT by the charging circuit 20 .
  • an inactive level here, high level
  • the Heater_Enable signal transitioned to a low level is applied to the EN terminal of the transformer circuit 120 and the gate of the switch SS. Supply to the terminal can stop the operation of the transformer circuit 120 and turn off the switch SS.
  • the charging of the power supply BT by the charging circuit 20 can be stopped by supplying the nCharger_Enable signal that has transitioned to a high level to the /CE terminal of the charging circuit 20. .
  • the protection operation may include continuing the error processing mode until a predetermined condition is met, and transitioning to sleep mode after the predetermined condition is met.
  • the control unit 130 shifts to the error processing mode when the temperature of the power supply BT reaches 51° C. or higher during discharge from the power supply BT. When the temperature drops below 45°C, it can go into sleep mode.
  • FIG. 26 schematically shows the protection of the power supply BT in response to the measurement circuit 100 outputting the second abnormal signal by causing the nGAUGE_INT2 signal to transition to active level (here, low level).
  • the control unit 130 may poll the measurement circuit 100 in response to the transition of the nGAUGE_INT2 signal to the active level (the second anomaly signal) to obtain status information about the state of the power supply BT from the measurement circuit 100 . Then, the control unit 130 can perform a protective operation to protect the power supply BT when the state information satisfies the criteria for protecting the power supply BT.
  • the protection operation may be the same as the protection operation described with reference to FIG. 25, or may be different.
  • the control unit 130 When the control unit 130 stops periodic polling of the measurement circuit 100 because the aerosol generator AGD or the power supply unit PSU is in sleep mode, the control unit 130 performs control based on the nGAUGE_INT2 signal that has transitioned to the active level. Unit 130 may resume periodic polling of measurement circuitry 100 .
  • the nGAUGE_INT2 signal can also be understood as an interrupt signal for the controller 130 .
  • the protection operation may include continuing the error processing mode until a predetermined condition is met, and transitioning to sleep mode after the predetermined condition is met. For example, according to the example of FIG. 22, when the temperature of the power supply BT is ⁇ 5° C. or less for 5 seconds or more during discharge from the power supply BT, the control unit 130 enters the sleep mode via the error processing mode. can move to Alternatively, the control unit 130 can transition to the sleep mode via the error processing mode when the positive electrode potential of the power supply BT becomes 2.8 V or less during discharge from the power supply BT.
  • the control unit 130 can determine that the aerosol generator AGD or the power supply unit PSU is to be shifted to the permanent failure mode. In this case, the control unit 130 can make the aerosol generator AGD or the power supply unit PSU permanently disabled.
  • FIG. 27 schematically shows protection of the power supply BT performed by the protection unit PPP in response to the measurement circuit 100 transitioning the nGAUGE_INT1 signal to the active level.
  • the information holding circuit FF1 changes the nALARM_Latched signal to the active level in response to the nGAUGE_INT1 signal output from the ALERT terminal of the measurement circuit 100 being driven to the active level (here, low level) (that is, the first abnormal signal). (here, low level).
  • the switch SS arranged in the current path driving the heater HT is turned off, the transformer circuit 120 generating the voltage V boost stops operating, and the charging circuit 20 stops operating.
  • the EN terminal of the transformer circuit 120 is of positive logic and the switch SS is composed of an N-channel MOSFET, the nALARM_Latched signal transitioned to the low level is applied to the EN terminal of the transformer circuit 120 and the gate of the switch SS. Supply to the terminal can stop the operation of the transformer circuit 120 and turn off the switch SS.
  • the /CE terminal of the charging circuit 20 is of negative logic and the switch SL is composed of a pnp type bipolar transistor, the switch SL is turned on by supplying the nALARM_Latched signal that has been transitioned to a low level to the base terminal of the switch SL. do.
  • the information holding circuit FF1 also sets the nALARM_Latched signal to the active level (here: Then, it may be made to transition to a low level). Specifically, the electrical resistance of the resistor connected to the non-inverting input terminal and the inverting input terminal of the OP amplifier A2 is set so that the output of the OP amplifier A2 becomes low level when the temperature of the heater HT exceeds the conditional value. value and physical properties of the thermistor TH.
  • the nALARM_Latched signal can transition to the active level (here, low level).
  • the information holding circuit FF1 also sets the nALARM_Latched signal to the active level when it indicates that the temperature of the outer case C101 measured using the thermistor TC for detecting the temperature of the outer case C101 has exceeded its upper limit value. You can transition to Specifically, the electrical resistance of the resistor connected to the non-inverting input terminal and the inverting input terminal of the OP amplifier A3 is set so that the output of the OP amplifier A3 becomes low level when the temperature of the heater HT exceeds the conditional value. value and physical properties of the thermistor TC.
  • the nALARM_Latched signal can transition to the active level (here, low level).
  • the protection unit PPP may further include an information holding circuit FF2.
  • the information holding circuit FF2 is driven by the voltage VCC33_0 , so if the power supply BT is normal, it continues to hold information unless it is in a permanent failure mode.
  • the information holding circuit FF2 continues to hold information indicating that fact, and outputs a Heater_Latched signal. to an active level (here, high level).
  • the information holding circuit FF2 can be composed of a D-type flip-flop having a /CLR terminal.
  • the output signal of the OP amplifier A2 can be supplied to the /CLR terminal of the information holding circuit FF2 (D-type flip-flop).
  • the Heater_Latched signal can be output from the /Q terminal of the information holding circuit FF2 (D-type flip-flop).
  • the information holding circuit FF2 (D-type flip-flop) fixes the level of the information it holds to low level.
  • the /Q terminal of the information holding circuit FF2 (D-type flip-flop) outputs a level opposite to the level of the held information.
  • the Heater_Latched signal when the temperature of the heater HT exceeds its upper limit, the Heater_Latched signal can transition to an active level (here, high level).
  • the Heater_Latched signal may be output from the Q terminal of the information holding circuit FF2 (D-type flip-flop). Note that in this case, unless an inverter is connected to the Q terminal, the active level of the Heater_Latched signal is low. In this case, the information holding circuit FF2 (D-type flip-flop) may not have the /Q terminal.
  • the control unit 130 can determine that the heater HT has overheated, and can control the notification unit NU to notify that fact.
  • Such notification may prompt the user to perform a predetermined operation for resetting.
  • Such notification can be any of the generation of light of a predetermined color, flashing display, generation of a predetermined sound, or generation of predetermined vibration, or a combination of two or more thereof.
  • the control unit 130 checks the information held in the information holding circuit FF2 by the state (logical level) of the Heater_Latched signal, and further checks whether or not the heater HT is overheated. sell.
  • the controller 130 recognizes that the heater HT has overheated, it can shift the aerosol generator AGD or the power supply unit PSU to a permanent failure mode.
  • the transition to the permanent failure mode of the aerosol generator AGD or the power supply unit PSU is caused by the controller 130 instructing the charging circuit 20 via the I 2 C interface to operate in all power path modes. It can be done by sending a command to prohibit.
  • the controller 130 is reset or restarted. It should be noted that even if a failure such as freezing of the control unit 130 occurs, if the temperature of the heater HT exceeds the upper limit, the information holding circuit FF1 changes the nALARM_Latched signal to an active level (here, a low level). , the overheating of the heater HT does not proceed further.
  • the information holding circuit FF2 When the information holding circuit FF2 is composed of a D-type flip-flop, the information holding circuit FF2 (D-type flip-flop) can include a CLK (clock) terminal (not shown) connected to the control unit . By inputting the CLK signal to the CLK terminal, the level of the information held by the information holding circuit FF2 (D-type flip-flop) can be made the same as the level inputted to the D terminal. However, in order for the control unit 130, which has been reset or restarted, to recognize the overheating of the heater HT, the control unit 130, at least immediately after the reset or restart, sets the CLK of the information holding circuit FF2 (D-type flip-flop) It is preferable not to input the CLK signal to the terminal.
  • FIG. 28 schematically shows changes in state regarding discharging and charging of the power supply BT.
  • S1 to S8 indicate timings.
  • the potential (dotted line) detected as the positive potential of the power supply BT by the protection circuit 90 the potential (solid gray line) detected as the positive potential of the power supply BT by the measurement circuit 100
  • the control unit 130 indicates a potential (black solid line) detected as the positive electrode potential of the power supply BT.
  • the potential detected by the protection circuit 90 as the positive potential of the power supply BT corresponds to the voltage detected by the protection circuit 90 as the output voltage of the power supply BT.
  • the potential detected by the measurement circuit 100 as the positive potential of the power supply BT corresponds to the voltage detected by the measurement circuit 100 as the output voltage of the power supply BT.
  • the potential detected by the control unit 130 as the positive potential of the power supply BT corresponds to the voltage detected by the control unit 130 as the output voltage of the power supply BT.
  • the middle part of FIG. 28 illustrates charging currents for charging the power supply BT.
  • the lower part of FIG. 28 illustrates the level of the DOUT terminal of the protection circuit 90 .
  • the potential of the positive electrode of the power supply BT (the output voltage output between the positive electrode and the negative electrode) is normal.
  • being normal can be understood as a state in which the potential of the positive electrode of the power source BT (the output voltage output between the positive electrode and the negative electrode) is lower than the full charge voltage of the power source BT and higher than the final discharge voltage.
  • the discharge from the power supply BT progresses by timing S2, and the state of the power supply BT enters the overdischarge region at timing S2.
  • FIG. 28 exemplifies 2.5 V as the discharge end voltage of the power supply BT. , the state of the power supply BT enters the overdischarge region.
  • the potential detected by the protection circuit 90 (dotted line), the potential detected by the measurement circuit 100 (solid gray line), and the potential detected by the control unit 130 (solid black line) can vary greatly.
  • the potential of the positive electrode of the power source BT decreases during the period from timings S2 to S5, as will be described in detail later. It becomes impossible to electrically connect the terminals. Therefore, during the period from timings S2 to S5, the potential detected by the control unit 130 (solid black line) is zero.
  • the measurement circuit 100 cannot accurately detect the potential of the positive electrode of the power supply BT in the overdischarge region of the power supply BT. This is because the measurement circuit 100 assigns the minimum remaining capacity of 0 mAh and the minimum SOC of 0% to the state where the output voltage of the power supply BT is equal to its discharge end voltage. This is because it is not designed to accurately measure conditions below
  • the protection circuit 90 opens the first transistor (switch) SD of the switch section SWP to protect the power supply BT, thereby Discharge from BT to other than protection circuit 90 is stopped.
  • the first transistor SD is arranged on the path through which the current output from the power supply BT flows, more specifically, on the second conductive path PT2 electrically connected to the second power connector BC ⁇ . switch. Even if the first transistor (switch) SD is opened, a closed circuit is formed among the first power connector BC+, the VDD terminal of the protection circuit 90, the VSS terminal of the protection circuit 90, and the second power connector BC-. Therefore, it should be noted that the protection circuit 90 can keep the first transistor (switch) SD open. When the first transistor (switch) SD is opened, the voltage VCC33 is not supplied to the control unit 130 and the measurement circuit 100, so they stop operating.
  • the user connects a USB cable to which an external device (for example, a charger or an electronic device) is connected to the USB connector USBC in order to charge the power source BT.
  • an external device for example, a charger or an electronic device
  • the voltage VCC33 is not supplied to the VDD terminal (power supply terminal) of the control unit 130, a low level is supplied to the base or gate of the transistor forming the switch SI, and the switch SI is turned off. ing. Therefore, the ON terminal of the load switch 10 can be supplied with a high level voltage obtained by dividing the power supply VUSB . Therefore, the load switch 10 can supply the voltage VUSB supplied to the VIN terminal to the VBUS terminal of the charging circuit 20 through the VCC5 line as the voltage VCC5 .
  • the charging circuit 20 operates in the first power-pass mode, electrically connecting the VBUS terminal and the SW terminal, and applying the voltage VCC to the VCC line using the voltage VCC5 supplied through the VCC5 line. can supply.
  • the transformer circuit 30 supplied with the voltage VCC generates the voltage VCC33_0
  • the load switch 40 receives the voltage VCC33_0 and outputs the voltage VCC33 . This supplies the voltage VCC33 to the controller 130 and the measurement circuit 100 so that they can resume operation.
  • the measurement circuit 100 can detect the potential of the power supply BT supplied to the VBAT terminal.
  • the control unit 130 can determine whether the power supply BT has a failure that causes the aerosol generator AGD or the power supply unit PSU to transition to a permanent failure mode. When the controller 130 determines that the failure occurs in the power supply BT, the controller 130 can shift the aerosol generator AGD or the power supply unit PSU to a permanent failure mode. On the other hand, when the control unit 130 determines that the failure has not occurred in the power supply BT, it can perform the operation described below.
  • the control unit 130 can output a low level from the PB ⁇ b>3 terminal and supply a low level (enable level) to the /CE terminal of the charging circuit 20 .
  • the charging circuit 20 can start supplying the charging voltage (first voltage) from the BAT terminal to the power supply BT.
  • the charging current of the power supply BT at this time can be a first current value (540 mA in FIG. 28) smaller than the predetermined current value. Due to charging, the potential of the positive electrode of the power supply BT starts to rise.
  • the charging circuit 20 may supply the voltage VCC from the SYS terminal to the VCC line, and the transformer circuit 30 may supply the voltage VCC33_0 to the VCC33_0 line .
  • the load switch 40 can receive the voltage V CC33_0 and supply it as V CC33 (second voltage) to the controller 130 and the measurement circuit 100 through the V CC33 line.
  • the charging circuit 20, the transformer circuit 30 and the load switch 40 can be understood as constituting one voltage supply circuit.
  • the voltage supply circuit uses a voltage supplied from an external device through a USB cable to supply a first voltage between the first conducting path PT1 and the second conducting path PT2 for charging the power supply BT. Also, a second voltage for operating the controller 130 may be generated. According to such a configuration, the voltage supply circuit uses the voltage supplied from the external device through the USB cable to restart the control unit 130 that has stopped operating and recover the power supply BT that has reached the overdischarged state. can do In other words, the voltage supply circuit can bring the aerosol generator AGD or the power supply unit PSU back to normal.
  • the switch circuit 80 is turned on due to the rise in the positive potential of the power supply BT, and the potential ADC_B+ obtained by dividing the positive potential of the power supply BT at a predetermined voltage division ratio can be supplied to the PC2 terminal of the control unit 130.
  • the control unit 130 can convert the potential of the PC2 terminal to the potential of the positive electrode of the power supply BT based on the voltage division ratio.
  • the potential detected by the measurement circuit 100 can rise sharply when the potential of the positive electrode of the power supply BT exceeds a certain level after the timing S5.
  • the timing coincides with timing S6 in the example of FIG. 28, but this is only an example.
  • the value detected as the positive electrode potential of the power supply BT (the output voltage of the power supply BT) by the control unit 130 and the measurement circuit 100 is as described later because the first transistor SD of the switch unit SWP is in the OFF state.
  • the forward voltage VF of the body diode BDD which is the first rectifying element connected in parallel to the first transistor SD, added to the output voltage of the power supply BT.
  • the control unit 130 determines whether or not the output voltage of the power supply BT obtained from the measurement circuit 100 exceeds a second level that is higher than the first level, and if the output voltage exceeds the second level, The charging current of the power supply BT by the charging circuit 20 can be increased to a second current value (2640 mA in FIG. 28) larger than the predetermined current value.
  • control unit 130 determines whether the potential of the positive electrode of the power supply BT converted or detected based on the potential supplied to the PC2 terminal exceeds the second level. , the charging current of the power supply BT by the charging circuit 20 can be increased to the second current value (eg, 2640 mA). Here, the difference between the second level and the first level is greater than the forward voltage VF of the body diode BDD. According to these configurations, whether or not the overdischarge state of the power supply BT has been resolved is determined in consideration of the forward voltage VF of the body diode BDD included in the apparent potential of the positive electrode of the power supply BT detected by the control unit 130. can be determined with high accuracy. As a result, it is possible not only to improve the charging speed of the power supply BT whose overdischarged state has been resolved, but also to suppress high-rate charging of the power supply BT whose overdischarged state has not been resolved.
  • control unit 130 can become affirmative between timing S6 and timing S7 in FIG. That is, when the above determination becomes affirmative, the timing S8 can come without waiting for the timing S7 unlike the example in FIG.
  • the protection circuit 90 switches the first transistor Close SD.
  • the potential detected as the potential of the power supply BT by the control unit 130 and the measurement circuit 100 matches the potential of the positive electrode of the power supply BT. That is, by closing the first transistor SD, the potential detected by the protection circuit 90 is lowered by the forward voltage VF of the body diode BDD, which is the first rectifying element.
  • the control unit 130 determines whether the output voltage of the power supply BT obtained from the measurement circuit 100 exceeds a fourth level that is lower than the second level, and if the potential of the positive electrode exceeds the fourth level Then, the charging current of the power supply BT by the charging circuit 20 can be increased to the second current value (2640 mA in FIG. 28). Further, the control unit 130 determines whether the potential of the positive electrode of the power source BT converted or detected based on the potential supplied to the PC2 terminal exceeds the third level, which is higher than the first level. When the potential exceeds the third level, the charging current of the power supply BT by the charging circuit 20 can be increased to the second current value (2640 mA in FIG. 28).
  • the protection circuit 90 switches the first transistor (switch) SD so that discharge of the power supply BT is interrupted in response to the potential of the positive electrode of the power supply BT (output voltage of the power supply BT) falling below the first level. can operate to open. Further, when the potential of the positive electrode of the power source BT detected based on the potential supplied to the PC2 terminal exceeds the second level, which is larger than the first level, due to the charging of the power source BT, the control unit 130 It can operate to increase the charging current of the power supply BT.
  • FIG. 29 shows the protection circuit 90, the switch section SWP, the measurement circuit 100, the control section 130 and the switch circuit 80 together with the first conductive path PT1 and the second conductive path PT2.
  • the switch circuit 80 may include, for example, a PMOS transistor SBVC, an npn-type bipolar transistor SBEN, and two resistors (10 k ⁇ , 470 ⁇ ), but is not limited to this configuration.
  • the switch circuit 80 may be composed of, for example, a single transistor that is turned on when the ADCB+_EN signal output from the PB4 terminal of the control section 130 is at the active level.
  • the PMOS transistor SBVC when the power supply BT is in a normal state, the PMOS transistor SBVC is turned on when the ADCB+_EN signal is set to active level (here, high level). More specifically, when the ADCB+_EN signal transitioned to the active level (here, high level) is supplied to the base terminal of the npn bipolar transistor SBEN, the npn bipolar transistor SBEN is turned on. Since the gate terminal of the PMOS transistor SBVC is connected to the second conductive path PT2, which is the ground line, through the npn bipolar transistor SBEN, the potential of the gate terminal of the PMOS transistor SBVC is approximately 0V.
  • the voltage (absolute value) between the source and the gate of the PMOS transistor SBVC becomes equal to the threshold (absolute value) of the PMOS transistor SBVC. value), and the PMOS transistor SBVC is turned on.
  • the positive potential of the power supply BT divided by the voltage dividing resistors R11 and R12 is input to the PC2 terminal of the control unit 130 .
  • the control unit 130 Since the magnitude of the signal input to the PC2 terminal of the control unit 130 depends on the potential of the positive electrode of the power supply BT, the control unit 130 also acquires the potential of the positive electrode of the power supply BT based on the signal input to the PC2 terminal. can.
  • the VSS terminal and the second power connector BC- of the control unit 130 are both connected to the second conducting path PT2. That is, the VSS terminal of the control unit 130 and the second power connector BC- are at substantially the same potential. Therefore, the potential of the positive electrode of the power source BT acquired by the control unit 130 is substantially equal to the output voltage of the power source BT.
  • the PMOS transistor SBVC will not turn on even if the ADCB+_EN signal is set to the active level.
  • the lower limit value of the potential of the positive electrode of the power supply BT when the PMOS transistor SBVC is turned on is determined by the voltage division ratio of the two resistors of the switch circuit 80 .
  • the gate potential In order to turn on the PMOS transistor SBVC, the gate potential must be lower than the source potential by the threshold value of the PMOS transistor SBVC. must be at least In the example shown in FIG.
  • 29A, 28B, 29C, 29D, 29E, and 29F show a configuration similar to that of FIG. 29A, 28B, 29C, 29D, 29E, and 29F schematically show states at timings S2, S3, S4, S5, S6, and S7 shown in FIG. 28, respectively.
  • the power supply BT enters an overdischarge state, and the potential of its positive electrode (the potential of the first power supply connector BC+) drops to the overdischarge state potential (here, 2.5 V). ing.
  • the source-gate voltage (absolute value) of the PMOS transistor SBVC becomes smaller than the threshold (absolute value) of the PMOS transistor SBVC, and the PMOS transistor SBVC is turned off.
  • the PMOS transistor SBVC is turned off, current is prevented from flowing from the power supply BT through the switch circuit 80 (PMOS transistor SBVC) and voltage dividing resistors R11 and R12.
  • the potential of the second conductive path PT2 is input.
  • the control unit 130 obtains 0 V as the potential of the positive electrode of the power supply BT.
  • Each VBAT terminal of the protection circuit 90 and the measurement circuit 100 is directly connected to the first conductive path PT1. Therefore, the protection circuit 90 and the measurement circuit 100 can obtain a value greater than 0 V as the potential of the positive electrode of the power source BT (the output voltage of the power source BT) at the timing S2.
  • the discharge of the power source BT further progresses, and the potential of the positive electrode of the power source BT falls below the first threshold. switch) to turn off the SD.
  • the path from the positive terminal of the power supply BT to the negative terminal of the power supply BT through the first power connector BC+, the first conductive path PT1, the second conductive path PT2, and the second power connector BC- is cut off. Therefore, a charging circuit 20 to which power or voltage is supplied from the power supply BT via the first conductive path PT1 and the second conductive path PT2, a transformer circuit 30 to which power or voltage is supplied via the charging circuit 20, and a load switch. Power or voltage to 40 is cut off.
  • the supply of voltage VCC33 to measurement circuit 100 and control unit 130 is stopped, and measurement circuit 100 and control unit 130 stop operating.
  • the measurement circuit 100 and the control unit 130 cannot acquire the potential of the positive electrode of the power supply BT (the output voltage of the power supply BT).
  • the protection circuit 90 receives power or voltage directly from the power supply BT through the above-described closed circuit, and therefore can continue to operate. At this time, since the operations of the measurement circuit 100 and the control unit 130 are stopped, progress of discharge of the power supply BT can be suppressed.
  • the user connects the USB cable to the USB connector USBC to charge the power supply BT. Accordingly, the voltage supplied through the USB cable is supplied to the charging circuit 20 via the overvoltage protection circuit 110, the V USB line, the load switch 10 and the V CC5 line, and the charging circuit 20 defaults to It operates in the first power pass mode to provide the voltage VCC on the VCC line. Accordingly, supply of voltage VCC33 to measurement circuit 100 and control unit 130 is resumed or started. Therefore, the measurement circuit 100 and the control section 130 resume or start their operations.
  • the control section 130 outputs a low level from the PB3 terminal and causes the /CE terminal of the charging circuit 20 to supply a low level (enable level).
  • the charging circuit 20 starts supplying a charging voltage from the BAT terminal to the power source BT, and the potential of the positive electrode of the power source BT begins to rise.
  • the charging current of the power supply BT at this time can be a first current value (540 mA in FIG. 28) smaller than the predetermined current value. This is because if the power supply BT is in an over-discharged state or a deep-discharged state and charged with a current value similar to that during normal charging, the power supply BT may enter an unrecoverable state.
  • the first transistor SD is off, but the forward direction of the body diode BDD connected in parallel to the first transistor SD coincides with the direction in which the charging current for charging the power supply BT flows. Therefore, the power supply BT can be charged.
  • the ground node GN the same node as the ground terminal of the USB connector USBC
  • the potential of the second power connector BC- to which the negative electrode of the power source BT is connected is higher by the voltage drop in the path therebetween. In the example of FIG.
  • the potential of the second power connector BC- to which the negative electrode of the power supply BT is connected is lower than the potential of the ground node GN by the forward voltage VF of the body diode BDD and the voltage drop caused by the resistors R1 and R2. high. Since the electrical resistance values of the resistor R2 connected to the protection circuit 90 and the resistor R1 connected to the measurement circuit 100 are extremely small, the voltage drop across the resistors R1 and R2 is negligible. Therefore, when the power supply BT is in a normal state, the potential of the second power connector BC- is substantially equal to the potential of the ground node GN. However, the forward voltage VF of the body diode BDD is generally about several hundred mV, so it cannot be ignored.
  • the switch circuit 80 is turned on, and the PC2 terminal of the control unit 130 is supplied with the potential of the positive electrode of the power supply BT at a predetermined voltage division ratio.
  • a potential ADC_B+ divided by is supplied.
  • the control unit 130 can convert the potential of the PC2 terminal to the potential of the positive electrode of the power supply BT based on the voltage division ratio. This voltage division ratio is determined by the resistance values of resistors R11 and R12.
  • the protection circuit 90 closes the first transistor SD.
  • a path passing through the first transistor SD is formed, and the ON resistance of the first transistor SD is negligible.
  • the protection circuit 90 acquires the potential difference between the VBAT terminal and the VSS terminal as the positive potential of the power supply BT (output voltage of the power supply BT). That is, the positive potential of the power supply BT (output voltage of the power supply BT) acquired by the protection circuit 90 is not affected by the forward voltage VF of the body diode BDD.
  • the potential of the positive electrode of the power supply BT (the output voltage of the power supply BT) acquired by the protection circuit 90 is approximately equal to its true value.
  • the first transistor (switch) SD is turned off at timing S3 shown in FIG. 29B, and the first transistor (switch) SD is turned on at timing S7 shown in FIG. 29F.
  • the potential of the positive electrode of the power supply BT when the first transistor (switch) SD is turned off (the output voltage of the power supply BT) is the same as the power supply voltage when the first transistor (switch) SD is turned on. It can be different from the potential of the positive electrode of BT (the output voltage of the power supply BT).
  • the potential of the positive electrode of the power supply BT when turning off the first transistor (switch) SD corresponds to the potential of the positive electrode of the power supply BT when turning on the first transistor (switch) SD. lower than the potential (output voltage of the power supply BT). This can function as a hysteresis to prevent the first transistor (switch) SD from turning off immediately after turning on the first transistor (switch) SD.
  • FIG. 30 and 31 show operation examples of the protection circuit 90, the control section 130, the charging circuit 20, and the measurement circuit 100 in chronological order.
  • FIG. 32 shows an operation example of the control unit 130 when receiving an interrupt due to completion of charging.
  • the protection circuit 90 detects that the potential of the positive electrode of the power supply BT has fallen below the first level.
  • the protection circuit 90 turns off the first transistor (switch) SD (timing S3 in FIG. 28 and FIG. 29B).
  • the control unit 130 stops operating at step M11
  • the measurement circuit 100 stops operating at step K11.
  • Step P12, step M11 and step K11 can occur substantially simultaneously.
  • the USB cable connected to the external device is connected to the USB connector USBC (timing S4 in FIG. 28 and FIG. 29C).
  • the charging circuit 20 operates in the first power-pass mode, electrically connecting the VBUS terminal and the SW terminal, and applying the voltage VCC to the VCC line using the voltage VCC5 supplied through the VCC5 line. supply (step C11).
  • Transformer circuit 30 supplied with voltage VCC generates voltage VCC33_0
  • load switch 40 receives voltage VCC33_0 and outputs voltage VCC33 .
  • the voltage VCC33 is supplied to the control unit 130 and the measurement circuit 100 .
  • step M12 the controller 130 is started (restarted), and at the same time, the measurement circuit 100 is also started (restarted) at step K12.
  • step M13 the control unit 130 requests the measurement circuit 100 to provide information on the output voltage of the power supply BT (V BAT information) via the I 2 C interface.
  • step K13 the measurement circuit 100 provides the control unit 130 with information on the output voltage of the power supply BT (V BAT information) via the I 2 C interface.
  • step M14 the control unit 130 receives information on the output voltage of the power supply BT (V BAT information) from the measurement circuit 100 via the I 2 C interface.
  • step M15 the control unit 130 transitions the ADCB+_EN signal to the active level, and in step M16, the control unit 130 changes the positive potential of the power supply BT based on the potential (also referred to as the ADCB+ signal) supplied to the PC2 terminal. (output voltage of power supply BT) is acquired.
  • step M17 the control unit 130 determines that the potential of the positive electrode of the power supply BT (output voltage of the power supply BT) obtained in step M16 is equal to or lower than the first predetermined threshold value (for example, 0.1 V) or obtained from the measurement circuit 100 in step M14. It is determined whether the information (V BAT information) of the output voltage of the power supply BT is equal to or less than a second predetermined threshold (for example, 1.5V).
  • the first predetermined threshold value for example, 0.1 V
  • V BAT information the information of the output voltage of the power supply BT is equal to or less than a second predetermined threshold (for example, 1.5V).
  • step M16 the positive potential of the power source BT (output voltage of the power source BT) acquired in step M16 is equal to or less than the first predetermined threshold value, or the information of the output voltage of the power source BT acquired from the measurement circuit 100 in step M14 ( V BAT information) is less than or equal to the second predetermined threshold, in step M21, the charging circuit 20 is instructed to charge the power supply BT with a first current value smaller than the predetermined current value via the I2C interface. (timing S5 in FIG. 28 and FIG. 29D).
  • the positive potential of the power supply BT (output voltage of the power supply BT) obtained in step M16 is not equal to or lower than the first predetermined threshold, and the information (V BAT information) is not less than the second predetermined threshold, in step M18, the charging circuit charges the power source BT with a second current value (normal charging sequence) greater than the predetermined current value through the I2C interface. 20 to send a command.
  • a normal charging sequence is general CCCV charging, so its description is omitted.
  • the potential of the positive electrode of the power supply BT (the output voltage of the power supply BT) is so low that the protection circuit 90 turns off the transistor (switch) SD
  • the PC2 terminal is connected to the second conducting path PT2 through the resistor R12.
  • a potential ie, ground potential
  • the potential of the positive electrode of the power supply BT (output voltage of the power supply BT) acquired in step M16 should be 0.1 V or less.
  • the power supply BT is in an over-discharged state or over-discharged state due to noise or being placed in an extremely low temperature environment. It can be considered that the battery is erroneously determined to be in a deep discharge state.
  • step M17 the control unit 130 determines whether the potential of the positive electrode of the power source BT (output voltage of the power source BT) obtained in step M16 is equal to or less than a predetermined threshold value (for example, 0.1 V). to decide. If the positive potential of the power supply BT (output voltage of the power supply BT) acquired in step M16 is equal to or lower than the predetermined threshold value (for example, 0.1 V), the control unit 130, in step M21, , a command is sent to the charging circuit 20 to charge the power source BT with a first current value smaller than the predetermined current value (timing S5 in FIG. 28 and FIG. 29D).
  • a predetermined threshold value for example, 0.1 V
  • step M18 if the positive potential of the power supply BT (output voltage of the power supply BT) acquired in step M16 is not equal to or lower than the predetermined threshold value (for example, 0.1 V), in step M18, a predetermined current is supplied via the I 2 C interface. command the charging circuit 20 to charge the power supply BT with a second current value (normal charging sequence) greater than the value.
  • the predetermined threshold value for example, 0.1 V
  • step M17 the control unit 130 determines that the information (V BAT information) of the output voltage of the power supply BT acquired from the measurement circuit 100 in step M14 is equal to or less than a predetermined threshold value (for example, 1.5 V). determine whether there is Then, if the information (V BAT information) of the output voltage of the power supply BT acquired in step M14 is equal to or less than the predetermined threshold value (for example, 1.5 V), the control unit 130, in step M21, Then, a command is sent to the charging circuit 20 to charge the power source BT with a first current value smaller than the predetermined current value (timing S5 in FIG. 28 and FIG. 29D).
  • a predetermined threshold value for example, 1.5 V
  • step M18 if the positive potential of the power supply BT (output voltage of the power supply BT) obtained in step M14 is not equal to or lower than the predetermined threshold value (for example, 1.5 V), in step M18, a predetermined current is supplied via the I 2 C interface. command the charging circuit 20 to charge the power supply BT with a second current value (normal charging sequence) greater than the value.
  • the predetermined threshold value for example, 1.5 V
  • control unit 130 waits for a predetermined period of time. During this predetermined period of time, charging of the power source BT progresses in step C12, which will be described later.
  • the control unit 130 transitions the ADCB+_EN signal to the active level, and at step M24, the control unit 130 changes the positive potential of the power supply BT (the power supply BT output voltage).
  • the control unit 130 determines whether the positive potential of the power source BT (output voltage of the power source BT) obtained at step M24 is equal to or higher than a second level (eg, 3.35 V).
  • step M24 if the positive potential of the power supply BT (output voltage of the power supply BT) obtained in step M24 is equal to or higher than the second level (eg, 3.35 V), the control unit 130 enables the I 2 C interface in step M26. , a command is sent to the charging circuit 20 to charge the power source BT with a second current value (normal charging sequence) larger than the predetermined current value.
  • the second level eg, 3.35 V
  • step M24 determines the positive potential of the power supply BT (output voltage of the power supply BT) drops from the positive potential of the power supply BT (output voltage of the power supply BT) obtained in the previous step M24 by the forward voltage VF of the body diode SDD described above. It is determined whether the first transistor (switch) SD is turned on.
  • This determination is made by subtracting the positive potential of the power supply BT (output voltage of the power supply BT) obtained in this step M24 from the positive potential of the power supply BT (output voltage of the power supply BT) obtained in the previous step M24. , the forward voltage of the body diode SDD is equal to or higher than VF. Then, when determining that the first transistor (switch) SD is turned on, the control unit 130 advances the process to step M28. On the other hand, when determining that the first transistor (switch) SD is not turned on, the control unit 130 returns the process to step M23. In the time series illustrated in FIG. 31, the protection circuit 90 closes the first transistor SD in step P21 (timing S7 in FIG. 28 and FIG. 29F).
  • step M28 the control unit 130 requests the measurement circuit 100 to provide information on the output voltage of the power supply BT (V BAT information) via the I2C interface.
  • the measurement circuit 100 provides the control unit 130 with information on the output voltage of the power supply BT (V BAT information) via the I 2 C interface.
  • the control unit 130 receives information on the output voltage of the power supply BT (V BAT information) from the measurement circuit 100 via the I 2 C interface.
  • the control unit 130 determines whether or not the potential of the positive electrode of the power supply BT (the output voltage of the power supply BT) acquired at step M29 is equal to or higher than the fourth level (for example, 2.35 V). Then, if the positive potential of the power supply BT (output voltage of the power supply BT) obtained in step M29 is equal to or higher than the fourth level, the control unit 130 outputs a predetermined current value via the I 2 C interface in step M31. A command is sent to the charging circuit 20 to charge the power supply BT with a larger second current value (normal charging sequence) (timing S8 in FIG. 28).
  • the fourth level for example, 2.35 V
  • the control unit 130 returns the process to step S28.
  • the fourth level can be less than the second level because it is the reference used when the first transistor (switch) SD is turned on. Also, the fourth level is a value greater than the first level.
  • the charging circuit 20 After starting charging of the power supply BT in step C12, the charging circuit 20 waits for the completion of charging of the power supply BT in step C13, and upon completion of charging, can send an interrupt request to the control unit 130 in step C14. On the other hand, when control unit 130 receives an interrupt request from charging circuit 20, control unit 130 can execute the processing shown in FIG. 32 separately from the processing shown in FIGS.
  • step M41 the control unit 130 acquires the total charging time required for charging the power supply BT from the charging circuit 20 via the I2C interface.
  • step M42 the control unit 130 determines whether or not the power supply BT was being charged with the first current value immediately before receiving the interrupt request from the charging circuit 20, and the state immediately before receiving the interrupt request was the first current value. If the power supply BT is not being charged in , the process of FIG. 32 is terminated. On the other hand, if the state immediately before receiving the interrupt request was charging the power supply BT with the first current value, the control unit 130 executes error processing. This error handling may include two types of handling, as described below.
  • control unit 130 determines whether the state immediately before receiving the interrupt request is before changing the charging current from the first current value to the second current value, and determines whether the state immediately before receiving the interrupt request is before changing the charging current value from the first current value to the second current value. is in the state before changing from the first current value to the second current value, permanent failure processing is executed. On the other hand, if the state immediately before receiving the interrupt request is the state after changing the charging current from the first current value to the second current value, control unit 130 executes charging error processing.
  • control unit 130 determines whether or not the total charging time acquired from charging circuit 20 in step M41 is shorter than the reference time. , the control unit 130 executes permanent failure processing as one error processing in step SM44.
  • the control unit 130 can execute processing for making the aerosol generator AGD or the power supply unit PSU unusable. This can be synonymous with putting the aerosol generator AGD or the power supply unit PSU mentioned above into permanent failure mode.
  • the control unit 130 sends a command to the charging circuit 20 via the I 2 C interface to prohibit operation in all power-pass modes, so that the SYS terminal and the SW terminal of the charging circuit 20 are disabled. It can stop the voltage output. As a result, power supply to control unit 130 is cut off, and control unit 130 becomes inoperable. Such an operation prohibits charging and discharging of the power supply BT that is determined to have reached a deep discharge state, thereby contributing to enhancing safety.
  • step M45 the control unit 130 executes charging error processing as another error processing.
  • the charging error processing can include processing for prohibiting charging of the power supply BT and supply of power to the heater HT.
  • the charging error process can include a process of prompting the user to operate for resetting or restarting using the notification unit NU.
  • the control unit 130 can enter a sleep mode when the control unit 130 is reset or restarted. In this case, the user can recharge the power supply BT by reconnecting the USB cable to the USB connector. Also, if the power supply BT is in a normal state, power can be supplied to the heater HT.
  • the control unit 130 allows the charging circuit 20 (voltage supply circuit) to finish charging before the potential of the positive electrode of the power supply BT detected based on the potential supplied to the PC2 terminal exceeds the second threshold. It can be configured to perform error handling in some cases.
  • the control unit 130 can prohibit the charging of the power source BT and the supply of power to the heater HT as error processing. In this case, the state in which the charging of the power supply BT and the supply of power to the heater HT are prohibited can be made irreversible.
  • the control unit 130 can prohibit the charging of the power source BT and the supply of power to the heater HT as error processing. In this case, the state in which the charging of the power supply BT and the supply of power to the heater HT are prohibited can be released by restarting or resetting the control unit 130 .
  • FIGS. 28, 29, 29A-29F, and 30-32 also have the following aspects.
  • the control unit 130 has a PC2 terminal as a first terminal that receives information correlated with the state of the power supply BT, and can acquire a first index corresponding to the information supplied to the PC2 terminal.
  • the first information is an index indicating the state of the power supply BT.
  • the measurement circuit 100 has a VBAT terminal as a second terminal that receives information correlated with the state of the power supply BT, and can generate a second index according to the information supplied to the VBAT terminal and provide it to the control unit 130 . . Providing the second indicator to the controller 130 can be done using an I2C interface.
  • the control unit 130 can control the charging operation of the power supply BT according to the first index and the second index.
  • steps M23, M24, M25, and M26 in FIG. 31 are an example of a sequence for controlling the charging operation of the power supply BT based on the first index according to the information supplied to the PC2 terminal of the control section 130.
  • FIG. M28, M29, M30, and M31 in FIG. 31 are an example of a sequence for controlling the charging operation of the power supply BT based on the second index generated by the measurement circuit 100 and provided to the control unit 130.
  • the charging circuit 20 is operable in a first mode in which the power supply BT is charged with a first current value smaller than a predetermined current value and in a second mode in which the power supply BT is charged with a second current value larger than the predetermined current value. It may be understood as a circuit.
  • the control unit 130 causes the charging circuit 20 to charge the power supply BT in the first mode.
  • the charging operation of BT can be controlled (step C12). It is not easy to distinguish with high precision whether the power supply BT is in an overdischarged state. According to such a configuration, even if one of the first indicator and the second indicator cannot detect the overdischarged state of the power source BT, if the other can detect the overdischarged state, the power source BT is charged in the first charging mode. be done. In other words, the power supply BT, which may be in an overdischarged state, is not charged at a high rate.
  • control unit 130 charges power source BT in the second mode when at least one of the first indicator and the second indicator indicates that the overdischarged state of power source BT has been resolved.
  • the charging operation of the power supply BT by the circuit 20 can be controlled (steps M26, M31).
  • the positive electrode potential of the power supply BT detected by the control unit 130 and the information on the output voltage of the power supply BT (V BAT information) provided to the control unit 130 by the measurement circuit 100 are included in the body diode BDD.
  • the effect of forward voltage VF may be included.
  • the forward voltage VF also varies depending on the temperature and the charging current value, it is not easy to determine whether or not the overdischarge state of the power supply BT has been resolved with only one index. According to such a configuration, even if one of the first indicator and the second indicator cannot detect the elimination of the overdischarge state of the power supply BT, if the other can detect the elimination, the power supply BT is in the second charging mode. charged. In other words, since the overdischarged state of the power supply BT is not likely to be overlooked, the remaining capacity of the power supply BT, which is in a normal state, can be quickly recovered.
  • control unit 130 controls charging circuit 20 to charge power source BT in the first mode when at least one of the first indicator and the second indicator indicates that power source BT is in an overdischarged state. (step C21), and when at least one of the first indicator and the second indicator indicates that the overdischarge state of the power supply BT has been resolved, the power supply BT is charged to the first
  • the charging operation of the power supply BT by the charging circuit 20 can be controlled so that charging is performed in two modes (steps M26, M31).
  • the first index and the second index are the potential of the positive electrode of the power supply BT or the output voltage of the power supply BT, which are indicators that can be compared on the same scale. Also, as described above, in the above example, the potential of the positive electrode of the power supply BT is approximately equal to the output voltage of the power supply BT.
  • the control unit 130 controls the charging operation based on the first index, and the first transistor ( When the first switch (SD) is closed, it may be configured to control the charging operation based on the second indicator.
  • the VBAT terminal of the measurement circuit 100 can be directly connected to the first path PT1 (positive electrode of the power supply BT).
  • the PC2 terminal of the control unit 130 is connected to the first path PT1 (positive electrode of the power supply BT) through a voltage dividing circuit such as a transistor such as a PMOS transistor SBVC and/or resistors R11 and R12.
  • the PC2 terminal of the control unit 130 can be connected to the first path PT1 (positive electrode of the power supply BT) via an analog circuit. Therefore, the measurement circuit 100 has higher accuracy in detecting or measuring the potential of the positive electrode of the power source BT or the output voltage of the power source BT than the control unit 130 . Therefore, in a state in which the first transistor (first switch) SD is closed and the influence of the forward voltage VF of the body diode BDD has disappeared (a state in which the error factor due to the forward voltage VF has disappeared), the control unit 130 , it is advantageous to control the charging operation based on a second indicator provided by the measurement circuit 100 .
  • the notification unit NU can notify information about the remaining amount of the power supply BT, and the control unit 130 sets a third indicator indicating the remaining amount of the power supply BT (for example, remaining capacity, SOC, etc.) as the state of the power supply BT. It can be configured to acquire information from the measurement circuit and notify the notification unit NU of information corresponding to the third index.

