WO2022239474A1 - エアロゾル生成装置の電源ユニット - Google Patents

エアロゾル生成装置の電源ユニット Download PDF

Info

Publication number
WO2022239474A1
WO2022239474A1 PCT/JP2022/012261 JP2022012261W WO2022239474A1 WO 2022239474 A1 WO2022239474 A1 WO 2022239474A1 JP 2022012261 W JP2022012261 W JP 2022012261W WO 2022239474 A1 WO2022239474 A1 WO 2022239474A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
terminal
supply unit
circuit
heater
Prior art date
Application number
PCT/JP2022/012261
Other languages
English (en)
French (fr)
Inventor
達也 青山
拓嗣 川中子
徹 長浜
貴司 藤木
亮 吉田
Original Assignee
日本たばこ産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本たばこ産業株式会社 filed Critical 日本たばこ産業株式会社
Publication of WO2022239474A1 publication Critical patent/WO2022239474A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/53Monitoring, e.g. fault detection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • the present invention relates to a power supply unit for an aerosol generator.
  • Aerosol generating devices such as electronic cigarettes have a configuration for heating the liquid to form the aerosol.
  • Patent Literature 1 discloses an aerosol generator in which, when the controller detects overheating of the heater, the controller limits or turns off power supply from the battery to the heater.
  • the controller cannot know the presence or absence of an abnormality detected in the past. Therefore, if the device is reset or restarted after overheating of the heater is detected, the controller cannot limit power supply to the heater until overheating of the heater is detected again.
  • One of the purposes of the present invention is to provide a power supply unit for an aerosol generator capable of appropriate control using the presence or absence of an abnormality detected in the past.
  • a power supply comprising: a control circuit for controlling power supply from the power supply to the load; a first holding circuit holding first information indicating whether or not an abnormality has been detected; The control circuit refers to the first information held in the first holding circuit at startup, and if the first information indicates that an abnormality has been detected, the control circuit prohibits use of the power supply unit.
  • a power supply unit is provided to perform the operations.
  • the control circuit is activated when a state in which power is not supplied is changed to a state in which power is supplied
  • the power supply unit according to the first aspect is provided, wherein power is supplied to the first holding circuit even during a period in which power is not supplied to the control circuit.
  • a power supply unit according to a second aspect is provided, wherein a power supply line that supplies power to the first holding circuit and a power supply line that supplies power to the control circuit are different.
  • the power supply unit according to any one of the first to third aspects is provided, wherein the first information indicates whether or not a predetermined abnormality regarding the load has been detected.
  • a power supply unit according to a fourth aspect, wherein the predetermined abnormality related to the load is a temperature abnormality of the load.
  • the first holding circuit has a terminal for outputting a first signal indicating the first information to the control circuit, and the control circuit refers to the first information by referring to the terminal.
  • a power supply unit according to any one of the fifth to fifth aspects is provided.
  • the first information is such that one of a non-inverting input terminal and an inverting input terminal is connected to a thermistor located in proximity to the load, and the other of the non-inverting input terminal and the inverting input terminal is connected to a reference voltage.
  • a power supply unit according to any one of the first to fifth aspects is provided, wherein the value changes according to the output of the connected first operational amplifier.
  • the power supply unit according to any one of the first to seventh aspects is provided, wherein the operation for prohibiting use of the power supply unit includes stopping power supply to the load and the control circuit. .
  • the ninth aspect further comprising a charging circuit for charging the power supply;
  • a power supply unit according to an eighth aspect is provided, wherein the operation for prohibiting use of the power supply unit further includes stopping power supply to a circuit that charges the power supply.
  • the tenth aspect further comprising a second holding circuit holding second information indicating whether or not an abnormality related to the power supply has been detected;
  • the control circuit according to any one of the first to ninth modes, wherein when the second information indicates that an abnormality has been detected, the control circuit notifies the user to perform a reset operation of the power supply unit.
  • power supply unit is provided.
  • the second holding circuit has a terminal for outputting a second signal indicating the second information;
  • the power supply unit according to a tenth aspect, wherein when the second information indicates that an abnormality has been detected, the second signal stops or prohibits power supply to the load without going through the control circuit. is provided.
  • the power supply unit according to the tenth aspect or the eleventh aspect, wherein power is supplied to the second holding circuit by a power supply line that supplies power to the control circuit.
  • the power supply abnormality relates to at least one of a current amount during discharging of the power supply, a current amount during charging of the power supply, and a temperature of the power supply.
  • a power supply unit according to claim 1 is provided.
  • the fourteenth aspect further comprising a case forming a surface of the power supply unit;
  • the power supply unit according to any one of tenth to thirteenth aspects is provided, wherein the second information further indicates whether or not an abnormality related to the temperature of the case has been detected.
  • the fifteenth aspect Any one of the tenth to fourteenth aspects, wherein when the first information changes to a value indicating that an abnormality has been detected, the second information also changes to a value indicating that an abnormality has been detected.
  • a power supply unit according to claim 1 is provided.
  • FIG. 4 is a diagram showing an appearance example of a power supply unit of the aerosol generating device according to the embodiment
  • FIG. 2 is a perspective view showing an internal configuration example of the power supply unit according to the embodiment
  • FIG. 2 is a diagram showing an overall circuit configuration example of a power supply unit according to the embodiment
  • the figure which extracted a part of FIG. The figure which shows the modification of FIG. 4A.
  • FIG. 4 is a diagram showing an example of battery abnormality conditions in the power supply unit according to the embodiment
  • FIG. 4 is a diagram showing an example of arrangement of a circuit board and circuit elements of the power supply unit according to the embodiment
  • FIG. 4 is a diagram showing an example of arrangement of a circuit board and circuit elements of the power supply unit according to the embodiment
  • FIG. 4 is a diagram showing an example of arrangement of a circuit board and circuit elements of the power supply unit according to the embodiment
  • FIG. 4 is a diagram showing an example of arrangement of a circuit board and circuit elements of the power supply unit according to the embodiment;
  • FIG. 4 is a diagram showing an example of arrangement of a circuit board and circuit elements of the power supply unit according to the embodiment;
  • FIG. 4 is a diagram showing an example of arrangement of a circuit board and circuit elements of the power supply unit according to the embodiment;
  • FIG. 1 is an external perspective view schematically showing a configuration example of a power supply unit 1 of an aerosol generating device according to one embodiment of the present invention.
  • the power supply unit 1 has a substantially rectangular parallelepiped case 2 with rounded corners. Case 2 constitutes the surface of power supply unit 1 .
  • the surface indicated by a is the front surface
  • the surface indicated by b is the rear surface
  • the surface indicated by c is the bottom surface
  • the surface indicated by d is the top surface.
  • the power supply unit 1 has a housing (case) 2 and a front panel 11 that can be attached to and detached from the case 2 .
  • f shows the state where the front panel 11 is removed from the state of a.
  • g indicates the state of the front panel 11 viewed from the inside.
  • the front panel 11 functions as a front cover of the case 2 and allows the user to freely replace it to customize its appearance.
  • Two pairs of magnets 14A and 14B and magnets 15A and 15B are provided at opposing positions on the inner surface of the front panel 11 and the front surface of the case 2, respectively.
  • the magnets 14A and 15A attract each other, and the magnets 14B and 15B attract each other, so that the front panel 11 is held in front of the case 2 by magnetic force.
  • a pushable switch SW and a light emitting unit NU are provided on the front of the case 2 .
  • a protrusion 16 is provided on the inner surface of the front panel 11 at a position facing the switch SW.
  • a slider 13 that can be opened and closed is provided on the top surface of the case 2 .
  • the heater chamber 17 appears as indicated by e. e, the slider 13 is not shown for convenience.
  • the heater chamber 17 is a cylindrical space having an elliptical (elliptical) horizontal cross section, and heats a stick or cartridge inserted into the heater chamber 17 .
  • the stick is cylindrical and has a horizontal cross-sectional diameter larger than the minor axis of the horizontal cross-section of the heater chamber 17 . As a result, the stick is radially compressed when it is inserted into the heater chamber 17, so that the contact between the outer surface of the stick and the heater chamber 17 is enhanced and the contact area is increased. Therefore, the stick can be efficiently heated. This can improve the amount and flavor of the aerosol generated from the stick.
  • the slider 13 With the front panel 11 attached to the power supply unit 1, the slider 13 is moved to the position (open position) where the heater chamber 17 is exposed, and the switch SW is continuously pressed for a predetermined time (for example, several seconds). When detected, it is regarded as a heating start instruction and the heating operation is started.
  • the stick heated by the heater chamber 17 may contain only the aerosol source, or may contain the aerosol source and the flavoring substance.
  • Aerosol sources can include liquids such as, for example, polyhydric alcohols such as glycerin or propylene glycol.
  • the aerosol source may comprise a mixed solution of glycerin and propylene glycol.
  • the aerosol source may include a drug or herbal medicine.
  • the aerosol source may contain a flavoring agent such as menthol.
  • the aerosol source may comprise liquid phase nicotine.
  • the aerosol source can be liquid, solid, or a mixture of liquid and solid.
  • a vapor source such as water may be used instead of or in addition to an aerosol source.
  • the stick may include a carrier for carrying the aerosol source.
  • the carrier itself may be a solid aerosol source.
  • the carrier may include a sheet formed from raw materials derived from tobacco leaves.
  • a connector USBC is provided on the bottom of the case 2 for connecting an external device.
  • the connector USBC is a receptacle conforming to the USB Type-C standard.
  • an external device USB charger, mobile battery, personal computer, etc.
  • the connector USBC may conform to standards other than the USB Type-C standard.
  • the power supply unit 1 may be provided with a power receiving coil for non-contact charging.
  • FIG. 2 is a perspective view schematically showing a state in which the case is removed from the power supply unit 1.
  • a heater unit HT (hereinafter simply referred to as a heater HT) is a load that is provided on the outer circumference of the heater chamber 17 and heats the heater chamber 17 by consuming power supplied from the power supply to heat the aerosol source.
  • the heater HT is covered with a heat insulating material.
  • a heater thermistor TH attached to the heat insulating material of the heater HT is a temperature sensor that indirectly measures the temperature of the heater HT.
  • the heater HT may be of an induction heating type.
  • the heater HT includes at least a coil for electromagnetic induction.
  • a susceptor (metal piece) that receives the magnetic field sent from the electromagnetic induction coil may be included in the heater HT or may be built in the stick.
  • the puff thermistor TP is a suction sensor arranged at the upper end of the heater chamber 17 .
  • the case thermistor TC is provided near the inner surface of the front surface of the case 2 and detects the case temperature.
  • Battery BT is rechargeable and is, for example, a lithium ion secondary battery.
  • the battery BT is a power supply that supplies basic power for the power supply unit 1 .
  • the battery BT is attached at the time of manufacture, and the power supply unit 1 is shipped in a state (sleep state) in which power is being supplied to most of the constituent elements except for the heater HT and thermistors TH, TC, and TP.
  • the detector 170 is an open/close sensor for detecting opening/closing of the slider 13, and may be an integrated circuit (Hall IC) using a Hall element.
  • the circuits of the power supply unit 1 are distributed and arranged on four circuit boards PCB1 to PCB4. As will be described later, in this embodiment, by arranging a holding circuit that holds information indicating whether or not an abnormality has been detected at a position that is less likely to be affected by disturbance noise, the risk of the information held by the holding circuit being rewritten by disturbance noise is reduced. Suppress.
  • a positive terminal of the battery BT is electrically connected to the first power connector BC+, and a negative terminal of the battery BT is electrically connected to the second power connector BC-.
  • the potential of the positive electrode of battery BT can be supplied to the VBAT terminal of protection circuit 90, the VBAT terminal of battery monitoring circuit 100, the VIN terminal of transformer circuit 120, the BAT terminal of charging circuit 20, and the potential input terminal of switch circuit 80. .
  • the protection circuit 90 measures the current flowing through the path through which the current output from the battery BT flows using the resistor R2, and protects the battery BT according to the current.
  • the protection circuit 90 measures the output voltage of the battery BT using the input to the VBAT terminal, and protects the battery BT according to the measured output voltage.
  • the battery monitoring circuit 100 can measure the state of the battery BT using the resistor R1 arranged in the path through which the current output from the battery BT flows.
  • the overvoltage protection circuit 110 receives the voltage V BUS supplied from the connector USBC as a power supply connector and outputs the voltage V USB to the V USB line.
  • the overvoltage protection circuit 110 functions as a protection circuit that, even if the voltage V BUS supplied from the connector USBC exceeds the specified voltage value, drops it to the specified voltage value and supplies it to the output side of the overvoltage protection circuit 110. I can.
  • This specified voltage value may be set based on the voltage value input to the OVLo terminal.
  • Transformation circuit 120 is a DC/DC converter that transforms power supply voltage V BAT supplied from battery BT to generate heater voltage V BOOST for driving heater HT.
  • the transformer circuit 120 may be a boost circuit, a step-up/step-down circuit, or a step-down circuit.
  • a heater HT is arranged to heat the aerosol source. A positive terminal of the heater HT can be electrically connected to the first heater connector HC+ and a negative terminal of the heater HT can be electrically connected to the second heater connector HC-.
  • the heater HT may be attached to the power supply unit 1 in such a manner that it cannot be removed without being destroyed (for example, by soldering), or may be attached in such a manner that it can be removed without being destroyed. good.
  • an electrical connection by a "connector" can be divided into a form in which it cannot be separated from each other without being broken, and a form in which it can be separated from each other without being broken. It will be described as any one.
  • the MCU 130 is a processor-based control circuit equipped with a program-executable processor, memory, interface, etc., and controls the operation of the power supply unit 1 .
  • Programs executed by MCU 130 may reside in internal memory, non-volatile memory 70, or both.
  • the MCU 130 controls power supply to the heater HT for heating the aerosol source using power supplied from the battery BT. From another point of view, the MCU 130 controls heat generation of the heater HT for heating the aerosol source using power supplied from the battery BT. In still another aspect, the MCU 130 controls power supply to the heater HT and charging operation of the battery BT.
  • the MCU 130 When the heater HT is to generate heat, the MCU 130 turns on the switches SH and SS and turns off the switch SM. This allows the heater voltage V BOOST to be supplied from the transformer circuit 120 to the heater HT through the switch SH. When measuring the temperature or resistance of the heater HT, the MCU 130 turns off the switch SH and turns on the switches SM and SS. This allows the heater voltage V BOOST to be supplied from the transformer circuit 120 through the switch SM to the heater HT.
  • the operational amplifier A1 When measuring the temperature or resistance value of the heater HT, the operational amplifier A1 detects the voltage between the positive terminal and the negative terminal of the heater HT, in other words, the voltage between the first heater connector HC+ and the second heater connector HC-. to the PA7 terminal of the MCU 130.
  • the operational amplifier A1 can also be said to be a measurement circuit that measures the resistance value or temperature of the heater HT.
  • a shunt resistor RS can be arranged on a path that electrically connects the switch SM and the first heater connector HC+.
  • the resistance value of the shunt resistor RS can be determined so that the switch SR is turned on during the heating period of the heater HT and turned off during the period of measuring the temperature or resistance value of the heater HT.
  • the MCU 130 controls the temperature of the heater HT according to a predetermined temperature control pattern.
  • the temperature control pattern is also called a heating profile, and defines how the temperature of the heater HT should be controlled during the period from the start to the end of heating.
  • the temperature control pattern may define the length (time) and target temperature for each section.
  • a temperature control pattern is also called a heating profile.
  • the MCU 130 realizes the temperature change specified in the temperature control pattern by repeatedly detecting the temperature of the heater HT and controlling the power supply time to the heater HT based on the detected temperature of the heater HT.
  • the MCU 130 acquires the temperature of the heater HT using the heater thermistor TH connected to the PA6 terminal, instead of supplying power to the heater HT and measuring the resistance value in the temperature decreasing section. In this way, the MCU 130 periodically measures the temperature of the heater HT during the period in which the temperature of the heater HT is controlled according to the temperature control pattern. If so, it can be detected.
  • the MCU 130 stops supplying power to the heater HT when the last section specified in the temperature control pattern ends or when it is detected that the slider 13 has moved to the position (closed position) where the heater chamber 17 is hidden. Then, the temperature control of the heater HT ends.
  • the switch SR When the switch SR is composed of an N-channel MOSFET, the drain terminal of the switch SR is connected to the output terminal of the operational amplifier A1, the gate terminal of the switch SR is connected between the shunt resistor RS and the first heater connector HC+, The source terminal of switch SR is connected to ground (GND). A voltage obtained by dividing the heater voltage V BOOST mainly by the shunt resistor RS and the heater HT is input to the gate terminal of the switch SR. The resistance value of the shunt resistor RS can be determined so that the divided value is greater than or equal to the threshold voltage of the switch SR.
  • the current flowing through the heater HT when the switch SH is turned off and the switches SM and SS are turned on by the shunt resistor RS is the heater HT when the switch SH and the switch SS are turned on and the switch SM is turned off. is smaller than the current flowing through As a result, it is possible to prevent the temperature of the heater HT from changing due to the current flowing through the heater HT when measuring the temperature or resistance of the heater HT.
  • the load switch 10 electrically disconnects the VIN terminal and the VOUT terminal when a low level is input to the ON terminal, and disconnects the VIN terminal and the VOUT terminal when a high level is input to the ON terminal. are electrically connected to output the voltage VCC5 from the VOUT terminal to the VCC5 line.
  • the voltage value of the voltage VCC5 is, for example, 5.0 [V].
  • the VCC5 line is connected to the VBUS and VAC terminals of the charging circuit 20, which will be described later, and the light emitting unit NU.
  • the ON terminal of the load switch 10 is connected to the collector terminal of an npn bipolar transistor.
  • the emitter terminal of this bipolar transistor is connected to ground and the base terminal is connected to the PC9 terminal of MCU 130 . That is, the MCU 130 can control opening/closing of the load switch through the bipolar transistor by adjusting the potential of the PC9 terminal.
  • Charging circuit 20 has a charging mode. In the charging mode, the charging circuit 20 electrically connects the SYS terminal and the BAT terminal internally. Thus, the voltage VCC5 supplied to the VBUS terminal via the VCC5 line can be used to supply the charging voltage from the BAT terminal to the battery BT via the first conductive path PT1. Charging circuit 20 preferably generates a suitable charging voltage by stepping down voltage VCC5 .
  • the charging mode can be enabled or activated by supplying a low level to the /CE terminal.
  • the VCC line is connected to the VIN and EN terminals of transformer circuit 30, which will be described later.
  • the charging circuit 20 can have a power pass function.
  • the charging circuit 20 uses the voltage VCC5 supplied to the VBUS terminal through the VCC5 line, or the BAT from the battery BT through the first conductive path PT1.
  • a power supply voltage V BAT applied to a terminal is used to provide the voltage V CC on the V CC line.
  • the charging circuit 20 electrically connects the VBUS terminal and the SW terminal internally, and supplies the VCC5 line.
  • VCC5 is used to supply voltage VCC on the VCC line.
  • the charging circuit 20 electrically connects the VBUS terminal and the SW terminal internally, and the first conductive path from the battery BT.
  • the power supply voltage V BAT supplied to the BAT terminal through PT1 is used to provide the voltage V CC on the V CC line.
  • the charging circuit 20 has an OTG (On-The-GO) function.
  • OTG On-The-GO
  • the charging circuit 20 uses the power supply voltage V BAT supplied from the battery BT to the BAT terminal through the first conductive path PT1 to apply the voltage V from the VBUS terminal to the V CC5 line. Feed CC5 .
  • the charging circuit 20 is configured so that the voltage supplied to the light emitting unit NU is about the same as when generating the voltage V CC5 from the voltage V USB .
  • voltage V BAT is boosted to provide voltage V CC5 . With such a configuration, the operation of the light emitting unit NU is stabilized.
  • the charging circuit 20 operates using either the power pass function or the OTG function set by default or one enabled by the MCU 130 . sell.
  • the transformer circuit 30 is a DC/DC converter, which may be a boost circuit, a buck-boost circuit, or a buck circuit, and is enabled by applying voltage VCC to the VCC line. Specifically, the transformer circuit 30 is enabled by inputting a high-level signal to the EN terminal. Since the VIN and EN terminals are connected to the VCC line, transformer circuit 30 is enabled by applying voltage VCC to the VCC line. Transformer circuit 30 provides voltage V CC33_0 from the VOUT terminal to the V CC33_0 line. The voltage value of the voltage V CC33_0 is, for example, 3.3 [V].
  • the VCC33_0 line is connected to the VIN terminal of the load switch 40, which will be described later, the VIN terminal and RSTB terminal of the reboot controller 50, which will be described later, and the VCC terminal and D terminal of the FF2, which will be described later.
  • the load switch 40 electrically disconnects the VIN terminal and the VOUT terminal when a low level is input to the ON terminal, and disconnects the VIN terminal and the VOUT terminal when a high level is input to the ON terminal. are electrically connected to output the voltage VCC33 from the VOUT terminal to the VCC33 line.
  • the voltage value of the voltage VCC33 is, for example, 3.3 [V].
  • the VCC 33 line is connected to the VIN terminal of the load switch 60 described later, the VCC terminal of the nonvolatile memory 70, the VDD and CE terminals of the battery monitoring circuit 100 described later, the VDD terminal of the MCU 130, the VDD terminal of the detector 140 described later, and the VDD terminal of the detector 140 described later.
  • VCC_NRF terminal of a communication interface circuit 160 to be described later a VDD terminal of a detector 170 to be described later; a VCC terminal and a D terminal of FF1 to be described later; a positive power supply terminal of an operational amplifier A1; connected to the positive power supply terminal.
  • the VIN terminal of the load switch 40 is electrically connected to the VOUT terminal of the transformer circuit 30 and supplied with the voltage VCC33_0 from the transformer circuit 30 . In order not to complicate the circuit board of the power supply unit 1, it is preferable that the voltage value of the voltage VCC33_0 and the voltage value of the voltage VCC33 are substantially equal.
  • the reboot controller 50 outputs a low level from the RSTB terminal in response to the low level being supplied to the SW1 terminal and the SW2 terminal for a predetermined period of time.
  • the RSTB terminal is electrically connected to the ON terminal of the load switch 40 . Therefore, in response to the supply of the low level to the SW1 terminal and the SW2 terminal of the reboot controller 50 for a predetermined period of time, the load switch 40 stops outputting the voltage VCC33 from the VOUT terminal.
  • the output of the voltage VCC33 from the VOUT terminal of the load switch 40 stops, the supply of the voltage VCC33 to the VDD terminal (power supply terminal) of the MCU 130 is cut off, so the MCU 130 stops operating.
  • a low level is supplied from the detector 140 to the SW2 terminal of the reboot controller 50 via the Schmidt trigger circuit 150 .
  • a low level is supplied to the SW1 terminal of the reboot controller 50 . Therefore, when the switch SW is pressed while the front panel 11 is removed from the power supply unit 1 (state f in FIG. 1), a low level is supplied to the SW1 terminal and SW2 terminal of the reboot controller 50 .
  • the reboot controller 50 recognizes that a command to reset or restart the power supply unit 1 has been input when a low level is continuously supplied to the SW1 terminal and the SW2 terminal for a predetermined time (for example, several seconds).
  • the reboot controller 50 does not output a low level from the RSTB terminal after outputting a low level from the RSTB terminal.
  • a low level is input to the ON terminal of the load switch 40, the load switch 40 electrically disconnects the VIN terminal and the VOUT terminal, and the voltage VCC33 is applied to the VCC33 line. is no longer output.
  • the MCU 130 stops outputting the low level from the RSTB terminal
  • the high level voltage VCC33_0 is input to the ON terminal of the load switch 40, so that the load switch 40 electrically connects the VIN terminal and the VOUT terminal. to output the voltage VCC33 again from the VOUT terminal to the VCC33 line.
  • the MCU 130 that has stopped operating can be restarted.
  • the load switch 60 electrically disconnects the VIN terminal and the VOUT terminal when a low level is input to the ON terminal, and disconnects the VIN terminal and the VOUT terminal when a high level is input to the ON terminal. are electrically connected to output the voltage VCC33_SLP from the VOUT terminal to the VCC33_SLP line.
  • the voltage value of the voltage V CC33_SLP is, for example, 3.3 [V].
  • the VCC33_SLP line is connected to a puff thermistor TP, which will be described later, a heater thermistor TH, which will be described later, and a case thermistor TC, which will be described later.
  • the ON terminal of the load switch 60 is electrically connected to the PC11 terminal of the MCU 130 .
  • the MCU 130 transitions the logic level of the PC11 terminal from high level to low level when transitioning to the sleep mode, and transitions the logic level of the PC11 terminal from low level to high level when transitioning from the sleep state to the active state.
  • the voltage VCC33_SLP is not available in the sleep state and becomes available when transitioning from the sleep state to the active state.
  • the voltage value of the voltage VCC33_SLP and the voltage value of the voltage VCC33 are substantially equal.
  • the power supply unit 1 can include a puff thermistor TP (for example, an NTC thermistor or a PTC thermistor) that constitutes a puff sensor for detecting a puff (sucking) action by the user.
  • the puff thermistor TP may be arranged, for example, to detect temperature changes in the airflow path associated with the puff.
  • the puff thermistor TP is only a specific example of the puff sensor.
  • a microphone capacitor, a pressure sensor, a flow sensor, a flow velocity sensor, or the like may be used as the puff sensor.
  • the power supply unit 1 may include a vibrator M. Vibrator M can be activated, for example, by turning on switch SN.
  • the switch SN may be composed of a transistor, and a control signal may be supplied from the PH0 terminal of the MCU 130 to the base or gate of the transistor.
  • the power supply unit 1 may have a driver for controlling the vibrator M.
  • the power supply unit 1 can include a heater thermistor TH (for example, an NTC thermistor or a PTC thermistor) for detecting the temperature of the heater HT.
  • the temperature of the heater HT may be detected indirectly by detecting the temperature in the vicinity of the heater HT.
  • the operational amplifier A2 can output a voltage corresponding to the resistance value of the thermistor TH, in other words, a voltage corresponding to the temperature of the heater HT.
  • the power supply unit 1 may include a case thermistor TC (for example, an NTC thermistor or a PTC thermistor) for detecting the temperature of the housing (case) 2 of the power supply unit.
  • the temperature of case 2 may be detected indirectly by detecting the temperature in the vicinity of case 2 .
  • the operational amplifier A3 outputs a voltage corresponding to the resistance value of the thermistor TC, in other words, a voltage corresponding to the temperature of the case 2.
  • Detector 140 may be configured to detect that front panel 11 is removed from power supply unit 1 .
  • the output of detector 140 may be supplied to the SW2 terminal of reboot controller 50 and the PD2 terminal of MCU 130 via Schmitt trigger circuit 150 .
  • One end of switch SW may be connected to the V CC 33 line, the SW1 terminal of reboot controller 50 and the PC10 terminal of MCU 130 .
  • the other end of the switch SW can be connected to ground.
  • the detector 170 can be configured to detect opening and closing of the slider 13 .
  • the output of detector 170 may be provided to the PC13 terminal of MCU 130 .
  • Detectors 140 and 170 can be configured by integrated circuits (Hall ICs) using Hall elements, for example.
  • the communication interface circuit 160 provides the MCU 130 with a function of wirelessly communicating with external devices such as smartphones, mobile phones, and personal computers.
  • Communication interface circuit 160 may be, for example, a communication interface circuit compliant with one or more of any wireless communication standards, such as Bluetooth (registered trademark).
  • FIG. 4A is a circuit diagram extracting and describing the configuration related to the operation using FFs (Flip-Flops) 1 and FF2 among the components described using FIG. FF1 and FF2 are holding circuits that hold 1-bit information (0 or 1) indicating whether or not an abnormality has been detected as low level or high level.
  • FF2 outputs the value obtained by inverting the value of the held information from the /Q terminal as the HEATER_Latched signal.
  • FF1 outputs the value of information it holds as an nALARM_Latched signal from the Q terminal.
  • the MCU 130 Since the HEATER_Latched signal and the nALARM_Latched signal are input to the PB14 terminal and PA10 terminal of the MCU 130, respectively, the MCU 130 refers to the information held in FF1 and the information held in FF2 by referring to the levels of these terminals. can.
  • FF1 and FF2 have a /CLR terminal, and when the input level of the /CLR terminal changes from high level to low level, the value of the held information is initialized to 0 (low level). A change in the input level of the /CLR pin from low level to high level does not affect the value of the held information.
  • the voltage VCC33_0 is input to the VCC terminal (power supply terminal) of FF1
  • the voltage VCC33 is input to the VCC terminal (power supply terminal) of FF2.
  • the voltage VCC33_0 is continuously supplied even while the voltage VCC33 for driving the MCU 130 is temporarily not supplied in the reset operation. Therefore, the information held by the FF 2 (output from the Q and /Q terminals) is held without disappearing even if the reset operation of the power supply unit 1 is executed.
  • the information held by FF1 is erased during the reset operation.
  • FF1 and FF2 the input to the VCC terminal is also input to the D terminal. Therefore, while FF1 and FF2 are operating, a high level is always input to the D terminal. FF1 and FF2 have synchronous terminals (not shown), and when the input of the synchronous terminals changes from low level to high level, the input level of the D terminal is held. When the power supply unit 1 is operating normally, FF1 and FF2 are kept high level, the nALARM_Latched signal is high level, and the HEATER_Latched signal is low level.
  • Battery monitoring circuit 100 monitors information (current amount, temperature, voltage, etc.) of battery BT.
  • MCU 130 which is a control circuit, periodically requests battery BT information from battery monitoring circuit 100 through I 2 C communication, and battery monitoring circuit 100 notifies MCU 130 of battery BT information in response to the request.
  • MCU 130 determines whether there is an abnormality based on the acquired information on battery BT and a plurality of predetermined abnormal conditions. When there is a corresponding abnormal condition, the MCU 130 executes an operation associated with the abnormal condition.
  • FIG. 5 is a diagram showing an example of an abnormal condition regarding battery BT.
  • the determination condition of the MCU 130 is an abnormal condition applied to the battery BT information acquired by the MCU 130 from the battery monitoring circuit 100 through I 2 C communication.
  • the output condition of the nGAUGE_INT1 signal and the output condition of the nGAUGE_INT2 signal are abnormal conditions that the battery monitoring circuit 100 itself applies to the information of the battery BT.
  • the battery monitoring circuit 100 outputs a low-level nGAUGE_INT1 signal from the ALERT terminal.
  • the battery monitoring circuit 100 outputs the low-level nGAUGE_INT2 signal from the IO5 terminal. In this way, the state of battery BT is independently monitored by MCU 130 and battery monitoring circuit 100 . As a result, even if I 2 C communication between the MCU 130 and the battery monitoring circuit 100 cannot be performed normally for some reason, or the MCU 130 does not operate normally for some reason, the battery monitoring circuit 100 detects the abnormality of the battery BT. can be reliably detected and an appropriate response can be taken.
  • the "Timing" column indicates the timing for determining whether or not each abnormal condition is met. It is determined whether or not the abnormal condition described as “charging” in the “Timing” column applies only while the charging circuit 20 is charging the battery BT. The abnormal condition described as “discharging” in the “Timing” column is only while the battery BT is not being charged by the charging circuit 20 (more preferably, while the heater voltage V BOOST is being applied to the heater HT). only), it is determined whether it applies. It is determined whether or not the abnormal condition described as “constant” in the "Timing” column applies regardless of whether the battery BT is being charged by the charging circuit 20 or not.
  • abnormal conditions without frames are the mildest abnormalities
  • abnormal conditions with practice frames are medium abnormalities that require resetting
  • abnormal conditions with double-lined frames The condition represents a significant anomaly (permanent failure).
  • MCU 130 and battery monitoring circuit 100 operate according to the degree of the abnormality.
  • the output condition of the nGAUGE_INT1 signal stricter conditions are set.
  • the abnormal condition is set such that the nGAUGE_INT2 signal is output earlier than the nGAUGE_INT1 signal for the same monitoring parameter.
  • the nGAUGE_INT2 signal is output to the MCU 130 to deal with the abnormality under the control of the MCU 130, whereas the nGAUGE_INT1 signal deals with the abnormality by hardware without going through the MCU 130.
  • priority is given to software control by the MCU 130 that operates stably, and hardware control by the nGAUGE_INT1 signal is implemented as means when software control does not work. An example of when software control does not work is when the MCU 130 is frozen.
  • the MCU 130 When it is determined that the mildest abnormal state (in the example of FIG. 5, when the temperature of the battery BT is 51° C. or more and less than 55° C. during discharge), the MCU 130 reduces the power from the battery BT to the heater HT. Disable supply (application of heater voltage V BOOST ). Also, the MCU 130 causes the light-emitting unit NU and the vibrator M to notify an error. The MCU 130 also prohibits charging of the battery BT by the charging circuit 20 . In the sleep state, voltages V BAT , V CC33 and V CC33_0 are supplied, but voltage V CC33_SLP is not supplied.
  • the MCU 130 turns the Heater_Enable signal output from the PC12 terminal to low level to turn off the switch SS. As a result, the MCU 130 disconnects the negative terminal HC- of the heater HT from the ground. Further, since the Heater Enable signal is also input to the EN terminal of the transformer circuit 120, the transformer circuit 120 also stops operating and power supply to the heater HT is prohibited.
  • the MCU 130 sets the nCharger_Enable signal output from the PB3 terminal to high level. As a result, the /CE terminal of the charging circuit 20 becomes high level, so that the charging circuit 20 prohibits charging.
  • the MCU 130 shifts the power supply unit 1 to the sleep state.
  • the MCU 130 prompts the user to perform the reset operation by means of the light emitting pattern and/or the light emitting color of the light emitting unit NU.
  • the MCU 130 prohibits power supply from the transformer circuit 120 to the heater HT and charging of the battery BT by the charging circuit 20 .
  • the reboot controller 50 detects these conditions.
  • the SW1 terminal of the reboot controller 50 is connected to the switch SW, and the SW2 terminal is connected to the Schmitt trigger circuit 150 that outputs a signal indicating attachment/detachment of the front panel 11 .
  • the switch SW is pressed while the front panel 11 is removed, both the inputs of the SW1 and SW2 terminals become low level. Thereby, the reboot controller 50 starts a reset operation.
  • the reboot controller 50 monitors whether the state in which both the SW1 and SW2 terminals are at low level continues until a user-settable reboot delay time (eg, 1 to 20 seconds) has elapsed.
  • a user-settable reboot delay time eg, 1 to 20 seconds
  • the MCU 130 uses the light emitting unit NU and the vibrator M to notify the user of the reset.
  • the reboot controller 50 changes the output of the RSTB terminal to low level when both the SW1 and SW2 terminals remain at low level for the reboot delay time.
  • the ON terminal of the load switch 40 becomes low level, and the supply of the voltage VCC33 from the VOUT terminal of the load switch 40 and the voltage VCC33_SLP from the VOUT terminal of the load switch 60 are stopped.
  • power supply to the MCU 130 is cut off, and the MCU 130 stops operating. That is, the above-described time required for recognizing the reset instruction, which is longer than the heating start instruction, is substantially equal to the reboot delay time.
  • the reboot controller 50 does not automatically set the RSTB terminal to low level after a predetermined time (for example, 0.4 seconds) has elapsed since the RSTB terminal was set to low level.
  • a predetermined time for example, 0.4 seconds
  • the voltage VCC33_0 is input to the ON terminal of the load switch 40 via the VCC33_0 line.
  • Supply of the voltage VCC33 from the load switch 40 is resumed, and the MCU 130 is activated.
  • the MCU 130 is activated when the state in which power is not supplied is changed to the state in which power is supplied.
  • the power supply unit 1 enters a sleep state or a charging state when the MCU 130 is activated.
  • Voltage VCC33_SLP is not provided at this time.
  • the overcurrent during charging is a current value (hereinafter referred to as constant-current) predetermined for CC (constant-current) charging among the CCCV charging performed by the charging circuit 20. , also referred to as a set value) is detected, it is determined to be applicable.
  • the MCU 130 determines that a serious abnormality (permanent failure) has occurred.
  • a serious abnormality permanent failure
  • the term "deeply discharged” refers to a state in which the discharge of the battery BT has progressed beyond the state of overdischarge.
  • the over-discharge state refers to a state in which the output voltage of battery BT is lower than the final discharge voltage. Determination of deep discharge can be performed by a predetermined algorithm. There is no limit to the method of determining deep discharge, but for example, when the positive electrode voltage of battery BT is less than that, it can be determined to be deep discharge.
  • the MCU 130 When determining that a permanent failure has occurred, the MCU 130 performs an operation to prohibit the user from using the power supply unit 1 . Specifically, the MCU 130 stops the power pass function of the charging circuit 20 (the function of outputting power input to the BAT terminal from the SYS terminal) through I 2 C communication with the charging circuit 20 . As a result, the supply of the voltage V CC based on the power supply voltage V BAT from the charging circuit 20 is stopped, and the supply of the voltages V CC33_0 , V CC33 and V CC33_SLP derived from the voltage V CC is also stopped. Therefore, power is not supplied to most of the circuits including the MCU 130, and the power supply unit 1 substantially stops operating. Since power is not supplied to the reboot controller 50, the reset operation is also not accepted.
  • the MCU 130 prohibits the use of the power supply unit 1 by the user.
  • power is supplied from the transformer circuit 120 to the heater HT and the battery BT is charged by the charging circuit 20 by the method using the Heater_Enable signal and the nCharger Enable signal described above before the power pass function of the charging circuit 20 is stopped. may be prohibited.
  • the battery monitoring circuit 100 monitors the state of the battery BT and determines whether any of the abnormal conditions shown in FIG. 5 apply. Then, it outputs the nGAUGE_INT1 signal or the nGAUGE_INT2 signal according to the corresponding abnormal condition.
  • the nGAUGE_INT2 signal is input from the IO5 terminal of the battery monitoring circuit 100 to the PB12 terminal of the MCU 130 as an interrupt signal. In other words, the nGAUGE_INT2 signal is output from the IO5 terminal of the battery monitoring circuit 100 without waiting for the periodic I 2 C communication cycle with the MCU 130 .
  • the nGAUGE_INT1 signal output from the ALERT terminal of the battery monitoring circuit 100 is not input to the MCU 130, but is input to the /CLR terminal of FF1, which is the holding circuit.
  • nGAUGE_INT2 signal First, the nGAUGE_INT2 signal will be described.
  • the battery monitoring circuit 100 determines whether or not the information of the battery BT obtained periodically corresponds to any of the abnormal conditions listed as the output conditions of the nGAUGE_INT2 signal. Then, when it is determined that any of the abnormal conditions is met, the battery monitoring circuit 100 outputs the nGAUGE_INT2 signal by setting the output of the IO5 terminal to low level, and notifies the occurrence of the abnormality to the MCU 130 through the PB12 terminal. .
  • the MCU 130 When the input to the PB12 terminal changes to low level, the MCU 130 recognizes that the battery monitoring circuit 100 has detected an abnormality in the battery BT. The MCU 130 acquires information on the battery BT from the battery monitoring circuit 100 through I 2 C communication through the SCL and SDA terminals.
  • the MCU 130 applies the same abnormal condition as the nGAUGE_INT2 signal output condition to the obtained battery BT information to determine whether the battery BT is in an abnormal state. Then, if any of the abnormal conditions is met, an operation is executed according to the degree of abnormality indicated by the abnormal condition. In other words, the MCU 130 applies to the acquired information of the battery BT depending on whether the information of the battery BT is acquired through regular I 2 C communication or through I 2 C communication in response to the notification (interrupt) by the nGAUGE_INT2 signal. different abnormal conditions. When there is a corresponding abnormal condition, the operation performed according to the degree of abnormality indicated by the abnormal condition is the same as when the information of the battery BT is obtained by regular I 2 C communication.
  • the battery monitoring circuit 100 and the MCU 130 have different determination methods for the abnormal condition of the battery temperature (85° C. or higher continues for 2 minutes).
  • the battery monitoring circuit 100 monitors the information of the battery BT that is acquired periodically, and outputs a low-level nGAUGE_INT2 signal when it is determined that the temperature of 85° C. or higher has continued for two minutes.
  • the MCU 130 Upon receiving the low-level nGAUGE_INT2 signal, the MCU 130 acquires battery BT information from the battery monitoring circuit 100 at a predetermined cycle (eg, 1 second). If a temperature of 85° C. or higher is detected continuously a predetermined number of times (for example, five times), it is determined that an abnormal condition has occurred (a permanent failure has occurred).
  • a predetermined cycle eg, 1 second. If a temperature of 85° C. or higher is detected continuously a predetermined number of times (for example, five times), it is determined that an abnormal condition has occurred (a permanent failure has occurred).
  • the MCU 130 applies the same abnormality condition as the nGAUGE_INT2 signal output condition to the acquired battery BT information to determine whether the battery BT is in an abnormal state and the extent of the abnormality.
  • the battery monitoring circuit 100 determines whether or not the information of the battery BT obtained periodically corresponds to any of the abnormal conditions listed as the output conditions of the nGAUGE_INT1 signal. When it is determined that any one of the abnormal conditions is met, the battery monitoring circuit 100 outputs the nGAUGE_INT1 signal by setting the output of the ALERT terminal to low level.
  • the nGAUGE_INT1 signal is input to the /CLR terminal of FF1, which is a holding circuit. Since the /CLR terminal is of negative logic, when nGAUGE_INT1 of low level is input, the output of the Q terminal, which is the output of FF1, is forced to low level.
  • the input of the clock signal may be to change the input level of the clock terminal from low level to high level.
  • FF1 holds the input level of the D terminal when the input level of the clock terminal changes from low level to high level, and outputs it from the Q terminal.
  • the Q terminal output (nALARM_Latched signal) of FF1 is input to the switch SS, the transformer circuit 120, the switch SL connected to the /CE terminal of the charging circuit 20, and the MCU 130 (PA10 terminal).
  • a predetermined level (low level) indicating an abnormality ⁇ Since the switch SS is turned off, the power supply to the heater HT is cut off.
  • ⁇ Since the EN terminal of the DC/DC 120 becomes low level, voltage application to the heater HT stops.
  • the resistor R9 no longer contributes to the voltage division of the voltage VCC33 with the resistor R10, and the input to the /CE terminal of the charging circuit 20 becomes the same high level as the voltage VCC33 , so charging is stopped. be done.
  • the nCharger_Enable signal is not generated at this timing, and the potential of the PB3 terminal is indefinite.
  • the MCU 130 determines that an abnormality requiring resetting has been detected, and prompts the user to perform a reset operation using the light emitting unit NU or vibrator M. The detection of the reset operation and the reset action in response are described above.
  • the heater thermistor TH is arranged at a position close to the heater HT.
  • the heater thermistor TH is arranged at a position in contact with the heater HT. Therefore, by measuring the relationship between the actual temperature of the heater HT and the resistance value of the heater thermistor TH in advance, the resistance value of the heater thermistor TH can be used as the temperature of the heater HT.
  • a voltage obtained by dividing the voltage VCC33_SLP by the heater thermistor TH and the resistor R1 is input to the inverting input of the operational amplifier A2.
  • a voltage obtained by dividing the voltage VCC33 by the resistors R4 and R5 is input to the non-inverting input of the operational amplifier A2 as a reference voltage or a threshold voltage. Since the heater thermistor TH preferably comprises an NTC thermistor, the voltage of the non-inverting input is low when the heater HT is not overheated, and the voltage of the non-inverting input is high when the heater HT is overheated. Become.
  • the voltage of the non-inverting input is higher than the voltage of the inverting input when the heater HT is not overheated, and the voltage of the inverting input is higher than the voltage of the non-inverting input when the heater HT is overheated.
  • the values of the voltage dividing resistors R3 to R5 are adjusted. Therefore, the operational amplifier A2 functions as a circuit (first detection circuit) for detecting temperature abnormality, specifically overheating, which is an example of an abnormality related to the heater HT.
  • the values of the voltage dividing resistors R3 to R5 can be adjusted based on the resistance value of the heater thermistor TH when the temperature of the heater HT reaches the overheating threshold.
  • the output of the operational amplifier A2 is high level when the heater HT is not overheated (normal state), and is low level when the heater HT is overheated (abnormal state).
  • the output of operational amplifier A2 is directly connected to the /CLR terminal of FF2.
  • the output of operational amplifier A2 is also connected to the D terminal and /CLR terminal of FF1 via diode D1.
  • Diode D1 has a cathode connected to the output of operational amplifier A2. If the temperature of the heater HT is normal, the input to the /CLR terminal of FF2 becomes high level. When the input of the /CLR terminal is high level, the output of the Q terminal of FF2 maintains the initial state.
  • a voltage VCC33_0 is input to the D terminal of FF2, and FF2 holds the input level of the D terminal in the initial state if there is no abnormality at startup. Therefore, when the temperature of the heater HT is normal, the Q terminal output of FF2 is high level, and the /Q terminal output (HEATER_Latched signal) is low level.
  • the output of the operational amplifier A2 changes to low level.
  • the input of the /CLR terminal of FF2 changes to low level.
  • FF2 is forcibly initialized, the output of the Q terminal becomes low level, and the output of the /Q terminal becomes high level. Therefore, the HEATER_Latched signal output from the /Q terminal of FF2 is held at a high level.
  • the HEATER_Latched signal is input to the PB14 terminal of MCU130.
  • the MCU 130 detects that the HEATER_Latched signal has become high level, it prompts the user to perform a reset operation. This is because overheating of the heater HT is an important abnormality, so the determination is made again in a state in which it is certain that the MCU 130 is operating correctly.
  • the MCU 130 refers to the HEATER_Latched signal at startup after reset, and determines that a permanent failure has occurred when the HEATER_Latched signal is detected to be at high level. Then, the above-described operation at the time of permanent failure determination is executed.
  • the operation at the time of permanent failure determination is an irreversible operation. Such operations are preferably performed by MCU 130, which is more sophisticated than FF1 and FF2. However, since the temperature of the heater HT is controlled by the MCU 130 so as not to overheat, the fact that the heater HT is overheated means that a high level is input to the PB14 terminal due to noise, or the MCU 130 A malfunction may have occurred.
  • the HEATER_Latched signal referred to by the MCU 130 after reset is at a low level, thereby suppressing erroneous execution of the permanent failure determination operation.
  • resetting causes the MCU 130 to operate normally, and the operation at the time of permanent failure determination can be performed accurately.
  • a voltage VCC33_0 is supplied to the VCC terminal of FF2.
  • the voltage VCC33_0 is continuously supplied even while the voltage VCC33 for driving the MCU 130 is temporarily not supplied in the reset operation. Therefore, the information held by FF2 (output of Q and /Q terminals) is held without disappearing even if MCU 130 is reset.
  • the operational amplifier A2 and the MCU 130 operate by restarting the supply of the voltage VCC33 . If the heater HT is no longer overheated at this time, the output of the operational amplifier A2 returns to high level. However, since no clock signal is input from the MCU 130 to the clock terminal (not shown) of FF2, the information held by FF2 does not change from before the reset. Therefore, by referring to the HEATER_Latched signal after the reset, the MCU 130 can confirm that overheating of the heater HT was detected before the reset.
  • the MCU 130 refers to the HEATER_Latched signal at startup after reset, and determines that a permanent failure has occurred when the HEATER_Latched signal is detected to be at high level. Then, the above-described operation at the time of permanent failure determination is executed.
  • the case thermistor TC is arranged at a position close to the inner surface of the case 2.
  • the case thermistor TC is arranged at a position in contact with the inner surface of the case 2 .
  • the resistance value of the case thermistor TC can be used as the temperature of the case 2 .
  • a voltage obtained by dividing the voltage VCC33_SLP by the case thermistor TC and the resistor R6 is input to the inverting input of the operational amplifier A3.
  • a voltage obtained by dividing the voltage VCC33 by the resistors R7 and R8 is input to the non-inverting input of the operational amplifier A3 as a reference voltage or a threshold voltage. Since the case thermistor TC is preferably composed of an NTC thermistor, the voltage at the non-inverting input is low when the case 2 is not hot and the voltage at the non-inverting input is high when the case 2 is hot.
  • the voltage of the non-inverting input is higher than the voltage of the inverting input when the case 2 of the power supply unit 1 is not hot, and the voltage of the inverting input is higher than the voltage of the non-inverting input when the case 2 is hot.
  • the values of the voltage dividing resistors R6 to R8 are adjusted. Therefore, the operational amplifier A3 functions as a circuit (second detection circuit) that detects a high temperature as an abnormality related to the temperature of the case 2.
  • the values of the voltage dividing resistors R6 to R8 can be adjusted based on the resistance value of the case thermistor TC when the temperature of the case 2 reaches a high temperature.
  • the output of the operational amplifier A3 is high level when Case 2 is not at high temperature (normal condition), and is low level when Case 2 is at high temperature (abnormal condition).
  • the output of operational amplifier A3 is directly connected to the /CLR and D terminals of FF1.
  • the output of operational amplifier A3 is also connected to the anode of diode D1. If the temperature in case 2 is normal, the input to the /CLR terminal of FF1 becomes high level. When the input of the /CLR terminal is high level, the output of the Q terminal of FF1 maintains the initial state.
  • a voltage VCC33 is input to the D terminal of FF1, and FF1 holds the input level of the D terminal in the initial state if there is no abnormality at startup. Therefore, if the temperature in case 2 is normal, the Q terminal output (nALARM_Latched signal) of FF1 is at high level.
  • a high-level nALARM_Latched signal is input to the PA10 terminal of MCU 130 and the base of switch SL.
  • the switch SL is turned off.
  • both the outputs of the operational amplifiers A2 and A3 become high level. Since the outputs of the operational amplifier A2 and operational amplifier A3 are connected, there is a possibility that the outputs of both will collide. The output of the operational amplifier A2 and the output of the operational amplifier A3 do not always have the same voltage value, and conflict between high levels with different voltage values may cause unexpected malfunction. In particular, even if both the outputs of operational amplifier A2 and operational amplifier A3 are at high level, if the output voltage of operational amplifier A3 is lower than the output voltage of operational amplifier A2, the input level of the /CLR pin of FF2 may be affected. be.
  • a diode D1 as a limiting circuit for limiting the direction of current flow is connected to the connection path between the output of the operational amplifier A2 and the output of the operational amplifier A3, the output of the operational amplifier A3 is connected to the anode, and the output of the operational amplifier A2 is connected to the cathode. connected as follows. That is, the output of operational amplifier A3, the anode of diode D1, the cathode of diode D1, and the output of operational amplifier A2 are connected in series. Alternatively, the /CLR terminal of FF1 exists between the output of operational amplifier A3 and the anode of diode D1, and operational amplifier A2 is connected to the cathode of diode D1.
  • the output voltage of operational amplifier A3 is lower than the output voltage of operational amplifier A2, the current flowing from operational amplifier A2 to operational amplifier A3 is limited by diode D1, and the output voltage of operational amplifier A1 is input to the /CLR terminal of FF2. Avoid affecting levels.
  • the direction of the diode D1 may be determined according to the output levels of the operational amplifiers A2 and A3 when an abnormality is detected so as to suppress the influence of the output level of the operational amplifier A3 on the output level of the operational amplifier A2 when an abnormality is detected. .
  • FIG. 4B which is a modification of FIG. 4A, by using a Schottky diode D1′ instead of the diode D1, the forward current is lower than when a normal diode using a PN junction (PN diode) is used. Get up faster. Therefore, the /CLR terminal of FF1 can be brought to a low level more quickly than when a PN diode is used as the diode D1, and the circuit can be quickly protected when the overheating state of the heater HT is detected.
  • PN diode PN junction
  • the HEATER_Latched signal is output from the /Q terminal of FF2 here, it may be output from the Q terminal. However, by using the /Q terminal output to set the HEATER_Latched signal to high level when an abnormality occurs, it is less susceptible to disturbance noise than when the HEATER_Latched signal becomes low level when an abnormality occurs. can be determined.
  • FIG. 6A and 6B are perspective views showing examples of implementations of circuit elements that implement the circuit shown in FIG. 4A or 4B.
  • FIG. 6A shows a positional relationship between the first circuit board PCB1 and the second circuit board PCB2, and a mounting example of circuit elements on the upper surface of the first circuit board PCB1.
  • FIG. 6B shows examples of mounting circuit elements on the lower surface (surface hidden in FIG. 6A) of the first circuit board PCB1.
  • the first circuit board PCB1 is arranged closer to the inner surface of the case 2 than the second circuit board PCB2 with respect to the distance in the direction perpendicular to the mounting surface. Also, the first circuit board PCB1 and the second circuit board PCB2 are electrically connected through a flexible printed board FPC. Both the first circuit board PCB1 and the second circuit board PCB2 are double-sided boards, and the substrates are held substantially parallel by spacers provided between them.
  • THC+ and THC- are connectors for connecting the heater thermistor TH.
  • TCC+ and TCC- are connectors for connecting the case thermistor TC.
  • the lead wire of the heater thermistor TH and the lead wire of the case thermistor TC are not connected to their respective connectors in FIG. 6A, this is merely for convenience of illustration, and they are actually connected to the corresponding connectors.
  • the leads of the heater thermistor TH are connected to THC+ and THC- through gaps in the FPC.
  • TPC+ and TPC- are connectors for connecting lead wires of the puff thermistor TP.
  • FIGS. 7A and 7B showing examples of arrangement of circuit elements on each mounting surface of the first circuit board PCB1 and the second circuit board PCB2.
  • FIG. 7A shows the arrangement of circuit elements of PCB1
  • FIG. 7B shows the arrangement of circuit elements of PCT2.
  • 7a indicates the upper surface
  • 7b indicates the lower surface.
  • 7c indicates the upper surface
  • 7d indicates the lower surface.
  • the circuits that are particularly noise sources are the charging circuit 20 and the transformer circuit 120 that perform switching operations, and the MCU 130 that generates noise during operation.
  • the circuit that becomes a noise source is not mounted on the same mounting surface as FF2 or on the mounting surface facing the mounting surface of FF2.
  • the charging circuit 20 and the MCU 130 are mounted on the upper surface of the first circuit board PCB1
  • the transformer circuit 120 is mounted on the lower surface of the second circuit board PCB2.
  • the noise source circuit is mounted on the outward mounting surface. Note that this is merely an example, and at least one of the charging circuit 20 and the MCU 130 may be mounted on the bottom surface of the second circuit board PCB2, and the transformer circuit 120 may be mounted on the top surface of the first circuit board PCB1.
  • the FF2 holding information indicating whether overheating of the heater HT has been detected is mounted on the lower surface of the first circuit board PCB1.
  • the FF2 By mounting FF2 on a mounting surface that is different from and does not face the mounting surface of the circuit that is the noise source, noise from other circuits in the power supply unit 1 may cause the value held by FF2 to change or the value to be corrected. It is possible to reduce the risk of not being able to hold
  • the FF2 by mounting the FF2 on the inward surface facing the second circuit board PCB2, the substrates and wiring patterns of the first circuit board PCB1 and the second circuit board PCB2 are prevented from entering from the outside of the power supply unit 1. Can be used as a noise shield.
  • the copper foil layer for providing the ground is effective as a shield. Therefore, it is possible to reduce the risk that the value held by the FF2 is changed or the value cannot be held accurately due to noise that enters the power supply unit 1 from the outside.
  • the connector USBC exposed on the surface of the case 2 of the power supply unit 1 is mounted on the second circuit board PCB2 different from the first circuit board PCB1 on which the FF2 is mounted. As a result, it is possible to suppress the influence of noise, particularly static electricity, entering from the outside of the power supply unit 1 through the connector USBC on the FF2. These noises are particularly likely to occur when plugging/unplugging the connector USBC.
  • the heater thermistor TH is arranged close to the heater HT to which a large amount of power is supplied, and detects the temperature of the heater HT exceeding, for example, 250° C., so the resistance value changes greatly. Therefore, the potentials of the connectors THC+ and THC- of the heater thermistor TH also change greatly, which may cause noise. Therefore, the connectors THC+ and THC- of the heater thermistor TH are also mounted on a mounting surface different from and not facing the mounting surface of FF2. Although the connectors THC+ and THC- of the heater thermistor TH are mounted on the upper surface of the first circuit board PCB1 in this embodiment, they may be mounted on the lower surface of the second circuit board.
  • the maximum voltage supplied to the mounting surface of FF2 is assumed to be the operating voltage of FF2 (here, V CC33 ). As a result, the possibility of a short-circuit current occurring on the mounting surface of FF2 can be greatly reduced.
  • FIG. 8 is an enlarged view of the bottom surface of the first circuit board PCB1 on which the FF2 is mounted.
  • the base material of the first circuit board PCB1 and the second circuit board PCB2 exist between the lower surface of the first circuit board PCB1 on which the FF2 is mounted and the case 2 in the direction orthogonal to the lower surface, but the base material of the first circuit board PCB1 and the second circuit board PCB2 exist in parallel to the lower surface.
  • the wiring length to FF2 may increase, or the placement of other circuit elements may be affected.
  • d be the distance between FF2 and the edge ED closest to FF2 among the edges of the first circuit board PCB1
  • dc be the distance between the center O of the mounting surface of the first circuit board PCB1 and the edge ED.
  • these distances d and dc are the shortest distances.
  • the distance d can be determined so that the distance d is larger than 0 and smaller than dc and smaller than the difference between the distances dc and d (0 ⁇ d ⁇ dc and d ⁇ dc ⁇ d).
  • the position of FF2 on the mounting surface is determined so that d/dc ⁇ threshold (%). Also in this case, 0 ⁇ d ⁇ dc and d ⁇ dc-d are to be satisfied.
  • the threshold is preferably 20% or higher, more preferably 30% or higher, and most preferably 40% or higher. Also, the upper limit of the threshold is less than 50% because d ⁇ dc ⁇ d is satisfied.
  • the distance d is the distance between the side surface of the package of FF2 and the edge ED, but the distance d' between the center of the package of FF2 and the edge ED may be used.
  • the center O of the mounting surface can be the intersection of the diagonal lines when the substrate can be regarded as a rectangle. Alternatively, the center of the mounting surface may be the position of the center of gravity when the substrate is made of the same material having a uniform thickness.
  • the capacitors C1 and C2 on the bottom surface of PCB1 shown at 7b in FIG. 7A are the circuit elements (and passive elements) that satisfy this condition.
  • the power supply unit of the aerosol generator is provided with a holding circuit in which the held information is not erased by the reset operation of the power supply unit. Then, the holding circuit holds information indicating whether or not an abnormality has been detected. Therefore, by referring to the information held by the holding circuit after the reset operation, appropriate control using the presence or absence of an abnormality detected in the past can be realized. For example, if information indicating that an important abnormality has been detected is held in the holding circuit, the power supply unit prohibits power supply to the heater HT, prohibits charging of the battery BT, and prohibits charging of the battery BT, and appropriate actions, such as stopping the supply of power to the circuits of the
  • a holding circuit in which the held information is erased by the reset operation of the power supply unit is further used so that different response operations can be executed according to the type of detected abnormality.
  • a holding circuit that is not erased by the reset operation of the power supply unit holds information on whether or not an important abnormality has been detected.
  • a holding circuit erased by the reset operation of the power supply unit holds information on whether or not an abnormality that can be recovered by the reset operation is detected.
  • both holding circuits hold information indicating that an abnormality has been detected, thereby restricting some operations before the reset operation and then resetting. Tighter operating limits can be implemented later with reference to the holding circuit.
  • the holding circuit which holds information about whether or not a serious error has been detected, is mounted in a position that is less susceptible to noise from outside the power supply unit or noise generated by other circuits within the power supply unit. It is possible to effectively suppress malfunction due to the influence of

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

過去に検出された異常の有無を利用した適切な制御が可能なエアロゾル生成装置の電源ユニットが開示される。電源ユニットは、電源と、電源から供給される電力を消費してエアロゾル源を加熱する負荷が接続されるコネクタと、電源から負荷への電力の供給を制御する制御回路と、を有する。電源ユニットは、異常が検出されたか否かを示す第1情報を保持する第1保持回路をさらに有し、制御回路は、起動時に第1保持回路に保持された第1情報を参照し、第1情報が、異常が検出されたことを示す場合には、電源ユニットの使用を禁止するための動作を実行する。

Description

エアロゾル生成装置の電源ユニット
 本発明は、エアロゾル生成装置の電源ユニットに関する。
 電子たばこ等のエアロゾル生成装置はエアロゾルを形成するための液体を加熱するための構成を有している。特許文献1には、コントローラがヒータの過熱を検出すると、コントローラがバッテリーからヒータへの電力供給を制限したりオフしたりするエアロゾル生成装置が開示されている。
特表2020-505002号公報
 特許文献1では、コントローラが過去に検出された異常の有無を知ることができない。そのため、ヒータの過熱が検出されたのち、装置のリセットもしくは再起動が行われた場合、コントローラは再びヒータの過熱が検出されるまでヒータに対する電力供給を制限できない。
 本願発明は、過去に検出された異常の有無を利用した適切な制御が可能なエアロゾル生成装置の電源ユニットを提供することを目的の1つとする。
 上記課題に鑑みて、第1態様によれば、
 電源と、
 前記電源から供給される電力を消費してエアロゾル源を加熱する負荷が接続されるコネクタと、
 前記電源から前記負荷への電力の供給を制御する制御回路と、を有するエアロゾル生成装置の電源ユニットであって、
 異常が検出されたか否かを示す第1情報を保持する第1保持回路を有し、
 前記制御回路は、起動時に前記第1保持回路に保持された前記第1情報を参照し、前記第1情報が、異常が検出されたことを示す場合、前記電源ユニットの使用を禁止するための動作を実行する、電源ユニットが提供される。
 第2態様によれば、
 前記制御回路は、電力が供給されない状態から供給される状態になると起動し、
 前記第1保持回路には、前記制御回路への電力が供給されない期間も電力が供給される、第1態様に記載の電源ユニットが提供される。
 第3態様によれば、
 前記第1保持回路に電力を供給する電源ラインと、前記制御回路に電力を供給する電源ラインとが異なる、第2態様に記載の電源ユニットが提供される。
 第4態様によれば、
 前記第1情報は、前記負荷に関して予め定められた異常が検出されたか否かを示す、第1態様から第3態様のいずれか1つに記載の電源ユニットが提供される。
 第5態様によれば、
 前記負荷に関して予め定められた異常が、前記負荷の温度の異常である、第4態様に記載の電源ユニットが提供される。
 第6態様によれば、
 前記第1保持回路は、前記第1情報を示す第1信号を前記制御回路に出力する端子を有し、前記制御回路は前記端子を参照することによって前記第1情報を参照する、第1態様から第5態様のいずれか1つに記載の電源ユニットが提供される。
 第7態様によれば、
 前記第1情報は、非反転入力端子と反転入力端子の一方が前記負荷に近接する位置に配置されたサーミスタへ接続され、且つ前記非反転入力端子と前記反転入力端子のうち他方が基準電圧へ接続される第1オペアンプの出力に応じて値が変化する、第1態様から第5態様のいずれか1つに記載の電源ユニットが提供される。
 第8態様によれば、
 前記電源ユニットの使用を禁止するための動作が、前記負荷および前記制御回路への電力の供給の停止を含む、第1態様から第7態様のいずれか1つに記載の電源ユニットが提供される。
 第9態様によれば、
 前記電源を充電する充電回路をさらに有し、
 前記電源ユニットの使用を禁止するための動作が、前記電源を充電する回路への電力の供給の停止をさらに含む、第8態様に記載の電源ユニットが提供される。
 第10態様によれば、
 前記電源に関する異常が検出されたか否かを示す第2情報を保持する第2保持回路をさらに有し、
 前記制御回路は、前記第2情報が、異常が検出されたことを示す場合、前記電源ユニットのリセット操作を行うようにユーザに報知する、第1態様から第9態様のいずれか1つに記載の電源ユニットが提供される。
 第11態様によれば、
 前記第2保持回路は、前記第2情報を示す第2信号を出力する端子を有し、
 前記第2情報が、異常が検出されたことを示す場合、前記第2信号は、前記制御回路を介さずに前記負荷への電力の供給を停止又は禁止させる、第10態様に記載の電源ユニットが提供される。
 第12態様によれば、
 前記第2保持回路には、前記制御回路に電力を供給する電源ラインによって電力が供給される、第10態様または第11態様に記載の電源ユニットが提供される。
 第13態様によれば、
 前記電源に関する異常が、前記電源の放電時の電流量と前記電源の充電時の電流量と前記電源の温度との少なくとも1つに関する異常である、第10態様から第12態様のいずれか1つに記載の電源ユニットが提供される。
 第14態様によれば、
 前記電源ユニットの表面を構成するケースをさらに有し、
 前記第2情報はさらに、前記ケースの温度に関する異常が検出された否かも示す、第10態様から第13態様のいずれか1つに記載の電源ユニットが提供される。
 第15態様によれば、
 前記第1情報が、異常が検出されたことを示す値に変化する場合、前記第2情報も異常が検出されたことを示す値に変化する、第10態様から第14態様のいずれか1つに記載の電源ユニットが提供される。
 このような構成により、本発明によれば、過去に検出された異常の有無を利用した適切な制御が可能なエアロゾル生成装置の電源ユニットを提供することができる。
実施形態に係るエアロゾル生成装置の電源ユニットの外観例を示す図。 実施形態に係る電源ユニットの内部構成例を示す斜視図。 実施形態に係る電源ユニットの全体的な回路構成例を示す図。 図3の一部を抜粋した図。 図4Aの変形例を示す図。 実施形態に係る電源ユニットにおけるバッテリ異常条件の例を示す図。 実施形態に係る電源ユニットの回路基板および回路素子の配置例を示す図。 実施形態に係る電源ユニットの回路基板および回路素子の配置例を示す図。 実施形態に係る電源ユニットの回路基板および回路素子の配置例を示す図。 実施形態に係る電源ユニットの回路基板および回路素子の配置例を示す図。 実施形態に係る電源ユニットの回路基板および回路素子の配置例を示す図。
 以下、添付図面を参照して実施形態を詳しく説明する。尚、以下の実施形態は請求の範囲に係る発明を限定するものでなく、また実施形態で説明されている特徴の組み合わせの全てが発明に必須のものとは限らない。実施形態で説明されている複数の特徴のうち二つ以上の特徴が任意に組み合わされてもよい。また、同一若しくは同様の構成には同一の参照番号を付し、重複した説明は省略する。
 図1には、本発明の一実施形態に係るエアロゾル生成装置の電源ユニット1の構成例を模式的に示した外観斜視図である。電源ユニット1は、角が丸められた略直方体形状のケース2を有する。ケース2は、電源ユニット1の表面を構成する。ここでは便宜上、aに示す面を正面、bに示す面を背面とする。また、cに示す面を底面、dに示す面を天面とする。
 電源ユニット1は、筐体(ケース)2と、ケース2に着脱可能なフロントパネル11とを有する。fは、aの状態からフロントパネル11を外した状態を示している。また、gは、フロントパネル11を内側から見た状態を示している。フロントパネル11は、ケース2の正面カバーとして機能し、ユーザが自由に交換して外観をカスタマイズすることを可能にする。
 フロントパネル11の内面と、ケース2の正面とのそれぞれには、対向する位置に2対のマグネット14Aおよび14Bと、マグネット15Aおよび15Bとが設けられている。マグネット14Aと15Aとが引き合い、マグネット14Bと15Bとが引き合うことにより、磁力によってフロントパネル11がケース2の正面に保持される。
 また、ケース2の正面には押下可能なスイッチSWと、発光部NUとが設けられている。フロントパネル11の内面には、スイッチSWと対向する位置に凸部16が設けられている。フロントパネル11を装着した状態でフロントパネル11の中央付近12を押下することにより、凸部16を通じてスイッチSWを間接的に押下することができる。なお、フロントパネル11を外した状態でスイッチSWを直接的に押下することもできる。発光部NUには複数の発光素子(例えばLED)が一列に配置される。発光部NUの状態はフロントパネル11に設けられた窓19を通じて観察することができる。
 ケース2の天面には開閉可能なスライダ13が設けられている。スライダ13を矢印方向に移動させると、eに示すようにヒータチャンバ17が現れる。eでは便宜上スライダ13を図示していない。ヒータチャンバ17は水平断面が楕円形(長丸長方形)を有する筒状の空間であり、ヒータチャンバ17に挿入されるスティックまたはカートリッジを加熱する。スティックは円筒形状であり、水平断面の直径をヒータチャンバ17の水平断面の短径よりも大きくする。これにより、ヒータチャンバ17に挿入される際にスティックが径方向に圧縮されるため、スティックの外表面とヒータチャンバ17との接触性が高まる上、接触面積が増大する。したがって、スティックを効率良く加熱することができる。これにより、スティックから生成されるエアロゾルの量や香味を向上させることができる。
 電源ユニット1は、フロントパネル11が装着された状態で、スライダ13がヒータチャンバ17が露出する位置(開位置)に移動され、スイッチSWが所定時間(例えば数秒)連続して押下されたことが検出されると、加熱開始指示と見なして加熱動作を開始する。
 なお、ヒータチャンバ17によって加熱されるスティックは、エアロゾル源のみを含んでもよいし、エアロゾル源と香味物質とを含んでもよい。エアロゾル源は、例えば、グリセリンまたはプロピレングリコール等の多価アルコール等の液体を含みうる。具体的一例として、エアロゾル源は、グリセリンおよびプロピレングリコールの混合溶液を含みうる。あるいは、エアロゾル源は、薬剤や漢方を含んでもよい。あるいは、エアロゾル源は、メンソールなどの香料を含んでもよい。あるいは、エアロゾル源は、液相のニコチンを含んでもよい。エアロゾル源は、液体であってもよいし、固体であってもよいし、液体および固体の混合物であってもよい。エアロゾル源に代えて、またはエアロゾル源に加えて、水等の蒸気源が用いられてもよい。スティックはエアロゾル源を担持させるための担持体を含んでもよい。この担持体自身が、固体のエアロゾル源であってもよい。この担持体は、タバコ葉由来の原料を成形したシートを含んでもよい。
 ケース2の底面には外部機器を接続するためのコネクタUSBCが設けられている。ここではコネクタUSBCがUSB Type-C規格に準拠したレセプタクルであるものとする。電源ユニット1を充電する場合、コネクタUSBCに例えばUSB PD規格に従って電力を供給可能な外部機器(USB充電器、モバイルバッテリ、パーソナルコンピュータなど)が接続される。なお、コネクタUSBCは、USB Type-C規格以外の規格に準拠してもよい。なお、コネクタUSBCに代えて、またはコネクタUSBCに加えて、非接触充電用の受電コイルを電源ユニット1に設けてもよい。
 図2は、電源ユニット1からケースを取り除いた状態を模式的に示す斜視図である。図1と同じ構成要素については同じ参照符号を付してある。ヒータユニットHT(以下、単にヒータHTという)は、ヒータチャンバ17の外周に設けられ、電源から供給される電力を消費してヒータチャンバ17を加熱し、エアロゾル源を加熱する負荷である。図2では図示していないが、ヒータHTは断熱材で覆われている。ヒータHTの断熱材に取り付けられているヒータサーミスタTHは、ヒータHTの温度を間接的に計測する温度センサである。なお、ヒータHTを誘導加熱方式としてもよい。この場合、ヒータHTには電磁誘導用のコイルが少なくても含まれる。電磁誘導用のコイルから送られる磁場を受け取るサセプタ(金属片)は、ヒータHTに含まれていてもよいし、スティックに内蔵されていてもよい。
 パフサーミスタTPは、ヒータチャンバ17の上端部に配置された吸引センサである。エアロゾルが吸引されるとパフサーミスタTPで検出される温度が変動することを利用して、吸引を検出することができる。
 ケースサーミスタTCは、ケース2の正面の内面近傍に設けられ、ケース温度を検出する。
 バッテリBTは充電可能であり、例えばリチウムイオン二次電池である。バッテリBTは電源ユニット1の基本的な電力を供給する電源である。バッテリBTは製造時に装着され、電源ユニット1はヒータHTやサーミスタTH、TC、TPなどを除く大部分の構成要素に電力が供給されている状態(スリープ状態)で出荷される。
 検出器170は、スライダ13の開閉を検知する開閉センサであり、ホール素子を用いた集積回路(ホールIC)であってよい。
 電源ユニット1の回路は、4つの回路基板PCB1~PCB4に分散配置されている。後述するように、本実施形態では異常の検出有無を示す情報を保持する保持回路を外乱ノイズによる影響を受けづらい位置に配置することにより、保持回路が保持する情報が外乱ノイズによって書き換わるリスクを抑制する。
 図3を参照して、電源ユニット1を構成する各部品の動作について説明する。バッテリBTの正極は、第1電源コネクタBC+に電気的に接続され、バッテリBTの負極は、第2電源コネクタBC-に電気的に接続される。バッテリBTの正極の電位は、保護回路90のVBAT端子、バッテリ監視回路100のVBAT端子、変圧回路120のVIN端子、充電回路20のBAT端子、および、スイッチ回路80の電位入力端子に供給されうる。
 保護回路90は、バッテリBTから出力される電流が流れる経路に配置された抵抗R2を使って該経路を流れる電流を計測し、その電流に応じてバッテリBTを保護する。保護回路90は、VBAT端子への入力を使ってバッテリBTの出力電圧を計測し、計測された出力電圧に応じてバッテリBTを保護する。バッテリ監視回路100は、バッテリBTから出力される電流が流れる経路に配置された抵抗R1を使って、バッテリBTの状態を計測しうる。
 過電圧保護回路110は、給電コネクタとしてのコネクタUSBCから供給される電圧VBUSを受けてVUSBラインに電圧VUSBを出力する。過電圧保護回路110は、コネクタUSBCから供給される電圧VBUSが規定電圧値を超える電圧であっても、それを規定電圧値まで降下させて過電圧保護回路110の出力側に供給する保護回路として機能しうる。この規定電圧値は、OVLo端子へ入力される電圧値に基づいて設定されてもよい。
 変圧回路120は、バッテリBTから供給される電源電圧VBATを変圧してヒータHTを駆動するためのヒータ電圧VBOOSTを生成するDC/DCコンバータである。変圧回路120は、昇圧回路、または、昇降圧回路、または、降圧回路でありうる。ヒータHTは、エアロゾル源を加熱するように配置される。ヒータHTの正側端子は、第1ヒータコネクタHC+に電気的に接続され、ヒータHTの負側端子は、第2ヒータコネクタHC-に電気的に接続されうる。
 ヒータHTは、電源ユニット1に対して、破壊しなければ取り外し外すことができない形態(例えば、半田付け)で取り付けられてもよいし、破壊しなくても取り外すことができる形態で取り付けられてもよい。なお、本明細書において、「コネクタ」による電気的接続は、特に断らない限り、破壊しなければ相互に分離することができない形態と、破壊しなくても相互に分離することができる形態とのいずれでもよいものとして説明される。
 MCU(Micro Controller Unit)130は、プログラムを実行可能なプロセッサ、メモリ、インタフェースなどを備えたプロセッサベースの制御回路であり、電源ユニット1の動作を制御する。MCU130が実行するプログラムは、内蔵メモリ、不揮発性メモリ70、またはその両方に存在しうる。
 MCU130は、バッテリBTから供給される電力を使ってエアロゾル源を加熱するためのヒータHTへの電力の供給を制御する。他の観点において、MCU130は、バッテリBTから供給される電力を使ってエアロゾル源を加熱するためのヒータHTの発熱を制御する。更に他の観点において、MCU130は、ヒータHTへの電力の供給およびバッテリBTの充電動作を制御する。
 ヒータHTを発熱させるとき、MCU130はスイッチSHおよびスイッチSSをオンとし、スイッチSMをオフする。これにより、ヒータ電圧VBOOSTが変圧回路120からスイッチSHを通してヒータHTに供給されうる。また、ヒータHTの温度あるいは抵抗を計測するとき、MCU130はスイッチSHをオフし、スイッチSMおよびスイッチSSをオンする。これにより、ヒータ電圧VBOOSTは、変圧回路120からスイッチSMを通してヒータHTに供給されうる。
 ヒータHTの温度あるいは抵抗値を計測するとき、オペアンプA1は、ヒータHTの正側端子と負側端子との間の電圧、換言すると、第1ヒータコネクタHC+と第2ヒータコネクタHC-との間の電圧に応じた出力をMCU130のPA7端子に供給する。オペアンプA1は、ヒータHTの抵抗値あるいは温度を計測する計測回路ともいえる。
 スイッチSMと第1ヒータコネクタHC+とを電気的に接続する経路には、シャント抵抗RSが配置されうる。シャント抵抗RSの抵抗値は、ヒータHTを加熱する期間はスイッチSRがオンし、ヒータHTの温度あるいは抵抗値を計測する期間はスイッチSRがオフするように決定されうる。
 MCU130は、加熱開始指示が検出された場合、ヒータHTの温度を予め定められた温度制御パターンに従って制御する。温度制御パターンは、加熱プロファイルとも呼ばれ、加熱の開始から終了までの期間において、ヒータHTの温度をどのように制御するかを規定する。例えば、温度制御パターンは、区間ごとに長さ(時間)と目標温度とを規定したものであってよい。温度制御パターンは、加熱プロファイルとも呼ばれる。MCU130は、ヒータHTの温度の検出と、検出したヒータHTの温度に基づくヒータHTへの電力供給時間の制御とを繰り返し実行することにより、温度制御パターンに規定された温度変化を実現する。
 なお、温度制御パターンがヒータHTの温度を下げる区間(降温もしくは徐冷区間)を有する場合、降温区間ではヒータHTに電力を供給しないことが望ましい。これは、降温区間ではヒータHTの抵抗値を測定できないことを意味する。そのため、MCU130は、降温区間については、ヒータHTに電力を供給して抵抗値を計測する代わりに、PA6端子に接続されたヒータサーミスタTHを用いてヒータHTの温度を取得する。
 このように、MCU130は、温度制御パターンに従ってヒータHTの温度を制御している期間において、ヒータHTの温度を周期的に計測しているため、ヒータHTの温度の異常(過加熱)が生じていれば、それを検出することができる。
 MCU130は、温度制御パターンに規定された最後の区間が終了するか、スライダ13がヒータチャンバ17を隠す位置(閉位置)に移動されたことが検出されると、ヒータHTへの電力供給を停止し、ヒータHTの温度制御を終了する。
 スイッチSRがNチャネル型のMOSFETで構成される場合、スイッチSRのドレイン端子はオペアンプA1の出力端子へ接続され、スイッチSRのゲート端子はシャント抵抗RSと第1ヒータコネクタHC+の間へ接続され、スイッチSRのソース端子はグランド(GND)へ接続される。スイッチSRのゲート端子には、ヒータ電圧VBOOSTを主にシャント抵抗RSとヒータHTで分圧した値の電圧が入力される。シャント抵抗RSの抵抗値は、この分圧した値がスイッチSRの閾値電圧以上になるように決定されうる。また、シャント抵抗RSにより、スイッチSHがオフし、且つスイッチSMおよびスイッチSSがオンの場合にヒータHTを流れる電流は、スイッチSHおよびスイッチSSがオンし、且つスイッチSMがオフの場合にヒータHTを流れる電流よりも小さくなる。これにより、ヒータHTの温度あるいは抵抗を計測するときにヒータHTを流れる電流によってヒータHTの温度が変化することを抑制できる。
 ロードスイッチ10は、ON端子にローレベルが入力されているときは、VIN端子とVOUT端子とを電気的に切断し、ON端子にハイレベルが入力されているときは、VIN端子とVOUT端子とを電気的に接続し、VOUT端子からVCC5ラインに電圧VCC5を出力する。電圧VCC5の電圧値は、例えば5.0[V]である。VCC5ラインは、後述する充電回路20のVBUS端子及びVAC端子と、発光部NUとへ接続される。なお、ロードスイッチ10のON端子には、npn型のバイポーラトランジスタのコレクタ端子が接続される。このバイポーラトランジスタのエミッタ端子はグランドへ接続され、ベース端子はMCU130のPC9端子へ接続される。つまり、MCU130は、PC9端子の電位を調整することで、バイポーラトランジスタを介してロードスイッチの開閉を制御できる。
 充電回路20は、充電モードを有する。充電モードにおいて充電回路20は、SYS端子とBAT端子とを内部で電気的に接続する。これにより、VCC5ラインを介してVBUS端子へ供給される電圧VCC5を使って、BAT端子から第1導電路PT1を介してバッテリBTに充電電圧を供給しうる。充電回路20は、電圧VCC5を降圧することで適切な充電電圧を生成することが好ましい。充電モードは、/CE端子にローレベルが供給されることによってイネーブルあるいは起動されうる。VCCラインは、後述する変圧回路30のVIN端子とEN端子へ接続される。
 充電回路20は、パワーパス機能を有しうる。パワーパス機能が有効に設定されている場合、充電回路20は、VCC5ラインを介してVBUS端子に供給される電圧VCC5を使って、又は、バッテリBTから第1導電路PT1を介してBAT端子に供給される電源電圧VBATを使って、VCCラインに電圧VCCを供給する。具体的には、充電回路20は、電圧VUSBが利用可能な状態においてパワーパス機能が有効に設定されている場合、VBUS端子とSW端子とを内部で電気的に接続し、VCC5ラインを介して供給される電圧VCC5を使って、VCCラインに電圧VCCを供給する。また、充電回路20は、電圧VUSBが利用不能な状態においてパワーパス機能が有効に設定されている場合、VBUS端子とSW端子とを内部で電気的に接続し、バッテリBTから第1導電路PT1を介してBAT端子に供給される電源電圧VBATを使って、VCCラインに電圧VCCを供給する。
 充電回路20は、OTG(On-The-GO)機能を有する。OTG機能が有効に設定されている場合、充電回路20は、バッテリBTから第1導電路PT1を介してBAT端子に供給される電源電圧VBATを使って、VBUS端子からVCC5ラインに電圧VCC5を供給する。電源電圧VBATから電圧VCC5を生成する場合、発光部NUへ供給される電圧が、電圧VUSBから電圧VCC5を生成する場合と同程度又は同じになるように、充電回路20は、電源電圧VBATを昇圧して電圧VCC5を供給することが好ましい。このような構成とすることで、発光部NUの動作が安定する。/CE端子にハイレベルが供給されると、充電回路20は、パワーパス機能およびOTG機能のうちデフォルトで設定されている機能、または、MCU130によって有効に設定された一方の機能を用いて動作しうる。
 変圧回路30は昇圧回路、または、昇降圧回路、または、降圧回路でありうるDC/DCコンバータであり、VCCラインに電圧VCCが供給されることによってイネーブルされる。具体的には、変圧回路30は、EN端子へハイレベルの信号が入力されることによってイネーブルされる。VIN端子及びEN端子はVCCラインへ接続されていることから、変圧回路30は、VCCラインに電圧VCCが供給されることによってイネーブルされる。変圧回路30は、VOUT端子からVCC33_0ラインに電圧VCC33_0を供給する。電圧VCC33_0の電圧値は、例えば、3.3[V]である。VCC33_0ラインは、後述するロードスイッチ40のVIN端子、後述するリブートコントローラ50のVIN端子及びRSTB端子、後述するFF2のVCC端子及びD端子へ接続される。
 ロードスイッチ40は、ON端子にローレベルが入力されているときは、VIN端子とVOUT端子とを電気的に切断し、ON端子にハイレベルが入力されているときは、VIN端子とVOUT端子とを電気的に接続し、VOUT端子からVCC33ラインに電圧VCC33を出力する。電圧VCC33の電圧値は、例えば、3.3[V]である。VCC33ラインは、後述するロードスイッチ60のVIN端子、不揮発性メモリ70のVCC端子、後述するバッテリ監視回路100のVDD端子及びCE端子、MCU130のVDD端子、後述する検出器140のVDD端子、後述するシュミットトリガ回路150のVCC端子、後述する通信インタフェース回路160のVCC_NRF端子、後述する検出器170のVDD端子、後述するFF1のVCC端子及びD端子、オペアンプA1の正電源端子、後述するオペアンプA2の正電源端子とへ接続される。ロードスイッチ40のVIN端子は、変圧回路30のVOUT端子に電気的に接続され、変圧回路30から電圧VCC33_0が供給される。電源ユニット1の回路基板を複雑にしないため、電圧VCC33_0の電圧値と電圧VCC33の電圧値は、略等しいことが好ましい。
 リブートコントローラ50は、SW1端子およびSW2端子にローレベルが所定時間にわたって供給されたことに応じて、RSTB端子からローレベルを出力する。RSTB端子は、ロードスイッチ40のON端子に電気的に接続されている。したがって、リブートコントローラ50のSW1端子およびSW2端子にローレベルが所定時間にわたって供給されたことに応じて、ロードスイッチ40は、VOUT端子からの電圧VCC33の出力を停止する。ロードスイッチ40のVOUT端子からの電圧VCC33の出力が停止すると、MCU130のVDD端子(電源端子)に対する電圧VCC33の供給が絶たれるので、MCU130は、動作を停止する。
 ここで、フロントパネル11が電源ユニット1から取り外されると、検出器140からシュミットトリガ回路150を介してリブートコントローラ50のSW2端子にローレベルが供給される。また、スイッチSWが押下されると、リブートコントローラ50のSW1端子にローレベルが供給される。よって、フロントパネル11が電源ユニット1から取り外された状態(図1のfの状態)でスイッチSWが押下されると、リブートコントローラ50のSW1端子およびSW2端子にローレベルが供給される。リブートコントローラ50は、SW1端子およびSW2端子にローレベルが所定時間(例えば数秒間)継続して供給されると、電源ユニット1に対するリセットあるいは再起動の指令が入力されたものと認識する。リブートコントローラ50は、RSTB端子からローレベルを出力した後に、RSTB端子からローレベルを出力しないようにすることが好ましい。リブートコントローラ50がRSTB端子からローレベルを出力すると、ロードスイッチ40のON端子にローレベルが入力され、ロードスイッチ40はVIN端子とVOUT端子とを電気的に切断し、VCC33ラインに電圧VCC33が出力されなくなる。これにより、MCU130は動作を停止する。その後、リブートコントローラ50がRSTB端子からローレベルを出力しないようになると、ハイレベルの電圧VCC33_0がロードスイッチ40のON端子へ入力されるため、ロードスイッチ40はVIN端子とVOUT端子とを電気的に接続し、VOUT端子からVCC33ラインに電圧VCC33を再び出力する。これにより、動作を停止したMCU130が再起動できる。
 ロードスイッチ60は、ON端子にローレベルが入力されているときは、VIN端子とVOUT端子とを電気的に切断し、ON端子にハイレベルが入力されているときは、VIN端子とVOUT端子とを電気的に接続し、VOUT端子からVCC33_SLPラインに電圧VCC33_SLPを出力する。電圧VCC33_SLPの電圧値は、例えば、3.3[V]である。VCC33_SLPラインは、後述するパフサーミスタTP、後述するヒータサーミスタTH、後述するケースサーミスタTCへ接続される。ロードスイッチ60のON端子は、MCU130のPC11端子に電気的に接続されている。MCU130は、スリープモードに移行する際にPC11端子の論理レベルをハイレベルからローレベルに遷移させ、スリープ状態からアクティブ状態に移行する際にPC11端子の論理レベルをローレベルからハイレベルに遷移させる。換言すれば、電圧VCC33_SLPはスリープ状態では利用できず、スリープ状態からアクティブ状態に移行する際に利用できるようになる。電源ユニット1の回路基板を複雑にしないため、電圧VCC33_SLPの電圧値と電圧VCC33の電圧値は、略等しいことが好ましい。
 電源ユニット1は、ユーザによるパフ(吸引)動作を検出するためのパフセンサを構成するパフサーミスタTP(例えば、NTCサーミスタ又はPTCサーミスタ)を備えることができる。パフサーミスタTPは、例えば、パフに伴う空気流路の温度変化を検出するように配置されうる。なお、パフサーミスタTPは、パフセンサの具体的一例に過ぎない点に留意されたい。パフサーミスタTPに代えて、マイクロフォンコンデンサ、圧力センサ、流量センサ、流速センサなどをパフセンサに用いてもよい。電源ユニット1は、バイブレータMを備えてもよい。バイブレータMは、例えば、スイッチSNをオンさせることによって起動されうる。スイッチSNは、トランジスタで構成されてよく、トランジスタのベースまたはゲートには、MCU130のPH0端子から制御信号が供給されうる。なお、電源ユニット1は、バイブレータMを制御するためのドライバを有していてもよい。
 電源ユニット1は、ヒータHTの温度を検出するためのヒータサーミスタTH(例えば、NTCサーミスタ又はPTCサーミスタ)を備えうる。ヒータHTの温度は、ヒータHTの近傍の温度を検出することによって間接的に検出されてもよい。オペアンプA2は、サーミスタTHの抵抗値に応じた電圧、換言すると、ヒータHTの温度に応じた電圧を出力しうる。
 電源ユニット1は、電源ユニットの筐体(ケース)2の温度を検出するためのケースサーミスタTC(例えば、NTCサーミスタ又はPTCサーミスタ)を備えうる。ケース2の温度は、ケース2近傍の温度を検出することによって間接的に検出されてもよい。オペアンプA3は、サーミスタTCの抵抗値に応じた電圧、換言すると、ケース2の温度に応じた電圧を出力する。
 検出器140は、フロントパネル11が電源ユニット1から取り外されたことを検出するように構成されうる。検出器140の出力は、シュミットトリガ回路150を介してリブートコントローラ50のSW2端子およびMCU130のPD2端子に供給されうる。スイッチSWの一端は、VCC33ライン、リブートコントローラ50のSW1端子、およびMCU130のPC10端子へ接続されうる。スイッチSWの他端はグランドへ接続されうる。これにより、スイッチSWが押下されるとリブートコントローラ50のSW1端子およびMCU130のPC10端子にローレベルが供給され、スイッチSWが押下されないとリブートコントローラ50のSW1端子およびMCU130のPC10端子にハイレベルが供給されうる。
 検出器170は、スライダ13の開閉を検出するように構成されうる。検出器170の出力は、MCU130のPC13端子に供給されうる。検出器140および170は、例えば、ホール素子を用いた集積回路(ホールIC)で構成されうる。
 通信インタフェース回路160は、スマートフォン、携帯電話、パーソナルコンピュータ等の外部機器と無線通信する機能をMCU130に提供する。通信インタフェース回路160は、例えば、Bluetooth(登録商標)など、任意の無線通信規格の1つ以上に準拠した通信インタフェース回路であってよい。
 図4Aは、図3を用いて説明した構成要素のうち、FF(Flip-Flop)1およびFF2を利用した動作に係わる構成を抜き出して記載した回路図である。FF1およびFF2は、異常が検出されたか否かを示す1ビットの情報(0または1)をローレベルまたはハイレベルとして保持する保持回路である。FF2は、保持している情報の値を反転した値を、/Q端子からHEATER_Latched信号として出力する。また、FF1は、保持している情報の値を、Q端子からnALARM_Latched信号として出力する。HEATER_Latched信号とnALARM_Latched信号はそれぞれMCU130のPB14端子とPA10端子へ入力されるため、MCU130はこれらの端子のレベルを参照することで、FF1に保持されている情報とFF2に保持されている情報を参照できる。
 FF1およびFF2は、/CLR端子を有し、/CLR端子の入力レベルがハイレベルからローレベルに変化すると、保持している情報の値を0(ローレベル)に初期化する。なお、/CLR端子の入力レベルのローレベルからハイレベルへの変化は、保持している情報の値に影響を与えない。
 本実施形態において、FF1とFF2とには、異なる電源ラインによって電力が供給される。すなわち、FF1のVCC端子(電源端子)には電圧VCC33_0が、FF2のVCC端子(電源端子)には電圧VCC33が、それぞれ入力されている。電圧VCC33_0はMCU130を駆動する電圧VCC33がリセット動作において一時的に供給されなくなる間も継続して供給される。そのため、FF2が保持する情報(Qおよび/Q端子の出力)は電源ユニット1のリセット動作が実行されても消えることなく保持される。一方、FF1にはMCU130に電力を供給する電源ラインによって電力が供給されるため、FF1が保持する情報はリセット動作時に消去される。
 FF1およびFF2において、VCC端子への入力はD端子にも入力されている。そのため、FF1およびFF2が動作している間、D端子には常にハイレベルが入力されている。FF1およびFF2は図示しない同期端子を有し、同期端子の入力がローレベルからハイレベルに変化すると、D端子の入力レベルを保持する。電源ユニット1が正常に動作している場合、FF1およびFF2はハイレベルを保持し、nALARM_Latched信号はハイレベル、HEATER_Latched信号はローレベルである。
 まず、バッテリ監視回路100がバッテリBTに関する異常を検出した際の動作について説明する。バッテリ監視回路100は、バッテリBTの情報(電流量、温度、および電圧など)について監視している。制御回路であるMCU130は定期的にIC通信と通じてバッテリ監視回路100にバッテリBTの情報を要求し、バッテリ監視回路100は要求に応じてバッテリBTの情報をMCU130に通知する。MCU130は、取得したバッテリBTの情報と予め定められた複数の異常条件に基づいて異常有無を判定する。MCU130は該当する異常条件がある場合、その異常条件に対応付けられた動作を実行する。
(異常条件)
 図5は、バッテリBTに関する異常条件の一例を示す図である。MCU130の判定条件は、MCU130がIC通信を通じてバッテリ監視回路100から取得したバッテリBTの情報に対して適用する異常条件である。また、nGAUGE_INT1信号の出力条件とnGAUGE_INT2信号の出力条件は、バッテリ監視回路100自身がバッテリBTの情報に対して適用する異常条件である。nGAUGE_INT1信号の出力条件のいずれかが満たされると、バッテリ監視回路100は、ALERT端子からローレベルのnGAUGE_INT1信号を出力する。また、nGAUGE_INT2信号の出力条件のいずれかが満たされると、バッテリ監視回路100は、IO5端子からローレベルのnGAUGE_INT2信号を出力する。このように、バッテリBTの状態は、MCU130とバッテリ監視回路100とがそれぞれ独立して監視する。これにより、例えばMCU130とバッテリ監視回路100とのIC通信が何らかの原因で正常に行えなかったり、MCU130が何らかの原因で正常に動作しなかったりする場合でも、バッテリ監視回路100がバッテリBTの異常を確実に検出し、適切な対応をとることができる。
 図5において、「Timing」の列は、各異常条件に該当するか否かを判定するタイミングを示している。「Timing」の列に「充電」と記載されている異常条件は、充電回路20によってバッテリBTの充電が行われている間のみ、該当するか否かが判定される。「Timing」の列に「放電」と記載されている異常条件は、充電回路20によってバッテリBTの充電が行われていない間のみ(より好ましくはヒータ電圧VBOOSTがヒータHTに印加されている間のみ)、該当するか否かが判定される。「Timing」の列に「常時」と記載されている異常条件は、充電回路20によってバッテリBTの充電が行われているか否かを問わず、該当するか否かが判定される。
 図5において、異常条件に対する枠の有無および種類は、その異常条件が表す異常の程度を示している。具体的には、枠が付されていない異常条件は最も軽度の異常、実践の枠が付された異常条件はリセットが必要な中程度の異常、そして、二重線の枠が付された異常条件は重要な異常(永久故障)を表す。MCU130およびバッテリ監視回路100は、該当する異常の程度に応じた動作を実施する。
 ここで、バッテリBTの充電時や放電時の電流量のように、同じ監視パラメータに対してnGAUGE_INT1信号の出力条件とnGAUGE_INT2信号の出力条件との両方が設定される場合、nGAUGE_INT1信号の出力条件の方が厳しい条件に設定されている。つまり、同じ監視パラメータに対して、nGAUGE_INT2信号の方が、nGAUGE_INT1信号よりも先に出力されるように異常条件が設定されている。これは、nGAUGE_INT2信号がMCU130に対して出力され、MCU130の制御によって異常に対処するのに対し、nGAUGE_INT1信号は、MCU130を介さず、ハードウェア的に異常に対処するためである。基本的には安定的に動作するMCU130によるソフトウェア的な制御を優先し、nGAUGE_INT1信号によるハードウェア的な制御はソフトウェア的な制御が働かない場合の手段として実施する。ソフトウェア的な制御が働かない場合の一例は、MCU130がフリーズしている場合である。
(MCU130によるバッテリ異常検出)
 次に、バッテリBTの異常検出および、検出した異常の程度に応じた動作について説明する。まず、IC通信によって取得したバッテリBTの情報に基づくMCU130の動作について説明する。MCU130は、定期的に(例えば1秒間隔で)バッテリ監視回路100とIC通信を行い、バッテリBTの情報を取得し、図5に示すような異常条件のいずれかに該当するか否かを判定する。
(軽度の異常)
 最も軽度の異常状態(図5の例では、放電時にバッテリBTの温度が51℃以上55℃未満となった場合)に該当すると判定された場合、MCU130は、バッテリBTからヒータHTへの電力の供給(ヒータ電圧VBOOSTの印加)を禁止させる。また、MCU130は、発光部NUやバイブレータMによりエラーを通知させる。MCU130は、充電回路20によるバッテリBTの充電も併せて禁止させる。スリープ状態では、電圧VBAT、VCC33、VCC33_0は供給されるが、電圧VCC33_SLPは供給されない。
(ヒータHTへの電力供給禁止動作)
 MCU130は、PC12端子から出力するHeater_Enable信号をローレベルにしてスイッチSSをオフとする。これにより、MCU130は、ヒータHTのマイナス端子HC-をグランドから切り離す。また、Heater Enable信号は変圧回路120のEN端子にも入力されるため、変圧回路120も動作を中止し、ヒータHTへの電力供給が禁止される。
(バッテリBTの充電禁止動作)
 MCU130は、PB3端子から出力するnCharger_Enable信号をハイレベルにする。これにより、充電回路20の/CE端子がハイレベルとなるため、充電回路20は充電を禁止する。
 その後、バッテリBTの温度が45℃以下になったことが確認されると、MCU130は、電源ユニット1をスリープ状態へ移行させる。
(中程度の異常)
 中程度の異常状態(図5の例では、放電時にバッテリBTの温度が55℃以上となった場合など)に該当すると判定された場合、電源ユニット1のリセット(再起動)が必要となる。そのため、MCU130は、発光部NUの発光パターンおよび/または発光色などにより、ユーザにリセット操作を行うように促す。なお、中程度の異常状態に該当すると判定された場合、MCU130は、変圧回路120からヒータHTへの電力供給及び充電回路20によるバッテリBTの充電を禁止させる。
(リセット動作)
 本実施形態の電源ユニット1では、
・フロントパネル11が外されていること
・スイッチSWが、加熱開始指示より長い一定時間押下されること
の両方が検出された場合に、リセット操作が行われたものと認識する。
 具体的には、これらの条件はリブートコントローラ50が検出する。リブートコントローラ50のSW1端子はスイッチSWに、SW2端子はフロントパネル11の着脱を示す信号を出力するシュミットトリガ回路150に接続されている。フロントパネル11が外された状態でスイッチSWが押下されると、SW1およびSW2端子の入力が両方ローレベルになる。これにより、リブートコントローラ50は、リセット動作を開始する。
 リブートコントローラ50は、SW1およびSW2端子の両方がローレベルになった状態が、ユーザ設定可能なリブート遅延時間(例えば1~20秒)が経過するまで継続するか否かを監視する。リブート遅延時間の間に、MCU130は、発光部NUとバイブレータMを用いてリセットをユーザに報知する。
 リブートコントローラ50は、SW1およびSW2端子の両方がローレベルになった状態がリブート遅延時間だけ継続すると、RSTB端子の出力をローレベルにする。これにより、ロードスイッチ40のON端子がローレベルになり、ロードスイッチ40のVOUT端子からの電圧VCC33と、ロードスイッチ60のVOUT端子からの電圧VCC33_SLPの供給が停止する。これにより、MCU130への電力供給が断たれ、MCU130は動作を停止する。つまり、上述した、リセット指示の認識に必要な、加熱開始指示より長い時間は、リブート遅延時間と略等しい。
 リブートコントローラ50は、RSTB端子をローレベルにしてから所定時間(例えば0.4秒)経過すると、自動的にRSTB端子をローレベルにしなくなる。これにより、電圧VCC33_0が、VCC33_0ラインを介してロードスイッチ40のON端子へ入力される。ロードスイッチ40からの電圧VCC33の供給が再開され、MCU130が起動する。つまり、MCU130は、電力が供給されない状態から供給される状態になると起動する。電源ユニット1は、MCU130が起動するとスリープ状態もしくは充電状態となる。この時点では電圧VCC33_SLPは供給されない。このようにMCU130が再起動すると、MCU130に生じていたフリーズなどの不具合が解消することがある。
 なお、中程度の異常状態のうち、充電時の過電流は、充電回路20によって実行されるCCCV充電のうち、CC(Constant-Current、定電流)充電を行うために予められた電流値(以下、設定値ともいう)の1.1倍以上の電流値が検出されると、該当すると判定される。
(重要な異常)
 重要な異常状態(図5の例では、バッテリBTの電圧から深放電と判定される場合)に該当すると判定された場合、MCU130は重要な異常(永久故障)が発生したものと判定する。なお、深放電とは過放電状態よりもバッテリBTの放電が進行した状態を指すものとする。なお、過放電状態とはバッテリBTの出力電圧が放電終止電圧を下回った状態を指すものとする。深放電の判定は予め定められたアルゴリズムによって行うことができる。深放電の判定方法に制限はないが、例えばバッテリBTの正極電圧が未満である場合に深放電と判定することができる。
 永久故障が発生したと判定した場合、MCU130は、ユーザによる電源ユニット1の使用を禁止するための動作を実行する。具体的には、MCU130は、充電回路20とのIC通信を通じて、充電回路20のパワーパス機能(BAT端子に入力される電力をSYS端子から出力する機能)を停止させる。これにより、充電回路20から電源電圧VBATに基づく電圧VCCの供給が停止され、さらに電圧VCCから派生する電圧VCC33_0、VCC33、VCC33_SLPの供給が停止される。したがって、MCU130を始めとしてほとんどの回路に電力が供給されず、電源ユニット1は実質的に動作を停止する。リブートコントローラ50への電力も供給されないため、リセット操作も受け付けなくなる。
 また、充電回路20のパワーパス機能を停止させることで、変圧回路120からヒータHTへの電力供給および充電回路20によるバッテリBTの充電も実行できなくなる。なお、重要な異常状態に該当すると判定された場合における電源ユニット1の安全性を向上させるため、永久故障が発生したと判定した場合、MCU130は、ユーザによる電源ユニット1の使用を禁止するための動作の一部として、充電回路20のパワーパス機能を停止させる前に、上述したHeater_Enable信号およびnCharger Enable信号を用いる方法によって変圧回路120からヒータHTへの電力供給および充電回路20によるバッテリBTの充電を禁止してもよい。
(バッテリ監視回路100によるバッテリ異常検出)
 次に、MCU130とは独立してバッテリ監視回路100が行うバッテリBTの異常検出動作について説明する。
 バッテリ監視回路100は、バッテリBTの状態を監視し、図5に示したような異常条件のいずれかに該当するか否かを判定する。そして、該当した異常条件に応じてnGAUGE_INT1信号もしくはnGAUGE_INT2信号を出力する。nGAUGE_INT2信号はバッテリ監視回路100のIO5端子からMCU130のPB12端子に割り込み信号として入力される。つまり、定期的なMCU130とのIC通信の周期を待たずに、nGAUGE_INT2信号は、バッテリ監視回路100のIO5端子から出力される。一方、バッテリ監視回路100のALERT端子から出力されるnGAUGE_INT1信号はMCU130には入力されず、保持回路であるFF1の/CLR端子に入力される。
(nGAUGE_INT2信号)
 まず、nGAUGE_INT2信号に関して説明する。バッテリ監視回路100は、定期的に取得するバッテリBTの情報が、nGAUGE_INT2信号の出力条件として列記した異常条件のいずれかに該当するか否かを判定する。そして、異常条件のいずれかに該当すると判定された場合、バッテリ監視回路100は、IO5端子の出力をローレベルとすることにより、nGAUGE_INT2信号を出力し、PB12端子を通じてMCU130に異常の発生を通知する。
 MCU130はPB12端子の入力がローレベルに変化すると、バッテリ監視回路100がバッテリBTの異常を検出したと認識する。そして、MCU130はSCLおよびSDA端子を通じたIC通信を通じて、バッテリ監視回路100からバッテリBTの情報を取得する。
 MCU130は、取得したバッテリBTの情報にnGAUGE_INT2信号の出力条件と同じ異常条件を適用して、バッテリBTが異常状態であるか否かを判定する。そして、異常条件のうち該当するものがあれば、その異常状態が示す異常の程度に応じた動作を実行する。つまり、MCU130は、バッテリBTの情報を定期的なIC通信で取得したか、nGAUGE_INT2信号による通知(割り込み)に応答したIC通信によって取得したかによって、取得したバッテリBTの情報に適用する異常条件を異ならせる。該当する異常条件がある場合に、その異常条件が表す異常の程度に応じて行う動作は、バッテリBTの情報を定期的なIC通信で取得した場合と同じである。
 なお、電池温度の異常条件(85℃以上が2分間継続)については、バッテリ監視回路100とMCU130とで判定方法が異なる。バッテリ監視回路100では、定期的に取得するバッテリBTの情報を監視することにより、85℃以上の温度が2分間継続したと判定されるとローレベルのnGAUGE_INT2信号を出力する。
 ローレベルのnGAUGE_INT2信号を受信したMCU130は、所定の周期(例えば1秒)でバッテリ監視回路100からバッテリBTの情報を取得する。そして、所定の複数回(例えば5回)連続して85℃以上の温度が検出されていれば、異常条件に該当する(永久故障が発生した)と判定する。
 上述した実施形態においては、MCU130は、取得したバッテリBTの情報にnGAUGE_INT2信号の出力条件と同じ異常条件を適用して、バッテリBTが異常状態であるか否かと、異常の程度とを判定する。
(nGAUGE_INT1信号)
 次に、nGAUGE_INT1信号に関して説明する。バッテリ監視回路100は、定期的に取得するバッテリBTの情報が、nGAUGE_INT1信号の出力条件として列記した異常条件のいずれかに該当するか否かを判定する。そして、異常条件のいずれかに該当すると判定された場合、バッテリ監視回路100は、ALERT端子の出力をローレベルとすることにより、nGAUGE_INT1信号を出力する。
 nGAUGE_INT1信号は、保持回路であるFF1の/CLR端子に入力される。/CLR端子は負論理であるため、ローレベルのnGAUGE_INT1が入力されると、FF1の出力であるQ端子の出力が強制的にローレベルになる。
 FF1にはロードスイッチ40から電圧VCC33の供給が開始された時点で、D端子にハイレベルが入力されるとともに、不図示のクロック端子にMCU130からクロック信号が入力されるため、Q端子の出力は通常ハイレベルである。ここで、クロック信号の入力は、クロック端子の入力レベルをローレベルからハイレベルに変更することであってよい。FF1は、クロック端子の入力レベルがローレベルからハイレベルになったときのD端子の入力レベルを保持し、Q端子から出力するものとする。
 FF1のQ端子の出力(nALARM_Latched信号)は、スイッチSS、変圧回路120、充電回路20の/CE端子に接続されているスイッチSL、およびMCU130(PA10端子)に入力される。FF1のQ端子から出力されるnALARM_Latched信号が異常を示す所定レベル(ローレベル)になると、
・スイッチSSがオフになるためヒータHTへの電力供給が遮断され、
・DC/DC120のEN端子がローレベルになるためヒータHTへの電圧印加が停止する、
・スイッチSLがオンすることで、抵抗R9が抵抗R10との電圧VCC33の分圧に寄与しなくなり、充電回路20の/CE端子の入力が電圧VCC33と同じハイレベルになるため充電が中止される。なお、このタイミングにおいてnCharger_Enable信号は生成されておらず、PB3端子の電位は不定である。
 このように、FF1の出力をローレベルとすることにより、MCU130を介さずに、変圧回路120からヒータHTへの電力供給および充電回路20によるバッテリBTの充電を禁止し、回路を保護することができる。
 MCU130は、PA10端子にローレベルのnALARM_Latched信号が入力されると、リセットが必要な異常が検出されたと判定し、発光部NUやバイブレータMによりユーザにリセット操作を行うように促す。リセット操作の検出およびそれに応じたリセット動作は上述した通りである。
(ヒータサーミスタおよびケースサーミスタによる異常検出)
 次に、ヒータサーミスタTHおよびケースサーミスタTCによる異常検出と、異常検出に応じた動作について説明する。ヒータサーミスタTHはヒータHTに近接する位置に配置される。または、ヒータサーミスタTHはヒータHTに接する位置に配置される。したがって、ヒータHTの実温度とヒータサーミスタTHの抵抗値との関係を事前に計測しておくことにより、ヒータサーミスタTHの抵抗値をヒータHTの温度として用いることができる。
 オペアンプA2の反転入力には電圧VCC33_SLPをヒータサーミスタTHと抵抗R1とで分圧した電圧が入力される。また、オペアンプA2の非反転入力には電圧VCC33を抵抗R4およびR5とで分圧した電圧が、基準電圧もしくは閾値電圧として入力される。好ましくはNTCサーミスタによりヒータサーミスタTHが構成されているため、ヒータHTが過加熱していない状態における非反転入力の電圧は低く、ヒータHTが過加熱している状態における非反転入力の電圧は高くなる。ヒータHTが過加熱していない状態では非反転入力の電圧が反転入力の電圧よりも高くなり、ヒータHTが過加熱している状態では反転入力の電圧が非反転入力の電圧よりも高くなるように、分圧抵抗R3~R5の値が調整されている。したがって、オペアンプA2は、ヒータHTに関する異常の一例としての温度の異常、具体的には過加熱を検出する回路(第1検出回路)として機能する。なお、分圧抵抗R3~R5の値は、ヒータHTの温度が過加熱の閾値に達した際のヒータサーミスタTHの抵抗値に基づいて調整することができる。
 したがって、オペアンプA2の出力は、ヒータHTが過加熱していない状態(正常状態)ではハイレベル、ヒータHTが過加熱している状態(異常状態)ではローレベルとなる。
 オペアンプA2の出力は、FF2の/CLR端子に直接接続されている。また、オペアンプA2の出力は、ダイオードD1を介してFF1のD端子および/CLR端子にも接続されている。ダイオードD1はカソードがオペアンプA2の出力に接続されている。ヒータHTの温度が正常状態であれば、FF2の/CLR端子の入力はハイレベルとなる。/CLR端子の入力がハイレベルの場合、FF2のQ端子の出力は初期状態を維持する。FF2のD端子には電圧VCC33_0が入力されており、起動時に異常がなければFF2は初期状態でD端子の入力レベルを保持する。したがって、ヒータHTの温度が正常状態であれば、FF2のQ端子出力はハイレベル、/Q端子出力(HEATER_Latched信号)はローレベルである。
 ヒータHTが過加熱の状態になると、オペアンプA2の出力がローレベルに変化する。これにより、FF2の/CLR端子の入力がローレベルに変化する。/CLR端子がローレベルになると、FF2は強制的に初期化され、Q端子の出力がローレベル、/Q端子の出力がハイレベルとなる。したがって、FF2の/Q端子の出力であるHEATER_Latched信号はハイレベルに保持される。
 HEATER_Latched信号はMCU130のPB14端子に入力される。MCU130は、HEATER_Latched信号がハイレベルになったことを検出すると、リセット操作をユーザに促す。これは、ヒータHTの過加熱は重要な異常であるため、MCU130が正しく動作していることが確実な状態で再度判定を行うためである。
 MCU130はリセット後の起動時にHEATER_Latched信号を参照し、HEATER_Latched信号がハイレベルであることが検出されると、永久故障が発生したものと判定する。そして、上述した永久故障判定時の動作を実行する。永久故障判定時の動作は、不可逆的な動作である。このような動作は、FF1やFF2よりも高度なMCU130によって実行されることが好ましい。しかし、過加熱の状態にならないようにヒータHTの温度はMCU130によって制御されているところ、ヒータHTが過加熱の状態になるということは、ノイズによってPB14端子にハイレベルが入力されたか、MCU130が誤動作した虞がある。ノイズによってPB14端子にハイレベルが入力される場合、リセット後のMCU130が参照するHEATER_Latched信号はローレベルであるため、永久故障判定時の動作が誤って実行されることが抑制される。MCU130が誤動作した場合にはリセットによりMCU130が正常動作するようになり、永久故障判定時の動作を正確に実行できる。
 リセット操作およびリセット動作は上述したとおりである。FF2のVCC端子には電圧VCC33_0が供給される。電圧VCC33_0はMCU130を駆動する電圧VCC33がリセット動作において一時的に供給されなくなる間も継続して供給される。そのため、FF2が保持する情報(Qおよび/Q端子の出力)はMCU130がリセットされても消えることなく保持される。
 リセット後、電圧VCC33の供給が再開することにより、オペアンプA2およびMCU130が動作する。この時点でヒータHTの過熱状態が解消されていれば、オペアンプA2の出力はハイレベルに戻る。しかし、FF2の不図示のクロック端子へMCU130からクロック信号が入力されないため、FF2の保持する情報はリセット前から変化しない。そのため、リセット後にMCU130がHEATER_Latched信号を参照することにより、リセット前にヒータHTの過加熱が検出されていたことが確認できる。
 MCU130はリセット後の起動時にHEATER_Latched信号を参照し、HEATER_Latched信号がハイレベルであることが検出されると、永久故障が発生したものと判定する。そして、上述した永久故障判定時の動作を実行する。
 ケースサーミスタTCは、ケース2の内面に近接する位置に配置される。または、ケースサーミスタTCは、ケース2の内面に接する位置に配置される。ケース2の実温度とケースサーミスタTCの抵抗値との関係を事前に計測しておくことにより、ケースサーミスタTCの抵抗値をケース2の温度として用いることができる。
 オペアンプA3の反転入力には、電圧VCC33_SLPをケースサーミスタTCと抵抗R6とで分圧した電圧が入力される。また、オペアンプA3の非反転入力には電圧VCC33を抵抗R7および抵抗R8とで分圧した電圧が、基準電圧もしくは閾値電圧として入力される。好ましくはNTCサーミスタによりケースサーミスタTCが構成されているため、ケース2が高温ではない状態における非反転入力の電圧は低く、ケース2が高温である状態における非反転入力の電圧は高くなる。電源ユニット1のケース2が高温ではない状態では非反転入力の電圧が反転入力の電圧よりも高くなり、ケース2が高温である状態では反転入力の電圧が非反転入力の電圧よりも高くなるように、分圧抵抗R6~R8の値が調整されている。したがって、オペアンプA3は、ケース2の温度に関する異常としての高温を検出する回路(第2検出回路)として機能する。なお、分圧抵抗R6~R8の値は、ケース2の温度が高温に達した際のケースサーミスタTCの抵抗値に基づいて調整することができる。
 したがって、オペアンプA3の出力は、ケース2が高温ではない状態(正常状態)ではハイレベル、ケース2が高温である状態(異常状態)ではローレベルとなる。
 オペアンプA3の出力は、FF1の/CLR端子およびD端子に直接接続されている。また、オペアンプA3の出力は、ダイオードD1のアノードにも接続されている。ケース2の温度が正常状態であれば、FF1の/CLR端子の入力はハイレベルとなる。/CLR端子の入力がハイレベルの場合、FF1のQ端子の出力は初期状態を維持する。FF1のD端子には電圧VCC33が入力されており、起動時に異常がなければFF1は初期状態でD端子の入力レベルを保持する。したがって、ケース2の温度が正常状態であれば、FF1のQ端子出力(nALARM_Latched信号)はハイレベルである。
 ハイレベルのnALARM_Latched信号は、MCU130のPA10端子と、スイッチSLのベースとに入力される。スイッチSLはオフとなる。
 ケース2が高温の状態になると、オペアンプA3の出力がローレベルに変化する。これにより、FF1の/CLR端子の入力がローレベルに変化する。/CLR端子がローレベルになると、FF1は強制的に初期化され、Q端子の出力(nALARM_Latched信号)はローレベルになる。これにより、バッテリ監視回路100がローレベルのnGAUGE_INT1信号を出力したときと同様に、MCU130を介さずに変圧回路120からヒータHTへの電力供給および充電回路20によるバッテリBTの充電を禁止し、電源ユニット1を保護することができる。
 なお、ヒータHTが過加熱の状態であり且つケース2高温の状態である場合、オペアンプA2およびオペアンプA3の出力がいずれもハイレベルとなる。オペアンプA2およびオペアンプA3の出力は接続されているため、両者の出力が衝突する恐れがある。オペアンプA2の出力とオペアンプA3の出力は必ずしも同じ電圧値とは限らず、電圧値の異なるハイレベル同士の衝突は、予期せぬ誤動作をもたらす虞がある。特に、オペアンプA2およびオペアンプA3の出力がいずれもハイレベルであっても、オペアンプA3の出力電圧がオペアンプA2の出力電圧よりも低い場合、FF2の/CLR端子の入力レベルに影響を与える可能性がある。
 そのため、オペアンプA2の出力とおよびオペアンプA3の出力との接続経路に、電流の流れる方向を制限する制限回路としてのダイオードD1を、アノードにオペアンプA3の出力が、カソードにオペアンプA2の出力が接続されるように接続している。つまり、オペアンプA3の出力、ダイオードD1のアノード、ダイオードD1のカソード、オペアンプA2の出力が直列に接続される。あるいは、オペアンプA3の出力とダイオードD1のアノードとの間にFF1の/CLR端子が存在し、ダイオードD1のカソードにオペアンプA2が接続される。これにより、オペアンプA3の出力電圧がオペアンプA2の出力電圧より低い場合に、オペアンプA2からオペアンプA3に向かう方向に流れる電流がダイオードD1によって制限され、オペアンプA1の出力電圧がFF2の/CLR端子の入力レベルに影響を与えることを回避することができる。なお、ダイオードD1の向きは、オペアンプA2の異常検出時における出力レベルがオペアンプA3の出力レベルによって受ける影響を抑制するように、異常検出時におけるオペアンプA2およびA3の出力レベルに応じて定めればよい。
 一方、ヒータHTが過加熱の状態で、ケース2が正常状態の場合には、バッテリBTの充電やヒータHTへの電力供給を禁止し、回路を直ちに保護するべきである。この場合、オペアンプA2の出力はローレベル、オペアンプA3の出力はハイレベルとなる。オペアンプA3の出力電圧がオペアンプA2の出力電圧より高い場合、ダイオードD1には順方向の電圧が加わる。また、オペアンプA3からオペアンプA2に流れ込む電流はグランドに接続されるため、FF1の/CLR端子の入力はオペアンプA3の出力がハイレベルであってもグランドに引き込まれ、ローレベルになる。このように、FF2が保持する情報が異常が検出されたことを示す値に変化する際には、FF1が保持する情報もまた異常が検出されたことを示す値に変化する。
 これにより、ヒータHTの過加熱状態が検出された場合に、MCU130を介さずに直ちに変圧回路120からヒータHTへの電力供給および充電回路20によるバッテリBTの充電を禁止し、回路を保護することができる。なお、図4Aの変形例である図4Bに示すように、ダイオードD1をショットキーダイオードD1'とすることにより、PN接合を用いた通常のダイオード(PNダイオード)を用いる場合よりも順方向電流の立ち上がりがより高速になる。そのため、ダイオードD1にPNダイオードを用いる場合よりもFF1の/CLR端子をより早くローレベルとすることができ、ヒータHTの過加熱状態が検出された際に素早く回路を保護することができる。
 なお、ここではHEATER_Latched信号をFF2の/Q端子出力としたが、Q端子出力としてもよい。しかしながら、/Q端子出力を用いて異常時にHEATER_Latched信号がハイレベルとなるようにすることで、異常時にHEATER_Latched信号がローレベルとなる場合よりも外乱ノイズの影響を受けづらく、MCU130においてより確実に異常を判定することができる。
(回路配置)
 図6Aおよび図6Bは、図4Aまたは図4Bに示した回路を実現する回路素子の実装例を示す斜視図である。図6Aは第1回路基板PCB1および第2回路基板PCB2の位置関係ならびに第1回路基板PCB1の上面における回路素子の実装例を示している。また、図6Bは第1回路基板PCB1の下面(図6Aで隠れている面)における回路素子の実装例をそれぞれ示している。
 図1および図2から明らかなように、実装面に直行する方向の距離に関し、第1回路基板PCB1の方が第2回路基板PCB2よりケース2の内面に近い位置に配置される。また、第1回路基板PCB1と第2回路基板PCB2とはフレキシブルプリント基板FPCを通じて電気的に接続されている。第1回路基板PCB1と第2回路基板PCB2とは、何れも両面基板であり、間に設けられたスペーサによって基材が実質的に平行となるように保持されている。
 第1回路基板PCB1において、THC+およびTHC-はヒータサーミスタTHを接続するコネクタである。また、TCC+およびTCC-はケースサーミスタTCを接続するコネクタである。図6AではヒータサーミスタTHのリード線およびケースサーミスタTCのリード線がそれぞれのコネクタに接続されていないが、単に図示の都合によるものであり、実際には対応するコネクタに接続されている。好ましくは、ヒータサーミスタTHのリード線は、FPCの隙間を通って、THC+およびTHC-へ接続される。また、TPC+およびTPC-はパフサーミスタTPのリード線を接続するためのコネクタである。
 第1回路基板PCB1および第2回路基板PCB2の各実装面における回路要素の配置例を示す図7Aおよび図7Bをさらに参照して、回路要素の配置に関して説明する。図7AはPCB1を、図7BはPCT2の回路要素の配置を示している。また、図7Aにおいて、7aは上面、7bは下面を示している。同様に、図7Bにおいて、7cは上面、7dは下面を示している。図3に示した回路図において、特にノイズ源となる回路は、スイッチング動作を行う充電回路20および変圧回路120と、動作時にノイズを発生するMCU130である。
 一方、永久故障の判定に用いられるFF2が保持する値がノイズの影響を受けて反転した場合や値を正確に保持できない場合、その影響は非常に大きい。したがって、FF2は、電源ユニット1内の他の回路からのノイズおよび電源ユニット1の外部からのノイズの影響を受けづらい位置に実装する必要がある。
 したがって、本実施形態では、ノイズ源となる回路を、FF2と同じ実装面やFF2の実装面と対向する実装面には実装しない。具体的には、充電回路20およびMCU130は第1回路基板PCB1の上面に実装され、変圧回路120は第2回路基板PCB2の下面に実装される。つまり、ノイズ源となる回路を外向きの実装面に実装している。なお、これは単なる一例であり、充電回路20およびMCU130の少なくとも一方を第2回路基板PCB2の下面に実装したり、変圧回路120を第1回路基板PCB1の上面に実装したりしてもよい。
 一方で、ヒータHTの過加熱の検出有無を示す情報を保持するFF2は、第1回路基板PCB1の下面に実装される。ノイズ源となる回路の実装面とは異なり、かつ対向もしない実装面にFF2を実装することにより、電源ユニット1が有する他の回路からのノイズによりFF2の保持する値が変化する又は値を正確に保持できないリスクを低減することができる。
 また、第2回路基板PCB2と対向する、内向きの面にFF2を実装することにより、第1回路基板PCB1と第2回路基板PCB2の基材や配線パターンを、電源ユニット1の外部から侵入するノイズのシールドとして利用することができる。特に、第1回路基板PCB1と第2回路基板PCB2の基材のうち、グランドをもたらすための銅箔層はシールドとして有効である。そのため、電源ユニット1の外部から侵入するノイズによりFF2の保持する値が変化する又は値を正確に保持できないリスクを低減することができる。
 さらに、電源ユニット1のケース2の表面に露出するコネクタUSBCを、FF2が実装される第1回路基板PCB1とは異なる第2回路基板PCB2に実装する。これにより、電源ユニット1の外部からコネクタUSBCを通じて侵入するノイズ、特に静電気がFF2に与える影響を抑制することができる。これらのノイズは、コネクタUSBCに対してプラグを挿抜する際に特に生じやすい。
 さらに、ヒータサーミスタTHは、大電力が供給されるヒータHTに近接して配置され、また例えば250℃を超える温度になるヒータHTの温度を検出するため、抵抗値が大きく変化する。そのため、ヒータサーミスタTHのコネクタTHC+およびTHC-の電位も大きく変化し、ノイズの原因となり得る。したがって、ヒータサーミスタTHのコネクタTHC+およびTHC-についても、FF2の実装面とは異なり、かつ対向しない実装面に実装する。本実施形態ではヒータサーミスタTHのコネクタTHC+およびTHC-を第1回路基板PCB1の上面に実装しているが、第2回路基板の下面に実装してもよい。
 また、FF2の実装面に供給される最大電圧を、FF2の動作電圧(ここではVCC33)とする。これにより、FF2に対してFF2の実装面上に短絡電流が生じる可能性を大きく減らすことができる。
 以上のような回路要素間の位置関係を考慮した実装に加え、実装面内におけるFF2の位置についてもノイズの影響を考慮する。図8は、FF2が実装される第1回路基板PCB1の下面を拡大した図である。
 実装面上の回路要素に対するノイズは、遮るものがない方向から多く侵入する。FF2が実装される第1回路基板PCB1の下面は、下面に直交する方向にはケース2との間に第1回路基板PCB1の基材と第2回路基板PCB2が存在するが、下面に平行な方向にはケース2との間にシールドになるような構成要素が存在しない。そのため、第1回路基板PCB1の側方からのノイズが侵入する虞がある。
 したがって、第1回路基板PCB1の実装面において、FF2は縁部に接する位置よりも中心よりに実装することで、基板側方からのノイズの影響を抑制することができる。一方で、FF2をあまり縁部から離れた位置に実装すると、FF2への配線長が増加したり、他の回路素子の配置に影響を与えたりするおそれがある。例えば、FF2と、第1回路基板PCB1の縁部のうちFF2に最も近い縁EDとの距離をdとし、第1回路基板PCB1の実装面の中心Oと、縁EDとの距離をdcとする。これら距離dおよびdcは最短距離である。このとき、距離dが0より大きく、dcより小さく、かつ距離dが距離dcとdとの差分より小さくなるように距離dを定めることができる(0<d<dcかつd<dc-d)。
 あるいは、dcに対するdの比率が閾値以上となる位置にFF2を実装する。すなわち、d/dc≧閾値(%)となるように、実装面におけるFF2の位置を定める。この場合も0<d<dc並びにd<dc-dを満たすようにする。閾値は20%以上であることが好ましく、30%以上であることがさらに好ましく、40%以上であることが最も好ましい。また、閾値の上限はd<dc-dを満たすことから50%未満となる。なお、図8において距離dはFF2のパッケージの側面と縁EDとの距離としているが、FF2のパッケージの中心と縁EDとの距離d'を用いてもよい。また、実装面の中心Oは、基板を矩形と見なせる場合には対角線の交点とすることができる。あるいは、基材を均一な厚みを有する同一素材から形成されるものとした場合の重心位置を実装面の中心としてもよい。
 また、FF2の実装面において、FF2と、第1回路基板PCB1の縁部のうちFF2に最も近い縁EDとの間に、集積回路(IC)や、スイッチング動作を行う素子(MOS FET)以外の回路素子、例えばダイオードや、受動素子(コンデンサや抵抗など)を1つ以上実装することによっても、基板側方からのノイズの影響を低減することができる。本実施形態では、図7Aの7bに示すPCB1の下面におけるコンデンサC1およびC2がこの条件を満たす回路素子(かつ受動素子)である。
 以上説明したように、本実施形態によれば、エアロゾル生成装置の電源ユニットに、保持する情報が電源ユニットのリセット動作によって消去されない保持回路を設けた。そして、保持回路に、異常が検出されたか否かを示す情報を保持するようにした。そのため、リセット動作後に保持回路が保持する情報を参照することにより、過去に検出された異常の有無を利用した適切な制御を実現することができる。例えば、重要な異常が検出されたことを示す情報が保持回路に保持されている場合、電源ユニットはリセット動作後の起動時に、ヒータHTへの電力供給の禁止、バッテリBTの充電の禁止、所定の回路に対する電力の供給停止、電源ユニットの使用禁止など、適切な動作を実行することができる。
 また、保持する情報が電源ユニットのリセット動作によって消去される保持回路をさらに用い、検出された異常の種類に応じて異なる対応動作を実行できるようにした。例えば、電源ユニットのリセット動作によって消去されない保持回路には重要な異常の検出有無に関する情報を保持する。また、電源ユニットのリセット動作によって消去される保持回路には、リセット動作によって復帰可能な異常の検出有無に関する情報を保持する。重大な異常が検出された際には、両方の保持回路に異常が検出されたことを示す情報を保持するように構成することで、リセット動作前に一部の動作を制限したのち、リセット動作後に保持回路を参照して、より厳しい動作制限を実施することができる。
 また、重大な異常の検出有無に関する情報を保持する保持回路は、電源ユニットの外部からのノイズや、電源ユニット内の他の回路が発生するノイズの影響を受けづらい位置に実装することで、ノイズの影響による誤動作を効果的に抑制することが可能になる。
 発明は上記の実施形態に制限されるものではなく、発明の要旨の範囲内で、種々の変形・変更が可能である。
 本願は、2021年5月10日提出の日本国特許出願特願2021-79746を基礎として優先権を主張するものであり、その記載内容の全てを、ここに援用する。

Claims (15)

  1.  電源と、
     前記電源から供給される電力を消費してエアロゾル源を加熱する負荷が接続されるコネクタと、
     前記電源から前記負荷への電力の供給を制御する制御回路と、を有するエアロゾル生成装置の電源ユニットであって、
     異常が検出されたか否かを示す第1情報を保持する第1保持回路を有し、
     前記制御回路は、起動時に前記第1保持回路に保持された前記第1情報を参照し、前記第1情報が、異常が検出されたことを示す場合、前記電源ユニットの使用を禁止するための動作を実行する、電源ユニット。
  2.  前記制御回路は、電力が供給されない状態から供給される状態になると起動し、
     前記第1保持回路には、前記制御回路への電力が供給されない期間も電力が供給される、請求項1に記載の電源ユニット。
  3.  前記第1保持回路に電力を供給する電源ラインと、前記制御回路に電力を供給する電源ラインとが異なる、請求項2に記載の電源ユニット。
  4.  前記第1情報は、前記負荷に関して予め定められた異常が検出されたか否かを示す、請求項1から3のいずれか1項に記載の電源ユニット。
  5.  前記負荷に関して予め定められた異常が、前記負荷の温度の異常である、請求項4に記載の電源ユニット。
  6.  前記第1保持回路は、前記第1情報を示す第1信号を前記制御回路に出力する端子を有し、前記制御回路は前記端子を参照することによって前記第1情報を参照する、請求項1から5のいずれか1項に記載の電源ユニット。
  7.  前記第1情報は、非反転入力端子と反転入力端子の一方が前記負荷に近接する位置に配置されたサーミスタへ接続され、且つ前記非反転入力端子と前記反転入力端子のうち他方が基準電圧へ接続される第1オペアンプの出力に応じて値が変化する、請求項1から5のいずれか1項に記載の電源ユニット。
  8.  前記電源ユニットの使用を禁止するための動作が、前記負荷および前記制御回路への電力の供給の停止を含む、請求項1から7のいずれか1項に記載の電源ユニット。
  9.  前記電源を充電する充電回路をさらに有し、
     前記電源ユニットの使用を禁止するための動作が、前記電源を充電する回路への電力の供給の停止をさらに含む、請求項8に記載の電源ユニット。
  10.  前記電源に関する異常が検出されたか否かを示す第2情報を保持する第2保持回路をさらに有し、
     前記制御回路は、前記第2情報が、異常が検出されたことを示す場合、前記電源ユニットのリセット操作を行うようにユーザに報知する、請求項1から9のいずれか1項に記載の電源ユニット。
  11.  前記第2保持回路は、前記第2情報を示す第2信号を出力する端子を有し、
     前記第2情報が異常が検出されたことを示す場合、前記第2信号は、前記制御回路を介さずに前記負荷への電力の供給を停止又は禁止させる、請求項10に記載の電源ユニット。
  12.  前記第2保持回路には、前記制御回路に電力を供給する電源ラインによって電力が供給される、請求項10または11に記載の電源ユニット。
  13.  前記電源に関する異常が、前記電源の放電時の電流量と前記電源の充電時の電流量と前記電源の温度との少なくとも1つに関する異常である、請求項10から12のいずれか1項に記載の電源ユニット。
  14.  前記電源ユニットの表面を構成するケースをさらに有し、
     前記第2情報はさらに、前記ケースの温度に関する異常が検出された否かも示す、請求項10から13のいずれか1項に記載の電源ユニット。
  15.  前記第1情報が、異常が検出されたことを示す値に変化する場合、前記第2情報も異常が検出されたことを示す値に変化する、請求項10から14のいずれか1項に記載の電源ユニット。
PCT/JP2022/012261 2021-05-10 2022-03-17 エアロゾル生成装置の電源ユニット WO2022239474A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-079746 2021-05-10
JP2021079746 2021-05-10

Publications (1)

Publication Number Publication Date
WO2022239474A1 true WO2022239474A1 (ja) 2022-11-17

Family

ID=84028208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/012261 WO2022239474A1 (ja) 2021-05-10 2022-03-17 エアロゾル生成装置の電源ユニット

Country Status (1)

Country Link
WO (1) WO2022239474A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019077712A1 (ja) * 2017-10-18 2019-04-25 日本たばこ産業株式会社 バッテリユニット、香味吸引器、バッテリユニットを制御する方法、及びプログラム
JP2020058235A (ja) * 2018-10-04 2020-04-16 日本たばこ産業株式会社 吸引成分生成装置、制御回路、吸引成分生成装置の制御方法および制御プログラム
WO2020122423A1 (ko) * 2018-12-13 2020-06-18 주식회사 케이티앤지 오작동에 의한 히터의 발열을 차단하는 에어로졸 생성 장치 및 방법
WO2020255233A1 (ja) * 2019-06-18 2020-12-24 日本たばこ産業株式会社 吸引装置、電源ユニット、及び方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019077712A1 (ja) * 2017-10-18 2019-04-25 日本たばこ産業株式会社 バッテリユニット、香味吸引器、バッテリユニットを制御する方法、及びプログラム
JP2020058235A (ja) * 2018-10-04 2020-04-16 日本たばこ産業株式会社 吸引成分生成装置、制御回路、吸引成分生成装置の制御方法および制御プログラム
WO2020122423A1 (ko) * 2018-12-13 2020-06-18 주식회사 케이티앤지 오작동에 의한 히터의 발열을 차단하는 에어로졸 생성 장치 및 방법
WO2020255233A1 (ja) * 2019-06-18 2020-12-24 日本たばこ産業株式会社 吸引装置、電源ユニット、及び方法

Similar Documents

Publication Publication Date Title
WO2022239474A1 (ja) エアロゾル生成装置の電源ユニット
WO2022239473A1 (ja) エアロゾル生成装置の電源ユニット
WO2022239472A1 (ja) エアロゾル生成装置の電源ユニット
WO2022239514A1 (ja) エアロゾル発生装置の電源ユニット
WO2022239279A1 (ja) エアロゾル生成装置の電源ユニット
JP2022173998A (ja) エアロゾル発生装置の電源ユニット
WO2022239065A1 (ja) エアロゾル生成装置の電源ユニットおよび方法
JP7554354B2 (ja) エアロゾル生成装置の電源ユニット
WO2022239280A1 (ja) エアロゾル生成装置の電源ユニット
WO2022239510A1 (ja) エアロゾル発生装置の電源ユニット
WO2022239475A1 (ja) エアロゾル生成装置の電源ユニット
WO2022239511A1 (ja) エアロゾル発生装置の電源ユニット
WO2022239509A1 (ja) エアロゾル発生装置の電源ユニット
WO2022239512A1 (ja) エアロゾル発生装置の電源ユニット
WO2022239513A1 (ja) エアロゾル発生装置の電源ユニット
WO2022239515A1 (ja) エアロゾル発生装置の電源ユニット
JP2022173999A (ja) エアロゾル発生装置
US20240315345A1 (en) Power supply unit for aerosol generating device
US20240324694A1 (en) Power supply unit for aerosol generation device
US20240324686A1 (en) Power supply unit for aerosol generation device
CN118382372A (zh) 气溶胶生成装置的电源单元

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22807180

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22807180

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP