WO2010079754A1 - 電気化学素子用電極の製造方法、電気化学素子用電極、および電気化学素子 - Google Patents

電気化学素子用電極の製造方法、電気化学素子用電極、および電気化学素子 Download PDF

Info

Publication number
WO2010079754A1
WO2010079754A1 PCT/JP2010/000063 JP2010000063W WO2010079754A1 WO 2010079754 A1 WO2010079754 A1 WO 2010079754A1 JP 2010000063 W JP2010000063 W JP 2010000063W WO 2010079754 A1 WO2010079754 A1 WO 2010079754A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
material layer
electrode
lithium
electrochemical element
Prior art date
Application number
PCT/JP2010/000063
Other languages
English (en)
French (fr)
Inventor
神山遊馬
本田和義
篠川泰治
柳智文
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN2010800033128A priority Critical patent/CN102224620A/zh
Priority to JP2010516708A priority patent/JP4745459B2/ja
Priority to US13/143,123 priority patent/US20110269020A1/en
Publication of WO2010079754A1 publication Critical patent/WO2010079754A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/70Current collectors characterised by their structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]

Definitions

  • the present invention relates to a method for producing an electrode for an electrochemical element that can be used in a lithium secondary battery or an electrochemical capacitor, an electrode for an electrochemical element, and an electrochemical element.
  • One of them is an active material layer formed as a film containing silicon as a main component on a current collector.
  • a vacuum process such as a vacuum deposition method has been studied.
  • a method of forming an active material layer while winding a long current collector foil wound around a roll onto another roll a so-called roll toe.
  • a roll method In this method, a long current collector foil wound around a roll is attached to an unwinding device provided upstream of the film forming step of the active material layer, and another roll is provided downstream of the film forming step. Attach to the device. Next, an active material layer is formed on the unwound current collector foil, and the obtained electrode is wound on a roll attached to a winding device.
  • the bumping of the vapor deposition material is a phenomenon in which the vapor deposition material in the crucible does not vaporize but jumps out as a liquid or a solid. It will form things.
  • the bumping of the vapor deposition material is considered to be caused by impurities contained in the vapor deposition material put in the crucible or temperature unevenness in the crucible, and it is possible to reduce the bumping but it is difficult to eliminate it. In particular, when film formation is performed for a long time while replenishing the evaporation material, it is difficult to eliminate bumping.
  • the protrusions on the electrode surface are higher than the thickness of the separator (thickness: about 20 ⁇ m), the protrusions may penetrate the separator, and the positive electrode and the negative electrode may be internally short-circuited. There is. Therefore, it is necessary to remove protrusions having a height higher than the thickness of the separator before forming the battery.
  • Patent Document 1 As a method of removing protrusions on the electrode surface, a method of rubbing the electrode with a wiping cloth and sucking and removing the removed substance has been proposed (see, for example, Patent Document 1).
  • the method of rubbing the surface with a wiping cloth described in Patent Document 1 is effective for a type of electrode coated with paste.
  • the protrusion formed by bumping of the vapor deposition material in the vacuum vapor deposition method is harder than the protrusion on the paste application type electrode, and has a stronger bonding force with the current collector foil and the active material layer.
  • a wiping cloth made of a material having low strength is used, the protrusion cannot be removed because the cloth is torn.
  • a wiping cloth made of a material having high strength is used, a protrusion caught on the wiping cloth may be removed, but the current collector foil may be torn together with the protrusion.
  • Patent Documents 2 and 3 disclose a method for removing protrusions formed during vacuum deposition.
  • Patent Document 2 discloses a method of detecting protrusions with a sensor and removing the protrusions by opening a through hole.
  • the yield is reduced. cause.
  • the method of pressing and crushing the protrusions shown in Patent Document 3 is a method of reducing the height of the protrusions by pressurization or indenting the protrusions into the current collector, and the protrusions are not removed. .
  • an object of the present invention is to provide a method for easily and reliably removing protrusions on the surface of an active material layer, which are generated in a vacuum process when manufacturing an electrode for an electrochemical element.
  • the method for manufacturing an electrode for an electrochemical element according to the first aspect of the present invention includes forming an active material layer capable of occluding and releasing lithium on a current collector by a vacuum process.
  • an active material layer capable of occluding and releasing lithium a layer made of an active material capable of occluding and releasing lithium and further expanding (volume increasing) by occluding lithium is used.
  • the active material is preferably made of silicon, silicon oxide, or an alloy or compound containing silicon.
  • the above silicon, silicon oxide, and the like are expected as high-capacity negative electrode active material materials in lithium ion secondary batteries, and can store a large amount of lithium, but are known to expand when lithium is stored. Yes.
  • silicon when used as the negative electrode active material, it expands to about four times the volume before lithium storage by volume ratio when fully charged.
  • the silicon oxide negative electrode which suppresses the charge capacity by oxidizing silicon and suppresses expansion, expands 2 to 3 times depending on the degree of oxidation.
  • the protrusion attached to the surface occludes lithium, so that the lithium does not reach the active material layer immediately below the protrusion, and the active material layer is not lithium. Do not occlude.
  • the expansion coefficient differs between the protrusion and the active material layer, the interface between the protrusion and the active material layer is distorted due to the difference in expansion coefficient, and the protrusion is easily peeled off.
  • the amount of lithium occluded before removal of the protrusions is 10% or more of the theoretical charge capacity of the active material layer in order to ensure a difference in expansion coefficient between the protrusions and the active material layer immediately below the protrusions. Is desirable. As the lithium occlusion amount increases, the protrusions also expand, and the protrusions easily peel off. Therefore, there is no problem if the upper limit of the lithium occlusion amount is 100% or less. However, when the amount of occlusion of lithium increases, lithium easily diffuses from the surroundings into the active material layer immediately below the protrusions, and lithium tends to precipitate on the electrode plate surface. Therefore, it is desirable that the lithium occlusion amount before removing the protrusions is 50% or less, more preferably 30% or less, of the theoretical charge capacity of the active material layer.
  • the electrode for an electrochemical element according to the second aspect of the present invention is an electrode for an electrochemical element having a sheet-like current collector and an active material layer carried on the current collector, wherein the active material layer comprises: Lithium is occluded in an amount of 10% or more and 100% or less of the theoretical charge capacity of the active material layer, and there is a minute region that does not occlude lithium on the surface of the active material layer.
  • the electrochemical element electrode can be manufactured by the manufacturing method according to the first aspect of the present invention.
  • the active material layer itself does not occlude lithium in the portion of the surface of the active material layer where the protrusion is attached in the first step because the protrusion occludes lithium in the second step. Therefore, when the protrusions are removed in the third step, 1 to 50 minute regions on the surface of the active material layer that do not occlude lithium with an average diameter of 10 ⁇ m to 500 ⁇ m according to the shape and frequency of the protrusions. About location / cm 2 is created.
  • Presence of a minute region that does not occlude lithium can be confirmed by elemental distribution analysis such as microscopic fluorescent X-ray analysis on the surface of the active material layer. Further, the micro area can be confirmed by observing the surface of the active material layer using a laser microscope.
  • the manufacturing method of the present invention is used. A minute region that does not occlude lithium is not formed unlike the prepared electrode.
  • the electrode having a minute region that does not occlude lithium that can be formed by the manufacturing method of the present invention has different expansion behavior between the portion that occludes lithium and the portion that does not occlude lithium. It is possible to reduce the frictional resistance during electrode conveyance. Furthermore, since the active material layer is not expanded in a minute region that does not occlude lithium as compared to the surrounding region, the minute region forms a depression on the surface of the active material layer. Therefore, when a minute deposit remains on the electrode, the deposit tends to enter the depression. Therefore, when a battery or a capacitor is configured using the electrode, even if the remaining deposits expand by further occlusioning lithium during charging and discharging, the deposits break through the separator as compared with the case where there is no depression. Internal short circuit is unlikely to occur.
  • an electrode having a small region that does not occlude lithium produced according to the present invention has a depression on the surface of the active material layer, and has a large surface area. Therefore, compared with a flat electrode that occludes lithium almost uniformly. This improves the wetting characteristics of the electrolyte.
  • the active material layer formed by arranging a plurality of columnar active materials on the current collector in the first step of the present invention is formed, the active material layer from the top of the column that easily occludes lithium during charging. Expands. Therefore, the gap is filled in the upper part of the columnar active material layer due to the expansion of the active material layer, while the expansion is slow in the lower part, so that the gap is relatively likely to remain.
  • the height of the columnar active material on the electrode is generally uniform.
  • the gaps between them are filled, and the electrolyte does not easily flow into the lower part of the active material layer.
  • the gap between the columns is filled in the upper portion of the column and the electrolytic solution cannot enter and exit.
  • the third aspect of the present invention includes a negative electrode composed of the electrode according to the second aspect of the present invention, a sheet-like positive electrode current collector, and a positive electrode active material layer provided on the positive electrode current collector. And it is an electrochemical element which has the positive electrode arrange
  • the positive electrode active material layer releases lithium ions during charging and occludes lithium ions released from the negative electrode active material layer during discharging.
  • the negative electrode active material layer occludes lithium ions released from the positive electrode active material layer during charging and releases lithium ions during discharge.
  • the active material layer of the negative electrode is opposed to the positive electrode active material layer in the thickness direction of the separator, and the non-opposite not facing the positive electrode active material layer in the same direction. A region. This is to prevent lithium metal from depositing on the positive electrode active material layer during charging and causing a short circuit.
  • the negative electrode active material layer occludes lithium, and the surface of the negative electrode active material layer has a minute region that does not occlude lithium.
  • the electrochemical device is repeatedly charged and discharged, lithium is inserted and extracted even in this minute region, and as a result, it becomes difficult to distinguish the minute region from the surrounding region.
  • the electrochemical element of the present invention includes a lithium secondary battery and a battery chemical capacitor.
  • the protrusions that are splash particles existing on the surface of the active material layer store and expand lithium.
  • the protrusion can be easily and reliably removed in the third step.
  • the separator of the protrusions is produced when the battery and the capacitor are manufactured by stacking with the separator. The risk of an internal short circuit due to penetration can be avoided.
  • the protrusions which are splash particles formed by the vacuum deposition method, are removed from the negative electrode, it is possible to avoid the possibility of an internal short circuit due to the protrusion penetrating the separator.
  • FIG. 5 is a schematic top view showing a stacked state of the positive electrode active material layer 55 and the negative electrode active material layer 58 of FIG.
  • FIG. 7 is a flowchart showing each step of the manufacturing method of the present invention.
  • a first step of forming an active material layer capable of occluding and releasing lithium on a current collector by a vacuum process is performed, and then the lithium is stored in the active material layer.
  • Step 2 is performed, and further, a third step of removing protrusions on the surface of the active material layer that occludes lithium is performed. Details will be described below for each step.
  • an active material layer is formed on the surface of the current collector by vapor deposition in vacuum.
  • FIG. 1 is a schematic view showing an example of an apparatus used for the first step in the method for producing an electrode for an electrochemical element of the present invention.
  • the vacuum vessel (12) is kept under reduced pressure by the exhaust device (11).
  • a thin film formation source (19) and a substrate transfer system are installed in the vacuum vessel (12).
  • the substrate transport system includes a substrate unwinding roll (18), a transport roller (15), a substrate winding roll (13), and the like.
  • the thin film forming source (19) is heated by irradiating electrons from an electron beam source (not shown) in order to obtain a thin film raw material in a container and obtain a high thin film forming speed.
  • a cooling can (16) and a shielding plate (20) having an opening are provided above the thin film forming source, and the thin film forming source and the substrate on the cooling can face each other through the opening.
  • the substrate (22), which is a current collector, is unwound from the unwinding roll (18) and opened along the transport roller (15) while being wound on the winding roll (13). It is intended to travel through the department.
  • the substrate (22) is a strip-like long substrate, and the material thereof is not particularly limited.
  • various metal foils such as aluminum foil, copper foil, nickel foil, titanium foil, stainless steel foil, various polymer films such as polyethylene terephthalate, polyethylene naphthalate, polyamide, polyimide, and composites of polymer film and metal foil Etc.
  • the substrate (22) travels through the opening of the shielding plate, some of the particles flying from the thin film formation source (19) installed below the shielding plate pass through the opening to form the thin film forming portion (23). To adhere on the substrate (22) to form an active material layer.
  • the unwinding roller (18) and the take-up roller (13) can control the rotation thereof, whereby tension is applied to the substrate (22) on the cooling can.
  • a part of the transport system for example, a driving motor or the like may be disposed outside the vacuum vessel (12), and driving force may be introduced into the vacuum vessel (12) via a rotation introduction terminal.
  • reactive vapor deposition may be performed by introducing oxygen gas into the thin film forming portion (23) during the thin film formation.
  • an active material layer formed by arranging a plurality of columnar active material particles on the substrate surface by using a method such as using a substrate with irregularities on the substrate surface May be formed.
  • the active material layer may be formed on both surfaces of the substrate by, for example, a method in which the active material layer is formed by the first step for the first time and then the substrate is turned over and the first step is repeated once more.
  • the splash particles adhere to the surface of the active material layer due to bumping in vacuum deposition.
  • lithium is occluded in the active material layer formed on the current collector surface in the first step.
  • the first method is to occlude lithium in the active material layer in a vacuum
  • the second method is to immerse the current collector with the active material layer formed on the surface in the electrolyte
  • lithium is occluded electrochemically in the material layer.
  • the amount of lithium stored in the active material layer by these methods is preferably 10% or more of the theoretical charge capacity calculated from the active material weight of the electrode plate, and more preferably 20% or more of the theoretical charge capacity. is there. Thereby, it becomes possible to peel and remove the protrusion from the electrode plate in the third step.
  • the first method for occluding lithium in vacuum vapor deposition or sputtering can be used.
  • the lithium particles have high straightness, it is difficult for lithium to diffuse into the active material layer hidden under the protrusions, and the difference in the expansion coefficient between the protrusions and the active material layer is likely to increase. Excellent removal performance. Further, it is easy to control the amount of lithium to be occluded.
  • the second method in which lithium is occluded electrochemically has an advantage that lithium does not easily deposit on the electrode plate surface even if the amount of occluded lithium increases.
  • FIG. 2 is a schematic view showing an example of an apparatus for occluding lithium in an active material layer by a vapor deposition method in vacuum, which can be used in the second step in the method for producing an electrode for an electrochemical element of the present invention.
  • the vacuum vessel (12) is kept under reduced pressure by the exhaust device (11).
  • a lithium source (24) and an electrode plate transport system are installed in the vacuum vessel (12.
  • the electrode plate transport system includes an electrode plate unwinding roll (18), a transport roller (15), an electrode plate winding roll (13), and the like.
  • the lithium source (24) has lithium installed in a container and is heated with a resistance heater (17) or the like.
  • a cooling can (16) is installed above the lithium source and faces the lithium source via a shielding plate (20) having an opening.
  • the electrode plate (25) which is a current collector having an active material layer formed on the surface, is unwound from the unwinding roll (18), and taken up by the winding roll (13) along the transport roller (15). In the meantime, it travels through the opening of the shielding plate.
  • the unwinding roller (18) and the take-up roller (13) can control their rotation, so that the electrode plate (25) can be placed uniformly on the cooling can (16). Applying tension.
  • a part of the transport system for example, a driving motor or the like may be disposed outside the vacuum vessel (12), and driving force may be introduced into the vacuum vessel (12) via a rotation introduction terminal.
  • the amount of occlusion of lithium can be adjusted by the heating temperature of the lithium source and the traveling speed of the electrode plate.
  • FIG. 3 is a schematic view showing an example of an apparatus for electrochemically occluding lithium in an electrolytic solution, which can be used in the second step in the method for producing an electrode for an electrochemical element of the present invention.
  • the electrode plate conveying system is composed of an electrode plate unwinding roll (18), a conveying roller (15), an electrolysis can (16), an electrode plate winding roll (13), and the like.
  • the unwinding roller (18) and the take-up roller (13) can control their rotation, so that the electrode plate (25) can be placed uniformly on the cooling can (16). Applying tension.
  • the can (16) is partially immersed in the electrolytic solution (32), and the lithium counter electrode (31) is held in the electrolytic solution. A potential difference is provided between the electrode plate (25) and the lithium counter electrode. Due to the potential difference, lithium is occluded in the active material layer from the lithium counter electrode (31) to the electrode plate (25) on the can via the electrolytic solution.
  • a method of applying a potential to the electrode plate a method of applying a potential to the electrode plate (25) while being in contact with the can (16) by applying an electric potential to the can (16), (15) A method of applying a potential to the electrode plate (25) by applying a potential to the winding roll (13) and the unwinding roll (18) can be employed.
  • the electrolyte various lithium ion conductive nonaqueous electrolytes are used.
  • a solution obtained by dissolving a lithium salt (such as lithium hexafluorophosphate) in a non-aqueous solvent (such as ethylene carbonate or ethyl methyl carbonate) is preferably used.
  • the composition of the nonaqueous electrolytic solution is not particularly limited.
  • the electrode plate (25) is unwound from the unwinding roll (18) and travels along the can (16) while being wound along the transport roller (15) and the winding roll (13). It has become.
  • the occlusion amount of lithium can be adjusted by the applied voltage and the traveling speed of the electrode plate.
  • the electrode plate is turned over, and the second step is repeated once again. It is possible to occlude lithium on both sides.
  • the third step of the present invention is a step of removing protrusions present on the surface of the active material layer that has occluded lithium in the second step.
  • This removal step may be performed in a reduced pressure atmosphere or in a normal pressure atmosphere. It is also possible to carry out in liquid.
  • the specific method for carrying out the third step of the present invention is not particularly limited, a method for removing the protrusions on the surface of the active material layer by physically contacting the protrusions with the protrusions on the surface of the active material layer, There is a method of removing an object without directly contacting the removing means.
  • a method of wiping the surface of the active material layer with a wiping cloth a method of peeling the adhesive tape from the surface of the active material layer after coating the surface of the active material layer with an adhesive tape, a linear shape such as a blade
  • a method of using a blade having a blade edge and removing the protrusions by moving the active material layer while maintaining the linear blade edge at a predetermined distance from the surface of the active material layer examples include a method of removing protrusions by air blow, a method of irradiating the active material layer surface with ultrasonic waves in a liquid, and the like.
  • the third step can be incorporated in the apparatus used for the second step. Further, when the second step is performed in the electrolytic solution and the third step is performed by wiping cloth, blade, ultrasonic irradiation, or the like, the third step is performed in the lithium occlusion device in the electrolytic solution in the second step. This process can be incorporated.
  • the electrode for an electrochemical element produced as described above can be used as a negative electrode in an electrochemical element such as a lithium secondary battery or an electrochemical capacitor.
  • FIG. 5 is a schematic cross-sectional view of a lithium secondary battery according to an embodiment of the present invention.
  • the lithium secondary battery includes an electrode group including a positive electrode 51, a negative electrode 52, and a separator 56 disposed therebetween.
  • An electrode group and an electrolyte having lithium ion conductivity are accommodated in a sealed container 61 made of aluminum laminate.
  • the positive electrode 51 includes a sheet-like positive electrode current collector 54 and a positive electrode active material layer 55 disposed on the positive electrode current collector 54.
  • the negative electrode 52 includes a sheet-like negative electrode current collector 57 and a negative electrode active material layer 58 disposed on the negative electrode current collector 57.
  • the positive electrode active material layer 55 and the negative electrode active material layer 58 are opposed to each other with the separator 56 interposed therebetween.
  • One end of a positive electrode lead 59 and a negative electrode lead 60 is connected to the positive electrode current collector 54 and the negative electrode current collector 57, respectively.
  • the other ends of the leads 59 and 60 extend to the outside of the sealed container 61.
  • the opening of the sealed container 61 is sealed with a resin material 62.
  • FIG. 5 shows a structure including a pair of the positive electrode 51 and the negative electrode 52
  • the present invention is not limited to this structure.
  • the positive electrode current collector 54 may have a positive electrode active material layer 55 on both sides, and the positive electrode may be disposed so as to be sandwiched between two separators, and further, the outside may be covered with two negative electrodes. it can. In this case, the arrangement of the negative electrode and the positive electrode may be reversed.
  • FIG. 8 is a schematic top view of the stacked state of the positive electrode active material layer 55 and the negative electrode active material layer 58 shown in FIG. However, in FIG. 8, the separator 56 disposed between the positive electrode active material layer 55 and the negative electrode active material layer 58 is omitted. As shown in FIG. 8, when viewed from above the positive electrode active material layer 55 (that is, when viewed in the thickness direction of the separator), the negative electrode active material layer 58 is larger than the positive electrode active material layer 55, and the negative electrode active material The layer 58 is divided into a facing region 81 that faces the positive electrode active material layer 55 and a non-facing region 82 that does not face the positive electrode active material layer 55.
  • a laminated battery is shown as an example, as the structure of the lithium secondary battery of the present invention, a cylindrical battery or a square battery having a wound electrode plate group can be appropriately employed.
  • the components other than the negative electrode are not particularly limited in the lithium secondary battery.
  • a lithium-containing transition metal oxide such as lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), or lithium manganate (LiMn 2 O 4 ) can be used as the positive electrode active material.
  • the positive electrode active material layer may be composed of only the positive electrode active material, or may be composed of a mixture containing the positive electrode active material, the binder, and the conductive agent.
  • Al, Al alloy, Ti, or the like can be used.
  • separator a separator generally used for lithium ion secondary batteries such as porous polypropylene can be used, and the present invention is not limited to the separator.
  • lithium ion conductive solid electrolytes and non-aqueous electrolytes are used as the lithium ion conductive electrolyte.
  • the non-aqueous electrolyte a solution obtained by dissolving a lithium salt in a non-aqueous solvent is preferably used.
  • the composition of the nonaqueous electrolytic solution is not particularly limited.
  • the separator and the outer case are not particularly limited, and materials used in various forms of lithium secondary batteries can be used without any particular limitation.
  • FIG. 6 is a schematic cross-sectional view of an electrochemical capacitor according to an embodiment of the present invention.
  • the electrochemical capacitor includes a positive electrode active material layer 73, a positive electrode current collector 72, a negative electrode active material layer 76, a negative electrode current collector 77, a separator 74, a sealing plate 75, a gasket 78, and a case 71.
  • the positive electrode active material layer and the negative electrode active material layer are arranged to face each other through a separator impregnated with a non-aqueous electrolyte, and an electrode body is produced. Since the present invention is characterized by the structure of the negative electrode, the positive electrode active material can be a positive electrode material such as activated carbon generally used in electrochemical capacitors, and is not limited by the positive electrode.
  • the non-aqueous electrolyte a solution obtained by dissolving a lithium salt in a non-aqueous solvent is preferably used.
  • the composition of the nonaqueous electrolytic solution is not particularly limited.
  • the first step was performed assuming that a Si thin film was formed on the negative electrode current collector.
  • a roughened copper foil having a width of 28 cm (EXP-DT-NC 35 ⁇ m; manufactured by Furukawa Circuit Foil Co., Ltd.) is used for the substrate, and the length of the thin film forming portion (23) is about 45 cm.
  • the position of the shielding plate was adjusted so that A thin film forming source (19) in which high-purity Si (99.9% purity) was charged into a graphite crucible was placed so that the shortest distance from the thin film forming portion (23) was 40 cm.
  • the active material surface of the electrode plate is wiped with a wiping cloth (GC10000: manufactured by Nihon Micro Coating Co., Ltd.) or without being subjected to the second step of the present invention, or coated with an adhesive tape (650S # 50: manufactured by Teraoka Seisakusho).
  • a wiping cloth GC10000: manufactured by Nihon Micro Coating Co., Ltd.
  • an adhesive tape 650S # 50: manufactured by Teraoka Seisakusho.
  • the protrusions could not be removed.
  • a part of the electrode plate is punched out into a disk shape of ⁇ 12.5 mm, and immersed in an electrolytic solution for 1 minute or more with an ultrasonic treatment machine (SUS-100PN: manufactured by Shimadzu Corporation, vibration frequency 28 kHz, output 100 W). Although the ultrasonic treatment was performed, the protrusions could not be removed by this method.
  • SUS-100PN manufactured by Shimadzu Corporation, vibration frequency 28 kHz, output 100 W.
  • the electrode plate obtained in the first step was processed in the second step of the present invention by vacuum deposition.
  • the electrode plate position is set so that the distance from the lithium source (24) in which lithium is charged to the crucible to the electrode plate is 10 cm. It was adjusted. Under a reduced pressure condition of about 10 ⁇ 2 Pa, the crucible was heated to 600 ° C. by resistance heating to deposit lithium on the active material layer. By adjusting the deposition time, three types of electrode plates were prepared in which the amount of occlusion of lithium was adjusted to 10%, 20%, and 30% of the theoretical charge capacity of the active material layer.
  • the theoretical charge capacity of the active material layer was calculated by the following method. First, the weight of the active material per unit area was calculated by subtracting the weight of the roughened copper foil per unit area measured in advance from the weight of the electrode plate per unit area. Next, the theoretical charge capacity of the active material layer was calculated by multiplying the theoretical charge capacity of the active material per unit weight by the actually measured active material weight.
  • the lithium occlusion amount was 10%, 20%, 30%. Any electrode plate succeeded in removing protrusions on the electrode plate.
  • the lithium occlusion amount is 10%, 20%, 30 %, The protrusions could be removed satisfactorily.
  • an electrode plate (25) is installed in an electrode plate traveling system composed of an unwinding roller (18), a take-up roller (13), and a conveying roller (15), the width is 10 mm, and the blade edge is flat.
  • a linear blade (21) having a degree of 1 ⁇ m or less was disposed at a position of 20 ⁇ m from the surface of the active material layer. In this state, when the electrode plate with protrusions attached to the surface of the active material layer was moved, the protrusions could be peeled off and removed satisfactorily with any electrode plate having a lithium storage amount of 10%, 20%, or 30%. It was.
  • the electrode plate subjected to the second step is punched into a circular shape of ⁇ 12.5 mm and immersed in an electrolyte solution for 10 seconds with an ultrasonic treatment machine (SUS-100PN: manufactured by Shimadzu Corporation, vibration frequency 28 kHz, output 100 W). Ultrasound was irradiated.
  • SUS-100PN manufactured by Shimadzu Corporation, vibration frequency 28 kHz, output 100 W.
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • DEC diethyl carbonate
  • 3 5: In 2 (volume ratio)
  • 1M LiPF 6 manufactured by Mitsubishi Chemical Corporation
  • the theoretical charge capacity of the electrode plate was calculated according to the method described above.
  • the lithium occlusion amount was 10%, 50%, 100%. Any electrode plate succeeded in removing protrusions on the electrode plate.
  • the lithium occlusion amount is 10%, 50%, 100 %, The protrusions could be removed satisfactorily.
  • an electrode plate (25) is installed in an electrode plate traveling system composed of an unwinding roller (18), a take-up roller (13), and a conveying roller (15), the width is 10 mm, and the blade edge is flat.
  • a linear blade (21) having a degree of 1 ⁇ m or less was disposed at a position of 20 ⁇ m from the surface of the active material layer. In this state, when the electrode plate with protrusions attached to the surface of the active material layer is moved, the protrusions can be peeled off and removed satisfactorily with any electrode plate having a lithium occlusion amount of 10%, 50%, or 100%. It was.
  • the electrode plate subjected to the second step is punched into a circular shape of ⁇ 12.5 mm and immersed in an electrolyte solution for 10 seconds with an ultrasonic treatment machine (SUS-100PN: manufactured by Shimadzu Corporation, vibration frequency 28 kHz, output 100 W).
  • SUS-100PN manufactured by Shimadzu Corporation, vibration frequency 28 kHz, output 100 W.
  • a higher purity 99.99% purity Si was used as a thin film material, and a thin film was formed in the same procedure as described above.
  • the obtained electrode plate was observed with a laser microscope, protrusions having a particle size of about 5 to 500 ⁇ m were observed on the electrode plate at a frequency of about 1 to 20 pieces / cm 2 .
  • lithium was vapor-deposited on the active material layer by the same method, and three types of electrode plates were prepared in which the amount of occlusion of lithium was adjusted to 10%, 20%, and 30% of the theoretical charge capacity of the active material layer. .
  • the surface of the active material layer was wiped with a wiping cloth (GC10000: manufactured by Nihon Micro Coating Co., Ltd.) on these three types of electrode plates, the protrusions on the electrode plates were successfully removed with any electrode plate.
  • the number of micro regions that do not occlude lithium and Average diameter was calculated. Specifically, after exposing the electrode plate sample to the atmosphere with a dew point of ⁇ 20 ° C. to oxidize lithium on the surface layer of the electrode plate, lithium oxide was detected by the elemental analysis, and a minute region having a diameter of 1 ⁇ m or more per 1 cm 2. And the diameter of each minute region were measured. The arithmetic average of the obtained diameter values was defined as the average diameter. The measurement results are shown in Table 1, Table 2 and Table 3 below.
  • an electrode for an electrochemical element According to the method for manufacturing an electrode for an electrochemical element according to the present invention, it is possible to remove protrusions on an electrode plate generated when an active material layer is formed by a vacuum process. It is useful as a method for producing electrodes for electrochemical devices such as chemical capacitors. According to the electrode for an electrochemical element and the electrochemical element according to the present invention, it is possible to reduce the possibility of an internal short circuit due to the penetration of the separator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

電気化学素子用電極を製造するにあたって、真空プロセスにて生じた、活物質層表面の突起物を容易かつ確実に除去する方法を提供する。電気化学素子用電極の製造において、リチウムの吸蔵及び放出が可能な活物質層を集電体上に真空プロセスで形成する第1の工程と、前記活物質層にリチウムを吸蔵させる第2の工程と、前記リチウムを吸蔵した活物質層表面の突起物を除去する第3の工程とを行う。

Description

電気化学素子用電極の製造方法、電気化学素子用電極、および電気化学素子
 本発明は、リチウム二次電池や電気化学キャパシタで使用可能な電気化学素子用電極の製造方法、電気化学素子用電極、および、電気化学素子に関するものである。
 近年、携帯機器の小型化や多機能化が進み、これに伴って携帯機器の電源としての電池の高容量化が切望されている。現在負極活物質として主に使用されている炭素の理論容量は372mAh/gである。炭素よりも高容量化が可能な活物質として、理論容量が4200mAh/gであるシリコンが有望視されている。したがってシリコンを主成分とする電極材料およびシリコンを主成分とする電極材料の構造が数多く検討されている。
 それらの1つに、集電体上にシリコンを主成分とする膜として形成した活物質層がある。この活物質層の形成法として真空蒸着法等の真空プロセスが検討されている。
 一方、リチウム電池の電極を生産性良く製造するためには、ロールに巻き取られた長尺の集電体箔を別のロールに巻き取る間に活物質層を形成する方法、いわゆるロール・トゥ・ロール法がある。この方法では、ロールに巻かれた長尺の集電体箔を活物質層の成膜工程の上流に設けた巻き出し装置に装着し、別のロールを成膜工程の下流に設けた巻き取り装置に装着する。次いで、巻き出した集電体箔に活物質層を成膜し、得られた電極を巻き取り装置に装着したロールに巻き取る。
 ロール・トゥ・ロール法と真空プロセスとして真空蒸着法を組み合わせた場合では、蒸着材料の突沸が生じ、電極表面に突起物が形成されるという課題がある。
 蒸着材料の突沸は、坩堝内の蒸着材料が気化するのではなく、液体又は固体として飛び出す現象で、突沸した材料が成膜している集電体箔および活物質層上にぶつかれば望ましくない突起物を形成してしまう。蒸着材料の突沸は、坩堝に入れた蒸着材料に含まれる不純物や、坩堝内の温度ムラなどが原因と考えられ、突沸を低減することは可能であるが無くすことは困難である。特に蒸発材料を補給しながら長時間に亘り成膜を行う場合には突沸を無くすことは困難である。
 突起物のある電極を用いて電池を作製すると、電極表面の突起物がセパレータ(厚さ:約20μm)の厚みより高い場合、突起物がセパレータを貫通し、正極と負極とが内部短絡するおそれがある。したがって、セパレータの厚さ以上の高さの突起物は、電池形成前に除去する必要がある。
 電極表面の突起物を除去する方法としては、電極上を払拭布でこすり、取れた物質を吸引して除去する方法が提案されている(例えば、特許文献1参照)。
 また、真空プロセスにて製造された電極に付着した突起物を除去する方法としては、電極表面の突起物を検知して極板に貫通穴を開ける方法(特許文献2を参照)や、突起物を加圧して押しつぶす方法(特許文献3を参照)が開示されている。
特開平11-347504号公報 特開2006-277956号公報 特開2006-278170号公報
 電極を巻き取る前に突起物を除去する方法として、特許文献1に記載の払拭布で表面をこする方法はペーストを塗布したタイプの電極には有効である。しかしながら、真空蒸着法において蒸着材料の突沸により形成された突起物は、ペースト塗布タイプの電極上の突起物よりも、硬く、集電体箔や活物質層との結合力が強い。強度の低い材質の払拭布を用いると、布地が破れるために突起物を除去できない。一方、強度の高い材質の払拭布を用いると、払拭布にひっかかった突起物が取れる場合もあるが、突起物と一緒に集電体箔が裂けてしまう場合がある。
 一方、特許文献2、3には真空蒸着中に形成された突起物の除去方法が開示されている。特許文献2では、突起物をセンサーで検知し、貫通穴を開けることで突起物を除去する方法が開示されているが、貫通穴を開けた周囲の電極が使用できなくなるため、歩留まりの低下を引き起こす。さらに、センサーによる突起物の検出とピンポイントでの打ち抜きが必要になるため、工程を高速化しにくく、生産速度の低下が懸念される。また、特許文献3に示される突起物を加圧して押しつぶす方法は加圧により突起物の高さを低減する、または突起物を集電体にめり込ませる方法であり、突起物は除去されない。
 そこで、本発明は、電気化学素子用電極を製造するにあたって、真空プロセスにて生じた、活物質層表面の突起物を容易かつ確実に除去する方法を提供することを目的とする。
 前記従来の課題を解決するために、第一の本発明の電気化学素子用電極の製造方法は、リチウムの吸蔵及び放出が可能な活物質層を集電体上に真空プロセスで形成する第1の工程と、前記活物質層にリチウムを吸蔵させる第2の工程と、前記リチウムを吸蔵した活物質層表面の突起物を除去する第3の工程とを含む。
 本発明では、リチウムの吸蔵及び放出が可能な活物質層として、リチウムを吸蔵及び放出をすることができ、さらには、リチウムの吸蔵により膨張(体積増加)する活物質からなるものを使用することが好ましい。この観点から、本発明において活物質は、ケイ素、ケイ素酸化物、または、ケイ素を含む合金もしくは化合物よりなることが好適である。
 以上のケイ素やケイ素酸化物等は、リチウムイオン二次電池における高容量負極活物質材料等として期待されており、リチウムを大量に吸蔵することができるが、リチウム吸蔵時に膨張することが知られている。
 たとえば、ケイ素を負極活物質に用いた場合、満充電時には体積比でリチウム吸蔵前の4倍程度に膨張する。ケイ素を酸化することで充電容量を抑制し、膨張抑制を図った酸化ケイ素負極でも酸化の度合いにもよるが2~3倍に膨張する。
 真空蒸着法にて極板に付着する突起物はスプラッシュ粒子と呼ばれ、蒸着源にある原料溶湯や未溶解の原料が急加熱されるなどの原因で極板まで飛来し、付着したものである。真空蒸着法により極板表面に突起物が付着した状態の負極極板にリチウムを吸蔵させると、極板の活物質層のみではなく、突起物もリチウムを吸蔵することとなる。
 一方、極板上の突起物が付着している部分では、表面に付着した突起物がリチウムを吸蔵してしまうため、突起物直下の活物質層までリチウムが届かず、当該活物質層がリチウムを吸蔵しない。その結果、突起物と活物質層の間で、膨張率が異なるものとなるので、突起物と活物質層の界面に膨張率の差による歪ができ、突起物が剥がれやすくなる。
 また、このような突起物が付着した極板にリチウムを吸蔵させた場合、活物質層のうち突起物が付着していない周辺領域はリチウムを吸蔵して膨張する。これに対して、突起物が付着した領域はリチウムを吸蔵できず膨張率が非常に小さくなるため、突起物の端部では、膨張した活物質層により突起物が押し上げられ、膨張していない直下の活物質層から剥離する方向に応力が働く。
 以上のことから、真空蒸着法により活物質層を形成した後では付着強度が強く、除去が難しい突起物でも、リチウム吸蔵後には剥離が容易になる。
 また、従来のリチウムを吸蔵させていない状態での突起物除去法では除去困難であった小さな突起物も、リチウムを吸蔵することで膨張するため、除去が容易になる。
 本発明において突起物の除去前に吸蔵させるリチウム量は、突起物と突起物直下の活物質層との膨張率の差を確保するため、活物質層の理論充電容量の10%以上であることが望ましい。リチウム吸蔵量が多くなるほど、突起物の膨張も大きくなり、突起物が剥がれやすくなるため、リチウム吸蔵量の上限は100%以下であれば問題はない。しかし、リチウム吸蔵量が大きくなると、突起物直下の活物質層に周囲からリチウムが拡散しやすくなり、また、リチウムが極板表面に析出しやすくなる。そのため、突起物除去前のリチウム吸蔵量は活物質層の理論充電容量の50%以下、さらに好ましくは30%以下であることが望ましい。
 第二の本発明の電気化学素子用電極は、シート状の集電体と、前記集電体に担持された活物質層とを有する電気化学素子用電極であって、前記活物質層は、前記活物質層の理論充電容量の10%以上100%以下の量のリチウムを吸蔵しており、前記活物質層表面にリチウムを吸蔵していない微小領域が存在する。
 当該電気化学素子用電極は、第一の本発明に係る製造方法によって製造することができる。上記製造方法によると、活物質層表面のうち第1の工程にて突起物が付着した部分では、第2の工程において突起物がリチウムを吸蔵するため、活物質層自体はリチウムを吸蔵しない。そのため、第3の工程にて突起物を除去すると、活物質層の表面には、突起物の形状、頻度に合わせて、平均直径10μm~500μmのリチウムを吸蔵していない微小領域が1~50箇所/cm程度作成される。
 リチウムを吸蔵していない微小領域の存在は活物質層表面の微小部蛍光X線分析などによる元素分布の分析で確認することができる。また、レーザー顕微鏡を用いて活物質層表面を観察することでも微小領域の確認は可能である。
 一方、従来のようにリチウムを吸蔵させずに突起物除去を行った電極では、充放電を行った場合にも活物質層が概ね均一に充放電されるため、本発明の製造方法を用いて作成した電極のようにリチウムを吸蔵していない微小領域が形成されることはない。
 本発明の製造方法にて形成可能なリチウムを吸蔵していない微小領域を持つ電極は、リチウムを吸蔵している部分と吸蔵していない部分で膨張挙動が異なるため、活物質層表面に凹凸ができ、電極搬送時の摩擦抵抗を低減することが可能になる。さらには、リチウムを吸蔵していない微小領域では周辺の領域に比べて活物質層が膨張していないため、当該微小領域が活物質層表面で窪みを形成している。そのため、電極上に微小な付着物が残留していた場合に付着物が当該窪みに入りやすい。従って、当該電極を用いて電池やキャパシタを構成したときに、残留した付着物が充放電時にさらにリチウムを吸蔵して膨張した場合にも、窪みがない場合よりも付着物がセパレータを突き破ることによる内部短絡が起こりにくい。
 また、本発明により製造されるリチウムを吸蔵していない微小領域を持つ電極は、活物質層表面に窪みが存在し、表面積が大きくなることから、概ね均一にリチウムを吸蔵した平坦な電極に比べて電解液の濡れ特性が向上する。
 さらに、本発明の第1の工程にて集電体上に柱状の活物質が複数並ぶことで構成される活物質層を形成した場合、充電時にリチウムを吸蔵しやすい柱の上部から活物質層が膨張する。そのため、柱状活物質層の上部は活物質層の膨張により隙間が埋められる一方、下部では膨張が遅くなるため、比較的隙間が残存しやすい。
 従来法のようにリチウムを吸蔵させずに活物質層表面の突起物を除去した電極では、電極上の柱状活物質の高さが概ね均一であるため、充電によって活物質が膨張するに従い、柱間の隙間が埋まり、活物質層の下部には電解液が回りこみにくくなる。さらには、前述のとおり、充電時のリチウム吸蔵時に柱の上部から順にリチウムを吸蔵するため、充電が進むと柱の上部では柱間の隙間が埋められ、電解液が出入りできなくなる。そのため、電解液の逃げ場がない状況でさらに充電が進み、柱状の活物質層の中部、下部が膨張すると、逃げ場が無い電解液を圧迫して大きな圧力が発生し、集電板からの活物質層の剥がれや強度低下の原因となる。
 一方、本発明の製造方法によりリチウム吸蔵後に突起物の除去を行った電極では、柱状の活物質の中に、第2の工程後にリチウムを吸蔵せず、柱状活物質がほとんど膨張していない領域が含まれる。そのため、第2の工程にてリチウムを吸蔵した領域の活物質層が充電によりさらに膨張して柱間の隙間が埋められたときにも、第2の工程にてリチウムを吸蔵しなかった領域では柱間の隙間を維持しやすく、電解液が活物質層下部まで回りこむことが可能になる。さらに、この隙間を通じて柱状活物質層の下部に残存する電解液が出入りできることにより、活物質層の膨張による圧力の発生を抑制することが可能になる。
 第三の本発明は、第二の本発明に係る電極から構成される負極と、シート状の正極集電体と、前記正極集電体の上に設けられた正極活物質層と、を有し、前記負極の前記活物質層と前記正極活物質層とが対向するように配置された正極と、前記負極と前記正極との間に配置されたセパレータと、を有する電気化学素子である。正極活物質層は、充電時にリチウムイオンを放出し、放電時に負極活物質層から放出されたリチウムイオンを吸蔵する。負極活物質層は、充電時に正極活物質層から放出されたリチウムイオンを吸蔵し、放電時にリチウムイオンを放出する。
 この電気化学素子において、前記負極の前記活物質層は、前記セパレータの厚み方向において前記正極活物質層に対向している対向領域と、同方向において前記正極活物質層に対向していない非対向領域と、を有する。これは、充電時に正極活物質層上にリチウム金属が析出し、短絡が発生するのを防止するためである。
 本発明の電気化学素子は、負極の活物質層がリチウムを吸蔵しており、かつ負極の活物質層表面に、リチウムを吸蔵していない微小領域が存在しているものである。しかしながら、電気化学素子の充放電を繰り返すと、この微小領域においてもリチウムの吸蔵及び放出が行われるようになり、その結果、当該微小領域とこれを取り囲む周辺領域との識別が困難になる。
 しかし、前述した非対向領域では、正極活物質層と対向していないため、充放電によるリチウムの吸蔵及び放出が起こらない。従って、電気化学素子の充放電を繰り返した後でも、非対向領域内では、リチウムを吸蔵していない微小領域が維持されており、周囲のリチウムを吸蔵している領域との識別が容易にできる。そのため、本発明の電気化学素子では、前記非対向領域における前記活物質層表面において、前記微小領域が存在することを確認するのが好ましい。
 本発明の電気化学素子としては、リチウム二次電池、電池化学キャパシタが挙げられる。
  本発明の電気化学素子用電極の製造方法によれば、活物質層にリチウムを吸蔵させる第2工程にて、活物質層表面に存在するスプラッシュ粒子である突起物がリチウムを吸蔵し膨張することにより、第3工程において当該突起物を容易かつ確実に除去することができる。
 本発明の電気化学素子用電極によれば、真空蒸着法で形成されたスプラッシュ粒子である突起物が除去されているので、セパレータと積層して電池やキャパシタを製造する際に、突起物のセパレータ貫通による内部短絡のおそれを回避することができる。
 本発明の電気化学素子によれば、負極において、真空蒸着法で形成されたスプラッシュ粒子である突起物が除去されているので、突起物のセパレータ貫通による内部短絡のおそれを回避することができる。
本発明の実施の形態における第1の工程に用いる装置の一例を示す模式図 本発明の実施の形態における第2の工程に用いる装置の一例を示す模式図 本発明の実施の形態における第2の工程に用いる装置の別の一例を示す模式図 本発明の実施の形態における第3の工程に用いる装置の一例を示す模式図 本発明の実施の形態におけるリチウム二次電池の概略断面図 本発明の実施の形態における電気化学キャパシタの概略断面図 本発明の製造方法の各工程を示すフローチャート 図5の正極活物質層55と負極活物質層58の積層状態を示す概略上面図
 以下本発明の実施の形態について、図面を参照しながら説明する。
 図7は、本発明の製造方法の各工程を示すフローチャートである。本発明の製造方法では、まず、リチウムの吸蔵及び放出が可能な活物質層を集電体上に真空プロセスで形成する第1の工程を行い、次いで、前記活物質層にリチウムを吸蔵させる第2の工程を行い、さらに、前記リチウムを吸蔵した活物質層表面の突起物を除去する第3の工程を行う。以下各工程毎に詳細を説明する。
 (第1の工程)
 本発明の第1の工程は真空中で蒸着法により集電体表面に活物質層の形成をおこなう。
 図1は本発明の電気化学素子用電極の製造方法における第1の工程に用いる装置の一例を示す模式図である。真空容器(12)は、排気装置(11)によって減圧に保たれている。真空容器(12)の中には、薄膜形成源(19)と、基板搬送系が設置されている。基板搬送系は、基板の巻き出しロール(18)、搬送ローラ(15)、基板の巻き取りロール(13)等から構成されている。
 薄膜形成源(19)は容器に薄膜の原料を設置し、高い薄膜形成速度を得るために、電子線源(図示せず)より電子を照射することにより加熱を行う。薄膜形成源の上方には冷却キャン(16)と、開口部を有する遮蔽板(20)が設置され、開口部を介して薄膜形成源と、冷却キャン上の基板とが対向する。
 集電体である基板(22)は巻き出しロール(18)から巻き出され、搬送ローラ(15)に沿って、巻き取りロール(13)に巻き取られる間に、遮蔽板(20)の開口部を走行するようになっている。
 基板(22)は、帯状の長尺基板であり、その材料としては特に限定されない。例えば、アルミ箔、銅箔、ニッケル箔、チタニウム箔、ステンレス箔等の各種金属箔や、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリアミド、ポリイミド等の各種高分子フィルムや、高分子フィルムと金属箔の複合体等が挙げられる。
 基板(22)が遮蔽板の開口部を走行する間に、遮蔽板の下方に設置された薄膜形成源(19)から飛来した粒子の一部が開口部を経由して薄膜形成部(23)にて基板(22)上に付着して活物質層を形成する。
 巻き出しローラ(18)および巻き取りローラ(13)は、その回転を制御することができ、それにより、冷却キャン上の基板(22)には張力を加えられている。搬送系の一部、例えば駆動用モーター等は真空容器(12)の外に配置し、回転導入端子を介して駆動力を真空容器(12)中に導入しても良い。
 また、活物質層の特性を変化させる目的で、薄膜形成時に薄膜形成部(23)に酸素ガスを導入することで、反応性蒸着を行っても良い。
 また、活物質層の特性を変化させる目的で、基板表面に凹凸を設けた基板を使用するなどの方法を用いて、柱状の活物質粒子が基板表面に複数並ぶことで構成される活物質層を形成してもよい。
 また、1回目の第1の工程により活物質層を形成した後、基板を裏返してもう一度第1の工程を繰り返す方法などによって基板の両面に活物質層を形成してもよい。
 この工程で、真空蒸着における突沸によって、スプラッシュ粒子が活物質層表面に付着することになる。
 (第2の工程)
 本発明の第2の工程は、第1の工程で集電体表面に形成した活物質層に対してリチウムを吸蔵させる。このためには以下の2つの方法を好適に用いることができる。1つ目の方法は真空中で活物質層にリチウムを吸蔵させる方法であり、2つ目の方法は、表面に活物質層が形成された集電体を電解液中に浸漬して、活物質層に電気化学的にリチウムを吸蔵させる方法である。これらの方法にて活物質層に吸蔵させるリチウムの量は極板の活物質重量から算出される理論充電容量の10%以上であることが望ましく、さらに望ましくは、理論充電容量の20%以上である。これにより、第3工程にて良好に突起物を極板から剥離、除去することが可能になる。
 真空中でリチウムを吸蔵させる1つ目の方法には、蒸着法又はスパッタ法を使用することができる。これらの方法では、リチウム粒子の直進性が高いため、突起物の下に隠された活物質層にリチウムが拡散しにくく突起物と活物質層での膨張率の差が大きくなりやすいため突起物の除去性能に優れている。また、吸蔵させるリチウムの量をコントロールすることが容易である。一方、電気化学的にリチウムを吸蔵させる2つ目の方法では、吸蔵させるリチウム量が多くなっても、極板表面にリチウムが析出しにくいという利点がある。
 図2は、本発明の電気化学素子用電極の製造方法における第2の工程に使用できる、真空中で蒸着法により活物質層にリチウムを吸蔵させる装置の一例を示す模式図である。
 真空容器(12)は、排気装置(11)によって減圧に保たれている。真空容器(12)の中には、リチウム源(24)と、極板搬送系が設置されている。極板搬送系は、極板の巻き出しロール(18)、搬送ローラ(15)、極板の巻き取りロール(13)等から構成されている。
 リチウム源(24)は容器にリチウムを設置し、抵抗加熱ヒーター(17)などで加熱する。リチウム源の上方には冷却キャン(16)が設置され、開口部を有する遮蔽板(20)を介してリチウム源と対向する。
 表面に活物質層が形成されている集電体である極板(25)は巻き出しロール(18)から巻き出され、搬送ローラ(15)に沿って、巻き取りロール(13)に巻き取られる間に、遮蔽板の開口部を走行するようになっている。
 極板(25)が遮蔽板の開口部を走行する間に、遮蔽板の下方に設置されたリチウム源(24)から飛来したリチウム粒子の一部が開口部を経由してリチウム吸蔵部(23)にて極板(25)上の活物質層に付着して活物質層にリチウムが吸蔵される。
 巻き出しローラ(18)および巻き取りローラ(13)は、その回転を制御することができ、それにより、極板(25)には冷却キャン(16)上に極板を均一に沿わせるための張力を加えている。搬送系の一部、例えば駆動用モーター等は真空容器(12)の外に配置し、回転導入端子を介して駆動力を真空容器(12)中に導入しても良い。
 リチウム吸蔵量はリチウム源の加熱温度と、極板の走行速度によって調整することができる。
 図3は本発明の電気化学素子用電極の製造方法における第2の工程に用いることができる、電解液中で電気化学的にリチウムを吸蔵させる装置の一例を示す模式図である。
 電解液保持容器(30)の中には、リチウム対極(31)と、電解液(32)と、極板搬送系が設置されている。極板搬送系は、極板の巻き出しロール(18)、搬送ローラ(15)、電解用のキャン(16)、極板の巻き取りロール(13)等から構成されている。
 巻き出しローラ(18)および巻き取りローラ(13)は、その回転を制御することができ、それにより、極板(25)には冷却キャン(16)上に極板を均一に沿わせるための張力を加えている。
 キャン(16)は一部が電解液(32)に浸っており、電解液中にはリチウム対極(31)が保持される。極板(25)とリチウム対極の間には電位差が設けられ、電位差によりキャン上の極板(25)にリチウム対極(31)から電解液を経由して活物質層にリチウムが吸蔵される。
 極板に電位を付与する方法としては、キャン(16)に電位を付与することで、キャン(16)に接触しながら走行している極板(25)に電位を付与する方法や、搬送ローラ(15)、巻き取りロール(13)、巻き出しロール(18)に電位を付与することで極板(25)に電位を付与する方法を採ることができる。
 電解液には、様々なリチウムイオン伝導性の非水電解液が用いられる。非水電解液には、非水溶媒(エチレンカーボネート、エチルメチルカーボネートなど)にリチウム塩(6フッ化リン酸リチウムなど)を溶解したものが好ましく用いられる。非水電解液の組成は特に限定されない。
 極板(25)は巻き出しロール(18)から巻き出され、搬送ローラ(15)に沿って、巻き取りロール(13)に巻き取られる間に、キャン(16)に沿って走行するようになっている。
 リチウムの吸蔵量は印加電圧と極板の走行速度によって調整することができる。
 本発明では、第2の工程により活物質層を形成した後、極板を裏返してもう一度第2の工程を繰り返す方法などによって、両面に活物質層が形成されている極板に対しても、両面にリチウムを吸蔵させることが可能である。
 (第3の工程)
 本発明の第3の工程は、第2の工程でリチウムを吸蔵した活物質層表面に存在する突起物を除去する工程である。この除去工程は減圧雰囲気で行ってもよいし、常圧雰囲気で行ってもよい。また、液中で行うことも可能である。
 本発明の第3の工程を実施する具体的方法としては特に限定されないが、前記活物質層表面の突起物に除去手段を物理的に接触させて除去する方法と、前記活物質層表面の突起物に除去手段を直接接触させずに除去する方法が挙げられる。前者の方法としては、活物質層表面を払拭布にて払拭する方法、活物質層表面を粘着テープにて被覆した後、活物質層表面から粘着テープを剥離する方法、ブレードなどの、直線状刃先を有する刃物を使用し、前記直線状刃先を前記活物質層の表面から所定の距離に維持した状態で前記活物質層を移動させることにより前記突起物を除去する方法等が挙げられる。後者の方法としては、エアブローにより突起物を除去する方法、液中で前記活物質層表面に超音波を照射する方法等が挙げられる。
 第2の工程を真空中で行い、第3の工程を減圧雰囲気で行う場合には、第2の工程に用いる装置内に第3の工程を組み込むことが可能になる。また、第2の工程を電解液中で行い、第3の工程を払拭布やブレード、超音波照射などにより行う場合には、第2の工程における電解液中でのリチウム吸蔵装置内に第3の工程を組み込むことが可能になる。
 以上のようにして製造した電気化学素子用電極は、リチウム二次電池又は電気化学キャパシタ等の電気化学素子における負極として使用することができる。
 (リチウム二次電池)
 図5は本発明の実施の形態におけるリチウム二次電池の概略断面図を示す。
 リチウム二次電池は、正極51と、負極52と、これらの間に配置されたセパレータ56とを含む電極群を備えている。電極群およびリチウムイオン伝導性を有する電解質がアルミラミネート製の密封容器61に収容されている。正極51は、シート状の正極集電体54と、正極集電体54上に配置された正極活物質層55とで構成されている。負極52は、シート状の負極集電体57と、負極集電体57上に配置された負極活物質層58とで構成されている。正極活物質層55と負極活物質層58は、セパレータ56を介して対向している。正極集電体54と負極集電体57には、それぞれ正極用リード59および負極用リード60の一端が接続されている。リード59及び60の他端は、密封容器61の外部に伸長している。密封容器61の開口部は樹脂材料62により封止されている。
 図5では、正極51と負極52を一組含む構造を示したが、この構造に限定されない。例えば、正極集電体54が両面に正極活物質層55を有し、この正極を2枚のセパレータで挟み込むように配置し、さらにその外側を2枚の負極が覆うような構造とすることもできる。この場合、負極と正極の配置は逆でもよい。
 図8は、図5の正極活物質層55と負極活物質層58の積層状態を、正極活物質層55の上方から見た概略上面図を示す。ただし図8では、正極活物質層55と負極活物質層58との間に配置されたセパレータ56は省略している。図8に示すように、正極活物質層55の上方から見た場合(すなわち、セパレータの厚み方向で見た場合)に、負極活物質層58は正極活物質層55よりも大きく、負極活物質層58は、正極活物質層55に対向している対向領域81と、正極活物質層55に対向していない非対向領域82とに区画される。
 なお、一例として積層型電池を示したが、本発明のリチウム二次電池の構造としては、捲回型の極板群を有する円筒型電池や角型電池なども適宜採用できる。
 本発明は、負極の構成に特徴を有することから、リチウム二次電池においては、負極以外の構成要素は特に限定されない。例えば、正極活物質には、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMn)などのリチウム含有遷移金属酸化物を用いることができるが、これに限定されない。また、正極活物質層は、正極活物質のみで構成してもよいし、正極活物質と結着剤と導電剤を含む合剤で構成してもよい。正極集電体には、Al、Al合金、Tiなどを用いることができる。
 セパレータには多孔質ポリプロピレンなど一般にリチウムイオン二次電池に用いられるセパレータを用いることができ、本発明はセパレータによって限定されるものではない。
 リチウムイオン伝導性の電解質には、様々なリチウムイオン伝導性の固体電解質や非水電解液が用いられる。非水電解液には、非水溶媒にリチウム塩を溶解したものが好ましく用いられる。非水電解液の組成は特に限定されない。
 セパレータや外装ケースも特に限定されず、様々な形態のリチウム二次電池に用いられている材料を特に限定されることなく用いることができる。
 (キャパシタの製造方法)
 図6は本発明の実施の形態における電気化学キャパシタの概略断面図を示す。電気化学キャパシタは、正極活物質層73、正極集電体72、負極活物質層76、負極集電体77、セパレータ74、封口板75、ガスケット78およびケース71を含む。
 非水電解液を含浸させたセパレータを介して、正極活物質層と負極活物質層とを対向配置し、電極体を作製する。本発明は負極の構成に特徴を有するため、正極活物質には一般に電気化学キャパシタで用いられる活性炭などの正極物質を用いることができ、正極によって限定されるものではない。非水電解液には、非水溶媒にリチウム塩を溶解したものが好ましく用いられる。非水電解液の組成は特に限定されない。
 以下に実施例を掲げて本発明をさらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。
 まず、非水電解質二次電池の負極極板を作成する目的で、負極集電体上にSi薄膜を形成することを想定し、第1の工程を実施した。
 すなわち、図1に示す装置構成にて、基板に幅28cmの粗面化銅箔(EXP-DT-NC35μm;古河サーキットフォイル株式会社製)を用い、薄膜形成部(23)の長さが45cm程度になるよう遮蔽板の位置を調整した。黒鉛ルツボに高純度Si(99.9%純度)を投入した薄膜形成源(19)を、薄膜形成部(23)からの最短距離が40cmになるように設置した。10-2Pa程度の減圧条件下、電子線によりSiを加熱溶解しSi溶湯の表面温度を2000℃程度に保ち、基板に5kgfのテンションをかけながら、基板を毎分0.33m程度の速度で走行させて薄膜形成を行った。
 得られた極板をレーザー顕微鏡にて観察したところ、極板上には粒径が5~500μm程度の突起物が20~50個/cm程度の頻度で観察された。
 この極板の活物質表面を、本発明の第2の工程を経ることなく、払拭布(GC10000:日本ミクロコーティング社製)で払拭したり、粘着テープ(650S#50:寺岡製作所製)で被覆、剥離したが、突起物を除去することができなかった。
 また、極板の一部をφ12.5mmの円板状態に打ち抜き、電解液に浸した状態で超音波処理機(SUS-100PN:島津製作所製、振動周波数28kHz、出力100W)にて1分以上、超音波処理を行ったが、この方法でも突起物を除去することはできなかった。
 続いて、第1の工程にて得られた極板に対して、真空蒸着法により本発明における第2の工程の処理を施した。
 すなわち、第1の工程で得られた極板を用い、図2に示す装置構成にて、ルツボにリチウムを投入したリチウム源(24)から極板までの距離が10cmになるよう極板位置を調整した。10-2Pa程度の減圧条件下、抵抗加熱によりルツボを600℃に加熱して活物質層上にリチウムを蒸着した。蒸着時間を調整することにより、リチウムの吸蔵量が活物質層の理論充電容量の10%、20%、30%となるように調整した3種類の極板を作成した。
 活物質層の理論充電容量の計算は以下の方法によった。まず、単位面積あたりの極板の重量から、あらかじめ測定した単位面積当たりの粗面化銅箔の重量を引くことで、単位面積当たりの活物質重量を計算した。次いで、単位重量あたりの活物質の理論充電容量と実測の活物質重量を掛け算することで活物質層の理論充電容量を算出した。
 第2の工程を施した3種類の極板に対して、活物質層表面をもう一度払拭布(GC10000:日本ミクロコーティング製)で払拭したところ、リチウム吸蔵量が10%、20%、30%のいずれの極板でも極板上の突起物の除去に成功した。
 また、同様に第2の工程を施した極板に対して活物質層表面を粘着テープ(650S#50:寺岡製作所製)で被覆、剥離した結果、リチウム吸蔵量が10%、20%、30%のいずれの極板でも良好に突起物を除去することができた。
 また、図4に示すように、巻き出しローラ(18)および巻き取りローラ(13)と搬送ローラ(15)からなる極板走行系に極板(25)を設置し、幅10mm、刃先の平坦度1μm以下の直線状の刃物(21)を活物質層の表面から20μmの位置に配置した。この状態で活物質層表面に突起物が付着した極板を移動させたところ、リチウム吸蔵量が10%、20%、30%のいずれの極板でも良好に突起物を剥離除去することができた。
 第2の工程を施した極板をφ12.5mmの円形状に打ち抜き、電解液に浸した状態で超音波処理機(SUS-100PN:島津製作所製、振動周波数28kHz、出力100W)にて10秒間超音波を照射した。結果、他の方法と同様にリチウム吸蔵量が10%、20%、30%のいずれの極板でも突起物を剥離除去することができた。
 続いて、第2の工程を電気化学的方法で行ったサンプルを作成した。この方法では活物質層表面にリチウムが比較的析出しにくい。
 すなわち、第1の工程で得られた極板を用い、図3に示す装置構成にて、電解液(エチレンカーボネート(EC):エチルメチルカーボネート(EMC):ジエチルカーボネート(DEC)=3:5:2(体積比)、1M LiPF(三菱化学製))中でリチウム対極を極板に対向させ、電位差を印加することにより、活物質層にリチウムを吸蔵させた。リチウムの吸蔵量は活物質層の理論充電容量の10%、50%、100%となるように調整した3種類の極板を作成した。
 極板の理論充電容量の計算は上述の方法によった。
 第2の工程を施した3種類の極板に対して、活物質層表面をもう一度払拭布(GC10000:日本ミクロコーティング製)で払拭したところ、リチウム吸蔵量が10%、50%、100%のいずれの極板でも極板上の突起物の除去に成功した。
 また、同様に第2の工程を施した極板に対して活物質層表面を粘着テープ(650S#50:寺岡製作所製)で被覆、剥離した結果、リチウム吸蔵量が10%、50%、100%のいずれの極板でも良好に突起物を除去することができた。
 また、図4に示すように、巻き出しローラ(18)および巻き取りローラ(13)と搬送ローラ(15)からなる極板走行系に極板(25)を設置し、幅10mm、刃先の平坦度1μm以下の直線状の刃物(21)を活物質層の表面から20μmの位置に配置した。この状態で活物質層表面に突起物が付着した極板を移動させたところ、リチウム吸蔵量が10%、50%、100%のいずれの極板でも良好に突起物を剥離除去することができた。
 第2の工程を施した極板をφ12.5mmの円形状に打ち抜き、電解液に浸した状態で超音波処理機(SUS-100PN:島津製作所製、振動周波数28kHz、出力100W)にて10秒間超音波を照射したところ、他の方法と同様にリチウム吸蔵量が10%、50%、100%のいずれの極板でも突起物を剥離除去することができた。
 上記99.9%純度のSiの代わりに、より純度の高い99.99%純度のSiを薄膜原料として使用し、上記と同様の手順で薄膜形成を行った。得られた極板をレーザー顕微鏡にて観察したところ、極板上には粒径が5~500μm程度の突起物が1~20個/cm程度の頻度で観察された。さらに同様の手法により活物質層上にリチウムを蒸着し、リチウムの吸蔵量が活物質層の理論充電容量の10%、20%、30%となるように調整した3種類の極板を作成した。これら3種類の極板に対して、活物質層表面を払拭布(GC10000:日本ミクロコーティング製)で払拭したところ、いずれの極板でも極板上の突起物の除去に成功した。
 以上の実施例で突起物を剥離除去した後の極板の活物質層表面を、微小部蛍光X線分析による元素分布の分析に付することで、リチウムを吸蔵していない微小領域の個数と平均直径を算出した。具体的には、極板サンプルを露点-20℃の大気に暴露して極板表層のリチウムを酸化した後、前記元素分析にて酸化リチウムを検出し、1cmあたりの直径1μm以上の微小領域の個数と、各微小領域の直径とを測定した。得られた直径値の相加平均を平均直径とした。測定結果を以下の表1、表2及び表3に示す。なお、簡易的な方法として、レーザー顕微鏡にて、活物質層表面の任意の部分を1cm観察し、モニターに写った直径1μm以上の微小領域について、個数を集計し、各領域の直径を測定し、平均直径を求めることも可能であった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 本発明に係る電気化学素子用電極の製造方法によれば、真空プロセスにて活物質層を作成した際に生じた極板上の突起物を除去することが可能であり、リチウムイオン電池や電気化学キャパシタ等の電気化学素子用の電極の製造法として有用である。本発明に係る電気化学素子用電極及び電気化学素子によれば、セパレータ貫通による内部短絡の可能性を低減することが可能である。
 11 排気装置
 12 真空容器
 13 巻き取りロール
 15 搬送ローラ
 16 キャン
 17 ヒーター
 18 巻き出しロール
 19 薄膜形成源
 20 遮蔽板
 21 刃物
 22 基板
 23 薄膜形成部
 24 リチウム源
 25 極板
 30 電解液保持容器
 31 リチウム対極
 32 電解液
 54 正極集電体
 55 正極活物質層
 56 セパレータ
 57 負極集電体
 58 負極活物質層
 59 正極用リード
 60 負極用リード
 61 密封容器
 71 ケース
 72 正極集電体
 73 正極活物質層
 74 セパレータ
 75 封口板
 76 負極集電体
 77 負極活物質層
 78 ガスケット

Claims (24)

  1.  リチウムの吸蔵及び放出が可能な活物質層を集電体上に真空プロセスで形成する第1の工程と、
     前記活物質層にリチウムを吸蔵させる第2の工程と、
     前記リチウムを吸蔵した活物質層表面の突起物を除去する第3の工程と
    を含む、電気化学素子用電極の製造方法。
  2.  前記活物質がケイ素、ケイ素酸化物、または、ケイ素を含む合金もしくは化合物よりなる、請求項1記載の電気化学素子用電極の製造方法。
  3.  前記リチウムを吸蔵させる第2の工程におけるリチウム吸蔵量が前記活物質層の理論充電容量の10%以上100%以下である、請求項1記載の電気化学素子用電極の製造方法。
  4.  前記リチウムを吸蔵させる第2の工程が、前記活物質層に真空プロセスによりリチウムを吸蔵させる工程である、請求項1記載の電気化学素子用電極の製造方法。
  5.  前記リチウムを吸蔵させる第2の工程が、前記活物質層に電気化学プロセスによりリチウムを吸蔵させる工程である、請求項1記載の電気化学素子用電極の製造方法。
  6.  前記突起物を除去する第3の工程が、前記活物質層表面の突起物に除去手段を物理的に接触させて除去する工程である、請求項1記載の電気化学素子用電極の製造方法。
  7.  前記突起物を除去する第3の工程が、前記活物質層表面を払拭布にて払拭する工程である、請求項6記載の電気化学素子用電極の製造方法。
  8.  前記突起物を除去する第3の工程が、前記活物質層表面を粘着テープにて被覆した後、前記活物質層表面から前記粘着テープを剥離する工程である、請求項6記載の電気化学素子用電極の製造方法。
  9.  前記突起物を除去する第3の工程が、直線状刃先を有する刃物を使用し、前記直線状刃先を前記活物質層の表面から所定の距離に維持した状態で前記活物質層を移動させることにより前記突起物を除去する工程である、請求項6記載の電気化学素子用電極の製造方法。
  10.  前記突起物を除去する第3の工程が、前記活物質層表面の突起物に除去手段を直接接触させずに除去する工程である、請求項1記載の電気化学素子用電極の製造方法。
  11.  前記突起物を除去する第3の工程が、液中で前記活物質層表面に超音波を照射する工程である、請求項10記載の電気化学素子用電極の製造方法。
  12.  シート状の集電体と、前記集電体に担持された活物質層とを有する電気化学素子用電極であって、
     前記活物質層は、前記活物質層の理論充電容量の10%以上100%以下の量のリチウムを吸蔵しており、
     前記活物質層表面にリチウムを吸蔵していない微小領域が存在することを特徴とする電気化学素子用電極。
  13.  前記微小領域の平均直径が10~500μmである、請求項12記載の電気化学素子用電極。
  14.  前記微小領域が前記活物質層表面において1~50箇所/cmの頻度で存在する、請求項12記載の電気化学素子用電極。
  15.  前記活物質層がケイ素、ケイ素酸化物、または、ケイ素を含む合金もしくは化合物よりなる、請求項12記載の電気化学素子用電極。
  16.  前記活物質層が前記集電体上に柱状の活物質が複数並ぶことで形成されている、請求項12記載の電気化学素子用電極。
  17.  請求項12記載の電極から構成される負極と、

     シート状の正極集電体と、前記正極集電体の上に設けられた正極活物質層と、を有し、前記負極の前記活物質層と前記正極活物質層とが対向するように配置された正極と、
     前記負極と前記正極との間に配置されたセパレータと、を有する電気化学素子。
  18.  前記負極の前記活物質層は、前記セパレータの厚み方向において前記正極活物質層に対向している対向領域と、同方向において前記正極活物質層に対向していない非対向領域と、を有し、
     前記非対向領域における前記活物質層表面において、前記微小領域が存在する、請求項17記載の電気化学素子。
  19.  前記微小領域が、前記非対向領域における前記活物質層表面において1~50箇所/cmの頻度で存在する、請求項18記載の電気化学素子。

  20.  前記微小領域の平均直径が10~500μmである、請求項17記載の電気化学素子。
  21.  前記負極の前記活物質層がケイ素、ケイ素酸化物、または、ケイ素を含む合金もしくは化合物よりなる、請求項17記載の電気化学素子。
  22.  前記負極の前記活物質層が前記集電体上に柱状の活物質が複数並ぶことで形成されている、請求項17記載の電気化学素子。
  23.  前記電気化学素子がリチウム二次電池である、請求項17記載の電気化学素子。

  24.  前記電気化学素子が電気化学キャパシタである、請求項17記載の電気化学素子。
PCT/JP2010/000063 2009-01-07 2010-01-07 電気化学素子用電極の製造方法、電気化学素子用電極、および電気化学素子 WO2010079754A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2010800033128A CN102224620A (zh) 2009-01-07 2010-01-07 电化学元件用电极的制造方法、电化学元件用电极和电化学元件
JP2010516708A JP4745459B2 (ja) 2009-01-07 2010-01-07 電気化学素子用電極の製造方法、電気化学素子用電極、および電気化学素子
US13/143,123 US20110269020A1 (en) 2009-01-07 2010-01-07 Electrochemical element electrode producing method, electrochemical element electrode, and electrochemical element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-001882 2009-01-07
JP2009001882 2009-01-07

Publications (1)

Publication Number Publication Date
WO2010079754A1 true WO2010079754A1 (ja) 2010-07-15

Family

ID=42316520

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/000063 WO2010079754A1 (ja) 2009-01-07 2010-01-07 電気化学素子用電極の製造方法、電気化学素子用電極、および電気化学素子

Country Status (4)

Country Link
US (1) US20110269020A1 (ja)
JP (1) JP4745459B2 (ja)
CN (1) CN102224620A (ja)
WO (1) WO2010079754A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012049544A (ja) * 2010-08-27 2012-03-08 Samsung Electro-Mechanics Co Ltd エネルギー貯蔵装置の電極製造用ドーピング装置及びこれを用いた電極製造方法
JP2013014840A (ja) * 2011-06-08 2013-01-24 Univ Of Tokyo Siと金属Mとを含む膜の製造方法
JP2016143711A (ja) * 2015-01-30 2016-08-08 Jsr株式会社 電極の製造方法、蓄電デバイス及び電極の活物質にリチウムを吸蔵させるための装置
JP2019067501A (ja) * 2017-09-28 2019-04-25 トヨタ自動車株式会社 電極板の製造方法およびその装置
JPWO2020059225A1 (ja) * 2018-09-19 2021-08-30 武蔵エナジーソリューションズ株式会社 電極製造装置
US11456446B2 (en) 2019-01-31 2022-09-27 Lg Energy Solution, Ltd. Method for pre-lithiation of negative electrode for secondary battery

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10367176B2 (en) * 2015-05-01 2019-07-30 Semiconductor Energy Laboratory Co., Ltd. Power storage device and electronic device
CN107978807A (zh) * 2016-10-21 2018-05-01 许继集团有限公司 一种电池检测与维护方法及系统
CN109155398B (zh) * 2016-11-21 2021-07-13 株式会社Lg化学 用于电化学装置的电极及其制造方法
CN108891700B (zh) * 2018-06-08 2024-04-02 无锡格林司通自动化设备股份有限公司 一种新型撕膜机构及撕膜方法
CN113305451A (zh) * 2021-06-17 2021-08-27 深圳吉阳智能科技有限公司 一种激光切割方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08222212A (ja) * 1995-02-13 1996-08-30 Yuasa Corp ペースト式電極の製造法
JP2002509341A (ja) * 1997-12-12 2002-03-26 ミネソタ マイニング アンド マニュファクチャリング カンパニー 薄フィルム基材上に設けられたカソード材料の処理装置及び処理方法
JP2002134100A (ja) * 2000-10-25 2002-05-10 Matsushita Electric Ind Co Ltd 電池用極板の製造法
JP2008004281A (ja) * 2006-06-20 2008-01-10 Matsushita Electric Ind Co Ltd リチウム電池用電極の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4841152B2 (ja) * 2005-03-28 2011-12-21 三洋電機株式会社 リチウム二次電池用負極の製造方法及びリチウム二次電池
JP4911909B2 (ja) * 2005-03-29 2012-04-04 三洋電機株式会社 リチウム二次電池用電極の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08222212A (ja) * 1995-02-13 1996-08-30 Yuasa Corp ペースト式電極の製造法
JP2002509341A (ja) * 1997-12-12 2002-03-26 ミネソタ マイニング アンド マニュファクチャリング カンパニー 薄フィルム基材上に設けられたカソード材料の処理装置及び処理方法
JP2002134100A (ja) * 2000-10-25 2002-05-10 Matsushita Electric Ind Co Ltd 電池用極板の製造法
JP2008004281A (ja) * 2006-06-20 2008-01-10 Matsushita Electric Ind Co Ltd リチウム電池用電極の製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012049544A (ja) * 2010-08-27 2012-03-08 Samsung Electro-Mechanics Co Ltd エネルギー貯蔵装置の電極製造用ドーピング装置及びこれを用いた電極製造方法
JP2013014840A (ja) * 2011-06-08 2013-01-24 Univ Of Tokyo Siと金属Mとを含む膜の製造方法
JP2016143711A (ja) * 2015-01-30 2016-08-08 Jsr株式会社 電極の製造方法、蓄電デバイス及び電極の活物質にリチウムを吸蔵させるための装置
JP2019067501A (ja) * 2017-09-28 2019-04-25 トヨタ自動車株式会社 電極板の製造方法およびその装置
JPWO2020059225A1 (ja) * 2018-09-19 2021-08-30 武蔵エナジーソリューションズ株式会社 電極製造装置
JP7280281B2 (ja) 2018-09-19 2023-05-23 武蔵エナジーソリューションズ株式会社 電極製造装置
US11456446B2 (en) 2019-01-31 2022-09-27 Lg Energy Solution, Ltd. Method for pre-lithiation of negative electrode for secondary battery

Also Published As

Publication number Publication date
CN102224620A (zh) 2011-10-19
JP4745459B2 (ja) 2011-08-10
US20110269020A1 (en) 2011-11-03
JPWO2010079754A1 (ja) 2012-06-21

Similar Documents

Publication Publication Date Title
JP4745459B2 (ja) 電気化学素子用電極の製造方法、電気化学素子用電極、および電気化学素子
JP5151188B2 (ja) 転写用フィルム、およびそれを用いて形成された電気化学素子用の極板ならびにリチウム二次電池
EP2124273A1 (en) Negative electrode for lithium secondary battery and method for producing the same, and lithium secondary battery comprising negative electrode for lithium secondary battery
JP4876531B2 (ja) リチウム二次電池用負極およびリチウム二次電池の製造方法
TWI714594B (zh) 具有介電塗層之電池隔板
WO2008072460A1 (ja) 非水電解質二次電池用負極とその製造方法およびそれを用いた非水電解質二次電池
WO2008044461A1 (fr) Accumulateur secondaire à électrolyte non aqueux et son procédé de production d'électrode négative
WO2009095973A1 (ja) 電気化学素子用電極の製造方法
WO2008072430A1 (ja) 非水電解質二次電池用負極とその製造方法およびそれを用いた非水電解質二次電池
JP5260851B2 (ja) リチウムイオン二次電池
WO2008044449A1 (fr) Électrode négative pour batterie secondaire à électrolyte non aqueuse, procédé de production correspondant et batterie citée utilisant l'électrode
WO2021250803A1 (ja) 2次電池及びその製造方法
JP2010073402A (ja) リチウム二次電池用負極の製造方法
JP5092280B2 (ja) 二次電池用電極及びその製造方法、並びに二次電池
WO2008026358A1 (fr) Electrode pour batterie secondaire electrolytique non aqueuse, procede de production associe et batterie secondaire electrolytique non aqueuse
JP3707617B2 (ja) 負極およびそれを用いた電池
JP2007323901A (ja) 電池用電極及びその製造方法、並びに二次電池
JP2007220450A (ja) リチウム二次電池用負極板、およびそれを用いたリチウム二次電池
JP2007128658A (ja) リチウム二次電池用負極の製造方法およびリチウム二次電池の製造方法
JP2008117607A (ja) 電池用電極の製造方法
JP2007207663A (ja) リチウムイオン二次電池用負極の製造方法およびその方法を用いて得られた負極を含むリチウムイオン二次電池
JP7304380B2 (ja) 電極集電体および二次電池
KR102406390B1 (ko) 리튬 금속 음극의 제조 방법, 이에 따라 제조된 리튬 금속 음극, 및 이를 포함하는 리튬 이차 전지
JP2007328932A (ja) リチウム二次電池用負極およびこれを用いたリチウム二次電池
JP2010086729A (ja) 電極シートの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080003312.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2010516708

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10729174

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13143123

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10729174

Country of ref document: EP

Kind code of ref document: A1