Abstract

エアロゾル発生装置の電源ユニットは、電源の正極に接続された第1導電路と、前記電源の負極に接続された第2導電路と、電源から供給される電力を使ってエアロゾル源を加熱するためのヒータの発熱を制御する制御部と、前記第2導電路に配置された抵抗器を使って前記電源の状態を計測する計測回路と、前記第2導電路を流れる電流を遮断可能に前記第2導電路における前記抵抗器と前記負極との間に配置されたスイッチ部と、前記第2導電路を流れる電流に応じて、前記電源を保護するように前記スイッチ部を制御する保護回路と、を備える電源ユニット。

Description

エアロゾル発生装置の電源ユニット
 本発明は、エアロゾル発生装置の電源ユニットに関する。
 エアロゾルを生成するエアロゾル発生装置において、エアロゾル源を加熱するヒータおよび各種の電子部品に電力を供給する電源の状態を管理することが重要である。特許文献1には、燃料ゲージ回路を備えるシステムが開示されている。この燃料ゲージ回路は、様々な入力を受信し、電圧、電流、電池容量、電池の動作モード、劣化度(SOH)など、様々な電池特性を監視及び/又は測定するように構成されうる。燃料ゲージ回路はまた、充電及び放電を制御するための制御信号など、受信した入力信号及び/又は電池特性に応じて様々な種類の制御信号を生成しうる。
特開2020-61361号公報
 明細書および図面に記載された発明の第1乃至第3の側面は、電源の状態を高い精度で管理するために有利な技術を提供する。
 第1の側面は、第1基板を含む複数の基板を有するエアロゾル発生装置の電源ユニットに係り、前記電源ユニットは、電源から供給される電力を使ってエアロゾル源を加熱するためのヒータへの電力の供給を制御する制御部と、前記電源から出力される電流が流れる経路に配置された抵抗器と、前記抵抗器を使って前記電源の状態を計測する計測回路と、を備え、前記抵抗器および前記計測回路が前記第1基板に配置されている。
 第1の側面において、前記抵抗器および前記計測回路は、前記第1基板の同一面に配置されてもよい。
 第1の側面において、前記電源ユニットは、前記電源の正極に接続された第1電源コネクタと、前記電源の負極に接続された第2電源コネクタと、を更に備えてもよく、前記経路は、前記第1電源コネクタに接続された第1導電路と、前記第2電源コネクタに接続された第2導電路と、を含み、前記第2電源コネクタは、前記第1基板に配置され、前記抵抗器は、前記第2導電路に配置されてもよい。
 第1の側面において、前記電源ユニットは、前記ヒータの正側端子が接続される第1ヒータコネクタと、前記ヒータの負側端子が接続される第2ヒータコネクタとを更に備えてもよく、前記第2ヒータコネクタは、前記第1基板に配置されてもよい。
 第1の側面において、前記第1ヒータコネクタは、前記第1基板に配置されてもよく、かつ、前記第1ヒータコネクタおよび前記第2ヒータコネクタは、前記第1基板の同一面に配置されてもよい。
 第1の側面において、前記抵抗器および前記第2ヒータコネクタは、それぞれ前記第1基板の互いに反対側の面に配置されてもよい。
 第1の側面において、前記第1基板の2つの面のうちの一方に対する正射影において、前記抵抗器の少なくとも一部が前記第2ヒータコネクタの少なくとの一部と重なってもよい。
 第1の側面において、前記電源ユニットは、前記第2導電路における前記抵抗器と前記第2ヒータコネクタとの間に配置されたスイッチを更に備えもよい。
 第1の側面において、前記スイッチおよび前記第2ヒータコネクタは、前記第1基板の同一面に配置されてもよい。
 第1の側面において、前記スイッチは、前記同一面に配置された電子部品の中で、前記第2ヒータコネクタに最も近い素子であってもよい。
 第1の側面において、前記電子部品は、能動素子であってもよい。
 第1の側面において、前記電源ユニットは、前記抵抗器と直列に接続されるように前記第2導電路に配置されたスイッチ部を更に備えてもよい。
 第1の側面において、前記抵抗器および前記スイッチ部は、前記第1基板の同一面に配置され、前記正射影において、前記スイッチ部の少なくとも一部が前記第2ヒータコネクタの少なくとの一部と重なってもよい。
 第1の側面において、前記電源ユニットは、前記第2導電路を流れる電流および前記電源の出力電圧の少なくとも一方に応じて、前記電源を保護するように前記スイッチ部を制御する保護回路を更に備えてもよい。
 第1の側面において、前記スイッチ部は、前記第2導電路における前記抵抗器と前記電源の前記負極との間に配置されてもよい。
 第1の側面において、前記電源ユニットは、前記抵抗器と直列接続されるように前記第2導電路に配置された第2抵抗器を更に備えもよく、前記保護回路は、前記第2導電路を流れる電流を、前記第2抵抗器を使って検出してもよく、前記抵抗器および前記第2抵抗器は、前記第1基板の同一面に配置されてもよい。
 第1の側面において、前記抵抗器と前記第2抵抗器との間の最短距離は、前記抵抗器の最大寸法および前記第2抵抗器の最大寸法の少なくとも一方より小さくてもよい。
 第1の側面において、前記複数の基板は、第2基板を含み、前記制御部は、前記第2基板に配置されてもよい。
 第1の側面において、前記電源ユニットは、前記電源から供給される電圧を変圧して前記計測回路の電源端子に供給する第1変圧回路を更に備えもよく、前記第1変圧回路は、前記第2基板に配置されてもよい。
 第1の側面において、前記電源ユニットは、前記電源から供給される電圧を変圧して前記ヒータに供給する電圧を発生する第2変圧回路を更に備えもよく、前記第2変圧回路は、前記第1基板に配置されてもよい。
 第1の側面において、前記電源ユニットは、前記第2変圧回路の出力と前記ヒータとを接続する経路に配置され、前記制御部によって制御される第2スイッチを更に備えてもよく、前記第2スイッチは、前記第1基板に配置されてもよい。
 第1の側面において、前記電源ユニットは、前記ヒータの温度を検出するための検出回路を更に備えもよく、前記検出回路は、前記第1基板に配置されてもよい。
 あるいは、第1の側面は、第1素子配置面を含む複数の素子配置面を有するエアロゾル発生装置の電源ユニットに係り、前記電源ユニットは、電源から供給される電力を使ってエアロゾル源を加熱するためのヒータへの電力の供給を制御する制御部と、前記電源から出力される電流が流れる経路に配置された抵抗器と、前記抵抗器を使って前記電源の状態を計測する計測回路と、を備え、前記抵抗器および前記計測回路が前記第1素子配置面に配置されている。
 第2側面は、エアロゾル発生装置の電源ユニットに係り、前記電源ユニットは、電源の正極に接続された第1導電路と、前記電源の負極に接続された第2導電路と、電源から供給される電力を使ってエアロゾル源を加熱するためのヒータの発熱を制御する制御部と、前記第2導電路に配置された抵抗器を使って前記電源の状態を計測する計測回路と、前記第2導電路を流れる電流を遮断可能に前記第2導電路における前記抵抗器と前記負極との間に配置されたスイッチ部と、前記第2導電路を流れる電流に応じて、前記電源を保護するように前記スイッチ部を制御する保護回路と、を備える。
 第2の側面において、前記保護回路が前記スイッチ部をオフさせることによって前記制御部および前記計測回路に対する電圧の供給が停止されてもよい。
 第2の側面において、前記電源ユニットは、前記電源から供給される電圧に基づいて前記制御部および前記計測回路に電圧を供給する電圧供給部を更に備えもよく、前記保護回路が前記スイッチ部をオフさせることによって前記電圧供給部に対する前記電源からの電圧の供給が停止し、これにより前記電圧供給部から前記制御部および前記計測回路への電圧の供給が停止されてもよい。
 第2の側面において、前記電圧供給部には、前記第1導電路および前記第2導電路を介して前記電源から電圧が供給されてもよい。
 第2の側面において、前記電圧供給部に外部機器から電圧が供給されることによって前記電圧供給部から前記制御部および前記計測回路に対する電圧の供給が再開されてもよい。
 第2の側面において、前記電源ユニットは、前記外部機器から電圧の供給を受けて前記電源を充電する充電回路を更に備え、前記充電回路による前記電源の充電は、前記制御部によって制御されてもよい。
 第2の側面において、前記制御部は、前記スイッチ部がオフした状態において、前記充電回路が前記外部機器から電圧の供給を受けて前記電源の充電を開始するように前記充電回路を制御してもよい。
 第2の側面において、前記制御部は、前記電源の出力電圧に基づいて前記電源が充電可能と判断される場合に、前記電源の充電を開始するように前記充電回路を制御してもよい。
 第2の側面において、前記保護回路は、前記充電回路による充電によって前記電源の残容量が所定値を超えた場合には、前記スイッチ部をオンさせてもよい。
 第2の側面において、前記電源ユニットは、前記第2導電路における前記抵抗器と前記負極との間に配置された第2抵抗器を更に備え、前記保護回路は、前記第2抵抗器を流れる電流に応じて、前記電源を保護するように前記スイッチ部を制御してもよい。
 第2の側面において、前記第2抵抗器は、前記第2導電路における前記スイッチ部と前記負極との間に配置されてもよい。
 第2の側面において、前記スイッチ部は、前記第2導電路を流れる電流を遮断可能に配置されたトランジスタと、前記トランジスタに並列に接続された整流素子とを含み、前記トランジスタが前記保護回路によって制御されてもよい。
 第2の側面において、前記整流素子は、前記トランジスタに付随するボディダイオードであってもよい。
 第2の側面において、前記整流素子の順方向は、前記電源を充電する電流が流れる方向であり、前記スイッチ部がオフした状態であっても、前記整流素子を通して電流が流れることによって、前記電源の充電が可能であってもよい。
 第2の側面において、前記電源ユニットは、前記ヒータおよび前記第2導電路を流れる電流を遮断可能に前記第2導電路に配置された遮断スイッチを更に備えてもよく、前記制御部は、前記計測回路による計測結果に基づいて前記ヒータおよび前記第2導電路を流れる電流が遮断されるように前記遮断スイッチを制御してもよい。
 第2の側面において、前記第2導電路における前記遮断スイッチと前記負極との間に前記スイッチ部が配置されてもよい。
 第3の側面は、エアロゾル発生装置の電源ユニットに係り、前記電源ユニットは、電源から供給される電力を使ってエアロゾル源を加熱するためのヒータへの電力の供給を制御する制御部と、前記電源から出力される電流が流れる経路に直列に配置された第1抵抗器および第2抵抗器と、前記経路に配置されたスイッチ部と、前記第1抵抗器を使って前記電源の状態を計測する計測回路と、前記第2抵抗器を使って検出される前記経路を流れる電流に基づいて、前記経路が遮断されるように前記スイッチ部を制御する保護回路と、を備え、前記第1抵抗器と前記計測回路との間の最短距離は、前記第2抵抗器と前記保護回路との最短距離よりも小さい。
 第3の側面において、前記第1抵抗器と前記計測回路とは、同一の基板の同一平面に配置されてもよく、前記第2抵抗器と前記保護回路とは、同一の基板の同一平面に配置されてもよい。
 第3の側面において、前記第1抵抗器、前記第2抵抗器、前記計測回路および前記保護回路は、同一の基板の同一平面に配置されてもよい。
 第3の側面において、第1抵抗器、前記第2抵抗器、前記計測回路および前記保護回路は、同一の基板に配置されてもよく、前記基板は、前記ヒータが配置される側の端部を有してもよく、前記第1抵抗器と前記端部との間の最短距離は、前記計測回路と前記端部との間の最短距離よりも小さくてもよい。
 第3の側面において、前記第2抵抗器と前記端部との間の最短距離は、前記保護回路と前記端部との間の最短距離よりも小さくてもよい。
 第3の側面において、前記計測回路と前記端部との間の最短距離は、前記保護回路と前記端部との間の最短距離よりも小さくてもよい。
 第3の側面において、前記基板には、前記ヒータの正側端子が接続される第1ヒータコネクタと、前記ヒータの負側端子が接続される第2ヒータコネクタとが配置されてもよく、前記第1ヒータコネクタと前記端部との間の最短距離、および、前記第2ヒータコネクタと前記端部との間の最短距離は、前記計測回路と前記端部との間の最短距離よりも小さくてもよい。
 第3の側面において、前記第1抵抗器および前記第2抵抗器は、前記基板の第1面に配置されてもよく、前記第1ヒータコネクタおよび前記第2ヒータコネクタは、前記基板の第2面に配置されてもよい。
 第3の側面において、前記第1面に対する正射影において、前記第2ヒータコネクタの少なくも一部が、前記第1抵抗器および前記第2抵抗器の少なくとも一方の少なくとも一部と重なっていてもよい。
 第3の側面において、前記スイッチ部は、前記第1面に配置されてもよい。
 第3の側面において、前記電源ユニットは、前記第2ヒータコネクタと前記第1抵抗器とを接続する経路に配置された遮断スイッチを更に備えてもよい。
 第3の側面において、前記遮断スイッチと前記端部との間の最短距離は、前記計測回路と前記端部との間の最短距離よりも小さくてもよい。
 第3の側面において、前記遮断スイッチは、前記第2面に配置されてもよい。
 第3の側面において、前記電源ユニットは、前記電源から供給される電圧を変圧して前記ヒータに供給する電圧を発生する変圧回路と、前記変圧回路の出力と前記第1ヒータコネクタとを接続する経路に配置されたヒータスイッチと、を更に備えもよく、前記ヒータスイッチと前記端部との間の最短距離は、前記計測回路と前記端部との間の最短距離よりも小さくてもよい。
 第3の側面において、前記ヒータスイッチは、前記第1面に配置されてもよい。
 第3の側面において、前記第1面に対する正射影において、前記ヒータスイッチの少なくとも一部が前記第1ヒータコネクタの少なくとも一部と重なっていてもよい。
 第3の側面において、前記第1抵抗器と前記第2抵抗器との間の最短距離は、前記第1抵抗器の最大寸法および前記第2抵抗器の最大寸法の少なくとも一方より小さくてもよい。
 第4の側面は、エアロゾル発生装置の電源ユニットに係り、前記電源ユニットは、電源から供給される電力を使ってエアロゾル源を加熱するためのヒータへの電力の供給を制御する制御部と、前記電源から出力される電流が流れる経路に配置された抵抗器と、前記電源の温度を測定するためのサーミスタと、前記サーミスタが接続される2つのサーミスタコネクタと、前記抵抗器を使って前記電源の状態を計測し、かつ、前記サーミスタを使って前記電源の温度を計測する計測回路と、前記抵抗器、前記2つのサーミスタコネクタ、および、前記計測回路が配置された基板と、を備え、前記2つのサーミスタコネクタと前記計測回路との間の最短距離は、前記抵抗器と前記計測回路との最短距離よりも小さい。
 第4の側面において、前記計測回路は、前記電源の温度を示す情報を前記制御部に提供する第1機能、および、前記電源の温度の異常を前記制御部に通知する第2機能を含んでもよい。
 第4の側面において、前記制御部は、前記第2機能による前記計測回路からの通知に応答して前記電源の放電および前記電源の充電の少なくとも一方を停止させてもよい。
 第4の側面において、前記計測回路は、前記抵抗器を使って得られる情報と前記サーミスタを使って得られる情報とに基づいて前記電源の残量を演算してもよい。
 第4の側面において、前記サーミスタの2つの端子は、前記2つのサーミスタコネクタにそれぞれ直接に接続されていてもよい。
 第4の側面において、前記サーミスタは、前記電源の周囲を少なくとも部分的に取り囲むように配置されていてもよい。
 第4の側面において、前記電源は、円柱形状を有しもよく、前記サーミスタは、前記電源の円柱形状に沿った円弧形状部を含んでもよい。
 第4の側面において、前記計測回路と前記抵抗器は、前記基板の同一面に配置されてもよい。
 第4の側面において、前記基板の外縁で構成される図形の幾何中心と前記計測回路の幾何中心との距離は、前記図形の前記幾何中心と前記抵抗器との間の最短距離より小さくてもよい。
 第4の側面において、前記基板の外縁で構成される図形の幾何中心と前記計測回路の幾何中心との距離は、前記図形の前記幾何中心と前記2つのサーミスタコネクタとの間の最短距離より小さくてもよい。
 第4の側面において、前記基板の外縁で構成される図形の幾何中心と前記計測回路の幾何中心との距離は、前記図形の前記幾何中心と前記抵抗器との間の最短距離より小さく、前記図形の前記幾何中心と前記2つのサーミスタコネクタとの間の最短距離より小さくてもよい。
 第4の側面において、前記電源ユニットは、前記電源が接続される2つの電源コネクタを更に備え、前記2つの電源コネクタが前記基板に配置されてもよく、前記基板の外縁で構成される図形の幾何中心と前記計測回路の幾何中心との最短距離は、前記図形の前記幾何中心と前記2つの電源コネクタとの間の最短距離より小さくてもよい。
 第4の側面において、前記制御部は、前記抵抗器、前記2つのサーミスタコネクタ、および、前記計測回路が配置された前記基板とは異なる基板に配置されてもよい。
 明細書および図面に記載された発明の第5乃至第7の側面は、電源の保護に有利な技術を提供する。
 第5の側面は、エアロゾル発生装置の電源ユニットに係り、前記電源ユニットは、電源から供給される電力を使ってエアロゾル源を加熱するためのヒータへの電力の供給および前記電源の充電を制御する制御部と、前記電源の状態を計測する計測回路と、を備え、
 前記計測回路は、前記電源の状態が異常状態になったことを検出する検出回路と、前記検出回路による検出に応答して異常報知を出力する出力部と、を含む。
 第5の側面において、前記計測回路は、前記制御部からの要求に応じて前記電源の状態に関する状態情報を前記制御部に提供するためのインターフェースを更に含んでもよい。
 第5の側面において、前記制御部は、前記異常報知および前記状態情報に応じて前記電源を保護する保護動作を実行してもよい。
 第5の側面において、前記保護動作は、前記電源の充電を禁止すること、および、前記電源から前記ヒータへの放電を禁止することを含んでもよい。
 第5の側面において、前記電源ユニットは、前記電源が異常であることを報知する報知部を更に備えてもよい。
 第5の側面において、前記電源ユニットは、前記制御部をリセットするリセット部を更に備えてもよく、前記保護動作は、前記リセット部によって前記制御部がリセットされることによって解除されてもよい。
 第5の側面において、前記出力部は、前記電源の充電電流が第1基準値を上回ったこと、および、前記電源からの放電電流が第2基準値を上回ったことの少なくとも1つに応じて前記異常報知を出力してもよい。
 第5の側面において、前記制御部は、前記出力部からの前記異常報知の出力に応答して、前記インターフェースを介して前記計測回路から前記状態情報を取得してもよく、前記計測回路から取得する前記状態情報は、前記電源が永久故障したかどうかを判断するための情報、および、前記電源が永久故障したことを示す情報の少なくとも1つを含んでもよい。
 第5の側面において、前記異常状態は、前記電源の温度が基準温度を上回った状態を含んでもよい。
 第5の側面において、前記電源ユニットは、前記異常報知に応答して、前記制御部による制御によらず、前記電源を保護する保護ユニットを更に備えてもよい。
 第5の側面において、前記保護ユニットが前記異常報知に応答して前記電源を保護した後、前記制御部は、前記インターフェースを介して取得される前記状態情報が、前記電源が異常状態ではないことを示している場合に、前記ヒータへの電力の供給を可能にしてもよい。
 第5の側面において、前記保護ユニットによる前記電源の保護は、解除可能であってもよい。
 第5の側面において、前記制御部は、周期的なポーリングによって前記インターフェースを介して前記計測回路から前記電源の状態に関する第1情報を取得し、前記異常報知に応答して前記インターフェースを介して前記計測回路から前記電源の状態に関する第2情報を取得してもよく、前記制御部は、前記電源が第1状態であることを前記第1情報が示している場合に、前記電源を保護する動作を実行してもよく、前記計測回路は、前記電源が前記第1状態よりも悪い第2状態になったことに応じて前記異常報知を出力してもよい。
 第5の側面において、前記第1情報および前記第2情報は、前記電源の温度を示す情報であってもよい。
 第5の側面において、前記制御部は、周期的なポーリングによって前記インターフェースを介して前記計測回路から前記電源の状態に関する第1情報を取得し、前記異常報知に応答して前記インターフェースを介して前記計測回路から前記電源の状態に関する第2情報を取得してもよく、前記制御部は、前記第1情報が、前記電源の充電時に前記電源の状態が第1条件群に含まれるいずれかの条件を満たしている場合に、前記電源を保護する動作を実行し、前記第1情報が、前記電源の放電時に前記電源の状態が第2条件群に含まれるいずれかの条件を満たしている場合に、前記電源を保護する動作を実行してもよく、前記第1条件群に含まれる条件の数は、前記第2条件群に含まれる条件の数より多くてもよい。
 第5の側面において、前記制御部は、周期的なポーリングによって前記インターフェースを介して前記計測回路から前記電源の状態に関する第1情報を取得し、前記異常報知に応答して前記インターフェースを介して前記計測回路から前記電源の状態に関する第2情報を取得してもよく、前記制御部は、前記第2情報が、前記電源の充電時に前記電源の状態が第3条件群に含まれるいずれかの条件を満たしている場合に、前記電源を保護する動作を実行し、前記第2情報が、前記電源の放電時に前記電源の状態が第4条件群に含まれるいずれかの条件を満たしている場合に、前記電源を保護する動作を実行してもよく、前記第3条件群に含まれる条件の数は、前記第4条件群に含まれる条件の数より少なくてもよい。
 第5の側面において、前記異常報知は、第1異常信号による報知と、第2異常信号による報知とを含んでもよく、前記第1異常信号は、前記制御部に提供され、前記第2異常信号は、前記制御部に提供されてもよく、前記第1異常信号は、前記電源の状態が第1異常状態であるときに前記出力部から出力され、前記第2異常信号は、前記電源の状態が前記第1異常状態とは異なる第2異常状態であるときに前記出力部から出力されてもよい。
 第5の側面において、前記第1異常信号は、前記第1異常信号を保持する情報保持回路を通して前記制御部に提供されてもよい。
 第6の側面は、エアロゾル発生装置の電源ユニットに係り、前記電源ユニットは、電源から供給される電力を使ってエアロゾル源を加熱するためのヒータが接続されるコネクタと、前記電源の正極の電位に応じた電位が供給される端子を有し、前記ヒータへの電力の供給および前記電源の充電を制御する制御部と、前記電源から出力される電流が流れる経路に前記電源の放電を遮断可能に配置されたスイッチと、前記正極の電位が第1レベルを下回ったことに応じて、前記電源の放電が遮断されるように前記スイッチを開く保護回路と、を備え、前記制御部は、前記端子に供給される電位に基づいて検出される前記正極の電位が前記電源の充電によって前記第1レベルより大きい第2レベルを上回ったことに応じて前記電源の充電電流を増加させる。
 第6の側面において、前記電源ユニットは、前記電源に充電電流を供給可能に前記スイッチに並列に接続された整流素子を更に備えてもよい。
 第6の側面において、前記整流素子は、前記スイッチに付随するボディダイオードであってもよい。
 第6の側面において、前記保護回路には、前記スイッチの状態とは無関係に前記電源の出力電圧が供給されてもよい。
 第6の側面において、前記スイッチが開かれることによって前記制御部に対する電力の供給が遮断されてもよい。
 第6の側面において、前記第1レベルに対する前記第2レベルの差は、前記整流素子の順方向電圧より大きくてもよい。
 第6の側面において、前記端子には、前記電源の前記正極の電位を分圧した電位が供給されてもよい。
 第6の側面において、前記経路は、前記電源の前記正極に接続された第1導電路と、前記電源の負極に接続された第2導電路とを含み、前記スイッチは、前記第2導電路に配置されてもよい。
 第6の側面において、前記電源ユニットは、外部機器から供給される電圧を使って、前記電源を充電するための第1電圧を前記第1導電路と前記第2導電路との間に供給するとともに、前記制御部を動作させる第2電圧を生成する電圧供給回路を更に備えてもよく、前記制御部は、前記電圧供給回路を制御することによって前記電源の充電を制御してもよい。
 第6の側面において、前記電圧供給回路は、前記外部機器から供給される電圧を使って前記第1電圧の他、第3電圧を発生する充電回路と、前記充電回路から出力される前記第3電圧を前記第2電圧に変換する変圧回路と、を含んでもよい。
 第6の側面において、前記制御部は、前記端子に供給される電位に基づいて検出される前記正極の電位が前記第2レベルを上回る前に前記電圧供給回路が充電を終了した場合にエラー処理を実行してもよい。
 第6の側面において、前記制御部は、前記電圧供給回路が前記電源の充電に要した時間が基準時間より短い場合に、前記エラー処理として、前記電源の充電および前記ヒータへの電力の供給を禁止してもよい。
 第6の側面において、前記エラー処理として前記電源の充電および前記ヒータへの電力の供給が禁止された状態は、解除不能であってもよい。
 第6の側面において、前記制御部は、前記電圧供給回路が前記電源の充電に要した前記時間が前記基準時間より短くない場合に、前記エラー処理として前記電源の充電および前記ヒータへの電力の供給が禁止された状態は、前記制御部の再起動によって解除されてもよい。
 第6の側面において、前記保護回路は、前記正極の電位が前記第1レベルより大きい第3レベルを上回ったことに応じて前記スイッチを閉じてもよい。
 第6の側面において、前記電源ユニットは、前記電源の電圧を計測する計測回路を更に備えてもよく、前記制御部は、前記保護回路が前記スイッチを閉じた後に、前記計測回路によって計測される前記正極の電位が前記第2レベルより小さい第4レベルを上回ったことに応じて前記電源の充電電流を増加させてもよい。
 第7の側面は、エアロゾル発生装置の電源ユニットに係り、前記電源ユニットは、電源から供給される電力を使ってエアロゾル源を加熱するためのヒータが接続されるコネクタと、前記ヒータへの電力の供給および前記電源の充電動作を制御する制御部と、前記電源の状態を計測する計測回路と、を備え、前記制御部は、前記電源の状態に相関を有する情報を受ける第1端子を有し、前記第1端子に供給される情報に応じた第1指標を取得し、前記計測回路は、前記電源の状態に相関を有する情報を受ける第2端子を有し、前記第2端子に供給される情報に応じた第2指標を生成して前記制御部に提供し、前記制御部は、前記第1指標および前記第2指標に応じて前記電源の充電動作を制御する。
 第7の側面において、前記電源を所定電流値より小さい第1電流値で充電する第1モード、および、前記電源を前記所定電流値より大きい第2電流値で充電する第2モードで動作可能な充電回路を更に備えることができ、前記制御部は、前記第1指標および前記第2指標の少なくとも1つが、前記電源が過放電状態であることを示している場合に、前記電源が前記第1モードで充電されるように前記充電動作を制御してもよい。
 第7の側面において、前記電源を所定電流値より小さい第1電流値で充電する第1モード、および、前記電源を前記所定電流値より大きい第2電流値で充電する第2モードで動作可能な充電器回路を更に備えてもよく、前記制御部は、前記第1指標および前記第2指標の少なくとも1つが、前記電源の過放電状態が解消されたことを示している場合に、前記電源が前記第2モードで充電されるように前記充電動作を制御してもよい。
 第7の側面において、前記電源を所定電流値より小さい第1電流値で充電する第1モード、および、前記電源を前記所定電流値より大きい第2電流値で充電する第2モードで動作可能な充電回路を更に備えてもよく、前記制御部は、前記第1指標および前記第2指標の少なくとも1つが、前記電源が過放電状態であることを示している場合に、前記電源が前記第1モードで充電されるように前記充電動作を制御し、および、前記第1指標および前記第2指標の少なくとも1つが、前記過放電状態が解消されたことを示している場合に、前記電源が前記第2モードで充電されるように前記充電動作を制御してもよい。
 第7の側面において、前記第1指標と前記第2指標とは、同一の尺度で比較可能な指標であってもよい。
 第7の側面において、前記第1指標および前記第2指標は、前記電源の出力電圧であってもよい。
 第7の側面において、前記電源ユニットは、前記電源の残量に関する情報を報知する報知部を更に備えてもよく、前記制御部は、前記電源の前記状態として前記電源の残量を示す第3指標を前記計測回路から取得し、前記第3指標に応じた情報を前記報知部に報知させてもよい。
 第7の側面において、前記第3指標は、SOCであってもよい。
 第7の側面において、前記電源ユニットは、前記電源から出力される電流が流れる経路に前記電源の放電を遮断可能に配置されたスイッチと、前記電源の正極の電位が第1レベルを下回ったことに応じて、前記電源の放電が遮断されるように前記スイッチを開き、前記正極の電位が前記第1レベルより大きい第2レベルを上回ったことに応じて前記スイッチを閉じる保護回路と、前記電源に充電電流を供給可能に前記スイッチに並列に接続された整流素子と、を更に備えてもよい。
 第7の側面において、前記制御部は、前記スイッチが開いた状態では、前記第1指標に基づいて前記充電動作を制御し、前記スイッチが閉じた状態では、前記第2指標に基づいて前記充電動作を制御してもよい。
 第7の側面において、前記電源ユニットは、前記電源に充電電流を供給可能に前記スイッチに並列に接続された整流素子を更に備えてもよい。
 第7の側面において、前記整流素子は、前記スイッチに付随するボディダイオードであってもよい。
 第7の側面において、前記保護回路には、前記スイッチの状態とは無関係に前記電源の出力電圧が供給されてもよい。
 前記第7の側面において、前記第1端子には、前記電源の前記正極の電位を分圧した電位が供給されてもよい。
 第7の側面において、前記経路は、前記電源の前記正極に接続された第1導電路と、前記電源の負極に接続された第2導電路とを含んでもよく、前記スイッチは、前記第2導電路に配置されてもよい。
 第7の側面において、前記電源ユニットは、外部機器から供給される電圧を使って、前記電源を充電するための第1電圧を前記第1導電路と前記第2導電路との間に供給するとともに、前記制御部を動作させる第2電圧を生成する電圧供給回路を更に備えてもよく、前記制御部は、前記電圧供給回路を制御することによって前記電源の充電を制御してもよい。
 第7の側面において、前記電圧供給回路は、前記外部機器から供給される電圧を使って前記第1電圧の他、第3電圧を発生する充電回路と、前記充電回路から出力される前記第3電圧を前記第2電圧に変換する変圧回路と、を含んでもよい。
 明細書および図面に記載された発明の第8の側面は、操作の単純化に有利な技術を提供する。
 第8の側面は、エアロゾル発生装置の電源ユニットに係り、前記電源ユニットは、スイッチと、エアロゾル源を収容可能な挿入孔と、前記挿入孔を閉塞する閉状態および前記挿入孔に前記エアロゾル源を挿入可能な開状態を提供するように動作可能なスライダと、前記スライダの状態を検出する第1検出部と、前記スイッチが操作されたことに応じて、前記第1検出部による検出結果に応じた動作をする回路ブロックと、を備える。
 第8の側面において、前記電源ユニットは、取り外し可能なパネルを含むアウターケースと、前記パネルの有無を検出する第2検出部と、を更に備えてもよく、前記回路ブロックは、前記第2検出部によって前記パネルがないことが検出された状態で前記スイッチが操作されたことに応じて、前記第1検出部による検出結果とは無関係に、前記第2検出部による検出結果に応じた動作をする。
 第8の側面において、前記回路ブロックは、再起動可能な制御部を含んでよく、前記回路ブロックは、前記第2検出部によって前記パネルがあることが検出された状態かつ前記第1検出部によって前記スライダが前記開状態であることが検出された状態で前記スイッチが操作されたときは、エアロゾルの生成に関する第1処理を実行してもよく、前記第2検出部によって前記パネルがあることが検出された状態かつ前記第1検出部によって前記スライダが前記閉状態であることが検出された状態で前記スイッチが操作されたときは、エアロゾルの生成に関係しない第2処理を実行してもよく、前記第2検出部によって前記パネルがないことが検出された状態で前記スイッチが操作されたときは、前記第1検出部による検出結果とは無関係に、前記制御部を再起動してもよい。
 第8の側面において、前記第2処理は、外部機器との通信に関する処理を含んでもよい。
エアロゾル発生装置の外観を例示する図。 エアロゾル発生装置の外観を例示する図。 エアロゾル発生装置の外観を例示する図。 エアロゾル発生装置の外観を例示する図。 エアロゾル発生装置の外観を例示する図。 エアロゾル発生装置の構成を例示する図。 エアロゾル発生装置の構成を例示する図。 エアロゾル発生装置の構成を例示する図。 エアロゾル発生装置の構成を例示する図。 電源ユニットの回路構成を例示する図。 電源ユニットの動作を説明する図。 電源ユニットの動作を説明する図。 電源ユニットの動作を説明する図。 電源ユニットの動作を説明する図。 電源ユニットの動作を説明する図。 電源ユニットの動作を説明する図。 電源ユニットの動作を説明する図。 電源ユニットの動作を説明する図。 電源ユニットの動作を説明する図。 エアロゾル発生装置あるいは電源ユニットの状態遷移図。 エアロゾル発生装置の構成を例示する図。 エアロゾル発生装置の構成を例示する図。 エアロゾル発生装置の構成を例示する図。 エアロゾル発生装置の構成を例示する図。 エアロゾル発生装置の構成を例示する図。 エアロゾル発生装置の構成を例示する図。 エアロゾル発生装置の構成を例示する図。 電源からの放電状態が模式的に示す図。 電源の充電状態が模式的に示す図。 エアロゾル発生装置の構成を例示する図。 保護回路および計測回路ならびにそれらの周辺に配置された電子部品を例示する図。 保護回路および計測回路ならびにそれらの周辺に配置された電子部品の動作を例示する図。 保護回路および計測回路ならびにそれらの周辺に配置された電子部品の動作を例示する図。 保護回路および計測回路ならびにそれらの周辺に配置された電子部品の動作を例示する図。 保護回路および計測回路ならびにそれらの周辺に配置された電子部品の動作を例示する図。 保護回路および計測回路ならびにそれらの周辺に配置された電子部品の動作を例示する図。 第1基板における電子部品の配置を例示する図。 第1基板における電子部品の配置を例示する図。 電源の保護に関わる機能を例示的に説明する図。 図22に示された計測回路の機能を実現するための計測回路の構成例が模式的に示し図。 計測回路、制御部、変圧回路、充電回路、情報保持回路、OPアンプ等の接続例を示す図。 図24に示される回路構成の動作を説明する図。 図24に示される回路構成の動作を説明する図。 図24に示される回路構成の動作を説明する図。 電源の放電および充電に関する状態の変化例を模式的に示す図。 保護回路、スイッチ部、計測回路、制御部およびスイッチ回路を第1導電路および第2導電路とともに示した図。 図29に示される回路構成の動作を説明する図。 図29に示される回路構成の動作を説明する図。 図29に示される回路構成の動作を説明する図。 図29に示される回路構成の動作を説明する図。 図29に示される回路構成の動作を説明する図。 図29に示される回路構成の動作を説明する図。 保護回路、制御部、充電回路および計測回路の動作例を時系列で示す図。 保護回路、制御部、充電回路および計測回路の動作例を時系列で示す図。 充電完了による割り込みを受けたときの制御部の動作例を示す図。
 以下、添付図面を参照して実施形態を詳しく説明する。なお、以下の実施形態は特許請求の範囲に係る発明を限定するものではなく、また、実施形態で説明されている特徴の組み合わせの全てが発明に必須のものとは限らない。実施形態で説明されている複数の特徴のうち二つ以上の特徴が任意に組み合わされてもよい。また、同一若しくは同様の構成には同一の参照番号を付し、重複した説明は省略する。
 図1A-1Eには、一実施形態のエアロゾル発生装置AGDの構成が示されている。ここで、図1A-1Eは、それぞれエアロゾル発生装置AGDの背面図、正面図、上面図、底面図である。図Dは、エアロゾル発生装置AGDの構成部品(スライダC102)を取り除いた状態の上面図である。
 エアロゾル発生装置AGDは、例えば、ユーザ(吸引者)による吸引動作などのようにエアロゾルの生成を要求する動作(以下では「霧化要求」ともいう。)に応じて、香味を有するエアロゾル、または、エアロゾルおよび香味物質を含む気体、または、エアロゾル、または、香味物質を含むエアロゾルをユーザに提供するように構成されうる。エアロゾル源は、固体であってもよいし、液体であってもよいし、固体および液体の混合物であってもよい。液体のエアロゾル源は、例えば、グリセリンまたはプロピレングリコール等の多価アルコール等の液体を含みうる。具体的一例として、エアロゾル源は、グリセリンおよびプロピレングリコールの混合溶液を含みうる。エアロゾル源は、薬剤を含んでもよい。エアロゾル源に代えて又は共に、水等の蒸気源が用いられてもよい。香味物質は、例えば、たばこ材料を成形した成形体でありうる。あるいは、香味物質は、たばこ以外の植物(例えば、ミント、ハーブ、漢方、コーヒー豆等)によって構成されてもよい。香味物質には、メントールなどの香料が付与されていてもよい。香味物質は、エアロゾル源に添加されてもよい。
 エアロゾル発生装置AGDは、例えば、アウターケースC101と、アウターケースC101に取り付けられたスライダC102とを含みうる。アウターケースC101は、エアロゾル源および香味物質の少なくとも1つを含む挿入物を挿入あるいは収容可能な挿入孔C104を有することができる。スライダC102は、挿入孔C104を閉塞しあるいは覆う閉状態と、挿入孔C104を外部空間に露出させ、挿入物を挿入孔C104に挿入可能な開状態とを提供しうる。スライダC102は、例えば、直線または曲線に沿ったスライド機構でもよいし、回動する機構であってもよい。スライダC102は、シャッタで置き換えられてもよい挿入物は、例えば、スティックであってもよいし、カプセルであってもよい。挿入孔C104には、挿入物を加熱するヒータが配置されうる。ヒータは、例えば、抵抗素子ありうる。抵抗素子等で構成されるヒータが挿入物に配置されてもよく、この場合には、挿入物には、ヒータに通電するための電気コネクタが設けられ、挿入孔C104には、挿入物に設けられた電気コネクタに電気的に接続される電気コネクタが設けられうる。ヒータは、例えば、誘導加熱式のヒータでもよい。誘導加熱式のヒータは、コイルと、コイルから電磁波による誘導加熱によって熱を発生するサセプタとを含みうる。サセプタは、挿入物内に配置されうる。
 アウターケースC101の全部または一部は、容易に取外し可能なパネル等の部品で構成されてもよい。他の表現をすれば、アウターケースC101の全部または一部は、ユーザによる取り外しが禁止されていないパネル等の部品で構成されてもよい。一例において、アウターケースC101は、容易に取外し可能なアウターパネルC103を有する。アウターパネルC103は、アウターケースC101の残り部分(本体部分)に対して磁石またはラッチ機構などによって結合されうる。なお、アウターケースC101をエアロゾル発生装置AGDの外装部品の第1部分、アウターパネルC103を該外装部品の第2部分として理解することもできる。
 エアロゾル発生装置AGDは、報知部NUを有しうる。報知部NUは、ユーザが知覚可能な形式で情報をユーザに提供しうる。報知部NUは、例えば、表示デバイス、スピーカ、振動デバイスおよび香り発生デバイスの少なくとも1つを含みうる。表示デバイスは、例えば、LED等の発光デバイス、および、液晶表示デバイス等の二次元表示デバイスの少なくとも1つを含みうる。
 図2Aには、アウターパネルC103が取り外された状態のエアロゾル発生装置AGDが例示されている。エアロゾル発生装置AGDは、アウターパネルC103を磁力によって保持するための1又は複数の磁石(保持部)C112を有しうる。エアロゾル発生装置AGDは、ユーザによって操作されうるスイッチSWを有しうる。アウターパネルC103は、ユーザによる操作によって容易に変形するように構成され、スイッチSWは、アウターパネルC103に対するユーザによる押圧力によって操作されてもよい。あるいは、スイッチSWは、エアロゾル発生装置AGDの外部に露出するように配置されてもよい。エアロゾル発生装置AGDは、アウターパネルC103の内側に、インナーパネルC113を有しうる。インナーパネルC113は、磁石C112、報知部NUおよびスイッチSWを露出させるための複数の開口部を有しうる。インナーパネルC113は、例えば、ネジ等の締結部品によってエアロゾル発生装置AGDの内部構造に対して締結されうる。
 図2Bには、更にインナーパネルC113が内部構造から取り外された状態のエアロゾル発生装置AGDが例示されている。エアロゾル発生装置AGDは、電源ユニットPSUを備えている。電源ユニットPSUは、電源BTを含みうる。電源BTとしては、例えば、リチウムイオン二次電池が用いられてもよいし、リチウムイオンキャパシタが用いられてもよいし、これらの組合せを用いてもよいし、他のタイプの電力供給素子が用いられてもよい。
 図3Aには、更にアウターケースC101の全てが取り外された状態のエアロゾル発生装置AGDが例示されている。図3Bには、更にシャーシCHSおよび電源BTが取り外された状態のエアロゾル発生装置AGDが例示されている。エアロゾル発生装置AGDは、挿入孔C104に挿入された挿入物を加熱するヒータHTを備えうる。ヒータHTは、図2Bに例示された断熱筒INSの中に配置されうる。電源ユニットPSUは、複数の基板(例えばプリント配線基板(PCB))PCB1、PCB2、PCB3、PCB4を有しうる。
 電源BTは、挿入孔C104に対する挿入物の挿脱方向DIRに平行な方向を軸方向とする円柱形状等の柱形状を有することができる。換言すると、挿入孔C104に対する挿入物の挿脱方向DIRと電源BTの軸方向とは互いに平行でありうる。電源BTの側面の一部分は、少なくとも断熱筒INSを介してヒータHTあるいは挿入孔C104に対向するように配置されうる。電源BTの側面の他の一部分は、第1基板PCB1に直接に、または他の部品を介して、対向するように配置されうる。第2基板PCB2は、第1基板PCB1と平行に配置されうる。第3基板PCB3は、第1基板PCB1および第2基板PCB2に対して直角に配置されうる。第3基板PCB3は、電源ユニットPSUの幅方向(挿脱方向DIRに直交する方向のうち最もエアロゾル発生装置AGDの寸法が大きい方向)において、第1基板PCB1と電源BTとの間に配置されうる。第3基板PCB3は、電源BTの側面の一部および断熱通INSの一部に対面する部分を有するように配置されうる。第3基板PCB3は、挿脱方向DIRに平行な方向に細長い形状を有しうる。図2Bに示されるように、第3基板PCB3は、2つの磁石C112の間に配置されうる。
 図4には、電源ユニットPSUの回路構成が例示的に示されている。電源ユニットPSUは、電源BT、保護回路90、計測回路100、過電圧保護回路110、変圧回路120、OPアンプ(増幅回路)A1、スイッチSH、SM、SR、SS、サーミスタ(例えば、NTCサーミスタ又はPTCサーミスタ)TBを含みうる。電源BT、保護回路90、計測回路100、過電圧保護回路110、変圧回路120、OPアンプA1、スイッチSH、SM、SR、SSは、例えば、第1基板PSB1に配置されうる。
 電源ユニットPSUはまた、ロードスイッチ10、充電回路20、変圧回路30、ロードスイッチ40、パワースイッチドライバ50、ロードスイッチ60、不揮発性メモリ(例えば、ROM)70、スイッチ回路80を含みうる。ロードスイッチ10、充電回路20、変圧回路30、ロードスイッチ40、パワースイッチドライバ50、ロードスイッチ60、不揮発性メモリ70、スイッチ回路80は、例えば、第2基板PCB2に配置されうる。電源ユニットPSUはまた、制御部(MCU)130、サーミスタTP(例えば、NTCサーミスタ又はPTCサーミスタ)、サーミスタ(例えば、NTCサーミスタ又はPTCサーミスタ)TH、OPアンプ(増幅回路)A2、サーミスタ(例えば、NTCサーミスタ又はPTCサーミスタ)TC、OPアンプ(増幅回路)A3、情報保持回路FF1、FF2を含みうる。制御部130、OPアンプA2、OPアンプA3、情報保持回路FF1、FF2は、第2基板PCB2に配置されうる。
 電源ユニットPSUはまた、検出部140、シュミットトリガ回路150、通信デバイス160、検出部170、スイッチSW、報知部NUを含みうる。検出部140、シュミットトリガ回路150、通信デバイス160、スイッチSW、報知部NUは、第3基板PCB3に配置されうる。電源ユニットPSUはまた、検出部170を含むことができ、検出部170は、第4基板PCB4に配置されうる。
 以下、電源ユニットPSUを構成する各部品の動作について説明する。電源BTの正極は、第1電源コネクタBC+に電気的に接続され、電源BTの負極は、第2電源コネクタBC-に電気的に接続される。電源BTの正極の電位は、保護回路90のVBAT端子、計測回路100のVBAT端子、変圧回路120のVIN端子、充電回路20のBAT端子、および、スイッチ回路80の電位入力端子に供給されうる。
 保護回路90は、電源BTから出力される電流が流れる経路、より詳しくは、第2電源コネクタBC-に電気的に接続された第2導電路PT2に配置された抵抗器R2を使って、第2導電路PT2を流れる電流を計測し、その電流に応じて電源BTを保護するように、第2導電路PT2に配置されたスイッチ部を制御しうる。該スイッチ部は、直列接続された第1トランジスタ(第1スイッチ)SDおよび第2トランジスタ(第1スイッチ)SCを含みうる。ここで、第1トランジスタSDは、それが開かれると(オフすると)電源BTの放電を停止させるように第2導電路PT2を遮断するためのスイッチとして機能し、第2トランジスタSCは、それが開かれると(オフすると)電源BTの充電を停止させるように第2導電路PT2を遮断するためのスイッチとして機能しうる。第1トランジスタSDは、第1電源コネクタBC+に電気的に接続された第1導電路PT1に配置されてもよく、第2トランジスタSCも、第1導電路PT1に配置されてもよい。抵抗器R2も、第1導電路PT1に配置されてもよい。具体的な一例として、電源BTの充電中に計測された第2導電路PT2を流れる電流が過大である場合、保護回路90は第2トランジスタSCを開く(オフする)。また、電源BTの非充電中に計測された第2導電路PT2を流れる電流が過大である場合、保護回路90は第1トランジスタSDを開く(オフする)。保護回路90は、例えば、集積回路(IC(Integrated Circuit))で構成されうる。
 保護回路90は、VBAT端子に供給される電源BTの正極の電位に基づき電源BTの出力電圧を計測し、その出力電圧に応じて電源BTを保護するように、第2導電路PT2に配置されたスイッチ部を制御しうる。具体的な一例として、電源BTの電圧が電源BTの過充電状態を示す場合、保護回路90は第2トランジスタSCを開く(オフする)。また、電源BTの出力電圧が電源BTの過放電状態を示す場合、保護回路90は第1トランジスタSDを開く(オフする)。電源BTの過充電状態とは、電源BTの出力電圧が予め定められた満充電電圧を越えている状態を指すものとして理解されうる。電源BTの過放電状態とは、電源BTの出力電圧が予め定められた放電終止電圧を下回っている状態を指すものとして理解されうる。また、電源BTの深放電状態とは、過放電状態にある電源BTの放電がさらに進行し、電源BTの内部構造に不可逆的な変化が生じる状態を指すものとして理解されうる。
 図4に例示されるように、第1トランジスタSDに対して並列に接続された第1整流素子が設けられてもよく、該第1整流素子は、第1トランジスタSDのボディダイオードとして構成されてもよい。該第1整流素子の順方向は、電源BTを充電する電流が流れる方向である。また、図4に例示されるように、第2トランジスタSCに対して並列に接続された第2整流素子が設けられてもよく、該第2整流素子は、第2トランジスタSCのボディダイオードとして構成されてもよい。該第2整流素子の順方向は、電源BTから放電される電流が流れる方向である。
 計測回路100は、電源BTから出力される電流が流れる経路、より詳しくは、第2電源コネクタBC-に電気的に接続された第2導電路PT2に配置された抵抗器R1及びVBAT端子を使って、電源BTの状態を計測しうる。抵抗器R1は、第1導電路PT1に配置されてもよい。計測回路100は、電源BTの温度を計測するように配置されたサーミスタ(例えば、NTCサーミスタ又はPTCサーミスタ)TBの抵抗値を計測することによって、電源BTの温度を計測るように配置されうる。図3A、3Bに例示されるように、電源BTは、円柱形状を有することができ、この場合、サーミスタTBは、電源BTの円柱形状に沿った円弧形状部を含みうる。サーミスタTBは、例えば、電源BTの円柱形状に沿って、中心角において電源BTの180度以上、200度以上、220度以上、240度、260度以上を帯状の形状によって取り囲みうる。計測回路100は、例えば、集積回路で構成されうる。
 過電圧保護回路110は、給電コネクタとしてのUSBコネクタUSBCから供給される電圧VBUSを受けてVUSBラインに電圧VUSBを出力する。電圧VUSBの電圧値は、例えば5.0Vである。VUSBラインは、後述するロードスイッチ10のVOUT端子及びON端子と、制御部130のPA9端子へ接続される。過電圧保護回路110は、USBコネクタUSBCから供給される電圧VBUSが規定電圧値を超える電圧であっても、それを規定電圧値まで降下させて過電圧保護回路110の出力側に供給する保護回路として機能しうる。この規定電圧値は、OVLo端子へ入力される電圧値に基づいて設定されてもよい。過電圧保護回路110は、例えば、集積回路で構成されうる。
 変圧回路120は、電源BTから供給される電源電圧VBATを変圧してヒータHTを駆動するためのヒータ電圧VBOOSTを生成する。変圧回路120は、昇圧回路、または、昇降圧回路、または、降圧回路でありうる。ヒータHTは、エアロゾル源を加熱するように配置される。ヒータHTの正側端子は、第1ヒータコネクタHC+に電気的に接続され、ヒータHTの負側端子は、第2ヒータコネクタHC-に電気的に接続されうる。ヒータHTは、電源ユニットPSUあるいはエアロゾル発生装置AGDに対して、破壊しなければ取り外し外すことができない形態(例えば、半田付け)で取り付けられてもよいし、破壊しなくても取り外すことができる形態で取り付けられてもよい。なお、本明細書において、「コネクタ」による電気的接続は、特に断らない限り、破壊しなければ相互に分離することができない形態と、破壊しなくても相互に分離することができる形態とのいずれでもよいものとして説明される。変圧回路120は、例えば、集積回路で構成されうる。
 ヒータHTを発熱させるときは、制御部130によってスイッチSMがオフされ、スイッチSHおよびスイッチSSがオンされ、ヒータ電圧VBOOSTは、スイッチSHを通してヒータHTに供給されうる。ヒータHTの温度あるいは抵抗を計測するときは、制御部130によってスイッチSHがオフされ、スイッチSMおよびスイッチSSがオンされ、ヒータ電圧VBOOSTは、スイッチSMを通してヒータHTに供給されうる。ヒータHTの温度あるいは抵抗値を計測するときは、OPアンプA1は、ヒータHTの正側端子と負側端子との間の電圧、換言すると、第1ヒータコネクタHC+と第2ヒータコネクタHC-との間の電圧に応じた出力を制御部130のPA7端子に供給する。OPアンプA1は、ヒータHTの抵抗値あるいは温度を計測する温度計測回路として理解されてもよい。スイッチSMと第1ヒータコネクタHC+とを電気的に接続する経路には、シャント抵抗器RSが配置されうる。シャント抵抗器RSの抵抗値は、ヒータHTを加熱する期間はスイッチSRがオンし、ヒータHTの温度あるいは抵抗値を計測する期間はスイッチSRがオフするように決定されうる。
 スイッチSRがNチャネル型のMOSFETで構成される場合、スイッチSRのドレイン端子はオペアンプA1の出力端子へ接続され、スイッチSRのゲート端子はシャント抵抗RSと第1ヒータコネクタHC+の間へ接続され、スイッチSRのソース端子はグランドラインへ接続される。スイッチSRのゲート端子には、ヒータ電圧VBOOSTを主にシャント抵抗RSとヒータHTで分圧した値が入力される。シャント抵抗RSの抵抗値は、この分圧した値がスイッチSRの閾値電圧以上になるように決定されうる。また、シャント抵抗RSにより、スイッチSHをオフし且つスイッチSMおよびスイッチSSをオンする時にヒータHTを流れる電流は、スイッチSHおよびスイッチSSをオンとし且つスイッチSMをオフとする時にヒータHTを流れる電流よりも小さい。これにより、ヒータHTの温度あるいは抵抗を計測するとき、ヒータHTを流れる電流によりヒータHTの温度が変化しにくくなる。
 ロードスイッチ10は、ON端子にローレベルが入力されているときは、VIN端子とVOUT端子とを電気的に切断し、ON端子にハイレベルが入力されているときは、VIN端子とVOUT端子とを電気的に接続し、VOUT端子からVCC5ラインに電圧VCC5を出力する。電圧VCC5の電圧値は、例えば5.0Vである。ロードスイッチ10のON端子は、スイッチSIを介してグランドラインに電気的に接続されている。スイッチSIは、トランジスタで構成され、そのベースあるいはゲートにハイレベルが供給されるとオンし、ローレベルが供給されるとオフする。USBコネクタUSBCおよびVUSBラインを介して電圧VBUSが供給されると、制御部130は、PA9端子に入力される電圧に基づいてそれを検出し、スイッチSIを構成するトランジスタのベースあるいはゲートにローレベルを供給する。スイッチSIがオフすると、電圧VUSBを分圧した値が、ロードスイッチ10のON端子に供給される。これにより、ロードスイッチ10のON端子にハイレベルが供給される。換言すれば、ロードスイッチ10のON端子へ接続される2つの抵抗器は、電圧VUSBを分圧した値がロードスイッチ10のON端子にとってハイレベルになるような電気抵抗値を有する。一方、USBコネクタUSBCを介して電圧VBUSが供給されていない期間は、制御部130は、PA9端子に入力される電圧に基づいて、スイッチSIを構成するトランジスタのベースあるいはゲートにハイレベルを供給する。ロードスイッチ10のON端子は、スイッチSIがオンすると、グランドラインへ接続される。これによりロードスイッチ10のON端子にローレベルが供給される。VCC5ラインは、充電回路20のVAC端子およびVBUS端子、および、報知部NUに電気的に接続されている。スイッチSIは、そのベースあるいはゲートにローレベルが供給されるとオンし、ハイレベルが供給されるとオフするトランジスタで構成されてもよい。この場合、制御部130は、USBコネクタUSBCおよびVUSBラインを介して電圧VBUSが供給されるとスイッチSIを構成するトランジスタのベースあるいはゲートにハイレベルを供給し、USBコネクタUSBCを介して電圧VBUSが供給されていない期間はスイッチSIを構成するトランジスタのベースあるいはゲートにローレベルを供給すればよい。ロードスイッチ10は、例えば、集積回路で構成されうる。
 充電回路20は、充電モードを有する。充電回路20は、充電モードでは、VCC5ラインを介して供給される電圧VCC5を使ってSW端子からVCCラインに電圧VCCを供給するとともに、SYS端子とBAT端子とを電気的に接続してBAT端子から第1導電路PT1を介して電源BTに充電電圧を供給しうる。VCCラインは、後述する変圧回路30のVIN端子とEN端子へ接続される。充電モードは、/CE端子にローレベルが供給されることによってイネーブルあるいは起動されうる。充電回路20は、例えば、集積回路で構成されうる。
 充電回路20は、第1パワーパスモードを有しうる。第1パワーパスモードでは、充電回路20は、VBUS端子とSW端子とを電気的に接続し、VCC5ラインを介して供給される電圧VCC5を使ってVCCラインに電圧VCCを供給するが、SYS端子とBAT端子とを電気的に分離する。第1パワーパスモードは、主に電源BTの過放電又は深放電状態にある時に用いられる。また、充電回路20は、第2パワーパスモードを有しうる。第2パワーパスモードでは、充電回路20は、SYS端子とBAT端子とを電気的に接続するとともに、VBUS端子とSW端子とを電気的に接続するスイッチング素子をパルス幅制御し、電源BTから供給される電源電圧VBATとVCC5ラインを介して供給される電圧VCC5とを合成してVCCラインに電圧VCCを供給する。第2パワーパスモードは、USBコネクタUSBCおよびVUSBラインを介して電圧VBUSが供給されており且つ電源BTの充電が完了している時に用いられる。また、充電回路20は、第3パワーパスモードを有しうる。第3パワーパスモードでは、充電回路20は、VBUS端子とSW端子とを電気的に分離し、SYS端子とBAT端子とを電気的に接続し、電源BTから供給される電源電圧を電圧VCCとしてVCCラインに供給する。第3パワーパスモードは、USBコネクタUSBCを介して電圧VBUSが供給されていない時に用いられる。
 充電回路20は、OTGモードを有しうる。OTGモードでは、充電回路20は、電源BTから第1導電路PT1を介してBAT端子に供給される電源電圧VBATを受けてSYS端子からVCCラインに電圧VCCを供給するとともに、VBUS端子からVCC5ラインに電圧VCC5を供給する。この場合において、充電回路20は、電源電圧VBATを受けて、電源電圧VBATよりも高い電圧を電圧VCC5として生成し、それをVBUS端子からVCC5ラインに供給しうる。/CE端子にハイレベルが供給されると、充電回路20は、第1、第2、第3パワーパスモードおよびOTGモードのうちデフォルトで設定されている動作モード、または、制御部130によって設定された動作モードで動作しうる。制御部130は、IC通信によって、充電回路20を第1、第2、第3パワーパスモードおよびOTGモードのいずれかの動作モードに設定しうる。なお、この明細書では、通信規格の一例としてIC通信に挙げているが、これは通信規格あるいは通信方法を限定することを意図したものではなく、以下で説明されるIC通信およびICインターフェースは、他の方式の通信およびインターフェースで置き換え可能である。
 変圧回路30は、イネーブル端子であるEN端子へ接続されるVCCラインに電圧VCCが供給されることによってイネーブルされ、VOUT端子からVCC33_0ラインに電圧VCC33_0を供給する。電圧VCC33_0の電圧値は、例えば3.3Vである。VCC33_0ラインは、後述するロードスイッチ40のVIN端子、後述するパワースイッチドライバ50のVIN端子及びRSTB端子、後述する情報保持回路FF2のVCC端子及びD端子へ接続される。変圧回路30は、昇圧回路、または、昇降圧回路、または、降圧回路でありうる。変圧回路30は、例えば、集積回路で構成されうる。ロードスイッチ40は、ON端子にローレベルが入力されているときは、VIN端子とVOUT端子とを電気的に切断し、ON端子にハイレベルが入力されているときは、VIN端子とVOUT端子とを電気的に接続し、VOUT端子からVCC33ラインに電圧VCC33を出力する。電圧VCC33の電圧値は、例えば3.3Vである。VCC33ラインは、ロードスイッチ60のVIN端子、不揮発性メモリ70のVCC端子、計測回路100のVDD端子及びCE端子、制御部130のVDD端子、検出部140のVDD端子、シュミットトリガ回路150のVCC端子、通信デバイス160のVCC_NRF端子、検出部170のVDD端子、情報保持回路FF1のVCC端子及びD端子、OPアンプA1の電源端子、および、OPアンプA2の電源端子へ接続される。ロードスイッチ40のVIN端子は、変圧回路30のVOUT端子に電気的に接続され、変圧回路30から電圧VCC33_0が供給される。ロードスイッチ40のON端子も、変圧回路30のVOUT端子に抵抗器を介して電気的に接続され、変圧回路30から電圧VCC33_0が供給される。つまり、変圧回路40から電圧VCC33_0が供給されると、ロードスイッチ40は、VOUT端子からVCC33ラインに電圧VCC33を出力しうる。ロードスイッチ50は、例えば、集積回路で構成されうる。
 パワースイッチドライバ50は、SW1端子およびSW2端子にローレベルが所定時間にわたって供給されたことに応じて、RSTB端子からローレベルを出力する。RSTB端子は、ロードスイッチ40のON端子に電気的に接続されている。したがって、パワースイッチドライバ50のSW1端子およびSW2端子にローレベルが所定時間にわたって供給されたことに応じて、ロードスイッチ40は、VOUT端子からの電圧VCC33の出力を停止する。ロードスイッチ40のVOUT端子からの電圧VCC33の出力が停止すると、制御部130のVDD端子(電源端子)に対する電圧VCC33の供給が絶たれるので、制御部130は、動作を停止する。パワースイッチドライバ50は、例えば、集積回路で構成されうる。
 ここで、アウターパネルC103がエアロゾル発生装置AGDあるいは電源ユニットPSUから取り外されると、検出部140からシュミットトリガ回路150を介してパワースイッチドライバ50のSW2端子にローレベルが供給される。また、スイッチSWが押下されると、パワースイッチドライバ50のSW1端子にローレベルが供給される。よって、アウターパネルC103がエアロゾル発生装置AGDあるいは電源ユニットPSUから取り外された状態(図2Aに示す状態)でスイッチSWが押下されると、パワースイッチドライバ50のSW1端子およびSW2端子にローレベルが供給される。パワースイッチドライバ50は、SW1端子およびSW2端子にローレベルが所定時間(例えば数秒間)継続して供給されると、エアロゾル発生装置AGDあるいは電源ユニットPSUに対するリセットあるいは再起動の指令が入力されたものと認識する。パワースイッチドライバ50は、RSTB端子からローレベルを出力した後にRSTB端子からのローレベルの出力を停止するように構成されうる。このような構成にすれば、ロードスイッチ40のON端子には、ローレベルが供給された後に電圧VCC33_0が再び供給されるため、ロードスイッチ40は、VOUT端子からVCC33ラインに電圧VCC33を再び出力しうる。この電圧VCC33は制御部130のVDD端子へ入力されるため、制御部130を再起動することができる。換言すれば、パワースイッチドライバ50がRSTB端子からローレベルを出力した後にRSTB端子からのローレベルの出力を停止することにより、エアロゾル発生装置AGDあるいは電源ユニットPSUのリセットあるいは再起動がなされる。
 ロードスイッチ60は、ON端子にローレベルが入力されているときは、VIN端子とVOUT端子とを電気的に切断し、ON端子にハイレベルが入力されているときは、VIN端子とVOUT端子とを電気的に接続し、VOUT端子からVCC33_SLPラインに電圧VCC33_SLPを出力する。電圧VCC33_SLPの電圧値は、例えば、3.3Vである。VCC33_SLPラインは、後述するサーミスタTP、後述するサーミスタTH、後述するサーミスタTCへ接続されうる。ロードスイッチ60のON端子は、制御部130のPC11端子に電気的に接続されていて、制御部130は、スリープモードに移行する際にPC11端子の論理レベルをハイレベルからローレベルに遷移させ、スリープモードからアクティブモードに移行する際にPC11端子の論理レベルをローレベルからハイレベルに遷移させる。つまり、スリープモードおいて電圧VCC33_SLPは利用できず、スリープモードからアクティブモードへ移行すると電圧VCC33_SLPが利用できるようになる。ロードスイッチ60は、例えば、集積回路で構成されうる。
 スイッチ回路80は、制御部130によって制御されるスイッチであり、オン状態では、第1導電路PT1の電位、即ち電源BTの正極の電位に応じた電位がスイッチ回路80を介して制御部130のPC2端子に供給される。電源BTの正極の電位に応じた電位は、例えば、該正極の電位を分圧した電位である。制御部130は、PC2端子に電気的に接続されたAD変換器あるいは電圧検出器を含み、制御部130は、スイッチ回路80をオンさせることによって電源BTの正極の電位、即ち電源BTの出力電圧を検出することができる。
 電源ユニットPSUは、パフ動作を検出するためのパフセンサを構成するサーミスタ(例えば、NTCサーミスタ又はPTCサーミスタ)TPを備えることができる。サーミスタTPは、例えば、パフに伴う空気流路の温度変化を検出するように配置されうる。電源ユニットPSUは、バイブレータMを備えてもよい。バイブレータMは、例えば、スイッチSNをオンさせることによって起動されうる。スイッチSNは、トランジスタで構成されてよく、トランジスタのベースまたはゲートには、制御部130のPH0端子から制御信号が供給されうる。なお、スイッチSNに代えてバイブレータM用のドライバを用いてもよい。
 電源ユニットPSUは、ヒータHTの温度を検出するためのサーミスタ(例えば、NTCサーミスタ又はPTCサーミスタ)THを備えうる。ヒータHTの温度は、ヒータHTの近傍の温度を検出することによって間接的に検出されてもよい。OPアンプA2は、サーミスタTHの抵抗値に応じた電圧、換言すると、ヒータHTの温度に応じた電圧を出力しうる。
 電源ユニットPSUは、アウターケースC101の温度を検出するためのサーミスタ(例えば、NTCサーミスタ又はPTCサーミスタ)TCを備えうる。アウターケースC101の温度は、アウターケースC101の近傍の温度を検出することによって間接的に検出されてもよい。OPアンプA3は、サーミスタTCの抵抗値に応じた電圧、換言すると、アウターケースC101の温度に応じた電圧を出力する。
 情報保持回路FF1は、OPアンプA2の出力に応じた電圧が規定範囲から逸脱した場合、典型的には、OPアンプA2の出力が示す温度がヒータHTの許容限界温度を超えた場合に、そのことを示す情報を保持するように構成されうる。情報保持回路FF1は、ロードスイッチ40からVCC33ラインに出力される電圧VCC33の供給を受けて動作しうる。換言すれば、情報保持回路FF1のVCC端子(電源端子)は、VCC33ラインへ接続される。ロードスイッチ40からの電圧VCC33の出力が停止されると、制御部130が動作を停止する他、情報保持回路FF1に保持されている情報が失われうる。情報保持回路FF1は、例えば、集積回路で構成されうる。
 情報保持回路FF1はまた、OPアンプA3の出力に応じた電圧が規定範囲から逸脱した場合、典型的には、OPアンプA3の出力が示す温度がアウターケースC101の許容限界温度を超えた場合に、そのことを示す情報を保持するように構成されうる。上記の説明から明らかなように、情報保持回路FF1は、OPアンプA2の出力が示す温度がヒータHTの許容限界温度を超えた場合、および、OPアンプA3の出力が示す温度がアウターケースC101の許容限界温度を超えた場合のいずれかが満たされると、そのことを示す情報を保持するように構成されうる。
 情報保持回路FF2は、OPアンプA2の出力に応じた電圧が規定範囲から逸脱した場合、典型的には、OPアンプA2の出力が示す温度がヒータHTの許容限界温度を超えた場合に、そのことを示す情報を保持するように構成されうる。情報保持回路FF2は、変圧回路30からVCC33_0ラインに出力される電圧VCC33_0の供給を受けて動作しうる。換言すれば、情報保持回路FF2のVCC端子(電源端子)は、VCC33_0ラインへ接続される。変圧回路30からからの電圧VCC33_0の出力が停止されると、情報保持回路FF2に保持されている情報が失われうる。しかし、SW1端子およびSW2端子にローレベルが入力されることによってパワースイッチドライバ50のRSTB端子からローレベルが出力され、ロードスイッチ40からの電圧VCC33の出力が停止される場合であっても、変圧回路30からからの電圧VCC33_0の出力は停止されず、情報保持回路FF2に保持されている情報は維持されうる。情報保持回路FF2は、EEPROMで構成されてもよく、この場合、1つのEEPROMが情報保持回路FF2および不揮発性メモリ70の機能を提供してもよい。情報保持回路FF2は、例えば、集積回路で構成されうる。
 制御部130は、MCU等のプロセッサによって構成され、不揮発性メモリ70または内蔵されたメモリに格納されたプログラムに基づいて動作し、エアロゾル発生装置AGDあるいは電源ユニットPSUの動作を制御あるいは規定しうる。制御部130は、電源BTから供給される電力を使ってエアロゾル源を加熱するためのヒータHTへの電力の供給を制御する。他の観点において、制御部130は、電源BTから供給される電力を使ってエアロゾル源を加熱するためのヒータHTの発熱を制御する。更に他の観点において、制御部130は、ヒータHTへの電力の供給および電源BTの充電動作を制御する。
 検出部140は、アウターパネルC103がエアロゾル発生装置AGDあるいは電源ユニットPSUから取り外されたことを検出するように構成されうる。検出部140は、例えば、集積回路で構成されうる。検出部140の出力は、シュミットトリガ回路150を介してパワースイッチドライバ50のSW2端子および制御部130のPD2端子に供給されうる。シュミットトリガ回路150は、例えば、集積回路で構成されうる。スイッチSWの一端は、パワースイッチドライバ50のSW1端子および制御部130のPC10端子へ接続されうる。スイッチSWの一端はVCC33ラインにも接続され、スイッチSWの他端はグランドラインへ接続される。これにより、スイッチSWが押下されるとパワースイッチドライバ50のSW1端子および制御部130のPC10端子にローレベルが供給され、スイッチSWが押下されないとパワースイッチドライバ50のSW1端子および制御部130のPC10端子にハイレベルが供給されうる。検出部170は、スライダC102の開閉を検出するように構成されうる。検出部170の出力は、制御部130のPC13端子に供給されうる。検出部170は、例えば、集積回路で構成されうる。検出部140、170は、例えば、ホール素子で構成されうる。通信デバイス160は、スマートフォン、携帯電話、パーソナルコンピュータ等の電子機器と通信する機能を制御部130に提供する。通信デバイス160は、例えば、Bluetooth(登録商標)等の近距離通信規格に準拠した通信デバイスである。通信デバイス160は、例えば、集積回路で構成されうる。
 図5には、エアロゾル発生装置AGDあるいは電源ユニットPSUの状態遷移図が示されている。スリープモードでは、ロードスイッチ40のVOUT端子からVCC33ラインを介して制御部130のVDD端子(電源端子)に電圧VCC33が供給される。スリープモードにおいて、スライダC102が開状態にされて、これが検出部170によって検出されると、エアロゾル発生装置AGD、電源ユニットPSUあるいは制御部130は、アクティブモードに移行しうる。アクティブモードでは、ロードスイッチ60のVOUT端子からサーミスタTP、TH、TCに電圧VCC33_SLPが供給されうる。スリープモードでは、制御部130は、後述するICインターフェースを介した計測回路100からの情報の取得を停止しうる。
 アクティブモードにおいて、スイッチSW(一例では、ボタンスイッチ)が押下されると、エアロゾル発生装置AGD、電源ユニットPSUあるいは制御部130は、加熱準備モードに移行しうる。加熱準備モードでは、制御部130は、PC12端子からハイレベルを出力し、変圧回路120を起動し、変圧回路120は、VOUT端子から電圧VBOOSTを出力しうる。スイッチSSもまた制御部130のPC12端子へ接続されているため、PC12端子からハイレベルが出力されると、スイッチSSがオンされ、ヒータコネクタHC-とグランドラインが接続されうる。
 変圧回路120を起動した後、エアロゾル発生装置AGD、電源ユニットPSUあるいは制御部130は、加熱準備モードから加熱モードに移行しうる。加熱モードは、ヒータHTによってエアロゾル源を加熱する加熱動作と、ヒータHTの抵抗値、即ちヒータHTの温度を計測する計測動作とを繰り返しうる。
 加熱モードは、例えば、計時開始タイミングからの所定時間の経過、カウント開始タイミングから所定回数のパフの発生、スライダC102の閉動作、USBコネクタUSBCへのUSBケーブルの接続等の所定の終了イベントの発生に応じて終了し、エアロゾル発生装置AGD、電源ユニットPSUあるいは制御部130は、加熱終了モードに移行する。計時開始タイミングは、例えば、アクティブモードにおけるスイッチSWの押下の検出、加熱準備モードへの移行、または、加熱モードへの移行のタイミングでありうる。カウント開始タイミングは、例えば、加熱準備モードから加熱モードへの移行のタイミングでありうる。加熱終了モードでは、ヒータHTによるエアロゾル源の加熱を終了し、その後、エアロゾル発生装置AGD、電源ユニットPSUあるいは制御部130は、アクティブモードに移行しうる。USBコネクタUSBCへのUSBケーブルの接続によりエアロゾル源の加熱が終了された場合、エアロゾル発生装置AGD、電源ユニットPSUあるいは制御部130は、加熱終了モードから充電モードへ直接移行しうる。
 アクティブモードにおいて、スライダC102が閉状態にされると、又は、スライダC102及びスイッチSWが所定時間にわたって操作されないと、エアロゾル発生装置AGD、電源ユニットPSUあるいは制御部130は、スリープモードに移行しうる。スリープモードにおいて、スライダC102が閉状態でスイッチSWが押下されると、エアロゾル発生装置AGD、電源ユニットPSUあるいは制御部130は、ペアリングモードに移行しうる。ペアリングモードでは、通信デバイス160による電子機器とのペアリング(鍵の交換)が行われ、ペアリングが成功すると、ボンディング(鍵の保存)が行われ、エアロゾル発生装置AGD、電源ユニットPSUあるいは制御部130は、スリープモードに移行しうる。ボンディングに関する情報は、不揮発性メモリ70に保存されてもよい。また、ペアリングが失敗した場合にも、エアロゾル発生装置AGD、電源ユニットPSUあるいは制御部130は、スリープモードに移行しうる。
 スリープモードにおいて、USBコネクタUSBCにUSBケーブルが接続されると、エアロゾル発生装置AGD、電源ユニットPSUあるいは制御部130は、充電モードに移行しうる。制御部130は、PA9端子に供給される電圧あるいは電位に応じてUSBコネクタUSBCに対するUSBケーブルの接続を検出し、これに応じてPC9端子からローレベルを出力し、スイッチSIをオフさせうる。これにより、ロードスイッチ10のON端子にハイレベルが供給され、ロードスイッチ10は、USBケーブルを介してVUSBラインに供給されている電圧VUSBをVOUT端子を介して充電回路20に供給しうる。また、制御部130は、PB3端子からローレベルを出力する。これにより、充電回路20の/CE端子にローレベル(イネーブルレベル)が供給され、充電回路20は、BAT端子から電源BTに対して充電電圧を供給しうる。
 充電モードにおいて、重要エラーが発生した場合には、エアロゾル発生装置AGD、電源ユニットPSUあるいは制御部130は、永久故障モードに移行しうる。エアロゾル発生装置AGD、電源ユニットPSUあるいは制御部130は、充電モード以外のモードから永久故障モードに移行してもよい。永久故障モードでは、他の全てのモードへの遷移が禁止されうる。充電モード、アクティブモード、加熱準備モード、加熱モードにおいてエラーが発生すると、エアロゾル発生装置AGD、電源ユニットPSUあるいは制御部130は、エラー処理モードに移行しうる。
 エラー処理モードでは、エアロゾル発生装置AGD、電源ユニットPSUあるいは制御部130は、例えば、報知部NUを使ってエラーの発生、エラーの種類、エラーの解除のための操作要求等を報知しうる。その後、エアロゾル発生装置AGD、電源ユニットPSUあるいは制御部130は、発生したエラーの種類が第1カテゴリーのエラーである場合には、所定時間の経過を待ってスリープモードに移行しうる。一方、エアロゾル発生装置AGD、電源ユニットPSUあるいは制御部130は、発生したエラーの種類が第2カテゴリーのエラーである場合には、エラー処理を継続しうる。この場合、スリープモードに戻るためには、制御部130のリセットあるいは再起動を要する。
 図4Aには、スリープモードにおける電源ユニットPSUの動作が例示されている。太線は、電圧の供給経路を強調している。電源BTは、第1導電路PT1を介して電源電圧VBATを保護回路90のVBAT端子、計測回路100のVBAT端子、充電回路20のBAT端子、変圧回路120のVIN端子、および、スイッチ回路80に供給しうる。充電回路20は、制御部130によって第3パワーパスモードに設定され、充電回路20は、電源BTから供給される電源電圧VBATを電圧VCCとしてVCCラインに供給しうる。
 変圧回路30は、VCCラインに電圧VCCが供給されることによってイネーブルされ、VOUT端子からVCC33_0ラインに電圧VCC33_0を供給しうる。電圧VCC33_0は、VCC33_0ラインを介してロードスイッチ40、パワースイッチドライバ50、情報保持回路FF1、FF2に供給されうる。
 VCC33_0ラインからロードスイッチ40のON端子へ電圧VCC33_0が供給されるため、ロードスイッチ40は、VIN端子とVOUT端子とを電気的に接続し、VOUT端子からVCC33ラインに電圧VCC33を出力しうる。電圧VCC33は、VCC33ラインを介して制御部130のVDD端子(電源端子)、検出部140、170のVDD端子(電源端子)、シュミットトリガ回路150のVCC端子(電源端子)、通信デバイス160のVCC_NRF端子(電源端子)、不揮発性メモリ70のVCC端子(電源端子)、計測回路100のVDD端子(電源端子)およびCE端子、OPアンプA2、A3の電源端子、情報保持回路FF1、FF2のVCC端子(電源端子)に供給されうる。
 パワースイッチドライバ50のSW1端子およびSW2端子にローレベルが所定時間にわたって入力されると、パワースイッチドライバ50がRSTB端子からロードスイッチ40のON端子にローレベルを供給する。これに応じて、ロードスイッチ40は、VOUT端子からの電圧VCC33の出力を停止し、制御部130は、動作を停止する。その後、パワースイッチドライバ50は、RSTB端子からロードスイッチ40のON端子にローレベルの供給を停止する。これに応じて、VCC33_0ラインからロードスイッチ40のON端子へ電圧VCC33_0の供給が再開されるため、ロードスイッチ40は、VOUT端子からの電圧VCC33の出力を再開し、制御部130がリセットあるいは再起動されうる。
 図4Bには、スリープモードからペアリングモードへの移行が示されている。太線は、電圧および信号の供給経路を強調している。アウターパネルC103がエアロゾル発生装置AGDあるいは電源ユニットPSUに取り付けられた状態では、検出部140からシュミットトリガ回路150を介して制御部130のPD2端子およびパワースイッチドライバ50のSW2端子にハイレベルが供給される。また、スライダC102が閉状態である場合、検出部170から制御部130のPC13端子にハイレベルが供給される。この状態で、スイッチSWが押下されると、制御部130のPC10端子にローレベルが供給される。制御部130は、PC13端子にハイレベルが供給されている状態においてPC10端子にローレベルが所定時間にわたって供給されると、これをペアリングモードへの移行指令として認識して、スリープモードからペアリングモードに移行しうる。
 図4Cには、スリープモードからアクティブモードへの移行が示されている。太線は、電圧および信号の供給経路を強調している。アウターパネルC103がエアロゾル発生装置AGDあるいは電源ユニットPSUに取り付けられた状態では、検出部140からシュミットトリガ回路150を介して制御部130のPD2端子およびパワースイッチドライバ50のSW2端子にハイレベルが供給される。また、スライダC102が開状態になると、検出部170から制御部130のPC13端子にローレベルが供給される。制御部130は、これをアクティブモードへの移行指令として認識して、スリープモードからアクティブモードに移行しうる。具体的には、制御部130は、PC11端子からロードスイッチ60のON端子にハイレベルを供給し、これに応じて、ロードスイッチ60は、VIN端子とVOUT端子とを電気的に接続し、電圧VCC33_SLPをサーミスタTP、TH、TCに供給しうる。
 図4D、4Eには、アクティブモードから加熱準備モードへの移行が示されている。太線は、電圧および信号の供給経路を強調している。アウターパネルC103がエアロゾル発生装置AGDあるいは電源ユニットPSUに取り付けられた状態では、検出部140からシュミットトリガ回路150を介して制御部130のPD2端子およびパワースイッチドライバ50のSW2端子にハイレベルが供給される。また、スライダC102が開状態である場合、検出部170から制御部130のPC13端子にローレベルが供給される。更に、スイッチSWが押下されると、制御部130のPC10端子にローレベルが供給される。制御部130は、PD2端子にハイレベルが供給され且つPC13端子にローレベルが供給されている状態においてPC10端子にローレベルが所定時間にわたって供給されると、これを加熱準備モードへの移行指令として認識して、アクティブモードから加熱準備モードに移行しうる。具体的には、制御部130は、PC12端子から変圧回路120のEN端子にハイレベルを供給し、これに応じて、変圧回路120は、VOUT端子からVboostラインにVboostを出力する。
 図4Fには、加熱モードにおける加熱動作が示されている。太線は、電圧および信号の供給経路を強調している。制御部130は、PA2端子からスイッチSHを構成するトランジスタのゲートあるいはベースにハイレベルを供給し、スイッチSHをオンさせる。これにより、変圧回路120のVOUT端子から出力される電圧VboostがヒータHTに供給され、ヒータHTがエアロゾル源を加熱する。このとき、スイッチSRを構成するトランジスタのゲートあるいはベースには、スイッチSRをオンさせる電圧が供給される。OPアンプA2の電源端子には、電圧Vboostがシャント抵抗器RSを介して供給される。
 図4Gには、加熱モードにおける計測動作が示されている。太線は、電圧および信号の供給経路を強調している。制御部130は、PB5端子からスイッチSMを構成するトランジスタのゲートあるいはベースにハイレベルを供給し、スイッチSMをオンさせる。これにより、変圧回路120のVOUT端子から出力される電圧Vboostがシャント抵抗器RSを介してヒータHTに供給される。このとき、このとき、スイッチSRを構成するトランジスタのゲートあるいはベースには電圧Vboostを分圧した電圧が供給される。これはスイッチSRをオフさせる電圧である。OPアンプA1は、ヒータHTの抵抗値に相関を有する電圧を制御部130のPA7端子に供給するように構成されうる。制御部130は、OPアンプA1から供給される電圧に基づいてヒータHTの温度を検出することができる。制御部130は、電圧Vboostに応じた電圧をPA1端子から取り込んで、これをヒータHTの温度を計算するための基準電圧として使用しうる。
 なお、ヒータHTに通電しない期間においては、制御部130は、サーミスタTHを用いて、即ちOPアンプA2の出力に基づいてヒータHTの温度を検出してもよい。
 図4Hには、充電モードにおける電源ユニットPSUの動作が示されている。太線は、電圧および信号の供給経路を強調している。過電圧保護回路110は、USBコネクタUSBCから供給される電圧VBUSを受けてVUSBラインに電圧VUSBを出力する。電圧VUSBは、分圧されて制御部130のPA9端子に供給されうる。これにより、制御部130は、USBコネクタUSBCに接続されたUSBケーブルを介して電圧VUSBが供給されたことを認識し、PC9端子のレベルをハイレベルからローレベルに遷移させうる。これにより、スイッチSIがオフして、ロードスイッチ10のON端子にハイレベルが供給される。これに応じて、ロードスイッチ10は、VIN端子とVOUT端子とを電気的に接続し、VOUT端子からVCC5ラインに電圧VCC5を出力しうる。
 制御部130はまた、PB3端子から充電回路20の/CE端子にローレベルを供給し、充電回路20による電源BTの充電を許可する。充電回路20は、充電モードに設定され、VCC5ラインを介して供給される電圧VCC5を使ってSW端子からVCCラインに電圧VCCを供給するとともに、SYS端子とBAT端子とを電気的に接続してBAT端子から第1導電路PT1を介して電源BTに充電電圧を供給しうる。これにより電源BTが充電される。
 図4Iには、電源ユニットPSUおよび制御部130のリセット動作が示されている。太線は、電圧および信号の供給経路を強調している。アウターパネルC103がエアロゾル発生装置AGDあるいは電源ユニットPSUから取り外された状態では、検出部140からシュミットトリガ回路150を介してパワースイッチドライバ50のSW2端子にローレベルが供給される。この状態でスイッチSWが押下されると、パワースイッチドライバ50のSW1にローレベルが供給される。
 このようにして、パワースイッチドライバ50のSW1端子およびSW2端子にローレベルが所定時間にわたって供給されると、パワースイッチドライバ50は、RSTB端子からロードスイッチ40のON端子にローレベルを供給しうる。これに応じて、ロードスイッチ40は、VOUT端子からの電圧VCC33の出力を停止し、電圧VCC33の供給が絶たれた制御部130が動作を停止している。その後、パワースイッチドライバ50は、RSTB端子からロードスイッチ40のON端子にローレベルの供給を停止しうる。これに応じて、VCC33_0ラインからロードスイッチ40のON端子へ電圧VCC33_0の供給が再開されるため、ロードスイッチ40は、VOUT端子からの電圧VCC33の出力を再開し、制御部130が再起動されうる。
 ここで、制御部130、パワースイッチドライバ50およびロードスイッチ40は、スイッチSWが操作されたことに応じて、アウターパネルC103の有無を検出する検出部140による検出結果に応じた動作を実行する回路ブロックを構成するものとして理解されうる。あるいは、制御部130、パワースイッチドライバ50およびロードスイッチ40は、検出部140によってアウターパネルC103がないことが検出された状態でスイッチSWが操作されたことに応じて、スライダC102の状態を検出する検出部170による検出結果とは無関係に、検出部140による検出結果に応じた動作を実行する回路ブロックを構成するものとして理解されうる。また、制御部130、パワースイッチドライバ50およびロードスイッチ40は、スイッチSWが操作されたことに応じて、スライダC102の状態を検出する検出部170による検出結果に応じた動作を実行する回路ブロックを構成するものとして理解されうる。
 該回路ブロックは、検出部140によってアウターパネルC103があることが検出された状態かつ検出部170によってスライダC102が開状態であることが検出された状態でスイッチSWが操作されたときは、エアロゾルの生成に関する第1処理を実行しうる。また、該回路ブロックは、検出部140によってアウターパネルC103があることが検出された状態かつ検出部170によってスライダC102が閉状態であることが検出された状態でスイッチSWが操作されたときは、エアロゾルの生成に関係しない第2処理、例えば、外部機器との通信に関する処理を実行しうる。これは前述したペアリングモードに相当する。該回路ブロックは、検出部140によってアウターパネルC103がないことが検出された状態でスイッチSWが操作されたときは、検出部170による検出結果、即ちスライダC102の状態に関係なく、制御部130を再起動しうる。
 図6、図7A、図7B、図8、図9A、図9Bには、上記の種々の電子部品の配置例が示されている。なお、これらの図において、サーミスタコネクタTC+、TC-、サーミスタコネクタTP+、TP-、および、サーミスタコネクタTHC+、THC-に対するサーミスタTC、TP、THの電気的接続(配線)は、正確には記載されていない。また、これらの図において、第1ヒータコネクタHC+、第2ヒータコネクタHC-に対するヒータHTの電気的接続(配線)は、省略されている。図6に例示されるように、通信デバイス160、スイッチSW、検出部140、シュミットトリガ回路150、報知部NUは、例えば、第3基板PCB3の同一面(同一基板の同一面)に配置されうる。図6に例示されるように、通信デバイス160およびスイッチSWは、挿入孔C104に対する挿入物の挿脱方向DIRに沿って配置されうる。また、図6の他、図3Aに例示されるように、通信デバイス160およびスイッチSWは、挿脱方向DIRに直交する方向に関して、電源ユニットPSUあるいはエアロゾル発生装置AGDの中央部に配置されうる。例えば、図6の他、図3Aに例示されるように、通信デバイス160およびスイッチSWは、挿脱方向DIRに直交する方向に関して、第1基板PCB1と電源BTとの間に配置されうる。図6に例示されるように、スイッチSWは、通信デバイス160と報知部NUとの間に配置されうる。スイッチSWは、検出部140と通信デバイス160との間に配置されうる。
 図7A、7Bに例示されるように、保護回路90および計測回路100の少なくとも1つは、第1基板PCB1の2つの面のうち電源BTに面する第1面S11に配置されうる。あるいは、保護回路90および計測回路100の双方は、第1基板PCB1の第1面S11に配置されうる。変圧回路120は、第1基板PCB1の第1面S11に配置されうる。図7A、7Bに例示されるように、トランジスタSD、SCは、第1基板PCB1の第1面S11に配置されうる。図7A、7Bに例示されるように、スイッチSHは、第1基板PCB1の第1面S11に配置されうる。第1、第2抵抗器R1、R2は、第1基板PCB1の第1面S11に配置されうる。図7A、7Bに例示されるように、OPアンプA1は、第1基板PCB1の第1面S11に配置されうる。保護回路90、計測回路100、第1抵抗器R1、第2抵抗器R2、トランジスタSD、SCを第1基板PCB1の第1面S11に配置することは、第2導電路PT2の寄生抵抗値を低減するために有利である。
 図8に例示されるように、変圧回路120は、インダクタ120’を伴うことができ、変圧回路120とインダクタ120’とは、第1基板PCB1の互いに反対側の面に配置されうる。好ましくは、変圧回路120は、第1基板PCB1の第1面S11に配置され、インダクタ120’は、その反対側の第2面S12に配置されうる。USBコネクタUSBCとインダクタ120’とは、第1基板PCB1の第2面S12に配置されうる。USBコネクタUSBCとインダクタ120’は、かなり大きな寸法あるいは厚さは有する電子部品であるので、これを第1基板PCB1の同一面に配置することは、エアロゾル発生装置AGDあるいは電源ユニットPSUの小型化に寄与しうる。
 図8に例示されるように、ヒータコネクタHC+、HC-、スイッチSM、SS、シャント抵抗器RSは、第1基板PCB1の第2面S12(即ち、同一基板の同一面)に配置されうる。このような配置は、ヒータHTの抵抗値あるいは温度を検出するための回路の導電路の寄生抵抗値を低減するために有利である。第1基板PCB1の第2面S12とヒータHTとの最短距離は、第1基板PCB1の第1面S11とヒータHTとの最短距離より小さいことが好ましい。このような構成は、ヒータコネクタHC+、HC-とヒータHTを結ぶリード線を短くするために有利である。
 図9A、9Bに例示されるように、第2基板PCB2は、第1基板PCB1の第2面S12に対面する第1面S21と、その反対側の第2面S22とを有する。ヒータHTの温度を検出するためのサーミスタTHのコネクタTHC+、THC-は、第2基板PCB2の第2面S22に配置されうる。充電回路20およびそれに付随するインダクタ20’は、第2基板PCB2の同一面、例えば、第2面S22に配置されうる。変圧回路30およびそれに付随するインダクタ30’は、第2基板PCB2の同一面、例えば、第2面S22に配置されうる。ロードスイッチ10は、第2基板PCB2の第2面S22に配置されうる。制御部130は、第2基板PCB2の第2面S22に配置されうる。情報保持回路F11は、第2基板PCB2の第2面S22に配置されうる。不揮発性メモリ70および情報保持回路FF2は、第2基板PCB2の第1面S21に配置されうる。サーミスタTCのためのサーミスタコネクタTC+、TC-、および、サーミスタTPのためのサーミスタコネクタTP+、TP-は、第2基板PCB2の第1面S21に配置されうる。
 図10には、保護回路90および計測回路100ならびにそれらの周辺に配置された電子部品が示されている。保護回路90は、電源BTから出力される電流が流れる経路に配置された第2抵抗器R2を使って、該経路を流れる電流を計測し、その電流に応じて電源BTを保護するように制御されるスイッチ部SWPを制御しうる。それに代えて、または、それに加えて、保護回路90は、VBAT端子に供給される電源BTの正極の電位に基づき電源BTの電圧を計測し、その電圧に応じて電源BTを保護するように、スイッチ部SWPを制御しうる。第2抵抗器R2およびスイッチ部SWPは、第1電源コネクタBC+に電気的に接続された第1導電路PT1に配置されてもよいが、第2電源コネクタBC-に電気的に接続された第2導電路PT2に配置されることが好ましい。このような構成は、保護回路90に内蔵されるOPアンプの同相入力電圧を小さくできるため、保護回路90が安定的に動作できる点や安価な保護回路90を利用できる点から有利である。スイッチ部SWPは、直列接続された第1トランジスタSDおよび第2トランジスタSCを含みうる。第1トランジスタSDは、電源BTの放電を停止させるように第2導電路PT2(換言すると、電源BTから出力される電流が流れる経路)を遮断するためのスイッチとして機能しうる。第2トランジスタSCは、電源BTの充電を停止させるように第2導電路PT2(換言すると、電源BTから出力される電流が流れる経路)を遮断するためのスイッチとして機能しうる。
 第1トランジスタSDに対して並列に接続された第1整流素子が設けられてもよく、該第1整流素子は、第1トランジスタSDのボディダイオードBDDとして構成されてもよい。該第1整流素子の順方向は、電源BTを充電する電流が流れる方向である。また、第2トランジスタSCに対して並列に接続された第2整流素子が設けられてもよく、該第2整流素子は、第2トランジスタSCのボディダイオードBDCとして構成されてもよい。該第2整流素子の順方向は、電源BTから放電される電流が流れる方向である。
 第2抵抗器R2の抵抗値は既知であり、保護回路90は、第2抵抗値R2による電圧降下を検出することによって、第2導電路PT2を流れる電流(電流値)を検出することができる。保護回路90は、電源BTから放電される電流、即ち、第2ヒータコネクタHC-から第2電源コネクタBC-に向かって流れる電流が放電時過電流を判定する第1閾値を超えると、第1トランジスタSDをオフさせるように構成されうる。また、保護回路90は、電源BTを充電する電流、即ち、第2電源コネクタBC-から第2ヒータコネクタHC-に向かって流れる電流が充電時過電流を判定する第2閾値を超えると、第2トランジスタSCをオフさせるように構成されうる。また、保護回路90は、電源BTの出力電圧が電源BTの過充電状態を示す場合、第2トランジスタSCをオフさせるように構成されうる。また、電源BTの出力電圧が電源BTの過放電状態を示す場合、保護回路90は第1トランジスタSDをオフするように構成されうる。
 計測回路100は、電源BTから出力される電流が流れる経路に配置された第1抵抗器R1を使って、電源BTの状態を計測しうる。抵抗器R1は、第1電源コネクタBC+に電気的に接続された第1導電路PT1に配置されてもよいが、第2電源コネクタBC-に電気的に接続された第2導電路PT2に配置されることが好ましい。このような構成は、計測回路100に内蔵されるOPアンプの同相入力電圧を小さくできるため、計測回路100が安定的に動作できる点や安価な計測回路100を利用できる点から有利である。計測回路100は、第1抵抗器R1を流れる電流(電流値)を積算し、つまり、第1抵抗器R1を通して流れる電荷量(消費電力量)を求め、これにより、電源BTの残容量(Ah)およびSOC(State Of Charge)を計算しうる。SOC(%)は、「残容量(Ah)/満充電容量(Ah)×100」で定義されうる。計測回路100は、制御部130に対して残容量およびSOCを提供しうる。計測回路100は、図10において不図示であるTREG端子とTHM端子とサーミスタTBを用いて電源BTの温度を取得し、取得された電源BTの温度にも基づいて残容量やSOCを計算してもよい。電源BTの残容量やSOCなどは電源BTの温度の影響を強く受けるため、このような構成は、電源BTの残容量やSOCなどを正確に取得するために有利である。
 第2ヒータコネクタHC-と第2電源コネクタBC-との間には、スイッチSS、第1抵抗器R1、スイッチ部SWP、第2抵抗器R2が存在しうる。スイッチSSと第1抵抗器R1との間には寄生抵抗r1が存在し、第2抵抗器R2と第2電源コネクタBC-との間には寄生抵抗r6が存在しうる。第1抵抗器R1と計測回路100のVRSP端子との間には、寄生抵抗r2が存在し、第1抵抗器R1と計測回路100のVRSM端子との間には、寄生抵抗r3が存在しうる。
 また、図示されていないが、寄生抵抗r2と第1抵抗器R1との接続ノードと第1抵抗器R1との間、および、寄生抵抗r3と第1抵抗器R1との接続ノードと第1抵抗器R1との間にも、それぞれ寄生抵抗が存在しうる。これらは、計測回路100による計測結果に誤差を生じさせる要因となりうる。
 図11には、電源BTからの放電状態が模式的に示されている。図11及び後述する図12において、rSSはスイッチSSのオン抵抗、rSCは第2トランジスタSCのオン抵抗、rSDは第1トランジスタSDのオン抵抗を示している。放電時は、第2ヒータコネクタHC-の電位が第2電源コネクタBC-の電位より高い。寄生抵抗r1、r6などは、第2ヒータコネクタHC-と第2電源コネクタBC-との間の電位差ΔVを増大させる要因になる。ΔVの増大は、例えば、結露やエアロゾル源からの水分の侵入等によって第2ヒータコネクタHC-と第2電源コネクタBC-とが短絡した時に流れる短絡電流を増大させうる。
 図12には、電源BTの充電状態が模式的に示されている。充電時は、第2電源コネクタBC-の電位が第2ヒータコネクタHC-の電位より高い。寄生抵抗r1、r6などは、第2電源コネクタBC-と第2ヒータコネクタHC-との間の電位差ΔVを増大させる要因になる。ΔVの増大は、上記のように、結露やエアロゾル源からの水分の侵入等によって第2電源コネクタBC-と第2ヒータコネクタHC-とが短絡した時に流れる短絡電流を増大させうる。
 図13には、第2ヒータコネクタHC-と第2電源コネクタBC-との間の物理的な経路が例示されている。電源ユニットPSUあるいはエアロゾル発生装置AGDは、複数の基板PCB1、PCB2、PCB3、PCB4を有しうる。図13には、第1基板PCB1の構成が例示されている。第1ヒータコネクタHC+および第2ヒータコネクタHC-は、第1基板PCB1に配置されうる。第2ヒータコネクタHC-と共に計測回路100及び第1抵抗器R1が第1基板PCB1に配置されることで、これらを接続する導電パターンが短くなるため、寄生抵抗r1を低減できる。これにより、第2電源コネクタBC-と第2ヒータコネクタHC-とが短絡した時に流れる短絡電流を微弱なものにできる。
 第1ヒータコネクタHC+および第2ヒータコネクタHC-は、第1基板PCB1の互いに異なる面に配置されてもよいし、同一面に配置されてもよい。図13の例では、第1ヒータコネクタHC+および第2ヒータコネクタHC-は、第1基板PCB1の第2面S12に配置されてもよい。第1ヒータコネクタHC+および第2ヒータコネクタHC-が同一基板の同一面に配置された構成によれば、製造時において第1ヒータコネクタHC+および第2ヒータコネクタHC-へヒータHTのリード線を接続しやすくなる。これによりエアロゾル発生装置AGD又は電源ユニットPSUのコストを低減できる。
 電源BTの正極に電気的に接続された第1電源コネクタBC+、および、電源BTの負極に接続された第2電源コネクタBC-は、第1基板PCB1に配置されうる。電源BTから出力される電流が流れる経路は、第1電源コネクタBC+に接続された第1導電路PT1と、第2電源コネクタBC-に接続された第2導電路PT2とを含む。第1抵抗器R1および第2抵抗器R2は、第2導電路PT2に配置されうる。この構成によれば、計測回路100のVRSP端子とVRSM端子に対する同相入力電圧と、保護回路90のCS端子とVSS端子に対する同相入力電圧と、を小さな値とすることができる。これにより、高価及び/又はサイズが大きな計測回路100や保護回路90が不要になるため、エアロゾル発生装置AGD又は電源ユニットPSUのコストやサイズを低減できる。
 第1抵抗器R1を使って電源BTの状態(例えば、残容量、SOCなど)を計測する計測回路100は、複数の基板PCB1、PCB2、PCB3、PCB4のうち、第1抵抗器R1が配置される基板と同一基板、即ち第1基板PCB1に配置されうる。他の観点において、計測回路100は、複数の素子配置面(S11、S12、S21、S22等)のうち、第1抵抗器R1が配置される素子配置面と同一素子配置面、例えば、第1面S11に配置されうる。これらの構成によれば、第1抵抗器R1と計測回路100のVRSP端子及びVRSM端子を物理的に近づけて配置できる。これにより、第1抵抗器R1と計測回路100のVRSP端子との間に存在する寄生抵抗r2と、第1抵抗器R1と計測回路100のVRSM端子との間に存在する寄生抵抗r3を低減できる。このような寄生抵抗の低減は、計測回路100による電源BTの状態の高精度な計測を可能とする。また、第1抵抗器R1と計測回路100のVRSP端子及びVRSM端子とを接続する導電パターンを短くすることができる。また、第1抵抗器R1と計測回路100のVRSP端子とを接続する導電パターンの長さを、第1抵抗器R1と計測回路100のVRSM端子とを接続する導電パターンの長さと容易に同程度にできる。これらも、計測回路100による電源BTの状態の高精度な計測を可能とする。
 第1抵抗器R1および第2ヒータコネクタHC-は、それぞれ第1基板PCB1の互いに反対側の面に配置されうる。図13の例では、第1抵抗器R1は、第1基板PCB1の第1面S11に配置され、第2ヒータコネクタHC-は、第1基板PCB1の第2面S12に配置されている。第1基板PCB1の2つの面S11、S12のうちの一方に対する正射影において、第1抵抗器R1の少なくとも一部は、第2ヒータコネクタHC-の少なくとの一部と重なりうる。他の観点において、第1基板PCB1の2つの面S11、S12のうちの一方に対する正射影において、第1抵抗器R1は、第2ヒータコネクタHC-の領域内に配置されうる。このような配置は、第2電源コネクタBC-と第2ヒータコネクタHC-との間の好ましくない寄生抵抗値(前述の寄生抵抗r1の抵抗値)を低減するために有利であり、これは、例えば、第2電源コネクタBC-と第2ヒータコネクタHC-との間の短絡電流を低減するために有利である。
 第2導電路PT2は、第1抵抗器R1と第2ヒータコネクタHC-との間に配置されたスイッチSSを含みうる。スイッチSSおよび第2ヒータコネクタHC-は、第1基板PCB1の同一面に配置されうる。図13に示された例では、スイッチSSおよび第2ヒータコネクタHC-は、第1基板PCB1の第2面S12に配置されている。スイッチSSは、それと同一面、即ち第2面S12に配置された電子部品の中で、第2ヒータコネクタHC-に最も近い素子でありうる。他の観点において、スイッチSSは、それと同一面、即ち第2面S12に配置された能動素子の中で、第2ヒータコネクタHC-に最も近い素子でありうる。このような構成によれば、エアロゾル発生装置AGD又は電源ユニットPSUの不使用時などにおいてスイッチSSをオフしておくことで、ヒータHT、第1ヒータコネクタHC+及び第2ヒータコネクタHC-から侵入しうる静電気やノイズなどが、第1抵抗器R1や第2導電路PT2へ侵入しにくくなる。
 第2導電路PT2には、第1抵抗器R1と直列に接続されるように配置されたスイッチ部SWPを更に備えうる。このような構成によれば、過電流、過放電、過充電などの異常が電源BTに生じた場合、スイッチ部SWPを開くことで、電源BTを保護することができる。
 第1抵抗器R1およびスイッチ部SWPは、第1基板PCB1の同一面、図13に示された例では、第1面S11に配置されている。また、第1抵抗器R1およびスイッチ部SWPの他、第2抵抗器R2も、第1基板PCB1の同一面、例えば第1面S11に配置されうる。第1基板PCB1の2つの面S11、S12のうちの一方に対する正射影において、スイッチSWPの少なくとも一部は、第2ヒータコネクタHC-の少なくとの一部と重なりうる。このような構成によれば、第2導電路PT2を短くできるので、第2導電路PT2の寄生抵抗を低減できる。これにより、第2電源コネクタBC-と第2ヒータコネクタHC-とが短絡した時に流れる短絡電流を微弱なものにできる。
 保護回路90は、第2導電路PT2を流れる電流又はVBAT端子へ入力される電源BTの正極の電位(電源BTの出力電圧)に応じて、電源BTを保護するようにスイッチ部SWPを制御しうる。このような構成によれば、過電流、過放電、過充電などの異常が電源BTに生じた場合、電源BTを保護することができる。
 スイッチ部SWPは、第2導電路PT2における第1抵抗器R1と電源BTの負極(あるいは、第2電源コネクタBC-)との間に配置されうる。このような構成によれば、後述するように、第1トランジスタSDがオフされている状態でも、計測回路100と制御部130はそれぞれのICインターフェースを介して通信が可能になる。併せて、保護回路90による電源BTの保護をなるべく長く機能させることができると共に、さらなる電源BTの放電を極限まで抑制できる。
 保護回路90は、第1抵抗器R1と直列接続されるように第2導電路PT2に配置された第2抵抗器R2を使って、第2導電路PT2を流れる電流を検出しうる。第1抵抗器R1および第2抵抗器R2は、第1基板PCB1の同一面、例えば第1面S11に配置されうる。第2抵抗器R2は、第2導電路PT2におけるスイッチ部SWPと電源BTの負極(あるいは、第2電源コネクタBC-)との間に配置されうる。第1抵抗器R1および第2抵抗器R2は、第1抵抗器R1と第2抵抗器R2との間の最短距離が第1抵抗器R1の最大寸法および第2抵抗器R2の最大寸法の少なくとも一方より小さいように配置されうる。これらの構成は、第1抵抗器R1と第2抵抗器R2との間の寄生抵抗を低減するために有利である。
 一例において、計測回路100は、第1基板PCB1に配置され、制御部130は、第2基板PCB2に配置されうる。計測回路100および制御部130とは、互いに通信する機能を有しうる。計測回路100及び制御部130は、それぞれが内部で多くの演算を行うため、ノイズ発生源となる虞がある。これらを互いに異なる基板に配置することで、一方で発生したノイズが他方へ影響を及ぼしにくくなる。
 計測回路100のVDD端子(電源端子)には、変圧回路30によってVCC33ラインを介して電圧VCC33が供給されうる。変圧回路30は、電源BTから充電回路20を介して供給される電圧VCCを変圧して電圧VCC33_0を生成し、ロードスイッチ40を介して電圧VCC33として計測回路100のVDD端子(電源端子)に供給しうる。このような構成によれば、計測回路100のVDD端子(電源端子)へ供給される電圧VCC33が安定する。これにより、計測回路100の動作が安定する。
 一例において、計測回路100は、第1基板PCB1に配置され、変圧回路30は、第2基板PCB2に配置されうる。変圧回路30は、変圧を実行する際にノイズを発生させる虞がある。このような構成によれば、ノイズ発生源になる虞がある変圧回路30から計測回路100を物理的に離すことができるので、計測回路100の動作が安定する。
 電源BTから供給される電圧を変圧してヒータHTに供給する電圧VBOOSTを発生する変圧回路120は、第1基板PCB1に配置されうる。このような構成によれば、ヒータHTにエアロゾル源を加熱するために適切な電圧VBOOSTを供給できる。これにより、高度に量や香味が制御されたエアロゾルをエアロゾル発生装置AGDのユーザに提供できる。
 変圧回路120の出力とヒータHTとを電気的に接続する経路には、スイッチSHが配置されうる。スイッチSHは、第1基板PCB1に配置されうる。スイッチSHは、例えば、第1基板PCB1の第1面S11に配置されうる。スイッチSHにはヒータHTを発熱させるための大電力が変圧回路120から供給されるため、スイッチSH及び変圧回路120を接続する導電パターンは、太く且つ短くすることが好ましい。このような構成によれば、スイッチSH及び変圧回路120は第1基板PCB1に配置されるため、太く且つ短い導電パターンを形成しやすくなる。これにより、上述した大電流が流れても導電パターンにおいて熱やノイズが発生しにくくなる。
 ヒータHTの抵抗値あるいは温度を検出する検出回路を構成するOPアンプA1は、第1基板PCB1に配置されうる。OPアンプA1は、例えば、第1基板PCB1の第1面S11に配置されうる。
 図14には、保護回路90および計測回路100ならびにそれらの周辺に配置された電子部品が示されている。また、図14には、制御部130も示されている。エアロゾル発生装置AGDあるいは電源ユニットPSUは、電源BTの正極、あるいは第1電源コネクタBC+に電気的に接続された第1導電路PT1と、電源BTの負極、あるいは第2電源コネクタBC-に電気的に接続された第2導電路PT2と、を備えうる。制御部130は、電源BTから供給される電圧あるいは電力を使ってエアロゾル源を加熱するためのヒータHTの発熱を制御しうる。計測回路100は、第2導電路PT2に配置されうる第1抵抗器R1を使って電源BTの状態を計測しうる。スイッチ部SWPは、第2導電路PT2(および第1導電路PT1)を流れる電流を遮断可能に第2導電路PT2における第1抵抗器R1と電源BTの負極(あるいは第2電源コネクタBC-)との間に配置されうる。保護回路90は、第2導電路PT2を流れる電流およびVBAT端子に供給される電源BTの正極の電位に応じて、電源BTを保護するようにスイッチ部SWPを制御しうる。保護回路90は、第2導電路PT2におけるスイッチ部SWPと電源BTの負極(あるいは第2電源コネクタBC-)との間に配置された第2抵抗器R2を使って、第2導電路PT2を流れる電流を検出しうる。
 エアロゾル発生装置AGDあるいは電源ユニットPSUは、スイッチ部SWPとは別に、ヒータHTおよび第2導電路PT2を流れる電流を遮断可能に第2導電路PT2に配置され、遮断スイッチとして利用可能なスイッチSSを備えうる。制御部130は、計測回路100とIC通信等の通信規格に従って通信を行うことができる。制御部130は、計測回路100による計測結果に基づいて第2導電路PT2を流れる電流が遮断されるように遮断スイッチとしてのスイッチSSを制御しうる。
 図15には、保護回路90が放電時過電流又は電源BTの過放電状態を検出して第1トランジスタSDをオフさせ第2導電路PT2(電源BTの放電経路)が遮断された状態が模式的に示されている。変圧回路30は、制御部130および計測回路100に電圧を供給する電圧供給部として機能しうる。電圧供給部として機能しうる変圧回路30には、電源BTから第1導電路PT1および第2導電路PT2を介して電圧あるいは電力が供給されうる。第2導電路PT2を流れる電流が遮断されると、制御部130および計測回路100に電圧を供給する電圧供給部として機能する変圧回路30には、電源BTの正極と負極との間の電圧、即ち電源電圧が供給されない。そのため、変圧回路30は、そのVOUT端子から電圧VCC33_0を出力することができなくなる。したがって、ロードスイッチ40による制御部130および計測回路100に対するVCC33の供給も停止する。よって、制御部130および計測回路100は、動作を停止する。このとき、電源ユニットPSUによる消費電流は、保護回路90が電源BTの出力電圧を取得するためにVBAT端子-VSS端子間を流れる電流と、保護回路90が動作するためにVDD端子(電源端子)へ供給される電流のみとなる。これは、微小な電流である。
 一方、保護回路90の位置と計測回路100の位置が入れ替えられた構成では、計測回路100のVBAT端子-VSS端子間を流れる電流も追加的に消費されることになり、この電流が電源BTの過放電のさらなる進行や電源BTの深放電を引き起こしうる。したがって、保護回路90によって制御されるスイッチ部SWPは、第2導電路PT2における第1抵抗器R1と電源BTの負極(第2電源コネクタBC-)との間であることが、電源BTの保護の観点で有利である。
 保護回路90は、電源BTから保護回路90のVBAT端子に供給される電位が、電源BTが回復不能な深放電状態に至っている可能性を示している場合には、図16に示されるように、COUN端子をローレベルに固定し、第2スイッチSCを永久的にオフ状態に固定するように構成されてもよい。これにより、深放電状態に至った可能性のある電源BTが充電不能になるため、電源ユニットPSUあるいはエアロゾル発生装置AGDの安全性を向上させることができる。あるいは、保護回路90は、放電時過電流を検出して第1トランジスタSDをオフさせた後、保護回路90は、所定の時間にわたって、図16に示されるように、第2トランジスタSCもオフさせてもよい。
 保護回路90は、充電時過電流又は電池BTの過充電状態を検出した場合には、第2トランジスタSCを所定の時間にわたってオフさせうる。この際に、保護回路90は、第1トランジスタSDもオフさせもよい。
 図17には、第1トランジスタSDがオフされ且つUSBコネクタUSBCにUSBケーブルが接続された状態が模式的に示されている。ここで、USBコネクタUSBCにUSBケーブルが接続されることは、USBコネクタUSBCにUSBケーブルを介して外部機器が接続されるものとして理解されてもよい。このとき、充電回路20は、デフォルトで設定される第1パワーパスモードで動作しうる。具体的には、充電回路20は、SYS端子とBAT端子とを電気的に分離した状態で、VBUS端子とSYS端子とを電気的に接続し、VCC5ラインを介してUSBコネクタUSBCから供給される電圧VCC5を使ってVCCラインに電圧VCCを供給しうる。これに応じて、制御部130および計測回路100に電圧を供給する電圧供給部として機能する変圧回路30がVCC33_0ラインに電圧VCC33_0を供給し、ロードスイッチ40がVCC33ラインに電圧VCC33を供給しうる。これにより、制御部130および計測回路100に電圧VCC33が供給され、制御部130および計測回路100が動作を開始あるいは再開しうる。即ち、エアロゾル発生装置AGDあるいは電源ユニットPSUに外部機器が接続されることによって変圧回路30がロードスイッチ40を介して制御部130および計測回路100に電圧VCC33を供給し、制御部130および計測回路100が動作を開始あるいは再開しうる。このとき、制御部130は、スリープモードで動作しうる。
 再び動作を開始した制御部130は、計測回路100から電源BTの出力電圧(正極の電位)を取得し、および/または、スイッチ回路80をオンさせ、PC2端子に供給される電位に基づいて電源BTの電位を取得するように動作しうる。そして、制御部130がその取得した電位に基づいて電源BTが深放電に至っていないと判断した場合、あるいは、電源BTを充電可能と判断した場合には、PB3端子から充電回路20の/CE端子にローレベルを供給し、充電回路20を充電モードに移行させる。これにより、図18に模式的に示されるように、充電回路20は、BAT端子とGND端子との間に電源BTを充電するための電圧を出力し、電源BTが充電される。電源BTが深放電に至っていないものの過放電状態にあると判断された場合、充電回路20は、電源BTが深放電状態及び過放電状態でない場合よりも小さい電流で電源BTを充電することが好ましい。
 電源BTの残容量が所定値を超えている場合、あるいは、充電によって電源BTの残容量が所定値を超えた場合には、保護回路90は、図19に模式的に示されているように、DOUT端子からハイレベルを出力し、第1トランジスタSDをオンさせうる。電源BTの残容量が十分に回復し、放電を再開してもすぐさま過放電状態に至らないと判断したためである。
 図14から図19に例示された構成では、スイッチ部SWPは、計測回路100が電源BTの状態を計測するために用いる第1抵抗器R1と、電源BTの負極に接続される第2電源コネクタBC-との間に配置されうる。このような構成によれば、図17のような第1パワーパスモードによって電圧VUSBから生成された電圧VCC33で計測回路100と制御部130が動作し、且つ、第1トランジスタSDがオフされている状態でも、計測回路100のVSS端子と制御部130のVSS端子は同電位になる。つまり、計測回路100と制御部130はそれぞれのICインターフェースを介して通信が可能になる。また、第1トランジスタSDがオフされている状態では、第1電源コネクタBC+と第2電源コネクタBC-は、保護回路90とのみ閉回路を構成する。これにより、保護回路90による電源BTの保護をなるべく長く機能させることができると共に、さらなる電源BTの放電を極限まで抑制できる。
 一方で、図14から図19に例示された構成から、計測回路100及び第1抵抗器R1と、保護回路90、第2抵抗器R2及びスイッチ部SWPとを入れ替えた構成を検討する。このような構成では、計測回路100のVSS端子と制御部100のVSS端子との間にスイッチ部SWPが設けられる。従って、第1トランジスタSDがオフされてしまうと、計測回路100のVSS端子と制御部130のVSS端子が切り離され、これらは異なる電位になってしまう。基準電位が入力されるべきVSS端子に異なる電位が入力される回路間では、ICインターフェースを介して通信が困難になる。また、第1トランジスタSDがオフされている状態において、第1電源コネクタBC+と第2電源コネクタBC-は、保護回路90とだけでなく計測回路100とも閉回路を構成してしまう。つまり、さらなる電源BTの放電を極限まで抑制できない。
 従って、図14から図19に例示された構成は、該構成から計測回路100及び第1抵抗器R1と、保護回路90、第2抵抗器R2及びスイッチ部SWPとを入れ替えた構成に比して、ICインターフェースを介した通信が良好に行える点と、電源BTの放電を極限まで抑制できる点で有利である。
 図20には、第1基板PCB1における電子部品の配置例が示されている。第1抵抗器R1と計測回路100との間の最短距離D11は、第2抵抗器R2と保護回路90との最短距離D12よりも小さいことが好ましい。ここで、計測回路100は、電源BTの状態、例えば、電源BTの残容量およびSOCを高い精度で計算するために、第1抵抗器R1を流れる電流を高い精度で検出し積算する必要がある。したがって、寄生抵抗による影響を可能な限り排除するために、第1抵抗器R1と計測回路100との間の最短距離D11を可能な限り小さくすることが有利である。一方、保護回路90は、例えば、第2抵抗器R2を流れる電流が閾値を超えた場合にスイッチ部SWPを遮断すれば十分である。したがって、保護回路90の方が計測回路100よりもノイズに対して寛容である。よって、D11<D12であることは、限られた基板面積の中でどのように電子部品を配置するかについての1つの設計指針でありうる。もちろん、D11<D12は、1つの観点における条件であり、例えば、D11<0.9×D12、D11<0.8×D12、D11<0.7×D12、D11<0.6×D12、D11<0.5×D12、D11<0.4×D12、D11<0.3×D12、D11<0.2×D12、D11<0.1×D12のように、要求精度やエアロゾル発生装置AGDの仕様に応じた条件が設けられうる。
 第1抵抗器R1と計測回路100とは、同一の基板の同一平面、例えば、第1基板PCB1の第1面S11に配置されうる。第1抵抗器R1と計測回路100とが同一平面に配置される構成は、両者がビアあるいはスルーホールを介さずに同一平面内の導電パスによって接続されることを可能にする。これにより、第1抵抗器R1と計測回路100のVRSP端子との間に存在する寄生抵抗r2と、第1抵抗器R1と計測回路100のVRSM端子との間に存在する寄生抵抗r3を低減できる。このような寄生抵抗の低減は、計測回路100による電源BTの状態の高精度な計測を可能とする。また、第1抵抗器R1と計測回路100のVRSP端子及びVRSM端子とを接続する導電パターンを短くすることができる。また、第1抵抗器R1と計測回路100のVRSP端子とを接続する導電パターンの長さを、第1抵抗器R1と計測回路100のVRSM端子とを接続する導電パターンの長さと容易に同程度にできる。これらも、計測回路100による電源BTの状態の高精度な計測を可能とする。
 第2抵抗器R2および保護回路90も、同一の基板の同一平面、例えば、第1基板PCB1の第1面S11に配置されうる。このような構成によれば、第2抵抗器R2と計測回路90のCS端子との間に存在する寄生抵抗r4の抵抗値と、第2抵抗器R2と保護回路90のVSS端子との間に存在する寄生抵抗r5の抵抗値も低減できる。このような寄生抵抗の抵抗値の低減は、保護回路90よる電源BTの高精度な保護を可能とする。
 一例において、第1抵抗器R1、第2抵抗器R2、計測回路100および保護回路90は、同一の基板の同一平面、例えば、第1基板PCB1の第1面S11に配置されうる。このような構成によれば、寄生抵抗r2、r3、r4及びr5の抵抗値を低減できる。これにより、計測回路100による電源BTの状態の高精度な計測と、保護回路90よる電源BTの高精度な保護が同時に可能となる。
 他の観点において、第1抵抗器R1、第2抵抗器R2、計測回路100および保護回路90は、同一の基板、例えば、第1基板PCB1に配置されうる。第1基板PCB1は、ヒータHTが配置される側の端部EEを有し、第1抵抗器R1と端部EEとの間の最短距離は、計測回路100と端部EEとの間の最短距離よりも小さいことが好ましい。基板における端部は、該基板における中央部よりも静電気などの外来ノイズを受けることが予見される。これは、外来ノイズは、一般的に基板における端部から基板に侵入するからである。特に端部EEは、ヒータHTが配置される側の端部であるため、挿入孔C104に対する挿入物の挿抜時や、スライダC102の開閉時に生じた静電気が侵入する虞がある。また、基板の中央部は、全周的に他の電子部品によって囲まれることから、これら他の電子部品が外来ノイズに対する物理的な障壁になるからである。つまり、このような構成によれば、計測回路100が端部EEから離されることにより、計測回路100が外来ノイズの影響を受けにくくなる。
 また、第2抵抗器R2と端部EEとの間の最短距離は、保護回路90と端部EEとの間の最短距離よりも小さいことが好ましい。このような構成によれば、保護回路90が端部EEから離されることにより、保護回路90が外来ノイズの影響を受けにくくなる。
 これらは、第1抵抗器R1および/第2抵抗器R2を第1基板PCB1の端部EEの近くに配置するという思想を具体化した例を提供する。
 計測回路100と端部EEとの間の最短距離は、保護回路90と端部EEとの間の最短距離よりも小さいことが好ましい。保護回路90は、電源BTに異常が生じた際にその充電及び/又は放電を禁止することで、電源BT及びエアロゾル発生装置AGDを保護する役割を果たす。換言すれば、保護回路90は、計測回路100よりも重要である。このような構成によれば、保護回路90は、端部EEからより離されることになり、外来ノイズの影響をより受けにくくなる。これにより、エアロゾル発生装置AGDの安全性が向上する。
 第1基板PCB1には、ヒータHTの正側端子が電気的に接続される第1ヒータコネクタHC+と、ヒータHTの負側端子が電気的に接続される第2ヒータコネクタHC-とが配置されうる。第1ヒータコネクタHC+と端部EEとの間の最短距離、および、第2ヒータコネクタHC-と端部EEとの間の最短距離は、計測回路100と端部EEとの間の最短距離よりも小さいことが好ましい。このような構成は、外来ノイズから計測回路100を保護する観点から有利である。
 第1抵抗器R1および第2抵抗器R2は、第1基板PCB1の第1面S11に配置され、第1ヒータコネクタHC+および第2ヒータコネクタHC-は、第1基板PCB1の第2面S12に配置されうる。このような構成は、第1基板PCB1の第1面S11及び第2面S12に電子部品を効率的に配置する観点から有利である。換言すれば、比較的にサイズの大きいこれらの電子部品を第1面S11と第2面S12のうち一方へまとめて配置してしまうと、第1基板PCB1の基板面積が大きくなったり、導電パターンの形成や他の電子部品の配置に対する大きな制約になってしまったりする虞がある。
 第1面S11に対する正射影において、第2ヒータコネクタHC-の少なくも一部は、第1抵抗器R1および第2抵抗器R2の少なくとも一方の少なくとも一部と重なるように配置されうる。あるいは、図示された例とは異なるが、該正射影において、第1ヒータコネクタHC+の少なくも一部は、第1抵抗器R1および第2抵抗器R2の少なくとも一方の少なくとも一部と重なるように配置されてもよい。このような構成も、第1基板PCB1の第1面S11及び第2面S12に電子部品を効率的に配置する観点から有利である。
 スイッチ部SWPは、第1基板PCB1の第1面S11に配置されうる。このような構成も、第1基板PCB1の第1面S11及び第2面S12に電子部品を効率的に配置する観点から有利である。
 制御部130によって制御されヒータHTを通して流れる電流を遮断する遮断スイッチとして利用可能なスイッチSSは、第2ヒータコネクタHC-と第1抵抗R1とを電気的に接続する経路に配置されうる。前述した通り、スイッチSSにより、ヒータHT、第1ヒータコネクタHC+及び第2ヒータコネクタHC-から侵入しうる静電気やノイズなどが、第1抵抗器R1や第2導電路PT2へ侵入しにくくなる。
 スイッチSSは、第1基板PCB1の第2面12に配置されうる。このような構成も、第1基板PCB1の第1面S11及び第2面S12に電子部品を効率的に配置する観点から有利である。
 スイッチSSと端部EEとの間の最短距離は、計測回路100と端部EEとの間の最短距離よりも小さいことが好ましい。このような構成によれば、計測回路100が端部EEから離されることとスイッチSSが外来ノイズに対する物理的な障壁になることにより、計測回路100が外来ノイズの影響を受けにくくなる。
 変圧回路120の出力と第1ヒータコネクタHC+とを電気的に接続する経路に配置されヒータスイッチとして機能するスイッチSHは、第1基板PCB1に配置されうる。スイッチSHと端部EEとの間の最短距離は、計測回路100と端部EEとの間の最短距離よりも小さいことが好ましい。このような構成によれば、計測回路100が端部EEから離されることとスイッチSHが外来ノイズに対する物理的な障壁になることにより、計測回路100が外来ノイズの影響を受けにくくなる。
 なお、スイッチSHは、ヒータHTの温度が目標温度に維持されるように、PWM(Pulse Width Modulation,パルス幅変調)方式又はPFM(Pulse Frequency Modulation,パルス周波数変調)方式により高速でスイッチングされうる。スイッチSHにはヒータHTを発熱させるための大電力が供給され且つ高速でスイッチングされうる。
 スイッチSHは、第1基板PCB1の第1面S11に配置されうる。第1基板PCB1の第1面S11に対する正射影において、スイッチSHの少なくとも一部は、第1ヒータコネクタHC+少なくとも一部と重なるように配置されうる。このような構成は、スイッチSHと第1ヒータコネクタHC+の間の寄生抵抗を小さくするために有利である。あるいは、図示された例とは異なるが、該正射影において、スイッチSHの少なくとも一部は、第2ヒータコネクタHC-少なくとも一部と重なるように配置されてもよい。
 このような構成において、第1抵抗器R1と第2抵抗器R2との間の最短距離は、第1抵抗器R1の最大寸法および第2抵抗器R2の最大寸法の少なくとも一方より小さくてもよい。このような構成も、第1基板PCB1の第1面S11及び第2面S12に電子部品を効率的に配置する観点から有利である。
 図21には、第1基板PCB1における電子部品の配置例が示されている。電源BTの温度を測定するためのサーミスタTBは2つの端子を有し、それらは2つのサーミスタコネクタTBC1、TBC2にそれぞれ電気的に接続されうる。計測回路100は、第1抵抗器R1を使って電源BTの状態(例えば、残容量、SOCなど)を計測し、かつ、サーミスタTBを使って電源BTの温度を計測するように構成されうる。
 第1抵抗器R1、2つのサーミスタコネクタTBC1、TBC2および計測回路100は、第1基板PCB1に配置されうる。1つの側面において、2つのサーミスタコネクタTBC1、TBC2と計測回路100との間の最短距離D13は、第1抵抗器R1と計測回路100との最短距離D11よりも小さいことが好ましい。第1抵抗器R1と、2つのサーミスタコネクタTBC1及びTBC2に接続されるサーミスタTBとは、いずれも計測回路100による電源BTの状態の計測に用いられる重要なパラメータである。第1抵抗器R1とは異なりサーミスタTBの抵抗値から間接的に取得される電源BTの温度には、誤差が生じやすい。このような構成によれば、少なくとも、計測回路100が電源BTの温度を取得する際に、寄生抵抗による誤差を低減できる。これにより、計測回路100は、第1抵抗器R1及びサーミスタTBから誤差の少ない状態で、電源BTの状態を計測するために必要なパラメータを取得できる。
 電源BTは、例えば、エアロゾル発生装置AGDあるいは電源ユニットPSUを構成する全ての部品の中で最も体積が大きい部品でありうる。電源BTは、例えば、エアロゾル発生装置AGDあるいは電源ユニットPSUの体積の20%以上、25%以上または30%以上を占めうる。サーミスタTBは、電源BTの側面の少なくとも一部に沿って配置されうる。また、サーミスタTBは、アウターケースC101と電源BTとの間、あるいは、アウターケースC101の内側面の近傍に配置されうる。このような点を考慮すると、サーミスタTBが電気的に接続されるサーミスタコネクタTBC1、TBC2は、第1基板PCB1の全域(有効領域)のうち外縁近傍に配置されることがスペースの効率的な利用のために有利である。換言すると、サーミスタコネクタTBC1、TBC2が第1基板PCB1の中央やその近傍に配置されてしまうと、他の電子部品の配置、基板表面における導電パターンの形成、基板内部におけるグランド層の形成といった観点から不利である。
 計測回路100は、サーミスタTBの抵抗値を計測することによって電源TBの温度を計測あるいは検出し、その温度を1つのパラメータ値として使って電源BTの残量(例えば、残容量およびSOC)を算出しうる。したがって、電源TBの温度を正確に計測することは、電源BTの残量を正確に計測するために重要である。また、サーミスタコネクタTBC1、TB2と計測回路100との距離の増大は、サーミスタコネクタTBC1、TB2と計測回路100とを電気的に接続する導電パスの寄生抵抗値の増大をもたらし、これが電源BTの温度の計測精度を低下させうる。
 そこで、サーミスタコネクタTBC1、TBC2と計測回路100との間の最短距離D13を可能な限り小さくするように配置制約を設けることは、限られた基板面積の中でどのように電子部品を配置するかについての有利な設計思想である。D13<D11は、1つの観点における条件である。例えば、D13<0.9×D11、D13<0.8×D11、D13<0.7×D11、D13<0.6×D11、D13<0.5×D11、D13<0.4×D11、D13<0.3×D11、D13<0.2×D11、D13<0.1×D11のように、要求精度やエアロゾル発生装置AGDの仕様に応じた条件が設けられうる。
 計測回路100は、電源BTの温度を示す情報を制御部130に提供する第1機能、および、電源BTの温度の異常を制御部130に通知する第2機能を含みうる。制御部130は、該第2機能による計測回路100からの通知に応答して電源BTの放電および電源BTの充電の少なくとも一方を停止させるように構成されうる。これらの構成によれば、計測回路100は、制御部130からのポーリングに応じて制御部130へ電源BTの温度を示す情報を提供できるだけでなく、制御部130からのポーリングを待たずして制御部130へ電源BTの温度の異常を通知できる。これにより、電源BTの温度が異常でない場合における制御部130及び計測回路100の消費電力を抑制しつつ、電源BTの温度が異常になると、電源BT及びエアロゾル発生装置AGDを保護できる。
 計測回路100は、第1抵抗器R1を使って得られる情報(例えば、積算電流量)とサーミスタTBを使って得られる情報とに基づいて電源BTの残量(例えば、残容量およびSOC)を演算しうる。電源BTの残量は、第1抵抗器R1を使って得られる情報(例えば、積算電流量)だけでなく電源BTの温度にも依存する。このような構成によれば、計測回路100は、電源BTの残量(例えば、残容量およびSOC)を高精度に演算しうる。
 サーミスタTBの2つの端子は、2つのサーミスタコネクタTBC1、TBC2にそれぞれ直接に接続されうる。換言すると、サーミスタTBの2つの端子は、2つのサーミスタコネクタTBC1、TBC2のそれぞれに対して、導電ライン、能動素子および受動素子を介することなく接続されうる。これは、サーミスタコネクタTBC1、TBC2とサーミスタTBの2つの端子との間の寄生抵抗値を低減するという思想に合致する。
 サーミスタTBは、電源BTの周囲を少なくとも部分的に取り囲むように配置され、これは電源BTが相応の温度分布を有する場合において、電源BTの表面の平均化された温度を計測するために有利である。一例において、電源BTは、円柱形状を有し、サーミスタTBは、電源BTの円柱形状に沿った円弧形状部を含みうる。他の例において、電源BTは、角型形状を有し、サーミスタTBは、電源BTの角型形状に沿った構造あるいは形状を有しうる。
 計測回路100と第1抵抗器R1は、第1基板PCB1の同一面、例えば、第1面S11または第2面S12に配置されうる。この構成によれば、前述した通り、計測回路100による電源BTの状態の高精度な計測を可能とする。これに代えて、計測回路100と第1抵抗器R1は、第1基板PCB1の互いに異なる面に配置されてもよい。
 第1基板PCB1の外縁で構成される図形(閉図形)の幾何中心と計測回路100の幾何中心との距離は、該図形の該幾何中心と第1抵抗器R1との間の距離より小さいことが好ましい。あるいは、第1基板PCB1の外縁で構成される図形(閉図形)の幾何中心と計測回路100の幾何中心(あるいは面積重心)との距離は、該図形の該幾何中心と2つのサーミスタコネクタTB1、TB2との間の最短距離より小さいことが好ましい。あるいは、第1基板PCB1の外縁で構成される図形(閉図形)の幾何中心と計測回路100の幾何中心との距離は、該図形の該幾何中心と第1抵抗器R1との間の最短距離より小さく、該図形の該幾何中心と2つのサーミスタコネクタTBC1、TBC2の間の最短距離より小さいことが好ましい。基板の外縁は、静電気などの外来ノイズの影響を基板の幾何中心よりも受けやすい。従って、このような構成は、精密な継続回路100がノイズの影響を受けにくくするために有利である。
 電源BCが接続される2つの電源コネクタ、即ち、第1電源コネクタBC+および第2電源コネクタBC-は、第1基板PCB1に配置されうる。第1基板PCB1の外縁で構成される図形(閉図形)の幾何中心と計測回路100の幾何中心との距離は、該図形の該幾何中心と2つの電源コネクタBC+、BC-との間の最短距離より小さいことが好ましい。このような構成によれば、2つの電源コネクタBC+、BC-へ接続されるバスバーが、基板の外縁から侵入する外来ノイズに対する物理的な障壁になる。このバスバーは大電流が流れることから太いため、物理的な障壁として好適である。従って、計測回路100が、ノイズの影響をさらに受けにくくなる。
 制御部130は、第1抵抗器R1、2つのサーミスタコネクタTB1、TB2および計測回路100が配置された第1基板PCB1とは異なる基板、例えば、第2基板PCB2に配置されうる。計測回路100及び制御部130は、それぞれが内部で多くの演算を行うため、ノイズ発生源となる虞がある。これらを異なる基板に配置することで、一方で発生したノイズが他方へ影響を及ぼしにくくなる。
 図22には、電源BTの保護に関わる機能が例示されている。図中の「計測回路」、「充電回路」、「保護回路」の欄は、それぞれ計測回路100、充電回路20、保護回路90によって提供されうる機能を示している。「計測回路」における「IC」のカラムは、ICインターフェースを介して計測回路100から制御部130に提供される情報に基づいて制御部130がエラー処理を実行する際の条件を例示している。「nGAUGE_INT1」のカラムは、計測回路100のALERT端子から出力されるnGAUGE_INT1信号を例示している。「nGAUGE_INT2」のカラムは、計測回路100のIO5端子から出力されるnGAUGE_INT2信号を示している。「充電回路」(「IC」)のカラムは、ICインターフェースを介して充電回路20から制御部130に提供される情報に基づいて制御部130がエラー処理を実行する際の条件を例示している。「保護回路」のカラムは、保護回路90がスイッチ部SWPを遮断状態にする条件を例示している。
 制御部130は、ICインターフェースを介したポーリングによって、計測回路100から、電源BTの充電中の充電電流、電源BTの放電中の放電電流、電源BTの電圧、および、電源BTの放電および充電時における電源BTの温度を示す情報を取得することができる。制御部130は、例えば、計測回路100によって取得される充電電流が設定値の1.1倍以上になったらエラー処理を実行しうる。設定値は、充電回路20によって実行されるCCCV(定電流-定電圧)充電のうち定電流(CC)充電における充電電流値であってよい。また、制御部130は、電源BTの放電時の電源BTの温度の温度が55℃以上になったらエラー処理を実行しうる。また、制御部130は、電源BTの充電時の電源BTの温度の温度が51℃以上になったらエラー処理を実行しうる。また、制御部130は、例えば、充電時の電源BTの温度の温度が0℃以下になったらエラー処理を実行しうる。また、制御部130は、例えば、電源BTからの放電電流および電源BTの正極電位をICインターフェースを介して周期的にモニタリングし、それらに基づいて電源BTが深放電状態であるかどうかを判断しうる。図22に示された表においては、この深放電状態であるかどうかを判断する条件を、「内部アルゴリズム」として記載している。この「内部アルゴリズム」の詳細は、後述する。
 また、計測回路100は、例えば、電源BTからの放電電流が10A以上であること、電源BTの充電電流が3.0A以上であること、および、電源BTからの放電時の温度が2秒間にわたって60℃以上であることのいずれかを検出した場合に、nGAUGE_INT1信号をアクティブレベルに遷移させうる。nGAUGE_INT1信号のアクティブレベルは、例えば、ローレベルである。
 また、計測回路100は、電源BTからの放電電流が9.75A以上であること、電源BTの充電電流が2.75A以上であること、電源BTからの放電時の温度が2分間にわたって85℃以上であること、電源BTの充電時の温度が2分間にわたって85℃以上であること、電源BTからの放電時の温度が5秒間にわたって-5℃以下であること、電源BTの充電時の電源BTの正極電位が4.235V以上であること、電源BTからの放電時の電源BTの正極電位が2.8V以下であることのいずれかを検出した場合に、nGAUGE_INT2信号をアクティブレベルに遷移させうる。nGAUGE_INT2信号のアクティブレベルは、例えば、ローレベルである。計測回路100が取得する電源BTの正極電位は、電源BTの正極電位とVSS端子の電位の差に相当する。計測回路100のVSS端子と第2電源コネクタBC-は共にグランドラインへ接続されるため、計測回路100が取得する電源BTの正極電位は、電源BTの出力電圧に相当する。
 また、制御部130は、ICインターフェースを介したポーリングによって、充電回路20から電源BTの充電時におけるBAT端子の電位(電源BTの正極電位)を示す情報を取得することができる。充電回路20が取得するBAT端子の電位(電源BTの正極電位)は、BAT端子の電位(電源BTの正極電位)とGND端子の電位の差に相当する。充電回路20のGND端子と第2電源コネクタBC-は共にグランドラインへ接続されるため、充電回路20が取得するBAT端子の電位(電源BTの正極電位)は、電源BTの出力電圧に相当する。制御部130は、例えば、充電時のBAT端子の電位(電源BTの正極電位)が4.343V以上になったら、エラー処理を実行しうる。
 保護回路90は、例えば、電源BTからの放電電流が12.67A以上になったら第1トランジスタSDを遮断状態に変更しうる。保護回路90は、VBAT端子への入力に基づき、電源BTの正極電位を取得しうる。保護回路90が取得する電源BTの正極電位は、電源BTの正極電位とV-端子の電位の差に相当する。保護回路90のV-端子と第2電源コネクタBC-は共にグランドラインへ接続されるため、保護回路90が取得する電源BTの正極電位は、電源BTの出力電圧に相当する。保護回路90は、例えば、電源BTの充電時の電源BTの正極電位が4.28V以上になったら第2トランジスタSCを遮断状態に変更しうる。また、保護回路90は、例えば、電源BTからの放電時における電源BTの正極電位が2.5V以下になったら第1トランジスタSDを遮断状態に変更しうる。電源BTの充電時の電源BTの正極電位が4.28V以上の状態とは、前述した電源BTの過充電状態に相当する。電源BTの充電時の電源BTの正極電位が2.5V以下の状態とは、前述した電源BTの過放電状態に相当する。
 図23には、図22に示された計測回路100の機能を実現するための計測回路100の構成例が模式的に示されている。計測回路100は、例えば、電源BTの状態が異常状態になったことを検出する検出回路ABDと、検出回路ABDによる検出に応答して異常報知を出力する出力部ABNとを含みうる。検出回路ABDは、電源BTからの放電電流が10A以上であること、電源BTの充電電流が3.0A以上であること、電源BTからの放電時の温度が2秒間にわたって60℃以上であることを個別に検出する第1検出ロジック回路を含みうる。出力部ABNは、第1検出ロジック回路がそれらの少なくとも1つを検出した場合に、異常報知を出力する動作としてnGAUGE_INT1信号をアクティブレベルに遷移させる第1出力ロジック回路を含みうる。
 また、計測回路100は、電源BTからの放電電流が9.75A以上であること、電源BTの充電電流が2.75A以上であること、電源BTからの放電時の温度が2分間にわたって85℃以上であること、電源BTの充電時の温度が2分間にわたって85℃以上であること、電源BTからの放電時の温度が5秒間にわたって-5℃以下であること、電源BTの充電時の電源BTの正極電位が4.235V以上であること、電源BTからの放電時の電源BTの正極電位が2.8V以下であることのいずれかを個別に検出する第2検出ロジック回路を含みうる。出力部ABNは、第2検出ロジック回路がそれらの少なくとも1つを検出した場合に、異常報知を出力する動作としてnGAUGE_INT2信号をアクティブレベルに遷移させる第2出力ロジック回路を含みうる。
 図24には、計測回路100、制御部130、変圧回路120、充電回路20、情報保持回路FF1、FF2、OPアンプA2、A3等の接続例が示されている。制御部130は、電源BTから供給される電力を使ってエアロゾル源を加熱するためのヒータHTへの電力の供給および電源BTの充電を制御するように構成されうる。
 計測回路100は、電源BTの状態(例えば、残容量、SOC、温度等)を計測するように構成されうる。計測回路100は、図23に例示されるように、電源BTが異常状態になったことを検出する検出回路ABDと、検出回路ABDによる検出に応答して異常報知を出力する出力部ABNとを含みうる。出力部ABNは、例えば、ALERT端子から出力されるnGAUGE_INT1信号をアクティブレベル(ここでは、ローレベル)に遷移させることによって第1異常信号を出力し、IO5端子から出力されるnGAUGE_INT2信号をアクティブレベル(ここでは、ローレベル)に遷移させることによって第2異常信号を出力するように構成されうる。計測回路100は、制御部130からの要求に応じて電源BTの状態に関する状態情報を制御部130に提供するためのインターフェース、例えば、ICインターフェースを含みうる。ICインターフェースは、ALERT端子及びIO5端子とは異なるSCL端子及びSDA端子から構成されうる。
 制御部130は、異常報知および状態情報に応じて電源BTを保護する保護動作を実行するように構成されうる。該保護動作は、例えば、電源BTの充電を禁止すること、および/または、電源BTからヒータHTへの放電を禁止することを含みうる。
 計測回路100の出力回路ABNは、電源BTの充電電流が第1基準値を上回ったこと、および、電源BTからの放電電流が第2基準値を上回ったことの少なくとも1つに応じて異常報知を出力しうる。図22に示された例では、計測回路100の出力回路ABNは、電源BTの充電電流が3.0A以上であることに応じて、異常報知の出力として、nGAUGE_INT1信号をアクティブレベル(ここでは、ローレベル)に遷移させる。また、計測回路100の出力回路ABNは、電源BTからの放電電流が10A以上であることに応じて、異常報知の出力として、nGAUGE_INT1信号をアクティブレベル(ここでは、ローレベル)に遷移させる。また、計測回路100の出力回路ABNは、電源BTからの放電電流が9.75A以上であることに応じて、異常報知の出力として、nGAUGE_INT2信号をアクティブレベル(ここでは、ローレベル)に遷移させる。また、計測回路100の出力回路ABNは、電源BTの充電電流が2.75A以上であることに応じて、異常報知の出力として、nGAUGE_INT2信号をアクティブレベル(ここでは、ローレベル)に遷移させる。
 制御部130は、nGAUGE_INT2信号のアクティブレベル(ここでは、ローレベル)への遷移に応答して、ICインターフェースを介して計測回路100から状態情報を取得しうる。該状態情報は、上述した永久故障モードへ移行させるかどうかを制御部130が判断するための情報、および、永久故障モードへの移行を示す情報の少なくとも1つを含みうる。例えば、図22に示された例において、制御部130は、ICインターフェースを介して計測回路100から取得した状態情報が、電源BTからの放電時の温度が2分間にわたって85℃以上であること、または、電源BTの充電時の温度が2分間にわたって85℃以上であることを示している場合に、永久故障モードへ移行させると判断することができる。あるいは、計測回路100は、電源BTからの放電時の温度が2分間にわたって85℃以上である場合、および、電源BTの充電時の温度が2分間にわたって85℃以上である場合において、制御部130からのポーリングに応じて、永久故障モードへの移行を示す情報を状態情報として制御部130に提供してもよい。
 制御部130は、計測回路100から取得した情報、例えば、ICインターフェースを介して計測回路100から取得した情報に基づいて、電源BTの異常が発生したかどうかを判断しうる。これに加えて、または、これに代えて、制御部130は、計測回路100の出力部ABNからの出力に基づいて、電源BTの異常が発生したかどうかを判断しうる。また、制御部130は、電源BTの異常が発生したと判断した場合に、そのことを示す報知を行うように報知部NUを制御してもよい。そのような報知は、リセットのための所定の操作を行うことをユーザに対して促すものでありうる。そのような報知は、所定色の光の発生、点滅表示、所定音の発生、または、所定振動の発生等のいずれか、または、それらの2以上の組み合わせでありうる。
 制御部130は、永久故障モードへの移行を判断すると、エアロゾル発生装置AGDあるいは電源ユニットPSUを使用不能な状態に遷移させうる。制御部130は、例えば、充電回路20に対して、ICインターフェースを介して、全てのパワーパスモードでの動作を禁止するコマンドを送ることによって、充電回路20のSYS端子およびSW端子からの電圧の出力を停止させうる。これにより、電圧VCC、電圧VCC33_0、電圧VCC33は出力が停止されるので、制御部130に対する電力の供給が絶たれ、制御部130が動作不能な状態になる。充電回路20は、制御部130から送られた全てのパワーパスモードでの動作を禁止するコマンドを保持し続けるため、USBコネクタUSBCから電圧VBUSが供給されても、充電回路20のSYS端子およびSW端子から電圧は出力されない。これにより、永久故障モードから、他の全てのモードへの遷移が禁止される。このような動作は、故障したと判断される電源BTの充電および放電を禁止し、安全性を高めるために有用である。
 エアロゾル発生装置AGDあるいは電源ユニットPSUは、計測回路100からの異常報知に応答して、制御部130による制御によらずに、電源BTを保護する機能を有する保護ユニットPPPを備えてもよい。保護ユニットPPPは、制御部130による制御によって電源BTを保護する機能を更に含んでもよい。保護ユニットPPPは、例えば、情報保持回路FF1を含みうる。詳しくは後述するが、情報保持回路FF1は、計測回路100のALERT端子から出力されるnGAUGE_INT1信号がアクティブレベル(ここでは、ローレベル)に駆動されること(即ち、第1異常信号)に応じてnALARM_Latched信号をアクティブレベル(ここでは、ローレベル)に遷移させ、これにより、ヒータHTを駆動する電流経路に配置されたスイッチSSをオフさせうる。nGAUGE_INT1信号がアクティブレベルに駆動されたという情報(即ち、第1異常信号)は、情報保持回路FF1を介して制御部130のPA10端子にも提供されうる。具体的には、情報保持回路FF1は、/CLR端子を有するD型フリップフロップで構成されうる。周知の通りD型フリップフロップはハイレベルとローレベルをとりうる1ビットの情報を保持できるため、情報保持回路として用いることができる。nGAUGE_INT1信号は、情報保持回路FF1(D型フリップフロップ)の/CLR端子に供給されうる。nALARM_Latched信号は、情報保持回路FF1(D型フリップフロップ)のQ端子から出力されうる。負論理である/CLR端子に供給されるnGAUGE_INT1信号がローレベルに遷移すると、情報保持回路FF1(D型フリップフロップ)は、保持する情報のレベルをローレベルに固定する。情報保持回路FF1(D型フリップフロップ)のQ端子からは保持する情報のレベルと同じレベルが出力される。このような構成によれば、nGAUGE_INT1信号のアクティブレベル(ここでは、ローレベル)への遷移に応じて、nALARM_Latched信号をアクティブレベル(ここでは、ローレベル)に遷移させられる。後述されるようにnALARM_Latched信号は、変圧回路120のEN端子や、スイッチSLを構成するトランジスタのベースあるいはゲートにも提供されうる。
 換言すると、計測回路100は、ヒータHTに対する通電(発熱)又は電源BTの充電を禁止すべき基準(条件)が満たされたと判断した場合に、計測回路100のALERT端子から出力されるnGAUGE_INT1信号をアクティブレベルに駆動し、これに応答して、保護ユニットPPPは、制御部130による制御を介することなく、スイッチSSをオフさせる。これにより、ヒータHTの発熱(ヒータHTへの電力の供給)が禁止される。
 図22の例では、電流が10A以上であること、電源BTの充電電流が3.0A以上であること、および、電源BTからの放電時の温度が2秒間にわたって60℃以上であることのいずれかの基準が満たされた場合に、nGAUGE_INT1信号がアクティブレベルに遷移される。このような基準としては、他の基準が設定されてもよい。例えば、計測回路100は、放電電流の値、充電電流の値、電源BTの放電時の電源BTの温度、電源BTの充電時の電源BTの温度、電源BTの放電時の電源BTの正極電位(出力電圧)、電源BTの充電時の電源BTの正極電位(出力電圧)の少なくとも1つがヒータHTに対する電力の供給又は電源BTの充電を禁止すべき基準を満たしたことに応じて、nGAUGE_INT1信号がアクティブレベルに駆動しうる。
 保護ユニットPPPが異常報知に応答して電源BTを保護した後、制御部130は、ICインターフェースを介して計測回路100から取得される状態情報が、電源BTが異常状態ではないことを示している場合に、ヒータHTへの電力の供給や電源BTの充電を可能にしてもよい。例えば、保護ユニットPPPが異常報知に応答して電源BTを保護した後、制御部130は、報知部NUを使ってユーザに対してリセットあるいは再起動のための操作を促しうる。これによって制御部130がリセットあるいは再起動されると、制御部130は、ICインターフェースを介して計測回路100から状態情報を取得し、あるいは、nGAUGE_INT1信号のレベルを確認し、電源BTが異常状態ではない場合に、ヒータHTへの電力の供給や電源BTの充電を可能にすることができる。これとは逆に、制御部130がリセットあるいは再起動されることによって、制御部130は、ヒータHTへの電力の供給が可能な状態となってもよい。この場合、制御部130は、ICインターフェースを介して計測回路100から状態情報を取得し、その状態情報に応じて、必要な場合には、ヒータHTへの電力の供給を禁止しうる。
 以上のように、nGAUGE_INT1信号に応答した保護ユニットPPPによる電源BTの保護は、解除可能な保護として扱われうる。これは、保護ユニットPPPによる電源BTの保護は制御部130による制御を介しておらず、該保護が、保護ユニットPPPを構成するいずれかの電子部品の誤作動により生じる虞があるためである。また、フリーズなどの制御部130の障害により該保護が生じた場合、制御部130のリセットあるいは再起動により、エアロゾル発生装置AGDあるいは電源ユニットPSUを正常な状態に戻せる可能性があるためである。図22の「nGAUGE_INT2」のカラムに示された条件が「nGAUGE_INT1」のカラムに示された条件よりも先に満たされるように設定されているのは、制御部130にフリーズなどの障害が生じているかを判断するためでもある。
 一方、永久故障モードへの移行の判断によって動作不能になった状態は、原則的に解除できない。放電時又は充電時に電源BTの温度が2分間にわたって85℃以上である場合には、エアロゾル発生装置AGDあるいは電源ユニットPSUは、制御部130によって永久故障モードへ移行させられる。換言すれば、制御部130は電源BTの温度を取得できていることからも明らかなように、制御部130にはフリーズなどの障害が生じていない。それにも関わらず、電源BTの温度が高温になってしまう場合には、制御部130以外に回復不能なエラーが生じており、制御部130のリセットあるいは再起動によっても該エラーの解消が見込めない。そのため、エアロゾル発生装置AGDあるいは電源ユニットPSUを永久故障モードへ移行させる必要がある。
 制御部130は、周期的なポーリングによってICインターフェースを介して計測回路100から電源BTの状態に関する第1情報を取得し、また、異常報知に応答してICインターフェースを介して計測回路100から電源BTの状態に関する第2情報を取得することができる。制御部130は、電源BTが第1状態であることを該第1情報が示している場合に、電源BTを保護する動作を実行し、計測回路100は、電源BTが該第1状態よりも重要な第2状態になったことに応じて異常報知を出力しうる。図22を参照して一例を挙げると、制御部130は、第1状態(ヒータHTへの放電時における電源BTの温度が55℃以上という状態)であることを第1情報が示している場合に、電源BTを保護する動作(例えば、リセットの要求)を実行し、計測回路100は、電源BTが該第1状態よりも重要な第2状態(ヒータHTへの放電時又は充電時における電源BTの温度が2秒にわたって60℃以上という)になったことに応じて異常報知を出力(nGAUGE_INT1信号をアクティブレベルに駆動)しうる。この例では、第1情報および第2情報は、電源BTの温度を示す情報であるが、第1情報および第2情報は、他の状態(例えば、放電電流、充電電流)を示す情報であってもよい。
 1つの構成例において、制御部130は、第1情報が、電源BTの充電時に電源BTの状態が第1条件群に含まれるいずれかの条件を満たしている場合に、電源BTを保護する動作を実行し、第1情報が、電源BTの放電時に電源BTの状態が第2条件群に含まれるいずれかの条件を満たしている場合に、電源BTを保護する動作を実行し、ここで、該1条件群に含まれる条件の数は、該第2条件群に含まれる条件の数より多い。換言すれば、第1情報に基づく電源BTの保護は、放電時よりも充電時に強く機能することを意味する。これは、放電時と異なり充電時は電源BTの蓄えるエネルギーが増大し続けることから、充電時は電源BTの保護がより重要になるためである。また、放電時と異なり低温の充電は、負極における電析など電源BTの内部構造に不可逆的な変化をもたらす虞があることから、充電時は電源BTの保護がより重要になるためでもある。
 他の構成例において、制御部130は、第2情報が、電源BTの充電時に電源BTの状態が第3条件群に含まれるいずれかの条件を満たしている場合に、電源BTを保護する動作を実行し、第2情報が、電源BTの放電時に電源BTの状態が第4条件群に含まれるいずれかの条件を満たしている場合に、電源BTを保護する動作を実行し、ここで、該第3条件群に含まれる条件の数は、該第4条件群に含まれる条件の数より少ない。換言すれば、第2情報に基づく電源BTの保護は、充電時よりも放電時に強く機能することを意味する。これは、上述した通り、充電時は電源BTの蓄えるエネルギーが増大し続けたり、電源BTの内部構造に不可逆的な変化をもたらす虞があったりするためである。
 図25には、制御部130による計測回路100に対する周期的なポーリングによって取得される電源BTの状態に基づく電源BTの保護が模式的に示されている。制御部130は、計測回路100に対する周期的なポーリングによって計測回路100から電源BTの状態に関する状態情報を取得しうる。そして、制御部130は、該状態情報が、電源BTの保護のための基準を満たして場合に、電源BTを保護する保護動作を行いうる。該保護動作は、例えば、PC12端子から出力されるHeater_Enable信号をインアクティブレベル(ここでは、ローレベル)に遷移させ、変圧回路120の動作を停止させるとともに、ヒータHTの電流経路に配置されたスイッチSSをオフさせる動作を含みうる。該保護動作はまた、例えば、PB3端子から出力されるnCharger_Enable信号をインアクティブレベル(ここでは、ハイレベル)に遷移させ、充電回路20による電源BTの充電を停止させる動作を含みうる。具体的な一例として、変圧回路120のEN端子を正論理とし且つスイッチSSをNチャネル型のMOSFETで構成すれば、ローレベルに遷移させたHeater_Enable信号を変圧回路120のEN端子とスイッチSSのゲート端子へ供給することで、変圧回路120の動作が停止され且つスイッチSSがオフされうる。また、充電回路20の/CE端子を負論理にすれば、ハイレベルに遷移させたnCharger_Enable信号を充電回路20の/CE端子へ供給することで、充電回路20による電源BTの充電が停止されうる。
 該保護動作は、所定条件を満たすまでエラー処理モードを継続し、所定条件を満たした後にスリープモードに遷移する動作を含んでもよい。例えば、図22の例にしがって説明すれば、制御部130は、電源BTからの放電時に電源BTの温度が51℃以上になったらエラー処理モードに移行し、その後、電源BTの温度が45℃以下になったらスリープモードに移行しうる。
 図26には、計測回路100がnGAUGE_INT2信号をアクティブレベル(ここでは、ローレベル)に遷移させることによって第2異常信号を出力したことに応答した電源BTの保護が模式的に示されている。制御部130は、アクティブレベルへのnGAUGE_INT2信号の遷移(第2異常信号)に応答して計測回路100に対してポーリングを行って、計測回路100から電源BTの状態に関する状態情報を取得しうる。そして、制御部130は、該状態情報が、電源BTの保護のための基準を満たして場合に、電源BTを保護する保護動作を行いうる。該保護動作は、図25を参照して説明した保護動作と同じであってもよいし、異なってもよい。エアロゾル発生装置AGDあるいは電源ユニットPSUがスリープモードにあることで制御部130が計測回路100に対する周期的なポーリングを停止している場合、制御部130は、アクティブレベルに遷移したnGAUGE_INT2信号に基づき、制御部130が計測回路100に対する周期的なポーリングを再開しうる。換言すれば、nGAUGE_INT2信号は、制御部130に対する割り込み信号としても理解されうる。
 該保護動作は、所定条件を満たすまでエラー処理モードを継続し、所定条件を満たした後にスリープモードに遷移する動作を含んでもよい。例えば、図22の例にしがって説明すれば、制御部130は、電源BTからの放電時に電源BTの温度が5秒以上にわたって-5°以下になったらエラー処理モードを経由してスリープモードに移行しうる。あるいは、制御部130は、電源BTからの放電時に電源BTの正極電位が2.8V以下になったらエラー処理モードを経由してスリープモードに移行しうる。
 一方、状態情報が、電源BTからの放電時の温度が2分間にわたって85℃以上であること、または、電源BTの充電時の温度が2分間にわたって85℃以上であることを示している場合には、制御部130は、エアロゾル発生装置AGDあるいは電源ユニットPSUを永久故障モードへ移行させると判断することができる。この場合、制御部130は、エアロゾル発生装置AGDあるいは電源ユニットPSUを永久的に使用不能な状態に遷移させうる。
 図27には、計測回路100がnGAUGE_INT1信号をアクティブレベルに遷移させることに応答して、保護ユニットPPPによって実行される電源BTの保護が模式的に示されている。情報保持回路FF1は、計測回路100のALERT端子から出力されるnGAUGE_INT1信号がアクティブレベル(ここでは、ローレベル)に駆動されること(即ち、第1異常信号)に応じて、nALARM_Latched信号をアクティブレベル(ここでは、ローレベル)に遷移させうる。これに応答して、ヒータHTを駆動する電流経路に配置されたスイッチSSがオフし、電圧Vboostを発生する変圧回路120が動作を停止し、また、充電回路20が動作を停止しうる。具体的な一例として、変圧回路120のEN端子を正論理とし且つスイッチSSをNチャネル型のMOSFETで構成すれば、ローレベルに遷移させたnALARM_Latched信号を変圧回路120のEN端子とスイッチSSのゲート端子へ供給することで、変圧回路120の動作が停止され且つスイッチSSがオフされうる。また、充電回路20の/CE端子を負論理としスイッチSLをpnp型のバイポーラトランジスタで構成すれば、ローレベルに遷移させたnALARM_Latched信号をスイッチSLのベース端子へ供給することで、スイッチSLはオンする。スイッチSLがオンすると、充電回路20の/CE端子に対して並列接続された2つの抵抗器による電圧VCC33の分圧が停止する。これにより、充電回路20の/CE端子にはハイレベルの電圧VCC33がスイッチSLを介して供給される。充電回路20の/CE端子は負論理であるため、充電回路20の動作が停止しうる。
 情報保持回路FF1は、更に、ヒータHTの温度を検出するためのサーミスタTHを使って計測されるヒータHTの温度がその上限値を超えたことを示す場合にも、nALARM_Latched信号をアクティブレベル(ここでは、ローレベル)に遷移させてもよい。具体的には、ヒータHTの温度がその条件値を越えるとOPアンプA2の出力がローレベルになるように、OPアンプA2の非反転入力端子及び反転入力端子へ接続される抵抗器の電気抵抗値と、サーミスタTHの物性と、を選択すればよい。OPアンプA2が出力するローレベルはアクティブレベルに遷移したnGAUGE_INT1信号と同様に情報保持回路FF1の/CLR端子へ供給されるため、nALARM_Latched信号は、アクティブレベル(ここでは、ローレベル)に遷移しうる。
 情報保持回路FF1は、更に、アウターケースC101の温度を検出するためのサーミスタTCを使って計測されるアウターケースC101の温度がその上限値を超えたことを示す場合にも、nALARM_Latched信号をアクティブレベルに遷移させてもよい。具体的には、ヒータHTの温度がその条件値を越えるとOPアンプA3の出力がローレベルになるように、OPアンプA3の非反転入力端子及び反転入力端子へ接続される抵抗器の電気抵抗値と、サーミスタTCの物性と、を選択すればよい。OPアンプA3が出力するローレベルはアクティブレベルに遷移したnGAUGE_INT1信号と同様に情報保持回路FF1の/CLR端子へ供給されるため、nALARM_Latched信号は、アクティブレベル(ここでは、ローレベル)に遷移しうる。
 保護ユニットPPPは、更に情報保持回路FF2を含んでもよい。一例において、情報保持回路FF2は、電圧VCC33_0で駆動されるので、電源BTが正常であれば、永久故障モードではない限り、情報を保持し続ける。情報保持回路FF2は、ヒータHTの温度を検出するためのサーミスタTHを使って計測されるヒータHTの温度がその上限値を超えた場合に、そのことを示す情報を保持し続けるとともに、Heater_Latched信号をアクティブレベル(ここでは、ハイレベル)に遷移させうる。具体的には、情報保持回路FF2は、/CLR端子を有するD型フリップフロップで構成されうる。OPアンプA2の出力信号は、情報保持回路FF2(D型フリップフロップ)の/CLR端子に供給されうる。Heater_Latched信号は、情報保持回路FF2(D型フリップフロップ)の/Q端子から出力されうる。負論理である/CLR端子に供給されるOPアンプA2の出力信号がローレベルに遷移すると、情報保持回路FF2(D型フリップフロップ)は、保持する情報のレベルをローレベルに固定する。情報保持回路FF2(D型フリップフロップ)の/Q端子からは保持する情報のレベルとは逆のレベルが出力される。このような構成によれば、ヒータHTの温度がその上限値を越えたことに応じて、Heater_Latched信号をアクティブレベル(ここでは、ハイレベル)に遷移させうる。なお、Heater_Latched信号は、情報保持回路FF2(D型フリップフロップ)のQ端子から出力されてもよい。この場合、Q端子にインバータが接続されない限り、Heater_Latched信号のアクティブレベルは、ローレベルである点に留意されたい。また、この場合、情報保持回路FF2(D型フリップフロップ)は、/Q端子を有していなくてもよい。
 制御部130は、Heater_Latched信号がアクティブレベルに遷移すると、ヒータHTの過熱が発生したと判断し、そのことを示す報知を行うように報知部NUを制御しうる。そのような報知は、リセットのための所定の操作を行うことをユーザに対して促すものでありうる。そのような報知は、所定色の光の発生、点滅表示、所定音の発生、または、所定振動の発生等のいずれか、または、それらの2以上の組み合わせでありうる。
 制御部130は、リセットあるいは再起動されると、情報保持回路FF2に保持された情報をHeater_Latched信号の状態(論理レベル)によって確認し、更に、ヒータHTに過熱が発生したか否かを確認しうる。制御部130は、ヒータHTの過熱が発生したことを認識すると、エアロゾル発生装置AGDあるいは電源ユニットPSUを永久故障モードに移行させうる。上述した通り、エアロゾル発生装置AGDあるいは電源ユニットPSUの永久故障モードへの移行は、制御部130が、充電回路20に対して、ICインターフェースを介して、全てのパワーパスモードでの動作を禁止するコマンドを送ることによってなしうる。しかし、ヒータHTに過熱が発生する状況では、同時に制御部130にフリーズなどの障害が生じている虞がある。そこで、エアロゾル発生装置AGDあるいは電源ユニットPSUを確実に永久故障モードへ移行させために、制御部130のリセットあるいは再起動を行う。なお、制御部130のフリーズなどの障害が生じていても、ヒータHTの温度がその上限値を越えれば、情報保持回路FF1がnALARM_Latched信号は、アクティブレベル(ここでは、ローレベル)に遷移させるため、ヒータHTの過熱がさらに進行することはない。
 なお、情報保持回路FF2をD型フリップフロップで構成する場合、情報保持回路FF2(D型フリップフロップ)は、不図示且つ制御部130へ接続されるCLK(クロック)端子を含みうる。CLK端子へCLK信号を入力することで、情報保持回路FF2(D型フリップフロップ)が保持する情報のレベルを、D端子へ入力されるレベルと同じにすることができる。しかし、ヒータHTの過熱の発生をリセットあるいは再起動した制御部130が認識できるように、制御部130は、少なくてもリセットあるいは再起動直後に、情報保持回路FF2(D型フリップフロップ)のCLK端子へCLK信号を入力しないことが好ましい。
 図28には、電源BTの放電および充電に関する状態の変化が模式的に示されている。S1~S8は、タイミングを示している。図28の上段には、保護回路90によって電源BTの正極電位として検出される電位(点線)、計測回路100によって電源BTの正極電位として検出される電位(グレーの実線)、および、制御部130によって電源BTの正極電位として検出される電位(黒の実線)が例示されている。保護回路90によって電源BTの正極電位として検出される電位は、保護回路90によって電源BTの出力電圧として検出される電圧に相当する。計測回路100によって電源BTの正極電位として検出される電位は、計測回路100によって電源BTの出力電圧として検出される電圧に相当する。制御部130によって電源BTの正極電位として検出される電位は、制御部130によって電源BTの出力電圧として検出される電圧に相当する。図28の中段には、電源BTを充電する充電電流が例示されている。図28の下段には、保護回路90のDOUT端子のレベルが例示されている。
 タイミングS1では、電源BTの正極の電位(正極と負極との間に出力される出力電圧)が正常である。ここでいう、正常であるとは、電源BTの正極の電位(正極と負極との間に出力される出力電圧)が、電源BTの満充電電圧以下且つ放電終止電圧より高い状態と理解しうる。タイミングS2までに、電源BTからの放電が進み、タイミングS2で電源BTの状態が過放電域に突入する。図28には、電源BTの放電終止電圧として2.5Vが例示されており、電源BTの正極の電位(正極と負極との間に出力される出力電圧)がこの放電終止電圧を下回ることで、電源BTの状態が過放電域に突入する。タイミングS2~S6では、保護回路90によって検出される電位(点線)、計測回路100によって検出される電位(グレーの実線)、および、制御部130によって検出される電位(黒の実線)は、互いに大きく異なりうる。ここで説明される例では、詳細を後述するように、タイミングS2~S5の期間では、電源BTの正極の電位が低下するために、スイッチ回路80によって第1導電路PT1と制御部130のPC2端子とを電気的に接続することができなくなる。したがって、タイミングS2~S5の期間では、制御部130によって検出され電位(黒の実線)がゼロである。また、ここで説明される例では、電源BTの過放電域では、計測回路100は、電源BTの正極の電位を正確に検出することができない。これは、計測回路100は、残容量の最小値である0mAhとSOCの最小値である0%を、電源BTの出力電圧がその放電終止電圧と等しい状態に割り当てているため、これらの最小値を下回る状態を正確に計測できるように設計されていないからである。
 放電によって電源BTの正極の電位が更に低下し第1レベルを下回ったタイミングS3において、保護回路90は、電源BTを保護するためにスイッチ部SWPの第1トランジスタ(スイッチ)SDを開いて、電源BTからの保護回路90以外への放電を停止させる。ここで、前述のように、第1トランジスタSDは、電源BTから出力される電流が流れる経路、より詳しくは、第2電源コネクタBC-に電気的に接続された第2導電路PT2に配置されたスイッチである。なお、第1トランジスタ(スイッチ)SDが開かれても、第1電源コネクタBC+、保護回路90のVDD端子、保護回路90のVSS端子、第2電源コネクタBC-の間で閉回路が構成されるため、保護回路90は、第1トランジスタ(スイッチ)SDが開かれた状態を維持できる点に留意されたい。第1トランジスタ(スイッチ)SDが開かれると、制御部130および計測回路100に電圧VCC33が供給されないため、これらは動作を停止する。
 タイミングS4では、電源BTの充電のために、外部機器(例えば、充電器または電子機器)が接続されたUSBケーブルがユーザによってUSBコネクタUSBCに接続される。この状態では、制御部130のVDD端子(電源端子)に電圧VCC33が供給されていないので、スイッチSIを構成するトランジスタのベースあるいはゲートにはローレベルが供給されていて、スイッチSIはオフしている。よって、ロードスイッチ10のON端子には、電源VUSBを分圧したハイレベルが供給されうる。したがって、ロードスイッチ10は、VIN端子に供給される電圧VUSBを電圧VCC5としてVCC5ラインを介して充電回路20のVBUS端子に供給しうる。充電回路20は、第1パワーパスモードで動作し、VBUS端子とSW端子とを電気的に接続し、VCC5ラインを介して供給される電圧VCC5を使ってVCCラインに電圧VCCを供給しうる。電圧VCCの供給を受けた変圧回路30は、電圧VCC33_0を生成し、ロードスイッチ40は、その電圧VCC33_0を受けて電圧VCC33を出力しうる。これにより、制御部130および計測回路100に電圧VCC33が供給され、これらは動作を再開しうる。
 タイミングS4以降は、計測回路100は、VBAT端子に供給される電源BTの電位を検出しうる。制御部130は、エアロゾル発生装置AGDあるいは電源ユニットPSUを永久故障モードへ移行させるべき故障が電源BTに発生しているかを判断しうる。制御部130は、該故障が電源BTに発生していると判断すると、エアロゾル発生装置AGDあるいは電源ユニットPSUを永久故障モードへ移行させうる。一方、制御部130は、該故障が電源BTに発生していない判断すると、以下で説明する動作を行いうる。
 タイミングS5では、制御部130は、PB3端子からローレベルを出力し、充電回路20の/CE端子にローレベル(イネーブルレベル)を供給させうる。これにより、充電回路20は、BAT端子から電源BTに対して充電電圧(第1電圧)を供給する動作を開始しうる。このときの電源BTの充電電流は、所定電流値より小さい第1電流値(図28では、540mA)でありうる。充電によって電源BTの正極の電位が上昇し始める。また、充電回路20は、SYS端子からVCCラインに電圧VCCを供給し、変圧回路30は、VCC33_0ラインに電圧VCC33_0を供給しうる。ロードスイッチ40は、電圧VCC33_0を受けて、これをVCC33(第2電圧)としてVCC33ラインを通して制御部130および計測回路100に供給しうる。ここで、充電回路20、変圧回路30およびロードスイッチ40は、1つの電圧供給回路を構成するものとして理解されうる。該電圧供給回路は、外部機器からUSBケーブルと通して供給される電圧を使って、電源BTを充電するための第1電圧を第1導電路PT1と第2導電路PT2との間に供給するとともに、制御部130を動作させる第2電圧を生成しうる。このような構成によれば、電圧供給回路は、外部機器からUSBケーブルを通して供給される電圧を使って、動作を停止した制御部130の再起動と、過放電状態に至った電源BTの回復とをなしうる。換言すれば、電圧供給回路は、エアロゾル発生装置AGDあるいは電源ユニットPSUを正常な状態に戻しうる。
 タイミングS6では、電源BTの正極の電位の上昇によってスイッチ回路80がオンし、制御部130のPC2端子には、電源BTの正極の電位を所定の分圧比で分圧した電位ADC_B+が供給されうる。制御部130は、該分圧比に基づいてPC2端子の電位を電源BTの正極の電位に換算しうる。
 この例では、タイミングS5の後、電源BTの正極の電位があるレベルを超えた時点で、計測回路100によって検出される電位が急激に上昇しうる。そのタイミングは、図28の例では、タイミングS6と一致しているが、これは一例に過ぎない。
 この段階で制御部130および計測回路100によって電源BTの正極の電位(電源BTの出力電圧)として検出される値は、スイッチ部SWPの第1トランジスタSDがオフ状態であるので、後述のように、第1トランジスタSDに並列接続された第1整流素子であるボディダイオードBDDの順方向電圧Vを電源BTの出力電圧に加算したものとなりうる。
 制御部130は、計測回路100から取得される電源BTの出力電圧が上記第1レベルより大きい第2レベルを超えたかどうかを判断し、該出力電圧が該第2レベルを超えた場合には、充電回路20による電源BTの充電電流を上記所定電流値より大きい第2電流値(図28では、2640mA)に増加させうる。
 また、制御部130は、PC2端子に供給される電位に基づいて換算あるいは検出される電源BTの正極の電位が上記第2レベルを超えたかどうかを判断し、該正極の電位が該第2レベルを超えた場合には、充電回路20による電源BTの充電電流を上記第2電流値(一例として、2640mA)に増加させうる。ここで、上記第2レベルと上記第1レベルとの差分は、ボディダイオードBDDの順方向電圧Vより大きい値とされる。これらの構成によれば、制御部130が検出する電源BTの正極の見かけ上の電位に含まれるボディダイオードBDDの順方向電圧Vを考慮して、電源BTの過放電状態が解消したか否かを高精度に判断できる。これにより、過放電状態が解消した電源BTの充電速度を向上できるだけでなく、過放電状態が解消していない電源BTに対する高レートの充電を抑制できる。
 なお、制御部130による上記の判断は、図28におけるタイミングS6とタイミングS7の間で肯定的になりうる。つまり、上記の判断が肯定的になると、図28の例示とは異なりタイミングS7を待たずに、タイミングS8が訪れうる。
 電源BTの電位が更に上昇し、保護回路90によって検出される電源BTの電位として検出される電位が上記第1レベルより高い第3レベルを上回ったタイミングS7において、保護回路90は、第1トランジスタSDを閉じる。これにより、制御部130および計測回路100によって電源BTの電位として検出される電位は、電源BTの正極の電位に一致することになる。つまり、第1トランジスタSDが閉じられることによって、保護回路90によって検出される電位は、第1整流素子であるボディダイオードBDDの順方向電圧VF分だけ低下する。
 その後、制御部130は、計測回路100から取得される電源BTの出力電圧が上記第2レベルより小さい第4レベルを超えたかどうかを判断し、該正極の電位が該第4レベルを超えた場合には、充電回路20による電源BTの充電電流を上記第2電流値(図28では、2640mA)に増加させうる。また、制御部130は、PC2端子に供給される電位に基づいて換算あるいは検出される電源BTの正極の電位が上記第1レベルより大きい上記第3レベルを超えたかどうかを判断し、該正極の電位が該第3レベルを超えた場合には、充電回路20による電源BTの充電電流を上記第2電流値(図28では、2640mA)に増加させうる。
 つまり、保護回路90は、電源BTの正極の電位(電源BTの出力電圧)が第1レベルを下回ったことに応じて、電源BTの放電が遮断されるように第1トランジスタ(スイッチ)SDを開くように動作しうる。また、制御部130は、PC2端子に供給される電位に基づいて検出される電源BTの正極の電位が、電源BTの充電によって該第1レベルより大きい第2レベルを上回ったことに応じて、電源BTの充電電流を増加させるように動作しうる。
 図29には、保護回路90、スイッチ部SWP、計測回路100、制御部130およびスイッチ回路80が第1導電路PT1および第2導電路PT2とともに示されている。スイッチ回路80は、例えば、PMOSトランジスタSBVCと、npn型バイポーラトランジスタSBENと、2つの抵抗器(10kΩ、470Ω)とを含みうるが、この構成に限定されるものではない。スイッチ回路80は、例えば、制御部130のPB4端子から出力されるADCB+_EN信号がアクティブレベルであるときにオンする単一のトランジスタで構成されてもよい。
 図29に示された例では、電源BTが正常状態である場合、ADCB+_EN信号がアクティブレベル(ここでは、ハイレベル)にされると、PMOSトランジスタSBVCがオンする。より詳述すると、アクティブレベル(ここでは、ハイレベル)へ遷移したADCB+_EN信号が、npn型バイポーラトランジスタSBENのベース端子に供給されると、npn型バイポーラトランジスタSBENはオンする。PMOSトランジスタSBVCのゲート端子は、npn型バイポーラトランジスタSBENを介してグランドラインである第2導電路PT2へ接続されるため、PMOSトランジスタSBVCのゲート端子の電位は、おおよそ0Vとなる。PMOSトランジスタSBVCのソース端子には、第1導電路PT1を介して電源BTの正極の電位が供給されるため、PMOSトランジスタSBVCのソース・ゲート間電圧(絶対値)がPMOSトランジスタSBVCの閾値(絶対値)より大きくなり、PMOSトランジスタSBVCがオンする。PMOSトランジスタSBVCがオンすると、分圧用の抵抗器R11、R12によって分圧された電源BTの正極の電位が、制御部130のPC2端子へ入力される。制御部130のPC2端子へ入力される信号の大きさは電源BTの正極の電位に依存するため、制御部130は、PC2端子へ入力される信号にも基づき、電源BTの正極の電位を取得できる。なお、制御部130のVSS端子及び第2電源コネクタBC-は、共に第2導電路PT2へ接続される。つまり、制御部130のVSS端子と第2電源コネクタBC-は略同電位である。このため、制御部130が取得する電源BTの正極の電位は、電源BTの出力電圧に略等しい。
 一方、電源BTが過放電状態あるいは深放電状態である場合、ADCB+_EN信号がアクティブレベルにされてもPMOSトランジスタSBVCがオンしない。ここで、スイッチ回路80の2つの抵抗器による分圧比によって、PMOSトランジスアSBVCがオンするときの電源BTの正極の電位の下限値が決定される。PMOSトランジスタSBVCがオンするためには、ソースの電位に対してゲートの電位がPMOSトランジスタSBVCの閾値分だけ低い必要があり、そのためには、電源BTの正極の電位は、該分圧比によって決まる値以上でなければならない。図29に示された例では、電源BTが過放電状態あるいは深放電状態において、電源BTからスイッチ回路80(PMOSトランジスタSBVC)および分圧用の抵抗器R11、R12を通して電流が流れることが防止される。これにより、電源BTが過放電状態あるいは深放電状態において、電源BTが更に放電することが防止される。
 図29A、図28B、図29C、図29D、図29E、図29Fには、図29と同様の構成が示されている。図29A、図28B、図29C、図29D、図29E、図29Fは、それぞれ、図28に示されたタイミングS2、S3、S4、S5、S6、S7における状態が模式的に示されている。
 図29Aに示されたタイミングS2では、電源BTが過放電状態に突入し、その正極の電位(第1電源コネクタBC+の電位)が過放電状態の電位(ここでは、2.5V)まで低下している。これによって、PMOSトランジスタSBVCのソース・ゲート間電圧(絶対値)がPMOSトランジスタSBVCの閾値(絶対値)より小さくなり、PMOSトランジスタSBVCがオフする。PMOSトランジスタSBVCがオフすると、電源BTからスイッチ回路80(PMOSトランジスタSBVC)および分圧用の抵抗器R11、R12を通して電流が流れることが防止されるため、制御部130のPC2端子には抵抗器R12を通じて第2導電路PT2の電位が入力される。これにより、制御部130は、電源BTの正極の電位として0Vを取得する。保護回路90と計測回路100のそれぞれのVBAT端子は、第1導電路PT1へ直接接続される。このため、保護回路90及び計測回路100は、タイミングS2では電源BTの正極の電位(電源BTの出力電圧)として0Vより大きい値を取得しうる。
 図29Bに示されたタイミングS3では、電源BTの放電が更に進み、電源BTの正極の電位が第1閾値を下回ることによって、保護回路90は、電源BTを保護するために、第1トランジスタ(スイッチ)SDをオフさせる。これにより、電源BTの正極から第1電源コネクタBC+、第1導電路PT1、第2導電路PT2、第2電源コネクタBC-を通って電源BTの負極に至る経路が遮断される。そのため、電源BTから第1導電路PT1および第2導電路PT2を介して電力あるいは電圧が供給される充電回路20、更に充電回路20を介して電力あるいは電圧の供給を受ける変圧回路30、ロードスイッチ40に対する電力あるいは電圧の供給が絶たれる。よって、計測回路100および制御部130に対する電圧VCC33の供給が停止し、計測回路100および制御部130が動作を停止する。つまり、計測回路100および制御部130は、電源BTの正極の電位(電源BTの出力電圧)を取得できなくなる。一方、保護回路90は、第1トランジスタ(スイッチ)SDの状態とは無関係に、上述した閉回路によって電源BTから直接に電力あるいは電圧の供給を受けるので、動作を継続することができる。この際、計測回路100および制御部130の動作は停止しているので、電源BTの放電の進行を抑制できる。
 図29Cに示されたタイミングS4では、電源BTの充電のために、ユーザによってUSBケーブルがUSBコネクタUSBCに接続される。これに応じて、USBケーブルを通して供給された電圧は、過電圧保護回路110、VUSBライン、ロードスイッチ10およびVCC5ラインを介して充電回路20に供給され、充電回路20は、デフォルトで設定される第1パワーパスモードで動作してVCCラインに電圧VCCを供給する。これに応じて、計測回路100および制御部130に対する電圧VCC33の供給が再開あるいは開始される。よって、計測回路100および制御部130は、動作を再開あるいは開始する。
 図29Dに示されたタイミングS5では、制御部130は、PB3端子からローレベルを出力し、充電回路20の/CE端子にローレベル(イネーブルレベル)を供給させる。これにより、充電回路20は、BAT端子から電源BTに対して充電電圧を供給する動作を開始し、電源BTの正極の電位が上昇し始める。このときの電源BTの充電電流は、所定電流値より小さい第1電流値(図28では、540mA)でありうる。これは、電源BTが過放電状態あるいは深放電状態に至った状態で通常充電時のような電流値で充電をすると、電源BTが回復不能な状態になる可能性があるからである。
 タイミングS5~S7の期間では、第1トランジスタSDがオフしているが、第1トランジスタSDに並列に接続されたボディダイオードBDDの順方向と電源BTを充電する充電電流が流れる方向とが一致するので、電源BTを充電することができる。ただし、グランドノードGN(USBコネクタUSBCのグランド端子と同一のノード)を基準とすると、電源BTの負極が接続された第2電源コネクタBC-の電位は、その間の経路における電圧降下分だけ高い。図29Dの例では、電源BTの負極が接続された第2電源コネクタBC-の電位は、ボディダイオードBDDの順方向電圧Vおよび抵抗器R1、R2による電圧降下分だけグランドノードGNの電位より高い。保護回路90へ接続される抵抗器R2と計測回路100へ接続される抵抗器R1の電気抵抗値は極めて小さいため、抵抗器R1、R2による電圧降下は無視できる程度である。従って、電源BTが正常状態にある場合、第2電源コネクタBC-の電位は、グランドノードGNの電位と略等しい。しかし、ボディダイオードBDDの順方向電圧Vは、一般的に数100mV程度はあるため、無視できる程度ではない。
 電源BTの正極の電位が過放電域に突入する前の電位まで上昇したタイミングS6では、スイッチ回路80がオンし、制御部130のPC2端子には、電源BTの正極の電位を所定の分圧比で分圧した電位ADC_B+が供給される。制御部130は、該分圧比に基づいてPC2端子の電位を電源BTの正極の電位に換算することができる。この分圧比は、抵抗器R11、R12の抵抗値によって定まる。
 その後、図29Fに示されるタイミングS7では、保護回路90は、第1トランジスタSDを閉じる。これにより、第1トランジスタSDを通る経路が形成され、かつ第1トランジスタSDのオン抵抗は無視可能であるので、制御部130および計測回路100によって電源BTの電位として検出される電位は、電源BTの正極の電位に一致することになる。つまり、第1トランジスタSDを閉じられることによって、保護回路90によって検出される電位は、ボディダイオードBDDの順方向電圧V分だけ低下する。保護回路90は、VBAT端子とVSS端子の電位差を、電源BTの正極の電位(電源BTの出力電圧)として取得する。つまり、保護回路90が取得する電源BTの正極の電位(電源BTの出力電圧)には、ボディダイオードBDDの順方向電圧Vの影響を受けない。このことから、保護回路90が取得する電源BTの正極の電位(電源BTの出力電圧)は、その真値に略等しい。図29Bに示されるタイミングS3で第1トランジスタ(スイッチ)SDはオフになり、且つ、図29Fに示されるタイミングS7で第1トランジスタ(スイッチ)SDはオンになる。図28などからも明らかなように、第1トランジスタ(スイッチ)SDをオフするときの電源BTの正極の電位(電源BTの出力電圧)は、第1トランジスタ(スイッチ)SDをオンするときの電源BTの正極の電位(電源BTの出力電圧)と異なりうる。より具体的には、第1トランジスタ(スイッチ)SDをオフするときの電源BTの正極の電位(電源BTの出力電圧)は、第1トランジスタ(スイッチ)SDをオンするときの電源BTの正極の電位(電源BTの出力電圧)より低い。これは、第1トランジスタ(スイッチ)SDをオンした直後に第1トランジスタ(スイッチ)SDをオフするような事態を抑制するためのヒステリシスとして機能しうる。
 図30、図31には、保護回路90、制御部130、充電回路20および計測回路100の動作例が時系列で示されている。また、図32には、充電完了による割り込みを受けたときの制御部130の動作例が示されている。まず、電源BTからの放電によって電源BTの正極の電位が低下を続け、ステップP11において、保護回路90は、電源BTの正極の電位が第1レベルを下回ったことを検出する。これに応答して、ステップP12において、保護回路90は、第1トランジスタ(スイッチ)SDをオフさせる(図28におけるタイミングS3及び図29B)。これによって、制御部130および計測回路100に対する電圧VCC33の供給が絶たれる。そのため、制御部130は、ステップM11で動作を停止し、計測回路100は、ステップK11で動作を停止する。ステップP12、ステップM11及びステップK11は、略同時に起きうる。
 その後、外部機器に接続されたUSBケーブルがUSBコネクタUSBCに接続される(図28におけるタイミングS4及び図29C)。これにより充電回路20のVBUS端子に外部機器から電力が供給されうる。充電回路20は、第1パワーパスモードで動作し、VBUS端子とSW端子とを電気的に接続し、VCC5ラインを介して供給される電圧VCC5を使ってVCCラインに電圧VCCを供給する(ステップC11)。電圧VCCの供給を受けた変圧回路30は、電圧VCC33_0を生成し、ロードスイッチ40は、その電圧VCC33_0を受けて電圧VCC33を出力する。これにより、制御部130および計測回路100に電圧VCC33が供給される。
 ステップM12において、制御部130が起動(再起動)され、並行して、ステップK12において、計測回路100も起動(再起動)される。ステップM13において、制御部130は、計測回路100に対して、ICインターフェースを介して、電源BTの出力電圧の情報(VBAT情報)の提供を要求する。ステップK13において、計測回路100は、制御部130に対して、ICインターフェースを介して、電源BTの出力電圧の情報(VBAT情報)を提供する。ステップM14では、制御部130は、計測回路100から、ICインターフェースを介して、電源BTの出力電圧の情報(VBAT情報)を受信する。
 ステップM15では、制御部130は、ADCB+_EN信号をアクティブレベルに遷移し、ステップM16では、制御部130は、PC2端子に供給される電位(ADCB+信号ともいう)に基づいて、電源BTの正極の電位(電源BTの出力電圧)を取得する。
 ステップM17では、制御部130は、ステップM16で取得した電源BTの正極の電位(電源BTの出力電圧)が第1所定閾値(例えば、0.1V)以下またはステップM14で計測回路100から取得した電源BTの出力電圧の情報(VBAT情報)が第2所定閾値(例えば、1.5V)以下であるかどうかを判断する。
 そして、ステップM16で取得した電源BTの正極の電位(電源BTの出力電圧)が該第1所定閾値以下である場合、または、ステップM14で計測回路100から取得した電源BTの出力電圧の情報(VBAT情報)が第2所定閾値以下である場合は、ステップM21において、ICインターフェースを介して、所定電流値より小さい第1電流値で電源BTの充電を行うように充電回路20に対して指令を送る(図28におけるタイミングS5及び図29D)。一方、ステップM16で取得した電源BTの正極の電位(電源BTの出力電圧)が該第1所定閾値以下でなく、かつ、ステップM14で計測回路100から取得した電源BTの出力電圧の情報(VBAT情報)が第2所定閾値以下でない場合、ステップM18において、ICインターフェースを介して、所定電流値より大きい第2電流値(正常な充電シーケンス)で電源BTの充電を行うように充電回路20に対して指令を送る。
 正常な充電シーケンスは、一般的なCCCV充電であるため、その説明を省略する。なお、保護回路90によってトランジスタ(スイッチ)SDがオフされるほどに電源BTの正極の電位(電源BTの出力電圧)が低下した場合、PC2端子には、抵抗器R12を通じて第2導電路PT2の電位(すなわちグランド電位)が入力される。つまり、ステップM16で取得した電源BTの正極の電位(電源BTの出力電圧)は、0.1V以下であるべきである。換言すれば、ステップM16で取得した電源BTの正極の電位(電源BTの出力電圧)が0.1Vを越える場合は、ノイズや極めて低温環境に置かれたなどで、電源BTが過放電状態又は深放電状態の状態にあると誤って判断されたと考えうる。
 他の例を挙げると、ステップM17では、制御部130は、ステップM16で取得した電源BTの正極の電位(電源BTの出力電圧)が所定閾値(例えば、0.1V)以下であるかどうかを判断する。ステップM16で取得した電源BTの正極の電位(電源BTの出力電圧)が該所定閾値(例えば、0.1V)以下であれば、制御部130は、ステップM21において、ICインターフェースを介して、所定電流値より小さい第1電流値で電源BTの充電を行うように充電回路20に対して指令を送る(図28におけるタイミングS5及び図29D)。一方、ステップM16で取得した電源BTの正極の電位(電源BTの出力電圧)が該所定閾値(例えば、0.1V)以下でなければ、ステップM18において、ICインターフェースを介して、所定電流値より大きい第2電流値(正常な充電シーケンス)で電源BTの充電を行うように充電回路20に対して指令を送る。
 更に他の例を挙げると、ステップM17では、制御部130は、ステップM14で計測回路100から取得した電源BTの出力電圧の情報(VBAT情報)が所定閾値(例えば、1.5V)以下であるかどうかを判断する。そして、ステップM14で取得した電源BTの出力電圧の情報(VBAT情報)が該所定閾値(例えば、1.5V)以下であれば、制御部130は、ステップM21において、ICインターフェースを介して、所定電流値より小さい第1電流値で電源BTの充電を行うように充電回路20に対して指令を送る(図28におけるタイミングS5及び図29D)。一方、ステップM14で取得した電源BTの正極の電位(電源BTの出力電圧)が該所定閾値(例えば、1.5V)以下でなければ、ステップM18において、ICインターフェースを介して、所定電流値より大きい第2電流値(正常な充電シーケンス)で電源BTの充電を行うように充電回路20に対して指令を送る。
 ステップM22において、制御部130は、所定時間にわたって待機する。この所定時間の間に、後述するステップC12により電源BTの充電が進行する。ステップM23では、制御部130は、ADCB+_EN信号をアクティブレベルに遷移し、ステップM24では、制御部130は、PC2端子に供給される電位(ADCB+信号)に基づいて電源BTの正極の電位(電源BTの出力電圧)を取得する。ステップM25では、制御部130は、ステップM24で取得した電源BTの正極の電位(電源BTの出力電圧)が第2レベル(例えば、3.35V)以上であるかどうかを判断する。そして、ステップM24で取得した電源BTの正極の電位(電源BTの出力電圧)が第2レベル(例えば、3.35V)以上であれば、制御部130は、ステップM26において、ICインターフェースを介して、所定電流値より大きい第2電流値(正常な充電シーケンス)で電源BTの充電を行うように充電回路20に対して指令を送る。
 一方、ステップM24で取得した電源BTの正極の電位(電源BTの出力電圧)が第2レベル(例えば、3.35V)以上でなければ、制御部130は、ステップM27において、ステップM24で取得した電源BTの正極の電位(電源BTの出力電圧)が前回のステップM24で取得した電源BTの正極の電位(電源BTの出力電圧)よりも、前述のボディダイオードSDDの順方向電圧Vだけ降下したかどうか、即ち第1トランジスタ(スイッチ)SDがオンしたかどうかを判断する。この判断は、前回のステップM24で取得した電源BTの正極の電位(電源BTの出力電圧)から今回のステップM24で取得した電源BTの正極の電位(電源BTの出力電圧)を減算した値が、ボディダイオードSDDの順方向電圧V以上か否により実行できる。そして、第1トランジスタ(スイッチ)SDがオンしたと判断した場合には、制御部130は、ステップM28に処理を進める。一方、第1トランジスタ(スイッチ)SDがオンしていないと判断した場合には、制御部130は、ステップM23に処理を戻す。図31に例示した時系列では、ステップP21において保護回路90は、第1トランジスタSDを閉じる(図28におけるタイミングS7及び図29F)。
 ステップM28では、制御部130は、計測回路100に対して、ICインターフェースを介して、電源BTの出力電圧の情報(VBAT情報)の提供を要求する。ステップK21において、計測回路100は、制御部130に対して、ICインターフェースを介して、電源BTの出力電圧の情報(VBAT情報)を提供する。ステップM29では、制御部130は、計測回路100から、ICインターフェースを介して、電源BTの出力電圧の情報(VBAT情報)を受信する。
 ステップM30では、制御部130は、ステップM29で取得した電源BTの正極の電位(電源BTの出力電圧)が第4レベル(例えば、2.35V)以上であるかどうかを判断する。そして、ステップM29で取得した電源BTの正極の電位(電源BTの出力電圧)が該第4レベル以上であれば、制御部130は、ステップM31において、ICインターフェースを介して、所定電流値より大きい第2電流値(正常な充電シーケンス)で電源BTの充電を行うように充電回路20に対して指令を送る(図28におけるタイミングS8)。一方、ステップM29で取得した電源BTの正極の電位(電源BTの出力電圧)が該第4レベル以上でなければ、制御部130は、処理をステップS28に戻す。第4レベルは、第1トランジスタ(スイッチ)SDがオンした状態で使用される基準であるので、第2レベルより小さい値でありうる。また、第4レベルは、第1レベルより大きい値である。
 充電回路20は、ステップC12で電源BTの充電を開始した後、ステップC13で電源BTの充電の完了を待ち、充電が完了したら、ステップC14において、制御部130に割り込み要求を送りうる。一方、制御部130は、割り込み要求を充電回路20から受けたら、図32に示される処理を図30、図31に示された処理とは別に実行しうる。
 ステップM41において、制御部130は、ICインターフェースを介して、充電回路20から電源BTの充電に要した総充電時間を取得する。ステップM42において、制御部130は、充電回路20から割り込み要求を受ける直前の状態が第1電流値で電源BTを充電中であったかどうかを判断し、割り込み要求を受ける直前の状態が第1電流値で電源BTを充電中ではなかった場合には、図32の処理を終了する。一方、割り込み要求を受ける直前の状態が第1電流値で電源BTを充電中であった場合には、制御部130は、エラー処理を実行する。このエラー処理は、以下で説明するように、2種類の処理を含みうる。換言すると、制御部130は、割り込み要求を受ける直前の状態が充電電流を第1電流値から第2電流値に変更する前であるかどうかを判断し、割り込み要求を受ける直前の状態が充電電流を第1電流値から第で電流値に変更する前の状態である場合には、永久故障処理を実行する。一方、割り込み要求を受ける直前の状態が充電電流を第1電流値から第2電流値に変更した後の状態である場合には、制御部130は、充電エラー処理を実行する。
 具体的には、ステップM43では、制御部130は、ステップM41において充電回路20から取得した総充電時間が基準時間より短いかどうかを判定し、該総充電時間が該基準時間より短い場合には、制御部130は、ステップSM44において、1つのエラー処理としての永久故障処理を実行する。制御部130は、例えば、永久故障処理として、エアロゾル発生装置AGDあるいは電源ユニットPSUを使用不能な状態に遷移させる処理を実行しうる。これは、上述したエアロゾル発生装置AGDあるいは電源ユニットPSUを永久故障モードへ移行させることと同意でありうる。制御部130は、例えば、充電回路20に対して、ICインターフェースを介して、全てのパワーパスモードでの動作を禁止するコマンドを送ることによって、充電回路20のSYS端子およびSW端子からの電圧の出力を停止させうる。これにより、制御部130に対する電力の供給が絶たれ、制御部130は、動作不能な状態になる。このような動作は、深放電状態に至ったと判断される電源BTの充電および放電を禁止し、安全性を高めるように寄与する。
 一方、ステップM41において充電回路20から取得した総充電時間が基準時間より短くない場合、ステップM45において、制御部130は、もう1つのエラー処理としての充電エラー処理を実行する。充電エラー処理は、電源BTの充電およびヒータHTへの電力の供給を禁止する処理を含みうる。充電エラー処理は、報知部NUを使ってユーザに対してリセットあるいは再起動のための操作を促す処理を含みうる。制御部130は、制御部130がリセットあるいは再起動されると、スリープモードとなりうる。この場合、ユーザは、USBコネクタに対してUSBケーブルを再接続することによって、電源BTを再び充電することができる。また、電源BTが正常な状態であれば、ヒータHTに対する電力の供給も可能である。
 以上のように、制御部130は、PC2端子に供給される電位に基づいて検出される電源BTの正極の電位が第2閾値を上回る前に充電回路20(電圧供給回路)が充電を終了した場合に、エラー処理を実行するように構成されうる。制御部130は、充電回路20が電源BTの充電に要した時間が基準時間より短い場合には、エラー処理として、電源BTの充電およびヒータHTへの電力の供給を禁止することができ、この場合は、電源BTの充電およびヒータHTへの電力の供給が禁止された状態は、解除不能とされうる。制御部130は、充電回路20が電源BTの充電に要した時間が基準時間より短くない場合には、エラー処理として、電源BTの充電およびヒータHTへの電力の供給を禁止することができ、この場合は、電源BTの充電およびヒータHTへの電力の供給が禁止された状態は、制御部130の再起動やリセットなどによって解除されうる。
 図28、図29、図29A~図29F、図30~図32を参照して説明された実施形態は、以下のような側面も有する。
 制御部130は、電源BTの状態に相関を有する情報を受ける第1端子としてのPC2端子を有し、PC2端子に供給される情報に応じた第1指標を取得しうる。第1情報は、電源BTの状態を示す指標である。
 計測回路100は、電源BTの状態に相関を有する情報を受ける第2端子としてVBAT端子を有し、VBAT端子に供給される情報に応じた第2指標を生成して制御部130に提供しうる。制御部130に対する第2指標の提供は、ICインターフェースを使って行われうる。
 制御部130は、第1指標および第2指標に応じて電源BTの充電動作を制御しうる。例えば、図31におけるステップM23、M24、M25、M26は、制御部130のPC2端子に供給される情報に応じた第1指標に基づいて電源BTの充電動作を制御するシーケンスの一例である。また、図31におけるM28、M29、M30、M31は、計測回路100が生成し制御部130に提供される第2指標に基づいて電源BTの充電動作を制御するシーケンスの一例である。正常状態にない電源BTの状態を、1つの指標だけで判断することは困難を極める。このような構成によれば、制御部130は、第1指標と第2指標から電源BTの状態を取得するので、正常な状態にない電源BTに対しても適切な充電を行いうる。
 充電回路20は、電源BTを所定電流値より小さい第1電流値で充電する第1モード、および、電源BTを該所定電流値より大きい第2電流値で充電する第2モードで動作可能な充電回路として理解されてもよい。
 制御部130は、第1指標および第2指標の少なくとも1つが、電源BTが過放電状態であることを示している場合に、電源BTが第1モードで充電されるように充電回路20による電源BTの充電動作を制御しうる(ステップC12)。電源BTが過放電状態であるか否かを高精度に区別することは容易ではない。このような構成によれば、第1指標と第2指標のうち一方が電源BTの過放電状態を検出できなくても、他方が過放電状態を検出できれば、電源BTは第1充電モードで充電される。つまり、過放電状態にある虞のある電源BTに対して高レートによる充電が行われなくなるため、高レートの充電によって過放電状態にある電源BTが故障しなくなる。
 あるいは、制御部130は、第1指標および第2指標の少なくとも1つが、電源BTの過放電状態が解消されたことを示している場合に、電源BTが第2モードで充電されるように充電回路20による電源BTの充電動作を制御しうる(ステップM26、M31)。電源BTの充電中は、制御部130が検出する電源BTの正極の電位や計測回路100が制御部130に対して提供する電源BTの出力電圧の情報(VBAT情報)に、ボディダイオードBDDの順方向電圧Vの影響が含まれる虞がある。順方向電圧Vは、温度や充電電流値によっても変動するため、1つの指標だけで電源BTの過放電状態が解消されたか否かを判断することは容易では無い。このような構成によれば、第1指標と第2指標のうち一方が電源BTの過放電状態の解消を検出できなくても、他方が該解消を検出できれば、電源BTは第2充電モードで充電される。つまり、電源BTの過放電状態の解消が見逃されにくくなるため、正常な状態となった電源BTの残容量を早期に回復できる。
 あるいは、制御部130は、第1指標および第2指標の少なくとも1つが、電源BTが過放電状態であることを示している場合に、電源BTが第1モードで充電されるように充電回路20による電源BTの充電動作を制御し(ステップC21)、かつ、第1指標および第2指標の少なくとも1つが、電源BTの過放電状態が解消されたことを示している場合に、電源BTが第2モードで充電されるように充電回路20による電源BTの充電動作を制御しうる(ステップM26、M31)。
 上記第1指標と上記第2指標とは、上記の例では、電源BTの正極の電位、あるいは、電源BTの出力電圧であり、これは、同一の尺度で比較可能な指標である。また、上述した通り、上記の例では、電源BTの正極の電位は、電源BTの出力電圧に略等しい。
 図31のM23~M31に例示されるように、制御部130は、第1トランジスタ(第1スイッチ)SDが開いた状態では、上記第1指標に基づいて充電動作を制御し、第1トランジスタ(第1スイッチ)SDが閉じた状態では、上記第2指標に基づいて充電動作を制御するように構成されうる。ここで、計測回路100のVBAT端子は、第1経路PT1(電源BTの正極)に直接に接続されうる。一方、制御部130のPC2端子は、PMOSトランジスタSBVC等のトランジスタ、および/または、抵抗器R11、R12で構成されるような分圧回路を介して第1経路PT1(電源BTの正極)に接続されうる。あるいは、他の観点において、制御部130のPC2端子は、アナログ回路を介して第1経路PT1(電源BTの正極)に接続されうる。よって、電源BTの正極の電位、あるいは、電源BTの出力電圧を検出あるいは計測する精度は、制御部130よりも計測回路100の方が高い。したがって、第1トランジスタ(第1スイッチ)SDが閉じられ、ボディダイオードBDDの順方向電圧Vの影響がなくなった状態(順方向電圧Vによる誤差要因がなくなった状態)では、制御部130は、計測回路100から提供される第2指標に基づいて充電動作を制御することが有利である。
 報知部NUは、電源BTの残量に関する情報を報知することができ、制御部130は、電源BTの状態として、電源BTの残量(例えば、残容量、SOCなど)を示す第3指標を計測回路から取得し、該第3指標に応じた情報を報知部NUに報知させるように構成されうる。
 発明は上記の実施形態に制限されるものではなく、発明の要旨の範囲内で、種々の変形・変更が可能である。
 本願は、2021年5月10日提出の日本国特許出願特願2021-079738を基礎として優先権を主張するものであり、その記載内容の全てを、ここに援用する。

Claims (16)

  1.  エアロゾル発生装置の電源ユニットであって、
     電源の正極に接続された第1導電路と、
     前記電源の負極に接続された第2導電路と、
     電源から供給される電力を使ってエアロゾル源を加熱するためのヒータの発熱を制御する制御部と、
     前記第2導電路に配置された抵抗器を使って前記電源の状態を計測する計測回路と、
     前記第2導電路を流れる電流を遮断可能に前記第2導電路における前記抵抗器と前記負極との間に配置されたスイッチ部と、
     前記第2導電路を流れる電流に応じて、前記電源を保護するように前記スイッチ部を制御する保護回路と、を備える電源ユニット。
  2.  前記保護回路が前記スイッチ部をオフさせることによって前記制御部および前記計測回路に対する電圧の供給が停止される、請求項1に記載の電源ユニット。
  3.  前記電源から供給される電圧に基づいて前記制御部および前記計測回路に電圧を供給する電圧供給部を更に備え、
     前記保護回路が前記スイッチ部をオフさせることによって前記電圧供給部に対する前記電源からの電圧の供給が停止し、これにより前記電圧供給部から前記制御部および前記計測回路への電圧の供給が停止される、請求項1に記載の電源ユニット。
  4.  前記電圧供給部には、前記第1導電路および前記第2導電路を介して前記電源から電圧が供給される、請求項3に記載の電源ユニット。
  5.  前記電圧供給部に外部機器から電圧が供給されることによって前記電圧供給部から前記制御部および前記計測回路に対する電圧の供給が再開される、請求項3又は4に記載の電源ユニット。
  6.  前記外部機器から電圧の供給を受けて前記電源を充電する充電回路を更に備え、
     前記充電回路による前記電源の充電は、前記制御部によって制御される、請求項5に記載の電源ユニット。
  7.  前記制御部は、前記スイッチ部がオフした状態において、前記充電回路が前記外部機器から電圧の供給を受けて前記電源の充電を開始するように前記充電回路を制御する、請求項6に記載の電源ユニット。
  8.  前記制御部は、前記電源の出力電圧に基づいて前記電源が充電可能と判断される場合に、前記電源の充電を開始するように前記充電回路を制御する、請求項6に記載の電源ユニット。
  9.  前記保護回路は、前記充電回路による充電によって前記電源の残容量が所定値を超えた場合には、前記スイッチ部をオンさせる、請求項8に記載の電源ユニット。
  10.  前記第2導電路における前記抵抗器と前記負極との間に配置された第2抵抗器を更に備え、
     前記保護回路は、前記第2抵抗器を流れる電流に応じて、前記電源を保護するように前記スイッチ部を制御する、請求項1乃至9のいずれか1項に記載の電源ユニット。
  11.  前記第2抵抗器は、前記第2導電路における前記スイッチ部と前記負極との間に配置されている、請求項10に記載の電源ユニット。
  12.  前記スイッチ部は、前記第2導電路を流れる電流を遮断可能に配置されたトランジスタと、前記トランジスタに並列に接続された整流素子とを含み、前記トランジスタが前記保護回路によって制御される、請求項1乃至11のいずれか1項に記載の電源ユニット。
  13.  前記整流素子は、前記トランジスタに付随するボディダイオードである、請求項12に記載の電源ユニット。
  14.  前記整流素子の順方向は、前記電源を充電する電流が流れる方向であり、前記スイッチ部がオフした状態であっても、前記整流素子を通して電流が流れることによって、前記電源の充電が可能である、請求項12又は13に記載の電源ユニット。
  15.  前記ヒータおよび前記第2導電路を流れる電流を遮断可能に前記第2導電路に配置された遮断スイッチを更に備え、
     前記制御部は、前記計測回路による計測結果に基づいて前記ヒータおよび前記第2導電路を流れる電流が遮断されるように前記遮断スイッチを制御する、請求項1乃至14のいずれか1項に記載の電源ユニット。
  16.  前記第2導電路における前記遮断スイッチと前記負極との間に前記スイッチ部が配置されている、請求項15に記載の電源ユニット。
PCT/JP2022/014085 2021-05-10 2022-03-24 エアロゾル発生装置の電源ユニット WO2022239511A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-079738 2021-05-10
JP2021079738 2021-05-10

Publications (1)

Publication Number Publication Date
WO2022239511A1 true WO2022239511A1 (ja) 2022-11-17

Family

ID=84029548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/014085 WO2022239511A1 (ja) 2021-05-10 2022-03-24 エアロゾル発生装置の電源ユニット

Country Status (1)

Country Link
WO (1) WO2022239511A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010082608A1 (ja) * 2009-01-14 2010-07-22 ミツミ電機株式会社 保護監視回路、電池パック、二次電池監視回路、及び保護回路
JP2016118571A (ja) * 2012-03-01 2016-06-30 株式会社Gsユアサ スイッチ故障診断装置、電池パックおよびスイッチ故障診断プログラム、スイッチ故障診断方法
WO2020084757A1 (ja) * 2018-10-26 2020-04-30 日本たばこ産業株式会社 電子装置並びに電子装置を動作させる方法及びプログラム
JP6864769B1 (ja) * 2020-07-09 2021-04-28 日本たばこ産業株式会社 エアロゾル吸引器の電源ユニット

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010082608A1 (ja) * 2009-01-14 2010-07-22 ミツミ電機株式会社 保護監視回路、電池パック、二次電池監視回路、及び保護回路
JP2016118571A (ja) * 2012-03-01 2016-06-30 株式会社Gsユアサ スイッチ故障診断装置、電池パックおよびスイッチ故障診断プログラム、スイッチ故障診断方法
WO2020084757A1 (ja) * 2018-10-26 2020-04-30 日本たばこ産業株式会社 電子装置並びに電子装置を動作させる方法及びプログラム
JP6864769B1 (ja) * 2020-07-09 2021-04-28 日本たばこ産業株式会社 エアロゾル吸引器の電源ユニット

Similar Documents

Publication Publication Date Title
WO2022239511A1 (ja) エアロゾル発生装置の電源ユニット
WO2022239513A1 (ja) エアロゾル発生装置の電源ユニット
WO2022239510A1 (ja) エアロゾル発生装置の電源ユニット
WO2022239514A1 (ja) エアロゾル発生装置の電源ユニット
WO2022239509A1 (ja) エアロゾル発生装置の電源ユニット
WO2022239512A1 (ja) エアロゾル発生装置の電源ユニット
WO2022239515A1 (ja) エアロゾル発生装置の電源ユニット
JP7104868B1 (ja) エアロゾル発生装置
JP7104262B1 (ja) エアロゾル発生装置の電源ユニット
WO2022239472A1 (ja) エアロゾル生成装置の電源ユニット
WO2022239474A1 (ja) エアロゾル生成装置の電源ユニット
WO2022239473A1 (ja) エアロゾル生成装置の電源ユニット
WO2022239279A1 (ja) エアロゾル生成装置の電源ユニット
WO2022239378A1 (ja) エアロゾル生成装置の電源ユニット
WO2022239280A1 (ja) エアロゾル生成装置の電源ユニット
WO2022239475A1 (ja) エアロゾル生成装置の電源ユニット
EP4340163A1 (en) Power supply unit for aerosol generation device
US20240074495A1 (en) Power supply unit for aerosol generating device
WO2022239409A1 (ja) エアロゾル生成装置の電源ユニット
JP2024059921A (ja) エアロゾル生成装置の電源ユニット
WO2022239065A1 (ja) エアロゾル生成装置の電源ユニットおよび方法
WO2022239372A1 (ja) エアロゾル生成装置の電源ユニット
WO2022239373A1 (ja) エアロゾル生成装置の電源ユニット
US20240057690A1 (en) Power supply unit of aerosol generation device
JP2024059920A (ja) エアロゾル生成装置の電源ユニット

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22807216

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE